
Rule-Based Consistency Checking of Railway
Infrastructure Designs

Bjørnar Luteberget1(B), Christian Johansen2, and Martin Steffen2

1 RailComplete AS (Formerly Anacon AS), Sandvika, Norway
bjlut@railcomplete.no

2 Department of Informatics, University of Oslo, Oslo, Norway
{cristi,msteffen}@ifi.uio.no

Abstract. Railway designs deal with complex and large-scale, safety-
critical infrastructures, where formal methods play an important role,
especially in verifying the safety of so-called interlockings through model
checking. Model checking deals with state change and rather complex
properties, usually incurring considerable computational burden (chiefly
in terms of memory, known as state-space explosion problem). In con-
trast to this, we focus on static infrastructure properties, based on design
guidelines and heuristics. The purpose is to automate much of the man-
ual work of the railway engineers through software that can do verifica-
tion on-the-fly. In consequence, this paper describes the integration of
formal methods into the railway design process, by formalizing relevant
technical rules and expert knowledge. We employ a variant of Datalog
and use the standardized “railway markup language” railML as basis
and exchange format for the formalization. We describe a prototype tool
and its (ongoing) integration in industrial railway CAD software, devel-
oped under the name RailCOMPLETE�. We apply this tool chain in a
Norwegian railway project, the upgrade of the Arna railway station.

Keywords: Railway designs · Automation · Logic programming ·
Signalling · Railway infrastructure · railML · CAD · Datalog

1 Introduction

Railway systems are complex and large-scale, safety-critical infrastructures, with
increasingly computerized components. The discipline of railway engineering is
characterized by heavy national regulatory oversight, high and long-standing
safety and engineering standards, a need for interoperability and (national and
international) standardization. Due to the high safety requirements, the railway
design norms and regulations recommend the use of formal methods (of vari-
ous kinds), and for the higher safety integrity levels (SIL), they “highly recom-
mend” them (cf. e.g. [4]). Railways require thoroughly designed control systems
to ensure safety and efficient operation. The railway signals are used to direct
traffic, and the signalling component layout of a train station is crucial to its
traffic capacity. Another central part of a railway infrastructure is the so-called
c© Springer International Publishing Switzerland 2016
E. Ábrahám and M. Huisman (Eds.): IFM 2016, LNCS 9681, pp. 491–507, 2016.
DOI: 10.1007/978-3-319-33693-0 31



492 B. Luteberget et al.

interlocking, which refers, generally speaking, to the ensemble of systems tasked
to establish safe, conflict-free routes of trains through stations (cf. [18]).

Railway construction projects are heavy processes that integrate various
fields, engineering disciplines, different companies, stakeholders, and regulatory
bodies. When working out railway designs a large part of the work is repet-
itive, involving routine checking of consistency with rules, writing tables, and
coordinating disciplines. Many of these manual checks are simple enough to be
automated.

With the purpose of increasing the degree of automation, we present results
on integrating formal methods into the railway design process, as follows:

– We formalize rules governing track and signalling layout, and interlocking.
– The standardized “railway markup language” railML [19] is used as basis and

exchange format for the formalization.
– We model the concepts describing a railway design in the logic of Datalog; and

develop an automated generation of the model from the railML representation.
– We develop a prototype tool and integrate it in existing railway CAD software.

We illustrate the logical representation of signalling principles and show how
they can be implemented and solved efficiently using the Datalog style of logic
programming [21]. We also show the integration with existing railway engineer-
ing workflow by using CAD models directly. This enables us to verify rules
continuously as the design process changes the station layout and interlocking.
Based on railML [19], our results can be easily adopted by anyone who uses
this international standard. The work uses as case study the software and the
design (presently under development) used in the Arna-Fløen upgrade project,1

with planned completion in 2020. The Arna train station is located on Northern
Europe’s busiest single-track connection, which is being extended to a double-
track connection. The case study is part of an ongoing project in Anacon AS
(now merged with Norconsult), a Norwegian signalling design consultancy. It is
used to illustrate the approach, test the implementation, and to verify that the
tool’s performance is acceptable for interactive work within the CAD software.

