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Abstract. We present a symbolic reachability analysis approach for
B that can provide a significant speedup over traditional explicit state
model checking. The symbolic analysis is implemented by linking ProB
to LTSmin, a high-performance language independent model checker.
The link is achieved via LTSmin’s Pins interface, allowing ProB to ben-
efit from LTSmin’s analysis algorithms, while only writing a few hundred
lines of glue-code, along with a bridge between ProB and C using ØMQ.
ProB supports model checking of several formal specification languages
such as B, Event-B, Z and Tla+. Our experiments are based on a wide
variety of B-Method and Event-B models to demonstrate the efficiency of
the new link. Among the tested categories are state space generation and
deadlock detection; but action detection and invariant checking are also
feasible in principle. In many cases we observe speedups of several orders
of magnitude. We also compare the results with other approaches for
improving model checking, such as partial order reduction or symmetry
reduction. We thus provide a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other
model checking improvements via LTSmin in the future.

Keywords: B-Method · Event-B · ProB · LTSmin · Symbolic
reachability

1 Introduction

In this paper we describe the process, technique and design decisions we made for
integrating the two tooling sets: LTSmin and ProB. Bicarregui et al. suggested,
in a review of projects which applied formal methods [6], that providing useable

J. Meijer—Supported by STW SUMBAT grant: 13859.
J. van de Pol—Supported by the 3TU.BSR project.
J. Whitefield—Partly supported by EPSRC grant: EP/M506655/1.

c© Springer International Publishing Switzerland 2016
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Fig. 1. Modular Pins architecture of LTSmin [17]

tools remained a challenge. Recent use of the ProB tool in a rail system case
study [16], where model checking large industrial sized complex specifications
was performed, illustrated that there continues to be limitations with the tooling.
Model checking CSP‖B [28] specifications in ProB was the original motivator
for this research, and based on a promising initial exploration [30], this paper
defines a systematic integration of the two tooling sets.

LTSmin is a high-performance language-independent model checker that
allows numerous modelling language front-ends to be connected to various analy-
sis algorithms, through a common interface, as shown in Fig. 1. It offers a
wide spectrum of parallel and symbolic algorithms to deal with the state space
explosion of different verification problems. This connecting interface is called
the Partitioned Interface to the Next-State function (Pins), the basis of
which consists of a state-vector definition, an initial state, a partitioned suc-
cessor function (NextState), and labelling functions [17]. It is through Pins
that we have been able to leverage the ProB tool, therefore allowing us to take
advantage of LTSmin’s algorithmic back-ends. In this paper we focus on the
new ProB language front-end, the grouping of transitions, and the symbolic
back-end. In Sect. 5 we also briefly discuss state variable orders.

ProB [19] is an animator and model checker for many different formal lan-
guages [26], including the classical B-Method [2], Event-B [1], CSP, CSP‖B,
Z and Tla+. ProB can perform automatic or step by step animation of B
machines, and can be used to systematically verify the behaviour of machines.
The verification can identify states which do not meet the invariants, do not
satisfy assertions or that deadlock. At the heart of ProB is a constraint solver,
which enables the tool to animate and model check high-level specifications. The
built-in model checker is a straightforward, explicit state model checker (albeit
augmented with various features such as symmetry reduction [20] or partial
order reduction [11]). The explicit state model checker Tlc can also be used as
a backend [12].

The purpose of this paper is to make use of the advanced features of the
LTSmin model checker, such as symbolic reachability analysis, by linking the
ProB state exploration engine with LTSmin. This is achieved through a C
programming interface [4] within the ProB tool, allowing the representation of
a state to be compatible for LTSmin’s consumption. In this paper the integration
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focuses on what is required in order to perform symbolic reachability analysis
of B-Method and Event-B specifications. The contribution of this research is a
new tool integration, which can be used as a platform for further extensions.

The paper is structured as follows: Sect. 2 presents an overview of the B-
Method, a running example and an illustration of definitions of transition sys-
tems used by LTSmin. Section 3 details the symbolic reachability analysis and
Sect. 4 outlines the implementation details. Section 5 provides empirical results
from performing reachability analysis benchmarking examples in ProB alone
and using the new integration of the two tools. The paper concludes in Sect. 6
with reflections and future work.

