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Abstract. We examine the challenges of implementing a framework
for automating Monitor-Oriented Programming in the context of actor-
based systems. The inherent modularity resulting from delineations
induced by actors makes such systems well suited to this style of pro-
gramming because monitors can surgically target parts of the system
without affecting the computation in other parts. At the same time,
actor systems pose new challenges for the instrumentation of the resp.
monitoring observations and actions, due to the intrinsic asynchrony and
encapsulation that characterise the actor model. We discuss a prototype
implementation that tackles these challenges for the case of Erlang OTP,
an industry-strength platform for building actor-based concurrent sys-
tems. We also demonstrate the effectiveness of our Monitor-Oriented
Programming framework by using it to augment the functionality of a
third-party software written in Erlang.

1 Introduction

Monitor-Oriented Programming (MOP) [9,10] (also termed monitoring [23,40]),
is a code design principle advocating for the separation of concerns between the
core functionality of a system and ancillary functionality that deals with aspects
such as safety, security, reliability and robustness. MOP organises code in a
layered onion-style architecture where the innermost core consists of the plain-
vanilla system, and the outer layers are made up of monitors — software entities
that observe the execution of the inner layers and react to these observations.
Monitor actions typically include basic notifications of detected behaviour (to
outer layers), the suppression of inner-layer observable behaviour, the filtering of
stimuli coming from outer layers, and adaptation actions that affect the structure
and future behaviour of the inner layers.

Software development and maintenance can benefit from MOP in various
ways. For instance, MOP facilitates an incremental deployment strategy where
outer layers may be added at a later stage, which may improve the time-to-market
of a development process (e.g., in the Simplex Architecture [42], monitoring was
proposed as an automated method for upgrade-control systems). Arguably, this
also fits better with real-world development processes, where requirements often
become apparent at later stages of development. Monitoring may also be used as
a means of software customisation, where every deployed system instance comes
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with its own auxiliary requirements in terms of security practices, privacy poli-
cies and robustness requirements that are handled by dedicated monitors [16,40].
MOP is also used as a discipline for augmenting systems with a last line of defense,
so as to improve execution correctness and robustness. For instance, they can
shield the inner layers by filtering harmful external stimuli [6], or steer the exe-
cution of the inner system to remain within its “stability envelope”, from where a
system can be controlled using safe and well-understood procedures [9]. In fact,
monitors are the main mechanism used in formal techniques such as Runtime Ver-
ification (RV) [10,33] and Security/Edit Automata [34,40].

A restricted flavour of MOP is already used extensively in a number of
actor-based technologies for building reactive systems, such as the Erlang [8]
and Scala [27] programming languages, and the AKKA concurrency framework
for Java [1]. In particular, these actor systems — collections of self-contained,
asynchronously-executing, interacting processes called actors — are typically
organised in hierarchical fashion, where supervisor actors monitor other actors
at a lower layer through a mechanism called process linking. In the example of
Fig. 1 (left) the supervisor actor S is linked to three actors A, B and C; when
either child actor fails, a special exit() notification is sent to S who is set to
trap these exit messages1 and react to them [8,35]. Common coding practices for
such technologies then advocate for the fail-fast design pattern, whereby inner-
layer actors should focus on the core functionality of the system and not engage
in defensive programming that attempts to anticipate and handle errors locally
[8]; instead, actors should fail as soon as such errors are encountered, so as to
allow their abnormal termination to be detected and handled by the resp. super-
visor monitors. Once a (process) failure is detected, a supervisor may react in a
number of ways: in the case of the Erlang language, a supervisor may reinstate
the failed actor or replace it by a “limp-home” surrogate actor, terminate other
actors at the same layer that are potentially “infected” by the error, or even fail
themselves so as to allow the abnormal termination notification to percolate to
monitors in outer layers that are better equipped to handle the error.

In [7], the authors propose an abstract formal model for extending this mech-
anism (based on supervision trees and process linking) to a more comprehensive
MOP model:

1 Setting the trap exit flag to false causes linked actors to fail upon receiving an exit
message.
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1. They extend the events that are monitored for, from mere (actor) failures
to sequences of actor events that include message communication and actor
spawning. As depicted in Fig. 2, this allows monitors to react to a wider range
of behaviour and take preemptive action before actors fail. As is often the case
in MOP frameworks [10,37], the authors use a formal logic to rigorously spec-
ify the actor behaviour of interest to the monitor, namely the logic presented
in [26] and studied in [24].

