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Abstract
In contrast to the normal lymphatic network
comprised of initial and collecting vessels,
intratumor lymphatics are disorganized and lack
vessel hierarchy due to the continuous

lymphangiogenesis. Lymphatic vessels originate
from veins during mammalian development,
while tumor-associated lymphatics are largely
formed by vessel cooption or sprouting from
the preexisting lymphatics of adjacent tissues.
Among the known lymphangiogenic regulators,
angiopoietins and TIE receptors are crucial for
the process of lymphatic remodeling to form a
mature network. Accumulating evidence from
animal and clinical studies has laid a solid foun-
dation that tumor lymphangiogenesis contributes
to tumor dissemination. It has been shown in
animal tumor models that targeting the key
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lymphangiogenic signaling pathways, including
ANGPT-TIE mediated signals, could efficiently
block lymphatic tumor metastasis. Meanwhile,
ANGPT-TIE pathway is also actively involved
in modulating tumor immune microenviron-
ment. Therefore, strategies to fine-tune the inter-
action of lymphatic EC-immune cells could be
employed in the prevention of tumor
progression.

Keywords
Angiopoietin · TIE receptors · Lymphatic
development · Tumor lymphangiogenesis ·
Lymphatic metastasis · Tumor-immune
microenvironment

Introduction

Lymphatic vessels contribute to tissue homeostasis
by draining excess tissue fluid together with large
substances and immune cells (Tammela and Alitalo
2010; Petrova and Koh 2018). The lymphatic route
can also be employed by tumor cells during their
metastatic dissemination to distant organs after eva-
sion from immune surveillance (Alitalo 2011;
Karaman and Detmar 2014; Stacker et al. 2014).
Mechanisms underlying lymphatic formation,
including cellular events and molecular players,
are largely shared in development and in tumor
(Li et al. 2012). However, due to the distinct tissue
microenvironment in embryos and tumors, the
finally formed lymphatic networks are quite differ-
ent, including the lymphatic vessel hierarchy, struc-
tural integrity, and functionality.

Comparison of Developmental
and Tumor Lymphangiogenesis

Origin of Lymphatic Endothelial Cells
in Development Versus Tumor

The initiation of lymphangiogenesis differs in devel-
opment and in tumor (Fig. 1a, b). Following the
arterial-vein specification in mammalian develop-
ment, venous endothelial cells (ECs) are the major
source of lymphatic ECs with PROX1 as the key

regulator (Wigle and Oliver 1999; Adams and
Alitalo 2007; Yang and Oliver 2014; Potente and
Makinen 2017). Non-venous origin of lymphatic
ECs has been found to participate in mesentery,
heart, and superficial dermal lymphatic vessel for-
mation in mice (Klotz et al. 2015; Martinez-Corral
et al. 2015, Stanczuk et al. 2015). Venous
EC-independent route of LEC initiation was also
demonstrated in other species including chicken
embryos (Wilting et al. 2003; Mahadevan et al.
2014), Xenopus tadpoles (Ny et al. 2005), and
zebrafish (Nicenboim et al. 2015). In comparison
with this, tumor-associated lymphatic endothelial
cells mainly originate from the preexisting lym-
phatic network in the surrounding tissues
(He et al. 2004). It is uncertain whether there is
any differentiation of lymphatic endothelial cells
from venous ECs in tumor. One interesting obser-
vation is that intratumor lymphangiogenesis
mainly occurs in regions undergoing necrosis
(Fig. 1b), suggesting that tumor-associated macro-
phages may be able to trans-differentiate into lym-
phatic ECs in tumors as demonstrated in inflamed
tissues (Maruyama et al. 2005).

Functional Comparison of Lymphatic
Network in Embryos and Tumor

The formation of a mature lymphatic system
involves the remodeling of primitive lymphatic
plexus into structurally specialized network
containing initial and collecting lymphatics in
development. Although a functionally competent
lymphatic system is crucial for maintaining tissue
fluid homeostasis in the postnatal life, the primary
lymphatic network without collecting vessels is
functional for lymph draining during embryonic
development. This has been demonstrated in sev-
eral genetically modifiedmousemodels. For exam-
ple, there was no lymphedema observed in Angpt2
deficient embryos or the downstream Akt1 null
mice although there was no collecting vessel for-
mation (Zhou et al. 2010; Shen et al. 2014).
However, severe tissue lymphedema occurred in
mice without lymph sac formation or with
abnormal formation of the primitive lymphatic net-
work in mutants targeting Vegfc, Vegfr3 or Tie1

136 Y. He



(Karkkainen et al. 2004; Zhang et al. 2010; Shen
et al. 2014). Fluid flow generated shear stress has
been shown to regulate the expression of various

genes in endothelial cells including the key lym-
phatic regulators such as TIE1 and ANGPT2 as
listed in Fig. 1a (Porat et al. 2004; Tressel et al.

Fig. 1 Comparison of lymphatic network formation in
development and tumor. (a). Lymphatic development
involves the first formation of primitive lymphatic plexus
followed by the process of lymphatic remodeling to form
collecting vessels with intraluminal valves (green for
PROX1 to indicate lymphatic ECs, and red for Integrin-α
9 to indicate lymphatic valves; and images are modified
from Supplemental Figure II and Figure 3 in Arterioscler
Thromb Vasc Biol. 2014;34:1221–1230, by permission of
Wolters Kluwer Health Inc., through Copyright Clearance
Center’s RightsLink

®

service). This process is likely to be
driven by lymph flow generated shear stress, which could

induce a number of key lymphatic regulators as listed in the
illustration. (b). Tumor-associated lymphatic vessels are
formed by vessel cooption or sprouting from the pre-
existing lymphatics of adjacent tissues. Intratumoral lym-
phatic vessel growth is often detected in necrotic areas,
which is connected to the dilated peritumoral lymphatic
network for tumor cell dissemination (red for LYVE1, and
images are modified from Figure 5 in Cancer Res.
2005;65:4739–46, by permission from American Associ-
ation for Cancer Research). Arrows point to the intra- and
peritumoral lymphatics and some are already invaded by
tumor cells (Tu, tumor, and NE, necrosis)

Angiopoietins and TIE Receptors in Lymphangiogenesis and Tumor Metastasis 137



2007; Sabine et al. 2012; Li et al. 2014; Baeyens
et al. 2015; Kazenwadel et al. 2015; Sweet et al.
2015). Therefore, it is likely that lymph flow in the
primitive lymphatic network plays a critical role in
the process of remodeling to form a mature
network.