2 Preliminaries: B-Method and Transition Systems

In this section we provide an overview of the B-Method and the foundations
used within LTSmin.

A B machine consists of a collection of clauses and a collection of operations.
The MACHINE clause declares the abstract machine and gives it its name.
The VARIABLES clause declares the variables that are used to carry the
state information within the machine. The INVARIANT clause gives the type
of the variables, and more generally it also contains any other constraints on
the allowable machine states. The INITIALISATION clause determines the
initial state(s) of the machine. Operations in a machine are events that change
the state of a machine and can have input parameters. Operations can be of the
form SELECT P THEN S END where P is a guard and S is the action part of
the operation. The predicate P must include the type of any input variables and
also give conditions on when the operation can be performed. When the guard
of an operation is true then the operation is enabled and can be performed.
If the guard is the simple predicate true then the operation form is simplified
to BEGIN S END. An operation can also be of the form PRE P THEN
S END so that the predicate is a precondition and if the operation is invoked
outside its precondition then this results in a divergence (we do not illustrate this
in our running example). Finally, the action part of an operation is a generalised
substitution, which can consist of one or more assignment statements (in parallel)
to update the state or assign to the output variables of an operation. Conditional
statements and nondeterministic choice statements are also permitted in the
body of the operation. The example in Fig. 2 illustrates the MutexSimple machine
with three variables and five operations. Its initial state is deterministic and wait
is set to MAXINT. For MAXINT=1 we get 4 states; the state space constructed
by ProB can be found in Fig. 3. From the initial state only the guards for Enter
and Leave are true. Following an Enter operation the value of the cs variable
is true which means that the guard of the CS Active operation is true and the
system can indicate that it is in the critical section by performing the CS Active
operation.

The example presented could also be considered as an Event-B example
since it is a simple guarded system. We do not elaborate further on the notation
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Fig. 2. MutexSimple B-Method machine example

Fig. 3. MutexSimple statespace for MAXINT=1

of Event-B in this paper but note that the results in the subsequent sections are
also applicable to Event-B.

As far as symbolic reachability analysis is concerned, a formal model is seen
to denote a transition system. LTSmin adopts the following definition:

Definition 1 (Transition System). A Transition System (TS) is a structure
(S ,→, I ), where S is a set of states, → ⊆ S × S is a transition relation and
I ⊆ S is a set of initial states. Furthermore, let →∗ be the reflexive and transitive
closure of →, then the set of reachable states is R = {s ∈ S | ∃ s ′ ∈ I . s ′ →∗ s}.

A B-Method and Event-B model induces such a transition system: initial
states are defined by the initialisation clause and the individual operations
together define the transition relation →. Figure 3 shows the transition system1

for the machine in Fig. 2. As can be seen in Fig. 3, the transition relation is
annotated with operation names. For symbolic reachability analysis it is actu-
ally very important that we divide the transition relation into groups, leading
to the concept of a partitioned transition system:
1 One subtle issue is that LTSmin actually only supports a single initial state; this is

solved by introducing the artificial root state linked to the initial states proper. We
ignore this technical issue in the paper.
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Definition 2 (Partitioned Transition System). A Partitioned Transition
System (PTS) is a structure P = (Sn,G ,→m, I n), where
– Sn = S1 × . . . × Sn is the set of states, which are vectors of n values,
– G = (→1, . . . ,→m) is a vector of M transition groups →i ⊆ Sn ×Sn (∀ 1 ≤

i ≤ m)
– →m =

⋃m
i=1 →i is the overall transition relation induced by G, i.e., the union

of the m transition groups, and
– I n ⊆ Sn is the set of initial states.
We write s →i t when (s, t) ∈ →i for 1 ≤ i ≤ m, and s →m t when (s, t) ∈ →m.

For example I n = {(FALSE ,MAXINT , 0)} in the running example. Note
that G in Definition 2 does not necessarily form a partition of →m, overlap is
allowed between the individual groups.