2. They propose a range of adaptation actions that a monitor may take in
response to some observed behaviour, but also argue that for such adap-
tations to be effective, fine-tuned synchronisations between the monitor and
a subset of the actors are required. Thus, they define language extensions
to the logic of [24,26] that permit the specification of synchronisation strate-
gies and develop (sound) type-based analysis techniques to identity erroneous
synchronisation procedures.

In this paper, we follow up on this work and study implementability aspects
of the formal model proposed in [7]. In particular, we focus on one representative
actor-based technology — the Erlang platform [8,35] — and identify concrete
instances of monitorable events and adaptation actions that are useful to MOP in
such a setting. We then study the feasibility of such adaptation actions, together
with the implementability of the synchronisation mechanisms designed in [7] wrt.
the constraints of the runtime environment of the platform. In fact, we show that
we can build a tool that fully automates the synthesis of monitors observing and
reacting to the actor behaviour specified in the extended logic of [7]. Finally,
we demonstrate the effectiveness and utility of the implemented framework by
augmenting ancillary robustness functionality of a third-party software through
our MOP framework.

To our knowledge, this is the first prototype implementation of a MOP
framework for actor systems that allows programmers to add functionality in
an incremental and disciplined manner through layers of monitors (implemented
as actors themselves). Although the modular nature of actor-based systems facil-
itates the delineation of monitoring analysis and actions to a target subset of
the system, the model poses new challenges to MOP. In particular, the encap-
sulated nature of actor state (as defined by formal models such as [2,3] and
attested by the Erlang implementation [35]) makes it hard for the monitor to
access and change it. In addition, the asynchronous nature of actor executions
complicates the task of synchronising observed behaviour with timely adminis-
tration of monitor actions. In fact, our work appears to be one of the first to
introduce synchronous monitoring atop an inherently asynchronous computing
platform.

The rest of the paper is structured as follows. Section 2 reviews the logic used
for specifying the monitor behaviour for our MOP framework. Subsequently, in
Sects. 3 and 4 we discuss the implementation challenges for building an actor-
centric MOP framework for this logic. Section 5 validates this framework by
using it to administer MOP extensions to a third-party actor-based system.
Sect. 6 discusses related work and concludes.
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2 Monitor Specification Language

We adopt the specification language of [7] to describe monitor behaviour in
our study, restated here as the abstract syntax of Fig. 3. There are mild cos-
metic changes reflecting the syntax used in the implementation presented in this
paper: e.g., the guard constructs [p] rel�v. c and *[p] rel�v. c in Fig. 3 corre-
spond to the resp. necessity formulas [p] a

�v c and [p] b
�v c of the formal logic (in

[7], the qualifiers a and b differentiate between asynchronous (a) and blocking
(b) pattern matching), and the termination constructs flag and end correspond
to the resp. logic formulas ff and tt. In spite of these syntactic changes, the
construct semantics is identical to that in [7].

Fig. 3. Monitor specification syntax

The logic is defined over streams of visible events, α, generated by the mon-
itored system made up of actors — independently-executing processes that are
uniquely-identifiable by a process identifier, have their own local memory, and
can either spawn other actors or interact with other actors in the system through
asynchronous messaging; we use i, j, h ∈ Pid to denote the unique identifiers. For
the Erlang implementation we discuss in this paper, events monitored include
the sending of messages, i > j ! v, (containing the value v from actor with identi-
fier i to actor j), the receipt of messages, i ? v, (containing the value v received
by actor i), function calls, call(i, {m, f, l}), (at actor i for function f in mod-
ule m with argument list l) and function returns, ret(i, {m, f, a, v}) (at actor
i for function f in module m with argument arity a and return value v). Event
patterns, p, q ∈ Pat, follow a similar structure to that of events, but may con-
tain term variables x, y, z ∈ Var (in place of values) that are bound to values
v, u ∈ Val (where Pid ⊆ Val), at runtime through pattern matching (we use �v
to denote lists of values).