In contrast, the formation and function of tumor-
associated lymphatic network may largely be
compromised by the specific tumor microenviron-
ment. Tumor-associated lymphatic network is usu-
ally lack of vessel hierarchy due to the continuous
lymphangiogenesis, which may to some extent
resemble the primitive lymphatic plexus observed
in development. Factors contributing to the lym-
phatic abnormality also include the hypoxic and
acidic tumor microenvironment, mechanical stress
generated by uncontrolled tumor cell proliferation,
and high interstitial pressure resulting from the
defective vascular wall integrity (Hanahan and
Weinberg 2011; Li et al. 2012). The non-
homogeneous distribution of lymphatic vessels in
tumor tissues (Beasley et al. 2002; He et al. 2005)
may partly account for the failure to detect func-
tional lymphatics in the draining assay (Padera et al.
2002). However, lymph node metastasis occurs fre-
quently in solid tumors (Alitalo et al. 2005; Achen
and Stacker 2008; Karaman and Detmar 2014).
Therefore, at least a proportion of tumor lymphatics
are functional after connecting with collecting ves-
sels mainly located at peritumoral regions
(Karpanen et al. 2001; He et al. 2005).

Angiopoietins and TIE Receptors
in Developmental Lymphatic
Remodeling and Maturation

A range of factors have been identified to coordinate
the complex processes of lymphatic development,
including transcription factors, lymphangiogenic
growth factors and membrane-bound receptors,
intracellular signal mediators, extracellular matrix
proteins, and cell junction molecules (Bertozzi
et al. 2010; Schulte-Merker et al. 2011; Li et al.
2012; Bazigou andMakinen 2013; Yang and Oliver
2014; Zheng et al. 2014a; Aspelund et al. 2016;
Vaahtomeri et al. 2017). Among the molecular reg-
ulators, ANGPTs and TIE receptors are crucial in

the regulation of lymphatic cell-cell junction, cell
survival, collecting lymphatic vessel formation, and
valve morphogenesis (Fig. 2a, b) (Gale et al. 2002;
Shimoda et al. 2007; Dellinger et al. 2008; D’Amico
et al. 2010; Qu et al. 2010; Shen et al. 2014;
Saharinen et al. 2017).

Angiopoietins in Developmental
Lymphangiogenesis

ANGPT2 is a ligand for TIE2 and has important
roles in both angiogenesis and lymphangiogenesis.
In blood vessels, ANGPT2 was reported to antag-
onize ANGPT1 to destabilize the integrity of
formed vasculature and to keep the sprouting ECs
free frommural cell coverage. This allows vascular
growth and remodeling in response to angiogenic
factors such as vascular endothelial growth factor-
A (VEGFA) (Maisonpierre et al. 1997; Gale et al.
2002). In Angpt2 knockout mice, although blood
vascular development during embryogenesis was
normal, postnatal angiogenesis in retina was
retarded and there was also the failure of hyaloid
vessel regression (Gale et al. 2002). Furthermore,
deletion of Angpt2 did not affect the formation of
lymph sacs and the capillary lymphatic network
during embryonic development (Dellinger et al.
2008; Shen et al. 2014). However, ANGPT2 defi-
ciency disrupted the formation of collecting lym-
phatic vessels with defective valve formation and
abnormal recruitment of smooth muscle cells
(SMCs) associated with lymphatic capillaries
(Fig. 2b) (Gale et al. 2002; Dellinger et al. 2008;
Shen et al. 2014). Mice null for Angpt2 also
displayed thinner lymphatic diameter and
decreased LEC number in lymphatic vessels in
comparison with that of control littermates (Shen
et al. 2014). Consistently, transgenic over-
expression of ANGPT2 in endothelial cells under
the control of tetracycline was shown to increase
the caliber of lymphatic vessels and also LEC
number (Zheng et al. 2014b). Interestingly, the
lymphatic phenotype of Angpt2 null mice is similar
to that of Akt1 knockout mice (Zhou et al. 2010). In
Akt1 deficient mice, but not in Akt2 or Akt3 knock-
outs, a significant decrease of the diameter and
endothelial cell number of lymphatic capillaries
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Fig. 2 Regulation of lymphatic development byANGPT-
TIE-AKT pathway. (a) Schematic illustration of
angiopoietin and TIE receptors, together with other key lym-
phatic regulators, in lymphatic formation, remodeling, and
maturation. AKT1 is a critical signal mediator downstream of
TIE pathway and the detailed molecular circuits are yet to be
elucidated. (b) Lack of collecting lymphatic vessels and
valves was observed in the skin of Tie1△ICD/△ICD embryos
(E18.5, green for PROX1 and red for Integrin-α9). In
Angpt2�/� mice (E18.5), the diameter of lymphatic capil-
laries was less than that of control mice (red for PROX1 and
green for Integrin-α9), and therewere no collecting lymphatic
vessels and valves detected in the skin of Angpt2 mutants.