3 Symbolic Reachability Analysis for B

Computing the set of reachable states (R) of a transition system can be done
efficiently with symbolic algorithms if many transition groups →i touch only
a few variables. This concept is known as event locality [9]. Many models of
transition systems in the B-Method employ event locality. In the B-Method
event locality occurs in operations, where only a few variables are read from, or
written to. For example in Fig. 2 operation CS Active only reads from cs and
Leave only writes to cs. This event locality benefits the symbolic reachability
analysis, so that the algorithm is capable of coping with the well known state
space explosion problem. Since the B-Method employs event locality we build
on the foundations of earlier work on LTSmin [7,23] and extend it to ProB. To
perform symbolic reachability analysis of the B-Method, ProB should provide
LTSmin with read matrices and write matrices. These matrices inform LTSmin
about the locality of events in the B-Method.

Read independence is an important concept, it allows one to reuse the suc-
cessor states computed in one state s for all states s ′ which differ just by read-
independent variables from s, and vice versa.

Definition 3 (Read Independence). Two state vectors s, s ′ are equivalent
except on index j , denoted by s ≈j s ′, iff ∀ k 
= j : sk = s ′

k .
Transition group i is read-overwrite independent from state variable j , iff

∀ s, s ′, t ∈ Sn such that s ≈j s ′ and s →i t, we have that s ′ →i t.
Transition group i is read-copy independent from state variable j , iff

∀ s, s ′, t ∈ Sn such that s ≈j s ′ and s →i t, we have that s ′ →i

(t1, . . . , tj−1, s ′
j , tj+1, . . . , tn).

A transition group is read independent iff it is either read-overwrite or read-
copy independent.

If an event never reads but may write to a variable j it generally does not sat-
isfy the above definition. For example, the operation MayReset = IF cs = true
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THEN wait := 0 END would neither be read-copy nor read-overwrite indepen-
dent (for state vectors with cs = false it satisfies the definition of the former
and for cs = true the latter, but neither for all state vectors). LTSmin can also
deal with more liberal independence notions, but we have not yet implemented
this in the present paper.

Definition 4 (Write Independence). Transition group i is write-
independent from state variable j , if ∀ s, t ∈ Sn : (s1, . . . , sj , . . . , sn) →i

(t1, . . . , tj , . . . , tn) =⇒(sj = tj ), i.e. state variable j is never modified by tran-
sition group i.

We illustrate the above definitions below.

Definition 5 (Dependency Matrices). For a PTS P = (Sn,G ,→m, I n), the
write matrix is an m × n matrix WM (P) = WM P

m×n ∈ {0, 1}m×n, such that
(WMi,j = 0)=⇒ transition group i is write independent from state variable j.
Furthermore, the read matrix is an m×n matrix RM (P) = RM P

m×n ∈ {0, 1}m×n,
such that (RMi,j = 0)=⇒ transition group i is read independent from state
variable j.

In this paper we will use sufficient syntactic conditions to ensure Definitions 3
and 4 and obtain the read and write matrix from Definition 5. Indeed, we com-
pute for every operation syntactically which variables are read from and which
variables are written to.

– If an operation does not write to a variable, its transition group is write
independent according to Definition 4 and the corresponding entry in WM
is 0.

– If an operation does not read a variable, its transition group is read inde-
pendent according to Definition 3, unless it maybe written to (e.g., because
the assignment is in the branch of an if-then-else). In this case, we will mark
the variable as both write and read independent. Also, note that when the
assignment within an operation is of the form f(X) := E then the operation
should have a read dependency on the function f (in addition to the write
dependency).

For our example in Fig. 2 the syntactic read-write information is as follows:
From the matrices we can infer if a variable is read-copy or read-overwrite

independent: a variable that is read independent and not written to (i.e., write
independent) is read-copy independent, otherwise it is read-overwrite indepen-
dent.