Example 1. The pattern x > j ! {y,true} describes an output event from an arbi-
trary actor x to a specific actor j, carrying a tuple value where the first item y is
unspecified but the second item must be the value true. It can match with the
event i > j ! {5,true} returning the substitution {i, 5/x, y}. However, the same
pattern does not match with either i ? {5,true} (different type of event) or
i >h ! {5,false} (same event type but the event argument j conflicts with h, as
does true with false). �

In addition to term variables, the abstract syntax in Fig. 3 also assumes a
distinct denumerable set of formula variables X,Y, . . . ∈ LVar, used to define
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recursive specifications. It is also parameterised by a set of decidable boolean
expressions, b, c ∈ Bool, and the aforementioned set of event patterns. Monitor
specifications include commands for flagging violations, flag, and terminating
(silently), end, conjunctions, c1 & c2, recursion, recX.c, and conditionals to rea-
son about data, if b then c1 else c2. The specification syntax in Fig. 3 includes
two guarding constructs, [p] rel�i. c and *[p] rel�i. c, instructing the resp. mon-
itor to observe system events that match pattern p, and progressing as c if
the match is successful. Following [7], these constructs encompass directives for
blocking and releasing actor executions, depending on the events observed. The
guarding construct *[p] rel�i. c is blocking, meaning that it suspends the execu-
tion the actor whose identifier is the subject of the event matched by the pat-
tern (e.g., actor i is the subject in the events i > j ! v, i < j ? v, call(i, {m, f, l})
and ret(i, {m, f, a, r})). By contrast, the guarding construct [p] rel�i. c does
not block any actor when its pattern is matched. However, for both constructs
[p] rel�i. c and *[p] rel�i. c, pattern mismatch terminates monitoring, but also
releases all the blocked actors in the list of identifiers �i. The syntax in Fig. 3
also specifies two adaptation constructs, A(j) rel�i. c and S(j) rel�i. c. Both
constructs instruct the monitor to administer an adaptation action (A and S)
on actor j, releasing the (blocked) actors in �i afterwards, then progressing as
c. The only difference between these two constructs is that the adaptation in
S(j) rel�i. c, namely S, expects the target actor j to be blocked (i.e., synchro-
nised with the monitor) when the adaptation is administered, and must therefore
be blocked by some preceding guarding construct.

Example 2. Consider the monitor script below. It instructs the monitor to
analyse two output events, first from actor i and then from actor j, sent to
the same destination x (which is pattern-matched and determined at runtime).
If the outputted values sent are equivalent, y == z, monitoring terminates. Oth-
erwise, the monitor terminates the execution of the recipient actor x, restarts
the two sender actors i and j, and recurses.

recX.*[i >x ! y] rel []. *[j >x ! z] rel [i]. if y == z then end else

kill(x) rel []. restart(i) rel []. restart(j) rel [i, j].X

The restart adaptation action is synchronous, requiring the actors i and j to be
blocked (the kill adaptation is not). Therefore, the script specifies an incremental
strategy for synchronising with actors i and j before the resp. adaptations are
administered: matching with pattern i >x ! y blocks actor i, whereas pattern-
matching with j >h ! z (for some actor h instantiated for x in j >x ! z by the
previous match) blocks actor j. However, mismatching with pattern j >h ! z
releases the previously blocked actor i, thereby allowing it to continue executing
as normal because the monitor would terminate and the adaptation would not be
administered. Importantly, if we assume that actor j’s behaviour does not depend
on communications from actor i, the temporary pause of actor i does not visibly
affect computation since actors execute asynchronously wrt. to one another. See
[7] for a complete formal description of the synchronisation mechanism. �
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3 Instrumenting Actors

In Erlang, actors limit the sharing of data by explicitly sending copies of this
data to the destination actor; identifiers act as unique actor addresses. These
asynchronous messages are received at the destination actor’s mailbox (a message
queue buffer) and can be exclusively read by this actor using pattern-matching,
which retrieves the first message in the mailbox matching a specified pattern;
this two-step communication mechanism allows the recipient actor to prioritize
certain messages over others by potentially reading them out-of-order of arrival.
Asynchronous actor execution is one of the tenets of the actor model and, in
the case of Erlang, has lead to systems that are more scalable, maintainable
and resilient — asynchronous actor computation is inherently modular, easier
to understand in isolation, and its failure can be readily quarantined [8,35].