A significant decrease of the diameter of lymphatic capillaries
compared with that of control mice was also observed in
Akt1�/� mice (red for LYVE1, and green for Integrin-α9).
In contrast, lymphatic dilation was observed in the skin of
Tie2ECKO/� mutant mice (green for LYVE1). (Panel B was
modified with permission from Figure 3 and 7 in Arterioscler
Thromb Vasc Biol. 2014;34:1221–1230 by Wolters Kluwer
Health Inc., from Figure 3 in Am J Pathol 2010,
177:2124–2133 by Elsevier, and from Figure 1-figure sup-
plement 3 in Elife. 2016Dec 22;5. pii: e21032). Arrows point
to dilated lymphatics in Tie2ECKO/� mice and lymphatic
valves in other panels
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was also observed, in addition to the abnormal
collecting vessel formation as well as valve mor-
phogenesis (Zhou et al. 2010). It is likely that
AKT1 acts downstream of ANGPT2-mediated sig-
nals for LEC survival, lymphatic remodeling, and
maturation during lymphatic development
(Fig. 2a).

In contrast, the known biological function of
endogenous ANGPT1 in lymphatic formation is
still limited. Although local administration of
recombinant ANGPT1 to mouse cornea or over-
expression of ANGPT1 delivered via adenoviral
vectors in ear skinwas shown to stimulate lymphatic
vessel growth (Morisada et al. 2005; Tammela et al.
2005), systemic treatment with ANGPT1 or other
angiopoietins did not produce such an effect with
cutaneous lymphatic vessels (Kim et al. 2007).
Induction of lymphatic sprouting and filopodia for-
mation by angiopoietins was observed at margins of
healing wounds in ear skin at the initial period and
also in mouse trachea (Kim et al. 2007). Genetic
evidence to support a role of ANGPT1 in lymphatic
formation is from this study where lymphatic
defects in Angpt2 deficient mice could be rescued
when a cDNA encodingANGPT1was placed in the
Angpt2 locus (Gale et al. 2002). However, induced
deletion of Angpt1 during embryogenesis (E16.5)
did not affect lymphatic growth in the corneal lim-
bus. While simultaneous deletion of both Angpt1
and Angpt2 disrupted lymphatic formation in the
corneal limbus, lymphatic vessels could still be
detected in nonocular tissues such as ear skin
(Thomson et al. 2014). The abnormal lymphatic
patterning in Angpt1/Angpt2 double knockout
mice could be mainly due to the loss of ANGPT2
as demonstrated by other studies (Dellinger et al.
2008; Shen et al. 2014). It was previously thought
that angiopoietins might function via their receptor
TIE2 in lymphatic ECs. As to be detailed in the next
section, the induced deletion of Tie2 gene at postna-
tal stages did not affect the lymphatic network for-
mation and maturation (Shen et al. 2014).
Furthermore, Schlemm’s canal (SC), formed post-
natally, is a type of vessel with venous and lym-
phatic features. ANGPT1 and TIE2 were shown to
be indispensable for SC development, while Angpt2
deficiency alone did not affect SC formation (Thom-
son et al. 2014; Kim et al. 2017). It is possible that

ANGPT1 may exert a tissue-specific role in lym-
phatic system (Petrova and Koh 2018). At the
molecular level, it was proposed that the biolog-
ical consequences of TIE1/TIE2 interaction
complex on cell surface depended on the pres-
ence of angiopoietin ligands, which may explain
the context dependent function of ANGPT2 as an
agonist or antagonist in vascular ECs (Seegar
et al. 2010). However, as TIE2 is lowly
expressed by lymphatic ECs, it is not known
whether such TIE1/TIE2 complexes exist on
LEC surface and have a role in lymphatic growth
and maintenance.

TIE Receptors in Lymphatic Network
Formation

TIE1 as a Critical Regulator of Collecting
Lymphatic Vessels
TIE1 has high homology to TIE2, and lymphatic
endothelial cells co-express TIE1 with PROX1
(Qu et al. 2010). High expression of TIE1 was
detected in valve lymphatic ECs (Iljin et al. 2002;
Shen et al. 2014). Mice null for Tie1 exhibited
edema and hemorrhage due to abnormal blood
and lymphatic vascular development (Puri et al.
1995; Sato et al. 1995; Qu et al. 2010; Shen et al.
2014). Specifically, TIE1 deficiency was shown to
result in abnormal lymphangiogenesis during
embryogenesis (D’Amico et al. 2010; Qu et al.
2010). The primary lymphatic network became
disorganized with a significant increase in the
number of abnormal lymphatic connections
(Shen et al. 2014). Furthermore, TIE1 deficiency
led to the failure of lymphatic remodeling to form
collecting vessels during embryogenesis (Fig. 2b)
(Shen et al. 2014; Qu et al. 2015). The postnatal
deletion of Tie1 also disrupted lymphatic network
formation with a significant decrease of
intraluminal valves, suggesting an important role
of TIE1 in lymphatic maturation and maintenance
(Shen et al. 2014). It is worth pointing out that
Tie1 mutant model (Tie1△ICD/△ICD) (Shen et al.
2014) is different from those by D’Amico et al.
(2010) and Qu et al. (2010). The specific differ-
ence in genetic targeting between the models was
detailed in the original articles. It was originally
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aimed to generate a mutant mouse model
expressing the truncated TIE1 lacking the intra-
cellular domain (TIE1ΔICD) for the characteriza-
tion of TIE1 tyrosine kinase in vascular
development. Unfortunately, the expression level
of TIE1△ICD was low in Tie1△ICD/△ICDmice com-
pared with that of wildtype Tie1 allele, which may
be due to the nonsense-mediated mRNA decay
(Amrani et al. 2006). However, it is possible that
TIE1△ICD, in spite of its low expression, retains
some functions of TIE1. This may account for the
discrepancy, such as lymph sac formation,
between the Tie1△ICD/△ICD mutants (Shen et al.
2014) and other genetic models targeting Tie1
gene (D’Amico et al. 2010; Qu et al. 2010).