We can thus infer that:

– the transition group of Enter is read-copy and write independent on finished.
– Exit is read-copy and write independent on wait.
– Leave is read-copy and write independent on wait and finished and read-

overwrite independent on cs.
– CS Active is read-copy and write independent on wait and finished and

write independent on cs (but not read-independent on cs).
– Leave is read-copy and write independent on cs.
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Fig. 4. Dependency matrices

3.1 Exploration Algorithm

We now present the core of the symbolic reachbility analysis algorithm of
LTSmin. Algorithm 1 computes the set of reachable states R (represented as
a decision diagram) and it uses the independence information to minimise the
number of next state computations that have to be carried out, i.e., re-using
the next states {t | s →i t} computed for a single state s for many other states
s ′ according to Definitions 3 and 4. Algorithm 1 will, while it keeps finding new
states, expand the partial transition relation with potential successor states, and
apply the expanded relation to the set of new states.

Four key functions that make Algorithm1 highly performant are the follow-
ing. 2 The (1) read projection πr

i = πRM
i and (2) write projection πw

i = πWM
i take

as argument a state vector and produce a state vector restricted to the read and
write dependent variables of group i , respectively. Furthermore these function are
extended to apply to sets directly, e.g., given the examples in Figs. 2 and 4, a read
projection for Leave is πr

3({(FALSE , 0, 0) , (FALSE , 0, 1) , (FALSE , 1, 0)}) =
{(FALSE )}. This is illustrated in Fig. 6 and used at Line 2 in Algorithm2. The
read projection prevents LTSmin from doing two unnecessary next state calls
to ProB, since Leave is read-copy independent on wait and finished.

cs = FALSE,wait = 1

cs = TRUE,wait = 0

Enter

Li    and i
p

cs = TRUE,wait = 0,

R

projection

next

Fig. 5. One iteration with Enter

The function (3) NextStatei
takes a read projected state and
projects (with πw

i ) all successor states
of transition group i . The partial tran-
sition relation ↪→p

i is learned on the fly,
and NextStatei is used to expand
↪→p

i . An example next state call for
Enter is NextState1((FALSE , 1)) =
{(TRUE , 0)}.

Lastly, (4) next takes a set of
states, a partial transition relation, a
row of the read and write matrix and outputs a set of successor states.
For example, applying the partial relation of Enter to the initial state
yields next({(FALSE , 1, 0)}, {((FALSE , 1) , (TRUE , 0))}, (1, 1, 0) , (1, 1, 0)) =

2 We refrain from giving their formal definitions; they can be found in [23].
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{(TRUE , 0, 0)}. Note that in this example Enter is read-copy independent on
finished and thus next will copy its value from the initial state.

The usage of these four key functions is also illustrated in Fig. 5. The figure
shows that first the projection is done for Enter, then ↪→p

i is expanded with a
NextStatei call, lastly relation ↪→p

i is applied to the initial state, producing
the first successor state.

Figure 6 shows for each operation the transition relation ↪→p
i and the pro-

jected states on which they are computed. Definition 3 ensures that the projected
state space shown in Fig. 6 can be used to compute the effect of each of these
operations for the entire state space (using next).

Algorithm 1. ReachBreadth-
First

Input : I n ⊆ Sn,M ∈ N,RM ,WM
Output: The set of reachable states R

1 R ← I n; L ← R;
2 for 1 ≤ i ≤ M do Rp

i ← ∅; ↪→p
i ← ∅;

3 while L 
= ∅ do
4 LearnTrans(); N ← ∅;
5 for 1 ≤ i ≤ M do
6 N ←N ∪ next(L, ↪→p

i ,RMi ,WMi );
7 L ← N − R; R ← R ∪ N ;

8 return R

Algorithm 2. LearnTrans

Description: Extends ↪→p
i

1 for 1 ≤ i ≤ M do
2 Lp ← πr

i (L);
3 for sp ∈ Lp − Rp

i do
4 ↪→p

i ← ↪→p
i ∪ {(sp, dp) |

5 dp ∈ NextStatei(sp)};
6 Rp

i ← Rp
i ∪ Lp;

cs = FALSE

cs = TRUE CS_Active

cs = FALSE,wait = 1

cs = TRUE,wait = 0

Enter

cs = FALSE,wait = 0

Exit

Restart

read-copy independent on cs

read-copy independent on wait

cs = FALSE

Leave

read-copy independent on

and read-overwrite
independent on cs

Fig. 6. MutexSimple, operations computed on their projected state space
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cs:BOOL

