
123

Jaap-Henk Hoepman
Stefan Katzenbeisser

(Eds.)

31st IFIP TC 11 International Conference, SEC 2016
Ghent, Belgium, May 30 – June 1, 2016
Proceedings

ICT Systems Security
and Privacy Protection

IFIP AICT 471

IFIP Advances in Information
and Communication Technology 471

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

Foundation of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Security and Privacy Protection in Information Processing Systems
Yuko Murayama, Iwate Prefectural University, Japan

Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

Human-Computer Interaction
Jan Gulliksen, KTH Royal Institute of Technology, Stockholm, Sweden

Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102

Jaap-Henk Hoepman • Stefan Katzenbeisser (Eds.)

ICT Systems Security
and Privacy Protection
31st IFIP TC 11 International Conference, SEC 2016
Ghent, Belgium, May 30 – June 1, 2016
Proceedings

123

Editors
Jaap-Henk Hoepman
Institute for Computing and Information
Sciences

Radboud University Nijmegen
Nijmegen
The Netherlands

Stefan Katzenbeisser
Security Engineering Group
Technische Universität Darmstadt
Darmstadt
Germany

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-33629-9 ISBN 978-3-319-33630-5 (eBook)
DOI 10.1007/978-3-319-33630-5

Library of Congress Control Number: 2016937373

© IFIP International Federation for Information Processing 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our great pleasure to present the proceedings of the 31st IFIP International Con-
ference on ICT Systems Security and Privacy Protection, which was held in Ghent,
Belgium, between May 30 and June 1, 2016. IFIP SEC conferences are the flagship
events of the International Federation for Information Processing (IFIP) Technical
Committee 11 on Information Security and Privacy Protection in Information Pro-
cessing Systems (TC-11).

Continuing the tradition of previous years, we sought for a balanced program that
covers all significant aspects of information security, ranging from software security
over platform security to human factors. The selection of papers was a highly chal-
lenging task. We received 145 submissions in response to our call for papers, of which
six were withdrawn before the reviewing process started. From these 139 submissions
we selected 27 full papers to be presented at the conference, based on their significance,
novelty, and technical quality. Each paper received at least three reviews by members
of the Program Committee.

We wish to thank all contributors who helped make IFIP SEC 2016 a success: the
authors who submitted their latest research results to the conference, as well as the
members of the Program Committee who devoted significant amounts of their time to
evaluate all submissions. We would like in particular to thank the organizing chair
Vincent Naessens and the general chair Bart de Decker for their support and their
efforts to organize the conference in beautiful Ghent.

We hope that this proceedings volume provides inspirations for future research in
the area of information security!

March 2016 Stefan Katzenbeisser
Jaap-Henk Hoepman

Organization

Program Committee

Gunes Acar KU Leuven, Belgium
Luca Allodi University of Trento, Italy
Frederik Armknecht Universität Mannheim, Germany
Vijay Atluri Rutgers University, USA
Matt Bishop University of California at Davis, USA
Rainer Boehme University of Innsbruck, Austria
Joan Borrell Universitat Autònoma de Barcelona, Spain
Joppe Bos NXP Semiconductors, Leuven, Belgium
Dagmar Brechlerova Euromise Prague, Czech Republic
Christina Brzuska Hamburg University of Technology, Germany
William Caelli IISEC Pty Ltd., Australia
Jan Camenisch IBM Research — Zurich, Switzerland
Iliano Cervesato Carnegie Mellon University, USA
Eric Chan-Tin Oklahoma State University, USA
Nathan Clarke Centre for Security, Communication and Network

Research, University of Plymouth, UK
Frédéric Cuppens Telecom Bretagne, France
Nora Cuppens-Boulahia Telecom Bretagne, France
Ernesto Damiani University of Milan, Italy
Sabrina De Capitani

di Vimercati
University of Milan, Italy

Mourad Debbabi Concordia University, Canada
Andreas Dewald University of Mannheim, Germany
Gurpreet Dhillon Virginia Commonwealth University, USA
Theo Dimitrakos Security Research Centre, BT Group CTO, UK
Jana Dittmann University of Magdeburg, Germany
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Paul Dowland Plymouth University, UK
Hannes Federrath University of Hamburg, Germany
Simone Fischer-Hübner Karlstad University, Sweden
William Michael Fitzgerald United Technologies Research Centre Ireland, Ltd.,

Ireland
Sara Foresti University of Milan, Italy
Felix Freiling Friedrich-Alexander-Universität, Germany
Lothar Fritsch Norsk Regnesentral — Norwegian Computing Center,

Norway
Steven Furnell Plymouth University, UK

Lynn Futcher IFIP WG 11.8 (Vice-chair), South Africa
Dieter Gollmann Hamburg University of Technology, Germany
Stefanos Gritzalis University of the Aegean, Greece
Seda Gürses NYU, USA
Marit Hansen Unabhängiges Landeszentrum für Datenschutz

Schleswig-Holstein, Germany
Karin Hedström Swedish Buisiness School, Örebro University, Sweden
Andreas Heinemann Hochschule Darmstadt — University of Applied

Sciences, Germany
Dominik Herrmann University of Hamburg, Germany
Michael Herrmann KU Leuven ESAT/COSIC, iMinds, Belgium
Alejandro Hevia University of Chile, Chile
Jaap-Henk Hoepman Radboud University Nijmegen, The Netherlands
Ralph Holz NICTA, Australia
Xinyi Huang Fujian Normal University, China
Sushil Jajodia George Mason University, USA
Lech Janczewski The University of Auckland, New Zealand
Christian Damsgaard Jensen Technical University of Denmark
Thomas Jensen Inria, France
Martin Johns SAP Research, Germany
Wouter Joosen Katholieke Universiteit Leuven, Belgium
Audun Josang University of Oslo, Norway
Sokratis Katsikas University of Piraeus, Greece
Stefan Katzenbeisser TU Darmstadt, Germany
Florian Kerschbaum SAP, Germany
Dogan Kesdogan Universität Regensburg, Germany
Kwangjo Kim KAIST, South Korea
Valentin Kisimov UNWE, Bulgaria
Zbigniew Kotulski Warsaw University of Technology, Poland
Stefan Köpsell TU Dresden, Germany
Ronald Leenes Tilburg University – TILT, The Netherlands
Luigi Logrippo Université du Québec en Outaouais, Canada
Javier Lopez University of Malaga, Spain
Emil Lupu Imperial College, UK
Stephen Marsh UOIT, UK
Fabio Martinelli IIT-CNR, Italy
Michael Meier University of Bonn, Fraunhofer FKIE, Germany
Martin Mulazzani SBA Research, Austria
Yuko Murayama Iwate Prefectural University, Japan
Eiji Okamoto University of Tsukuba, Japan
Daniel Olejar Comenius University, Slovakia
Federica Paci University of Southampton, UK
Jakob Illeborg Pagter Centre for IT Security, The Alexandra Institute Ltd.,

Denmark
Sebastian Pape Goethe University Frankfurt, Germany
Philippos Peleties Cyprus Computer Society, Cyprus

VIII Organization

Günther Pernul Universität Regensburg, Germany
Andreas Peter University of Twente, The Netherlands
Gilbert Peterson US Air Force Institute of Technology, USA
Wolter Pieters TBM-ESS, Delft University of Technology,

The Netherlands
Joachim Posegga University of Passau, Germany
Sihan Qing Peking University, China
Kai Rannenberg Goethe University Frankfurt, Germany
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Konrad Rieck University of Göttingen, Germany
Carlos Rieder ISEC AG, Switzerland
Yves Roudier EURECOM, France
Mark Ryan University of Birmingham, UK
Peter Ryan University of Luxembourg, Luxembourg
Pierangela Samarati Università degli Studi di Milano, Italy
Thierry Sans Carnegie Mellon University in Qatar
Damien Sauveron University of Limoges, France
Ingrid Schaumüller-Bichl Upper Austrian University of Applied Sciences

Campus Hagenberg, Austria
Björn Scheuermann Humboldt University of Berlin, Germany
Sebastian Schinzel Münster University of Applied Sciences, Germany
Joerg Schwenk Ruhr-Universität Bochum, Germany
Anne Karen Seip Finanstilsynet, Norway
Jetzabel Maritza Serna

Olvera
Universidad Politecnica de Cataluña, Spain

Abbas Shahim VU University Amsterdam, The Netherlands
Haya Shulman Technische Universität Darmstadt, Germany
Adesina S. Sodiya Federal University of Agric, Abeokuta, Nigeria
Radu State University of Luxembourg, Luxembourg
Jakub Szefer Yale University, USA
Kerry-Lynn Thomson Nelson Mandela Metropolitan University, South Africa
Nils Ole Tippenhauer Singapore University of Technology and Design,

Singapore
Carmela Troncoso Gradiant, Spain
Markus Tschersich Goethe University Frankfurt, Germany
Pedro Veiga University of Lisbon, Portugal
Michael Vielhaber Hochschule Bremerhaven, Germany
Melanie Volkamer Technische Universität Darmstadt, Germany
Rossouw Von Solms Nelson Mandela Metropolitan University, South Africa
Jozef Vyskoc VaF, Slovak Republic
Lingyu Wang Concordia University, Canada
Christian Weber Ostfalia University of Applied Sciences, Germany
Edgar Weippl SBA Research, Austria
Tatjana Welzer University of Maribor, Slovenia
Steffen Wendzel Fraunhofer FKIE, Germany

Organization IX

Gunnar Wenngren AB Wenngrens i Linköping, Sweden
Jeff Yan Newcastle University, UK
Zhenxin Zhan University of Texas at San Antonio, USA
André Zúquete IEETA, University of Aveiro, Portugal

X Organization

Contents

Cryptographic Protocols

Coercion-Resistant Proxy Voting. 3
Oksana Kulyk, Stephan Neumann, Karola Marky, Jurlind Budurushi,
and Melanie Volkamer

A Posteriori Openable Public Key Encryption. 17
Xavier Bultel and Pascal Lafourcade

Multicast Delayed Authentication for Streaming Synchrophasor Data
in the Smart Grid . 32
Sérgio Câmara, Dhananjay Anand, Victoria Pillitteri, and Luiz Carmo

Human Aspects of Security

Developing a Human Activity Model for Insider IS Security Breaches
Using Action Design Research . 49

Gurpreet Dhillon, Spyridon Samonas, and Ugo Etudo

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 62
Awad Younis, Yashwant K. Malaiya, and Indrajit Ray

Defining Objectives for Preventing Cyberstalking . 76
Gurpreet Dhillon, Chandrashekar Challa, and Kane Smith

Cyber Infrastructure

Using Process Invariants to Detect Cyber Attacks on a Water
Treatment System . 91

Sridhar Adepu and Aditya Mathur

Expression and Enforcement of Security Policy for Virtual Resource
Allocation in IaaS Cloud . 105

Yanhuang Li, Nora Cuppens-Boulahia, Jean-Michel Crom,
Frédéric Cuppens, and Vincent Frey

Software Defined Networking Reactive Stateful Firewall 119
Salaheddine Zerkane, David Espes, Philippe Le Parc,
and Frederic Cuppens

http://dx.doi.org/10.1007/978-3-319-33630-5_1
http://dx.doi.org/10.1007/978-3-319-33630-5_2
http://dx.doi.org/10.1007/978-3-319-33630-5_3
http://dx.doi.org/10.1007/978-3-319-33630-5_3
http://dx.doi.org/10.1007/978-3-319-33630-5_4
http://dx.doi.org/10.1007/978-3-319-33630-5_4
http://dx.doi.org/10.1007/978-3-319-33630-5_5
http://dx.doi.org/10.1007/978-3-319-33630-5_6
http://dx.doi.org/10.1007/978-3-319-33630-5_7
http://dx.doi.org/10.1007/978-3-319-33630-5_7
http://dx.doi.org/10.1007/978-3-319-33630-5_8
http://dx.doi.org/10.1007/978-3-319-33630-5_8
http://dx.doi.org/10.1007/978-3-319-33630-5_9

Phishing and Data Sharing

Teaching Phishing-Security: Which Way is Best? . 135
Simon Stockhardt, Benjamin Reinheimer, Melanie Volkamer,
Peter Mayer, Alexandra Kunz, Philipp Rack, and Daniel Lehmann

On Gender Specific Perception of Data Sharing in Japan 150
Markus Tschersich, Shinsaku Kiyomoto, Sebastian Pape,
Toru Nakamura, Gökhan Bal, Haruo Takasaki, and Kai Rannenberg

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn. 161
Melanie Volkamer, Karen Renaud, and Benjamin Reinheimer

Social Networks

SybilRadar: A Graph-Structure Based Framework for Sybil Detection
in On-line Social Networks . 179

Dieudonné Mulamba, Indrajit Ray, and Indrakshi Ray

Collateral Damage of Facebook Apps: Friends, Providers,
and Privacy Interdependence . 194

Iraklis Symeonidis, Fatemeh Shirazi, Gergely Biczók,
Cristina Pérez-Solà, and Bart Preneel

Software Vulnerabilities

Automated Source Code Instrumentation for Verifying Potential
Vulnerabilities . 211

Hongzhe Li, Jaesang Oh, Hakjoo Oh, and Heejo Lee

An Information Flow-Based Taxonomy to Understand the Nature
of Software Vulnerabilities . 227

Daniela Oliveira, Jedidiah Crandall, Harry Kalodner, Nicole Morin,
Megan Maher, Jesus Navarro, and Felix Emiliano

XSS PEEKER: Dissecting the XSS Exploitation Techniques and Fuzzing
Mechanisms of Blackbox Web Application Scanners 243

Enrico Bazzoli, Claudio Criscione, Federico Maggi, and Stefano Zanero

TPM and Internet of Things

A Utility-Based Reputation Model for the Internet of Things 261
Benjamin Aziz, Paul Fremantle, Rui Wei, and Alvaro Arenas

Advanced Remote Firmware Upgrades Using TPM 2.0 276
Andreas Fuchs, Christoph Krauß, and Jürgen Repp

XII Contents

http://dx.doi.org/10.1007/978-3-319-33630-5_10
http://dx.doi.org/10.1007/978-3-319-33630-5_11
http://dx.doi.org/10.1007/978-3-319-33630-5_12
http://dx.doi.org/10.1007/978-3-319-33630-5_13
http://dx.doi.org/10.1007/978-3-319-33630-5_13
http://dx.doi.org/10.1007/978-3-319-33630-5_14
http://dx.doi.org/10.1007/978-3-319-33630-5_14
http://dx.doi.org/10.1007/978-3-319-33630-5_15
http://dx.doi.org/10.1007/978-3-319-33630-5_15
http://dx.doi.org/10.1007/978-3-319-33630-5_16
http://dx.doi.org/10.1007/978-3-319-33630-5_16
http://dx.doi.org/10.1007/978-3-319-33630-5_17
http://dx.doi.org/10.1007/978-3-319-33630-5_17
http://dx.doi.org/10.1007/978-3-319-33630-5_18
http://dx.doi.org/10.1007/978-3-319-33630-5_19

Sidechannel Analysis

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks. . . 293
Yuan Zhao, Jingqiang Lin, Wuqiong Pan, Cong Xue, Fangyu Zheng,
and Ziqiang Ma

Uncertain? No, It’s Very Certain!: Recovering the Key from Guessing
Entropy Enhanced CPA . 308

Changhai Ou, Zhu Wang, Degang Sun, Xinping Zhou, and Juan Ai

Software Security

Advanced or Not? A Comparative Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and Targeted Malware 323

Ping Chen, Christophe Huygens, Lieven Desmet, and Wouter Joosen

NativeProtector: Protecting Android Applications by Isolating
and Intercepting Third-Party Native Libraries . 337

Yu-Yang Hong, Yu-Ping Wang, and Jie Yin

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow
Control Monitor . 352

Andrew Bedford, Stephen Chong, Josée Desharnais, and Nadia Tawbi

Privacy

Deducing User Presence from Inter-Message Intervals in Home
Automation Systems . 369

Frederik Möllers and Christoph Sorge

Privacy by Design Principles in Design of New Generation Cognitive
Assistive Technologies. 384

Ella Kolkowska and Annica Kristofferson

A Trustless Privacy-Preserving Reputation System 398
Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie

Author Index . 413

Contents XIII

http://dx.doi.org/10.1007/978-3-319-33630-5_20
http://dx.doi.org/10.1007/978-3-319-33630-5_21
http://dx.doi.org/10.1007/978-3-319-33630-5_21
http://dx.doi.org/10.1007/978-3-319-33630-5_22
http://dx.doi.org/10.1007/978-3-319-33630-5_22
http://dx.doi.org/10.1007/978-3-319-33630-5_23
http://dx.doi.org/10.1007/978-3-319-33630-5_23
http://dx.doi.org/10.1007/978-3-319-33630-5_24
http://dx.doi.org/10.1007/978-3-319-33630-5_24
http://dx.doi.org/10.1007/978-3-319-33630-5_25
http://dx.doi.org/10.1007/978-3-319-33630-5_25
http://dx.doi.org/10.1007/978-3-319-33630-5_26
http://dx.doi.org/10.1007/978-3-319-33630-5_26
http://dx.doi.org/10.1007/978-3-319-33630-5_27

Cryptographic Protocols

Coercion-Resistant Proxy Voting

Oksana Kulyk1(B), Stephan Neumann1, Karola Marky1, Jurlind Budurushi1,
and Melanie Volkamer1,2

1 Technische Universität Darmstadt/CASED, Darmstadt, Germany
{oksana.kulyk,stephan.neumann,karola.marky,jurlind.budurushi,

melanie.volkamer}@secuso.org
2 Karlstad University, Karlstad, Sweden

Abstract. In general, most elections follow the principle of equality, or
as it came to be known, the principle of “one man – one vote”. However,
this principle might pose difficulties for voters, who are not well informed
regarding the particular matter that is voted on. In order to address this
issue, a new form of voting has been proposed, namely proxy voting. In
proxy voting, each voter has the possibility to delegate her voting right
to another voter, so called proxy, that she considers a trusted expert on
the matter. In this paper we propose an end-to-end verifiable Internet
voting scheme, which to the best of our knowledge is the first scheme to
address voter coercion in the proxy voting setting.

1 Introduction

Democratic elections represent an important value in many modern states. This
is not limited to governments, also companies and other organizations are con-
stituted in democratic elections. In general, most democratic elections follow the
principle of equal elections, meaning that one person’s vote should be worth as
much as another’s, i.e. one man – one vote [14]. However, this principle often
represents a challenge to voters, who are not sufficiently informed regarding the
particular matter that is voted on. In order to address this issue, a new form
of voting has been proposed, the so called proxy voting. In proxy voting, each
eligible voter has the possibility to delegate her voting right to another eligible
voter, so called proxy, that she considers a trusted expert on the matter.

There already exist few proxy voting implementations, provided by differ-
ent organizations. Two widely known implementations are LiquidFeedback1 and
Adhocracy2. Further proxy voting proposals are the approaches proposed in
[19,21].

However, all existing proxy voting proposals fail to address the issue of voter
coercion: namely, the case when the adversary threatens the voter to vote in a
particular way, or to abstain from voting. This issue has been commonly con-
sidered for non-proxy Internet voting, and a number of Internet voting schemes
1 http://liquidfeedback.org/, last accessed January, 7, 2016.
2 https://adhocracy.de/, last accessed January, 7, 2016.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-33630-5 1

http://liquidfeedback.org/
https://adhocracy.de/

4 O. Kulyk et al.

have been proposed, that address the problem of coercion, e.g. by providing
coercion resistance [12] or coercion evidence [8]. In this paper, we build upon
[6,12] and an extension proposed by Spycher et al. [18] to propose a coercion
resistant end-to-end verifiable Internet proxy voting scheme.

This paper is structured as follows: In Sect. 2 we identify and derive secu-
rity requirements that are relevant for proxy voting. Section 3 introduces the
fundamentals used for our proposal, which we present in Sect. 4. In Sect. 5 we
evaluate the security of our proposal with respect to the requirements. Section 6
summarizes our contributions and provides directions for future research.

2 Requirements for Proxy Voting

The following functional requirements should be provided by a proxy voting
system:

Delegation Cancellation. If the voter for any reasons decides to vote herself, she
should be able to cancel the delegation at any point of time before the tallying.

Delegation Back-Up. The voter can assign up to T priorities to her proxies.
Only the vote from the proxy having highest priority will be included in the
vote count. This functionality is useful if the voter wants to have a “back-up”
delegation, in case her first choice of a proxy abstains from the election.

The security requirements in Internet voting have been thoroughly investi-
gated in the literature, and both formal [7] and informal [13,16] definitions have
been proposed. In this work, we aim to address the following security require-
ments for the election.

Vote Integrity. All votes cast by eligible voters should be included in the result.

Availability. It should be possible to compute election result even if some of the
involved entities are faulty.

Vote Secrecy for Voters. The adversary should not be able to learn how a voter
has voted.

We aim at achieving the following security requirements for the delegation
process:

Delegation Integrity. Only the proxy having a valid permit from the voter should
be able to cast a vote on this voter’s behalf. The proxy should not be able to
alter the priority given to them by the voter.

Delegation Availability. A proxy should not be selectively prevented from having
the votes delegated to her.

Coercion-Resistant Proxy Voting 5

Vote Secrecy for Proxies. The adversary should not be able to learn how a proxy
has voted.

Delegation Privacy. There should not be a link between a voter’s identity and
her selected proxy. Furthermore, it should not be possible to reveal whether a
voter has delegated a vote or cast it herself.

Delegation Unprovability. The proxy should not be able to prove to anyone how
many votes have been delegated to her. Moreover, the proxy can not gain any
knowledge about the actual number the incoming delegations.

Note, that as we want to ensure coercion resistance, we require that vote secrecy
for both voters and proxies should be ensured also for the case when the adver-
sary is capable of communicating with the voter or proxy.

3 Background

In this section we introduce the fundamentals used to design our coercion-
resistant verifiable proxy voting scheme.

3.1 Cryptographic Primitives

In the following we describe the cryptographic primitives our scheme relies on.
Hereby, Gq denotes a cyclic multiplicative group with order q and Zq denotes
the cyclic additive group of integers modulo q.

Zero-Knowledge Proofs. In order to prove the correctness of statements within
the voting scheme without revealing anything beyond the correctness zero-
knowledge proofs are employed. For this sake, techniques such as proving the
knowledge of discrete logarithm [17] or discrete logarithm equality [5] are being
used. These proofs can be made non-interactive by employing the strong version
of the Fiat-Shamir heuristic suggested in [3]. An important extension of such
proofs are designated-verifier proofs described in [11]. Given the verifier’s public
key, these proofs convince only the designated verifier about the correctness,
rather than the general public.

Linear Encryption. In some parts of our scheme, we use a modified encryption
scheme suggested in [4] (further denoted as LE-ElGamal). This scheme is seman-
tically secure under the DLIN assumption which is implied in groups where the
DDH assumption holds. Namely, let pk = (g1, g2, h) ∈ G

3
q be the public keys of

the encryption and (x1, x2) ∈ Zq ×Zq the private keys with gx1
1 = gx2

2 = h. If the
keys are jointly generated by multiple parties with x1, x2 as threshold-shared
secrets, then, according to [2] at least 2/3 of the parties have to be honest.

The message m ∈ Gq is encrypted as follows: two random values (r1, r2) ∈
Zq × Zq are chosen and then the encryption - denoted as {{m}}pk ∈ G

3
q - is

calculated as (c1, c2, c3) = (gr11 , gr22 ,m · hr1+r2). The decryption then proceeds

6 O. Kulyk et al.

as m = c3 · c−x1
1 · c−x2

2 . Ciphertexts can then be reencrypted by multiplying
a ciphertext by an encryption of 1 using a random value (r′

1, r
′
2) ∈ Zq × Zq.

Further operations used together with the ElGamal encryption, such as mix net
shuffle, well-formedness proofs and plaintext equivalence tests can be adjusted
for LE-ElGamal as well.

Plaintext Equivalence Tests. In order to check whether a given ciphertext c
encrypts the same plaintext as another ciphertext c′ without revealing any
additional information about plaintexts, plaintext-equivalence tests [10] can be
employed. This can be performed by the holders of an encryption secret key and
consists of jointly decrypting the value (c/c′)r given a secretly shared random
value r ∈ Zq which results in 1 in case the plaintexts are equal or in random
value otherwise.

Proxy Reencryption. Let {m}pk1 be a ciphertext encrypting message m with
ElGamal public key pk1 = (g1, h1). Given the knowledge of corresponding secret
key x1 = logg1 h1 which can also be a shared secret between several participants
the method described in [9] allows for computing a new ciphertext {m}pk2 , that
encrypts the same message using a different ElGamal public key pk2.

Mix Nets. Important components in electronic voting systems are mix net
schemes which are used for anonymizing lists of ciphertexts e1, ..., eN . In addi-
tion to ensure the integrity of the shuffle a number of zero-knowledge proofs
have been proposed in the literature. The most efficient schemes - up to now -
are presented in [1,20]. A modification of such proofs can be used to mix tuples
of ciphertexts (ē1, ..., ēN) with ēi = (ei,1, ..., ei,k) while preserving the ordering
within the tuple.

3.2 JCJ/Civitas Scheme

For our goal to provide a scheme for coercion resistant proxy voting we chose the
JCJ/Civitas voting scheme proposed in [12] and then extended and implemented
in [6] as basis. The coercion resistance of the scheme is based on the application
of voting credentials. These credentials are used to authorize votes from eligible
voters. In case a coercer demands the credential from a voter she can simply
provide a fake credential which could not be distinguished from the real one by
the coercer. We briefly outline the scheme below.

Setup and Registration. Prior to the election the election supervisor announces
the different election authorities, namely the registrar, registration tellers and
tabulation tellers and publishes their respective public keys on the bulletin board.
The registrar publishes the electoral register which contains the identity, the
public registration key, and the public designation key of each voter. Building
upon a homomorphic cryptosystem the tabulation tellers generate an election
key pair in a distributed manner and publish the respective public key pk on the
bulletin board.

Coercion-Resistant Proxy Voting 7

For each voter Vi each registration teller j = 1, ..., N generates a creden-
tial share ci,j and publishes its encryption next to the respective voter’s iden-
tity on the bulletin board from which the encryption of the voting credential
Ei = {ci}pk =

∏N
j=1{ci,j}pk can be computed by multiplying all the individ-

ual credential shares. The shares ci,j in plaintext together with corresponding
designated-verifier correctness proofs are then being forwarded to the voter. Now
the voter can use them to compute their secret voting credential ci =

∏N
i=1 ci,j .

Finally, the encrypted credentials Ei are being shuffled via mix net.

Voting. The voters use anonymous channels for vote casting. As her vote, the
voter casts a tuple

〈Ai = {o}pk, Ci = {ci}pk, σ〉
with o as a chosen voting option and σ as well-formedness proof for Ai and proof
of plaintext knowledge for Ci. The tuple is sent to one of the available ballot boxes
which stores the votes. In case the voter is forced to reveal her credential to a
coercer she can give a fake credential c′ instead while the coercer is not able to
distinguish it from a real one.

Tallying. The votes with invalid proofs are excluded and the plaintext-
equivalence tests are used for identifying the votes with duplicated credentials
which are handled according to the rules concerning vote updating. The remain-
ing tuples 〈Ai, Ci〉 are being shuffled and of votes are being anonymized with mix
net shuffling. Afterwards, plaintext-equivalence tests are applied for checking the
validity of the voting credential by each Ci with each authorized credential from
the shuffled list Ei. For the votes with valid credentials the voting options Ai

are being decrypted.

Security assumptions that JCJ/Civitas relies on:

1. The adversary is not capable of simulating the voters during the registration
process. The adversary is also not present the registration phase.

2. At least one registration teller is trusted and the communication channel
between this teller and the voter is untappable3.

3. The voting client is trusted.
4. At least k out of n tabulation tellers do not fail during decryption.
5. At least n − k + 1 out of n tabulation tellers are trusted not to reveal their

key shares.
6. The channels between voters and voting system used for vote casting are

anonymous.
7. The DDH assumption and the RSA assumption hold an a random oracle is

implemented via cryptographic hash function.
8. At least one ballot box to which the cast votes are submitted is correct.

In addition to the security requirements, it is assumed that the voters are
capable of handling the credentials, e.g. by using some kind of secure credential
management.
3 That is, the adversary is incapable of reading the messages sent over the channel.

8 O. Kulyk et al.

4 Proposed Proxy Voting Scheme

To tailor our JCJ/Civitas extension towards proxy voting we introduce a new
kind of credentials, so called delegation credentials. In addition to a unique voter
credential in JCJ/Civitas, each voter i obtains a list of prioritized delegation
credentials. To delegate a vote with a certain priority j the voter selects the
j-th credential from her list and forwards it to the intended proxy. Voters are
allowed to forward different credentials with different priorities to different prox-
ies. Throughout the tallying phase for each voter only the vote cast with the
highest priority is counted. Due to the fact that delegation credentials are gener-
ated on the same principles as the voting credentials in the original scheme the
security of our extension also relies on the fact that the delegating credentials
can be faked by the voter in case of coercion.

4.1 Necessary Modifications

We describe the modifications to the JCJ/Civitas scheme that are needed for
implementing the delegation while ensuring the requirements listed in Sect. 2.

Ballot Clustering. Within the JCJ/Civitas scheme coercion-resistance is
achieved by breaking the link between a voter’s identity and votes cast in her
name, both real and fake votes. The introduction of prioritized delegation creden-
tials requires a relation between different credentials being maintained through-
out the vote tallying phase. Retaining such a relation might however cause vul-
nerabilities with regard to coercion. To address these challenges we build upon
proposals from scientific literature. Spycher et al. [18] present a JCJ extension
towards linear tallying time. Therefore, the authors propose to assign identifiers
to cast (real and fake) votes. During vote tallying after anonymization cast votes
are only compared against the public credential assigned to their respective iden-
tifier. This reduces the tallying complexity from quadratic to linear regarding
the number of cast votes. We build upon this approach: votes cast by the voter
or delegated to different proxies share the same identifier such that within the set
of votes sharing the same identifier the vote with the highest priority is tallied.

Delegation Server. Forwarding voting credentials to proxies results in a coercion
vulnerability: The adversary might coerce a proxy to forward all received vot-
ing credentials. In order to test whether the proxy complies the adversary could
anonymously delegate a credential to her and check whether this credential is
being forwarded back to her. We address this problem by introducing a new
entity - possibly implemented in a distributed way - that functions as delega-
tion server (DS). The underlying idea is that proxies do not receive delegated
credentials directly from the voter. Instead the voter blinds her credential and
sends it to the DS (over an anonymous and untappable channel) which forwards
an anonymization of the blinded credential to the proxy. The unblinding value
is sent to the proxy over the private and anonymous channel.

Coercion-Resistant Proxy Voting 9

Inclusion of Linear Encryption. To prevent unauthorized usage of voting creden-
tials the JCJ/Civitas scheme forces the voter to include the plaintext knowledge
proof for the ciphertext encrypting the credential. This solution, however, is
inapplicable to the delegation process since the proxy does not get to know the
value of the credential as outlined above. We address this challenge by publishing
voting credentials (in the registration and voting phases) encrypted with linear
encryption rather than ElGamal encryption. On the other hand for delegating
her vote the voter encrypts their delegating credential with standard ElGamal
using (g2, h) as an encryption key. The resulting tuple {c}pk = (a = gr2, b = chr)
together with other necessary information (see Sect. 3.2) is being forwarded to
the proxy. If the proxy wants to cast the vote she chooses a random value of s and
computes (gs1, a, bhs) which is an LE-ElGamal encryption of c with randomness
values r, s for which the proxy also can prove the knowledge of s as logg1 gs1.

4.2 Scheme Description

In this section we provide a detailed description of our proposed scheme.

Preliminary Stage. During this stage the keys used for encrypting votes and/or
credentials are generated. The DS generates ElGamal keys with pkD = (gD, hD)
as public key. The tabulation tellers distributively generate LE-ElGamal keys
pkT = (g1, g2, hT). We further denote {m}pkT

as ElGamal encryption with
(g2, hT) as corresponding key and {{m}}pkT

as LE-ElGamal encryption.
The list of proxies D1, ...,Dd is being made public together with their public

keys used for signing and designated-verifier proofs. For the sake of simplic-
ity we assume that each proxy is eligible to vote herself as well. Furthermore,
anonymous channels that enable communication between the proxies and the
delegation servers as well as between proxies and the rest of the voters are
established.