By contrast, monitors (expressed as actors) require tighter synchronisations
wrt. the execution of actors they observe. Adequate MOP would occasionally
need to momentarily pause the execution of an actor — typically after observing
an event generated by it — while continuing to observe behaviour generated by
other (independently executing) actors; in the event that an aggregate behaviour
is detected, the monitor could then either issue notifications involving the paused
actor (thereby attaining timelier detections) or else administer adaptations on
the paused actor. Complex adaptations consisting of multiple operations often
require adaptee actors to be inactive for their correct administration. In our case,
the specifications of Fig. 3 necessitate an incremental synchronisation mechanism
whereby actors are cumulatively synchronised to (and desynchronised from) a
monitor during their execution, based on the observed behaviour.

Fig. 4. The runtime adaptation protocol between a system actor (left) and the monitor
(right)(Color figure online).
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The implementability of this synchronisation mechanism hinges on the capa-
bility of externally interrupting the execution of an actor. In order to encapsulate
the execution of an actor, the Erlang OTP libraries [35] (the layer of abstrac-
tion provided by the Erlang Virtual Machine) specifically limit external actor
interventions to either actor killing2 or asynchronous messaging. Neither method
provides the desired functionality: (actor) killing is too coarse of an intervention,
whereas sending an interrupt message to an actor does not guarantee that it will
be picked up or handled adequately by the receiving actor.

Our solution was to engineer an implementation that uses an Aspect-Oriented
Programming (AOP) framework to instrument injections at specific points of
interest in the the monitored actors’ code, and then use messaging (from the
monitor) to trigger synchronisation procedures at specific stages of the monitored
actor’s computation; see Fig. 4, where the red code constitutes the code injected
on the instrumented actors. The points of interest required by our aspect-based
instrumentation are derived automatically from the patterns of the guarding
constructs used in the specification scripts of Fig. 3. In particular, these patterns
provide the necessary information to generate advices for AOP injections that
match events at specific parts in the monitored system’s source code and report
back these events to the monitor for processing (first line of the injected code
in Fig. 4). In the case of a blocking guard, further code is injected implementing
the synchronisation protocol (injected code in Fig. 4, second line onwards).

In the actor code shown in Fig. 4 (left), specification script non-blocking
guards (Fig. 3) translate into reported events with null nonces whereas blocking
guards generate a fresh nonce uniquely identifying a blocking session (an actor
may be blocked multiple times during the course of a monitored execution).
Once the monitor — the code in Fig. 4 (right) — receives an event with a non-
null nonce, it creates a map entry linking the resp. actor ID to that nonce, and
uses it to send directives during that blocking session. The monitor may send
two kinds of directives: adaptation directives, instructing the actor to execute
some predefined function (cf. Sect. 4), or resumption directives which unblock
the monitored actor. After a blocking event (i.e., containing a non-null nonce)
is reported, the injected instrumentation code on the system-side enters a loop,
waiting for directive messages from the monitor: whereas adaptation directives
(e.g., restart and purge) cause the monitored actor to stay in this blocking
loop, the resumption directive (denoted by ack in Fig. 4) instructs the loop to
be exited.

Remark 1. We extended an AOP Framework for Erlang [32] to carry out the
necessary instrumentation (the tool did not support aspects for sends and
receives). Our instrumentation thus requires an aspect file that specifies the
actions requiring instrumentation, along with a purpose built module called
advices.erl containing three types of advices used by the AOP injections,
namely before advice, after advice and upon advice advices. Function call events

2 This may be either explicit using the BIF exit/2 or implicit through process linking
[8].
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specified in the aspect file generate before advice advices woven before the func-
tion invocation, whereas for outputs and function returns, the AOP weaves
after advice advices (after advice are necessary for function returns, since return
values are only known after the return of the call). For mailbox reading, the
resp. Erlang receive construct may contain multiple pattern-guarded clauses
i.e.,

recieve g1->exp1; g2->exp2; g3->exp3; . . . ;gn->expn end.

The AOP thus weaves upon advice advice for every guarded expression matching
the message pattern defined by the receive aspects, as specified in the aspect file.
E.g.,

recieve g1->upon advice(..), exp1; g2->exp2; g3->upon advice(..), exp3; . . . end.