wait:NATURAL

finished:NATURAL

(a) Variables

FALSE

1

0

{ε}

(b) Iteration 1

TRUE FALSE

0 1

0

{ε}

(c) Iteration 2

TRUE FALSE

0 0 1

0 0 1

{ε}

(d) Iteration 3

Fig. 7. LDDs of the reachable states

3.2 List Decision Diagrams

The symbolic reachability algorithm in Sect. 3.1 uses List Decision Diagrams
(LDDs) to store the reachable states and transition relations. Similar to a Binary
Decision Diagram, an LDD [7] represents a set of vectors. Due to the sharing
of state vectors within an LDD, the memory usage can be very low, even for
very large state spaces. Three example LDDs for the running example are given
in Fig. 7. The LDDs represent the set of reachable states R in Algorithm 1 at
each iteration of Line 3. In an LDD every path from the top left node to {ε}
is a state, e.g., the initial state (FALSE , 1, 0) in Fig. 7b. A node in an LDD
represents a unique set of (sub) vectors, e.g., {ε} represents the set of zero-
length vectors and the right-most 0 of variable wait in Fig. 7d encodes the set
{(0, 0) , (0, 1) , (1, 0)}. Figure 7c shows that firing Enter will add (TRUE , 0, 0)
to R. In Fig. 7d (FALSE , 0, 0) and (FALSE , 0, 1) are added to R, by firing
Leave and Exit respectively. The benefit of using LDDs for state storage is
due to the sharing of state vectors. For example, the subvector (FALSE ) of the
states {(FALSE , 0, 0) , (FALSE , 0, 1) , (FALSE , 1, 0) , (FALSE , 1, 1)} in iteration
3 is encoded in the LDD with a single node. For bigger state spaces the sharing
can be huge; resulting in a low memory footprint for the reachability algorithm.

3.3 Performance: NextState Function

There are two big differences of Algorithm 1 with classical explicit state model
checking as used by ProB [19]. First, the state space is represented using an
LDD datastructure, which enables sharing amongst states. Second, independence
is used to apply the NextState function not state by state, but for entire
sets of states in one go. For each of the 4 states in Fig. 3, the explicit model
checking algorithm of ProB would check whether each of the 5 operations is
enabled; resulting in 20 next-state calls. With LTSmin’s symbolic reachability
Algorithm 1, only 12 NextState calls are made. This is shown in the following
table, where + means enabled, − means disabled, and C means that LTSmin
has reused the results of a previous call to ProB.

If we initialise wait with MAXINT = 500, the state space has 251,002 states.
The runtime with ProB is 70 s, with LTSmin+ProB 48 s and LTSmin performs



284 J. Bendisposto et al.

State# cs wait finished Enter Exit Leave CS Active Restart

1 FALSE 1 0 + C C C −
2 TRUE 0 0 − + + + −
3 FALSE 0 0 − − C − C

4 FALSE 0 1 C − C C +

only 6012 NextState calls. The example does not have a lot of concurrency and
uses only simple data structures (and thus the overhead of the LTSmin’s ProB
front-end is more of a factor compared to the runtime of ProB for computing
successor states); other examples will show greater speedups (see Sect. 5). But
the purpose of this example is to illustrate the principles.

4 Technical Aspects and Implementation

We used a distributed approach to integrate ProB and LTSmin. Both tools
are stand-alone applications, so a direct integration, i.e., turning one of the
tools into a shared library would require considerable effort. We therefore
added extensions to both tools that convert the data formats and use sock-
ets to communicate with each other. A high level view of the integration is
shown in Fig. 8. We use the ØMQ [14] library for communication. ØMQ is ori-
ented around message queues and can be used as both, a networking library
with very high throughput and as a concurrency framework. We have chosen
ØMQ because it worked very well in previous work [4]. Although we do not