TIE2 in Lymphatic Versus Blood Vessel
Formation
TIE2 (also named TEK) is expressed by endothe-
lial cells and several other cell types and mediates
a crucial pathway in vascular formation and mat-
uration (De Palma et al. 2005; Augustin et al.
2009; Shen et al. 2014; Teichert et al. 2017).
Angiopoietins are the ligands of TIE receptors,
with ANGPT1 expressed by vascular mural cells
and platelets while ANGPT2 mainly from endo-
thelial cells (Davis et al. 1996; Li et al. 2001;
Fiedler et al. 2004). TIE2 is activated by
ANGPT1 with a tetrameric or higher order of
multimeric structure (Cho et al. 2004).
ANGPT1-TIE2 pathway-mediated signals are
required for blood vascular endothelial cell
(BEC) survival, migration, and the establishment
of vascular wall integrity. Although mice deficient
of TIE2 showed embryonic lethality with defec-
tive cardiovascular development (Dumont et al.
1994; Sato et al. 1995), the underlying mechanism
was not defined. It has been shown recently that
Tie2 deletion induced by gene targeting leads to
defective vein formation and maintenance during
embryogenesis and the postnatal development.
Further biochemical analysis revealed that TIE2
participated in the specification of venous EC
identity via AKT-mediated regulation of COUP-
TFII protein stability (Chu et al. 2016). Consis-
tently, Angpt1 deficiency produced similar vascu-
lar defects as observed in Tie2 null mice (Suri
et al. 1996). It was revealed that myocardial-

specific Angpt1 deletion disrupted the coronary
vein formation and atrial chamber morphogenesis
(Arita et al. 2014; Kim et al. 2018). The require-
ment of ANGPT1 in vascular development is
time-dependent as Angpt1 deletion at E13.5 or
later did not produce any obvious vascular defects
(Jeansson et al. 2011).

In the lymphatic system, TIE2 expression in
lymphatic ECs was much lower compared with
that in blood vascular ECs (Shen et al. 2014).
This was also confirmed by Tie2-GFP transgenic
mice, where no GFP positive lymphatic vessels
were detected in ear skin examined (Dellinger
et al. 2008). The expression of TIE2 in lymphatic
vessels was suppressed in lymphatic ECs with
high expression of PROX1 (Petrova et al. 2002;
Kim et al. 2010). As Tie2 null or Angpt1 defi-
cient mice died before the emergence of lym-
phatic vessels during embryogenesis,
conditional gene knockout models targeting
TIE pathway were employed for further studies.
It was found that induced deletion of Tie2 in
neonate mice did not affect lymphatic growth
(Shen et al. 2014). However, abnormal dilation
of lymphatic vessels was observed when Tie2
deletion was induced at earlier stages of embryo-
genesis (Fig. 2b) (Chu et al. 2016; Souma et al.
2018). As mutant mice with Tie2 insufficiency
had abnormal blood vascular development with
hemorrhage and edema (Chu et al. 2016), it is
possible that the lymphatic defects may be sec-
ondary to the increase of blood vascular leakage.
Further studies are needed to characterize the
role and underlying mechanism of TIE2 in lym-
phatic development. In addition, lymphatic
defects resulting from inactivating mutations
have been reported with several factors includ-
ing VEGFR3, GATA2, and FOXC2 (Fang et al.
2000; Karkkainen et al. 2000; Petrova et al.
2004; Kazenwadel et al. 2012; Brouillard et al.
2014). However, there is still no evidence
linking Tie2 gene mutation to any lymphatic
malformation, although a number of activating
mutations have been identified with Tie2 gene
in human patients with blood vascular abnor-
malities including cutaneomucosal venous
malformations and ventricular septal defects
(Vikkula et al. 1996; Wouters et al. 2010).
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Regulation of Lymphatic Remodeling
and Maturation

Lymphatic Endothelial Cell Junctions
in Initial and Collecting Vessels
During lymphatic development in mammals, a
primitive lymphatic plexus is first formed with a
homogeneous tubular structure. Subsequent
remodeling leads to the formation of a function-
ally specialized vascular network containing ini-
tial and collecting lymphatic vessels. Both types
of lymphatic vessels are lined by a single layer of
lymphatic ECs. The major structural differences
lie in the lymphatic endothelial cell-cell junctions
between them, in addition to the differential
investment with basement membrane, mural cell
coverage, as well as the existence of intraluminal
valves (Tammela and Alitalo 2010; Schulte-
Merker et al. 2011; Yang and Oliver 2014). By
immunostaining for an adherens junction mole-
cule, VE-Cadherin, it was found that endothelial
cells of mature initial lymphatic vessels were
joined by discontinuous button-like junctions
while collecting lymphatic vessels contained con-
tinuous zipper-like junctions (Baluk et al. 2007).
Interestingly, initial lymphatic ECs of primitive
lymphatic plexus were first joined by continuous
zipper-like junctions, which were transformed
into button-like junctions at later stages of embry-
onic development and postnatally (Yao et al.
2012). Although genetic studies have revealed
the essential requirement of several genes in the
process of lymphatic remodeling and maturation,
mechanisms underlying the establishment of dis-
tinct lymphatic vessel identity are still incom-
pletely understood.

