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Abstract The present work addresses the unification of the structural and

dimensional synthesis of serial robot manipulators. Unlike related publications, the

approach does not utilize simplifications of the kinematic structures. In addition,

it is also capable of generating manipulators with up to six degrees of freedom.

The approach reduces the computational effort by automatically generating the task-

suitable architectures together with their corresponding optimisation parameters.

Since the kinematics modelling is one of the main challenges, an algorithm for

the numerical solution of the inverse kinematics is introduced. Finally, in order to

demonstrate the capability of the method, the optimal manipulator for a pick and

place operation is found using kinematic performance indices and particle swarm

optimisation.

Keywords Serial manipulators ⋅Robot design ⋅ Structural synthesis ⋅Dimensional

synthesis ⋅ Denavit-Hartenberg parameters

1 Introduction

The robot design process currently involves two isolated procedures: the structural

synthesis and the dimensional synthesis (Merlet 2005). The first aims to find the

number, type, and orientation of the robot joints in order to generate a manipulator
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with a desired number of degrees of freedom (DOF). For this purpose, several

methods like the Lie groups (Caro et al. 2010) and the screw theory (Kuo and Dai

2010) have been employed. In the dimensional synthesis, the optimal dimensions of

the robot links are determined in order to accomplish a given task (Carbone et al.

2007). For this optimisation, many kinds of performance indices (Patel and Sobh

2015) as well as optimisation algorithms (Carbone et al. 2007; Lara-Molina et al.

2010) have been proposed.

Although the methods for the structural and dimensional synthesis are well

established, the architectures produced as a result of the structural synthesis are not

considered in the dimensional synthesis. Instead, the optimisation of the links dimen-

sions is performed only for one structure, which is usually chosen a priori. Thus, the

obtained manipulator that results from the dimensional synthesis is not necessarily

the best mechanism for the given task.

Integrated synthesis of planar mechanisms has been developed for rigid body

guidance in (Luu and Hayes 2012; Pucheta and Cardona 2011). Furthermore, dual

quaternions have been used (Perez-Gracia and McCarthy 2006) in the synthesis of

spatial mechanisms from a prescribed set of finite positions.Some authors have tried

to unify the two aforementioned procedures for task-specific serial manipulators

(defining the task as one or several paths). However, these attempts consider only

manipulators with three DOF (Kucuk and Bingul 2006), simplified architectures

(e.g. the last three axes intersecting at one point) (Patel and Sobh 2014, 2015), or a

limited set of link geometries (i.e. the possible components are predefined modules)

(Rubrecht et al. 2011).

The present work introduces a combined (structural and dimensional) synthesis

of serial robot manipulators which does not assume any structural simplification. It

is able to synthesize manipulators with up to six DOF while taking prismatic (P)

and revolute (R) joints into account. In order to reduce the computational effort, the

generation of all task-suitable architectures as well as the extraction of the minimal

optimisation parameters is performed as the first step of the approach. Then, a generic

numerical solution of the inverse kinematics for serial manipulators is presented.

The optimisation procedure for an exemplary pick and place task with four DOF is

addressed in the fourth section. Finally, the method’s capability is demonstrated by

synthesizing a manipulator for the mentioned task.

2 Generation of Suitable Architectures and Extraction
of the Optimisation Parameters

The generation of suitable architectures to perform a required task is summarized

here. A detailed description of the algorithm was previously published (Ramirez

et al. 2015).

The architecture and geometry of a serial manipulator are described for the com-

bined synthesis through a symbolic matrix of Denavit-Hartenberg (DH) parameters.
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The first part of the synthesis aims to find the parameters that can be used during

the optimisation as variables and the parameters that have to be constant in order to

provide the required end effector (EE) DOF.