LTSMIN
Symbolic
Backend

ProB Link 
Library

Zero MQ
IPC SocketPINS LTSMIN

Extension
ProB

fastread/
fastwrite

LTSMIN Process ProB Process

Fig. 8. High level design showing the integration

(yet) have to care
about concurrency in
this work, the reac-
tor abstraction pro-
vided by ØMQ was
very handy in the
ProB extension. It
allows to implement
a server that receives
and processes mes-
sages without much effort. The communication is always initiated by LTSmin;
it sends a message and blocks until it receives the answer from ProB. We usu-
ally run both tools on a single computer using interprocess (IPC) sockets, but
it is only a matter of configuration to run the tools on different machines using
TCP sockets. We currently only support Linux and Mac OS. The communica-
tion protocol is straightforward. Reachability analysis is initiated from LTSmin
by sending an initialisation packet. ProB answers with a message containing
the relevant static information about a model, such as the dependency matrices
that LTSmin requires (see Sect. 3). Each matrix is encoded as a 2-dimensional
array, which is not optimal for a sparse matrix but is not an issue because we
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only send the matrices once. The packet also contains the list of variables, their
types, the list of transition groups, and the initial state.

States are represented as a list of so called chunks. A chunk is one of the
elements in the state vector according to Definition 2. In the case of B, each chunk
is a value of one of the state variables. Because LTSmin will not look inside the
chunks, we simply use the binary representation of ProB’s Prolog term that
represents the value of a variable. This has the advantage, that ProB does not
have to keep information about the state space. It can always recover a state
from the chunks that are sent by LTSmin. The transition groups correspond to
B operations as explained in Sect. 2. Like chunks the transition groups are only
used as names in LTSmin.

Once the initial setup is done, LTSmin will start to ask ProB for successor
states for specific transition groups. It will send a next-state message containing
a state and a transition group. The state, that LTSmin sends is a list of chunks
and ProB’s LTSmin extension can directly consume them and construct a Pro-
log term that internally represents a state. Using this constructed state and the
transition group, the extension will then ask ProB for all successor states. The
result is a list of Prolog terms, each representing a successor state. The extension
transforms the list of states into a list of lists of chunks and sends them back to
LTSmin. This is repeated until LTSmin has explored all necessary states and
sends a termination signal.

The next-state messaging is similar to Fig. 5, the projection is achieved by
replacing all read independent variables by a dummy value.

5 Experiments

To demonstrate that the combination of ProB and LTSmin improves the per-
formance of the reachability analysis and deadlock detection compared with the
standalone version of ProB, we use a wide range of B and Event-B models.
Our benchmark suite contains puzzles (e.g., towers of Hanoi) as well as specifi-
cations of protocols (e.g., Needham-Schroeder), algorithms (e.g., Simpson’s four
slot algorithm) and industrial specifications (e.g., a choreography model by SAP,
a cruise control system by Volvo and a fault tolerant automatic train protection
system by Siemens).3

The experiments were run on Ubuntu 15.10 64-bit, with 8 GB RAM, 120 GB
SSD and an Intel Sandybridge Mobile i5 2520M 2.50 GHz Dual core. The ver-
sion of ProB used in this paper is 1.5.1-beta3, and LTSmin tag LTSminProB-
iFM2016.4

Figure 9 summarises a selection of the experiments that we ran. The last two
models are Event-B models. In these experiments we used Breadth-First Search
(BFS) and looked for deadlocks. A deadlock was found only for the Philosophers
model (this is also why there are no next state call statistics for this model).
The table also contains the number of next state calls for ProB reachability
3 More detailed descriptions can be found in [5].
4 Reproduction notes at https://github.com/utwente-fmt/ProB-LTSmin-iFM16.

https://github.com/utwente-fmt/ProB-LTSmin-iFM16
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Fig. 9. B and Event-B Machines, with BFS and deadlock detection

analysis on its own and when called from LTSmin’s symbolic reachability analy-
sis algorithm (i.e., our new integration see Sect. 3.3) without deadlock checking.
One can clearly see that we obtain a considerable reduction in wallclock time.
The ProB time is the walltime of the ProB reachability analysis and initial
state computation and does not include parsing and loading. The LTSmin CPU
time column shows how much time is spent in the LTSmin side of the symbolic
reachability analysis algorithm. The LTSmin wall time shows the total walltime,
and this also contains the time spent in the communication layer and waiting
for the ProB process to compute the next states. To compare the benefit of
our new algorithm we compute the speedup of the walltime in the last column
by dividing the ProB walltime from column 5 with the LTSmin walltime in
column 7.