The rest of the paper is organized as follows. Section 2 discusses aspects
of the railway domain relevant for this work. Section 3 proposes a tool chain
that extends CAD with formal representations of signalling layout and inter-
locking. Section 4 presents our formalization of the rules and concepts of rail-
way design as logical formulas amenable for the Datalog implementation and
checking. Section 5 provides information about the implementation, including
details about counterexample presentation and empirical evaluation using the
case study. We conclude in Sect. 6 with related and future work.

2 Background on the Railway Signalling Domain

The signalling design process results in a set of documents which can be cat-
egorized into (a) track and signalling component layout, and (b) interlocking
specification.
1 www.jernbaneverket.no/Prosjekter/prosjekter/Arna-Bergen.

www.jernbaneverket.no/Prosjekter/prosjekter/Arna-Bergen


Rule-Based Consistency Checking of Railway Infrastructure Designs 493

Fig. 1. Cut-out from 2D geographical CAD model (construction drawing) of prelimi-
nary design of the Arna station signalling (Color figure online).

Railway construction projects rely heavily on computer aided design (CAD)
tools to map out railway station layouts. The various disciplines within a project,
such as civil works, track works, signalling, or catenary power lines, work with
coordinated CAD models. These CAD models contain a major part of the work
performed by engineers, and are a collaboration tool for communication between
disciplines. The signalling component layout is worked out by the signalling
engineers as part of the design process. Signals, train detectors, derailers, etc.,
are drawn using symbols in a 2D geographical CAD model. An example of a
layout drawing is given in Fig. 1.

2.1 Interlocking Specification

An interlocking is an interconnection of signals and switches to ensure that
train movements are performed in a safe sequence [18]. Interlocking is performed
electronically so that, e.g., a green light (or, more precisely, the proceed aspect)
can only be lit under certain conditions. Conditions and state are built into
the interlocking by relay-based circuitry or by computers running interlocking
software. Most interlocking specifications use a route-based tabular approach,
which means that a train station is divided into possible routes, which are paths
that a train can take from one signal to another. These signals are called the route
entry signal and route exit signal, respectively. An elementary route contains no
other signals in-between. The main part of the interlocking specification is to
tabulate all possible routes and set conditions for their use. Typical conditions
are:

– Switches must be positioned to guide the train to a specified route exit signal.
– Train detectors must show that the route is free of any other trains.
– Conflicting routes, i.e. overlapping routes (or overlapping safety zones), must

not be in use.



494 B. Luteberget et al.

3 Proposed Railway Signalling Design Tool Chain

Next we describe shortly the tool chain that we propose for automating the cur-
rent manual tasks involved in the design of railway infrastructures (see details in
[15]). In particular, we are focused on integrating and automating those simple,
yet tedious, rules and conditions usually used to maintain some form of consis-
tency of the railway, and have these checks done automatically. Whenever the
design is changed by an engineer working with the CAD program, our verifi-
cation procedure would help, behind the scenes, verifying any small changes in
the model and the output documents. Violations would either be automatically
corrected, if possible, or highlighted to the engineer. Thus, we are focusing on
solutions with small computational overhead.

3.1 Computer-Aided Design (CAD) Layout Model

CAD models, which ultimately correspond to a database of geometrical objects,
are used in railway signalling engineering. They may be 2D or 3D, and contain
mostly spatial properties and textual annotations, i.e., the CAD models focus
on the shapes of objects and where to place them. The top level of the docu-
ment, called the model space block, contains geometrical primitives, such as lines,
circles, arcs, text, and symbols.

Geometric elements may represent the physical geometry directly, or symbol-
ically, such as text or symbols. However, the verification of signalling and inter-
locking rules requires information about object properties and relations between
objects such as which signals and signs are related to which track, and their
identification, capabilities, and use. This information is better modelled by the
railway-specific extensible hierarchical object model called railML [17].

3.2 Integrating railML and Interlocking Specifications
with CAD Models

CAD programs were originally designed to produce paper drawings, and common
practice in the use of CAD programs is to focus on human-readable documents.
The database structure, however, may also be used to store machine-readable
information. In the industry-standard DWG format, each geometrical object in
the database has an associated extension dictionary, where add-on programs
may store any data related to the object. Our tool uses this method to store the
railML fragments associated with each geometrical object or symbol. Thus, we
can compile the complete railML representation of the station from the CAD
model.