The necessary DOF to execute a given task can be used to define the required

motion vector 𝝃req as

𝝃req =
[
𝜉req1 , 𝜉req2 , 𝜉req3 , 𝜉req4 , 𝜉req5 , 𝜉req6

]T
, (1)

where 𝜉req1 , 𝜉req2 , and 𝜉req3 represent the translational DOF in direction of the axes

x, y, and z while 𝜉req4 , 𝜉req5 , and 𝜉req6 represent the rotational DOF around the axes

x, y, and z, respectively. It has to be noticed that 𝝃req corresponds to the EE velocity

of a serial manipulator 𝝃:

𝝃 =
[
𝜉1, 𝜉2, 𝜉3, 𝜉4, 𝜉5, 𝜉6

]T =
[
vn
𝝎n

]
= Jq̇ , (2)

with J being the Jacobian matrix of the manipulator, vn =
[
𝜉1, 𝜉2, 𝜉3

]T
the EE linear

velocity, 𝝎n =
[
𝜉4, 𝜉5, 𝜉6

]T
the EE angular velocity, and q̇ the joint rates vector. For

a given task, if 𝝃reqi = 0 for any i = 1…6, then 𝝃i should be also zero for the same

i and for any q̇. The suitability of a manipulator with respect to the task is evaluated

using three conditions. Firstly, the null terms of 𝝃req and 𝝃 have to be the same.

Secondly, the rank of the Jacobian matrix (rank(J)) must be equal to the total number

of required DOF. Thirdly, the independence of each EE DOF with respect to each

DH parameter has to be verified. This evaluation is conducted in symbolic form in

order to perform a global analysis. After the application of this conditions to the

generated manipulators, it is possible to obtain a minimum set of architectures (i.e.

without isomorphisms) to be considered during the subsequent optimisation.

Exemplarily, Fig. 1 shows a RPPP architecture, which is one of the 17 architec-

tures that fulfil a required motion vector 𝝃
req

= [𝜉
req1

, 𝜉
req2

, 𝜉
req3

, 0, 0, 𝜉
req6

]T (Ramirez

et al. 2015). The corresponding DH parameters as well as the vector p with the

optimisation parameters are also presented. In this case, the fixed parameters are

𝛼2 = 𝜋∕2, 𝜃3 = 𝜋∕2, and 𝛼3 = 𝜋∕2.

Fig. 1 Exemplary

architecture generated for a

task that requires three

translational DOF and one

rotational DOF around the

z-axis (Ramirez et al. 2015)



210 D. Ramirez et al.

3 Kinematics Modelling

A central problem of the combined structural-dimensional synthesis is the solution

of the inverse kinematics for a general serial manipulator including R and P joints.

In this paper, the inverse kinematics is solved using a numerical approach, which

exploits the advantages of both the pseudoinverse and the transpose of the Jacobian

matrix.

The kinematics of a serial manipulator can be expressed as the relationship

between the joint coordinates vector q and the Cartesian coordinates vector (posi-

tion and orientation) of the EE xEE:

xEE = f (q) . (3)

The inverse kinematics problem consists of calculating q from a given xEE:

q = f−1
(
xEE

)
. (4)

Most widespread numerical methods to solve (4) employ either the pseudoinverse

or the transpose of the Jacobian J. The first case corresponds to the Newton-Raphson

method to solve nonlinear kinematic equations (Schwarz and Köckler 2011). The

approach approximates the solution of the inverse kinematics q to the vector qp+1
using:

qp+1 = qp + J
(
qp
)† KΔxp , (5)

with

Δxp = xEE − f
(
qp
)
, (6)

J† = JT
(
JJT

)−1
, (7)

and K being a diagonal matrix to adjust the step size of the algorithm.

At the beginning of the algorithm qp corresponds to a given initial joint coordi-

nates vector q0, which can be arbitrarily chosen. Though the approach usually has a

high convergence rate, it diverges when J
(
qp
)

is singular.

Another numerical method to solve the inverse kinematics corresponds to the

gradient method for the solution of a system of nonlinear equations (Schwarz and

Köckler 2011). This utilizes the transpose of J in a similar way as (5):

qp+1 = qp + J
(
qp
)T KΔxp . (8)

Since the inversion of the Jacobian matrix is not necessary, this approach does not

present problems with singularities. However, the convergence is slower in compar-

ison to the Newton-Raphson method.
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In order to take advantage of both approaches, a combined numerical solution

of the inverse kinematics is proposed. This begins by using (5) and calculates the

condition number 𝜅 of the Jacobian matrix J
(
qp
)

at each step p. If 𝜅 ≥ 𝜅max, the

algorithm switches to use (8) until 𝜅 < 𝜅max and qp converges again. Then, Eq. (5)

is used again to continue the process. The threshold 𝜅max for the maximal allowed

value of the condition number is given arbitrarily. Numerous tests showed that the

algorithm is able to overcome singularities during the process and even find solutions

near to singular poses with an appropriated convergence rate for 200 < 𝜅max < 600.