4 Implementing Adaptations

The instrumentation setup outlined in Sect. 3 enables the implementation of a
wide range of adaptation actions that can be administered on individual actors
using their unique actor ID. We here discuss a number of these that were success-
fully implemented as pre-defined adaptations by our prototype implementation.
Following [7], these adaptations fall under two main categories, namely asyn-
chronous and synchronous adaptations.

Asynchronous adaptations may be applied to actors whose execution need
not necessarily be synchronised to that of the resp. effectuating monitor at the
time of the adaptation. This is permissible because the resp. administration can
execute correctly independently of the status of the adaptee’s execution, typi-
cally because the execution environment provides the necessary interface for the
adaptation to be effectuated externally from the monitor. Erlang OTP priori-
tises actor encapsulation and provides a limited interface for external interfer-
ence. Accordingly, our prototype implementation offers the following predefined
asynchronous adaptations: actor killing, using the OTP exit() library func-
tion, actor registering and deregistering with a global name, using register()
and deregister() OTP functions, actor memory optimisation using the OTP
garbage collect() function, exit message un/trapping setting using the OTP
process flag() function, and a composite adaptation that terminates the exe-
cution of all the actor linked to an actor (apart from itself), defined in terms of
the process info() and exit() OTP functions. These adaptations are generic
in nature and agnostic to the instrumentation infrastructure discussed in Sect. 3
— in fact, they can also be used in asynchronous monitoring setups such as
that of [26]. There are however scenarios where asynchronous adaptations would
need to be applied to synchronised actors (e.g., suspending the execution of an
actor before killing it may guarantee a more timely monitor intervention); our
prototype implementation allows this as well.
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By contrast, synchronous adaptations require the adaptee’s execution to be
synchronised to that of the effectuating monitor (i.e., temporarily suspended), as
outlined in Sect. 3. In the case of the Erlang, one major reason for this require-
ment is the limited set of handles offered to externally affect the adaptee’s exe-
cution — apart from the OTP functions mentioned above, messaging is the only
other way of influencing an actor’s execution. However, for a MOP framework
to be effective, some adaptations would ideally have access an actor’s internal
state, even though the OTP restricts this to the owning actor exclusively. In
our particular context (i.e., Erlang), the only plausible method of carrying out
such adaptations is that of sending a message instructing the recipient actor to
carry out the adaptation itself. Note, however, that sending such a message to
an actor that is not synchronised may either (i) be ignored by an adaptee that
does not block to perform a mailbox read, or be not picked up since messages
may be read out-of-order (ii) interfere abnormally with an actor’s execution,
either because the recipient actor does not know how to interpret the message
directive, or because the directive-message reaches the actor at an execution
point where it was expecting another type of message. The instrumentation in
Sect. 3 avoids these pitfalls by forcing the actor to (autonomously) relinquish
control (at specific execution points) to the observing monitor, which then sends
it a message with the appropriate directive. Synchronisations are required for
other reasons apart from those relating to Erlang OTP constraints. For instance,
an adaptation may consist of a number of smaller actions that need to appear
as one atomic action. Again, the instrumentation of Sect. 3 yields a straight-
forward implementation for this by suspending the adaptee’s execution at the
beginning and releasing it once the full list of sub-actions is completed. As a
proof-of-concept, our implementation offers the pre-defined synchronous actions
below:

– purge(x): This adaptation requires access to (part of) the internal state of an
actor (i.e., its mailbox). It is implemented as a loop of non-blocking receives
(using the receive after 0 construct) consuming all the messages in the mailbox.

– silent kill(x): This composite adaptation terminates the execution of the
argument actor x without informing the sibling actors to which it is linked.
It is implemented by first obtaining the list of actor IDs to which it is cur-
rently linked (using process info(self(), links)) and then unlinking it
from this list of actors (using unlink()) and finally killing the adaptee once
it is completely severed.

– restart(x): The main complication when implementing this adaptation is
that of preserving the identifier of the restarted adaptee, since other actors
may be using it; a naive implementation using killing and spawning would
yield a fresh identifier for the restarted actor. Our implementation keeps the
adaptee alive, empties its mailbox and process dictionary [8,35] can then calls
the original function with which it was spawned initially. This requires modi-
fying spawn functions through AOP instrumentation) so as to record the actor
spawn information (i.e., the function spawned and its arguments) in its process
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dictionary; this information is then retrieved when the restart adaptation is
invoked.