Besides the layout, the design of a railway station consists also of a specifica-
tion for the interlocking. This specification models the behavior of the signalling,
and it is tightly linked to the station layout. A formal representation of the inter-
locking specification is embedded in the CAD document in a similar way as for
the railML infrastructure data, using the document’s global extension dictio-
nary. Thus, the single CAD document showing the human-readable layout of



Rule-Based Consistency Checking of Railway Infrastructure Designs 495

the train station also contains a machine-readable model which fully describes
both the component layout and the functional specification of the interlocking.
This allows a full analysis of the operational aspects of the train station directly
from a familiar editable CAD model.

3.3 Overall Tool Chain

Figure 2 shows the overall tool chain. The software allows checking of rules and
regulations of static infrastructure (described in this paper) inside the CAD
environment, while more comprehensive verification and quality assurance can
be performed by special-purpose software for other design and analysis activities.

Rules,
regulations,
and expert
knowledge
(Datalog

representation)

CAD program (design stage)

CAD document
(station layout)

Verification
issues GUI

Symbols with
attached railML

fragments

Interlocking
specification

Complete railML
document

Verification
program

User decision

Is
su
e
de
sc
ri
pt
io
n

(r
ul
e,

ob
je
ct
s,

lo
ca
tio

ns
)

Human-readable
reports and
drawings

Machine-readable
layout and specs

Interlocking
code generation
and verification

Capacity
analysis

Drawing/
report

generators

Building
Information
Modeling

Export

Fig. 2. Railway design tool chain. The CAD program box shows features which are
directly accessible at design time inside the CAD program, while the export creates
machine-readable (or human-readable) documents which may be further analyzed and
verified by external software (shown in dashed boxes).

Generally, analysis and verification tools for railway signalling designs can
have complex inputs, they must account for a large variety of situations, and
they usually require long running times. Therefore, we limit the verification
inside the design environment to static rules and expert knowledge, as these
rules require less dynamic information (timetables, rolling stock, etc.) and less



496 B. Luteberget et al.

computational effort, while still offering valuable insights. This situation may be
compared to the tool chain for writing computer programs. Static analysis can
be used at the detailed design stage (writing the code), but can only verify a
limited set of properties. It cannot fully replace testing, simulation and other
types of analysis, and must as such be seen as a part of a larger tool chain.

Other tools, that are external to the CAD environment, may be used for
these more calculation heavy or less automated types of analysis, such as:

– Code generation and verification for interlockings, possible e.g. through the
formal verification framework of Prover Technology.

– Capacity analysis and timetabling, performed e.g. using OpenTrack, LUKS,
or Treno.

– Building Information Modeling (BIM), including such activities as life-cycle
information management and 3D viewing, are already well integrated with
CAD, and can be seen as an extension of CAD.

The transfer of data from the CAD design model to other tools is possible by
using standardized formats such as railML, which in the future will also include
an interlocking specification schema [3].

4 Formalization of Rule Checking

To achieve our goal of automating checking of the consistency of railway designs
we need formal representations of both the designs and the consistency rules.

The logical representation of the designs (called the model) and of the rules
(called properties) are fed into the verification engine (SAT/SMT or Datalog)
which is doing satisfiability checking, thus looking for an interpretation of the
logical variables that would satisfy the formulas. More precisely, the rules are first
negated, then conjoined with the formulas representing the model. Therefore,
looking for a satisfying interpretation is the same as looking for a way to violate
the rules. When found, the interpretation contains the information about the
exact reasons for the violation. The reasons, or counter-example, involves some
of the negated rules as well as some parts of the model.

We formalize the correctness properties (i.e., technical rules and expert
knowledge) as predicates over finite and real domains. Using a logic programming
framework, we will include the following in the logical model:

1. Predicate representation of input document facts, i.e. track layout and inter-
locking.

2. Predicate representation of derived concept rules, such as object properties,
topological properties, and calculation of distances.

3. Predicate representation of technical rules.

Each of these categories are described in more detail below, after we present the
logical framework we employ.



