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Abstract In this paper the methods of structural synthesis and direct kinematics of
six-DOF three-limbed parallel manipulator (PM) are presented. This PM is formed
by connection of a mobile platform with a base by three dyads with cylindrical
joints. Constant and variable parameters characterizing geometry of links and rel-
ative motions of elements of joints are defined. Direct kinematics of the PM is
solved by iterative method.
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1 Introduction

Most of the 6-DOF PM consist of six limbs (Merlet 2000; Gogu 2008–2014 and
others). These PM possess the advantages of high stiffness, low inertia, and large
payload capacity. However, such six–limbed fully PM have a limited workspace
and complex kinematic singularities, which are their major drawbacks. Therefore in
robotics literature (Yang et al. 2004; Mianovski 2007; Jin et al. 2009; Glazunov
2010 and other) a great interest to the PM with few number of limbs and larger
workspace is observed.
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Following the above-mentioned trends in the development of PM, we proposed a
novel structure of six-DOF three-limbed PM with cylindrical joints (PM 3CCC)
(Baigunchekov et al. 2009), as shown in Fig. 1. This PM is formed by connection
of a mobile platform 3 with a base 0 by three spatial dyads ABC, DEF and GHI of
type CCC (C—cylindrical joint). Each of spatial dyads of type CCC do not impose
restrictions on motion of the mobile platform, and six-DOF of the mobile platform
are remained.

Each cylindrical joint has two-DOF: one rotation and one translation. In the
considered PM the joints A, F and I are active joints, and the joints B, C, D, E,
G and H are passive joints. Six variable parameters s7, θ7, s8, θ8, s9, θ9 of active
joints A, F and I are the generalized coordinates. The results of singularity analysis
of the PM 3CCC are presented (Baigunchekov et al. 2012). In this paper the
geometry of this PM is described and its direct kinematics is solved.

2 Geometry of the PM 3CCC

To describe the geometry of the PM 3CCC two right-hand Cartesian coordinate
systems UVW and XYZ are attached to each element of each joint. TheW and Z axes
of the coordinate systems UVW and XYZ are directed along the axes of rotation and
translation of the cylindrical joints.

Transformation matrix Tjk between the coordinate systems UjVjWj and XkYkZk,
attached to the ends of the binary link with the j-th and k-th joints, has a form

Tjk =

t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

2
664

3
775, ð1Þ

where t11 = 1, t12 = t13 = t14 = 0,

Fig. 1 PM with cylindrical
joints
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t21 = ajk ⋅ cos γjk + bjk ⋅ sin γjk ⋅ sin αjk,

t22 = cos γjk ⋅ cos βjk − sin γjk ⋅ cos αjk ⋅ sin βjk,

t23 = − cos γjk ⋅ sin βjk − sin γjk ⋅ cos αjk ⋅ cos βjk,

t24 = sin γjk ⋅ sin αjk,

t31 = ajk ⋅ sin γjk − bjk ⋅ cos γjk ⋅ sin αjk,

t32 = sin γjk ⋅ cos βjk + cos γjk ⋅ cos αjk ⋅ sin βjk,

t33 = cos γjk ⋅ cos αjk ⋅ cos βjk − sin γjk ⋅ sin βjk,

t34 = − cos γjk ⋅ sin αjk, t41 = cjk + bjk ⋅ cos αjk,

t42 = sin αjk ⋅ sin βjk, t43 = sin αjk ⋅ cos βjk,

t44 = cos αjk, ajk—a distance from the Wj axis to the Zk axis measured along the
direction of the common perpendicular tjk between the Wj and Zk axes; αjk—an
angle between positive directions of the Wj and Zk axes measured counterclockwise
about positive direction of tjk; bjk—a distance from direction of tjk to direction of the
Xk axis measured along the positive direction of the Zk axis; βjk—an angle between
positive directions of tjk and Xk axis measured counterclockwise about the positive
direction of the Zk axis; cjk—a distance from direction of Uj axis to direction of tjk
measured along the positive direction of theWj axis; γjk—an angle between positive
directions of the Uj axis and tjk measured counterclockwise about the positive
direction of the Wj axis.

In comparision with the Denavit–Hartenberg transformation matrix, having four
parameters, the transformation matrix (1) has six parameters fully characterizing the
relative locations of the coordinate systems UjVjWj and XkYkZk, because a free rigid
body in space has six generalized coordinates.

A binary link jk of type CC is shown in Fig. 2. Axes of the coordinate systems
UjVjWj and XkYkZk, attached to the ends of this binary link, are chosen as follows:
the Wj and Zk axes are located along the axes of rotation and translation of the
cylindrical joints j and k; the origins Oj and Ok of the coordinate systems UjVjWj

and XkYkZk are located in points of intersection of the Wj and Zk axes with the
common perpendicular tjk between these axes; the Uj and Xk axes are located along
the common perpendicular tjk; the Vj and Yk axes are completed the right-hand
Cartesian coordinate systems UjVjWj and XkYkZk.

At such choice of the coordinate systems UjVjWj and XkYkZk nonzero parameters
of the matrix Tjk are ajk and αjk. Then from the matrix (1) we obtain a matrix of the
binary link jk of type CC
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GCC
jk =

1 0 0 0
ajk 1 0 0
0 0 cos αjk − sin αjk
0 0 sin αjk cos αjk

2
664

3
775, ð2Þ

where parameters ajk and αjk are constant, and they characterize the geometry of the
binary link jk of type CC.