It has been shown that Angpt2 gene deletion or
ANGPT2 blockage by neutralizing antibody
disrupted the button-like junction formation in
initial lymphatic vessels due to the suppression
of VE-Cadherin phosphorylation at the tyrosine
residue 685 (Zheng et al. 2014b). Disorganization
of primary lymphatic network was also observed
in Tie1 mutant mice at both embryonic and post-
natal stages (Shen et al. 2014). In blood vascular
endothelial cells, TIE1 has been shown to associ-
ate with trans-endothelial complexes including
TIE2 and VE-PTP, which support endothelial

junction integrity by associating with
VE-cadherin, a key component in adherens junc-
tions (AJs) (Saharinen et al. 2008; Frye et al.
2015). In addition, several integrins have been
shown to interact with both TIE receptors and
angiopoietins (Cascone et al. 2005; Felcht et al.
2012; Lee et al. 2013), which may coordinate their
effects in lymphatic network formation and
remodeling. It has also been shown recently that
CELSR1, a planar cell polarity protein,
suppressed the stabilization of lymphatic endothe-
lial AJs by delaying VE-Cadherin recruitment
during the rearrangement of valve forming lym-
phatic endothelial cells (Tatin et al. 2013). Fur-
thermore, it has been reported recently that the
increased VEGFA-VEGFR2 signaling, in the
absence of NRP1 and VEGFR1, induced lacteal
junction zippering and disrupted chylomicron
absorption (Zhang et al. 2018). Further studies
are required for elucidating whether there is any
effect secondary to the increased blood vascular
permeability resulting from excess VEGFA bio-
availability after VEGFR1 deficiency. This could
be answered by employing the genetic mouse
models with specific Vegfr2 gene knockout in
lymphatic endothelial cells, in combination with
Vegfr1 gene deletion. So far, the available infor-
mation on this topic is still fragmented, and a
system approach is required to explore how the
above-mentioned factors interact with each other
in this process.

Lymphatic Valve Morphogenesis
Valve morphogenesis occurs in collecting lym-
phatic vessels, veins, and heart, which ensures
the unidirectional fluid flow (Bazigou and
Makinen 2013). Interestingly, some key factors
identified in lymphatic valves are also expressed
by venous valve endothelial cells (Bazigou et al.
2011), suggesting a similar regulatory mechanism
underlying vascular valvulogenesis. Lymphatic
valves are semilunar structures with its leaflet
composed of a connective tissue core invested
by lymphatic ECs on both sides and are positioned
close to vessel bifurcations (Zhou et al. 2010). The
process of valve morphogenesis involves extra-
cellular matrix organization including fibronectin
fibril assembly mediated via the interaction of
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integrin-α9 (ITGA9) and Fibronectin-EIIIA
(FN-EIIIA) (Bazigou et al. 2009). Valve-
associated endothelial cells are from vessel wall
via the process of cell rearrangement including
lymphatic EC elongation, reorientation, and
migration (Tatin et al. 2013). Valve lymphatic
ECs express higher levels of PROX1, FOXC2,
ITGA9, TIE1, and cell junction molecules such
as connexins (Petrova et al. 2004; Kanady et al.
2011; Sabine et al. 2012; Shen et al. 2014).
Genetic studies have revealed that valve morpho-
genesis is disrupted in mutant mice targeting the
following genes, including Tie1 or Angpt2
(Dellinger et al. 2008; Shen et al. 2014; Qu et al.
2015), Foxc2 (Petrova et al. 2004), Efnb2
(Makinen et al. 2005), Cx37 (Kanady et al.
2011; Sabine et al. 2012), Itga9 and Fn-EIIIA
(Bazigou et al. 2009), and Akt1 (Zhou et al.
2010). It remains to be clarified whether the
defects with valvulogenesis are primary or sec-
ondary to the failure of lymphatic remodeling to
form collecting vessels. Conditional knockout
models in combination with valve LEC
expressing Cre transgenic mice, such as Nfatc1-
Cre (Qu et al. 2015), are needed to better elucidate
their specific roles in valve development and
maintenance. In addition, it is still incompletely
understood how these factors coordinate to con-
trol the process of lymphatic valve morphogene-
sis. It has been found recently that GATA2, a zinc
finger transcription factor, was shown to regulate
the expression of factors involved in lymphatic
maturation, including PROX1, FOXC2 and
NFATC1, ITGA9, and ANGPT2 (Kazenwadel
et al. 2012, 2015). BMP9, acting via ALK-1,
could also induce several genes involved in
valve formation including FOXC2, CX37,
Ephrin-B2 (EFNB2), and NRP1, but suppresses
LYVE-1 expression (Levet et al. 2013). The find-
ings suggest a synergistic effect of the above-
mentioned factors in different aspects during lym-
phatic development.

SMC Coverage with Collecting
Lymphatics
Besides the valve morphogenesis during the pro-
cess of lymphatic remodeling and maturation,
another important event is the formation of a

continuous basement membrane and SMC cover-
age with the collecting vessel wall. However,
valve regions of collecting lymphatics are free of
mural cells so that intraluminal valves could open
and close freely during the SMC-mediated con-
traction to move lymph forward. There is also no
mural cell investment with initial lymphatic ves-
sels lined by a single layer of lymphatic ECs,
where overlapping endothelial flaps function as
primary valves for fluid draining.

Several factors have been found to participate
in the regulation of SMC investment with lym-
phatic vessels, including ANGPT2, TIE1,
FOXC2, EFNB2, or SEMA3a. ANGPT1 is
known to regulate EC-mural cell interaction in
the process of blood vessel maturation while
ANGPT2 blocks this event to allow vessel
sprouting during angiogenesis (Zhang et al.
2003; Hammes et al. 2004; Feng et al. 2007).
Deletion of Angpt2 leads to the abnormal SMC
coverage of lymphatic capillaries (Gale et al.
2002; Shimoda et al. 2007; Dellinger et al. 2008;
Shen et al. 2014), suggesting that ANGPT2 plays
a similar role in lymphatic development to create a
mural-cell free lymphatic vessels. Tie1 deficient
mice also showed similar defects with mural cell
coverage with lymphatic capillaries (Qu et al.
2015). There was an increased expression of
endoglin in capillary lymphatic vessels of Tie1
null mice, which may account for the abnormal
recruitment SMCs (Li et al. 1999; Qu et al. 2015).
Increase of SMC coverage with lymphatics was
detected in Foxc2 deficient mice (Petrova et al.
2004), and in Efnb2 mutant mice lacking its
C-terminal PDZ interaction site (Makinen et al.
2005). SMC coverage at lymphatic valve region
was reported in Sema3a null mice or mice treated
with neutralizing antibodies blocking SEMA3A
binding to NRP1 (Bouvree et al. 2012; Jurisic
et al. 2012). It seems that lymphatic ECs in
valve regions are able to generate signals to exert
an inhibitory role in mural cell recruitment.
FOXC2 and NFATC1 could cooperate in the tran-
scriptional control of several genes involved in
vascular development such as downregulation of
PDGF-B. This may account for the lack of mural
cell recruitment in certain lymphatic regions
(Petrova et al. 2004; Norrmen et al. 2009).
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Interestingly, FOXC2 has been shown to regulate
Angpt2 expression by direct activation of its pro-
moter (Xue et al. 2008). On the other hand,
Reelin, an ECM glycoprotein secreted by lym-
phatic ECs, might mediate SMC-LEC interaction
during lymphatic maturation. It was reported that
reelin deficiency led to the reduction of SMC
recruitment with dermal collecting lymphatic ves-
sels (Lutter et al. 2012).