Rule-Based Consistency Checking of Railway Infrastructure Designs 497

4.1 Datalog

Declarative logic programming is a programming language paradigm which
allows clean separation of logic (meaning) and computation (algorithm). This
section gives a short overview of Datalog concepts. See [21] for more details. In
its most basic form Datalog is a database query, as in the SQL language, over a
finite set of atoms which can be combined using conjunctive queries, i.e. expres-
sions in the fragment of first-order logic which includes only conjunctions and
existential quantification.

Conjunctive queries alone, however, cannot express the properties needed to
verify railway signalling. For example, given the layout of the station with tracks
represented as edges between signalling equipment nodes, graph reachability
queries are required to verify some of the rules. This corresponds to computing
the transitive closure of the graph adjacency relation, which is not expressible in
first-order logic [13, Chap. 3]. Adding fixed-point operators to conjunctive queries
is a common way to mitigate the above problem while preserving decidability
and polynomial time complexity.

The Datalog language is a first-order logic extended with least fixed points.
We define the Datalog language as follows: Terms are either constants (atoms)
or variables. Literals consist of a predicate P with a certain arity n, along with
terms corresponding to the predicate arguments, forming an expression like P (�a),
where a = (a1, a2, . . . , an). Clauses consist of a head literal and one or more body
literals, such that all variables in the head also appear in the body. Clauses are
written as

R0(�x) :− ∃�y : R1(�x, �y), R2(�x, �y), . . . , Rk(�x, �y).

Datalog uses the Prolog convention of interpreting identifiers starting with a cap-
ital letter as variables, and other identifiers as constants. E.g., the meaning of the
clause a(X,Y ) :− b(X,Z), c(Z, Y ) is ∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y)).

Clauses without body are called facts, those with one or more literals in
the body are called rules. No nesting of literals is allowed. However, recursive
definitions of predicates are possible. In the railway domain, this can be used to
define the connected predicate, which defines whether two objects are connected
by railway tracks:

directlyConnected(a, b) :− track(t), belongsTo(a, t), belongsTo(b, t).
connected(a, b) :− directlyConnected(a, b).
connected(a, b) :− directlyConnected(a, x), connection(x, c),

connected(c, b).

Here, the connection predicate contains switches and other connection types.
Further details of relevant predicates are given in the sections below.

Another common feature of Datalog implementations is to allow negation,
with negation as failure semantics. This means that negation of predicates in
rules is allowed with the interpretation that when the satisfiability procedure
cannot find a model, the statement is false. To ensure termination and unique



498 B. Luteberget et al.

solutions, the negation of predicates must have a stratification, i.e. the depen-
dency graph of negated predicates must have a topological ordering (see [21,
Chap. 3] for details).

Datalog is sufficiently expressive to describe static rules of signalling layout
topology and interlocking. For geometrical properties, it is necessary to take sums
and differences of lengths, which requires extending Datalog with arithmetic
operations. A more expressive language is required to cover all aspects of railway
design, e.g. capacity analysis and software verification, but for the properties in
the scope of this paper, a concise, restricted language which ensures termination
and short running times has the advantage of allowing tight integration with the
existing engineering workflow.

4.2 Input Documents Representation

Track and Signalling Objects Layout in the railML Format. Given a
complete railML infrastructure document, we consider the set of XML elements
in it that correspond to identifiable objects (this is the set of elements which
inherit properties from the type tElementWithIDAndName). The set of all IDs
which are assigned to XML elements form the finite domain of constants on
which we base our predicates (IDs are assumed unique in railML).

Atoms := {a | element.ID = a} .

We denote a railML element with ID = a as elementa. All other data associated
with an element is expressed as predicates with its identifying atom as one of
the arguments, most notably the following:

– Element type (also called class in railML/XML):

track(a) ← elementa is of type track,

signal(a) ← elementa is of type signal,

balise(a) ← elementa is of type balise,

switch(a) ← elementa is of type switch.

– Position and absolute position (elements inheriting from tPlacedElement):

pos(a, p) ← (elementa.pos = p), a ∈ Atoms, p ∈ R,

absPos(a, p) ← (elementa.absPos = p), a ∈ Atoms, p ∈ R.