Setup Phase. Opposed to the standard JCJ/Civitas scheme, each registration
teller generates T credential shares at random for each voter. Analogously to
the JCJ/Civitas scheme, the encrypted credentials are publicly assigned to the
respective voters whereby the order of the credential shares is of central impor-
tance to the delegation process. A public identifier, e.g. the position of the respec-
tive voter in the electoral roll is assigned to each voter. After the setup phase the
bulletin board contains T credentials for every voter V1, ..., Vk (see Table 1) as
well as individual credential shares from each of N registration tellers for each
priority 1, ..., T . We consider the lower number to denote the higher priority.

Registration. The registration phase remains identical to the standard JCJ/
Civitas scheme except the fact that each registration teller releases T ordered
credential shares to the voter. The voter can then verify whether the received
shares from the tellers for a credential c

(j)
i correspond to the encrypted shares

published on the bulletin board near idi and priority j.

10 O. Kulyk et al.

Table 1. Content of the bulletin board after the setup phase of the extended scheme.

ID Priority Credential shares

id1 1 {{c1,11 }}pkT , . . . , {{c1,N1 }}pkT

...
...

...

idk T {{cT,1
n }}pkT , . . . , {{cT,N

n }}pkT

Before the voting, the voter merges her N · T credential shares as follows:

c
(1)
i = c1,1i · c1,2i · · · · · c1,Ni

...
...

c
(T)
i = cT,1

i · cT,2
i · · · · · cT,N

i

Voting. To cast a vote (without considering delegation) for voting option o voter
i prepares the following tuple:

〈{{idi}}pkT
, {{c

(j)
i }}pkT

, {{o}}pkT
, σ〉

Here σ signifies both the well-formedness proofs for o as well as proof of ran-
domness knowledge for {{c

(j)
i }}pkT

: namely, given {{c
(j)
i }}pkT

= (c1, c2, c3) =
(gr11 , gr22 , c

(j)
i hr1+r2) the voter proves the knowledge of randomness r1 as logg1 c1.

The value of j is chosen depending on the voter’s delegations where we distin-
guish the following cases:

1. If the voter does not intend to delegate her vote at a later point in time she
sets j = 1.

2. If the voter might intend to delegate her vote at a later point in time she sets j
as the lowest available priority: that is j = T in case she did not delegate any
vote yet or j = jd − 1 if jd is the highest priority that was already delegated.

Additionally, the voter i casts her identifier idi in an encrypted manner which
later serves for clustering ballots from the same voter with different credentials.

Delegating. To delegate her vote with priority j = 2, . . . , T to the proxy Dk the
following protocol (see Fig. 1) is executed.

1. The voter i chooses a random value x and sends the following tuple to one or
more of the DS:

〈{{idi}}pkT
, {(c(j)i)x}pkD

, σ, idDk
〉

Here c
(j)
i is the j-th credential from her credential list (c(1)i , . . . , c

(T)
i), idi is

the voter’s index, σ is the proof of plaintext knowledge for {(c(j)i)x}pkD
and

idDk
is the identifier, e.g. the public key, of the chosen proxy. The voter also

sends x, {{idi}}pkT
to Dk over a private channel.

Coercion-Resistant Proxy Voting 11

2. The DS computes {(c(j)i)x}pkT
from {(c(j)i)x}pkD

using proxy reencryption
scheme and a designated-verifier proof using the public designated-verifier key
of Dk that both {(c(j)i)x}pkT

and {(c(j)i)x}pkD
encrypt the same plaintext. The

proof and the values of {(c(j)i)x}pkT
, {(c(j)i)x}pkD

together with the voter’s
index {{idi}}pkT

are being forwarded to Dk.
3. The proxy Dk verifies the proof and sends the signed value of {(c(j)i)x}pkD

back to the voter as confirmation.4

She further computes {c
(j)
i }pkT

as {(c(j)i)x}1/xpkT
.

Fig. 1. Delegation of the voter idi to the proxy Dk, with zero-knowledge proofs omitted.

Casting a Delegated Vote. To cast a delegated vote for a (unknown) voter X with
(unknown) priority Y the proxy first calculates {{c

(Y)
X }}pkT

. For this - given an
encryption {c

(Y)
X }pkT

= (c1, c2) - she chooses a random value s and computes
{{c

(Y)
X }}pkT

= (gs1, c1, c2h
s). Then She encrypts her voting option o and prepares

her ballot according to the voting process outlined above.

Cancelling a Delegation. If the voter intends to withdraw one or several vote
delegations (but not excluding delegation in general), she issues the highest
prioritized unused credential, overriding all previously cast votes on her behalf.

Obfuscating the Number of Cast Votes. The fake votes intended to hide the
number of votes cast by a specific voter or her proxy are added accordingly to
Spycher et al.. For each identifier idi the tabulation tellers cast a random number
of votes of the following form:

〈{{idi}}pkT
, {{r}}pkT

, {{o}}pkT
, σ〉

4 This can be done via a two-way anonymous channel or by publishing the signature
on {(c(j)i)x}pkD on the bulletin board.

12 O. Kulyk et al.

Here r denotes a fake credential randomly drawn for each fake vote, a random
valid voting option o, and the respective zero knowledge proofs σ. The number
of fake votes for each voter is secret and is distributed as outlined in [18].

First Anonymization. After all the votes have been cast, votes with invalid proofs
are removed and excluded from further tallying. Thereafter, tuples of the form
〈{{id}}pkT

, {{c}}pkT
, {{o}}pkT

〉 are anonymized by the application of a mix net.

Ballot Clustering. After anonymizing the tuples the values of id are decrypted.
For any index idi appearing within at least one anonymized tuple the respective
ordered list of credentials ({{c

(1)
1 }}pkT

, . . . , {{c
(T)
1 }}pkT

) is obtained from the
bulletin board. All tuples sharing the same idi are clustered. The ordered of
credentials is attached to each cluster, and the value idi is removed from all
tuples.

Second Anonymization. All lists of resulting tuples together with the respective
list of attached credentials are anonymized by the application of a mix net. Note
that the order of ciphertexts within the tuples is preserved so that the priority
order of delegation credentials remains intact.

Extracting Votes to be Counted. In addition to weeding out the votes with invalid
credentials our goal is to tally only the vote with the highest priority in case
delegation took place. In order to do this for any element of the cluster - namely
a list of tuples and public credentials - the list of tuples is matched on the
basis of plaintext equivalence tests (PET) in decreasing order against the list
of public credentials. Starting with the highest priority credential c1 PETs are
executed between all credentials of submitted tuples until a match is found. If a
match is found the value {{o}}pkT

is extracted from the matching tuple. Once
the process has been terminated for all tuples a list of encrypted voting options
({{o1}}pkT

, . . . , {{on}}pkT
) has been extracted.

Third Anonymization and Result Calculation. The list of encrypted vot-
ing options is anonymized by the application of a mix net. Eventually, the
anonymized encrypted voting options are decrypted and the result is determined.

5 Security of the Proposed Scheme

In this section we consider the security evaluation of our scheme. We first sum-
marize the security assumptions that need to be made, and then provide an
informal security argument regarding the requirements given in Sect. 2.

5.1 Security Assumptions

We summarize the security assumptions specific to our scheme in the list below:

Coercion-Resistant Proxy Voting 13

1. More than 2/3 of all tabulation tellers are trusted not to disclose private key
shares to the adversary.

2. At least 1/3 of all tabulation tellers does not fail during decryption.
3. At least one of DS does not fail to forward the delegated votes to the proxy.
4. The DS does not disclose private information to the adversary.
5. The public key infrastructure for the proxies is trustworthy.
6. The private signing and designated-verifier keys of the proxy is not leaked.
7. Communication channels between the voters and the proxies are private.

5.2 Security Evaluation

We hold on to the assumptions of the original scheme which we provide in
Sect. 3.2. The security properties of our scheme and the additional assumptions
that are needed for them can then be evaluated as follows:

Vote Integrity. The assumptions on integrity for voters remain the same as in
the original scheme.

Availability. The election results can be computed under the assumption that
at least k = 1

3n tabulation tellers participate in the decryption.

Vote Secrecy for Voters. The system provides probabilistic coercion resistance, as
there are two scenarios where the coercer can tell whether the voter has obeyed.
The first scenario occurs if the number of fake votes for some voter equals the
known minimal number. The probability of this can be controlled with the choice
of an appropriate distribution function for fake votes. In the second attack, the
coercer requests all the delegation credentials from the voter, and casts a vote
with priority j that is unknown to the voter. In that case, unless there is a vote
cast with the same priority from another voter, the coercer knows whether the
credential given to her was real. The success probability of such an attack can
be reduced with a smaller value of T . For example, with T = 3 the voter can
either vote herself, delegate once or choose one back-up proxy, which we assume
to be sufficient functionality for most of the elections.

Outside of these scenarios, the system provides vote secrecy, and with it coer-
cion resistance for the voters under the same assumptions as the original scheme
with k ≤ 1

3n. Since the delegating credentials are generated and distributed in
the same way as the voting credentials the voter can cheat the coercer who acts
as a proxy by providing a fake credential instead. Even if the coercer is watching
the voter directly during the delegation, the voter can input a random value
as her delegating credential so that the coercer cannot distinguish it from the
real one.

Delegation Integrity. Casting a delegated vote without voter’s permission or a
delegated vote with a higher than given priority would require the knowledge of
the corresponding credential c

(j)
i for the voter i and priority j. Given that each

one of those credentials is generated in the same way as the voter credentials in

14 O. Kulyk et al.

the original scheme it holds that they are not leaked under the same assumptions.
Another way to break the delegation integrity would be to intercept the value
x used for blinding the credential forwarded to the proxy which requires control
over the communication channel between voter and proxy. Furthermore, it must
be assumed that the public key infrastructure for the proxies is trustworthy so
that impersonation of a proxy to a voter is infeasible.

Delegation Availability. The proxy receives the credential from the DS accompa-
nied by the designated verifier proof. In case no credential is sent the voter gets
no confirmation and thus is able to repeat the delegation by choosing another
DS. For this it must be assumed that the proxy’s private key is not leaked and
the confirmation cannot be sent by someone else. However, the DS is capable
of submitting an invalid credential if it can fake the designated verifier proof.
Therefore, it must be assumed that the private designated-verifier key of the
proxy is not being leaked.

Vote Secrecy for Proxies. Given an anonymous channel between the proxies and
the bulletin board the secrecy of votes cast by proxies corresponds to the vote
secrecy for the voters. An additional assumption is required that the DS is not
collaborating with the adversary. In this case using a designated-verifier proof
the proxy can fake the credentials resulting from the delegation process and
present them to the coercer if forced to do so.

Delegation Privacy. The proxy could be capable of learning the identity of the
delegating voter in following ways: (1) by identifying the message’s origin via
network, (2) by learning the voter’s ID, (3) by being able to assign the given del-
egating credential to the voter’s identity. The communication channels between
voters and proxies are anonymous, the voter ID is sent encrypted and only
decrypted after anonymization. The delegating credentials are not otherwise
leaked which is similar to the voter’s credentials in the original scheme. This
implies that the proxy is incapable of determining the identity of voters delegat-
ing to her. In case of a coerced proxy the coercer would not have a possibility of
knowing whether the credential passed to them is valid and whether the voter has
cast another vote herself. This corresponds with the coercion-resistance proper-
ties of the original scheme.

Delegation Unprovability. Given the anonymous communication channels
between the DS and the voters a proxy cannot prove for given credentials that
they come from actual voters and are not simulated by the proxy herself. More-
over, due to the coercion resistance properties of the original scheme and its cre-
dential generation process the proxy herself cannot verify whether the credential
she received is valid. This implies that the proxy is incapable of constructing a
convincing proof of possessing any amount of delegated votes.

Coercion-Resistant Proxy Voting 15

6 Conclusion

Proxy voting constitutes a new voting mode in which voters are able to delegate
their right to vote on issues beyond their expertise. At the same time, it also
opens new attack vectors as there is a legitimate possibility to transfer a vote to
another person who could be a coercer. To address these issues we created an
Internet proxy voting scheme which focuses on coercion resistance and is based
on the well-known JCJ/Civitas scheme. It provides functionality that enables
vote delegation while at the same time ensuring the security of the delegation.

As our extension introduces additional credentials for delegation, which might
overwhelm voters, an important part of future work would be to improve usabil-
ity of the scheme. In the future, we will consider the proposal by Neumann
and Volkamer [15] to address the credential handling in coercion-resistant proxy
voting.

Acknowledgements. This project (HA project no. 435/14-25) is funded in the frame-
work of Hessen ModellProjekte, financed with funds of LOEWE – Landes-Offensive zur
Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3: KMU-Verbund-
vorhaben (State Offensive for the Development of Scientific and Economic Excellence).

This paper has been developed within the project ‘VALID’ - Verifiable Liquid
Democracy - which is funded by the Polyas GmbH.

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

2. Bernhard, D., Neumann, S., Volkamer, M.: Towards a practical cryptographic vot-
ing scheme based on malleable proofs. In: Heather, J., Schneider, S., Teague, V.
(eds.) Vote-ID 2013. LNCS, vol. 7985, pp. 176–192. Springer, Heidelberg (2013)

3. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

6. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
Technical report (2008)

7. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols: a taster. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan,
P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elec-
tions. LNCS, vol. 6000, pp. 289–309. Springer, Heidelberg (2010)

8. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.: Caveat coercitor: coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy
(SP), pp. 367–381. IEEE (2013)

16 O. Kulyk et al.

9. Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg
(1999)

10. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

11. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

12. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp.
61–70. ACM (2005)

13. Langer, L., Schmidt, A., Buchmann, J., Volkamer, M.: A taxonomy refining the
security requirements for electronic voting: analyzing helios as a proof of concept.
In: ARES 2010 International Conference on Availability, Reliability, and Security,
pp. 475–480. IEEE (2010)

14. Neumann, S., Kahlert, A., Henning, M., Richter, P., Jonker, H., Volkamer, M.:
Modeling the German legal latitude principles. In: Wimmer, M.A., Tambouris, E.,
Macintosh, A. (eds.) ePart 2013. LNCS, vol. 8075, pp. 49–56. Springer, Heidelberg
(2013)

15. Neumann, S., Volkamer, M.: Civitas and the real world: problems and solutions
from a practical point of view. In: 2012 Seventh International Conference on Avail-
ability, Reliability and Security (ARES), pp. 180–185. IEEE (2012)

16. Neumann, S., Volkamer, M.: A holistic framework for the evaluation of internet
voting systems. In: Design, Development, and Use of Secure Electronic Voting
Systems, pp. 76–91 (2014)

17. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

18. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: Danezis, G. (ed.) FC 2011.
LNCS, vol. 7035, pp. 182–189. Springer, Heidelberg (2012)

19. Tchorbadjiiski, A.: Liquid democracy diploma thesis. RWTH AACHEN University,
Germany (2012)

20. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,
T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidel-
berg (2010)

21. Zwattendorfer, B., Hillebold, C., Teufl, P.: Secure and privacy-preserving proxy
voting system. In: 2013 IEEE 10th International Conference on e-Business Engi-
neering (ICEBE), pp. 472–477. IEEE (2013)

A Posteriori Openable Public Key Encryption

Xavier Bultel1,2(B) and Pascal Lafourcade1,2

1 CNRS, UMR 6158, LIMOS, 63173 Aubière, France
2 Université Clermont Auvergne, LIMOS, BP 10448, 63000 Clermont-Ferrand, France

Xavier.Bultel@UDAMAIL.FR

Abstract. We present a public key encryption primitive called A Pos-
teriori Openable Public Key Encryption (APO-PKE). In addition to con-
ventional properties of public key cryptosystems, our primitive allows
each user, who has encrypted messages using different public keys, to
create a special decryption key. A user can give this key to a judge to
open all messages that have been encrypted in a chosen time interval
with the public keys of the receivers. We provide a generic efficient con-
struction, in the sense that the complexity of the special key generation
algorithm and this key size are independent of the number of ciphertexts.
We give security models for our primitive against chosen plaintext attack
and analyze its security in the random oracle model.

Keywords: Public-key encryption · Openable encryption · ROM · CPA

1 Introduction

Since the emergence of the Internet, email communication is accessible to any-
one. Email privacy is an important computer security topic. Without public key
encryption schemes, plaintext messages are sent and stored by the mail server
without any protection. Fortunately, there exist many straightforward to use
softwares that allow everyone to encrypt and sign emails using public key cryp-
tography, such as the well known GnuPG1 tool. Unfortunately, these softwares
are rarely used [27], consequently encrypted emails may be considered as a sus-
pect behavior. Hence as P. Zimmermann, the designer of PGP, said:“If privacy
is outlawed, only outlaws will have privacy”. We hope that in a near future
everybody can privately exchange emails. Then our motivation is based on the
following scenario, where Alice is implied in a court case. To find some clues, the
judge needs to read emails that Alice has sent during a specified time period.
The judge uses his power to obtain from Alice’s email server all emails sent by
Alice (including dates of dispatch and receiver identities). If the messages are not
encrypted then the judge can read emails without relation to the investigation,

This research was conducted with the support of the “Digital Trust” Chair from the
University of Auvergne Foundation.

1 https://www.gnupg.org.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 17–31, 2016.
DOI: 10.1007/978-3-319-33630-5 2

https://www.gnupg.org

18 X. Bultel and P. Lafourcade

which is a privacy violation. On the other hand, if messages are encrypted with
the receiver public key then the judge can suspect Alice to hide crucial informa-
tion for the investigation. Moreover, without the receivers’ private keys, Alice
has no solution to prove her innocence and cannot reveal his correspondence to
the judge.

To solve this problem, Alice needs a mechanism to give to the judge a possi-
bility to open all messages sent during a specified time period. Using our solution
Alice can construct such a special key called an interval-key. With this key, the
judge can only read the encrypted messages sent during this specific interval of
time, because this key does not allow him to open other encrypted messages
stored on the email server. Nowadays, to the best of our knowledge, there is no
efficient cryptographic solution that offers such functionality to the users. The
goal of this paper is to propose a practical and efficient solution to this problem.

In many public key cryptosystems, when a ciphertext is generated, it is pos-
sible to create a special key that allows a person to decrypt it, without knowing
the corresponding secret key. For example, in ElGamal [13], C = (C1, C2) =
(gr, gx·r · m) is the ciphertext of the message m with the public key gx and a
random element r (for g a generator of G a group of prime order). Knowing
the random element r, the public key of Bob gx and the ciphertext C a third
party can compute C2/(gx)r = m to recover the plaintext. Using this property
it is possible to construct a näıve solution by giving n random elements to a
third party to decrypt n ciphertexts. However, this method presents an inherent
limitation when the number n is large and the user has to store all the random
elements used to encrypt all the messages during an interval of time. The aim
of this paper is to allow a user to construct an interval-key to decrypt several
consecutive messages in a time interval where the size of the key, the stored
information and the key generation complexity are constant and do not increase
with the number of ciphertexts.

Contributions: We first present the notion of Random Coin Decryptable Public
Key Encryption (RCD-PKE). The idea of RCD-PKE is that one can open a cipher-
text with the secret key and also use the random coin used during the encryption
to open a cipher. We show that several existing schemes in the literature satisfy
this notion, e.g. [1,10,14]. We use the RCD-PKE property to construct a scheme
that allows a user to generate an interval-key for a judge to open all the mes-
sages he sent during a period of time. This scheme, called A Posteriori Openable
Public Key Encryption (APO-PKE), allows the judge to open all messages sent
between two given dates. The number of ciphertexts is potentially infinite but
the judge decryption capability is limited to the a posteriori chosen interval. It
contains, like a standard public key encryption, a key generation function, an
encryption function and a decryption function. It also has an extraction function
that, given two ciphertexts and a secret value, generates an interval-key for the
judge. Using this interval-key he can then open all messages encrypted by differ-
ent public keys between the two ciphertexts for which the key has been created.

A Posteriori Openable Public Key Encryption 19

Our scheme is generic since it only relies on any IND-CPA secure RCD-PKE and
hash functions.

Performances: Our scheme has reasonable encryption and decryption execution
time overhead comparing to the PKE we use, because the size of ciphertexts
generated by our scheme is approximately the double of the size of the PKE
encryption. Moreover the generation of the interval-key, its size and the stored
information are also independent of the number of messages contained in the
interval of time. Finally, there is no restriction neither about the total number
of generated ciphertexts nor about the number of ciphertexts in a time interval.

Security: We provide the security models to prove the security of our schemes in
the Random Oracle Model (ROM). We prove that the judge colluding with some
users cannot learn more than the messages for which he received the interval-
key. We also show that several users cannot collude in order to learn information
about plaintexts contained in an interval of ciphertexts with the judge interval-
key. We also demonstrate that the judge gets the same plaintext as the one
received by the owners of the secret keys. This means that it is not possible to
forge fake messages that the judge can open and not the owners of the secret
keys, and vice-versa.

Our construction allows us to use the extraction algorithm only once per
judge (or per set of encrypted mails). Our security model captures this situation.
It is not going against our motivation as long as we consider that two judges
having an interval key in two different court cases (for the same set of mails)
do not collude. To avoid this drawback, we need to reinitialize the secret values
stored by a user after the generation of an interval-key, in order to be able to
produce new interval-key on the next encrypted data. We leave the construction
of an APO-PKE with constant interval key generation complexity and constant
interval key size allowing several interval key generations for the same judge and
the same set of encrypted mails as an open problem.

Related Work: Functional encryption [26] is a public-key encryption primitive
that allows a user to evaluate a function on the plaintext message using a key and
a ciphertext. This cryptographic primitive was formalized in [5]. It generalizes
many well know cryptographic primitives such identity based encryption [4] or
attribute based encryption [26]. Moreover, some schemes that evaluate an arbi-
trary function have been proposed in [17,18]. A posteriori openable encryption
can be seen as a functional encryption, where all ciphertexts (resp. plaintexts)
that are encrypted by one user correspond to a unique large ciphertext (resp.
plaintext). Then the interval-keys allow a user to find only some parts of the
corresponding plaintext. Our proposal scheme is an efficient solution for this
kind of functional encryption.

Deniable encryption [7,22] is an encryption system that allows to encrypt two
messages (original and hidden messages) in the same ciphertext. Using his secret
key, the receiver can retrieve the original message. Using another shared secret

20 X. Bultel and P. Lafourcade

key, the receiver can also decrypt the hidden message. It is not possible for the
sender to prove that his encryption does not contain an hidden encrypted mes-
sage. In our a posteriori openable encryption, the judge is only convinced that
the plaintext that he decrypts is the same message that the plaintext decrypted
by the secret key of the receiver. This notion differs from undeniability since the
judge is convinced that a message he decrypts using interval key has actually
been sent and received, but does not deal with message from another channel
that the given encryption system (including different way to encrypt or decrypt
a message in the same ciphertext).

Some cryptographic primitives deal with time in decryption mechanism or
rights delegation. Timed-Release Encryption (TRE), first proposed in [24], is
a public key encryption where encrypted messages cannot be opened before a
release-time chosen by the person who encrypted the messages. In this primitive,
it is generally a time server that allows the receiver to decrypt the message in
the future at a given date. Several TRE with diverse security properties have
been proposed [3,8,9]. More recently, an extension of TRE, called Time-Specific
Encryption (TSE), has been proposed in [25] and deals with time intervals.
Somehow these primitive are close to our because APO-PKE allows somebody
to give decryption capabilities in the future, after that encrypted messages has
been sent. However, TRE and TSE cannot be used to achieve APO-PKE, because
TRE ciphertext are intended to only one user and decryption capabilities cannot
be delegated to another party. Moreover, in TRE, time of decryption capability
must be chosen during the encryption phase, while in our primitive it can be
chosen at any time (a posteriori).

It is interesting to note that some TRE possess a pre-open mechanism [21]
that allows the sender to give decryption capabilities before the pre-specified
release-time. In this case, a security requirement (called binding property)
ensures that the decrypted message from the pre-open mechanism is the message
decrypted by the receiver after the release-time [11]. For our primitive, we define
a similar property, called integrity, since we require that decrypted messages
using an interval key must be equal to the messages decrypted by the legitimate
receivers.

Finally, Key-Insulated Encryption (KIE) [12,20,23] is a public key encryption
primitive where messages are encrypted from a tag corresponding to a time
period and a public key. At each time period corresponds a partial secret key
computed from a master key and the previous partial secret key. Moreover, the
public key is never changed. The motivation of this primitive is to provide secret
keys that can be stored in an untrusted device without compromising the master
key. Indeed, the leakage of a secret key compromises only messages received in a
specified time interval, and future encryptions remain secure. In the motivation
of [12], the authors give another interesting use of this primitive based on [16].
They provide a secure delegation of decryption rights in a time period. However,
this type of delegation allows them to delegate decryption rights only on pre-
defined time period. For example, if the time period corresponds to one month
then right delegation cannot be restricted to the last week of a month and the

A Posteriori Openable Public Key Encryption 21

first week of the following month without revealing all messages of these two
months. Moreover, delegator must give a different secret key to each time period,
so the decryption keys are proportional to the number of time periods contained
in the interval. Our goal is to propose decryption delegation capabilities to the
sender, while KIE only focuses on receiver decryption right delegation. Thus this
primitive cannot solve our problem.

Outline: In the next section, we introduce some cryptographic tools and define
the notion of RCD-PKE. In Sect. 3, we present a generic A Posteriori Openable
Public Key Encryption. Then in Sect. 4, we provide security models and analyze
the security of our scheme before concluding in the last section. All the proofs
of our security results are given in the full version of this paper [6].

2 Random Coin Decryptable Public Key Encryption

We first recall the definition of probabilistic public key encryption.

Definition 1 (Probabilistic Public Key Encryption (PKE)). A proba-
bilistic PKE is a triplet of polynomial time algorithms (Gen,Enc,Dec) such that
Gen(1k) returns a public/private key pair (pk, sk), Encpk(m;σ) returns a cipher-
text c from the public key pk, the message m and the random coin σ, and Decsk(c)
returns a plaintext m or a bottom symbol ⊥ from a secret key sk and a cipher-
text c. Moreover the following equation holds: Decsk(Encpk(m;σ)) = m.

ExpIND-CPA
Π,A (k):

b
$← {0, 1}

(pk, sk) ← Gen(1k)
(m0, m1, st) ← A0(1k, pk)
c ← Encpk(mb; σ)
b′ ← A1(st, pk, c)
return (b = b′)

Fig. 1. IND-CPA experiment.

A PKE scheme Π is said indistinguishable
under chosen-plaintext attack (IND-CPA) [19]
if for any polynomial time adversary A, the
difference between 1

2 and the probability that
A wins the IND-CPA experiment described
in Fig. 1 is negligible.

We introduce the notion of Random Coin
Decryptable PKE (RCD-PKE). A public key
encryption scheme is said RCD-PKE, if there
exists a second way to decrypt the ciphertext
with the random coin used to construct the
ciphertext. This primitive is a kind of PKE with double decryption mechanism
(DD-PKE) which is defined in [15]. Actually RCD-PKE is a DD-PKE where the
second secret key is the random coin and is used once.

Definition 2 (Random Coin Decryptable PKE (RCD-PKE)). A proba-
bilistic PKE is Random Coin Decryptable if there exists a polynomial time algo-
rithm CDec such that for any public key pk, any message m, and any coin σ,
the following equation holds: CDecσ(Encpk(m;σ), pk) = m.

22 X. Bultel and P. Lafourcade

For instance, ElGamal encryption scheme is RCD-PKE. It is possible, from
a ciphertext c = Encpk(m;σ) = (c0, c1) = (gσ, pkσ · m) to use the algorithm
CDecσ(c, pk) that computes c1/pk

σ to retrieve the plaintext message m. Many
probabilistic encryption schemes in the literature are RCD-PKE, e.g. [1,10,14].
Algorithms CDec of these two cryptosystems PKE are given in the full version of
this paper [6]. We also introduce the concepts of valid key pair and of verifiable
key PKE.

Definition 3 (Verifiable Key PKE (VK-PKE)). We say that a key pair
(pk, sk) is valid for PKE = (Gen,Enc,Dec) when for any message m and any
random coin σ the equation Decsk(Encpk(m;σ)) = m holds. We say that a proba-
bilistic PKE is verifiable-key (VK) when there exists an algorithm Ver such that
Ver(pk, sk) = 1 if and only if (pk, sk) is valid for PKE.

In many probabilistic public key cryptosystems, the public key is generated
from the secret key by a deterministic algorithm. For example, the ElGamal
public key is the value gx computed from the secret key x. In this case, it suffices
to check that gsk = pk in order to be convinced that a key pair (pk, sk) is valid.
It is easy to see that [1,10] are also VK-PKE.

3 A Posteriori Openable Public Key Encryption

An APO-PKE is a public key encryption scheme, where Alice can use receiver
public keys to send them encrypted messages that can be opened thanks to
the corresponding secret keys. The goal of an APO-PKE is to allow Alice to
keep enough information to be able to construct a key to a posteriori open a
sequence of messages that she had encrypted during an interval of time. We do
not consider real time but a sequence of n successive ciphertexts {Cx}1≤x≤n that
have been encrypted by Alice with possibly different public keys. Then with an
APO-PKE, it is possible for Alice to extract a key for a judge that opens all
ciphertexts between the message Ci and the message Cj where 1 ≤ i < j ≤ n.
We call this key an interval-key denoted by Kpko

i→j where pko is the public key of
the opener (here the judge). Moreover before encrypting her first message with
a public key, Alice needs to initialize a secret global state denoted st. The goal of
st is to keep all required information to generate an interval-key and to encrypt a
new message. Naturally each time Alice encrypts a message with a public key, st
is updated (but has a constant size). Finally an APO-PKE, formally described in
Definition 4, contains an algorithm that opens all ciphertexts in a given interval
of time thanks to the interval-key forged by Alice.

Note that all key pairs come from the same algorithm APOgen. However, for
the sake of clarity, we denote by pko and sko (for opener public key and opener
secret key) the keys of an interval-key recipient, e.g. a judge that can open some
messages, denoted by O (for opener) in the rest of the paper.

A Posteriori Openable Public Key Encryption 23

Definition 4 (A Posteriori Openable Public Key Encryption
(APO-PKE)). An APO-PKE is defined by:

APOgen(1k): This algorithm generates a key pair for a user. It returns a pub-
lic/private key pair (pk, sk).

APOini(1k): This algorithm initializes a global state st and returns it.
APOencstpk(m): This algorithm encrypts a plain-text m using a public key pk and

a global state st. It returns a ciphertext C and st updated.
APOdecsk(C): This algorithm decrypts a ciphertext C using the secret key sk. It

returns a plaintext m or ⊥ in case of error.
APOextstpko(Ci, Cj): This algorithm generates an interval-key Kpko

i→j that allows
the owner O of the public key pko to decrypt all messages {Cx}i≤x≤j using
algorithm APOpen.

APOpensko(K
pko
i→j , {Cx}i≤x≤j , {pkx}i≤x≤j): Inputs of this algorithm contain a

ciphertext set {Cx}i≤x≤j and all the associated public keys {pkx}i≤x≤j. This
algorithm allows a user to decrypt all encrypted messages sent during an
interval using his secret key sk and the corresponding interval-key Kpko

i→j. It
returns a set of plaintexts {mx}i≤x≤j or ⊥ in case of error.

In Scheme 1, we give a generic construction of APO-PKE based on an
IND-CPA secure RCD-PKE and three hash functions.

Scheme 1 (Generic APO-PKE (G-APO)). Let k be a security parameter, E =
(Gen,Enc,Dec) be a RCD and VK PKE scheme, R be the set of possible random
coins of E and F : {0, 1}∗ → {0, 1}k, G : {0, 1}∗ → R and H : {0, 1}∗ →
{0, 1}2k be three universal hash functions. Our generic APO-PKE is defined by
the following six algorithms where ⊕ denotes the exclusive-or, |x| denotes the bit
size of message x and y||z the concatenation of y with z:

APOgen(1k): This algorithm generates (pk, sk) with Gen and returns it.
APOini(1k): This algorithm picks three random values σ̂

$← {0, 1}k, σ̃
$← {0, 1}k

and K
$← {0, 1}k of the same size, and returns the state st = (K||σ̂||σ̃).