We can see that for some of the smaller models the overhead of setting
up LTSmin does not pay off. However, for all larger models, except for the
Train1 Lukas POR model considerable speedups were obtained.

A major result we achieved with non default settings for LTSmin, is for ele-
vator12.eventb. This model is not listed in Fig. 9, because ProB runs out of
memory on the hardware configuration used for this experiment. LTSmin com-
puted in 34 s, with 96,523 NextState calls, that the model has 1,852,655,841
states. As reachability algorithm we chose chaining [27], and to compute a bet-
ter variable order, we ran Sloan’s bandwidth reduction algorithm [29] on the
dependency matrix.

As far as memory consumption is concerned; when performing reachabil-
ity analysis on CAN BUS, the ProB process consumes 370 MB real memory,
while the LTSmin process consumes 633 MB, with the default settings. With the
default settings LTSmin will allocate 222 elements (≈ 100 MB) for the node table
and 224 elements (≈ 500 MB) for the operations cache. If we choose a smaller
node table and operations cache for the LDD package (both 218 elements),
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LTSmin consumes only 22 MB. The default settings for LTSmin are geared
towards larger symbolic state spaces than that of CAN BUS. The default node
table and cache are too big for CAN BUS, and thus not completely filled during
reachability.

We have also run our new symbolic reachability analysis on Z and Tla+

models. For example, we successfully validated the video rental Z model from
[10]. For 2 persons and 2 titles and maximum stock level of 4, LTSmin generates
the 23009 states in 1.75 s compared to 52.4 s with ProB alone. The model con-
tained useless constants; after removing them ProB runs in 1.6 s; the runtime of
LTSmin stays unchanged. We were unable to use the output of z2sal [10] using
SAL [25] and its symbolic model checker for comparison.

In summary, Fig. 9 shows that for several non-trivial B and Event-B mod-
els, considerable improvements can be obtained using the symbolic reachability
analysis technique described in this paper.

Alternate Approaches. Other techniques for improving model checking for
B-Method and Event-B models have been developed and evaluated in the recent
years. We have run a further set of experiments using a selection of those meth-
ods; the complete results can be found in [5] For technical reasons, the experi-
ments were run on different hardware than above, a MacBook Air with 2.2 GHz
i7 processor and 8 GB of RAM. We summarise the findings here and compare
the results with our new symbolic model checking algorithm.

Benchmark ProB POR ProB Hash Tlc ProB no opt

ms Speedup ms Speedup sec Speedup ms

CAN BUS 138720 0.80 98390 1.12 3 37 110400

ConcurrentCounters 50 345.8 18400 1.06 1 17 17290

file system 2380 0.37 210 4.24 29 0.03 890

Simpson Four Slot 20860 0.70 9550 1.52 1 15 14530

Train1 Lukas POR 34030 0.75 28930 0.88 4 6 25740

nota 490 509.22 14780 16.88 10 25 249520

Ref5 Switch mch 215160 0.59 124500 1.01 6 21 126170

obsw M001 2150520 0.80 76190 22.53 55 31 1716770

The authors in [12] presented a translation from the B-Method to Tla+, with
the goal of using the Tlc model checker [32] as backend. Tlc has no constraints
solving capabilities, and as such that it can only deal with lower level models.
On the other hand, its execution can be considerably faster than ProB, and its
explicit state model checking engine (which stores fingerprints) is very efficient.
On the downside, there is a small probability that fingerprint collisions can occur.
The experiments show that Tlc does not deal well with benchmark programs
which require constraint solving (graph isomorphism, JobsPuzzle, . . . ), running
up to three orders of magnitude slower than ProB or LTSmin with ProB.
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However, it does deal very well with lower level models, e.g., it is faster than
LTSmin for ConcurrentCounters. For many benchmark models, even those not
requiring constraint solving, our symbolic reachability analysis is faster.

For example, for the nota example, Tlc runs in about 10 s—faster than
ProB without any optimisation—but slower than LTSmin by less than a second.