The process is performed until Δxp < 𝝐 for a given tolerance 𝝐. The proposed algo-

rithm is presented in Algorithm 1. Detailed features of the algorithm are not dis-

cussed here due to space limitations.

Alg. 1 Algorithm for the numerical solution of the inverse kinematics problem

Require: xEE, q0, 𝝐, 𝜅max
qp ← q0
repeat
𝜅 ← cond

(
J
(
qp
))

Δxp ← xEE − f
(
qp
)

if 𝜅 < 𝜅max and Δxp < Δxp−1 then
qp+1 ← qp + J

(
qp
)† KΔxEE {(from (5))}

else
qp+1 ← qp + J

(
qp
)T KΔxEE {(from (8))}

end if
qp ← qp+1

until Δxp < 𝝐

return qp

4 Optimisation Procedure

Due to the reasonable number of task-suitable architectures found through the gener-

ation of suitable architectures (Sect. 2), each of them can be optimised. Afterwards,

the optimal configuration will be the one with the best performance of all archi-

tectures. The optimisation can be conducted for many kinds of requirements, e.g.

accuracy, manipulability, size of the workspace, dynamical performance, etc. Exem-

plarily, the synthesis of a serial manipulator for a pick and place task will be intro-

duced. Since the robot size influences other performance characteristics like stiffness

and energy consumption, it will be used as optimisation criterion. Furthermore, the

accuracy in the start pose (xEE,s) and end pose (xEE,e) are used as additional require-

ments of the design process. The indices that are used to evaluate the performance of

the manipulator regarding these requirements as well as the optimisation algorithm

are explained in the next sections.
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4.1 Performance Indices

For the considered pick and place task, the robot size should be minimized main-

taining a predefined accuracy in the start and end poses.

Several indices can be found in literature to evaluate the robot size. In this paper,

the robot size index fsize is based on the structural length index (Waldron 2008),

which compares the sum of the link lengths ai and the joint offsets di to the volume

of the reachable workspace. In our approach, the distance between the start and end

points Ltask will be used instead:

fsize =
∑n

i=1
||ai|| + ||di||
Ltask

. (9)

Since the condition number of J (𝜅 (J)) is generally employed to analyse the error

of the EE due to errors in the actuators, the local conditioning index (LCI) (Angeles

and López-Cajún 1992) provides a good measure of the accuracy of the manipulator.

However, in order to avoid the dimensional inhomogeneities of J, the dimensionally

homogeneus Jacobian matrix J̃ (Ranjbaran et al. 1995) must be used instead. The

LCI is evaluated at the initial (qini) and end (qend) point of the task. Then, the perfor-

mance index corresponding to the accuracy of the manipulator is the minimum of

these two values:

LCImin = min
(
𝜅−1 (J̃ (qini)

)
, 𝜅−1 (J̃ (qend)

) )
. (10)

4.2 Optimisation Problem

Exemplarity, the index fsize will be used as cost function and the minimum local

conditioning index LCImin as constraint. Therefore, the optimal geometric parameters

vector p∗ has to be found:

p∗ = argmin
p

(
fsize (p)

)
, (11)

subject to

LCImin ≥ LCI∗min , (12)

where LCI∗min defines the lowest allowed value of LCImin. The parameters vector

pmin ≤ p ≤ pmax (lower bound pmin, upper bound pmax) is obtained for each suitable

architecture as explained in Sect. 2.

Since it is not possible to obtain an explicit expression for the cost function, a

global optimisation method has to be used. In this case, the particle swarm optimi-

sation algorithm (PSO) (Ebbesen et al. 2012) was chosen to solve the optimisation



Combined Structural and Dimensional Synthesis . . . 213

problem. The optimisation process is performed for each suitable architecture. At the

end of the process, the configuration (i.e. architecture including geometrical parame-

ters) with the best performance is selected to perform the required task.