APOencstpk(m): We note that st = (K||σ̂N ||σ̃N). This algorithm picks a random
m̂ such that |m̂| = |m| and computes m̃ = m̂ ⊕ m. Let σ̂

$← {0, 1}k and
σ̃

$← {0, 1}k be two random values of size |σ̂N |. This algorithm computes
Ĉ = Encpk(m̂||(σ̂ ⊕ F(σ̂N));G(σ̂N)) and C̃ = Encpk(m̃||(σ̃N ⊕ F(σ̃));G(σ̃)).
It also computes D = (σ̂N ||σ̃) ⊕ H(K||Ĉ||C̃). Finally it updates the state st

with (K||σ̂||σ̃) and returns C = (Ĉ||C̃||D).
APOdecsk(C): The decryption algorithm computes the decryption of m̂||σ̂ =

Decsk(Ĉ) and the decryption of m̃||σ̃ = Decsk(C̃), where C = (Ĉ||C̃||D).
It returns m = m̂ ⊕ m̃.

APOextstpko(Ci, Cj): Using the state st = (K||σ̂N ||σ̃N), Ci = (Ĉi||C̃i||Di) and
Cj = (Ĉj ||C̃j ||Dj), this algorithm computes σ̂i−1||σ̃i = Di ⊕ H(K||Ĉi||C̃i)
and σ̂j−1||σ̃j = Dj ⊕ H(K||Ĉj ||C̃j). It picks r

$← R and returns Kpko
i→j =

Encpko((σ̂i−1||σ̃j); r).

24 X. Bultel and P. Lafourcade

APOpensko(K
pko
i→j , {(Ĉx||C̃x||Dx)}i≤x≤j , {pkx}i≤x≤j): This algorithm begins to

recovering values σ̂i−1||σ̃j = Decsko(K
pko
i→j).

– For all x in {i, i + 1, . . . , j}, it computes R̂ = G(σ̂x−1) and opens Ĉx

as follows m̂x||σ̂∗
x = CDec

̂R(Ĉx, pkx). It computes the next σ̂x = σ̂∗
x ⊕

F(σ̂x−1). If Encpkx
((m̂x||σ̂∗

x);G(σ̂x−1)) �= Ĉx then it returns ⊥.
– For all x in {j, j − 1, . . . , i}, it computes R̃ = G(σ̃x) and opens C̃x as

follows m̃x||σ̃∗
x−1 = CDec

˜R(C̃x, pkx). It computes the previous σ̃x−1 =
σ̃∗

x−1 ⊕ F(σ̃x). If Encpkx
((m̃x||σ̃∗

x−1);G(σ̃x)) �= C̃x then it returns ⊥.
Finally, it returns {m̂x ⊕ m̃x}i≤x≤j.

The encryption algorithm APOenc separates the plaintext m in two parts
using xor operation such that m = m̂⊕ m̃. We generate two random coins σ̂ and
σ̃. Using the two previous coins σ̂N and σ̃N in the state st, we encrypt into two
different ciphertexts Ĉ and C̃ the following two messages m̂||(σ̂ ⊕ F(σ̂N)) and
m̃||(σ̃N ⊕ F(σ̃)). Finally we hide the usefull random elements with H(K||Ĉ||C̃).

Knowing the secret key it is possible to recover m̂ and m̃ and then to obtain
the plaintext m thanks to the algorithm APOdec.

An interval-key for the owner O of a public key pko is constructed using the
algorithm APOext. It is simply the encryption with pko of σ̂N and σ̃. At each
encryption, the values σ̂i−1 and σ̃i are masked by a “one time pad” with the
digest H(K||Ĉi||C̃i) in Di. Then with the ciphertexts Ci, Cj and the secret value
K we can construct an interval-key that contains these values σ̂i−1 and σ̃j .

Using an interval-key Kpko
i→j it is possible to open all ciphertexts encrypted

during an interval of time with the algorithm APOpen: thanks to the RCD prop-
erty, someone who knows values σ̂N and σ̃ for one ciphertext can open each part
Ĉ and C̃ of it in order to recover σ̂ and σ̃N , and m̂ and m̃, hence m. We also
notice that with σ̂i it is possible to decrypt all ciphertexts in {Ĉx}(i+1)≤x≤N . In
the other hand, with σ̃j it is possible to decrypt all ciphertexts in {C̃x}1≤x≤j .
Then it is possible to recover all messages between Ci and Cj . Thus, it is possible
to decrypt all messages between Ci and Cj with the knowledge of σ̂i−1 and σ̃j .

If the interval always contains the first message, we give a more efficient
algorithm. The idea is to only keep one part of the ciphertext, by consequence
we do not need to split into two the message m. Hence the size of the ciphertext is
smaller. Similarly if the algorithm always ends with the last encrypted message,
we can also drop one half of the ciphertext and the tag value following the same
idea. These simpler schemes are given in the full version of this paper [6].

4 Model and Security

We present the security properties of an APO-PKE scheme and we analyze the
security of our G-APO scheme. The first security property corresponds to a
chosen-plaintext attack scenario where the adversary has access to interval-
keys on intervals that do not contain the challenge. We next introduce the
notion of indistinguishability under chosen sequence of plaintext attack security

A Posteriori Openable Public Key Encryption 25

(IND-CSPA) that corresponds to a chosen-plaintext attack scenario where the
challenge is an interval of ciphertexts and the corresponding interval-key gener-
ated for a given judge public key. The last property is integrity, and captures
the integrity of messages decrypted by APOpen algorithm. All security proofs
are detailed in [6].

4.1 IND-CPA security

It concerns the resistance of an APO-PKE against a collusion of adversaries that
have access to interval-keys in a chosen-plaintext attack scenario. For example, if
we consider a judge who receives an interval-key to open a sequence of ciphertexts
and who colludes with ciphertext recipients; then it ensures that they cannot
deduce any information about messages that are not in the sequence. Indeed,
he cannot request an interval-key for an interval containing the challenge. We
define the OT-IND-CPA security when only one interval-key can be asked during
the experiment. Our scheme is proved secure in this model.

Definition 5 (OT-IND-CPA Experiment). Let Π be an APO-PKE, let k be
a security parameter, and let A = (A0,A1) be a pair of polynomial time algo-
rithms. We define the one-time indistinguishability under interval opener chosen-
plaintext attack (OT-IND-CPA) experiment as follows:

ExpOT-IND-CPA
Π,A (k):

b
$← {0, 1}

(pk∗, sk∗) ← APOgen(1k)
st∗ ← APOini(1k)
(m0,m1, state) ← A0(1

k, pk∗)
C∗ ← APOencst∗pk∗(mb)

b′ ← A1(state, C∗)
If b = b′ return 1, else 0

The adversaries A0 and A1 have access to the following oracles:

OCPA
enc : On the first call to this oracle, it initializes the following values l = 1 and

n = 1. This oracle takes as input a public key pk and a message m. It returns
Cl = APOencst∗pk (m). It increments the counter l. Only in the first phase, it
increments the value n that counts the number of calls to the encryption
oracle before the generation of the challenge.

OCPA
ext : The adversary can ask this oracle only one time during the experiment.
This oracle takes a public key pko and two ciphertexts C ′

a and C ′
b. In the

second phase, if there exists Ci = C ′
a and Cj = C ′

b such that i ≤ n ≤ j
then the oracle rejects the query. Else, if C ′

a = Cn or C ′
b = Cn, it rejects the

query. Else it returns APOextst∗pko(C
′
a, C ′

b).

We also define the IND-CPA experiment as the same as the OT-IND-CPA exper-
iment except that the adversary can ask the oracle APOext several times.

26 X. Bultel and P. Lafourcade

Definition 6 (OT-IND-CPA Advantage). The advantage of the adversary
A against OT-IND-CPA is defined by:

AdvOT-IND-CPA
Π,A (k) = |Pr[ExpOT-IND-CPA

Π,A (k) = 1] − 1
2
|

We define the advantage on OT-IND-CPA experiment by:

AdvOT-IND-CPA
Π (k) = max{AdvOT-IND-CPA

Π,A (k)}
for all A ∈ poly(k). The advantages on IND-CPA experiment are similar to those
of OT-IND-CPA. We say that a APO-PKE scheme Π is OT-IND-CPA (resp.
IND-CPA) secure when AdvOT-IND-CPA

Π (k) (resp. AdvIND-CPA
Π (k)) is negligible.

Our construction is not IND-CPA since if a judge has two interval-keys for
two different intervals of time given by the same user and computed with the
same secret value then he can open all messages between the two extreme dates.

Theorem 1. Let E be an IND-CPA secure RCD-PKE, then G-APO based on E
is OT-IND-CPA secure in the random oracle model.

Proof idea: To prove the OT-IND-CPA security, we show first that no polynomial
adversary wins the experiment with non negligible probability using the oracle
OCSPA

ext in an interval of previous ciphertexts of the challenge. The interval-key
allows to open the part Ĉ∗ of the challenge C∗, but since the PKE is IND-CPA then
the interval-key gives no information about the part of the challenge encrypted
in the part C̃∗. Similarly, we then prove that no adversary can win using the
oracle in an interval of next ciphertexts of the challenge. Finally, using this two
results, we show that our scheme is OT-IND-CPA in any case. 	

4.2 IND-CSPA security

A sequence of ciphertexts coupled with an interval-key can be seen as an unique
ciphertext that encrypts a sequence of plaintexts because the open algorithm
allows a judge to decrypt all the messages of the sequence with the knowledge
of any secret key. Thus, we define a security model where the adversary must
distinguish the sequence of plaintexts used to produce a challenge sequence of
ciphertexts associated to an interval-key. The IND-CSPA security captures this
security property. In this model, the adversary is a collusion of users that must
distinguish the sequence of plaintexts used to produce a sequence of ciphertexts
given the corresponding interval-key generated for the judge.

Definition 7 (IND-CSPAφ Experiment). Let Π be an APO-PKE, let k be a
security parameter, and let A = (A0,A1) be a pair of polynomial time algorithms.
We define the indistinguishability under chosen sequence of plaintext attack
(IND-CSPAφ) experiment as follows, where n denotes the number of calls to the
encryption oracle during the first phase and φ denotes the number of calls to the
generation oracle:

A Posteriori Openable Public Key Encryption 27

Exp
IND-CSPAφ

Π,A (k):

b, d
$← {0, 1}

(pko∗, sko∗) ← APOgen(1k)
st∗ ← APOini(1k)
(q, {m0

x}n<x≤n+q, {m1
x}n<x≤n+q, {pkx}n<x≤n+q, state) ← A0(1

k, pko∗)
∀ x ∈ {n + 1, n + 2, ..., n + q} :

if pkx comes from OCSPA
gen then C∗

x = APOencst∗pkx
(mb

x)

else, C∗
x = APOencst∗pkx

(md
x)

K
pko∗
(n+1)→(n+q) ← APOextst∗pko∗(Cn+1, Cn+q)

b′ ← A1(state, {C∗
x}n<x≤n+q,K

pko∗
(n+1)→(n+q))

If b = b′ return 1, else 0

The adversaries A0 and A1 have access to the following oracles:

OCSPA
gen : At the first call, the oracle creates a keys’ list K that contains (pko∗, sko∗).
At each call, it generates values (pk, sk) from APOgen(1k) and adds it to K.
Then it returns pk. This oracle can be called only φ times.

OCSPA
enc : This oracle takes as inputs a public key pk and a message m. Only in
the first phase, it increments the value n that counts the number of calls to
the encryption oracle before the generation of the challenge.
In the two phases, it returns APOencst∗pk (m).

OCSPA
ext : This oracle takes as input two ciphertexts Ci and Cj. It returns the
interval-key K

pko∗
i→j = APOextst∗pko∗

(Ci, Cj).
In the first phase The challenger generates (pko∗, sko∗) from APOgen(1k)

and a state st∗ from APOini(1k). He sends the public key pko∗ to the adversary.
The challenger initializes a counter n that counts number of calls to the oracle
OCSPA

enc during this phase. Finally, the adversary sends to the challenger values
(q, {m0

x}n<x≤(n+q), {m1
x}n<x≤(n+q), {pkx}n<x≤n+q, state).

In second phase, the challenger computes a sequence of ciphertexts from
the adversary’s output. He encrypts messages of one of the two sequences. The
sequence of produced ciphertexts forms the challenge. More formally, the chal-
lenger picks two random bits b and d. Then, ∀ x ∈ {n + 1, n + 2, ..., n + q}, if
pkx corresponds to an honest user (i.e. pkx comes from oracle OCSPA

gen) then
he computes C∗

x = APOencst∗pkx
(mb

x) else if pkx corresponds to a dishonest
user (i.e. pkx comes from the adversary), he computes C∗

x = APOencst∗pkx
(md

x).

Finally, he computes K
pko∗
(n+1)→(n+q) = APOextst∗pko∗

(Cn+1, Cn+q) and he sends

(state, {C∗
x}n<x≤(n+q),K

pko∗
(n+1)→(n+q)) to the adversary A1. During the guess

phase, the adversary returns the bit b′. If b′ = b then A wins.

Definition 8 (IND-CSPA Advantage). We define the advantage of A against
IND-CSPA by:

Adv
IND-CSPAφ

Π,A (k) = |Pr[ExpIND-CSPAφ

Π,A (k) = 1] − 1
2
|

We define by:
Adv

IND-CSPAφ

Π (k) = max{AdvIND-CSPAφ

Π,A (k)}

28 X. Bultel and P. Lafourcade

for all A ∈ poly(k) the advantage on IND-CSPA. We say that an APO-PKE
scheme Π is IND-CSPA secure when the advantage Adv

IND-CSPAφ

Π (k) is negligible
for any polynomial φ.

Theorem 2. Let E be a PKE that is RCD, then G-APO using E is IND-CSPA
secure in the random oracle model.

Proof idea: In [2] authors prove that any IND-CPA PKE is still secure in multi-
user setting, i.e. where the adversary can ask several challenges for several dif-
ferent public keys. Without interval-key oracle, the IND-CSPA security of our
scheme can be reduced to the IND-CPA of the PKE in multi-user setting since
the challenge corresponds to ciphertexts of several messages from several public
keys. Moreover, since the interval-keys from the oracle are encrypted, then the
adversary must break the IND-CPA security of PKE to use it. It is possible to
prove that no adversary can efficiently break the IND-CSPA of our scheme using
these two arguments. 	

4.3 Integrity

The last security property for APO-PKE is the integrity. This property is similar
to binding property of TRE defined in [11]. The judge must be sure that the
messages he decrypts with APOpen algorithm are the sent messages.

Definition 9 (Integrity Experiment). Let Π a APO-PKE, let k be a secu-
rity parameter, and let A a polynomial time algorithm. We define the integrity
experiment as follows:

ExpIntegrity
Π,A (k):

(pko∗, sko∗) ← APOgen(1k)

(N, {Cx}1≤x≤N , {pkx}1≤x≤N , l, skl, i, j,K
pko∗
i→j) ← A(1k, pk∗)

if (pkl, skl) is not a valid key pair then return 0

{mx}i≤x≤j ← APOpensko∗(K
pko∗
i→j , {Cx}i≤x≤j , {pkx}i≤x≤j)

if ml �= APOdecskl(Cl) then return 1, else 0.

The challenger generates (pko∗, sko∗) from APOgen(1k) and sends the public
key pko∗ to the adversary. The adversary A sends to the challenger an inte-
ger N , an ordered set of N ciphertexts {Cx}1≤x≤N and an ordered set of N
public keys {pkx}1≤x≤N . The adversary then sends two integers i and j and
the corresponding interval-key K

pko∗
i→j . He finally sends the integer l and the

secret key skl corresponding to pkl. If (pkl, skl) is not a valid key pair then the
challenger aborts and returns 0. The challenger then computes {mx}i≤x≤j ←
APOpensko∗(Kpko∗

i→j , {Cx}i≤x≤j , {pkx}i≤x≤j). If ml �= APOdecskl
(Cl) then the

challenger returns 1, else he returns 0.

Definition 10. The advantage of A against integrity is defined by:

AdvIntegrityΠ,A (k) = Pr[ExpIntegrityΠ,A (k) = 1]

A Posteriori Openable Public Key Encryption 29

The advantage against integrity by:

AdvIntegrityΠ (k) = max{AdvIntegrityΠ,A (k)}

for all A ∈ poly(k). We say that a APO-PKE scheme Π satisfies the integrity
property AdvIntegrityΠ (k) is negligible.

Theorem 3. Let E be a RCD and VK PKE that is IND-CPA secure, then G-APO
using this PKE satisfies the integrity property.

Proof idea: Since the judge has all the random coins and all the public keys
used to encrypt all the opened messages, he can use them to re-encrypt these
messages. Thus, if the ciphertexts that he opens correspond to the ciphertexts
that he encrypts by himself, then he can conclude that the opened messages are
the same as the messages decrypted by the recipient secret keys. 	

5 Conclusion

We introduce the notion of RCD-PKE. Based on this notion, we propose an a
posteriori openable PKE (APO-PKE) scheme. Our scheme allows a user to prove
his innocence by showing to a judge the content of his encrypted communica-
tion with several PKE during a period of time. Our construction preserves the
privacy of the others communications, meaning that the judge cannot learn any
information concerning the other encrypted messages. Moreover the receivers of
the encrypted messages cannot collude in order to learn more information that
is contained in the received messages. Our construction is proven secure in the
Random Oracle Model and is generic because it only requires RCD-PKE and
hash functions.

In the future, we aim at proving that is not possible to have a secure con-
struction that supports several generations of interval key with constant size
interval-key and stored data (state). Another future work is to design a secu-
rity model for chosen-ciphertext security of APO-PKE and to provide a generic
construction that achieves this higher security. Finally, it may be interesting to
design such a scheme in the standard model.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHIES: an encryption scheme based on the
Diffie-Hellman problem. Contributions to IEEE P1363a, September 1998

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Blake, I.F., Chan, A.C.-F.: Scalable, server-passive, user-anonymous timed release
public key encryption from bilinear pairing. In: ICDS. IEEE Computer Society
Press (2005)

30 X. Bultel and P. Lafourcade

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg (2001)

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

6. Bultel, X., Lafourcade, P.: A posteriori openable public key encryption. Tech-
nical report, University Clermont Auvergne, LIMOS (2015). http://sancy.
univ-bpclermont.fr/∼lafourcade/APOPKE.pdf

7. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997)

8. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-
release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

9. Cheon, J.H., Hopper, N.J., Kim, Y.-D., Osipkov, I.: Timed-release and key-
insulated public key encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

11. Dent, A.W., Tang, Q.: Revisiting the security model for timed-release encryption
with pre-open capability. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R.
(eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg (2007)

12. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer,
Heidelberg (2002)

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

15. Galindoa, D., Herranz, J.: On the security of public key cryptosystems with a
double decryption mechanism. Inf. Process. Lett. 108(5), 279–283 (2008)

16. Goldreich, O., Pfitzmann, B., Rivest, R.L.: Self-delegation with controlled propa-
gation - or - what if you lose your laptop. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 153–168. Springer, Heidelberg (1998)

17. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

18. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: 45th ACM STOC,
pp. 555–564. ACM Press (2013)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

20. Hanaoka, G., Weng, J.: Generic constructions of parallel key-insulated encryp-
tion. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 36–53.
Springer, Heidelberg (2010)

21. Hwang, Y.-H., Yum, D.H., Lee, P.J.: Timed-release encryption with pre-open capa-
bility and its application to certified e-mail system. In: Zhou, J., López, J., Deng,
R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer, Heidelberg
(2005)

http://sancy.univ-bpclermont.fr/~lafourcade/APOPKE.pdf
http://sancy.univ-bpclermont.fr/~lafourcade/APOPKE.pdf

A Posteriori Openable Public Key Encryption 31

22. Klonowski, M., Kubiak, P., Kuty�lowski, M.: Practical deniable encryption. In: Gef-
fert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.)
SOFSEM 2008. LNCS, vol. 4910, pp. 599–609. Springer, Heidelberg (2008)

23. Libert, B., Quisquater, J.-J., Yung, M.: Parallel key-insulated public key encryption
without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol.
4450, pp. 298–314. Springer, Heidelberg (2007)

24. May, T.: Time-release crypto. Manuscript (1993)
25. Paterson, K.G., Quaglia, E.A.: Time-specific encryption. In: Garay, J.A., De Prisco,

R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 1–16. Springer, Heidelberg (2010)
26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-

CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
27. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: A usability evaluation of

PGP 5.0. In: Proceedings of the 8th Conference on USENIX Security Symposium
- SSYM 1999, vol. 8, p. 14. USENIX Association, Berkeley (1999)

Multicast Delayed Authentication for Streaming
Synchrophasor Data in the Smart Grid

Sérgio Câmara1(B), Dhananjay Anand2, Victoria Pillitteri2, and Luiz Carmo1

1 National Institute of Metrology, Quality and Technology,
Duque de Caxias, Rio de Janeiro 25250-020, Brazil

{smcamara,lfrust}@inmetro.gov.br
2 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

{dhananjay.anand,victoria.pillitteri}@nist.gov

Abstract. Multicast authentication of synchrophasor data is challeng-
ing due to the design requirements of Smart Grid monitoring systems such
as low security overhead, tolerance of lossy networks, time-criticality and
high data rates. In this work, we propose inf -TESLA, Infinite Timed Effi-
cient Stream Loss-tolerant Authentication, a multicast delayed authen-
tication protocol for communication links used to stream synchrophasor
data for wide area control of electric power networks. Our approach is
based on the authentication protocol TESLA but is augmented to accom-
modate high frequency transmissions of unbounded length. inf -TESLA
protocol utilizes the Dual Offset Key Chains mechanism to reduce authen-
tication delay and computational cost associated with key chain com-
mitment. We provide a description of the mechanism using two different
modes for disclosing keys and demonstrate its security against a man-in-
the-middle attack attempt. We compare our approach against the TESLA
protocol in a 2-day simulation scenario, showing a reduction of 15.82 %
and 47.29 % in computational cost, sender and receiver respectively, and
a cumulative reduction in the communication overhead.

Keywords: Multicast authentication · Smart grid · Synchrophasors ·
Wide area monitoring protection and control

1 Introduction

Smart Grids are large critical cyber-physical infrastructures and are being trans-
formed today with the design and development of advanced real-time control
applications [11]. The installation of Phasor Measurement Units (PMUs) as part
of world-wide grid modernization is an example of major infrastructure invest-
ments that require secure standards and protocols for interoperability [1].

PMUs take time-synchronized measurements of critical grid condition data
such as voltage, current, and frequency at specific locations that are used to

S. Câmara—This work is supported in part by grants from H2020 EU-BR Secure-
Cloud (Grant No. 2568).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 32–46, 2016.
DOI: 10.1007/978-3-319-33630-5 3

Multicast Delayed Authentication for Streaming Synchrophasor Data 33

provide wide area visibility across the grid. The synchrophasor data aggregated
from multiple PMUs are used to support real-time analysis, planning, correc-
tive actions, and automated control for grid security and resiliency. Currently,
high-speed networks of PMUs are being used for Wide Area Monitoring Protec-
tion and Control (WAMPAC) applications to provide situational awareness in
the Eastern and Western Interconnection of North America, in China, Canada,
Brazil and across Europe [11]. Before the installation of PMUs, the lack of wide-
area visibility is one of the factors that prevented early fault identification of the
2003 Northeast America and 2003 Italy blackouts [9,21]. Malicious PMU data or
deliberate attacks could result in inaccurate decisions detrimental to grid safety,
reliability, and security, that said, PMUs need information authentication and
integrity, while confidentiality may be considered optional.

Authentication schemes in the Smart Grid must be able to efficiently sup-
port multicast. Current standard solution, suggested by IEC 62351 [5], comprises
HMAC authentication algorithm for signing the synchrophasors. However, shar-
ing only one symmetric key across a multicast group cannot guarantee adequate
security, and this approach suffers from the scalability problem. The use of asym-
metric cryptography and digital signatures for multicast authentication raises
concerns about the impact on cost and microprocessor performance. One-Time
Signature schemes can enable multicast authentication, however they suffer from
communication and storage overhead, and complicated key management [24].

Although some previous literature works assume, in general, that delayed
authentication is not suitable for real-time applications [7,8], such method is still
eligible for some monitoring and control applications that permit relatively larger
delay margins (e.g. wide-area oscillation damping control application) [25]. For
more considerations on this topic, see Sect. 2. Moreover, delayed authentication
presents advantages over cited issues by supporting multicast data streaming,
symmetric and lightweight cryptography, corrupt data and attack detection.
Also it allows scalable solutions and key management, tolerates packet loss, and
provides low communication overhead and high computational efficiency.

The primary objective of this work is to propose a multicast delayed authen-
tication protocol called inf -TESLA in order to provide measurement authenti-
cation in a WAMPAC application within the Smart Grid. Also, we design the
Dual Offset Key Chains mechanism which is used by our protocol to generate the
authenticating keys and to provide long-term communication without the need
of key resynchronization between the sender and receivers. A description of two
different modes for disclosing keys and a demonstration of a man-in-the-middle
attack attempt against our mechanism are also provided.

Section 2 presents an overview of the network architecture used for wide area
aggregation of PMU data as well as some delay constraints and authentica-
tion infrastructure. In Sect. 3 we discuss prior work in the area of packet based
authentication protocols for streaming communication, and then in Sect. 4 we
present the inf -TESLA protocol and describe the Dual Offset Key Chains mech-
anism along with its security properties and conditions. In Sect. 5 we evaluate
our approach against the original TESLA protocol. Finally, we summarize our
results and propose future works in Sect. 6.

34 S. Câmara et al.

2 Scenario Characteristics

The network architecture considered for this work is as follows. Each communi-
cation link in the infrastructure comprises one PMU sender node S capable of
multicasting packets to m receivers Rk applications, where 1 ≤ k ≤ m. PMU S
sends time-stamped synchrophasor data packets at a rate of 10 to 120 packets
per second and that can be dropped in the way to the receivers. The network
has several n intermediate nodes between S and Rk, n > 0, called Phasor Data
Concentrators (PDCs). PDCs can chronologically sort received synchrophasors
as well as aggregate, repackage and route data packets to the set of higher level
PDCs (Super PDCs). When packets are missing or lost, PDCs may (with due
indication) interpolate measurements in order to retain the communication link.

There are different wide-area monitoring and control applications that con-
sume synchrophasor data and have different time delays and quality require-
ments. For instance, Situational Awareness Dashboard, Small-Signal Stability
Monitoring, and Voltage Stability Monitoring/Assessment accept up to 500 mil-
liseconds in communication latency, other applications such as Long-term stabil-
ity control, State Estimation, and Disturbance Analysis Compliance can handle
up to 1000 ms. For the entire list, see [20].

Zhu et al. [25] simulates the latency for monitoring applications over the
Smart Grid network architecture and obtained results within a range of 150–220
ms. For centralized control applications, the latency was well below 500 ms. From
the delayed authentication perspective, the minimum delay of the authentication
confirmation by Rk is approximately twice the latency of the network. Still,
delayed authentication protocols are able to attend the requirements for the
above cited applications.

When utilizing multicast communication, IEC 61850-90-5, the standard for
communication networks and systems for power utility automation, requires a
Key Distribution Center (KDC), which provides the symmetric key coordination
between S and Rk. We assume that each S is its own KDC, which is also endorsed
by the standard. Furthermore, as our scheme demands that S prove its identity
to Rk once during communication initialization, each receiver is required to
validate a digital signature from S and maintaining a copy of its public key
certificate. For this purpose, we assume that a Public-Key Infrastructure (PKI)
is also available.

2.1 Security Considerations

We assume that attacks are accordingly aligned, via a man-in-the-middle, to
either manipulate data values or masquerade as a legitimate PMU. Using the
attack model from [23], the adversary is not limited by network bandwidth and
has full control to drop, resend, capture and manipulate packets. Although his
computational resources can be large, it is not unbounded and he cannot invert a
pseudorandom function with non-negligible probability. Each receiver Rk is able
to authenticate both the content and source of synchrophasor payloads after a
delay of dNMax using our delayed authentication scheme presented in Sect. 4.

Multicast Delayed Authentication for Streaming Synchrophasor Data 35

However, if a packet fails authentication at time t, then an attack that has been
active and undetected since t−dNMax represents the maximum threat exposure.

The security primitives used throughout this paper are as follows:

– One-way hash function H operates on an arbitrary length input message M ,
returning h = H(M). H can be implemented with SHA-2 family algorithms.

– Message Authentication Code MAC(K,M) provides a tag that can verify
authenticity and integrity of message M given a shared key K. HMAC(K,M)
is a specific construction which includes an underlying cryptographic hash
function to create the authenticating tag.

– Hash chain Hn(M) denotes n successive applications of cryptographic hash
function H to message M .

3 Related Work

Multicast authentication is an active research field in recent years and has been
applied to a wide range of applications. In Smart Grids, it is being used for
monitoring, protection and information dissemination [24]. In this section, we
review all the TESLA-based multicast authentication schemes and other multi-
cast authentication schemes used for electrical power systems.

To address the challenge of continuous stream authentication for multiple
receivers on a lossy network, Timed Efficient Stream Loss-tolerant Authentica-
tion (TESLA) was introduced by Perrig et al. [14]. Based on the Guy Fawkes
protocol [2] and requiring loose time synchronization between the senders and
receivers, TESLA is a broadcast authentication protocol considering delayed
disclosure of keys used for authentication of previous sent messages and packet
buffering by the receiver. This protocol supports fixed/dynamic packet rate and
delivers packet loss robustness and scalability. Benefits of TESLA include a
low computation overhead, low per-packet communication overhead, arbitrary
packet loss is tolerated, unidirectional data flow, high degree of authenticity and
freshness of data. Further work proposed several modifications and improvements
to TESLA, allowing receivers to authenticate packets upon arrival, improved
scheme scalability, reduction in overhead, and increased robustness to denial-of-
service attacks [13].

Studer et al. describe TESLA++ [19], a modified version of TESLA resilient
to memory-based DoS attacks. They combine TESLA++ and ECDSA signatures
to build an authentication framework for vehicular ad hoc networks.

μTESLA [17] adapts TESLA to make it practical for broadcast authentica-
tion in severely resource-constrained environments; like sensor networks. Some of
these adaptations include the use of only symmetric cryptography mechanisms,
less frequent disclosure of keys and restriction on the number of authenticated
senders. Liu and Ning [10] reduce the overhead needed for broadcasting key
chain commitments and deal with DoS attacks. Their Multilevel μTESLA pro-
tocol considers different levels of key chains to cover the entire lifespan of a
sensor.

36 S. Câmara et al.

Other methods include the One-Time Signatures family which gained pop-
ularity recently and is applicable to multicast authentication and also for
WAMPAC applications. The author in [12] describes a one-time signature based
broadcast authentication protocol based on BiBa. BiBa uses one-way functions
without trapdoors and exploits the birthday paradox to achieve security and ver-
ification efficiency. Its drawbacks include a large public key and high overhead
for signature generation.

HORS [18] is described by Reyzin et al. as an OTS scheme with fast signing
and signature verification using a cryptographic hash function to obtain ran-
dom subsets for the signed message and for verifying it, but it still suffers from
frequent public key distribution. TSV [8] multicast authentication protocol gen-
erates smaller signatures than HORS and has lower storage requirement at the
cost of increased computations in signature generation and verification. TSV+
[7], a patched version of TSV, uses uniform chain traversal and supports multi-
ple signatures within an epoch. SCU [22] is a multicast authentication scheme
designed for wireless sensor networks and SCU+ [7] adapts it for power systems
using uniform chain traversal as well. TV-HORS [23] uses hash chains to link
multiple key pairs together to simultaneously authenticate multiple packets and
improves the efficiency of OTS by signing the first l bits of the hash of the
message. As a downside, TV-HORS has a large public key of up to 10 Kbytes.

4 Proposed Solution

In this section, we propose inf -TESLA, a TESLA based scheme. At first, we
review TESLA to give some background and then present our scheme.

4.1 TESLA

Timed Efficient Stream Loss-tolerant Authentication (TESLA) [13–16] is a
broadcast authentication protocol with low communication and computation
overhead, tolerates packet loss and needs loose time synchronization between
the sender and the receivers.

TESLA relies on the delayed disclosure of symmetric keys, therefore the
receiver must buffer the received messages before being able to authenticate
them. The keys are generated as an one-way chain and are used and disclosed in
the reverse order of their generation. At setup time, the sender must first set n as
the index of the first element Kn. For generating the key chain, the sender picks
a random number for Kn and using a pseudo-random function f , he constructs
the one-way function F : F (k) = fk(0). So, the sender generates recursively all
the subsequent keys on the chain using Ki = F (Ki+1). By that, the last element
of the chain is K0 = Fn(Kn), and all other elements could be calculated using
Ki = Fn−i(Kn).