– Direction (for elements inheriting from tOrientedElement):

dir(a, d) ← (elementa.dir = d), a ∈ Atoms, d ∈ Direction,

where Direction = {up, down, both, unknown}, indicating whether the object
is visible or functional in only one of the two possible travel directions, or
both.



Rule-Based Consistency Checking of Railway Infrastructure Designs 499

– Signal properties (for elements of type tSignal):

signalType(a, t)←(elementa.type= t), t∈{main, distant, shunting, combined} ,

signalFunction(a, f) ← (elementa.function = f),
a ∈ Atoms, f ∈ {home, intermediate, exit, blocking} .

The switch element is the object which connects tracks with each other and
creates the branching of paths. A switch belongs to a single track, but contains
connection sub-elements which point to other connection elements, which are in
turn contained in switches, crossings or track ends. For connections, we have the
following predicates:

– Connection element and reference:

connection(a) ← elementa is of type connection,

connection(a, b) ← (elementa.ref = b).

– Connection course and orientation:

connectionCourse(a, c) ← (elementa.course = c), c∈{left, straight, right}
connectionOrientation(a, o) ← (elementa.orientation = o),

a ∈ Atoms, o ∈ {outgoing, incoming} .

To encode the hierarchical structure of the railML document, a separate
predicate encoding the parent/child relationship is added:

– Object belongs to (e.g. a is a signal belonging to track b):

belongsTo(a, b) ← b is the closest XML ancestor of a whose element
type inherits from tElementWithIDAndName.

Interlocking. An XML schema for tabular interlocking specifications is
described in [3], and this format is used here with, anticipating that it will
become part of the railML standard schema in the future. We give some exam-
ples of how XML files with this schema are translated into predicate form:

– Train route with given direction d, start point a, and end point b (a, b ∈ Atoms,
d ∈ Direction):

trainRoute(t) ← elementt is of type route

start(t, a) ← (elementt.start = a)
end(t, b) ← (elementt.end = b)

– Conditions on detection section free (a) and switch position (s, p):

detectionSectionCondition(t, a) ←(a ∈ elementt.sectionConditions),
switchPositionCondition(t, s, p) ←((s, p) ∈ elementt.switchConditions).



500 B. Luteberget et al.

4.3 Derived Concepts Representation

Derived concepts are properties of the railway model which can be defined inde-
pendently of the specific station. A library of these predicates is needed to allow
concise expression of the rules to be checked.

Object Properties. Properties related to specific object types which are not
explicitly represented in the layout description, such as whether a switch is facing
in a given direction, i.e. if the path will branch when you pass it:

switchFacing(a, d) ← ∃c, o : switch(a) ∧ switchConnection(a, c)∧
switchOrientation(c, o) ∧ orientationDirection(o, d).

Topological and Geometric Layout Properties. Predicates describing the
topological configuration of signalling objects and the train travel distance
between them are described by predicates for track connection (predicate
connected(a, b)), directed connection (predicate following(a, b, d)), distance
(predicate distance(a, b, d , l)), etc. The track connection predicate is defined as:

directlyConnected(a, b) ← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b) ← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

Interlocking Properties. Properties such as existsPathWithoutSignal(a, b) for
finding elementary routes, and existsPathWithDetector(a, b) for finding adjacent
train detectors will be used as building blocks for the interlocking rules.

4.4 Rule Violations Representation

With the input documents represented as facts, and a library of derived con-
cepts, it remains to define the technical rules to be checked. Technical rules are
based on [11]. Some examples of technical rules representing conditions of the
railway station layout are given below. More details can be found in the technical
report [16].

Property 1 (Layout: Home signal [11]). A home main signal shall be placed
at least 200m in front of the first controlled, facing switch in the entry train path.

See also Fig. 3 for an example. Property 1 may be represented in the following
way:

isFirstFacingSwitch(b, s) ← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),



Rule-Based Consistency Checking of Railway Infrastructure Designs 501

200 m

Fig. 3. A home main signal shall be placed at least 200 m in front of the first controlled,
facing switch in the entry train path. (Property 1)

ruleViolation1(b, s) ← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x,home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x,home)∧
∧ distance(x, s, d, l) ∧ l < 200).