Nonzero parameters of the cylindrical joint j shown in Fig. 3 are θj and sj. Then
from the matrix (1) we obtain a matrix of the cylindrical joint j

kY
jW//

k
j

jU

j
jV

kZ
jW

k jk

jk

l

( )jkt

Fig. 2 Binary link jk of type CC

Fig. 3 Cylindrical joint j
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PC
j ðθj, sjÞ=

1 0 0 0
0 cos θjk − sin θj 0
0 sin θj cos θj 0
sj 0 0 1

2
664

3
775, ð3Þ

where sj—a distance from the Xj axis to the Uj axis measured along the directions
of the Zj and Wj axes; θj—an angle between the positive directions of the Xj and Uj

axes measured counterclockwise about the positive directions of the Zj and Wj axes.
Parameters sj and θj are variable, and they characterize relative translation and
rotation motions of the j-th cylindrical joint elements.

Choosing the coordinate systems UVW and XYZ, as shown in Figs. 2 and 3, the
constant and variable parameters of the PM 3CCC have been obtained. Constant
and variable parameters of the first limb ABC of the PM 3CCC are shown in Fig. 4,
where θ7 and s7 are the generalized coordinates of the active joint A; θ2, s2 and θ3,
s3 are the variable parameters of the passive joints B and C; all other parameters are
the constant parameters characterizing the geometry of links. Constant and variable
parameters of two other symmetrical legs are defined similarly.

Fig. 4 The first limb
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3 Direct Kinematics

In direct kinematics of the PM 3CCC position of coordinate system XPYPZP
attached to the mobile platform 3 are defined with respect to the base frame UoVoWo

by known constant geometrical parameters of the links and the generalized coor-
dinates si, θi, (i = 7, 8, 9).

For automation of calculation of the direct kinematics we use following desig-
nations: n—number of mobile links, m—number of input links, L—number of the
closed loops, nl—number of links in the l-th loop (l = 1, 2, …, L), ðl, aÞ—index of
the a-th link in the l-th loop. Dependent variable parameters of the passive joints

hðωÞðl, aÞ are numerated 1, 2,…, n − m, independent variable parameters of the active

joints qðωÞðl, aÞ are numerated n − m + 1, n − m + 2, …, n, where ω—number of

DOF of the joint ðl, aÞ. For the considered PM 3CCC n = 7, m = 3, L = 2,
n1 = n2 = 6, ω = 2. PM 3CCC has two closed loops ABCDEFA and ABCGHIA.

Let made a Table 1 of conformity between the numbers of links and joints of the
PM 3CCC.

Using the Table 1 of conformity between the numbers of links and joints we can
write the loop-closure equations of the loops ABCDEFA and ABCGHIA

M71 ⋅M12 ⋅M23 ⋅M34 ⋅M48 ⋅M87 =E
M71 ⋅M12 ⋅M25 ⋅M56 ⋅M69 ⋅M97 =E

)
ð4Þ

or

Ml, 1 ⋅Ml, 2 ⋅ . . . ⋅Ml, a ⋅ . . . ⋅Ml, nl =E; l=1, 2, ð5Þ

where E is a unit matrix, Mjk =PC
jk ⋅G

CC
jk , j, k =1, 2,…, 9.

For the direct kinematics of the PM 3CCC the iterative method (Uicker et al.
1964) is used. According to this method unknown dependent variable parameters

hðωÞðl, aÞ are written through their initial approaches hðωÞ*ðl, aÞ and deviations dhðωÞðl, aÞ by

expression

hðωÞðl, aÞ = hðωÞ*ðl, aÞ + dhðωÞðl, aÞ, ð6Þ

where hðωÞðl, aÞ ∈ θl, a, sl, a.

Table 1 Conformity between the numbers of links and joints

l 1 1 1 1 1 1 2 2 2 2 2 2
a 1 2 3 4 5 6 1 2 3 4 5 6
(l, a) 7 1 2 3 4 8 7 1 2 5 6 9
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The system of matrix Eq. (5) are transformed to the system of linear equations,

from which the deviations dhðωÞðl, aÞ are determined. Adding the determined deviations

to their previous values, more exact values of the passive joints variable parameters
have been obtained.

Position of the coordinate system XPYPZP attached to the mobile platform 3 with
respect to the base coordinate system UoVoWo can be defined by matrix SP

SP =G07 ⋅M71 ⋅M12 ⋅M23 ⋅G3P, ð7Þ

where G07 is a transformation matrix between the coordinate system X7Y7Z7 and the
absolute coordinate system U0V0W0, G3P is a transformation matrix between the
coordinate systems XPYPZP and X3Y3Z3 of the mobile platform 3.

4 Conclusions

A novel six-DOF three-limbed PM 3CCC is formed by connection of the mobile
platform with the base by three spatial dyads with cylindrical joints. Constant and
variable parameters of the PM 3CCC are defined on the basis of the transformation
matrix of two systems of coordinates attached to each element of each joints.
Constant parameters characterize geometry of links, and variable parameters
characterize relative motions of the joint elements. The loop-closure matrix equa-
tions of the PM 3CCC are made up. The direct kinematics of the PM 3CCC is
solved by iterative method of solution of the loop-closure matrix equations.
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