Each Ki looks pseudo-random and an adversary is unable to invert F and
compute any Kj for j > i. In the case of a lost packet containing Ki, a receiver

Multicast Delayed Authentication for Streaming Synchrophasor Data 37

can calculate Ki given any subsequent packet containing Kj , where j < i, since
Kj = F i−j(Ki). As a result, TESLA tolerates sporadic packet losses.

The stream authentication scheme of TESLA is secure as long as the security
condition holds: A data packet Pi arrived safely, if the receiver can unambigu-
ously decide, based on its synchronized time and maximum time discrepancy,
that the sender did not yet send out the corresponding key disclosure packet Pj .

TESLA also supports both communication with fixed or dynamic packet
rate. For fixed rate, the sender discloses the key Ki of the data packet Pi in
a later packet Pi+d, where d is a delay parameter set and announced by the
sender during setup phase. The sender determines the delay d according to the
packet rate r, the maximum tolerable synchronization uncertainty δtMax and
the maximum tolerable network delay dNMax, setting d = �(δtMax + dNMax)r�.
In this mode, the scheme can achieve faster transfer rates. For dynamic rate,
the sender pick one key per time interval Tint. Each key is assigned to a uniform
interval of duration Tint, T0, T1 ,..., Tn, that is, key Ki will be active during
the time period Ti. The sender uses the same key Ki to compute the MAC for
all packets which are sent during Ti, on the other hand, all packets during Ti

disclose the key Ki−d′ . In this case, d′ = �(δtMax + dNMax)/Tint�. We use the
designation d and d′ for fixed and dynamic rates respectively.

For each new receiver that joins the communication network, the sender
initially creates an authenticated synchronization packet. This packet contains
parameters such as interval information, the disclosure lag and also a disclosed
key value - which is a commitment to the key chain. The sender digitally signs
this packet to each new receiver before starting the streaming communication.

4.2 inf-TESLA

inf -TESLA, short for infinite TESLA, is a multicast authentication protocol
based on TESLA suitable for use in long term communication at high packet
rates. As in TESLA, inf -TESLA relies on the strength of symmetric cryptog-
raphy and hash functions and on the delayed disclosure of keys as a means to
authenticate messages from the sender. Also, it requires only loose time syn-
chronization between the sender and the receiver and can operate under both
dynamic and fixed packet rates.

By using fixed packet rate mode, there is no need for setting specific time
intervals for MACing and disclosing keys. Each autheticating key is used once
for the actual message and disclosed d packets later. Although this operational
mode can achieve maximum speed on authenticating previous packets, it has a
drawback of quickly consuming the authenticating key chain, depending on the
frequency of the packets.

Since we use one-way hash functions to build independent key chains, every
time one of the key chains comes to an end (meaning that it was fully used
in the authentication process) the sender must automatically build, store and
utilize a new key chain in its place. In the original TESLA protocol, a sender
would have to reassign a new synchronization packet as the current key chain

38 S. Câmara et al.

d

Keychainm-1
Keychainm

Keychainm+1
Keychainm+2

...
...

d Time

Fig. 1. An illustration of dual offset key chains as used for inf -TESLA.

comes to an end, inflicting non-negligible network and computational overhead
by digitally signing a synchronization packet at the end of each key chain.

inf -TESLA addresses this issue by using the Dual Offset Key Chains mech-
anism. This mechanism uses a pair of keys for each message and guarantees
continuity of the multicasting authentication process without the need for sign-
ing and sending a new synchronization packet. The mechanism creates two offset
key chains so that a pair of active key chains are always available and, as the
main principle, a key chain m always straddles the substitution of key chain
m − 1 with m + 1. Figure 1 illustrates the Dual Offset Key Chains mechanism
by which key chain m supports the substitution of key chain m−1 for key chain
m+1 without the need for resynchronization. A detailed description of the Dual
Offset Key Chains mechanism is presented on Sect. 4.2.

The overall initialization setup is similar to TESLA. Before the data stream-
ing begins, the sender first determines some fundamental information about the
network status, dNMax), and time synchronization, δtMax, and builds its first
two key chains. We assume that both sender and receiver are time synchronized
by a reliable time protocol (e.g. PTP). After that, the sender S chooses the
delay parameter d (Sect. 4.1) that will base the decision of the receiver Rk to
either accept a packet from S. This condition is Security Condition-1 for
inf -TESLA.

For bootstrapping each new receiver, S constructs and sends the synchroniza-
tion (commitment) packet to the new incomer. For a dynamic packet rate, this
packet contains the following data [13]: the beginning time of a specific interval
Tj along with its id Ij , the interval duration Tint, the key disclosure delay d′, a
commitment to the key chain Km

i and key chain Km+1
i (i < j − d′ where j is

the current interval index).
For a fixed packet rate r, let j1 and j2 be the current key from key chains

m and m + 1 respectively. The synchronization packet contains: delay d and the
commitment for the key chains Km

i1
and Km+1

i2
(i1 < j1 − d and i2 < j2 − d).

We will focus on fixed packet rate in this paper for the sake of brevity and
convenience of notation. While a fixed packet rate is potentially more likely for
the streaming applications we address, our approach is compatible with both
dynamic and fixed rates.

Dual Offset Key Chains Mechanism. The Dual Offset Key Chains mecha-
nism enables continuity in streaming authentication without the periodic resyn-
chronization between S and Rk ∈ R required by TESLA. Two key chains, off-
set in alignment, are used simultaneously by the mechanism to authenticate

Multicast Delayed Authentication for Streaming Synchrophasor Data 39

messages. For every packet, there are always two active key chains and, from
each chain, one non-used key available for MACing.

For constructing the two key chains, first the sender chooses n, the total
number of elements on a single key chain. Let lm be the current number of
remaining elements on the key chain m. Here we assume that all created keys
are deleted just after being used for authenticating messages. Let M be the
maximum available memory for storing the key chains, assuming that M is big
enough for storing two key chains, m and m + 1, at any time. The value of n
must be chosen accordingly to the following constraints: (i) n ≥ lm−1 + 2(d + 1)
and (ii) n ≤ M

2 + d.
The first constraint sets a minimum value for n, that is the minimum initial

size of a key chain. During the initialization setup of the first receiver synchro-
nization, we consider lm−1 = 0 for constructing the first key chain. The second
constraint restricts the maximum number of elements in a key chain. If a key
chain m does not meet this limit, key chain m + 1 will not be long enough to
meet the security condition for the key chain exchange procedure (see Sect. 4.2).
In practice, it may not be feasible to calculate a whole key chain in the time
taken to send two data packets and so S may compute and store key chain m+1
well before the end of key chain m − 1.

A packet Pj sent by S is formed by the following data Pj =
{Mj , i1, i2,K

m
i1−d,K

m+1
i2−d ,MAC(Km

i1
||Km+1

i2
,Mj)}. Every packet carries the

actual message Mj , the current sequence number of each key chain i1 and i2,
the disclosed authenticating keys Km

i1−d and Km+1
i2−d (discussed later in Sect. 4.2)

and the MAC of the message resultant from an operation that uses the concate-
nation of current keys from both key chains. In particular, at the beginning of a
key chain m + 1, the notation Km+1

i2−d may refer to the last keys in the key chain
m − 1.

Disclosure of Keys. inf -TESLA has two modes of operation for disclosing
keys: 2-keys and Alternating. In the 2-keys mode (or standard mode, as pre-
viously described), each packet Pj discloses two authentication keys, one from
each key chain, for the same message Mi, that is packet Pj has the following
information, Pj → Km

i1−d,K
m+1
i2−d .

The Alternating mode discloses one key from each key chain alternatively in
each data packet. Formally, two consecutive packets would have the following
information about keys, Pj → Km

i1−d and Pj+1 → Km+1
i2+1−d, where indexes i1 − d

and i2 − d correspond to the keys of both key chains to be disclosed in the
same data packet in 2-keys mode of operation. Figure 2 shows the key chains
in time and the two modes for disclosing keys. In Sect. 5, we present a more
detailed comparison of these two modes in relation to communication overhead,
computational cost and authentication delay.

The disclosure delay d for the keys is directly affected by the maximum
tolerable network delay dNMax, so each receiver Rk will present a different delay
value. Sender S must set d as the largest expected delay in order to meet security
condition-1.

40 S. Câmara et al.

K0 K1 ...
Kn-1

 m-2 m-2 m-2 Kn
m-2 K0 K1 ...

Kn-1
 m-2 m-2 m-2 Kn

 m-2 K0 K1 ...
Kn-1

 m+2 m+2 m+2 Kn
m+2

K0

K1 ...
Kn-1

 m-1

m-1 m-1 Kn
m-1 K0 K1 ...

Kn-1
m+1 m+1 m+1 Kn

m+1 K0 K1 ...
Kn-1

m+3 m+3 m+3 Kn
m+3

...

... ...

...

Time

d Ki1
 m-22-keys

Disclosure:

K0
m-1

K1
 m-1

Ki1+1
m-2

... K0
 m+2

d
Ki2

 m+1

Alternating
Disclosure: K2

 m+2

Ki2+2
m+2

...

Fig. 2. Two modes for disclosing keys: 2-keys and alternating.

Dual Offset Key Chains Mechanism Security. Key chain security is based
on the widely used cryptographic primitive: the one-way chain. One-way chains
were first used by Lamport for one-time password [6] and has served many other
applications in the literature.

The Security Condition-2 for inf -TESLA concerns the key chain exchange
procedure. This condition states that both key chains cannot be substituted
within a time interval d/r (or within d packets). If this happens, the receiver must
drop the following packets and request for resynchronization with the sender.
This protocol restriction assures the authentication inviolability of inf -TESLA
and must be observed at all times by the receiver. The receiver is solely responsi-
ble for monitoring the key chain exchange procedure and accepting, or rejecting,
the new key chain.

In Fig. 3, we show an example of a man-in-the-middle attack attempt on
the Dual Offset Key Chains mechanism and the importance of the security
condition-2. For this example, we consider d = 9 as minimum number pack-
ets the sender has to wait to disclose a key, the last element n = 50 for all key
chains, and the asterisk symbol indicates an item maliciously inserted by the
attacker. The packets are presented without indices “i′′ for cleaner presentation.

We first illustrate how this attack can work on a single key chain mechanism
without commitment packets as follows: When the attacker senses a change in
the key chain by testing every disclosured key (a), he inserts M∗

0 as the first
manipulated message and MACs it using the first element K∗

0 of a forged key
chain of his own. The attacker continues faking the messages and its MACs
till the last authentic key used for MACing is disclosured. After that point,
the attacker is able to take complete control of the communication without
being detected (b). For the second part of Fig. 3, the same attack is attempted
against our mechanism. Also the attacker is able to sense when a disclosured key
chain comes to an end and can also substitute the messages and the MACs in
the packets. However, when he tries to take complete control of the key chain
by forcing the forged key K∗∗

0 over the key chain m = 2, this indicates for
the receiver a violation of the security condition-2 for the key chain exchange
procedure.

Another concern is how many consecutive packets could be lost by the
receiver without actually being an attack. Following the security condition for
key chain substitution, there must not be two different key chain substitutions

Multicast Delayed Authentication for Streaming Synchrophasor Data 41

M30 K20
0 Mac(K30 , M30)

0

M60 K50
 0 Mac(K9 , M60)

1

M0 K0
 1

Mac(K0 , M0)**

M9 K9
 1 Mac(K9 , M9)

M10 K0 Mac(K10 , M10)**
**

*

...

...
(a)

(b)

M30 K20
1 Mac(K30 || K15 , M30)

1

M60 K50
1 Mac(K9 || K45 , M60)

3

M0 K0
3 Mac(K0 || K0 , M0)**

M9 K9
3 Mac(K9 || K0 , M9)

M10 K0 Mac(K10 || K0 , M10)**
**

*

...

...

K5
2

K35
2

K36
2

K45
2

K0

*

*
*

2

2

** *

**
**

*

(c)

(d)

Time

Attack attempt on the dual offset key chains:Attack on a single key chain:

Time

Fig. 3. Example of a man-in-the-middle attack on a single hash chain without com-
mitment and on the Dual Offset Hash Chains mechanism.

within a period of d/r, so the receiver must be aware that the limit for con-
secutive packets lost is at maximum d. If, for some reason, more than d pack-
ets are lost/dropped, the receiver must assure that the following disclosed keys
are authentic elements of at least one of the existing key chains, otherwise the
receiver will not be able to authenticate any of the next received packets. From
this point, the receiver must refuse this stream and request for a new synchro-
nization with the sender.

Another security issue can occur when the last key Kn in the key chain’s
sequence is lost, that can cause a total lack of authentication of a previous
packet Pn. When some Ki is lost, it can be computed from any subsequent key
in the key chain through function F (Sect. 4.1), however when i = n there is no
subsequent key. This issue can be extended for the last d elements of the key
chain, meaning that in this scenario some packets may not be authenticated and
then must be dropped by the receiver. For the Alternating mode for disclosing
keys, the receiver would drop d+1 packets in the worst case. This issue concerning
the last keys of the key chain is a vulnerability of the original TESLA as well.

Elaborate attacks, like selective drop of packets, can cause even more authen-
tication delay without being noticed. For instance, in the case of the Alternating
keys disclosure mode, one attacker can induce an alternating drop of packets pre-
venting the sender to authenticate some sequential packets. To mitigate these
attacks, the receiver must set an upper limit for the maximum number of non
authenticated packets to ignore before resynchronizing with the sender.

5 Evaluation Against TESLA

For the following comparison evaluation, we check for communication overhead,
authentication delay and computational cost on a long term communication for
each of the following schemes: original TESLA, inf -TESLA 2-keys (two disclo-
sured keys per packet) and inf -TESLA alt (alternating key chain disclosure).
Due to PMUs’ operational settings, we are only considering a fixed packet rate
mode. Also, we assume the following constraints for the simulation:

42 S. Câmara et al.

– Phasor data frame size of 60 bytes, according to the C37.118 standard [25],
over UDP transport layer protocol.

– HMAC function and f function implementation as HMAC-SHA-256-128. Both
HMAC tag size and key size of 128 bits (truncated).

– Digital signature implemented as ECDSA over GF(p) of 256 bits. Although
TESLA considers RSA signatures, for comparison purposes we use ECDSA.
The keys and signatures sizes are based on the NIST SP 800-131A [3] for
recommendations on use of cryptographic algorithms and key lengths.

– Maximum number of keys n that can be stored at a time in the cache memory
of a device is 10,000 keys.

– Sender’s packet rate (frequency) of 60 packets/sec.
– Simulation time of 2 days. Past references [7] established a baseline of 1024 key

chains for evaluating OTS multicast schemes. However, as inf -TESLA must
build approximately 4 times the number of key chains as TESLA for the same
number of packets, comparisons are done for fixed simulation duration rather
than number of key chains. Still, for the given constraints, TESLA needs an
approximate number of 1024 key chains to operate.

Table 1. Communication overhead.

Formula

TESLA (fixed) C ∗ (sKey + sSig) + P ∗ (sKey + sMac)

Inf -TESLA 2-keys 2 ∗ sKey + sSig + P ∗ (2 ∗ sKey + sMac)

Inf -TESLA alt 2 ∗ sKey + sSig + P ∗ (sKey + sMac)

2-day simulation (MBytes)

TESLA (fixed) 331,825

Inf -TESLA 2-keys 497,664

Inf -TESLA alt 331,776

Table 1 shows the formulas to calculate all security related communication
overhead of each of the 3 schemes. Let C be the number of commitments (signed
packets), P the total number of transmitted packets and sKey, sMac and sSig
be the size of a cryptographic key, the size of the MAC tag and the size of a
signature tag respectively. inf -TESLA 2-keys presents the higher communication
overhead due to two disclosed keys per packet, while TESLA and inf -TESLA
alt present a slightly, but negligible, difference on the overhead during two days
of operation.

For calculating the computational cost overhead of each scheme, we use the
formulas shown in Table 2. The processing cost in cycles per each operation of
hashing, macing, signing and verifying is represented by cHash, cMac, cSig and
cV er respectively. From the graph in Fig. 4, we can observe the higher compu-
tational cost of the sender and receiver operating TESLA over inf -TESLA, due
to constant signing and verification operations.

Multicast Delayed Authentication for Streaming Synchrophasor Data 43

Table 2. Computational cost calculation.

Sender

TESLA (fixed) C ∗ cSig + P ∗ (cMac + cHash)

Inf -TESLA (both) cSig + 2 ∗ P ∗ (cMac + cHash)

Receiver

TESLA (fixed) C ∗ cV er + P ∗ (cMac + cHash)

Inf -TESLA (both) cV er + 2 ∗ P ∗ (cMac + cHash)

For two days of simulation in this configuration, a sender running TESLA
protocol on fixed packet rate mode has to sign up to 1036 commitment packets
and spends on average 0.373117 gigacycles/hour, while running inf -TESLA he
would spend 0.314087 gigacycles/hour of operation, which means a reduction of
15.82 % in computational cost for the sender. On the receiver side, a TESLA
receiver spends in average 0.596289 gigacycles/hour, while inf -TESLA needs
0.314303 gigacycles/hour, meaning a reduction of 47.29 % in computational cost
for the receiver. All values of cycles/operation of the security primitives are
referenced from the Crypto++ Library 5.6.0 Benchmarks [4].

Although the alternating keys disclosure mode showed good results on the
two previous evaluations, this mode increases the authentication delay of a packet
Pi by one packet. That is because the second key needed for authenticating Pi,
i.e. Km+1

i2
, will only be disclosed on Pj+1 where j > i + d. Also, if Pj+1 hap-

pens to be lost, the authentication of Pi will be only achieved when receiver has
the disclosed key included in Pj+3. On both other schemes, the authentication
of a packet Pi is normally achieved after receiving Pj , j > i + d, and if Pj is
lost, the missing keys can be recovered from the contents in Pj+1. Also regarding

Fig. 4. Computational cost for TESLA and inf -TESLA over 2 days of streaming data.

44 S. Câmara et al.

authentication delay evaluation, necessary time overhead for generation and ver-
ification of digital signatures during key chains exchange may affect TESLA’s
continuous flow on higher frequencies of streamed data.

Although TESLA protocol is an efficient protocol and has low security over-
head, it was not originally designed for long-term communication at high packet
rates. We observe that inf -TESLA, in alternating disclosure mode, can deliver
a slightly lower communication overhead and, for both modes, result in a sig-
nificant reduction in computational overhead over the original protocol for the
given conditions. In general, inf -TESLA scheme also provides great suitabil-
ity for key storage and computational constrained devices, such as in Wireless
Sensor Networks (WSNs).

6 Conclusion

In this work, we present inf -TESLA, a multicast delayed authentication proto-
col for streaming synchrophasor data in the Smart Grid, suitable for long-term
communication and high data rates scenarios. To authenticate messages from
the sender, inf -TESLA uses two keys to generate the MAC of the message and
discloses both keys after a time frame d/r, on a fixed packet rate of operation.

We also design the Dual Offset Key Chains mechanism to produce the authen-
ticating keys and provide a long-term communication without the need of fre-
quently signing resynchronization packets containing commitments to the new
key chains, which ensures continuity of the streaming authentication. We prove
our mechanism against a man-in-the-middle attack example and describe the
security conditions that must be observed at all times by the receiver. inf -
TESLA enables two different modes for disclosing keys, 2-keys (or standard)
and Alternating keys. We present a comparison between this two modes against
TESLA within a WAMPAC application, and our protocol shows even more effi-
ciency when compared to the original. Although the Alternating key disclosure
mode increases the authentication delay by one packet, it provides less impact
on communication overhead and a reduction of 15.82 % and 47.29 %, sender and
receiver respectively, in computational cost during operational time. Generally,
inf -TESLA shows promise and suitability for key storage and computational
constrained devices.

In future work, we intend to do a further analysis on the trade-off between
key storage size in devices and protocol performance, and on the possible (mini-
mum/maximum/average) values for the authentication delay by simulating our
protocol in a WAMPAC network.

References

1. Greer, C., et al.: NIST Framework and Roadmap for Smart Grid Interoperability
Standards. Technical report, NIST (2014)

2. Anderson, R., Bergadano, F., Crispo, B., Lee, J.H., Manifavas, C., Needham, R.:
A new family of authentication protocols. ACM SIGOPS Operat. Syst. Rev. 32,
9–20 (1998)

Multicast Delayed Authentication for Streaming Synchrophasor Data 45

3. Barker, E., Roginsky, A.: Recommendation for transitioning the use of crypto-
graphic algorithms and key lengths. In: SP 800–131A Transitions (2011)

4. Dai, W.: Crypto++ 5.6. 0 benchmarks. Website at (2009). http://www.cryptopp.
com/benchmarks.html

5. International Electrotechnical Commission: IEC TS 62351-1 Power systems man-
agement and associated information exchange - Data and communications - Part
1:Communication network and system security-Introduction to security issues
(2007)

6. Lamport, L.: Password authentication with insecure communication. Commun.
ACM 24(11), 770–772 (1981)

7. Law, Y.W., Gong, Z., Luo, T., Marusic, S., Palaniswami, M.: Comparative study
of multicast authentication schemes with application to wide-area measurement
system. In: Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, p. 287 (2013)

8. Li, Q., Cao, G.: Multicast authentication in the smart grid with one-time signature.
IEEE Trans. Smart Grid 2, 686–696 (2011)

9. Liscouski, B., Elliot, W.: Final report on the August 14, 2003 blackout in the United
States and Canada: Causes and recommendations. A report to US Department of
Energy 40(4) (2004)

10. Liu, D., Ning, P.: Multilevel μTESLA: Broadcast authentication for distributed
sensor networks. ACM Trans. Embed. Comput. Syst. 3, 800–836 (2004)

11. Patel, M., Aivaliotis, S., Ellen, E.: Real-time application of synchrophasors for
improving reliability. NERC Report, October 2010

12. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: Proceedings of the 8th ACM Conference on Computer and Communications
Security, p. 28 (2001)

13. Perrig, A., Canetti, R., Song, D.: Efficient and secure source authentication for
multicast. In: Proceedings of the Internet Society Network and Distributed System
Security Symposium, pp. 35–46 (2001)

14. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing
of multicast streams over lossy channels. Proc. IEEE Symp. Secur. Priv. 28913,
56–73 (2000)

15. Perrig, A., Canetti, R., Tygar, J., Song, D.: The TESLA broadcast authentication
protocol. CryptoBytes Summer/Fall 5, 2–13 (2002)

16. Perrig, A., Song, D., Canetti, R., Tygar, J., Briscoe, B.: Timed efficient stream
loss-tolerant authentication (TESLA): Multicast source authentication transform
introduction. Int. Soci. RFC 4082, 1–22 (2005)

17. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.E.: Spins: Security protocols
for sensor networks. Wireless Netw. 8(5), 521–534 (2002)

18. Reyzin, L., Reyzin, N.: Better than BiBa: Short one-time signatures with fast
signing and verifying. Inf. Secur. Priv. 2384, 1–47 (2002)

19. Studer, A., Bai, F., Bellur, B., Perrig, A.: Flexible, extensible, and efficient VANET
authentication. J. Commun. Netw. 11, 574–588 (2009)

20. Tuffner, F.: Phasor Measurement Unit Application Data Requirements. Technical
report, Pacific Northwest National Laboratory (2014)

21. UCTE: Final Report of the Investigation Committee on the 28 September
2003Blackout in Italy. Technical Report April, Union for the Coordination of the
Transmission of Electricity (2004)

22. Ugus, O., Westhoff, D., Bohli, J.M.: A rom-friendly secure code update mechanism
for wsns using a stateful-verifier τ -time signature scheme. In: Proceedings of the
Second ACM Conference on Wireless Network Security, pp. 29–40. ACM (2009)

http://www.cryptopp.com/benchmarks.html
http://www.cryptopp.com/benchmarks.html

46 S. Câmara et al.

23. Wang, Q., Khurana, H., Huang, Y., Nahrstedt, K.: Time valid one-time signature
for time-critical multicast data authentication. In: Proceedings - IEEE INFOCOM,
pp. 1233–1241 (2009)

24. Wang, W., Lu, Z.: Cyber security in the Smart Grid: Survey and challenges. Com-
put. Netw. 57(5), 1344–1371 (2013)

25. Zhu, K., Nordstrom, L., Al-Hammouri, A.: Examination of data delay and packet
loss for wide-area monitoring and control systems. In: 2012 IEEE International
Energy Conference and Exhibition (ENERGYCON), pp. 927–934, Sept 2012

Human Aspects of Security

Developing a Human Activity Model
for Insider IS Security Breaches
Using Action Design Research

Gurpreet Dhillon1, Spyridon Samonas2(&), and Ugo Etudo1

1 Virginia Commonwealth University, Richmond, VA, USA
{gdhillon,etudouo}@vcu.edu

2 California State University Long Beach, Long Beach, CA, USA
ssamonas@gmail.com

Abstract. Insider security breaches in organizations have been identified as a
pressing problem for academics and practitioners. The literature generally
addresses this problem by focusing on the compliance of human behavior to
stated policy or the conformance with organizational culture. The cultural stance
and resultant activities of organizational insiders are key determinants of
information security. However, whilst compliance with security policies and
regulations is of great importance, the very structure of human activities that
facilitates or hinders such compliance have seldom appeared in the literature. In
this paper we present a human activity model that captures different aspects of a
security culture. The model elucidates the patterns of behavior in organizations.
Applying the model before and after an insider security breach allows us to
make salient, critical areas that need attention.

Keywords: Human activity model � Insider threats � Security culture � Action
design research

1 Introduction

Cyber-security threats are not always embedded in the technical infrastructure and
operations of the enterprise. Vulnerabilities often arise in the socio-technical space of
norms, beliefs and shared models of reality that embody an organization’s culture.
Developing analytics that incorporate the socio-technical environment of the organi-
zation is technically and conceptually complex.

The problem of increased security breaches that are instigated by insiders was first
recognized by Denning [1]. In later years, issues related with insider threats were
further vocalized through a series of reports by the now defunct Audit Commission in
the UK [2–4] and the Office of Technology Assessment in the US [5]. These studies
highlighted the importance and the role played by insiders in perpetuating computer
related crimes. Subsequently, several case studies on Barings Bank, Kidder Peabody
and Societe Generale provided evidence that, indeed, the majority of computer related
threats reside within organizations (see [6]). Similar evidence has been provided by
other research organizations, such as the Computer Security Institute and the CERT
division of the Software Engineering Institute at Carnegie Mellon University.

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 49–61, 2016.
DOI: 10.1007/978-3-319-33630-5_4

Insider threats mainly refer to the intent of dishonest employees to commit some
form of cyber-crime [10, 11]. Insiders are capable of disrupting operations, corrupting
data, infiltrating sensitive information, or generally compromising an IT system,
thereby causing loss or damage [12, 13]. As the discussion on the insider threat has
evolved considerably over the past decade, so has the very definition of the term
‘insider’. Nowadays, it is not only employees who have privileged access to the assets
of an organization, but also volunteers, consultants and contractors [14, 15]. Access is
also given to business partners or fellow members of a strategic alliance, whereas
contractors now include employees of a cloud service provider [16]. Hence, a more
appropriate alternative to the term ‘insider’ would be a ‘(person with) specialized
access’ [16].

In this paper, we build on the Action Design Research (ADR) concept as proposed
by Sein et al. [7] to develop a method for modeling insider security threats. This is
undertaken in the context of an online business – Crown Confections. Our model is
based on an in-depth understanding of human activities at the workplace and aims to
capture both malicious and non-malicious insider threats. We draw on the organiza-
tional studies literature to argue that human activities and the silent messages that are
emanated by individuals can be used as key indicators of insider cyber-security
breaches. The application of E. T. Hall’s theory of silent messages allows us to identify
any possible trouble areas with respect to insiders and prioritize cyber-security inter-
ventions that could take the form of strategy, training or policy initiatives.

The paper adopts the publication schema for a design science research study as
suggested by Gregor and Hevner [41] and is organized as follows. The following
section presents a review of the literature on insider threats. The third section examines
relevant literature on ADR and outlines the different stages of the method. In the fourth
section, we sketch our conceptual basis for developing a human activity model of
insider threats at Crown Confections. The fifth section discusses the evaluation of the
model. The sixth section paper presents an analysis of the key findings, and the final
section includes a summary of our research and its limitations, as well as directions for
future research.

2 Literature Review

In the insider threat literature, three main informing bodies can be identified. First,
studies that present ever so sophisticated technical approaches to manage insider
threats. Second, studies that examine the socio-organizational aspects of insider threats.
Third, studies that address different response mechanisms following an insider breach.

In the realm of technical approaches to insider threats, Denning’s [1]
intrusion-detection model was one of the earlier works to identify attempted system
break-ins by outsiders, as well as abuse by insiders who misuse their privileges. In
subsequent years several other similar models have been proposed. For instance,
Bowen [6] define a threat model designed to deceive, confuse and confound attackers
so that they ultimately abandon the impregnation efforts. This is undertaken by
introducing host and network sensors in the architecture. Yet in other cases, honeypot
technologies have been proposed as a means to catch insider threats [17]. Insider

50 G. Dhillon et al.

threats within database systems have also been well researched, where user tasks are
mapped to the transactions (see [18]). Generally speaking, the wealth of research in
technical approaches to insider threats has focused on restricting access, technical
monitoring or, at most, predictive modeling. While important, an exclusive focus on
these approaches falls short of providing a holistic perspective in modeling and
managing insider threats.

Socio-organizational aspects of insider threats have also been well researched (see
[11] and [16]). Although the problem of the insider threat is defined and framed in
different ways, and this has resulted in an abundance of approaches, the majority of
studies share one thing in common: they treat all insiders as potentially malicious. In
this strand of literature, insider threats emanate from available opportunities, work
situations and personal factors [10]. Based on monitoring and profiling, this literature
primarily addresses issues of policy compliance, sanctions, deterrence and neutraliza-
tion techniques [11, 19–22]. Non-malicious violations are also examined in the insider
threat literature [23]. These are typically associated with lapses, errors and mistakes,
which are unintentional [24, 25]. However, more recent studies transcend the dis-
tinction between malicious and non-malicious insiders, and consider the insider threat
as the departure of human behavior from compliance with security policies, irrespective
of whether this is the result of malice or disregard for such policies [26, 27].

Research that examines the response to insider threats has largely been related to
aspects of compliance with stated policy. As a result, the focus has been more on
deterrence and the disciplinary actions that might influence human behavior. Several
studies have focused on identifying antecedents to cyber-security compliance. For
instance, Vance [28] found that routine activities of employees along with past
behavior have a significant effect on compliance behavior. Herath [29] also found
social influence to have a strong impact on compliance intention. In a related piece of
research, Herath [22] investigated the role of penalties in encouraging positive infor-
mation security behavior. Their findings indicate that certainty of detection has a
positive impact on compliant behavior, whereas severity of punishment has a negative
impact on intention to comply.

The lack of consensus in research regarding compliance antecedents has led to an
exploration of other factors that might help achieve security compliance as well as
ensure an adequate response to insider threats. Prominent amongst these strands of
research is the work of Ramachandran [30] on security culture, Hedström [31] on value
conflicts, Talib [32] on employee emancipation. Along similar lines, Dhillon et al. [33]
suggest the modeling of silent messages as a way of monitoring insider threats. In this
paper we heed to these assertions and provide a human activity model for insider
threats.

3 Method

ADR helps in developing a prescriptive design artifact in an organizational setting.
Typically, ADR is used to address a particular organizational problem through inter-
vention and evaluation. This is followed by the construction and evaluation of the
artifact, which would allow for the problem to be solved. Over the years, ADR has

Developing a Human Activity Model for Insider 51

been extended to areas such as business intelligence and security breach detection.
However, despite its significant contributions to knowledge creation in IS, both in the
form of viable artifacts and abstract theoretical constructs [41], the adoption of ADR in
computer security research is still underdeveloped. Most notably, Chen et al. [37]
adopted ADR to build a model to assess the risk of system downtime in computer
networks due to the exploitation of software vulnerabilities. Puhakainen and Siponen
[38] developed a theory-based IS security training approach, which they then validated
empirically through an action research intervention. Other relevant applications of
ADR include the work of Waguespack et al. [39] in the formulation of security design
through Thriving Systems Theory, as well as the risk reporting prototype that Beer
et al. [40] developed for information-dense IT projects.