– untrace(x): This action makes events from actor x unmonitorable. It extends
the instrumented code of Fig. 4 with a flag indicating whether an actor should
report events or not. By default, the flag is set to true whereas the action
inverts it.

Remark 2. Other pre-defined adaptations can be added to the existing suite. For
instance, one can define a runtime-enforcement deletion operation in the form of
synchronous adaptations that intercept specific messages, using the message con-
sumption mechanism of the purge() adaptation discussed above but refined for
specific message patterns. One can also have an application-specific asynchronous
adaptation that sends messages as insertion operations in a runtime-enforcement
setup [34]. Since Erlang is higher-order and treats functions as first-class citizens,
the framework can also be easily extended to handle dynamic adaptations that
are not part of the predefined suite. �

5 Augmenting Functionality Through MOP

As a representative system for our evaluation we consider Yaws [30,43], a third-
party, (open source) HTTP webserver that uses actors to handle multiple client
connections. For every client connection, the server assigns a dedicated (concur-
rent) handler that services HTTP client requests, thereby parallelising processing
for multiple clients.

Figure 5 depicts the Yaws protocol for establishing client connections. Upon
creation, an acceptor component spawns a connection handler to be assigned
to the next client connection. The acceptor component waits for client connec-
tion requests while the unassigned handler waits for the next TCP connection
request. Clients send connection requests through standard TCP ports (1), which
are received as messages in the handler ’s mailbox. The current handler accepts
these requests by reading the resp. message from its mailbox and (2) sending a
message containing its own Id and the port of the connected client to the accep-
tor ; this acts as a notification that it is now engaged in handling the connection
of a specific client. Upon receiving the connection request message, the acceptor
records the information sent by the handler and (3) spawns a new handler listen-
ing for future connection requests. Once it is assigned a handler, the connected

Fig. 5. Yaws client connection protocol
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Fig. 6. Reinforced Yaws client connection protocol

client interacts directly with it using (4) standard HTTP requests; these nor-
mally consist of six (or more) HTTP headers containing the information such
as the client’s User Agent, Accept-Encoding and the Keep-Alive flag status.
In Yaws, HTTP request information is not sent in one go but follows a proto-
col of messages: it starts by sending the http req, followed by six http header
messages containing client information, terminated by a final http eoh message.
The dedicated connection handler inspects the client information received in the
headers, and services the HTTP request accordingly.

To asses the effectiveness of our framework, we used our MOP tool to define
Yaws extensions that augment its functionality. We here showcase one such
extension, strengthening Yaws against dot-dot-slash attacks that exploit a direc-
tory traversal vulnerability [29]. Through additional monitor layers, the extended
Yaws can detect malicious client requests (by comparing the requested URLs
against a white-list) and take the necessary remedial actions. For our exposition,
we define the monitoring script below assuming the following simplifications: (i)
we consider a simple white-list with two files (i.e., pic.png and site.html) and (ii)
we only vet the first request of every new client. Intuitively, the script specifies
that every time a client connects, and the handler actor assigned by the server
receives an HTTP GET request for a file stored on the server, followed by 6 HTTP
headers (h1 to h6) and the end-of-headers notification, then the requested file
can only refer to either for pic.png or site.html. If not the handler is killed, and
the mailbox contents of the server’s acceptor actor is purged.

1 rec X.(

2 ∗[acc?{hId,next,_}] rel [].

3 [ret(hId,{yaws,do_recv,3,{ok,{http_req,‘GET’,{abs_path,path},_}}})] rel [acc].

4 [ret(hId,{yaws,do_recv,3,{ok,h1}})] rel [acc].

5 . . .

6 [ret(hId,{yaws,do_recv,3,{ok,h6}})] rel [acc].

7 ∗[ret(hId,{yaws,do_recv,3,{ok,http_eoh}})] rel [acc].