Checking for rule violations can be expressed as:

∃b, s : ruleViolation1(b, s),

which in Datalog query format becomes ruleViolation1(B,S)?.

Property 2 (Layout: Exit main signal [11]). An exit main signal shall be
used to signal movement exiting a station.

This property can be elaborated into the following rules:

– No path should have more than one exit signal:

ruleViolation2(s) ←∃d : signalType(s, exit) ∧ following(s, so, d)∧
¬signalType(s0, exit).

– Station boundaries should be preceded by an exit signal:

exitSignalBefore(x, d) ←∃s : signalType(s, exit) ∧ following(s, x, d)
ruleViolation2(b) ←∃d : stationBoundary(b) ∧ ¬exitSignalBefore(b, d).

Property 3 (Interlocking: Track clear on route). Each pair of adjacent
train detectors defines a track detection section. For any track detection sections
overlapping the route path, there shall exist a corresponding condition on the
activation of the route.

See Fig. 4 for an example. Property 3 can be represented as follows:

adjacentDetectors(a, b) ←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db) ← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),



502 B. Luteberget et al.

Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:
Route Start End Sections must be clear
AB A B 1, 2

Fig. 4. Track sections which overlap a route must have a corresponding condition in
the interlocking. (Property 3)

ruleViolation3 (r, da, db) ← detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

Property 4 (Interlocking: Flank protection [11]). A train route shall have
flank protection.

For each switch in the route path and its associated position, the paths starting
in the opposite switch position defines the flank. Each flank path is terminated
by the first flank protection object encountered along the path. An example sit-
uation is shown in Fig. 5. While the indicated route is active (A to B), switch
X needs flank protection for its left track. Flank protection is given by setting
switch Y in right position and setting signal C to stop. Property 4 can be elab-
orated into the following rules:

– All flank protection objects should be eligible flank protection objects, i.e. they
should be in the list of possible flank protection objects, and have the correct
orientation (the flankElement predicate contains the interlocking facts):

Route

Signal A Signal B

Signal C

Switch X

Switch Y

Fl
an
k

Fig. 5. The dashed path starting in switch X must be terminated in all branches by a
valid flank protection object, in this case switch Y and signal C. (Property 4)



Rule-Based Consistency Checking of Railway Infrastructure Designs 503

flankProtectionObject(a, b, d) ←((signalType(a,main) ∧ dir(a, d))∨
(signalType(a, shunting) ∧ dir(a, d))∨
switchFacing(a, d)∨
derailer(a)) ∧ following(a, b, d).

flankProtectionRequired(r, x, d) ← trainRoute(r) ∧ start(r, sa)∧
end(r, sb) ∧ switchOrientation(x, o) ∧ between(sa, x, sb)∧
orientationDirection(o, od) ∧ oppositeDirection(od, d).

flankProtection(r, e) ←flankProtectionRequired(r, x, d)∧
flankProtectionObject(e, x, d).

ruleViolation4 (r, e) ←flankElement(r, e)∧
¬flankProtection(r, e).

– There should be no path from a model/station boundary to the given switch,
in the given direction, that does not pass a flank protection object for the
route:

ruleViolation4 (r, b, x) ← stationBoundary(b)∧
flankProtectionRequired(r, x, d) ∧ following(b, x, d)∧
existsPathWithoutFlankProtection(r, b, x, d).

5 Tool Implementation

The XSB Prolog interpreter was used as a back-end for the implementation as it
offers tabled predicates which have the same characteristics as Datalog programs
[20], while still allowing general Prolog expressions such as arithmetic operations.

5.1 Counterexample Presentation

When rule violations are found, the railway engineer will benefit from informa-
tion about the following:

– Which rule was violated (textual message containing a reference to the source
of the rule or a justification in the case of expert knowledge rules).

– Where the rule was violated (identity of objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful
in many cases. In the rule databases, this may be accomplished through the use
of structured comments, similar to the common practice of including structured
documentation in computer programs, such as JavaDoc (see Fig. 6 for an exam-
ple). A program parses the structured comments and forwards corresponding
queries to the logic programming solver. Any violations returned are associated
with the information in the comments, so that the combination can be used to
present a helpful message to the user. A prototype CAD add-on program for
Autodesk AutoCAD was implemented, see Fig. 7.