Methodologically, any ADR project follows four well-defined stages: (1) Problem
Formulation; (2) Building, Intervention, and Evaluation (BIE); (3) Reflection and
Learning; (4) Formalization and Learning. The problem formulation of this research
project is presented in the two preceding sections. In building, intervening and evaluating,
we define the alpha version of the model (see Fig. 1). We then engage in reflection and
learning to identify any new requirements that emerge from our exercise. Finally, we
formalize our learning and prepare a second iteration of the model, which would lead to
the development of the beta version of the model. This paper presents an early alpha
version of our insider cyber-security threat model and identifies possible research direc-
tions in further refining the model towards the development of the beta version.

The development of an artifact is central to ADR. In our research, we consider
artifacts as ensembles. As Orlikowski and Iacono [8] note, there are multiple ways in
which IT artifacts come into being. In this research project, we articulate ADR fol-
lowing the ‘technology as development process’ conception of the artifact [8]. This
view of the artifact focuses on the social processes that are related to the design,
development and implementation of the technical artifact.

Fig. 1. Action Design Research adopted in this project (based on [7])

52 G. Dhillon et al.

In our research, the artifact in question is the computer-based model for insider
cyber-security threats. Using the Orlikowski and Iacono [8] vocabulary, this kind of
artifact “examines the role of key stakeholders… [and] how such roles engender
conflict, power moves, and symbolic acts.” Our computer-based model offers valuable
insights into the complex organizational and socio-political processes that are involved
in the formulation and implementation of cyber-security strategies and policies. Hence,
the model of insider threats becomes a management tool for constant monitoring and
assessment of threats as these emerge. In due course, the artifact may reshape itself to
influence structure of operations and the related business processes (as postulated by
[9] among others). Finally, we argue that given an instrument that faithfully measures
the constructs of the model as they manifest in the subjects, the responses of individuals
are patterned with (and are therefore not independent of) organizational cyber-security
rules, best practices, and technical controls. In other words, our instantiation of the
human activity model is sensitive to cyber-security rules, best practices, and technical
controls.

4 Artifact Description

To develop our insider threat model, we draw on a conceptual framework that is based
on Hall’s theory of silent messages. Hall [34] argues that silent messages are emanated
via human activity interactions, such as language, greeting protocol, gender and status
roles, and these get manifested at three levels – formal, informal and technical. In this
paper, we argue that an understanding of these cultural streams at the formal, informal
and technical levels can be critical for the defense of the organization against insider
threats, and should, therefore, be assessed on a regular basis. In our human activity
model for insider threats, there are two concepts that need elucidation. First, the Pri-
mary Message System (PMS) and cultural streams as proposed by Hall [34]. Second,
the manifestation of these cultural streams in terms of formal, informal and technical.
These are discussed below.

Hall’s [34] taxonomy of behavioral patterns allows us to capture, at a moment in
time, the attitudes of employees on matters of security. Each application of the tax-
onomy generates a panel of data allowing for analyses of changes in organizational
security culture over time and between events of interest. In this paper we provide an
example of how our adaptation of Hall’s [34] taxonomy of behavioral patterns allows
us to monitor and interpret the change in attitudes of different employees before and
after the occurrence of a security breach. In his intercultural communication theory,
Hall [34] argues that “no culture has devised a means for talking without highlighting
some things at the expense of other things.” Put another way, cultures demonstrate their
idiosyncrasies in observable ways. He attempts to unearth different aspects of human
behavior that are taken for granted and are often ignored by classifying them into
streams that interact with each other – the silent messages. Laying emphasis on the
concepts of time and space, Hall identified ten cultural streams that are rooted in
physiology and biology. These streams form the primary message system (PMS),
which is essentially a map of a wide variety of cultural and behavioral manifestations.
A brief summary of each of the cultural streams is presented below:

Developing a Human Activity Model for Insider 53

– Interactional (Int): Speech is one of the most elaborate forms of interaction, and it
is reinforced by the tone, voice and gesture. Interaction lies at the hub of the
“universe of culture”, and hence, every social action grows from it.

– Organizational (Org): Refers to the complexity of associations. Hall uses the
analogy of bodies of complex organisms as being societies of cells. In his view,
association begins when two cells join.

– Economic (Eco): Subsistence relates to the physical livelihood, income and work.
– Gender (Gen): Refers to the cultural differentiation of sexes and their interactions

and associations.
– Territoriality (Ter): Refers to the division of space in everyday life, and

ownership.
– Temporality (Tem): Refers to the division of time and sequencing.
– Instructional (Ins): Refers to a basic activity of life that includes learning and

teaching. According to Hall, culture is shared behavior that is acquired, and not
taught.

– Recreational (Rec): Refers to fun and recreation as part of work and occupation.
However, this stream also captures competitive human behavior.

– Protective (Pro): Defense is a key element of any culture. Different cultures have
developed different defense principles and mechanisms. The Protective stream is
closely related to the Recreational stream since humor is often used as an instrument
to hide or protect vulnerabilities.

– Exploitational (Exp): Hall draws an analogy with the living systems to highlight
the importance of evolutionary adaptation to “specialized environment conditions.”
By extension, the Exploitational stream represents the sophistication in the use of
tools, techniques, materials and skills in a competitive and changing environment.

Hall [34] also argues that culture operates at three distinct levels, which are in a
state of constant interaction: formal, informal and technical. His theory of culture is,
essentially, a theory of change. Formal beliefs shape informal adaptations in behavior;
and these, in turn, lead to technical analysis. Each of the ten streams is further broken
down into formal, informal and technical to represent the different modes of behavior.

For each impact of the cultural stream at the three levels, we developed an emergent
scenario. Each scenario took the form of a statement with a 5-point Likert scale to
assess how members of the organization feel about the given situation (refer to
Table 1).

5 Evaluation

In our research, we have employed our artifact to undertake an assessment of insider
threats at a small, fledgling business. Crown Confections offers an assortment of
confections for online or phone-in purchase. Customers have the option of phoning-in
their orders or purchasing their pastries from Crown’s website. Crown accepts credit
card payments and uses PayPal’s commercial suite to process these payments in a
secure manner. The Crown staff consists of 20 individuals. The company wanted to
develop a mechanism for monitoring insider threats. As researchers, we proposed the

54 G. Dhillon et al.

use of silent message theory to eventually develop an artifact in the form of a dash-
board. It was agreed that the researchers would work with the Crown Confections
employees to first develop an alpha version, which would then lead to the development
of a beta version following evaluation and feedback from the end users. In this paper
we are sharing the model as it has been shaped in the alpha version [7].

For the purposes of our research, we administered the human activity model pre-
sented here to the Crown Confections staff twice– once prior to the breach, and again
after the breach. The breach included a spear-phishing and a brute force attack that
compromised admin and user credentials. All members of the company provided
usable responses. Our aim in administering the instrument at Crown Confections is to
illustrate its ability to capture nuanced cultural aspects of an organization with respect
to the attitudes, behaviors, and perceptions of its members concerning cyber-security.

Given the formative evaluation of the artifact during the alpha-cycle, we conducted
multiple rounds of semi-formal interviews with organizational members to give them

Table 1. Framework depicting human activity interactions

Int Org Eco Gen Ter Tem Ins

Formal

The tone used
in
communicatio
ns affects my
understanding
of
information

security

My superiors
provide
comprehensiv
e rules on
security

issues

I feel that I
get the right
compensation
for the quality
and
dedication I
put in my

work

I consider a
formal
explication of
gender issues
to be
important
with respect
to cyber

security

I welcome
suggestions
from security
professionals
which may
change the
way my
Department
or work group

operates

I prioritize
security
related tasks
over other
day-to-day

tasks

I value the
mentorship of
senior
colleagues reg
arding
security and
its interaction
with my daily

tasks

Informal

When faced
with security
warnings (for
example a
notice from
an antivirus
program that
a download
poses security
risks), I
always alter
my behavior

accordingly

My superiors
casually stress
the
significance
of rules on
security

issues

Money is my
primary
motivator
with respect

to work

I respect
gender issues
when dealing
with cyber
security

issues

I welcome
suggestions
from security
professionals,
which may
change the
way I do my

job

I actively
follow my
own schedule
for
performing
security
related tasks,
such as
changing my
password,
scanning my
machine for

viruses etc

I learn a lot
about security
issues by
observing my

peers

Technical

I understand
the jargon
used in
information
security
communicatio

ns

My superiors
technically
explain
security rules

and issues

The decision
to undertake
work related
activities is a
function of
how much I

get paid

I believe that
the
appearance of
men and
women
working in
technical
aspects of
security are
consistent
with their

proficiencies

I am
comfortable
with
discrepancies
between
actual and
formal job
descriptions,
which have
implications

for security

I appreciate
when security
related tasks
are being set
out and
enforced on a
predetermine
d periodic

basis

I understand
the
importance
and relevance
of
information
security
training

curricula

Developing a Human Activity Model for Insider 55

the opportunity to share their experience and shape different aspects of the instrument.
This feedback was invaluable as it helped us review key features of the instrument,
such as the content and phrasing of certain questions. Alongside areas of improvement,
organizational members praised the fact that the questions comprising the instrument
touch upon aspects of cyber-security that are often overlooked in typical questionnaires
of cyber-security risk assessment. For instance, organizational members highlighted the
importance of examining issues of gender or the financial motivation of employees
with respect to cyber-security. Furthermore, organizational members also agreed that
regular monitoring of the instrument could pinpoint actionable insights on how to
improve different aspects of cyber-security across the organization– which is our main
research goal in this project. Hence, considering the application of the instrument in
Crown Confections, it appears that the alpha version represents an insightful canvas for
the examination of cyber-security as a diverse and granular socio-technical concept in
contemporary organizations.

6 Discussion

The results of our artifact can provide useful visualizations for managers and executives
who are interested in ‘soft’ aspects of cyber-security. Table 2 is a heat map that
represents graphically the spectrum of positive and negative changes that were recorded
in the post-breach perception of employees in relation to cyber-security. Positive
changes indicate a move that is directed towards the high end of our Likert scale
(‘strongly agree’), whereas negative changes indicate a move in the opposite direction.

The different shades of green and white account for the different levels of gradation
between the most positive and most negative changes. In Table 2, the positive changes
are depicted with dark color accents, whereas the negative changes are depicted with
white color accents. Shades in between indicate that no change or minor changes
(positive or negative).

In terms of formalizing our learning, the analysis from the heat map can be rep-
resented graphically in the form of a radar map (see Fig. 2). The graphic representation
shows how silent messages and attitudes of individuals change following a breach.
Even without the occurrence of a breach, the radar maps can form the basis of an

Table 2. Heat map of human activity interactions

Int Org Eco Gen Ter Tem Ins Rec Pro Exp

F 0.85 -0.5 -0.3 -0.4 1.45 1.45 -0.25 -0.75 -0.55 1.4

I 0.95 -1.55 0.15 0.05 0 0 1.25 -0.35 0.75 0.2
5

T -0.7 -0.4 0.05 0.4 -0.65 0.75 1.4 -0.15 1 0.4

56 G. Dhillon et al.

insider threat analytics dashboard that benchmarks and monitors different aspects of
cyber-security culture. In this way, the model can help us build the cyber-security
culture profile of a given organization.

In the following subsection, we will discuss a small number (three) of cases where a
change in the perception of cyber-security has been recorded in our study.

6.1 Formal Layer

At the formal layer, we noticed a positive change in the Territorial stream, which
examines how employees welcome suggestions from security professionals, which
may change the way their Department or work group operates. A positive change
shows higher agreement rates with the statement that comprises this cell, and it is, in
fact, a reasonable reaction to a security breach. Following the breach, there may be an
increasing need for openness as organizational members seek to share better security
practices and get answers from others with more knowledge. However, an opposite
reaction, namely a decreased rate of agreement with the statement, could also be seen
as an expected outcome. The insider breach could cause organizational members to
isolate themselves in small clusters that do not communicate with each other, or prevent
them from reaching out to colleagues to openly discuss cyber-security related issues
altogether. Similar effects have been noted in the literature with regards to the moral
disengagement that security-related stress seems to produce [43]. This type of orga-
nizational stress triggers an “emotion-focused coping response in the form of moral
disengagement from [information security policy] ISP violations, which in turn
increases one’s susceptibility to this behavior” [43, p. 285]. Stress that stems from work
overload, complexity and uncertainty in response to a security breach could activate
said coping mechanisms and provide the basis for the rationalization of non-compliant
security behavior.

6.2 Informal Layer

At the informal layer, the Instructional stream refers to how receptive employees are to
learning from peers. As the security breach represents a moment of organizational

Fig. 2. Radar maps showing pre and post breach scenarios (blue line represents pre-breach
situation and black line represents post breach) (Color figure online).

Developing a Human Activity Model for Insider 57

crisis, organizational members increasingly seek help from their peers in order to
mitigate difficulties associated with navigating the new, equivocal organizational sit-
uation. This would be particularly true in the case where there is a lack of a structured
and well-prepared security incident response [44].

6.3 Technical Layer

The Interactional stream of the technical layer refers to the understanding of technical
jargon in cyber-security issues and communications. Following the breach, there seems
to be less agreement with the reference statement of this cell, which is a plausible
outcome. A negative change indicates that some employees may feel challenged with
the technical jargon associated with a security breach. Despite the increasing invest-
ment in cyber-security training and education, organizational members that occupy
non-technical posts are not required to use this technical jargon in their day-to-day
work. This means that it may be more difficult for them to understand the technical
terminology and the details of how a security breach came about.

7 Conclusions

We have examined here the efficacy of a human activity model in providing insights to
security culture where this efficacy can, in a sense be characterized as the sensitivity of
the human activity model to changes in security culture. We highlight this sensitivity by
examining pre and post breach instantiations of the model and the ensuing changes. We
do this for a single organization. Naturally, generalizability of these findings to other
organizational settings becomes “problematic.” We argue here that this taken-as-given
conception of generalization is inappropriate in this case. We have applied a theory (i.e.
Hall’s [34] human activity model) in a setting that is different from the one in which it
was developed. Our findings as discussed in Sect. 5 demonstrate that our application of
the theory is valid in our setting. This work is an example of type TE generalization –

generalizing from theory to description Lee and Baskerville [42]. Lee and Baskerville
write of this form of generalization: “researchers are interested not only in pure or basic
research – the development, testing and confirmation of theories – but also in the utility
of their theories in the actual business settings of executives, managers, consultants and
other practitioners.” By applying the human activity model in this setting we demon-
strate its ability to be generalized to different settings and provide evidence consistent
with its theoretical assertions.

There has been a limited amount of research that focuses on pre- and post-breach
attitudinal changes. Berezina [35] undertook a study of hotel guest perceptions fol-
lowing a breach and found changes in perceived service quality, satisfaction and
likelihood of recommending a hotel. Similarly, Rosoff [36] conducted a behavioral
experiment to explore individual response to cyber-crimes. The results suggest dif-
ferences in messages that individuals exhibit following a breach. The Rosoff [36] study
was an experimental design, which covered predefined scenarios. In one scenario,
Rosoff [36] explored if attack characteristics and attack mode had any influence of

58 G. Dhillon et al.

victim’s behavior following a breach. In the second scenario, they assessed if the
motivation of the attacker and the resolution of the breach had any impact on the
behavior of the victim.

While studies such as those of Rosoff [36] and Berezina [35] do shed some light on
the manner in which breaches manifest and how individual behavior changes or how
victims respond, they fall short of providing an ongoing assessment of the
cyber-security situation. Our research project addresses this gap in the literature by
presenting a proof-of-concept demonstration of a human activity model for insider
cyber-security threats that considers the perceptions of insiders prior and after a
security breach.

Future research will be concerned with the development of a beta version of our
model. A more mature version of the instrument could be administered across different
organizations and industries to get a more informed understanding of the granularity of
cyber-security as a socio-technical concept. Different research contexts and organiza-
tional settings may result in different iterations of the instrument. Although Crown
Confections helped researchers gather sufficient feedback on the design and func-
tionality of the instrument, a larger organization could provide a more challenging
research setting with a larger number of responses, and perhaps more contradictory
responses and feedback that would lead to more fine-detailed iterations of the model.

References

1. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. SE-13, 222–232
(1987)

2. Audit Commission, Losing an empire, finding a role. HMSO, London (1989)
3. Audit Commission, Survey of computer fraud & abuse. The Audit Commission for Local

Authorities and the National Health Service in England and Wales (1990)
4. Audit Commission, Opportunity makes a thief. Analysis of computer abuse. The Audit

Commission for Local Authorities and the National Health Service in England and Wales
(1994)

5. Office of Technology Assessment, Information security and privacy in network
environments. US Government Publication (1994)

6. Bowen, B.M., et al.: Designing host and network sensors to mitigate the insider threat. IEEE
Secur. Priv. 7(6), 22–29 (2009)

7. Sein, M., et al.: Action design research. MIS Q. 35(1), 37–56 (2011)
8. Orlikowski, W.J., Iacono, C.S.: Research commentary: Desperately seeking the “IT” in IT

research—A call to theorizing the IT artifact. Inf. Syst. Res. 12(2), 121–134 (2001)
9. Jones, M.R., Karsten, H.: Gidden’s structuration theory and information systems research.

MIS Q. 32, 127–157 (2008)
10. Dhillon, G., Moores, S.: Computer Crimes: theorizing about the enemy within. Comput.

Secur. 20(8), 715–723 (2001)
11. Warkentin, M.E., Willison, R.: Behavioral and policy issues in information systems security:

The insider threat. Eur. J. Inf. Syst. 18(2), 101–105 (2009)
12. Cappelli, D.M., et al.: Common Sense Guide to Prevention and Detection of Insider Threat,

3rd Edition—Version 3.1 (2009)

Developing a Human Activity Model for Insider 59

13. Cummings, A., et al.: Insider Threat Study: Illicit Cyber Activity Involving Fraud in the U.S.
Financial Services Sector (Technical Report CMU/SEI-2012-SR-004) (2012)

14. Brancik, K.: Insider Computer Fraud: An In-depth Framework for Detecting and Defending
against Insider IT Attacks. Auerbach Publications, Boca Raton (2007)

15. Ponemon Institute, Risk of Insider Fraud: Second Annual Study (2013)
16. Hartel, P.H., Junger, M., Wieringa, R.J.: Cyber-crime Science = Crime Science +

Information Security. Technical Report TR-CTIT-10-34, CTIT, University of Twente, Oct
2010. http://eprints.eemcs.utwente.nl/18500/

17. Spitzner, L.: Honeypots: Catching the insider threat. In: Proceedings of 19th Annual
Computer Security Applications Conference, pp. 170–179. IEEE, Las Vegas, NV, USA
(2003)

18. Chagarlamudi, M., Panda, B., Hu, Y.: Insider threat in database systems: Preventing
malicious users’ activities in databases. In: Sixth International Conference on Information
Technology: New Generations, 2009. ITNG 2009, pp. 1616–1620. IEEE, Las Vegas, NV,
USA (2009)

19. Boss, S.R., et al.: If someone is watching, I’ll do what I’m asked: Mandatoriness, control,
and information security. Eur. J. Inf. Syst. 18(2), 151–164 (2009)

20. Bulgurcu, B., Cavusoglu, H., Benbasat, I.: Information security policy compliance: an
empirical study of rationality-based beliefs and information security awareness. MIS Q. 34
(3), 523–548 (2010)

21. D’Arcy, J., Hovav, A., Galletta, D.: User awareness of security countermeasures and its
impact on information systems misuse: A deterrence approach. Inf. Syst. Res. 20(1), 79–98
(2009)

22. Herath, T., Rao, H.R.: Encouraging information security behaviors in organizations: Role of
penalties, pressures and perceived effectiveness. Decis. Support Syst. 47(2), 154–165 (2009)

23. Guo, K.H., et al.: Understanding nonmalicious security violations in the workplace: a
composite behavior model. J. Manage. Inf. Syst. 28(2), 203–236 (2011)

24. Reason, J.: Achieving a safe culture: theory and practice. Work Stress 12(3), 293–306
(1998)

25. Reason, J.T.: The human contribution: unsafe acts, accidents and heroic recoveries, p. 295.
Ashgate, Farnham (2008)

26. Greitzer, F.L., Frincke, D.A.: Combining traditional cyber-security audit data with
psychosocial data: Towards predictive modeling for insider threat mitigation. In: Probst,
C.W., et al. (eds.) Insider Threats in Cyber-security - Advances in Information Security, 49,
pp. 85–113. Springer, Heidelberg (2010)

27. Hoyer, S., et al.: Fraud prediction and the human factor: an approach to include human
behavior in an automated fraud audit. In: 45th Hawaii International Conference on System
Sciences Proceedings (HICSS), Grand Wailea, pp. 2382–2391. IEEE Computer Society,
Maui, HI, USA (2012)

28. Vance, A., Siponen, M., Pahnila, S.: Motivating IS security compliance: insights from habit
and protection motivation theory. Inf. Manage. 49(3), 190–198 (2012)

29. Herath, T., Rao, H.R.: Protection motivation and deterrence: A framework for security
policy compliance in organisations. Eur. J. Inf. Syst. 18(2), 106–125 (2009)

30. Ramachandran, S., et al.: Variations in information security cultures across professions: A
qualitative study. Commun. Assoc. Inf. Syst. 33, 163–204 (2013)

31. Hedström, K., et al.: Value conflicts for information security management. J. Strateg. Inf.
Syst. 20(4), 373–384 (2011)

32. Talib, Y.A., Dhillon, G.: Invited paper: Employee emancipation and protection of
information. In: 5th Annual Symposium on Information Assurance (ASIA 2010) (2010)

60 G. Dhillon et al.

http://eprints.eemcs.utwente.nl/18500/

33. Dhillon, G., Chowdhuri, R., Pedron, C.: Organizational transformation and information
security culture: A telecom case study. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S.,
Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IFIP AICT, vol. 428, pp. 431–437. Springer,
Heidelberg (2014)

34. Hall, E.T.: The silent language, 2nd edn. Anchor Books, New York (1959)
35. Berezina, K., et al.: The impact of information security breach on hotel guest perception of

service quality, satisfaction, revisit intentions and word-of-mouth. Int. J. Contemp. Hospitality
Manage. 24(7), 991–1010 (2012)

36. Rosoff, H., Cui, J., John, R.: Behavioral experiments exploring victims’ response to
cyber-based financial fraud and identity theft scenario simulations. In: Tenth Symposium on
Usable Privacy and Security (SOUPS), pp. 175–186. USENIX Association, Menlo Park,
CA, USA (2014)

37. Chen, P.-Y., Kataria, G., Krishnan, R.: Correlated failures. Diversification, Inf. Secur. Risk
Manage. MIS Q. 35(2), 397–422 (2011)

38. Puhakainen, P., Siponen, M.: Improving employees’ compliance through information
systems security training: An action research study. MIS Q. 34(4), 757–778 (2010)

39. Waguespack, L.J., Yates, D.J., Schiano, W.T.: Towards a design theory for trustworthy
information systems. In: 47th Hawaii International Conference on System Sciences
(HICSS), pp. 3707–3716 (2014)

40. Beer, M., Meier, M.C., Mosig, B., Probst, F.: A prototype for information-dense it project
risk reporting: an action design research approach. In: 47th Hawaii International Conference
on System Sciences (HICSS), pp. 3657–3666 (2014)

41. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum
impact. MIS Q. 37(2), 337–355 (2013)

42. Lee, A., Baskerville, R.L.: Generalizing generalizability in information systems research.
Inf. Syst. Res. 14(3), 221–243 (2003)

43. Markus, M.L.: Power, politics, and mis implementation. Commun. ACM 26(6), 430–444
(1983)

44. Plester, B.: Execution of a joke: Types and functions of humour. In: The Complexity of
Workplace Humour: Laughter, Jokers and the Dark Side of Humour, pp. 39–66. Springer,
Heidelberg (2016)

Developing a Human Activity Model for Insider 61

Evaluating CVSS Base Score Using Vulnerability
Rewards Programs

Awad Younis(B), Yashwant K. Malaiya, and Indrajit Ray

Colorado State University, Fort Collins, CO 80523, USA
{younis,malaiya,indrajit}@CS.ColoState.EDU

Abstract. CVSS Base Score and the underlying metrics have been
widely used. Recently there have been attempts to validate them. Some
of the researchers have questioned the CVSS metrics based on a lack of
correlation with the reported exploits and attacks. In this research, we
use the independent scales used by the vulnerability reward programs
(VRPs) to see if they correlate with the CVSS Base Score. We exam-
ine 1559 vulnerabilities of Mozilla Firefox and Google Chrome browsers.
The results show that there is a significant correlation between the VRPs
severity ratings and CVSS scores, when three level rankings are used.
For both approaches, the sets of vulnerabilities identified as Critical or
High severity vulnerabilities include a large number of shared vulnerabil-
ities, again suggesting mutual conformation. The results suggest that the
CVSS Base Score may be a useful metric for prioritizing vulnerabilities,
and the notable lack of exploits for high severity vulnerabilities may be
the result of prioritized fixing of vulnerabilities.

Keywords: CVSS Base score · Vulnerability reward program ·
Bug bounty programs · Software vulnerability severity · Vulnerability
exploitation · Software defensive techniques · Exploit mitigation
techniques

1 Introduction

Assessing the risk associated with individual software vulnerabilities is accom-
plished by assessing their severity. CVSS Base score is the de facto standard that
is currently used to measure the severity of vulnerabilities [1]. Evaluating the
accuracy of the CVSS Base score is very important as they are intended to help
decision makers in resource allocation, patch prioritization, and risk assessment.
The lack of evaluation makes CVSS usability risky and that could lead to a waste
of limited resources available or a breach with a high impact.

Vulnerability exploitability can be affected by the existence of defense tech-
niques. The main objective of the defense techniques is to reduce the likelihood
that the efforts of attackers will succeed [2]. As 92 % of reported vulnerabil-
ities are in software not in networks [3], recently vendors such as Microsoft,
Cisco, Google, Mozilla, etc. have added new defensive layers at the software

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 62–75, 2016.
DOI: 10.1007/978-3-319-33630-5 5

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 63

level. Among them are secure development lifecycle, vulnerability mitigation
techniques, sandbox, and VRPs. VRPs are programs adopted by software ven-
dors to pay security researchers, ethical hackers and enthusiasts for exchange
of discovering vulnerabilities in their software and responsibly disclosing the
findings to the vendors [4]. Having more eyes on the code means that VRPs
uncovered many more vulnerabilities and that makes finding vulnerabilities more
difficult for malicious actors and hence ensure the security of software. Besides,
vulnerabilities found by VRPs results in a coordinated disclosure and patch that
minimizes the risk of vulnerabilities discovery and exploitation [5]. Our app-
roach is inspired by the economics of exploitation model proposed by Miller
et al. in [13]:

AttackerReturn = (Gain per use × Opportunity to use)−
(Cost to acquire vulnerability + Cost to weaponize)

The authors argue that an attacker must invest resources to acquire vulnera-
bilities and develop weaponized exploit for it. While mitigation techniques have
shown to increase the cost and complexity of developing an exploit and hence
cost of weaponize [14], we argue that VRPs can also be an important factor in
this equation. As software vendors invest significantly to find vulnerabilities the
cost of an attacker acquiring a vulnerability is going to be increased and that
reduces the likelihood of vulnerabilities discovery and exploitation. Many soft-
ware vendors such as Google, Mozilla, Facebook, PayPal, and recently Microsoft
have adopted using VRPs. They realized that attackers are finding vulnerabil-
ities faster and thus adapting VRPs will help put more sets of eyes looking for
vulnerabilities and that makes all vulnerabilities shallow.

There are a number of VRPs and each one of them have their rules and crite-
ria. Among these programs are Mozilla Firefox VRP [6] and Google Chrome VRP
[7]. Mozilla Firefox and Google Chrome VRPs determine the reward amount of a
vulnerability based on its severity and proof of its exploitation. Both VRPs clas-
sify the severity of vulnerabilities as critical, high, medium and low. The details
about the description of every severity level for Firefox and Chrome VRPs can
be found respectively in [8,9] respectively. While Firefox VRP rewards amount
ranges from 500–10,000, Chrome VRP rewards ranges from 500–60000. Firefox
VRP pays only for vulnerabilities that has been rated by VRP Committee as a
critical or a high and some moderate vulnerabilities, while Chrome VRP rewards
critical, high, medium, and some low vulnerabilities.

Problem Description. Recently, there have been efforts to validate CVSS Base
score. Some of the researchers have evaluated CVSS Base score using reported
exploits [10,11] and attacks [12]. The results show that CVSS Base score has
a poor correlation with the reported exploits ([10,11]) and with the reported
attacks [12]. Thus, CVSS Base scores have been considered not a good risk
indicator [12] because the majority of vulnerabilities have high scores and have
no reported exploits or attacks. Hence, it is hard to use those scores to prioritize
among vulnerabilities. However, the lack of exploits or attacks may be a result
of prioritized fixing of vulnerabilities.

64 A. Younis et al.

Contribution. In this research, we propose using independent scales used by
VRPs to evaluate CVSS Base score. VRPs use their own vulnerability severity
rating systems that use a very thorough technical analysis and security experts
opinions to assign a severity to vulnerabilities. The severity ratings are then used
to pay money ranging from 500$ to 60,000$ or even more. Hence, comparing
CVSS Base score with VRPs severity ratings could explain whether CVSS high
scores are reasonable, and why having many high sever vulnerabilities with no
reported exploit or attacks.

To conduct this study, we examine 1559 vulnerabilities of Mozilla Firefox
and Google Chrome browsers. The two software has been selected because of
their rewarding programs maturity and their rich history of publicly docu-
mented rewarded vulnerabilities. Besides, the examined vulnerabilities have been
assessed by both VRPs rating systems and the CVSS Base score which makes
their comparison feasible.

The paper is organized as follows. Section 2 presents the related work. In
Sect. 3, the selected datasets are presented. In Sect. 4, the validity of CVSS Base
score is examined. Section 5 presents the discussion. In Sect. 6, concluding com-
ments are given and the issues that need further research are identified.

2 Related Work

Bozorgi et al. [10] have studied the exploitability metrics in CVSS Base metrics.
They argued that the exploitability measures in CVSS Base metrics do not
differentiate well between the exploited and not exploited vulnerabilities. They
attributed that to the fact that many vulnerabilities with a CVSS high score have
no reported know exploit and many vulnerabilities with low CVSS scores have
a reported know exploit. However, in this paper, we evaluate the performance
of CVSS Base score considering both the exploitability and the impact factors
using vulnerability rewards programs and we provide an insight into why many
vulnerabilities with a high CVSS score and have no exploits.

Allodi and Massacci in [12] have used a case-control study methodology to
evaluate whether a high CVSS score or the existence of proof of concept exploit
is a good indicator of risk. They use the attacks documented by Symantecs
AttackSignature as the ground truth for the evaluation. Their results show that
CVSS Base score performs no better than randomly picking vulnerabilities to
fix. Besides, they also show that there are many vulnerabilities that have a high
CVSS score and are not attacked. However, in this paper, we seek to find an
explanation of why the majority of vulnerabilities have a high CVSS score and
have no reported exploits. Thus, we use VRPs instead of an attack in the wild
to conduct this study.

Younis and Malaiya in [11] have compared Microsoft rating systems with
CVSS Base metrics using the availability of exploits as a ground truth for the
evaluation. In addition to finding that both rating systems do not correlate very
well with the availability of exploit, they also find that many vulnerabilities have
a high CVSS score and have no reported exploits. However, in this study we try

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 65

to use different ground truth for the evaluation so that an explanation for why
many vulnerabilities have a high CVSS scores and have no reported exploits may
be provided.

Finifter et al. in [4] have examined the characteristics of Google Chrome
and Mozilla Firefox VRPs. The authors find that using VRPs helps improving
the likelihood of finding latent vulnerabilities. They also find that monetary
rewards encourage security researchers not to sell their result to the underground
economy. Besides, they find that patching vulnerabilities found by the VRPs
increases the difficulties and thus the cost for the malicious actors to find zero-
day vulnerabilities or exploit them. However, in this study, we examine using
VRPs as ground truth to evaluate CVSS Base score.

Swamy et al. in [14] at the Microsoft Security Response Center examine the
impact of using exploit mitigation techniques that Microsoft has implemented to
address software vulnerabilities. One of their result shows that stack corruption
vulnerabilities that were historically the most commonly exploited vulnerability
class are now rarely exploited. However, in this research, we focus on the impact
of using VRPs on the availability of exploits and on the relationship between
VRPs measures and CVSS Base score.