Symmetry reduction [20] can be very useful; but exponential improvements
usually occur only on academic examples. Here we have experimented with the
hash marker symmetry reduction, which is ProB’s fastest symmetry method,
but is generally not guaranteed to explore all states. The method gives the
best results for certain models (e.g., file system). But for several of the larger,
industrial examples shown above, its benefit is not of the same scale as LTSmin.
In future, we will investigate combining ProB’s symmetry reduction with the
new LTSmin algorithm.

We have also experimented with partial order reduction. [11] uses a
semantic preprocessing phase to determine independence (different from our
purely syntactic determination; see Sect. 3). As such, it can induce a slow down
for some examples where this does not pay off (e.g., file system). ProB’s partial
order reduction obtains the best times for certain models with a large degree of
concurrency (ConcurrentCounters, SiemensMiniPilot Abrial, and nota). How-
ever, once we start doing invariant checking, [11] does not scale nearly as well
(e.g., it takes 134 s instead of 0.5 s for LTSmin checking the nota model). But
even without invariant checking, there are plenty examples where the symbolic
reachability analysis approach is better (e.g., Cruise finite1, Philosophers, Simp-
son Four Slot and almost two orders of magnitude for CAN BUS). In summary:

– Tlc is good for models not requiring constraint solving. It is a very efficient,
explicit state model checker. However, models often have to be rewritten (such
as CAN BUS), and there is a small chance of having fingerprint collisions.

– Symmetry reduction excels when models make use of deferred sets. However,
the hash marker method is not guaranteed to explore all states.

– Partial order reduction is very good for models with a large degree of con-
currency. However, it can cause slow downs and is less suited for invariant
checking.

– The new symbolic reachability analysis algorithm deals well with concurrency
and is by far the fastest method for certain larger, industrial models, such as
CAN BUS, obsw M001, elevator12, the ABZ landing gear model or Abrial’s
mechanical press. LTSmin is currently the only tool set that uses a symbolic
representation of the state space that is connected to ProB.

6 More Related Work, Future Work and Conclusion

We have already evaluated the use of Tlc [32] for model checking B. Another
explicit state model checker for B has been presented in [21], which uses lazy
enumeration. Symbolic model checking [8] has been used for railway applications
in [31]. The best known symbolic model checker is probably SMV [22], which uses
a low-level input language. Some comparisons between using SMV and ProB



Symbolic Reachability Analysis of B-Method 289

have been conducted in [15], where models were translated by hand. For abstract
state machines there is the AsmetaSMV [3] tool, which automatically translates
ASM specifications to SMV. It is our impression that the translation often leads
to a considerable blowup of the model, encoded in SMV’s low-level language, also
affecting performance. We did one experiment on a Tic-Tac-Toe model provided
for AsmetaSMV: NuSMV 2.6 took over 13 s to find a configuration where the
cross player wins; ProB (without LTSmin) took 0.2 s model checking time for
the same property on a similar B model. Another experiment involved puzzle
3 of the RushHour game: ProB solves this in 5 s, while NuSMV still had not
found a solution after 120 min.

Other symbolic model checkers that perform comparable well to LTSmin
include Marcie [13] and PetriDotNet[24].

The paper provides a stable architectural link between ProB and LTSmin
that can be extended. First, we plan to provide LTSmin with more fine-grained
information about the models, both statically and dynamically. Dynamically,
ProB will transmit to LTSmin which variables have actually been written by an
operation, enabling a more extensive independence notion to be used. Statically,
ProB will transmit the individual guards of operations and provide variable
read matrices for the guards. We will also transmit the individual invariants in
the same manner, to enable analysis of the invariants. (It is actually already
possible to check invariants using the present integration, simply by encoding
invariants as operations. We have done so with success for some of the examples,
e.g., the nota from Sect. 5.) When ProB transmits individual guards, we also
hope to use the guard-based partial order optimisations of LTSmin [18] and
enable LTL model checking with LTSmin.

These future directions will strengthen the capability of the verification tools
and hence further encourage the application of formal methods within industry
as identified in [6], for example to support complex railway systems verification in
CSP‖B. This will require both more fine-grained static and dynamic information.

In summary, we have presented a new scalable, symbolic analysis algorithm
for the B-Method and Event-B, along with a platform to integrate other model
checking improvements via LTSmin in the future.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

3. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level
ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U.,
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