ANGPT-TIE Pathway in the Modulation
of Tumor-Associated
Lymphangiogenic Microenvironment

Angiopoietins in Tumor
Lymphangiogenesis and Lymphatic
Metastasis

Consistent with the observation made in develop-
mental lymphangiogenesis, intratumor lymphatic
vessel growth occurs after tumor angiogenesis
(He et al. 2005). Tumor also actively remodel the
preexisting lymphatic network, including lym-
phatic sprouting and vessel dilation, in adjacent
tissues to facilitate its dissemination and the estab-
lishment of metastatic foci in lymph nodes and
other organs (Fig. 3a, b). The molecular regulators
identified in development are also essentially
required for tumor-associated lymphangiogenesis,
including VEGFR3, angiopoietins, and TIE
receptors (Alitalo et al. 2005; Augustin et al.
2009; Saharinen et al. 2017). In animal tumor
studies, lymphatic metastasis could be efficiently
suppressed by blocking VEGFR3 and TIE signal-
ing pathways. This has been demonstrated by
using soluble receptors or peptide-Fc fusion pro-
tein for ligand-trapping (Karpanen et al. 2001; He
et al. 2002; Krishnan et al. 2003; Karlan et al.
2012; Atkins et al. 2015), receptor activating
and/or blocking antibodies (Roberts et al. 2006;
Caunt et al. 2008; Tammela et al. 2008; Park et al.
2016), and small molecules tyrosine kinase inhib-
itors (Demetri et al. 2013; Garcia-Manero et al.
2015; Smith et al. 2015; Saharinen et al. 2017).
Therapeutic targeting on angiopoietins and their
receptors has been nicely reviewed by Dr. Kiss
and Dr. Saharinen in this series.

Angiopoietins are expressed by tumor and
tumor-associated stromal cells. In addition to its
secretion from vascular mural cells and platelets,
ANGPT1 expression was detected in tumor cells
(Stratmann et al. 1998; Augustin et al. 2009;
Holopainen et al. 2009). ANGPT1 could compen-
sate for the loss of ANGPT2 in lymphatic devel-
opment (Gale et al. 2002), suggesting that its
function in lymphatic ECs is comparable to that
of ANGPT2 when expressed in the proper envi-
ronment. Transgenic expression of both ANGPT1
and ANGPT2 in pancreatic β cells of Rip1Tag2
mice showed an increase of peritumoral
lymphangiogenesis (Fagiani et al. 2011). Consis-
tently, ANGPT1 delivered via an adenoviral vec-
tor was shown to increase the rate of lymph node
metastasis (Holopainen et al. 2009). The metasta-
sis enhancing effect of ANGPT1was abolished by
the administration of soluble TIE2. Surprisingly,
tumor-associated lymphangiogenesis was not
inhibited by the soluble TIE2 (Holopainen et al.
2009). This is consistent with the observation that
TIE2 is lowly expressed by lymphatic ECs and the
postnatal deletion of Tie2 did not affect the lym-
phatic vessel formation and maintenance (Shen
et al. 2014). It is likely that the soluble TIE2Ig
trapped ANGPT2 and ANGPT1, which were
required for the lymphatic remodeling to form a
functional network for tumor cell dissemination to
the sentinel lymph nodes. Furthermore, TIE1
expression is increased in tumor vasculature and
endothelial-specific deletion of Tie1 led to the
suppression of tumor angiogenesis and growth.
Tie1 deletion in combination with soluble TIE2
treatment produced an additive inhibition of
tumor progression (D’Amico et al. 2014). It is
worth noting that although the restoration of
tumor vascular perfusion is essential for therapeu-
tic drugs targeting tumor cells, vascular normali-
zation by ANGPT1 treatment could also promote
both hematogenous and lympahtic tumor metas-
tasis as described (Holopainen et al. 2009). There
is an elegant review article on tumor vessel nor-
malization by Dr. Koh and colleagues in this
series.

In contrast, ANGPT2 is expressed in activated
endothelial cells in tumors and plays a crucial role
together with VEGFA in tumor-associated
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vascular growth and metastasis (Holash et al.
1999; Oliner et al. 2004; Augustin et al. 2009).
VEGFA was also shown to increase the endothe-
lial ANGPT2 expression via the calcineurin and
nuclear factor of activated T cells (NFAT) path-
way. ANGPT2 upregulation was implicated in the
preparation of premetastatic niche to facilitate the
establishment of tumor metastasis (Minami et al.
2013). Circulating ANGPT2 levels was shown to
increase in patients with pancreatic cancer, which
correlated with lymph node metastasis (Schulz

et al. 2011). ANGPT2 overexpression promoted
tumor lymphangiogenesis and lymph node metas-
tasis in mice with the subcutaneous pancreatic and
lung tumor xenografts (Schulz et al. 2011;
Holopainen et al. 2012). Angpt2 deficiency was
shown to suppress tumor angiogenesis at early
stages of tumor progression and increased mural
cell coverage with blood vessels in mouse models
(Nasarre et al. 2009). Consistently, ANGPT2-
blocking antibodies suppressed tumor-associated
lymphangiogenesis and enhanced the integrity of