3 Datasets

In this section, we first provide the source of the data. Then we show how the
data were collected and analyzed. In this research, the data about vulnerabili-
ties, exploits, and vulnerabilities rewards program data have been collected from
the National Vulnerability Database (NVD) [15], Exploit Database (EDB) [16],
and Mozilla Firefox [17] and Google Chrome bug databases [18] receptively.
Table 1 shows the number of the examined vulnerabilities and their exploits.
It should be noted that the total number of the Firefox vulnerabilities is 742.
Out of this number, a 195 vulnerabilities were not examined because we could
not find information about them and that is explained as follows. First, 71 vul-
nerabilities have no direct mapping between the Common Vulnerabilities and
Exposures (CVE) number and the Firefox Bug ID. Second, a 122 vulnerabilities
could not be accessed due to the unauthorized access permission (You are not
authorized to access this data); Third, two vulnerabilities have no data recorded
in the Firefox bug database. We found that the VRP data in the Firefox bug
database have started to be recorded starting 2009. Thus, all vulnerabilities and
exploits of Firefox during the period 2009 to October 2015 were collected. On

Table 1. Firefox and Chrome vulnerabilities

Software Vulnerabilities Exploit exist

Firfox 547 22

Google Chrome 1012 5

66 A. Younis et al.

the other hand, it should also be noted that the total number of vulnerabilities
of Chrome is 1084. A 72 vulnerabilities were not examined because we could not
find information about them because of the unauthorized access permission “You
are not authorized to access this data”. We also found that the VRP data in the
Chrome bug database have started to be recorded starting 2010. Therefore, all
vulnerabilities and exploits of Chrome during the period 2010 to October 2015
were collected. The data of every examined vulnerability of Firefox and Chrome
were collected using the following steps. First, from NVD, the vulnerability is
first identified. Next, for every existing link in NVD to vendors’ bug database,
we collected the vulnerability’s severity rating and rewards data assigned by the
VRPs. After that, for every vulnerability’s CVE number found in the vendors
bug database, the CVSS scores and severity values were collected. Lastly, for
every examined vulnerability we used the CVE number to verify whether it has
an exploit reported in the EDB or not.

3.1 Firefox Vulnerabilities Analysis

Table 2 shows only three of the Firefox vulnerabilities because showing the whole
vulnerabilities is limited by the number of pages allowed. Firefox VRP does not
provide data about the amount of the reward paid and rather it uses: (1) +
symbol to indicate the bug has been accepted and payment will be made, (2) -
symbol to indicate the bug does not meet the criteria and payment will not be
paid, and (3) ? symbol to indicate the bug is nominated for review by the bounty
committee [8].

Table 2. The obtained measures of Firefox and CVSS Base score

CVE Mozilla Firefox VRP CVSS Base score Exploit existence

Reward VRP severity Severity Score

CVE-2011-2371 3000-7500 sec-critical High 10 EE

CVE-2013-1727 500-2500 sec-moderate Medium 4 NEE

CVE-2015-0833 3000-5000 sec-high Medium 6.9 NEE

The CVSS Base score assigns a score in the range [0.0, 10.0]. This score repre-
sents the intrinsic and fundamental characteristic of a vulnerability and thus the
score does not change over time. CVSS score from 0.0 to 3.9 corresponds to Low
severity, 4.0 to 6.9 to Medium severity and 7.0 to 10.0 to High severity. Mozillas
security ratings are see-critical: vulnerabilities allow arbitrary code execution,
sec-high: vulnerabilities allow obtain confidential data, sec-moderate: vulnera-
bilities which can provide an attacker additional information, sec-low: minor
security vulnerabilities such as leaks or spoofs of non-sensitive information. We
have found that 13 vulnerabilities did not meet the criteria for rewarding and

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 67

hence have been assigned “–” symbol. We have also found that 11 of them have
a low and a moderate severity (five are low and six are moderate) and two are
high and critical.

Table 3 shows the number of the rewarded and not rewarded vulnerabili-
ties and their severity values for Firefox dataset. It should be noted that the
Not Rewarded vulnerabilities are most likely have been discovered by inter-
nal discoverers (41.13 %) whereas Rewarded vulnerabilities have been discovered
by external discoverers (58.87 %) [4]. While the Firefox bug database does not
clearly provide information about whether the vulnerabilities have been discov-
ered internally or externally, this was very clear in the Chrome bug database
where the name and the team the discoverer works with is provided. Table 3
also shows the severity values and their frequency for rewarded and on rewarded
data. It should be noted that the majority of the medium severity vulnerabilities
and all low severity vulnerabilities were discovered internally.

Table 3. Firefox dataset

Vulnerabilities Rewarded Not rewarded

547 225 322

VRP severity Rewarded Not rewarded

Critical & High 210 202

Medium 15 89

Low 0 31

Figure 1 shows the vulnerabilities severity values of CVSS Base score and
Firefox VRP ratings of Firefox dataset. There are 412 vulnerabilities that have
been assessed as critical or high severity by VRP rating system whereas there are
312 vulnerabilities that have been assessed as high severity by CVSS Base score.
It should be notated that Firefox VRP severity rating is the baseline that we
are comparing CVSS scores with. It should also be noted that Shared means the
same vulnerabilities, which have the same CVE number, that have been assigned
the same severity value by Firefox VRP rating system and CVSS Base score.
On the other hand, Not Shared means the same vulnerabilities, but have been
assigned different severity values by CVSS Base score. Almost 70 % (69.9) of the
vulnerabilities that have been assessed by Firefox VRP as critical or high severity
have also been assessed as high severity by CVSS. Using Common Weakness
Exposure (CWE) [19], which is used to identify vulnerabilities types, we have
found that the majority of the Shared vulnerabilities are of the vulnerabilities
that execute code. However, the 124 vulnerabilities that are Not Shared have
all been assigned a high or critical severity by VRPs rating system, whereas
CVSS Base score has assigned to 7 of them a low severity and to 117 of them a
moderate severity.

On the other hand, almost 78 % (77.88) of the Shared vulnerabilities that
have been assessed by Firefox VRP as a medium severity have also been assessed

68 A. Younis et al.

Fig. 1. Comparing Firefox VRP and CVSS severity values

as a medium severity by CVSS. However, there are 24 Not Shared vulnerabilities
that have been assigned a medium severity by the VRP rating system. Out
of these, 19 vulnerabilities have been assigned a high severity and five have
been assigned a low severity. However, only one vulnerability that has been
assessed as a low severity by CVSS base score and VRP rating system. While
30 vulnerabilities that have been assessed as a low severity by the VRP rating
system, eight have been assessed as a high severity and 22 as a medium severity.

Table 4 shows the vulnerabilities that have been mismatched by CVSS Base
score. As can be seen, seven vulnerabilities have been assessed as low severity
by CVSS whereas three of them have been assessed as critical and four of them
has been assessed as high severity by the VRP. It has noticed that those seven
vulnerabilities have been assigned critical and high severity values by the Firefox
VRP during the debate time, but the vulnerabilities severity first assignments
were later changed [20]. We have found that the majority of those vulnerabilities
requires unusual users interactions. We have also noticed that CVSS version 3,
which has not been used yet, have consider using user interaction factor when
assessing exploitability factor [21]. It is clear that the medium range of CVSS
scores makes the main part of the mismatch compared to the high and low
ranges.

Table 4. Vulnerabilities mismatched by CVSS Base score

VRP Crtical High Moderate Low

CVSS Low Medium Low Medium Low Medium High

Total 3 24 4 93 4 22 8

3.2 Chrome Vulnerabilities Analysis

The Chrome vulnerabilities have been examined similar to the Firefox vulner-
abilities as shown in Table 3. The only difference is that Chrome bug database
provides the amount rewarded. Chrome security ratings are similar to that of

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 69

Table 5. Chrome dataset

Vulnerabilities Rewarded Not rewarded

1012 584 428

VRP severity Rewarded Not rewarded

Critical & High 441 175

Medium 136 137

Low 7 116

Fig. 2. Rewarded amount of Chrome rewarded vulnerabilities

Mozilla. Unlike Firefox where low severity vulnerabilities are not rewarded, seven
low severity vulnerabilities have been rewarded by Chrome VRP. The seven low
severity vulnerabilities have been found to effect non-critical browser features,
crash inside the sandbox, or hang the browser.

Table 5 shows the number of the rewarded and not rewarded vulnerabilities
and their severity values for Chrome dataset. We have found nine vulnerabilities
have been classified as TBD (To Be Determined) and thus considered them as
not rewarded. It should be noted that the majority of the Not Rewarded vulner-
abilities have been discovered by Google internal discoverers and they represent
around 41.4 %, whereas the Rewarded vulnerabilities have been discovered by
external discoverers and represents around 57.7 %. Table 5 also shows the sever-
ity values and their frequency for the rewarded and not rewarded data. It should
be noted that while the majority of the critical and high vulnerabilities have
been discovered externally, the majority of the low vulnerabilities have been dis-
covered internally. The frequency of the amount paid is shown in Fig. 2. As can
be seen, the majority of the rewarded vulnerabilities (404) have been paid either
500$ or 1000$. We have noticed that 70.79 % (286) of those vulnerabilities have
been assigned a high severity, 27.47 % (111) have been assigned a medium sever-
ity, and only 1.73 % (7) have been assigned a low severity by VRP. Looking at
the point number 3–5 under the Reward amounts section in [7], we can see that
establishing exploitability or providing a Proof of Concept (PoC) or with a poor
quality of PoC could be the reason for paying less for many severe vulnerabilities.

70 A. Younis et al.

Fig. 3. Comparing Chrome VRP and CVSS severity values

Figure 3 shows the vulnerabilities severity of CVSS Base score and Chrome
VRP rating system of Chrome dataset. Almost 82 % (81.65) of the vulnerabilities
that have been assessed by Chrome VRP as critical or high severity have also
been assessed as high severity by CVSS. However, the 113 vulnerabilities that are
Not Shared have all been assigned a high severity by CVSS, whereas VRPs rating
system have assigned to 35 of them a low severity and to 78 of them a medium
severity. On the other hand, almost 73 % (72.89) of the Shared vulnerabilities
that have been assessed by Chrome VRP as a medium severity have also been
assessed as a medium severity by CVSS. However, there are 74 Not Shared
vulnerabilities that have been assigned a medium severity by CVSS. Out of
these, 73 vulnerabilities have been assigned a high severity and only one has been
assigned a low severity. However, only two vulnerabilities that have been assessed
as a low severity by CVSS Base score and VRP rating system, whereas out of the
121 that have been assigned a low severity by VRP, 35 have been assigned a high
severity and 86 have been assigned medium severity by CVSS Base score. Table 6
shows the vulnerabilities that have been mismatched by CVSS Base score. We
have noticed that out of the 113 vulnerabilities, 75 vulnerabilities have been
assigned a high medium score 6.8.

Table 6. Vulnerabilities mismatched by CVSS Base score

VRP Crtical High Moderate Low

CVSS Low Medium Low Medium Low Medium High

Total 0 1 0 112 1 86 35

4 Validation of CVSS Base Score

In this section, we compare CVSS Base score severity with VRPs severity ratings.
We assume that VRPs severity rating values are the ground truth because of the
through technical analysis and security experts opinions used and the fact that
the severity rating are used to pay money. To evaluate the performance of CVSS
Base score, we describe when a condition (true or false) is positive or negative
as follows:

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 71

True Positive (TP) When the CVSS Base score assigns a high severity and
VRPs assign critical or high, or, When CVSS Base
assigns medium and VRPs assign medium

True Negative (TN) When the CVSS Base score assigns low severity and
VRPs assign low

False Negative (FN) When the CVSS Base score assigns low and VRPs assign
critical or high, or, When the CVSS Base score assigns
medium and VRPs assign critical or high, or, When the
CVSS Base score assigns low and VRPs assign medium

False Positive (FP) When the CVSS Base score assigns and VRPs assign
medium or low. Or when the CVSS Base score assign
medium and VRPs assign low

Since CVSS Base score uses an ordinal range: 0–3.9 = Low, 4–6.9 = Medium,
and 7-10 = High, the possibility of overlapping between the ranges could make
high Low vulnerability such as 3.9 close to medium and high Medium such as 6.9
close to high. To take this into consideration, we used a cluster algorithm to group
severity ranges based on the distance between their values. We implemented the
K-Means clustering algorithm provided by R language [23] to cluster CVSS Base
score for Firefox and Chrome dataset. The result for Firefox vulnerabilities show
that Low is in the range from 1.9–5.4, Medium from 5.8–7.6, and High from 8.3–
10, whereas the results for Chrome vulnerabilities show that Low is in the range
from 2.6–5.1, Medium from 5.8–7.1, and High from 7.5–10.

We used statistical measures, termed sensitivity, precision, and F-measure
to evaluate the performance of CVSS Base score severity. Sensitivity, which
also termed recall, is defined as the ratio of the number of vulnerabilities cor-
rectly assessed as high or medium to the number of vulnerabilities that are
actually high or medium as shown by the following: Sensitivity = TP/TP + FN.
Precision, which is also known as the correctness, is defined as the ratio of the
number of vulnerabilities correctly assessed as high or medium to the total num-
ber of vulnerabilities assessed as high or medium as shown by the following:
Precision = TP/TP + FP. For convenient interpretation, we express these two
measures in terms of percentage, where a 100 % is the best value and 0 % is
the worst value. Both precision and sensitivity should be as close to the value
100 as possible (no false positives and no false negatives). However, such ideal
values are difficult to obtain because sensitivity and precision often change in
opposite directions. Therefore, a measure that combines sensitivity and preci-
sion in a single measure is needed. F-measure can be interpreted as the weighted
average of sensitivity and precision. It measures the effectiveness of a prediction
with respect to a user attached β times as much importance to sensitivity as
precision. The general formula for the F-measure is shown by the following:

Fβ − Measure =
(1 + β2) × Precision × Senetivity

(β2 × Precision) + Senetivity

72 A. Younis et al.

β is a parameter that controls a balance between sensitivity and precision. When
β = 1, F-measure becomes to be equivalent to the harmonic mean, whereas
when β < 1 it becomes more precision oriented. However, when β > 1, F-
measure becomes more sensitivity oriented. In this paper β has been chosen
to be 2. Due to their importance, we have also used the FP rate measure: FP
rate = FP/FP+ TN and the FN rate measure: FN rate = FN/TP + FN.

4.1 Result

To calculate the above mentioned performance measures, we need to obtain the
confusion matrix for the two datasets. Using the severity ratings assigned by
VRPs and CVSS Base score, the confusion matrix was determined as shown
in Table 7. We have also determined the CVSS Base score ranges obtained by
the clustering algorithm and due to the limited pages allowed we only show the
results for the CVSS Base score original ranges. It should be noted that we add
up the number of every condition, for instance True Positive for Fire fox = 369.
As can be seen, CVSS scores before the clustering have a very high FP rate. Using
the values in Table 7, the performance measures for CVSS Base score original
ranges, clustering ranges and our mismatching analysis ranges have been calcu-
lated as shown in Table 8. We also used Spearman correlation measure to assess
the correlation between CVSS scores before clustering and after clustering as
shown in Table 9. As can be seen, CVSS score correlate with VRPs rating values
with p-value less than 0.0001. Clustering score and using mismatching analysis
have shown a slight improvement on the correlation value for the Chrome vulner-
abilities whereas no effect have been noticed on the correlation value for Firefox
vulnerabilities. However, we also looked at the percentage of the vulnerabilities
that have been assigned high and medium severity by CVSS scores and VRPS
ratings to verify which measure is more aggressive. For the whole dataset, VRPs

Table 7. CVSS Base score compared to VRPs rating systems

Condition CVSS Vs. Actual VRPs Firefox Chrome

True Positive When the CVSS High and VRPs Critical
or High

288 503

When CVSS Medium and VRPs Medium 81 199

True Negative When CVSS Low and VRPs Low 1 2

False Negative When CVSS Low and VRPs Critical or
High

7 0

When CVSS Says Medium and VRPs
Critical or High

117 113

When CVSS Low and VRPs Medium 4 1

False Positive When CVSS High and VRPs Low or
Medium

27 108

When CVSS M and VRPs Low 22 86

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 73

Table 8. Performance measures for CVSS before and after clustering

Software Performance measures CVSS Scores before
clustering (%)

CVSS Scores after
clustering (%)

Firefox Sensitivity 74.25 56

Precision 88.25 93

F1-Measure 80.66 70.21

F2-Measure 57.99 46.94

False Positive Rate 98 50

False Negative Rate 25.75 43.54

Chrome Sensitivity 86 66

Precision 78 82

F1-Measure 82 73

F2-Measure 63 52

False Positive Rate 99 60

False Negative Rate 14 34

Table 9. Spearman correlation between CVSS Base score and VRPs rating system

Software Correlation CVSS Scores before clustering CVSS Scores after clustering

Firefox Value 0.65 0.47

P-value 0.0001 0.0001

Chrome Value 0.53 0.59

P-value 0.0001 0.0001

have assigned 66 % of the vulnerabilities a high severity, whereas CVSS have
assigned 59 % of the vulnerabilities a high severity. On the other hand, VRPs
have assigned 24 % of the vulnerabilities a medium severity, whereas CVSS have
assigned 46 % a medium severity.

4.2 Threats to Validity

In this research, we have considered two datasets of two software of the same
domain, internet browsers. We consider extending our analysis as long as the
data about software from different domains are publicly available and accessi-
ble. We are also aware that there are other factors that can affect the vulner-
abilities exploitation. Thus, we in no way imply that VRPs should be the only
consideration when trying to assess CVSS Base score.

5 Discussion

Results have shown that CVSS scores have a higher FP rate. This is mainly
because of the number of True Negatives. Out of the 131 vulnerabilities that have
been assigned as Low by chrome VRP only two (True Negative) vulnerabilities

74 A. Younis et al.

have been assessed as Low by CVSS. We have found that 86 of these vulnerabil-
ities have been assigned medium and 35 have been assigned high. On the other
hand, out of the 31 vulnerabilities that have been assessed as Low by Firefox
VRP, only one (True Negative) vulnerabilities have assessed as Low by CVSS.
We have found that 22 of these vulnerabilities have been assigned medium and
8 have been assigned high.

There are more Execute Code vulnerabilities in Firefox than in Chrome.
This could be explained by the effect of defensive mechanism, Sandbox, used by
Chrome. Furthermore, based on the amount paid, the data from Chrome show
that proving exploitability is more valuable than discovering vulnerabilities.

6 Conclusion and Future Work

This study evaluates CVSS Base Scores as a prioritization metric by comparing it
with VRP reward levels, which are arguably more direct measures. We used 1559
vulnerabilities from Mozilla Firefox and Google Chrome browsers to conduct
this study. The performance measures and the correlation results show that
CVSS Base Score is suitable for prioritization. The fact that there are more
vulnerabilities with a high CVSS scores and have no exploits or attacks have
been explained by the effect of VRPs on vulnerabilities exploitation. Besides,
considering that CVSS score assess most of the vulnerabilities as severer, data
show that VRPs have assessed even more vulnerabilities as severe more than
CVSS Base score.

Still, there appears to be a need for continued updating of the CVSS metrics
and measures. CVSS should highly consider including the Likelihood of Exploit
factor (not only the availability of exploit, but also how likely it is that func-
tioning exploit code will be developed) as CWSS [24] and Microsoft [25] rating
systems did. Besides. The two chosen VRPs rating systems have shown that Like-
lihood of Exploit is the main factor that determine the amount of the reward
paid for the discoverers and that was very evident in Chrome dataset. As the
two datasets considered represent two software of the same domain, examining
data from different domains can be valuable as long as their data is publicly
available and accessible.

References

1. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnera-
bility scoring system version 2.0, p. 123. Published by FIRST-Forum of Incident
Response and Security Teams (2007)

2. Defense in Depth. http://www.nsa.gov/ia/ files/support/defenseindepth.pdf.
Accessed on 08 January 2016

3. Pescatore, J.: Application Security: Tools for Getting Management Support and
Funding. White Paper, SANS Institute (2013)

4. Finifter, M., Devdatta, A., David, W.: An empirical study of vulnerability rewards
programs. In: Proceedings of the 22nd USENIX Security Symposium, Washington,
pp. 273–288 (2013)

http://www.nsa.gov/ia/_files/support/defenseindepth.pdf

Evaluating CVSS Base Score Using Vulnerability Rewards Programs 75

5. Reading, D.: Connecting The Information Security Community. http://www.
darkreading.com/coordinated-disclosure-bug-bounties-help-speed-patches/d/
d-id/1139551

6. The Mozilla Security Bug Bounty Program. https://www.mozilla.org/en-US/
security/bug-bounty/. Accessed on 08 January 2016

7. Chrome Reward Program Rules. https://www.google.com/about/appsecurity/
chrome-rewards/index.html. Accessed on 08 January 2016

8. Security Severity Ratings. https://wiki.mozilla.org
9. Severity Guidelines for Security Issues. https://www.chromium.org/developers/

severity-guidelines. Accessed on 08 January 2016
10. Younis, A.A., Malaiya, Y.K.: Comparing and evaluating CVSS base metrics and

microsoft rating system. In: The 2015 IEEE International Conference on Software
Quality, Reliability and Security, Vancouver, BC, pp. 252–261 (2015)

11. Allodi, L., Massacci, F.: Comparing vulnerability severity and exploits using case-
control studies. J. Tra. Info. Syst. Secu. 17(1), 1–20 (2014)

12. Miller, M., Burrell, T., Howard, M.: Mitigating Software Vulnerabilities. Technical
report, Microsoft Security Engineering Center (2011)

13. Nagaraju, S.S., Craioveanu, G., Florio, E.: Software Vulnerability Exploitation
Trends. Technical Report, Microsoft Trustworthy Computing Security (2013)

14. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: learning
to classify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
New York, pp. 105–114 (2010)

15. National Vulnerability Database. https://nvd.nist.gov/. Accessed on 08 January
2016

16. Exploit Database. https://www.exploit-db.com/. Accessed on 08 January 2016
17. Security Advisories for Firefox. https://www.mozilla.org/en-US/security/

known-vulnerabilities/firefox/. Accessed on 08 January 2016
18. Chromium. https://code.google.com/p/chromium/issues/list. Accessed on 08

January 2016
19. Common Weakness Enumeration (CWE). http://cwe.mitre.org/. Accessed on 08

January 2016
20. Mozilla Bugzilla. https://bugzilla.mozilla.org/. Accessed on 08 January 2016
21. Common Vulnerability Scoring System, V3 Development Update. https://www.

first.org/cvss. Accessed on 08 January 2016
22. Point-Biserial. https://www.andrews.edu/∼calkins/math/edrm611/edrm13.htm.

Accessed on 08 January 2016
23. R: A Language and Environment for Statistical Computing. https://www.

r-project.org/
24. Common Weakness Scoring System. https://cwe.mitre.org/cwss/cwss v1.0.1.html.

Accessed on 08 January 2016
25. Using Exploitability Index. https://technet.microsoft.com/en-us/security/

ff943560.aspx. Accessed on 08 January 2016

http://www.darkreading.com/coordinated-disclosure-bug-bounties-help-speed-patches/d/d-id/1139551
http://www.darkreading.com/coordinated-disclosure-bug-bounties-help-speed-patches/d/d-id/1139551
http://www.darkreading.com/coordinated-disclosure-bug-bounties-help-speed-patches/d/d-id/1139551
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.google.com/about/appsecurity/chrome-rewards/index.html
https://www.google.com/about/appsecurity/chrome-rewards/index.html
https://wiki.mozilla.org
https://www.chromium.org/developers/severity-guidelines
https://www.chromium.org/developers/severity-guidelines
https://nvd.nist.gov/
https://www.exploit-db.com/
https://www.mozilla.org/en-US/security/known-vulnerabilities/firefox/
https://www.mozilla.org/en-US/security/known-vulnerabilities/firefox/
https://code.google.com/p/chromium/issues/list
http://cwe.mitre.org/
https://bugzilla.mozilla.org/
https://www.first.org/cvss
https://www.first.org/cvss
https://www.andrews.edu/~calkins/math/edrm611/edrm13.htm
https://www.r-project.org/
https://www.r-project.org/
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://technet.microsoft.com/en-us/security/ff943560.aspx
https://technet.microsoft.com/en-us/security/ff943560.aspx

Defining Objectives for Preventing Cyberstalking

Gurpreet Dhillon1(✉), Chandrashekar Challa2, and Kane Smith1

1 Virginia Commonwealth University, Richmond, USA
{gdhillon,smithkj6}@vcu.edu
2 Longwood University, Farmville, USA

challacd@longwood.edu

Abstract. Cyberstalking is a significant challenge in the era of Internet and
technology. When dealing with cyberstalking, institutions and governments alike
have a problem in how to manage it and where to allocate resources. Hence, it is
important to understand how individuals feel about the problem of cyberstalking
and how it can be managed in the context of cybersecurity. In this paper we
systematically interviewed over 100 individuals to interpret their values on cyber‐
stalking. Keeney’s [21] value focused thinking approach is then used to convert
individual values into objectives which form the basis for planning to curb cyber‐
stalking and for institutions and governments to allocate resources prudently.

Keywords: Cyberstalking · Cyber security planning · Values · Strategic
objectives

1 Introduction

Stalking has been well recognized in the academic and practitioner literature; however
with the advent of newer technologies such as social media a new threat has emerged,
cyberstalking. An increased reliance of individuals on interpersonal contact has resulted
in a corresponding increase in possibility of interpersonal intrusion, referred to as cyber‐
stalking [27]. Institutions and government bodies struggle to manage cyberstalking due
to a lack of understanding of the phenomenon. The problem question is twofold: First,
what are the objectives to ensure protection against cyberstalking. Second, what priority
areas should institutions focus on to ensure that cyberstalking is minimized. In this paper
we present a comprehensive set of individual value based objectives which can form the
basis for strategic planning to prevent cyberstalking. Theoretically we are informed by
the value focused thinking concept purported by Keeney [19]. The paper is organized
into five sections: introduction, literature pertinent to cyberstalking, the theoretical and
methodological aspects of this research, the fundamental and means objectives for
minimizing cyberstalking and finally in the limitations and future research directions.

2 A Review of Existing Cyberstalking Literature

The internet is beneficial in connecting us globally on all fronts and is available in nearly
every corner of the globe [17]. It is also the cause of many unique crimes such as

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 76–87, 2016.
DOI: 10.1007/978-3-319-33630-5_6

cyberstalking because it is cheap, easy to use, and the anonymity it offers in seeking out
victims and avoiding detection [22]. Cyberstalking is a type of crime in which there is
no face-to-face contact between victims and offenders [10]. According to McFarlane &
Bocij [27], there are four types of cyber stalkers: the Vindictive Cyber stalker, the
Composed Cyber stalker, the Intimate Cyber stalker and the Collective Cyber stalker.

In the past, cyberstalking victims have not had success in being recognized as victims
by law enforcement agencies due to a lack of enforcement training and expertise [34].
A study that analyzes cyber stalking crimes, legislative intervention measures, and
preventative initiatives created specifically to curtail this emerging global crime was
undertaken by Pittaro [36]. The study concluded that cyberstalking is a serious and
growing problem, but proper training and guidance could allow law enforcement agen‐
cies can track the stalkers online [22]. However, educating society is still the most
effective approach to bringing awareness about cyberstalking and enacting initiatives
prevent this Internet based crime. [34]. California was the first state in the USA to adopt
stalking laws in 1989 [51]. Since then stalking laws in general have been adopted else‐
where, but cyberstalking is related to one’s behavior in cyberspace as opposed to the
physical world [3]. Therefore, it is suggested that there should be an investigation of
these regulations and ways to adapt new regulations to apply in cyberspace and how
these regulations can help prevent cyberstalking.

While cyberstalking is still in its infancy, it is expected to increase significantly as
the Internet becomes more popular [16]. For this reason, there are studies such as the
one by Spitzberg and colleagues [8, 9, 41–43] that conducted pilots and introduced the
concept of cyber-obsessional pursuit (COP). Further, new research extended these
earlier pilot studies to develop and refine measures of cyberstalking victimization [44].
Another study by Goodno [12] examined how differences in state and federal law create
gaps in stalking statutes increasing the difficulty in prosecuting all aspects of cyber‐
stalking and suggests ways to close these gaps. Finally, the study also examines the
potential issues in criminalizing cyberstalking and how these issues might be resolved
by changing the laws so they address the newer cyber security crimes as a result of
cyberstalking. Additional work with respect to cyberstalking has sought to develop and
adapt a lifestyle–routine activities theory [38] to explain opportunities for victimization
in cyberspace environments where traditional conceptions of time and space are less
relevant. A related earlier study on the extent and nature of Cyberstalking victimization
from a lifestyle/routine activities perspective by Reyns [37] also corroborates the theory.
Findings from this study indicate that the number of differing factors such as the number
of online social networks an individual owns or low self-control are significant predictors
of cyberstalking victimization, suggesting moderate support for lifestyle/routine activ‐
ities theory in explaining cyberstalking [37].

3 Methodology

In order to identify values one must ask the concerned people [21]. Within the literature,
there is a significant variance in the number of individuals that should be interviewed.
As an example, Hunter [15] used the interviews of 53 people from two different

Defining Objectives for Preventing Cyberstalking 77

organizations to do a content analysis to elicit individual conceptions. However,
Phythian & King [35] used two managers who were experts in assessing tender enquiries
to identify key factors and rules that influence tender decisions. Additionally, Keeney
[21] obtained interviews from over 100 individuals to obtain their values to develop
objectives that influenced Internet purchases. For this study, over 100 persons of varying
background and experience were interviewed to identify general values for managing
cyber stalking related information security.

The following three-step process is used to identify and organize the values that an
individual might have with respect to cyberstalking [19]: First, interviews are conducted
which elicit the values an individual might have within a decision context. Second,
individual values and statements are converted into a common value format, such as an
objective oriented statement. Then similar objectives are grouped together in order to
form clusters of objectives. Finally, the objectives are then classified as either funda‐
mental to the decision context, resulting in a fundamental objective, or simply a means
to achieve the fundamental objectives, or what’s called a means objective.

3.1 Identifying Values

To begin, interviews are conducted with the concerned peoples as a process of identi‐
fying values. At the beginning of each interview, the purpose is clarified and context
and scope of the interview are established. The core objective is to understand the
fundamental objectives for preventing cyberstalking. To set the decision context, we
emphasize that the scope for eliciting these values is limited only to individuals. After
defining the scope of the interview, explanations are provided to the interviewee so that
they can understand what ‘cyberstalking’ is to establish a common understanding.
Cyberstalking is thusly defined as ‘the use of the internet, email, or other electronic
communications devices to stalk another person’ [48]. It is made clear to respondents
that the goal is to understand values that people might have with respect to cyberstalking.
To identify these values four questions are posed about their personal values toward
cyberstalking and those of individuals who commit acts of cyberstalking. The questions
were: What do you think are your values and wishes in order to prevent cyberstalking?
What values might lead you to behave in a certain manner towards cyberstalking? What
kind of information do you think people use to engage in cyberstalking? What personal
values lead people to use this information for their own benefit while cyberstalking? All
questions were open-ended. As individuals can express values differently, so difficulty
exists with the quiescent nature of the values, so different probing techniques are used
to identify latent values. Keeney [19] suggests words like trade-offs or consequences
etc. as useful in making implicit values explicit.

3.2 Structuring Values

Once values have been identified, value structuring and objectives development begins.
Step one is that all statements are restated in a common form with duplicates are
removed, then common form values are considered and converted into sub-objectives.
According to Keeney [21], an objective is constituted of the decision context, an object

78 G. Dhillon et al.

and a direction of preferences, which in this case is cyberstalking. With all values
systematically reviewed and converted into sub-objectives a number of sub-objectives
that deal with a similar issue exists. By carefully reviewing the content of each of these
sub-objectives, clusters are developed that group similar ones together and then each
cluster of sub-objectives is labeled by its overall theme that becomes the main objective.

3.3 Organizing Objectives

The list of sub-objectives and corresponding clusters initially include both means and
fundamental objectives so we must differentiate the two. This is accomplished by
repeatedly linking objectives through means–ends relationships then specifying the
fundamental objectives. To identify fundamental objectives, the question is asked, ‘Why
is this objective important in the decision context? [19].’ If the objective is an essential
reason for interest in the decision context, then the objective is a candidate as a funda‐
mental objective. If the objective is important due its implications with respect to some
other objective, then it is a candidate as a means objective. This is termed by Keeney
[20] as the ‘WITI test.’

4 Objectives for Preventing Cyberstalking

In this section we present fundamental and means objectives for preventing cyber‐
stalking. In our research we found twenty total objectives: five fundamental objectives
and fifteen means objectives. In this section we discuss the fundamental and means
objectives and how these can collectively contribute to the prevention of cyberstalking.