504 B. Luteberget et al.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

5.2 Case Study Results

The rules concerning signalling layout and interlocking from Jernbaneverket [11]
described above were checked in the railML representation of the Arna-Fløen
project, which is an ongoing design project in Anacon AS (now merged with
Norconsult). Each object was associated with one or more construction phases,
which we call phase A and phase B, which also correspond to two operational
phases. The model that was used for the work with the Arna station (phase A
and B combined) included 25 switches, 55 connections, 74 train detectors, and 74
signals. The interlocking consisted of 23 and 42 elementary routes in operational
phase A and B respectively.

Table 1. Case study size and running times on a standard laptop.

Testing station Arna phase A Arna phase B

Relevant components 15 152 231

Interlocking routes 2 23 42

Datalog facts 85 8283 9159

Running time (s) 0.1 4.4 9.4



Rule-Based Consistency Checking of Railway Infrastructure Designs 505

The Arna station design project and the corresponding CAD model has been
in progress since 2013, and the method of integrating railML fragments into the
CAD database, as described in Sect. 3, has been in use for about one year.
Engineers working on this model are now routinely adding the required railML
properties to the signalling components as part of their CAD modelling process.
The rule collection consisted of 37 derived concepts, 5 consistency predicates,
and 8 technical predicates. Running times for the verification procedure can be
found in Table 1.

6 Conclusions, Related and Further Work

We have demonstrated a logical formalism in which railway layout and interlock-
ing constraints and technical rules may be expressed, and which can be decided
by logic programming proof methods with polynomial time complexity.

Related Work. Railway control systems and signalling designs are a fertile
ground for formal methods. See [1,7] for an overview of various approaches and
pointers to the literature, applying formal methods in railway design. In partic-
ular, safety of interlockings has been intensively formalized and studied, using
for instance VDM [9] and the B-method, resp. Event-B [12]. Model checking
has proved particularly attractive for tackling the safety of interlocking, and
various model checkers and temporal logics have been used, cf. e.g. [5,6,22].
Critically evaluating practicality, [8] investigated applicability of model checking
for interlocking tables using NuSMVresp. Spin. The research shows that inter-
locking systems of realistic size are currently out of reach for both flavors of
model checkers. [10] uses bounded model checking for interlockings. An influen-
tial technology is the verified code generation for interlockings from Prover AB
Sweden [2]. Prover is an automated theorem prover, using St̊almarck’s method.

The mentioned works generally include dynamic aspects of the railway in
their checking, like train positions and the interlocking state. This is in contrast
to our work, which focuses on checking against static aspects. Lodemann et al.
[14] use semantic technologies to automate railway infrastructure verification.
Their scope is still wider than this paper in the computational sense, with the
full expressive power of OWL ontologies, running times on the order of hours, and
the use of separate interactive graphical user interfaces rather than integration
with design tools.

Future Work. In the future work with RailComplete AS, we will focus on
extending the rule base to contain more relevant signalling and interlocking
rules from [11], evaluating the performance of our verification on a larger scale.
Design information and rules about other railway control systems, such as geo-
graphical interlockings and train protection systems could also be included. The
current work is assuming Norwegian regulations, but the European Rail Traffic
Management System is expected to dominate in the future.



506 B. Luteberget et al.

Finally, we plan to extend from consistency checking to optimization of
designs. Optimization requires significantly larger computational effort, and the
relation between Datalog and more expressive logical programming frameworks
could become relevant.

Acknowledgments. We thank Anacon AS and RailComplete AS, especially senior
engineer Claus Feyling, for guidance on railway methodology and philosophy. We
acknowledge the support of the Norwegian Research Council through the project
RailCons – Automated Methods and Tools for Ensuring Consistency of Railway
Designs.