8 if (path == ‘‘/pic.png’’ orelse path == ‘‘/site.html’’)

9 then untrace(hId) rel [acc, hId]. X

10 else silent_kill(hId) rel []. purge(acc) rel [acc,hId]. X

11 )
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Through pattern-matching, the script binds the assigned handler with variable
hId (line 2), which is then used for pattern-matching with the HTTP GET request,
the 6 HTTP headers, and the ending header http eoh (lines 3 to 7)3. On line 3,
the file requested is bound to the variable path and checked against the white-
list (line 8). The guard commands on lines 2 and 7 block acc and hId resp.
(whereas acc may be known prior deployment, the Id bound to hId can only be
determined at runtime). If the white-list check is successful, the script removes
hId from the list of traceable actors, releases it together with acc, and recurs
on the script variable X (line 9). Otherwise, a synchronous kill action is applied
on hId, the mailbox contents of the acc actor are purged, and the two adaptees
are released before recursing (line 10). If the HTTP message sequence is not
matched at any point, the blocked actor acc is also released (lines 3 to 7).

From this script, our prototype implementation generates the augmented
system depicted in Fig. 6. Our tool automates the necessary instrumentation
required for the acceptor actor and every dynamically created handler actor.
This instrumentation reports events to a monitor actor, also synthesised from
the above script, which processes events and reacts by administering adaptation
actions accordingly.

We also examined the overheads introduced by our MOP framework in terms
of our Yaws case study. We considered a number of monitor scripts (similar to the
one discussed earlier) and calculated the relative overheads when subjecting the
resulting (augmented) webserver to varying client loads (measured as number

3 These input operations are encapsulated by OTP library functions that are part
of the Erlang VM. To keep the VM standard, we instead instrumented on the call
returns of these functions.
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of server requests) in terms of (i) the average CPU utilization; (ii) the memory
required per client request; and (iii) the average time taken for the server to
respond to batches of simultaneous client request. The experiments were car-
ried out on an Intel Core 2 Duo T6600 processor with 4 GB of RAM, running
Microsoft Windows 7 and EVM version R16B03. For each script and client load,
we average out three sets of readings; since the variation between different mon-
itor scripts was not substantial we again averaged the results and reported them
in Fig. 7. The overheads obtained are at an acceptable level, especially since
that monitoring is not merely observing the system but adding functionality
(e.g., at the worst level, the Memory overhead averaged at 17.4%. Figure 7 does
show a sharp increase in CPU overheads (46.7% at 2000 requests). This is in
part attributed to the code serialisations introduced by the monitor synchronisa-
tions, which create inevitable bottlenecks and wasted CPU cycles when process-
ing multiple requests (e.g., in the previous script, blocking the acceptor process
prohibits it from servicing other client requests in waiting). However, such steep
overheads where not reflected in the average response times per client request
(e.g., we recorded 7.4% overheads at 2000 requests).

6 Conclusion

We present implementability results for a MOP framework targeting actor-based
systems of a representative, industry-strength platform. The concrete contribu-
tions are:

1. A prototype4 implementation that can fully automate the synthesis and
instrumentation of monitors from formal descriptions specifying the system
behaviour to be observed and the monitor actions to take in response. The
implementation gives fine-grained control for non-trivial monitor actions to
be carried out while imposing few system-monitor synchronisations (in accor-
dance with the actor computational model), affecting only the sub-system
targeted by the monitor actions.

2. A validation of the generality and effectiveness of the approach. We show
that the functionality of third-party software can indeed be extended (with
relative ease) by our framework, thereby attaining the MOP separation of
concerns described in Sect. 1. Moreover, we give evidence that this can also
be done feasibly, maintaining reasonable overheads when the extended system
is subjected to varying stress loads.

The implementation is backed up by a formal model describing the monitor
behaviour and a type system guaranteeing that synchronous monitor actions are
only applied to blocked actors, as previous presented in [7]. For future work, we
plan to incorporate techniques for lowering the monitor overheads (e.g., code
inlining [22]), and to extend our incremental synchronisation mechanisms to
other monitor specification logics.
4 The implementation can be downloaded from

https://bitbucket.org/casian/adapter.

https://bitbucket.org/casian/adapter
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Related Work. Monitoring can be either inlined [11,22,41] or consolidated a sep-
arate code unit; we opted for the latter option. In multithreaded settings, inlin-
ing of inter-thread monitoring requires a choreographed setup [25,41] whereas
we could afford an orchestrated solution whereby a centralised monitor analyses
events and issues remedial actions. Monitor inlining tends to yield lower over-
heads and is generally more expressive because it has full access of the system
code [22]. By contrast, having monitoring as a separate unit minimally alters
the code of the monitored system (all the decision branching is performed inside
the monitor), is less error-prone (orchestration tends to be easier to program
than monitor choreographies), allows monitor computation to be offloaded to
other machines [14], and facilitates compositional analysis whereby monitors are
treated in isolation [23,24].