Fig. 3 Lymphatic regulators as targets for blocking
lymphatic tumor metastasis. (a) Tumor cells (GFP+)
invaded into the lymphatic system are transported via the
dilated collecting lymphatic vessels (dotted yellow lines)
of adjacent normal tissues to the draining lymph nodes
(yellow arrows indicate the flow direction; red arrow indi-
cate GFP+ tumor cells; and white arrowheads indicate
blood vessels). Single tumor cell or tumor emboli (green,
GFP+) were detected in collecting vessels. (Images are
modified with permission from Figure 2 and 4 in Cancer
Res. 2005;65:4739–46). (b). Establishment of metastatic

tumor foci in lymph nodes and schematic illustration of
further tumor cell dissemination via efferent lymphatic
vessels and blood vessels to distant organs. Candidate
drugs targeting the key signaling pathways including
ANGPTs and TIE receptors are in clinical development,
including peptide-Fc fusion protein for ligand-trapping,
blocking antibodies and small-molecule tyrosine kinase
inhibitors. Green arrow points to the axillary lymph node
with GFP+ tumor cells, and white arrow to the contralateral
axillary lymph node without tumor metastasis
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endothelial cell-cell junction (Holopainen et al.
2012). Furthermore, ANGPT2 was shown to pro-
mote glioma cell invasion (Hu et al. 2003, 2006)
and breast cancer metastasis by upregulation and
activation of matrix metalloprotease 2 (MMP-2)
(Imanishi et al. 2007, 2011). The effect is medi-
ated via α5β1 integrin pathway but independent of
TIE-2 signaling (Imanishi et al. 2007). Similar
mechanism may also account for the role of
ANGPT2 in lymphatic formation as TIE2 expres-
sion is low in lymphatic ECs.

Lymphatic Regulator-Mediated
Modulation of Tumor Immune
Response

There is an active interaction between lymphatic
ECs and immune cells during tumor progression.
On one hand, tumor-infiltrating leukocytes modu-
late the tumor vascular network by stimulating
angiogenesis and lymphangiogenesis, and create
a protumor inflammatory microenvironment
(Mantovani et al. 2008). In addition to neutrophils
and tumor-specific T cells, mononuclear phagocy-
totic lineage, comprising of tumor-associated mac-
rophages, dendritic cells, and monocytes,
constitutes the major component of infiltrating leu-
kocytes (Pollard 2004). Macrophages are the major
source of lymphangiogenic factors such as VEGF-C
(Kerjaschki 2005; Condeelis and Pollard 2006;
Kataru et al. 2009), and VEGF-C expression was
induced by TNFα via NF-κB pathway (Ristimaki
et al. 1998; Baluk et al. 2009). Blockage of the
macrophage recruitment reduced lymph node
metastasis by suppressing VEGF-C expression in
tumor (Fischer et al. 2007; Iwata et al. 2007). In
addition to the intratumoral lymphangiogenesis,
active lymphangiogenesis was detected in tumor
draining lymph nodes before the arrival of meta-
static tumor cells (Hirakawa et al. 2005; Van den
Eynden et al. 2007; Rinderknecht and Detmar 2008;
Ruddell et al. 2008). Besides the lymphangiogenic
factors transported with lymph from tumor, immune
cells in lymph nodes also actively participate in the
regulation of lymph node-associated lymphatic ves-
sel growth. Follicular B cells could produce

lymphangiogenic factors such as VEGF-A to stim-
ulate lymphangiogenesis in lymph nodes (Angeli
et al. 2006; Shrestha et al. 2010), while T cells
have been found to modulate lymphatic growth in
a negative manner via secreting IFN-γ (Kataru et al.
2011).

On the other hand, the tumor-associated lym-
phatic system regulates immune responses by
delivering antigen presenting cells (APCs) and
lymph containing soluble antigens from tumor to
the draining lymph nodes. After reaching the sub-
capsular sinus of lymph nodes, small lymph-
borne antigens are delivered directly to B cell
follicles and paracortical T cell zones via the retic-
ular conduit system while large antigens were
taken up and transported by macrophages
(Roozendaal et al. 2009). Interestingly, the sinus
lymphatic endothelium acts as a physical sieve
depending on diaphragms formed by PLVAP
(plasmalemma vesicle-associated protein) fibrils
in transendothelial channels (Rantakari et al.
2015). Lymphatic ECs also actively participate
in the regulation of immune cell entry and emi-
gration from lymphatic vessels via the expression
of chemokines and adhesion molecules (Forster
et al. 2008; Card et al. 2014). VEGF-C was shown
to upregulate chemokine expression in lymphatic
ECs (e.g., CCL21), which are immobilized by gly-
cosaminoglycans (e.g., podoplanin) on the luminal
surface of lymphatic ECs to guide the migration of
immune cells expressing CCR7 (Forster et al.
2008; Alitalo 2011). Lymphatic semaphorin-3A
was shown to promote actomyosin contraction dur-
ing theDCentry into lymphatic vessels (Takamatsu
et al. 2010), and lymphatic ECs lining the ceiling of
subcapsular sinus also expressed CCRL1, a scav-
enger receptor for CCL21/CCL19, to create a che-
mokine gradient for DC trafficking into the
parenchyma (Ulvmar et al. 2014). Furthermore, it
is known that tumor-associated macrophages have
poor antigen-presenting capability and express
immunoinhibitory factors to suppress T cell prolif-
eration in comparison with macrophages derived
from normal tissues (Forster et al. 2008). However,
there exist distinct populations of dendritic cells
(DCs) including the resident and migratory DCs
in lymph nodes and the periphery tissues. It has
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been shown that a subset of dendritic cells
(CD103+/CD141+) expressing CCR7 in melanoma
were critical for trafficking tumor antigens via
afferent lymphatics to prime CD8+ T cells in the
draining lymph nodes. Increase of Tcell infiltration
in tumor showed survival benefits for patients
(Roberts et al. 2016). Consistently, lymphatic
absence or dysfunction was shown to impair anti-
tumor immune responses (Kimura et al. 2015;
Lund et al. 2016). Specifically, xenograft mela-
noma implanted intradermally displayed a mark-
edly reduced leukocyte infiltration and failed to
mount an antitumor immunity in response to der-
mal vaccine delivery in a transgenic mouse model
lacking skin lymphatics. The finding was further
verified in metastatic human cutaneous melanoma
samples where tumor immune cell infiltrates corre-
lated well with the expression level of lymphatic
markers (Lund et al. 2016).