4.1 Fundamental Objectives for Preventing Cyberstalking

The five fundamental objectives identified in this research include: Protecting Online
Interactions; Establishing cyberstalking security procedures, Ensuring technical security,
Developing strong value systems and Defining intermediaries to minimize cyberstalking.
The fundamental objectives resonate well with what has been defined in the literature and
the main characteristic for cyberstalking - repeated event, invasion of personal privacy,
evidence of threat and/or fear [44]. Scholars term stalking as a form of Obsessive Rela‐
tional Intrusion (ORI), which is the unwanted pursuit of intimacy [8, 9].

FO1 Protecting Online Interactions. Respondents found protection of online inter‐
actions to be defined as both precautionary and regulatory objectives. Exercising caution
when meeting people online is fundamental, however it is also important to ensure that
protection mechanisms exist in online forums; however the means are addressed in some
of our means objectives. A response by one respondent noted: “It is the responsibility
of Internet Companies to ensure safety in an online forum through regulation and tech‐
nical means.” In an interesting paper, Chik [6] discusses international cyberstalking
regulatory considerations. He notes that there are two basic types of anti-stalking legis‐
lations - the list model and the closed model. The list model lists types of offences and

Defining Objectives for Preventing Cyberstalking 79

provides certainty, but is rather restrictive. An alternative is the general prohibition
model, which is used in some US states and UK. Chik argues that the more open general
prohibition model is the favored option [6].

FO2 Establishing Cyberstalking Security Procedures. Respondents felt that good
cyberstalking security procedures will go a long way in ensuring security and safety.
Cyberstalking security procedures can include an identification of appropriate authen‐
tication measures or availability of cyberstalking prevention tools. A respondent noted:
“There is no way to tell which site provides adequate security and which one has loose
controls, I wish we had a way to do this.” Website trustworthiness is an important topic
area and has been well researched. At the advent of e-commerce, online vendors were
facing similar challenges. Moores and Dhillon [29] found that web assurance seals did
help in ensuring a trusting relationship with the consumers. They note: “The relative
success of the privacy seals suggests that many sites recognize the issue of privacy and
strive to uphold the highest standards. These sites are not the problem. The problem is
with those sites that violate their stated obligations, those sites that make no commitment,
and those sites that actively seek to exploit the data they collect.”

FO3 Ensuring Technical Security. The role of technologies in ensuring security in
cyberstalking cannot be underestimated. Unequivocally our respondents made a call for
investing in safe browsing technologies and increased abilities to monitor online security
settings. Ability to create online filters to block negative behavior was also considered
important. One respondent noted: “Now-a-days it is virtually impossible to ensure that
the filters are installed properly. People need a high level of competence. Why can’t the
technologies be made simple and easy to use?” Technical means to ensure online security
and its benefits in preventing cyberstalking incidents has been noted by Goldberg [11],
who summarizes the problem as one dealing with secure Internet routing. Goldberg notes
that secure Internet routing can be achieved through simple cryptographic whitelisting
techniques, which can prevent attacks such as prefix hijacks, route leaks, and path-
shortening attacks. Some of these attacks are the basis for website compromises, which
can then subsequently lead to increased incidents of cyberstalking.

FO4 Developing Strong Value Systems. Early detection of negative behaviors can
come about through strong family values and the related social pressures. In a study by
Pereira and Matos [33] the complexity of family values is reviewed as well as their
impact on cyberstalking. In particular Pereira and Matos found fear following victimi‐
zation plays a major role in management of cyberstalking [33]. One respondent noted:
“I have been cyberstalked. Support from my family was critical in helping me carry on
with life.”

FO5 Defining Intermediaries to Minimize Cyberstalking. This fundamental objec‐
tive is somewhat related to the fundamental objective of ensuring secure procedures.
Critical to trust forming relationships is the role of intermediaries. Cybersecurity insur‐
ance research has suggested that it is indeed possible to minimize threats by appropri‐
ately focusing on insurance practices. Pal et al. [32] note: “To alleviate this issue a
security vendor can enter the cyber-insurance ecosystem and via a symbiotic relationship

80 G. Dhillon et al.

between the insurer can increase its profits and subsequently enable the cyber-insurer
to always make strictly positive profits keeping the social welfare state identical. As a
special case the security vendor could be the cyber-insurer itself (p. 8).”

4.2 Means Objectives for Preventing Cyberstalking

MO1 Increase Responsibility of Social Media Sites. This objective pertains to organi‐
zations responsible for creating, maintaining, regulating and implementing social media
sites. These organizations have an obligation to ensure their sites are safe in order to
prevent cyberstalking. Many organizations consider this a corporate social responsibility
(CSR) and make efforts to shape CSR policies to present themselves as good corporate
citizens [28] and the importance of CSR has been emphasized by many in the literature [5].

MO2 Increase Safe Information Sharing. This objective addresses the need for users
to have more tools to safely share information on the Internet and social media sites can
provide those tools. Types of tools that could be included are increased privacy settings
or private web browsing methods. Responses indicate support for this belief such as; “I
want more privacy settings and ways to protect my information if I choose to share it.”

MO3 Increase Law Enforcement. This objective deals with ensuring useful laws exist
to protect online users from cyberstalking. One study analyzed was the police use of
Twitter, including the structure of networks and the content of the messages [7]. The study
concluded that due to the constraints of police culture, Twitter has been used cautiously as
reinforcement for existing means of communication [7]. Responses such as; “law enforce‐
ment needs to be more involved in monitoring and policing social media activity” show
users want an active law enforcement approach to help prevent cyberstlaking.

MO4 Increase Awareness of Cyberstalking Consequences. This objective addresses
the consequences for cyberstalking, specifically making people aware of the negative
effects on victims and society as a whole. A survey response supporting this is “as a
society we need to increase awareness about the harmful effects of cyberstalking” which
speaks to the lack of awareness.

MO5. Minimize Trolling. This objective deals with discouraging people from posting
offensive content in their online postings. A study by Hopkinson [14] researched the
practice of trolling in online discussion forums and its findings suggest that the definition
of trolling varies depending on the discussion topic [14]. The study found a paradoxical
view of trolling in that it is considered destructive and have a negative connotation, but
cases exist where it can have a positive constructive effect [14].

MO6 Decrease Tracking Ability. This objective deals with ensuring that your current
location is unknown to people from whom you wish to remain hidden from. For example,
Facebook had a program, which sent messages to users’ friends about what they were
buying on Web sites; it had to retract this feature after protest from a number of their
users due to complaints about sharing without permission [45]. To prevent features like

Defining Objectives for Preventing Cyberstalking 81

these from being abused for cyberstalking, the ability of companies and individuals to
track people online needs to be minimized.

MO7 Increase Deterrence. This objective deals with the use of punishment as a threat
to stop or prevent people from engaging in cyberstalking. Individuals behave rationally
to maximize their utility and commit crime when the expected utility of law breaking
far exceeds the expected disutility of punishment [18]. So to promote obedience and
discourage crime communities should adopt a policy to raise the price of crime. Deter‐
ring cyberstalking was a common response, for example, one of our respondents said;
“Well-defined laws and stricter enforcement of cyber stalking laws would help prevent
cyberstalking.”

MO8 Ensure Online Social Responsibility. Organizations and individuals alike have
a significant stake in achieving this objective to prevent cyberstalking. There are
conflicting views from certain studies whether “Doing Good Always Leads to Doing
Better” [39]; however organizations and individuals should proactively take responsi‐
bility for making online experiences positive by following basic and fundamental norms
of conduct and behavior.

MO9 Personal Accountability. Accountability protects public health and safety, facil‐
itates law enforcement, and enhances national security, but it is more than a bureaucratic
concern for corporations, public administrators, and the criminal justice system [2]. In
our study we found that respondents have given significant importance to this aspect
where one respondent said, “I believe each person is responsible for taking steps towards
preventing cyberstalking. That means being mindful of what personal information you
share about yourself on the Internet.”

MO10 Increase Ability to Control Personal Information. Users desire the ability to
control their personal information; how it is shared, stored and distributed over the
Internet. Information available online about consumers is striking and the media is filled
with horror stories about the misuse of personal information, such as the availability of
information most people consider confidential like social security numbers or their home
location [40]. Many respondents felt this way with one responding; “I want as many
options on social media as possible to prevent as much personal information from being
publicly available.”

MO11 Ensure Monitoring of Children. This objective deals with the ability to
monitor children’s online activity and behavior. This is a difficult objective that is highly
complex. For example, a national study in Great Britain on children and their parents
used focus group interviews and observation of children’s use of the internet to reveal
the following: Parents seek to manage their children’s internet use, but face challenges
in helping their children use internet safely. Disagreement between parents and children
exists as most children do not want restrictions and have take measures to hide their
online activity from their parents demonstrating a gap in the understanding between
parents and children on these issues [25]. Their policy recommendations were; direct

82 G. Dhillon et al.

children and young people towards valuable content, develop online advice resources
with young people etc. [25].

MO12 Reduce Opportunities for Online Victimization. This objective emphasizes
the importance of safe browsing and online behavior in order to reduce the opportunity
an offensive act can be undertaken by someone. For example, cyberbullying is one major
issue in schools and communities due to the emotional, psychological, and even physical
harm to which victims can be subjected. One study looked at general strain theory to
identify the emotional and behavioral effects of cyberbullying victimization [13]. Data
collected indicated that cyberbullying is a potent form of stress that may be related to
school behavior problems and delinquent behavior offline [13]. Another study from a
national survey of teenagers in the UK (N = 789) analyzed the demographic factors that
influence skills in using the Internet and then sought to determine whether these skills
make a difference to online opportunities and online risks [26]. Findings show that those
who take up more opportunities encounter more risks and vice versa. Further, those
groups inclined to gain more opportunities also encounter more risks [26].

MO13 Increase Regulation of Online Social Networks. This objective deals with
agencies and government organizations monitoring online social networks and deter‐
mining the rules and actions that need to be taken to prevent cyberstalking. One study
investigated a sample (n = 704) of college students to understand online disclosure and
withdrawal of personal information [47]. Findings show little to no relationship between
online privacy concerns and information disclosure on online social network sites as
students manage unwanted audience concerns by adjusting profile visibility and using
nicknames but not by restricting the information within the profile [47]. This behavior
suggests that people can still easily gain access to all the free information on Internet,
hence why our study suggests social network organizations adopt various counter-
measures.

MO14 Increase Mental Health Screening. Mental health can adversely influence
one’s ability and judgment to conduct themselves properly online. A survey study of
371 British students showed that 18.3 % of the sample was considered to be pathological
Internet users, whose excessive use of the Internet was causing academic, social, and
interpersonal problems [30]. This would lead one to consider that Internet usage, cyber‐
stalking and mental health are a connected and important area of concern.

MO15 Cyberstalking Education. Cyberstalking and its negative affects are not well
known to many people. One study of note was done using students from two universities,
which gathered their responses to a cyberstalking scenario as well as their use and expe‐
riences with the Internet [1]. Then the study conducted an analysis and comparison of
students who reported having been stalked to those who had been cyberstalked [1]. An
interesting finding was that male students were statistically more likely than female
students to have been cyberstalked [1]. Additionally, for individuals who were cyber‐
stalked, the stalking perpetrator was most likely to be a former intimate partner [1].

Defining Objectives for Preventing Cyberstalking 83

5 Further Research, Limitations and Conclusions

Based on the research presented in this paper, there are three broad categories, which
exist for future research opportunities. The first opportunity is that the list of objectives
identified in this research can be subjected to psychometric analysis using separate large
samples. This can help, for example, in developing a model for measuring cyberstalking
by organizations on social media sites. A second opportunity exists for intensive research
to be undertaken to establish relationships between particular fundamental and means
objectives; however, while Keeney [19] contends that fundamental and means objectives
are related and an implicit; logical relationships appear to exist between the fundamental
and means objectives, but specific relationships need to be researched. The final oppor‐
tunity is such that further quantitative work should be carried out to assess how the
subscales of means and fundamental objectives relate to each other.

The findings of this research lay a suitable foundation for developing multidimen‐
sional measures and protections against cyberstalking. For example, Keeney [21]
conducted an extensive study, which interviewed over 100 people to assess their values
with respect to Internet commerce. And based on this work, Torkzadeh & Dhillon [46]
were then able to develop instruments, which measured factors that influence Internet
commerce success. Much in the same way, the research presented within this paper has
established values and objectives that would be a basis for measures and protections
against cyberstalking. Within the IS domain, many examples exist of research that
involves in-depth qualitative research aimed at the development of theoretical concepts
which includes research on organizational consequences of IT [31], relationship between
IS design, development and business strategy [49] and communication richness [24].

In the cybersecurity field, the topic of cyberstalking is constrained by the absence of
well-grounded concepts that are developed in a systematic and a methodologically sound
manner as the topic itself is still a newer concept. The fundamental and means objectives
that are presented in this paper make a contribution towards the development of theory
specific to cyberstalking and measures and protections from it, a largely overlooked IS
research stream. This research was only the first step to identify means and fundamental
objectives as it relates to cyberstalking values. The next step in this research is to conduct
a quantitative study as was done earlier by Torkzadeh & Dhillon [46] to come up with
an instrument that measures fundamental objectives as it relates to cyberstalking as there
is a need to develop theory that is IS specific [4].

As with most qualitative research, this study is subject to some limitations. The
process of identifying values from interview data is largely subjective and interpretive
and while as researchers we maintain a professional distance, there is always a possibility
that some of our own biases may influence the results; however, we were conscious of
this during all three phases. The previous basis for this research and the critical reflec‐
tions of the interviewee’s statements was useful in helping us show how these various
interpretations emerged in the research [23]. For this reason, it is believed that being
aware of the intellectual biases actually helped us to be objective within our analysis of
the data. Further, Walsham [50] recognized this to be an issue when carrying out inten‐
sive research and in regard to the role of the researcher wrote; “the choice should be
consciously made by the researcher dependent on the assessment of… merits

84 G. Dhillon et al.

and demerits in each particular case (p. 5).” It is our goal that in strictly following the
value-focused thinking method and being conscious that our interpretations should not
serve to influence our research, it can provide confidence in the outcome of this study.

In conclusion, the research presented in this paper examines the relatively unex‐
plored area of cyberstalking in the field of information systems. This qualitative inves‐
tigation, which used value-focused thinking, revealed 75 sub-objectives, grouped into
five fundamental and 15 means objectives, which are essential for developing measures
and protections against cyberstalking. The objectives developed in this study are
grounded socio-organizationally and provide a way forward in developing measures and
protections against cyberstalking. Therefore, this is a significant contribution as previous
research in this area is underdeveloped and as such falls short of being able to propose
tangible measures and protections against cyberstalking.

References

1. Alexy, E.M.: Perceptions of cyberstalking among college students. Brief. Treat. Crisis Interv.
5(3), 279 (2005)

2. Allen, A.L.: Why privacy isn’t everything: Feminist reflections on personal accountability.
Rowman & Littlefield (2003)

3. Basu, S., Jones, R.P.: Regulating cyberstalking. J. Inf. Law Technol. 2, 1–30 (2007)
4. Benbasat, I.: Editorial note. Inf. Syst. Res. 12, iii–iv (2001)
5. Bauer, T.: The responsibilities of social networking companies: Applying political csr theory

to google, facebook and twitter. In: Tench, R., Sun, W., Jones, B. (eds.) Communicating
Corporate Social Responsibility: Perspectives and Practice (Critical Studies on Corporate
Responsibility, Governance and Sustainability, Volume 6) Emerald Group Publishing
Limited, pp. 259–282 (2014)

6. Chik, W.: Harassment through the digital medium-a cross jurisdictional comparative analysis
of the law on cyberstalking. J. Int’l Com. L. Tech. 3, 13 (2008)

7. Crump, J.: What are the police doing on twitter? Social media, the police and the public.
Policy Int. 3(4), 1–27 (2011). Article 7

8. Cupach, W., Spitzberg, B.: Obsessive relational intrusion and stalking. In: Spitzberg, B.,
Cupach, W. (eds.) The Dark Side of Close Relationships, pp. 233–263. Erlbaum, Hillsdale,
NJ (1998)

9. Cupach, W., Spitzberg, B.: Obsessive relational intrusion: incidence, perceived severity, and
coping. Violence Vict. 15(1), 1–16 (2001)

10. Eck, J.E., Clarke, R.V.: Classifying common police problems: A routine activity approach
(Crime Prevention Studies, vol. 16, pp. 7–39). Criminal Justice Press, Monsey, NY (2003)

11. Goldberg, S.: Why is it taking so long to secure Internet routing? Commun. ACM 57(10),
56–63 (2014)

12. Goodno, N.H.: Cyberstalking, a new crime: Evaluating the effectiveness of current state and
federal laws. Mo. Law Rev. 72(1), 125–197 (2007)

13. Hinduja, S., Patchin, J.W.: Offline consequences of online victimization: School violence and
delinquency. J. School Violence 6(3), 89–112 (2007)

14. Hopkinson, C.: Trolling in online discussions: From provocation to community-building.
Brno Stud. Engl. 39(1), 5–25 (2013)

15. Hunter, M.G.: The use of RepGrids to gather data about information systems analysts. Inf.
Syst. J. 7, 67–81 (1997)

Defining Objectives for Preventing Cyberstalking 85

16. Hutton, S.: Cyber stalking. Retrieved Feb. 18, 2006, from National White Collar Crime Center
(2003)

17. Jaishankar, K., Uma Sankary, V.: Cyber stalking: A global menace in the information
superhighway. ERCES Online Q. Rev. 2(3) (2005)

18. Kahan, D.M.: Social influence, social meaning, and deterrence. V. Law Rev. 83(2), 349–395
(1997)

19. Keeney, R.L.: Value-Focused Thinking. Harvard University Press, Cambridge, MA, USA
(1992)

20. Keeney, R.L.: Creativity in decision making with value-focused thinking. Sloan Manage.
Rev. 35, 33–41 (1994)

21. Keeney, R.L.: The value of Internet commerce to the customer. Manage. Sci. 45, 533–542
(1999)

22. Reno, J.: 1999 report on cyberstalking: A new challenge for law enforcement and industry.
Retrieved Feb. 18, 2006, from US DOJ Web site (1999). http://www.usdoj.gov/criminal/
cybercrime/cyberstalking.htm

23. Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretive field
studies in information systems. MIS Q. 23, 67–94 (1999)

24. Lee, A.S.: Electronic mail as a medium for rich communication: an empirical investigation
using hermeneutic interpretation. MIS Q. 18, 143–157 (1994)

25. Livingstone, S., Bober, M.: UK children go online: Final report of key project findings (2005)
26. Livingstone, S., Helsper, E.: Balancing opportunities and risks in teenagers’ use of the

Internet: The role of online skills and Internet self-efficacy. New Media Soc. 12(2), 309–329
(2009)

27. McFarlane, L., Bocij, P.: An exploration of predatory behavior in cyberspace: Towards a
typology of cyber stalkers. First Monday, 8, Retrieved Feb 18, 2006 (2005)

28. Melissa, J.R.: Why Social Media Is Vital to Corporate Social Responsibility (2009). http://
mashable.com/2009/11/06/social-responsibility/#lL17q023Caqh

29. Moores, T.T., Dhillon, G.: Do privacy seals in e-commerce really work? Commun. ACM
46(12), 265–271 (2003)

30. Niemz, K., Griffiths, M., Banyard, P.: Prevalence of pathological Internet use among
university students and correlations with self-esteem, the General Health Questionnaire
(GHQ), and disinhibition. Cyber Psychol. Behav. 8(6), 562–570 (2005)

31. Orlikowski, W.J., Robey, D.: Information technology and structuring of organizations. Inf.
Syst. Res. 2, 143–169 (1991)

32. Pal, R., Golubchik, L., Psounis, K., Hui, P.: Will cyber-insurance improve network security?
A market analysis. In: INFOCOM 2014 Proceedings IEEE, pp. 235–243. IEEE (2014)

33. Pereira, F., Matos, M.: Cyber-stalking victimization: What predicts fear among portuguese
adolescents? Eur. J. Crim. Policy Res. 45, 1–18 (2015)

34. Petrocelli, J.: Cyber stalking. Law Order 53(12), 56–58 (2005)
35. Phythian, G.J., King, M.: Developing an Expert System for tender enquiry evaluation: a case

study. Eur. J. Oper. Res. 56, 15–29 (1992)
36. Pittaro, M.: Cyber stalking: An analysis of online harassment and intimidation. Int. J. Cyber

Criminol. (IJCC) 1(2), 180–197 (2007). ISSN: 0974 – 2891
37. Reyns, B.W.: Being Pursued Online: Extent and Nature of Cyberstalking Victimization from

a Lifestyle/Routine Activities Perspective; A Dissertation Submitted to the: Graduate School
of the University of Cincinnati (2010)

38. Reyns, B.W., Henson, B., Fisher, B.S.: Applying cyberlifestyle-routine activities theory to
cyberstalking victimization. Crim. Justice Behav. 38(11), 1149–1169 (2011)

86 G. Dhillon et al.

http://www.usdoj.gov/criminal/cybercrime/cyberstalking.htm
http://www.usdoj.gov/criminal/cybercrime/cyberstalking.htm
http://mashable.com/2009/11/06/social-responsibility/%23lL17q023Caqh
http://mashable.com/2009/11/06/social-responsibility/%23lL17q023Caqh

39. Sen, S., Bhattacharya, C.B.: Does doing good always lead to doing better? Consumer reactions
to corporate social responsibility. J. Mark. Res. 38(2), 225–243 (2001)

40. Sovern, J.: Opting in, opting out, or no options at all: The fight for control of personal
information. Wash. L. Rev. 74, 1033 (1999)

41. Spitzberg, B., Nicastro, A., Cousins, A.: Exploring the interactional phenomenon of stalking
and obsessive relational intrusion. Commun. Reports 11(1), 33–48 (1998)

42. Spitzberg, B., Rhea, J.: Obsessive relational intrusion and sexual coercion victimization. J.
Interpersonal Violence 14(1), 3–20 (1999)

43. Spitzberg, B., Marshall, L., Cupach, W.: Obsessive relational intrusion, coping, and sexual
coercion victimization. Commun. Reports 14(1), 19–30 (2001)

44. Spitzberg, B.H., Hoobler, G.: Cyberstalking and the technologies of interpersonal terrorism.
New Media Soc. 4(1), 67–92 (2002)

45. Story, L., Stone, B.: Facebook Retreats on Online Tracking (2007). www.nytimes.com
46. Torkzadeh, G., Dhillon, G.: Measuring factors that influence the success of internet

commerce. Inf. Syst. Res. 13, 187–204 (2002)
47. Tufekci, Z.: Can you see me now? Audience and disclosure regulation in online social network

sites. Bull. Sci. Technol. Soc. 28, 20–36 (2008)
48. US Attorney General (1999) ‘Cyberstalking: A New Challenge for Law Enforcement and

Industry. Report from the Attorney General to the Vice President
49. Walsham, G., Waema, T.: Information systems strategy and implementation: A case study

of a building society. ACM Trans. Inf. Syst. 12, 150–173 (1994)
50. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J. Inf. Syst.

4, 74–81 (1995)
51. Zona, M.A., Sharma, K.K., Lane, M.D.: A comparative study of erotomanic and obsessional

subjects in a forensic sample. J. Forensic Sci. 38, 894–903 (1993)

Defining Objectives for Preventing Cyberstalking 87

http://www.nytimes.com

Cyber Infrastructure

Using Process Invariants to Detect Cyber
Attacks on a Water Treatment System

Sridhar Adepu(B) and Aditya Mathur

Singapore University of Technology and Design, Singapore 487372, Singapore
{sridhar adepu,aditya mathur}@sutd.edu.sg

Abstract. An experimental investigation was undertaken to assess the
effectiveness of process invariants in detecting cyber-attacks on an Indus-
trial Control System (ICS). An invariant was derived from one selected
sub-process and coded into the corresponding controller. Experiments
were performed each with an attack selected from a set of three stealthy
attack types and launched in different states of the system to cause tank
overflow and degrade system productivity. The impact of power failure,
possibly due to an attack on the power source, was also studied. The
effectiveness of the detection method was investigated against several
design parameters. Despite the apparent simplicity of the experiment,
results point to challenges in implementing invariant-based attack detec-
tion in an operational Industrial Control System.

Keywords: Attack detection · Cyber attacks · Cyber physical systems ·
Industrial control systems · Secure water treatment testbed

1 Introduction

An experimental investigation, referred to as EXP, was undertaken with the
long term goal of designing robust defense mechanisms for an Industrial Control
System (ICS) and to improve its resiliency. A short term goal in EXP is to
understand how to detect cyber attacks against an ICS using state invariants
across data obtained by a Programmable Logic Controller (PLC) from two or
more sensors. Such an understanding leads to the inclusion of effective detection
mechanisms inside process controllers and the addition of control actions when
an attack is detected thereby improving system resiliency. The experiments were
performed to understand the effectiveness of the proposed detection method in
an operational mini-water treatment testbed, referred to as SWaT (Secure Water
Treatment), that produces 5 gallons/minute of treated water.

Invariant: An “invariant” is a condition among “physical” and/or “chemical”
properties of the process that must hold whenever an ICS is in a given state.
Together, at a given time instant, measurements of a suitable set of such proper-
ties constitute the observable state of SWaT. In SWaT, these properties are mea-
sured using sensors and captured by the PLCs at programmable time instants,

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 91–104, 2016.
DOI: 10.1007/978-3-319-33630-5 7

92 S. Adepu and A. Mathur

(set to 0.1-s in EXP). A few key advantages of invariant-based attack detection,
implemented in a PLC, are as follows.

1. Implementation context: Detection method is implemented as a procedure
and integrated directly into the PLC.

2. Physical constraints: The invariants are local to a PLC and based on the
physics or the chemistry of the sub-process being controlled by the PLC.

3. Detection method: Detection is designed without reference to attacks and
hence is attack agnostic. It is based on state related conditions that must hold
either always during system operation, or when one or more components of
the system is in a given state. For example, the level of water in a tank must
be always between its lowest and highest points; this invariant must always
hold during normal system operation. However, a pump must be in the ON
state only when the source tank has water and the destination tank is not
full; this is a state dependent invariant.

4. Network traffic: There is no additional load on the ICS communications net-
work.

Research focus: RF1: Methods for detecting single-point cyber attacks based
on invariants derived from physical properties of the process. RF2: effective-
nessEffectiveness of the invariant-based detection methods. RF3: complexity-
Complexity and scalability of the detection methods and their impact on the
operation of a PLC.

Related work: In a survey [8] the detection techniques are classified as follows:
misuse/signature-based intrusion detection, anomaly-based intrusion detection,
and statefull protocol analysis. The process invariants based approach proposed
in this paper does not fall in any of these three categories. Further, as imple-
mented in the case study described here, the proposed approach differs from
those mentioned above in several ways including the fact that it does not use
network-based anomaly detection. Pros and cons of the proposed approach
against others are discussed in Sect. 4. A common aspect of the techniques
described in [8] is that they are employed in the network used for communi-
cations among the PLCs and SCADA. The primary goal of these techniques is
to detect any intrusion into the ICS by analyzing network traffic from different
points of view. For example, in [3] security specifications are defined for smart
meters and a security policy for the Advanced Metering Infrastructure.

The use of invariants in CPS is not new. In [12] the authors used invariants as
a unified knowledge model for CPS. Some authors refer to invariants as “attack
symptoms” and have used these to detect attacks in intrusion detection [9]. Sta-
bility of smart-grid has been studied using invariants [5]. The key contribution
in this paper is the derivation and use of invariants using the physics of a water
treatment plant and its application in detecting novel attacks.

A specification-agnostic technique for the detection of cyber attacks in PLCs
is described in [7]. It is noted that this technique does not fall in any of the three
categories mentioned above. Data is collected from the PLCs via network moni-
toring, and an autoregressive method is used to model specific process variables.

Using Process Invariants to Detect Cyber Attacks 93

Such a model is then used to detect whether the value of a process variable is
suspicious. Another technique uses the physics of an ICS, using conditions simi-
lar to invariants, to detect cyber attacks [10]. Here the authors analyze network
traffic focusing on “harmful” command streams. Physical constraints are inte-
grated into an intrusion detection framework. An example of a boiler is described
where out of bound values are checked against predefined constraints.

Significant work exists in detecting anomalies in network traffic in ICS across
PLCs, sensors, actuators and SCADA subsystems. One such technique is based
on CUSUM used for change point detection. This non-parametric method has
been applied to detect network intrusions [14]. While these techniques are found
effective in environments in which they were assessed, in EXP it was decided
to instead use only the process property based invariants to detect anomalies
arising due to a cyber attack. Doing so avoids making assumptions on proba-
bility distributions of process data. Indeed, making use of invariants is perhaps
appropriate when a real or simulated process is available for experimentation,
and not necessarily when only data from such process is available as for example
in [7,15].

Intermittent cyber attacks: Studies on the impact and detection of intermit-
tent, or pulse, attacks on networks have been reported. In [16] the authors con-
sidered the impact of low-rate denial of service (LDoS) attacks on networks.
A wavelet based method was proposed for detecting such attacks. In [13] the
authors focused on pulsing DoS attacks and their impact on peak bandwidth.
The experiments described in this paper are aimed at investigating how inter-
mittent cyber attacks on an ICS, and not on networks, can lead to undesirable
behavior and the difficulty of detecting them using invariants. The authors of
the current study are not aware of any experiment that investigates the impact
of intermittent attacks on ICS.

Contributions: (a) Invariant-based approach for attack detection in a specific
ICS. (b) Dependence of the invariant-based approach on the system state, and
several other parameters, when an attack is launched. (c) Impact of attack detec-
tion study on the design of the software and hardware of a specific ICS.

Organization: Section 2 describes the method used and the experiments con-
ducted. A brief introduction to SWaT is in this section. Results from the exper-
iment appear in Sect. 3. Discussion on various aspects of attack detection in
an ICS and design challenges, are in Sect. 4. Conclusions and plans for further
experimentation are in Sect. 5.

2 Method

2.1 Context: The SWaT testbed

SWaT is a fully operational scaled down water treatment plant for research in
the design of ICS resilient to cyber and physical attacks. In a small footprint
producing 5 gallons/minute of doubly filtered water, this testbed mimics large

94 S. Adepu and A. Mathur

Fig. 1. Water treatment in SWaT: P1 through P6 indicate the six stages in the treat-

ment process. Arrows denote the flow of water and of chemicals at the dosing station.

modern plants for water treatment such as those found in cities. The testbed
is available for investigating the response to cyber-attacks and for conducting
experiments with novel designs of physics-based and other attack detection and
defense mechanisms.

Water treatment process: The treatment process (Fig. 1) in SWaT consists of
six distinct and cooperating sub-processes P1 through P6. Each sub-process,
referred to as a stage, is controlled by an independent PLC. Thus, six PLCs
work in concert to control the entire process. Control actions are based on the
system state estimated by the PLCs using data from sensors.

Stage P1 controls the inflow of water to be treated, by opening or closing a
motorized valve that connects the inlet pipe to the raw water tank. Water from
the raw water tank is pumped via a chemical dosing station (stage P2) to another
UF (Ultra Filtration) feed water tank in stage P3. A UF feed pump in P3 sends
water via the UF unit to RO (Reverse Osmosis) feed water tank in stage P4.
Here an RO feed pump sends water through an ultraviolet dechlorination unit
controlled by a PLC in stage P4. In stage P5, the dechlorinated water is passed
through a 2-stage RO filtration unit. The filtered water from the RO unit is
stored in the permeate tank and the reject in the UF backwash tank. Stage P6
controls the cleaning of the membranes in the UF unit by turning on or off the
UF backwash pump.

Using Process Invariants to Detect Cyber Attacks 95

Communications: Each PLC obtains data from sensors associated with the cor-
responding stage, and controls pumps and valves in its domain. Ultrasonic level
sensors in each tank inform the PLCs of water level in the corresponding tank.
Several other sensors are available to check the physical and chemical proper-
ties of water flowing through the six stages. PLCs communicate with each other
through a separate network. Communications among sensors, actuators, and
PLCs can be via either wired or wireless links; manual switches allow switch
between the wired and wireless modes.

Attacking SWaT: The wireless network in SWaT connects PLCs to sensors,
actuators, and to the SCADA server and an engineering workstation. Attacks
that exploit vulnerabilities in the protocol used, and in the PLC firmware, are
feasible and could compromise the communications links between sensors and
PLCs, PLCs and actuators, among the PLCs, and between PLC and SCDA and
the historian. Having compromised one or more links, an attacker could use one
of several strategies to send fake state data to one or more PLCs, or simply do
reconnaissance for a possibly subsequent attack.