As opposed to offline monitoring, which assumes complete execution traces
(logs) and executes after the system terminates its computation (e.g., [4,17,18]),
online monitoring executes alongside the system and has the ability to influence
its computation. The prevalently used online monitoring frameworks typically
employ synchronous instrumentation [5,11,14,19,31]. However, there are a few
tools relying exclusively on asynchronous monitoring [12,13,26], which is easier
to instrument since system components can be treated as black-boxes. In fact,
if the monitor adaptations of Sect. 4 are limited to the asynchronous ones, then
the less intrusive instrumentation setup of [26] (based on the tracing mechanism
offered by the Erlang VM [35]) would suffice.

There are also frameworks offering both synchronous and asynchronous mon-
itoring, such as MOP [10,11], JPAX [28,39] and DB-Rover [20,21]; in these tools,
the specifier can choose whether to monitor synchronously or asynchronously for
a property. By contrast, we offer finer-grained control that allows a monitor to
switch between synchronous and asynchronous modes (and vice-versa) within the
same property. We are aware of one other work that studies these fine-grained
monitor controls [15], proposing a model where decoupling between system and
monitor executions can be inserted, together with explicit mechanisms for paus-
ing the system while the lagging (asynchronous) monitor execution catches up.
There are nevertheless key differences between our work and that of [15]: (i) they
treat the monitored system as one monolithic entity whereas we have the facil-
ity of introducing synchronisations with parts of the system; (ii) they assume a
synchronous monitoring setup and introduce asynchrony at certain points of the
computation whereas, contrarily, our setting starts off with a completely decou-
pled system-monitor setup and introduces synchronisations when needed. Also,
we study adaptations in this setting whereas [15] limit themselves to detections.

MOP frameworks that support monitor adaptations typically lean more
towards giving full flexibility [36,37] by allowing the specifier to define recov-
ery procedures in the host language of the monitored system (e.g., Java code in
the case of JavaMOP [10]). Our current framework takes a different approach,
offering only a finite subset of pre-defined adaptations that are classified into
two groups (synchronous and asynchronous). Although less expressive, our app-
roach allows for a cleaner separation between the monitor specification logic and
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the implementation of the system (our adaptations are implementation-agnostic
abstract actions as opposed to actual Erlang code) which, in turn, facilitates the
analysis of monitor scripts (e.g., the type system presented in [7]).

EnforceMOP [36] is a JavaMOP extension for monitoring multithreaded com-
putation, where they also use a centralised monitor for analyses across threads.
However, as opposed to our setting, this centralised monitor does not have its
own thread of control and is implemented as a static Java object that is invoked
by inlined code in the resp. threads. Event reporting is thus necessarily syn-
chronous, whereas our non-blocking event reporting is asynchronous and free of
deadlock errors (the two-way handshake protocol of our blocking events amount
to synchronous monitoring). Since they give full expressive power when defin-
ing remedial monitor actions, EnforceMOP employs additional runtime checks
to avert errors introduced by the monitor itself; by contrast we offer predefined
monitor actions and check for errors prior to deployment.

The implementation solutions discussed in this paper can be potentially
applied to other MOP frameworks targeting asynchronous component-based
systems, such as Enterprise Service Bus (ESB) architectures [12,38]. BusMOP
[38] is an instance of the MOP suite of tools [37] where monitoring is used
for component-based systems (COTS - Components Off The Shelf) made up of
uniquely-identifiable devices connected to a bus. The tool treats components as
black-boxes which limits monitor actions that can be taken. On the contrary, our
framework adopts more of a grey-box approach for actors which allows for more
powerful instrumentation mechanism and a wider range of adaptation actions.
The monitoring in [38] is also completely synchronous and at a lower level of
abstraction than ours (e.g., they can monitor for low-level events such as memory
reads and writes on the bus). The work in [12] is another example of a black-box
monitor treatment of components; they study RV instrumentation alternatives
on an ESB; the instrumentations considered are exclusively asynchronous and
monitoring is limited to detections (i.e., they do not support monitor adapta-
tions).
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