In addition to the involvement of lymphatic
system in immune defense, it also promotes self-
tolerance (Card et al. 2014). DCs constantly
migrate via afferent lymphatic vessels to the
draining lymph nodes, carrying self and foreign
antigens from the periphery tissues (Forster et al.
2008). This is important for tolerance induction
towards environmental antigens and may also be
employed by tumor to evade the immune surveil-
lance. VEGF-C was shown to promote immune
tolerance in murine melanoma, and lymphatic
ECs are involved in maintaining peripheral
immune tolerance by inducing CD8 T-cell dele-
tion (Cohen et al. 2010; Lund et al. 2012). As
innate immune cells including macrophages and
DCs express VEGFR-3, it is also likely that
VEGF-C may have a direct role in the restriction
of their inflammatory activation (D’Alessio et al.
2014; Zhang et al. 2014). Interestingly, in spite of
the immunosuppressive tumor microenviron-
ment, it was also reported that VEGF-C induced
lymphangiogenesis could enhance the antitumor
immunotherapy resulting from the increased
naïve T cell infiltration dependent on CCL21 in
the antigen-expressing melanoma (Fankhauser
et al. 2017). Furthermore, lymphatic ECs in
lymph nodes were found to function as
tolerogenic APCs by expressing major

histocompatibility complex (MHC) class I and II
molecules as well as immunoregulatory factors
(Card et al. 2014). Lymphatic ECs rely on DCs
to present peripheral tissue antigens to CD4 T
cells to induce anergy (Rouhani et al. 2015).
Expression of programmed death-ligand
1 (PD-L1) by lymphatic ECs transmitted an inhib-
itory signal to suppress the proliferation of
antigen-specific T cells via its receptor PD-1
(Tewalt et al. 2012).

Interestingly, ANGPT-TIE pathway plays an
important role in the regulation of tumor immune
microenvironment. There is a subset of TIE2-
expressing macrophages (TEMs) identified in
tumor, which interact with vascular ECs to pro-
mote tumor progression dependent on ANGPT2-
TIE2 pathway (Mazzieri et al. 2011; Matsubara
et al. 2013). Overexpression of ANGPT2 pro-
moted tumor-infiltrating macrophages and neutro-
phils while ANGPT1 suppressed this event
(Fagiani et al. 2011). Consistently, myeloid cell-
specific deletion of Tie2 or Angpt2 deficiency, or
the administration of ANGPT2 blocking anti-
bodies, led to the suppression of tumor growth
and relapse after chemotherapy or anti-angiogenic
therapy in animal tumor studies (Nasarre et al.
2009; Brown et al. 2010; Mazzieri et al. 2011;
Chen et al. 2016). Endothelial-derived ANGPT2
was elevated in mice with the bevacizumab-
resistant murine glioblastoma model. The com-
bined inhibition of VEGF and ANGPT2 was
shown to extend survival of tumor-bearing mice,
accompanied by the favorably altered immune
microenvironment, including the suppression of
M2-polarized macrophages as well as an increase
of intratumoral T cell infiltration (Scholz et al.
2016). ANGPT2 also stimulated IL-10 release
by TEMs from tumor to suppress T cell prolifer-
ation while promoting regulatory T cell (Treg)
expansion (Coffelt et al. 2011). Inhibition of
ANGPT2 with simultaneous TIE2 activation was
shown to reduce Treg cells in tumor (Park et al.
2016). Modulation of Treg cell-mediated immune
suppression by lymphatic EC-derived cytokines
such as angiopoietins could be another important
mechanism contributing to the immune tolerance
to tumor-derived antigens.
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Summary

Tumor cells disseminate to sentinel lymph nodes
via intratumoral lymphatic vessels connecting to
the lymphatic network in the adjacent normal
tissues. It was frequently observed that there
was a dramatic increase of lymphatic vessel
diameter at peritumoral areas to facilitate tumor
dissemination as single cell or emboli. Lymph
node metastasis is an early event in solid tumors
and analysis of sentinel lymph node biopsy from
cancer patients is routinely practiced for prog-
nostic evaluation in clinic. One long-lasting
question is that whether lymph node metastasis
contributes to systemic tumor spread to other
organs. Two recent articles provided evidence
that metastatic tumor cells could spread further
via blood vessels from lymph nodes (Brown et al.
2018; Pereira et al. 2018). As anti-
lymphangiogenesis treatment had limited effect
on tumor progression after dissemination, it is
necessary to make early detection of
lymphangiogenic event in tumor and/or the
draining lymph nodes before tumor cells metas-
tasize. On the other hand, insufficient lymphatic
drainage may account for a low level of immune
cell infiltration in primary tumors and poor
response to immunotherapy. It seems contradic-
tory to enhance the efficacy of immunotherapy
by improving the vascular perfusion including
lymphatic draining function and to simulta-
neously suppress the metastatic tumor spread
via the tumor-associated vascular network. Fur-
ther studies are needed to develop combined
therapies to fine-tune the interaction of vascular
EC-immune cells to block tumor progression.
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