References

1. Bjørner, D.: New results and trends in formal techniques for the development
of software in transportation systems. In: Proceedings of the Symposium on
Formal Methods for Railway Operation and Control Systems (FORMS 2003).
L’Harmattan Hongrie (2003)

2. Borälv, A., St̊almarck, G.: Formal verification in railways. In: Hinchey, M.G.,
Bowen, J.P. (eds.) Industrial-Strength Formal Methods in Practice. FACIT, pp.
329–350. Springer, London (1999)

3. Bosschaart, M., Quaglietta, E., Janssen, B., Goverde, R.M.P.: Efficient formaliza-
tion of railway interlocking data in RailML. Inf. Syst. 49, 126–141 (2015)

4. Boulanger, J.-L.: CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE,
New Jersey (2015)

5. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of rail-
way interlocking systems. In: 4th Internationl Workshop on Engineering Safety and
Security Systems (ESSS), vol. 184 of EPTCS, pp. 19–31 (2015)

6. Eisner, C.: Using symbolic model checking to verify the railway stations of hoorn-
kersenboogerd and heerhugowaard. In: Pierre, L., Kropf, T. (eds.) CHARME 1999.
LNCS, vol. 1703, pp. 97–109. Springer, Heidelberg (1999)

7. Fantechi, A., Fokkink, W., Morzenti, A.: Some trends in formal methods applica-
tions to railway signalling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods for
Industrial Critical Systems, pp. 61–84. Wiley, New Jersey (2012)

8. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp.
107–115. Springer, Heidelberg (2010)

9. Fukuda, M., Hirao, Y., Ogino, T.: VDM specification of an interlocking system and
a simulator for its validation. In: 9th IFAC Symposium Control in Transportation
Systems Proceedings, vol. 1, pp. 218–223, Braunschweig. IFAC (2000)

10. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Heidelberg (2014)

11. Jernbaneverket. Teknisk regelverk (2015). http://trv.jbv.no/
12. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the

railways. In: Proceedings of DS-Event-B 2012: Advances in Developing Dependable
Systems in Event-B. In conjunction with ICFEM, 2012, vol. 3(1), pp. 35–43 (2012)

13. Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (2004)

http://www.forskningsradet.no
http://www.mn.uio.no/ifi/english/research/projects/railcons/
http://trv.jbv.no/


Rule-Based Consistency Checking of Railway Infrastructure Designs 507

14. Lodemann, M., Luttenberger, N., Schulz, E.: Semantic computing for railway
infrastructure verification. In: IEEE Seventh International Conference on Seman-
tic, Computing, pp. 371–376 (2013)

15. Luteberget, B., Feyling, C.: Automated verification of rules and regulations com-
pliance in CAD models of railway signalling and interlocking. In: Computers in
Railways XV. WIT Press (2016) (to appear)

16. Luteberget, B., Johansen, C., Steffen, M.: Rule-based consistency checking of rail-
way infrastructure designs. Technical report 450, January 2016

17. Nash, A., Huerlimann, D., Schütte, J., Krauss, V.P.: RailML - a standard data inter-
face for railroad applications. In:Allan, J.,Hill,R.J.,Brebbia,C.A., Sciutto,G., Sone,
S. (eds.) Computers in Railways IX, pp. 233–240. WIT Press, Southampton (2004)

18. Pachl, J.: Railway Operation and Control. VTD Rail Publishing, Mountlake
Terrace (2015)

19. RailML. The XML interface for railway applications (2016). http://www.railml.
org

20. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
Theor. Pract. Log. Program. 12(1–2), 157–187 (2012)

21. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. CSPP, New
York (1988)

22. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool
support for checking railway interlocking designs. In: Proceedings of the 10th
Australian Workshop on Safety Critical Systems and Software, pp. 101–107 (2006)

http://www.railml.org
http://www.railml.org

	Rule-Based Consistency Checking of Railway Infrastructure Designs
	1 Introduction
	2 Background on the Railway Signalling Domain
	2.1 Interlocking Specification

	3 Proposed Railway Signalling Design Tool Chain
	3.1 Computer-Aided Design (CAD) Layout Model
	3.2 Integrating railML and Interlocking Specifications with CAD Models
	3.3 Overall Tool Chain

	4 Formalization of Rule Checking
	4.1 Datalog
	4.2 Input Documents Representation
	4.3 Derived Concepts Representation
	4.4 Rule Violations Representation

	5 Tool Implementation
	5.1 Counterexample Presentation
	5.2 Case Study Results

	6 Conclusions, Related and Further Work
	References