5 Exemplary Results

In order to demonstrate the capability of the proposed approach, the results of the

synthesis for the aforementioned task are presented. This task requires three trans-

lational DOF and one rotational DOF around the vertical axis. The corresponding

required motion vector is 𝝃
req

= [𝜉
req1

, 𝜉
req2

, 𝜉
req3

, 0, 0, 𝜉
req6

]T. The required start and

end poses of the EE (xEE,s and xEE,e) are described using the position and orientation

of the EE coordinate system (CS)EE with respect to the robot base coordinate system

(CS)0. Table 1 gives the coordinates x, y, z and 𝜑 of the start and end poses.

The optimisation process was performed as explained in Sect. 4 for every suitable

architecture (Ramirez et al. 2015). In each iteration of the optimisation, the inverse

kinematics as introduced in Sect. 3 is computed to determine the joint coordinates

corresponding to xEE,s and xEE,e. Afterwards, a point to point (PTP) interpolation is

calculated in the joint space using a polynomial function of degree five (Biagiotti

and Melchiorri 2008) in order to ensure the task feasibility.

The improvement in the numerical solution of the inverse kinematics is visu-

alised in Fig. 2. As an example, for an RRRP architecture, the numerical inverse

kinematics was performed with q0 =
[
𝜋∕4, 0, 𝜋∕4, 0.05

]T
and xEE = xEE,s. Since q0

Table 1 Start and end poses of the required task

Pose x [m] y [m] z [m] 𝜑 [rad]

xEE,s −0.5 0 0 −𝜋∕2
xEE,e 0.5 0.6 0.7 0

Po
si

tio
n 

er
ro

r 
[m

]

Step
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101

Step
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]
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(a) (b)

Fig. 2 Evolution of the position error during the solution of the inverse kinematics a Using the

transpose of J b Using the solution proposed in Algorithm 1
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Table 2 Architectures with the best performance after the optimisation procedure

Architecture RPPP RPRP RPPR PRPR RRRP PPPR

fsize 0.9613 1.0089 1.0881 1.0881 1.1212 1.2460
LCImin 0.3613 0.1768 0.3163 0.2776 0.1 0.3077

Table 3 DH parameters of the optimised manipulator

R/P 𝜃i [rad] di [m] ai [m] 𝛼i [rad]

R q1 0.318 0.227 0.5665
P −1.9369 q2 −0.058 𝜋∕2
P 𝜋∕2 q3 0 𝜋∕2
P −2.8224 q4 0 0.9230

corresponds to a singular pose, the proposed algorithm (Fig. 2b) switches to use (8),

but after step 13, it uses (7) for rapid convergence. Using only JT the convergence of

the algorithm is slower (Fig. 2a). The represented position error corresponds to the

norm of the first three terms of Δxp.

The architectures with the highest performance after the optimisation (RPPP,

RPRP, RPPR, PRPR) and its performance indices are reported in Table 2. These

results were obtained using 100 particles (swarm size) for each architecture and

LCI∗min = 0.1. The optimisation of every architecture was carried out several times

with similar results.

The DH parameters of the best manipulator (RPPP) are shown in Table 3. As

can be seen, the dimensions of the manipulator are reasonable for the given task.

The capability of the method is demonstrated comparing the indices of the serial

architectures that are usually employed for pick and place operations, namely PPPR

(Gantry robot) and RRRP (Scara robot). The performance obtained for these manip-

ulator are clearly poorer than the manipulator obtained with our method as reported

in Table 2.

6 Conclusions

The paper presents an approach to combine the structural and dimensional synthe-

sis of serial manipulators. Starting from a required task, every suitable architecture

is considered during the dimensional optimisation process. In order to reduce the

computational effort, the appropriate geometrical parameters of each architecture are

deduced automatically. Due to an efficient numerical solution of the inverse kinemat-

ics, mechanisms with up to six DOF can be synthesized without any kinematic sim-

plification. The benefits of considering all task-suitable architectures are observed
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in the design of the manipulator for an exemplary pick and place operation. Here,

the size of the robot was minimized and the accuracy was considered as a constraint

during the optimisation. The obtained manipulator has a higher performance than

the architectures typically employed for this kind of tasks.
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