2.2 Experiments

System State. Components and states: Each PLC in SWaT controls one or
more actuators such as a pump. A Local Component Set consists of components
whose state is directly sensed by a PLC and the actuators that the PLC controls.
The actions of a PLC depend on the state of the components in its LCS, and
might also depend on the state of components in the LCS of one or more other
PLCs. In the latter case a PLC can communicate with the other PLCs via
the communication network to retrieve the required state data. The union of
LCS for each PLC constitutes the Global Component Set (GCS). The local state
of SWaT is comprised of the respective observable states of components under
direct control of a single PLC, i.e., that of its LCS. A collection of local observable
states of all six PLCs in SWaT constitutes its global state. It is important to
note that only the observable properties of the process and its components are
included, and used for attack detection, in the local and global states.

State set: As shown in Table 1, three distinct local observable states were selected
for the experiments reported here. These are the states when an attack is
launched. In S1

0 the level of Tank T101 is constant during the attack. In S2
0

the level of T101 is increasing which happens when the level goes below a pre-
determined value. In S3

0 the level in Tank T101 is decreasing which could happen
because tank T201 in the sub-process in P3, is below a pre-determined level.
These three states of T101 are marked as A, B, and C in Fig. 2.

Attack Design. Attack types: In this work the focus is on attack detection
assuming that an attacker succeeds in launching it. While paths through a system
used by an attacker to enter by exploiting a system vulnerability, e.g., design
flaw in a PLC [6], is an important topic, it is not the focus of this work. The
number of possible attacks on an ICS is exorbitantly large. Three distinct types

96 S. Adepu and A. Mathur

Table 1. State of P1 at the time of attack launch.

System State Sensora State Description

S1
0 LIT101← HHb T T101 is full

MV101 Closed No flow into T101

P101 OFF No outflow from T101

S2
0 LIT101← L T101 is not full

MV101 open Water flows into T101

P101 OFF No outflow from T101;

S3
0 LIT101← H T101 is full

MV101 Closed No flow into T101

P101 ON Flow out of T101
aSensors not listed are not used during attack detection. As
marked, LIT101 is attacked.
bTank states: HH=1000 mm, H=800 mm, L=500 mm,
LL=250 mm.

of attacks were selected, namely, fixed bias (FB), fixed bias intermittent (FBI),
and variable bias intermittent (VBI). The choice of these three attack types was
motivated by (a) attacks used in [4] to study the effectiveness of a statistical
technique in detecting cyber attacks in a chemical process, and (b) a series of
thought experiments aimed at designing attacks that might be difficult to detect
in certain specific states of SWaT.

Stealthy attacks: A stealthy attack on a CPS is one that remains undetected
unless special detection mechanisms are in place. Such attacks have been studied
in the context of CPS [4]. While non-stealthy attacks are possible in SWaT, all

Fig. 2. Attack types (a) Fixed Bias (FB), (b) Fixed Bias Intermittent (FBI),

and(c) Variable Bias Intermittent (VBI), superimposed on physical property p(t) as

indicated by the dotted lines. In FB and FBI, the attacks follow the change in property

p(t) in an attempt to avoid detection. (d) FBI; bias and pulse width are fixed. (e) VBI;

bias b and pulse width Tw are varied.

Using Process Invariants to Detect Cyber Attacks 97

Table 2. Summary of states and parameters used in the experiments.

State or parameter Values Comments

Actuator and tank states {S1
0, S

2
0, S

3
0} States of various components of

SWaT set prior to launching
an attack; details are in
Table 1

Power outage {NPF, PF} Attack launched during normal
operation (NPF) and
immediately before or after
power outage (PF)

Attack type {FB, FBI, VBI} Fixed bias (FB), fixed bias
intermittent (FBI), and
variable bias intermitent
(VBI)

Bias (b) {{>4mm}, {<4mm}} Bias used each of the three
attack types

Pulse width (Tw) {8, 13} Width of the attack pulse (in
seconds)(Fig. 2 used in FBI
and VBI

Detection duration (n) 10 Number of sensor readings used
prior to announcing a
decision on whether the
sensor is under attack or not

attacks launched in the experiment reported here were stealthy as the system
software and hardware was unable to detect these until a system damage had
occurred [1].

Attack: As shown in Table 2, several attacks types were examined within each
state. For example, in NPF (No Power failure), an attack is launched after the
PLC has initialized itself with the current state of its local components. In PF,
an attack is launched just prior to the PLC starting to initialize itself and hence
does not yet have information about its local components. In addition, the bias
b used in an attack as well as the attack pulse width (Tw) were varied. The
duration of attack detection (n), i.e., the number of sensor readings used to
compute the invariant, was fixed at 10, where one reading is obtained every
second. A selection of one value from each set in Table 2 served to define an
attack. For example, an FBI attack was launched when SWaT was in state S1

0,
attack bias was larger than 4, pulse width was 8, and the system was operating
in a stable state, i.e., there was no power outage in the immediate past. Thus, a
total of 3 × 2 × 3 × 2 × 2 × 1 = 72 experiment combinations exist. Additionally,
a large number of trial runs had to be conducted to obtain reasonable values of
bias, width of the attack pulse, and parameter ε mentioned later in Eq. 4.

98 S. Adepu and A. Mathur

Attack procedure: The following general procedure was used to launch cyber
attacks in EXP.

1. Identify the tag to be manipulated in the attack; a tag is a memory location
where a PLC saves the received sensor data.

2. Compromise the wireless link between the SCADA computer and PLCs.
3. Manipulate the tag by setting its value different from that received by the

PLC. In the absence of any hardware or attack detection logic in the PLC
code, the PLC assumes the manipulated value to represent the true state of
the component that corresponds to the sensor whose output is manipulated.

2.3 State Estimation

Let x denote property p and y its measurement. y(k) denotes the sensor measure-
ment for x(k) at instant k. x̂(k) is an estimate of x(k). In the absence of sensor
errors and no cyber attacks, x̂(k) = x(k) = y(k). In EXP the water level in
tank T101 was considered as p. The level in T101 is measured by sensor LIT101
(Fig. 1) that was assumed to be under attack. Sensors FIT101 and FIT201 mea-
sure, respectively, water flow into and out of T101. These flow rates are denoted
as ui(k) for inflow, and uo(k) for outflow. In SWaT, each PLC obtains sensor
data at 0.1 second intervals though for detecting an attack data was sampled
from LIT101 every second as smaller sampling intervals did not offer any benefit
in attack detection in trial runs.

In EXP the attacker intent was to cause tank T101 to overflow and degrade
the performance of SWaT so that it produces less water than its normal capacity.
This intent was to be realized by attacking the level sensor LIT101 that measures
and reports x(k) to PLC 1 in stage P1. x̂(k + 1) was computed using methods
M1 and M2 described next.

Method M1: Open loop: In this method x̂(k+1) is estimated using x̂(k) as follows.

x̂(0) =y(0)
x̂(k + 1) =x̂(k) + α(uin(k) − uout(k)) (1)

where α converts flow rate to the change in the level of T101 using the physical
dimensions of the tank.

Method M2: Closed loop: In this method x̂(k + 1) is estimated using y(k) as
follows.

x̂(0) =y(0)
x̂(k + 1) =y(k) + α(uin(k) − uout(k)) (2)

Note that in M1 the estimate of tank level is updated using previous state
estimate with the initial value obtained from the sensor L101. In M2 the tank
level is estimated using sensor values. In trial experiments it was observed that
the open loop method is not suitable for deriving an invariant as the method
does not account for the change in system dynamics. Hence M1 was abandoned.

Using Process Invariants to Detect Cyber Attacks 99

2.4 Invariants

At time instant k+1, the water level in T101 depends on the level at time k and
the inflow and outflow at instant k. This relationship is captured in the following
idealized model of the tank,

x(k + 1) − x(k) = α(ui(k) − uo(k)), (3)

where (3) assumes perfect sensors which is not true in practice. Hence, to derive
a practically usable invariant, SWaT was run several times without any attacks
to estimate the mean μd and the standard deviation σd of d = (x̂(k)−y(k)) over
several runs, i.e., the mean and variance of the difference between the estimated
tank level x̂(k) and its measured value (y(k)). In these runs x̂(k) was computed
using the closed loop method M2 as in Eq. 2. Based on Eq. 3, the statistics
obtained experimentally, and converting the true states to their estimates, the
following conditions were derived to test whether or not sensor LIT101 is under
attack.

∑n
i=1(x̂(i) − y(i))

n
> ε, under attack, (4)

≤ ε, normal. (5)

In the conditions above, the average of the difference between the estimated and
the measured tank levels is tested against ε. Thus, a decision whether or not
LIT101 is under attack is taken from n sensor readings. Selection of n ought to
be done carefully as it impacts the detection effectiveness. In EXP n, was set
to 10. As described earlier, based on trial runs of SWaT without attacks, ε was
set to 0.55. Code that implements attack detection using the invariant in Eqs. 4
and 5 was added to the control algorithm already built into PLC 1.

3 Results

Data obtained from the experiments, and its analyses, are reported in the fol-
lowing.

3.1 Detection Effectiveness and Impact

In each of the three states when the attacks were launched (Table 1), there were
six attack modes, namely, FB-PF, FB-NPF, FBI-PF, FBI-NPF, VBI-PF, and
VBI-NPF. The attack detection results are summarized as follows.

1. Detection of attacks launched in FB-PF mode, and the system response, was
found to be independent of Tw. However, it does depend on bias b and the
initial state when the attack was launched. This happens because the PLC
looses prior state data (y(k)) from LIT101. Hence, it initializes x̂(0) by obtain-
ing y(0) from LIT101 which is under attack. Thus, the initial state estimate
is the tank level indicated by the attacker, i.e., (actual tank level+b), and not

100 S. Adepu and A. Mathur

the actual tank level for T101. This happens regardless of the initial states of
SWaT, i.e., S1

0, S2
0, and S3

0. From this point onwards, the PLC computes the
remaining values of x̂(k + 1) using the incorrect x̂(0). As explained next, the
response of SWaT now depends on the initial state and x̂(0). As there exist
several variations of the attack depending on the value of b, four sample cases
are discussed next.

Case 1: Initial state=S1
0, x̂(0)<L. [Attack not detected; tank overflow] PLC

opens MV101 and water starts flowing into T101. The invariant in Eq. 4 is
computed over the following 10 seconds. However, the condition for attack
detection is false and hence the attack is not detected. After some time T101
overflows.

Case 2: Initial state=S1
0, x̂(0)>L. [Attack not detected; performance degra-

dation] In this case the PLC does not open MV101. Assuming that the ultra-
filtration process is active, the level in T301 is reducing. When this level falls
below H then pump P101 will be started by PLC 1. This causes tank level
of T101 to decrease gradually while LIT101 continues to report the injected
value. Eventually T101 becomes empty, P101 is stopped and water stops flow-
ing into T301. This will cause the level in T301 to drop and eventually stop
P301 and the ultrafiltration process. This event will eventually lead to the
RO process stopping as there is no water to be filtered. Thus, this attack
leads to a reduction in system performance.

Case 3: Initial state=S2
0, x̂(0)<L. [Attack not detected; overflow] Given that

the bias is fixed and the attacker is following the water level trajectory in the
tank, MV101 will continue to be open until LIT101 indicates HH. However,
the attacker can control b such that the level indicated by attacked LIT101
is much lower than the tank level at attack launch. Thus, if tank level is
L1 < L immediately prior to the attack, and b = −200, then T101 will over-
flow because the buffer in T101, beyond level HH, is only 100 mm. In this
attack scenario, if b > 0 then the attack will not be detected and there will be
no overflow as the PLC will shut MV101 when the injected value of LIT101
reaches HH.

Case 4: Initial state=S3
0, x̂(0)>H. [Attack not detected; no damage] In this

case when the injected LIT101 value reaches L, MV101 will open and the
tank level will start to rise. Thus, the attack is not detected while the level
is decreasing. When the level begins to rise, the attacker will need to change
the bias to remain undetected as the scenario now is similar to the one in
case 3. For other values of b the attack is not detected and no damage done.

2. In the remaining five modes with b>4, all 30 attacks were detected. Several
experiments were performed to investigate the impact of b and Tw. With b=3
and Tw=8, 40 % of the attacks launched were detected and the remaining not
detected. With b= 3 and Tw= 13, 10 % of the attacks were detected, and the
remaining not detected. With b<3 none of the attacks were detected.

Using Process Invariants to Detect Cyber Attacks 101

3.2 Selection of n and ε

The experiments revealed the importance of selecting appropriate values of n and
ε used in the invariant to decide whether or not LIT101 is under attack. Data
from the experiments was used to investigate the relationship between n, ε, and
false alarms. Such investigation is also needed, and is underway, to understand
the relationship between n, ε and the attack detection effectiveness.

Figure 3 shows how false alarms depend on n and ε. The data in the plots in
Fig. 3 was collected over a period of 40 minutes of SWaT operation in NPF mode.
It is clear that the false alarms decrease as n and ε increase. For ε = 0.5, the best
value of n lies around 6. Similarly, for n = 3 the best value of ε is around 0.65.
Thus, n = 6 and ε = 0.65 appears to be the best combination if minimization of
false alarm rate is the objective. However, attack detection rate also reduces with
increasing n as well as with increasing ε. Thus, additional experiments need to be
conducted to find optimal values of n and ε that maximize the attack detection
rate while minimizing the false alarm rate.

Fig. 3. False alarms (a) vs n for ε = 0.5, (b) vs ε for n = 3.

4 Discussion

RF1: Two methods, namely, M1 and M2 are proposed for computing invariants
to detect cyber attacks in ICS. Both methods can be used to derive invariants
from the properties of the process that could be attacked. Experiments were
conducted using only M2 as M1 was not found suitable for use in a system with
changing dynamics.
RF2: In all experiments, attacks were launched when SWaT was in one of three
system states, namely, S1

0, S
2
0, and S3

0. Within each set there were two sub-states:
without system reset (NPF) and soon after system reset (PF) such as what might
happen after power is removed from the system. In NPF, the attack was launched
soon after SWaT was started but all PLC’s had executed their respective control
algorithms at least once. In PF, the attack was launched and the PLC reset
prior to it completing n cycles of code execution, where n is the attack detection

102 S. Adepu and A. Mathur

window. Results indicate that attack detection becomes challenging when the
attack is launched during PLC reset. Resetting a PLC causes it to loose the
prior state information. Thus, if an attack detection algorithm must initialize
its knowledge of the system state soon after the reset operation then doing such
initialization from the sensor ought to be avoided as the attacker might have
already compromised the sensor. Another approach could be to obtain the initial
state of the process from the historian where all sensor data is saved. Certainly,
this approach is advisable assuming that the sensor value saved in the historian
is the true state value and not the one sent by an attacker. Thus, even in the case
of a perfect attack detection algorithm, sensor data sent to the historian could
be from an attacker if the attack was not detected prior to the reset operation.
RF3: Derivation and implementation of the invariants in Eqs. 4 and 5 was rel-
atively straightforward. The invariant was implemented in Structured Text, a
commonly used programming language for PLCs. Adding this code to the exist-
ing code in PLC 1 had negligible impact (at most 3milli-seconds) on the time to
execute one scan cycle. It is not clear what will be the impact of adding code
that implements traditional schemes, e.g. Kalman filter or Lurenberger observer,
for removing noise from sensor data before it is used in computing the invariant.
However, one could complement a PLC with additional hardware, say based on
FPGA, that encodes the invariant and is connected to the main SCADA work-
station to send alerts. Doing so would not add computational load to the PLC.

Generality of invariant based detection: Invariants derived in EXP capture the
dynamics of tank level. In SWaT, several other invariants exist, but were not
derived. These include, invariants that relate water properties such as pH, ORP,
and conductivity as water flows across the chemical dosing station, UF, and RO
units. Such invariants are important to detect cyber attacks aimed at affecting
properties of water within a plant as well that coming out of a plant. However,
such invariants also depend on the chemical and physical properties of the units
involved. For example, the relation between the pH of water entering the RO
unit and that coming out as permeate, depends on the physical properties of
the membranes in RO. The time dependent nature of such properties requires
tuning of any parameters used in the invariant to reduce false positives. It is
evident that while for a specific sub-process in any ICS, one can define a process
invariant, many such invariants exist in one plant.

Multiple point attacks: The cyber attacks considered in EXP are single point. The
detection mechanism proposed in this work can be thwarted when the attacker
has access to the sensors used in the invariants. For example, in Eqs. 1 and 2,
sensors FIT101 and FIT201 are used to measure the inflow and outflow rates. The
detection method can fail when these two flow sensors are compromised. Thus,
to detect attacks on multiple sensors, one needs additional state information
that will likely be derived from one or more sub-processes in an ICS that are not
under attack. Doing so may or may not detect attacks, and even when detected,
the detection might be delayed based on the state of the sub-processes.

Using Process Invariants to Detect Cyber Attacks 103

Emerging design challenges: The following key design parameters were identified
in EXP: n and ε in Eq. 4; Aw: number of contiguous sensor inputs used by the
control logic in the PLC to decide whether to initiate an action on an actuator;
Tw: pulse width; and b: bias. n, Aw, and ε can be controlled in the software
that implements the attack detection and control algorithms in a PLC. However,
Tw and b are controlled by the attacker. Given the knowledge of n, ε, and Aw,
the attacker can adjust Tw and b and succeed in causing SWaT malfunction,
and especially so if the attack is launched before a PLC has been able to reset
itself, i.e., in the PF mode. Parameter Rw can be controlled to some extent
by selecting appropriate actuators. Thus, a key research question arises: How
should one determine the most appropriate values of Aw, n, and ε given the
uncertainty in Tw and b? This question assumes important in light of the fact
that sensors could lead to spurious data and that the error profile of a sensor
may change over time requiring the Dw and Aw to be retuned.

5 Conclusions and Future Work

An experimental investigation was undertaken to understand the effectiveness of
attack detection using process invariants. The experiments were performed on
an operational water treatment system. One water level sensor was selected as
the target of the attacker. An invariant was derived from the dynamics of water
flow into and out of a tank. Results from the experiments clearly indicate the
strengths and limitations of the invariant-based approach for attack detection.
Several ICS design parameters were identified. The appropriate values of these
parameters can be selected by the designer and depend on system dynamics.
Selection of parameter values is a subject of study by itself and needs to be
taken seriously to avoid false positives. Note that it is possible for an attacker
to bypass the detection method if the parameter values are known.

While the experiments indicate that the invariant-based detected method
is effective in detecting a variety of attacks, no claims are made regarding the
detection effectiveness in other domains such as power and transportation. A
theoretical study is needed to better understand why physics-based invariants
are, or are not, able to detect the attacks.

Acknowledgements. Kaung Myat Aung for assistance in conducting the experi-
ments. This work was supported by research grant 9013102373 from the Ministry
of Defense and NRF2014-NCR-NCR001-040 from the National Research Foundation,
Singapore.

References

1. Adepu, S., Mathur, A.: An investigation into the response of a water treatment
system to cyber attacks. In: Proceedings of the 17th IEEE High Assurance Systems
Engineering Symposium, Orlando, January 2016

104 S. Adepu and A. Mathur

2. Beaver, J., Borges-Hink, R., Buckner, M.: An evaluation of machine learning meth-
ods to detect malicious SCADA communications. In: 12th International Conference
on Machine Learning and Applications (ICMLA), vol. 2, pp. 54–59, December 2013

3. Berthier, R. Sanders.: Specification-based intrusion detection for advanced meter-
ing infrastructures. In: 17th IEEE Pacific Rim International Symposium on
Dependable Computing, pp. 184–193, October 2011

4. Cárdenas, A.A., Amin, S., Lin, Z.-S., Huang, Y.-L., Huang, C.-Y., Sastry, S.:
Attacks against process control systems: Risk assessment, detection, and response.
In: ACM Symposium on Information, Computer and Communications Security
(2011)

5. Choudhari, A., Ramaprasad, H., Paul, T., Kimball, J., Zawodniok, M., McMillin,
B., Chellappan, S.: Stability of a cyber-physical smart grid system using cooper-
ating invariants. In: 2013 IEEE 37th Annual Computer Software and Applications
Conference (COMPSAC), pp. 760–769, July 2013

6. ICS-CERT Advisories. https://ics-cert.us-cert.gov/advisories
7. Hadžiosmanović, D., Sommer, R., Zambon, E., Hartel, P.H.: Through the eye of

the PLC: Semantic security monitoring for industrial processes. In: Proceedings of
the 30th Annual Computer Security Applications Conference, pp. 126–135, New
York, NY, USA, ACM (2014)

8. Han, S., Xie, M., Chen, H.-H., Ling, Y.: Intrusion detection in cyber-physical sys-
tems: Techniques and challenges. IEEE Syst. J. 8(4), 1049–1059 (2014)

9. Hsiao, S.-W., Sun, Y., Chen, M.C., Zhang, H.: Cross-level behavioral analysis for
robust early intrusion detection. In: IEEE International Conference on Intelligence
and Security Informatics (ISI), pp. 95–100, May 2010

10. McParland, C., Peisert, S., Scaglione, A.: Monitoring security of networked control
systems: It’s the physics. IEEE Secur. Priv. 12(6), 32–39 (2014)

11. Niazi, R.H., Shamsi, J.A., Waseem, T., Khan, M.M.: Signature-based detection
of privilege-escalation attacks on Android. In: 2015 Conference on Information
Assurance and Cyber Security (CIACS), pp. 44–49, December 2015

12. Paul, T., Kimball, J., Zawodniok, M., Roth, T., McMillin, B.: Invariants as a unified
knowledge model for cyber-physical systems. In: IEEE International Conference on
Service-Oriented Computing and Applications (SOCA), pp. 1–8, December 2011

13. Rasti, R., Murthy, M., Weaver, N., Paxson, V.: Temporal lensing and its application
in pulsing denial-of-service attacks. In: IEEE Symposium on Security and Privacy
(SP), pp. 187–198, May 2015

14. Tartakovsky, A., Rozovskii, B., Blazek, R., Kim, H.: A novel approach to detection
of intrusions in computer networks via adaptive sequential and batch-sequential
change-point detection methods. IEEE Trans. Signal Process. 54(9), 3372–3382
(2006)

15. Thatte, G., Mitra, U., Heidemann, J.: Parametric methods for anomaly detection
in aggregate traffic. IEEE/ACM Trans. Netw. 19(2), 512–525 (2011)

16. Wu, Z.-J., Zhang, L., Yue, M.: Low-rate DoS attacks detection based on network
multifractal. IEEE Trans. Dependable Secure Comput. PP(99), 1–10 (2015)

https://ics-cert.us-cert.gov/advisories

Expression and Enforcement of Security Policy
for Virtual Resource Allocation in IaaS Cloud

Yanhuang Li1,2(B), Nora Cuppens-Boulahia2, Jean-Michel Crom1,
Frédéric Cuppens2, and Vincent Frey1

1 Orange Labs, 4 rue du Clos Courtel, 35510 Cesson-sévigné, France
{yanhuang.li,jeanmichel.crom,vincent.frey}@orange.com

2 Télécom Bretagne, 2 rue de la Châtaigneraie, 35510 Cesson-sévigné, France
{nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

Abstract. Many research works focus on the adoption of cloud
infrastructure as a service (IaaS), where virtual machines (VM) are
deployed on multiple cloud service providers (CSP). In terms of virtual
resource allocation driven by security requirements, most of proposals
take the aspect of cloud service customer (CSC) into account but do
not address such requirements from CSP. Besides, it is a shared under-
standing that using a formal policy model to support the expression
of security requirements can drastically ease the cloud resource manage-
ment and conflict resolution. To address these theoretical limitations, our
work is based on a formal model that applies organization-based access
control (OrBAC) policy to IaaS resource allocation. In this paper, we first
integrate the attribute-based security requirements in service level agree-
ment (SLA) contract. After transformation, the security requirements are
expressed by OrBAC rules and these rules are considered together with
other non-security demands during the enforcement of resource alloca-
tion. We have implemented a prototype for VM scheduling in OpenStack-
based multi-cloud environment and evaluated its performance.

Keywords: Cloud security · Resource management · Security policy

1 Introduction

Today cloud computing is essentially provider-centric. An increasing number
of fiercely competing CSPs operate multiple heterogeneous clouds. In terms of
IaaS, each provider offers its own, feature-rich solutions for customer VMs. More
significantly, in cloud IaaS, physical hardware is usually shared by multiple vir-
tual resources for maximizing utilization and reducing cost. Unfortunately, this
vision suffers from a lack of homogeneity: many cloud virtual resources can not
be deployed due to deficiencies in (1) unified expression; (2) interoperability.
Lack of unified expression results in vendor lock-in: services are tightly cou-
pled with the provider and depend on its willingness to deploy them. Lack of
interoperability stems from heterogeneity of services, and more importantly of

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 105–118, 2016.
DOI: 10.1007/978-3-319-33630-5 8

106 Y. Li et al.

service-resource mapping, not compatible across providers. For better interop-
erability and control, cloud brokering is nowadays the rising approach towards
a user-centric vision. It may be seen as a paradigm in delivering cloud resources
(e.g. compute, storage, network). With the help of brokering technology, user’s
security needs will be necessarily considered in cloud and these security require-
ments can be included in SLA contract which is a legal document where the
service description is formally defined, delivered, and charged.

Fig. 1. The proposed policy based process to allocate virtual resources

Therefore, to overcome the aforementioned issues, we enhance the broker-
ing technology by developing a configuration management process to allocate
VMs in IaaS cloud. Shown in Fig. 1, with WS-Agreement [1] based contracts,
both CSC1 and CSP specify and manage their security requirements related to
infrastructure in order to ensure end-to-end security across different components
(Steps 1,2). After receiving the SLA contracts, the broker derives the concrete
deployment policies according to security and non-security requirements (Steps
3,4,5). Particularly, the broker is able to arbitrate contradicting demands and
make decisions (Step 6). In the end, the broker applies un algorithm to generate
the final allocation solution (Step 7) then deploys and configures VMs on HOSTs
(Step 8). Our method is evaluated by setting up a cloud computing environment
to conduct virtual resource allocation process. Experimental results show that
our approach demands minimal user (CSC and CSP)’s intervention and enables
unskilled cloud users to have access to complex deployment scenarios. In par-
ticular, our solution tackles the lack of application of existing policy model that
1 In this paper, CSC stands for the end customer of cloud.

Expression and Enforcement of Security Policy for Virtual Resource 107

can support security expression when dealing with multiple clouds. Our contri-
bution meets key-functional requirement for user-centric as (i) it addresses the
SLA configuration options at the IaaS layer from service capacity to security
constraint. (ii) it considers multiple requirements of security and applies the
OrBAC model to translate attribute-based security constraint to concrete pol-
icy. (iii) it provides conflict management to detect and handle the contradictory
requirements from CSC and CSPs, with possibility to judge the policy prior-
ity by evaluating users’ profiles. (iv) it proposes a resource allocation algorithm
which takes resource capacity, QoS and security policy into account. To the best
of our knowledge, there is no method in the literature that considers all these
points.

The rest of the paper is organized as follows: Sect. 2 outlines the expres-
sion of security policy by CSC and CSPs with an exhaustive example. Section 3
illustrates the enforcement of security policy for VM allocation. Section 4 gives
an implementation integrated with our solution and evaluates four experiments.
Section 5 reviews existing proposals on cloud resource scheduling and security-
aware allocation solution. Section 6 concludes the paper and outlines future work.

2 Expression of Security Policy

2.1 SLA Contract Expression

To generate security policies for CSC and CSP, we suggest, as a first step, to spec-
ify a generic document, which describes the requirements for service capacity,
quality of service (QoS) and security constraint. SLA contract is such a docu-
ment used in service negotiation and management. Based on a well-formatted
template, CSP and CSC exchange their offers until reaching an agreement [2].
Among existing SLA specifications, we choose WS-Agreement because the for-
mat is open so that it can integrate various service parameters. Meanwhile,
WS-Agreement is widely used by lots of research and industrial projects such
as BREIN [3], IRMOS [4], and OPTIMIS [5]. Hence a WS-Agreement contract
consists of name, context, service terms, guarantee terms and negotiation con-
straints, CSC and CSP can integrate service capacity, QoS and security require-
ment in its structure.

In cloud computing, the CSP’s system can be viewed as a large pool of
interconnected physical hosts. We use HOST to present the finite set of hosts
from a CSP. Note that, VM and HOST may have multiple attributes each with
their own values and these attributes can be assigned either manually by a user
or automatically by the system. In terms of security requirement, as CSC and
CSPs do not know the information of each other, they express their security
constraints by attribute in Formulas 1, 2 and 3.

permission([Hattr name : Hattr value], [Vattr name : Vattr value]) (1)

permission([Hattr name : Hattr value], [vi]) (2)

separate(vi, vj) (3)

108 Y. Li et al.

In the three formulas, Hattr name and Vattr name indicate the attribute name of
HOST and VM respectively; Hattr value and Vattr value denote separately the
attribute value of HOST and VM; each of vi, vj represents a unique virtual
machine ID (VMID). Formulas 1 and 2 are used to specify the permission of
VM allocation: HOST(s) with attributes assigned is (are) permitted to deploy
VM(s). The difference is that in the first formula, the CSC specifies VM by
attribute and in the second formula, VMID is given directly. These two options
give the CSC more flexibility to express their security requirements. In addition,
the CSC declares the coexistence constraint by Formula 3: vi and vj can not
be allocated on the same HOST. Formula 4 is used by CSP to express the
deployment prohibition. Similar with Formula 2, HOST with HOSTID hi is not
permitted to deploy VM(s) assigned with attribute.

prohibition([hi], [Vattr name : Vattr value]) (4)

In an example that we will use throughout the paper, we consider an
DevOps [6] use case. DevOps is an emerged software development methodology
that enhances collaboration between development, quality assurance (QA) and
IT operations. Numerous companies are actively practicing DevOps since it aims
to help them to maximize the predictability, efficiency, security, and maintain-
ability of operational processes. Adoption of DevOps is being driven by many
factors including using public IaaS. Suppose that a software company has to
deploy 3 VMs (v1,v2,v3) in cloud for a development project. Each VM contains
its metadata such as properties, required volume, QoS specification and secu-
rity constraint. We suppose that each VM runs a project server and there exist
three types of VM: production (prod), development (dev), and test. prod server
runs live applications supporting the company’s daily business and the data is
public for e-business customers; dev server consists of development environment
thus developers with private right can access it; test server is used to conduct
software test between development and production phase and it is accessible by
testers with private login account. At the same time, there exist 2 CSPs (h1,h2)
and each has its own metadata such as price, location and state indicating if it
is certificated by security audit organizations. A readable illustration of VM and
HOST configuration is shown in Fig. 2.

2.2 Derivation of Security Policy

Security constraints need to be transformed to concrete security policies includ-
ing VMID and HOSTID. Here we suggest using the OrBAC [7] model which
supports the expression of permission and prohibition.

OrBAC in Brief. The OrBAC model is an extension of the role-based access
control (RBAC) [8] model. It defines a conceptual and industrial framework to
meet the needs of information security and sensitive communication and allows
the policy designer to define a security policy independently. The concept of
organization is fundamental in OrBAC. An organization is an active entity that

Expression and Enforcement of Security Policy for Virtual Resource 109

Fig. 2. An DevOps use case of virtual resource allocation

is responsible for managing a security policy. Each security policy is defined for
an organization. The model is not limited to permissions, but also includes the
possibility to specify prohibitions and obligations. Besides, the security rules
do not apply statically but their activation may depend on contextual condi-
tions [9]. Context [10] is defined through logical rules and it can be combined in
order to express conjunctive context, disjunctive context and negative context.
An OrBAC policy is defined as: security rule (organization, role, activ-
ity, view, context) where security rule belongs to {permission, prohibition,
obligation}. Once a security policy has been specified at the organizational level,
it is possible to instantiate it by assigning concrete entities to abstract entities
by the predicates which assign a subject to a role, an action to an activity and an
object to a view. Meanwhile, all the operations are related to a specified context:

– empower(org, subject, role): in organization org, subject is empowered in role;
– consider(org, action, activity): in organization org, action implements activity;
– use(org, object, view): in organization org, object is used in view;
– hold(org, subject, action, object, context): in organization org, subject does

action on object in context.

110 Y. Li et al.

Based on the above definitions, a concrete permission policy could be derived by
the following rule2:

permission(org, role, activity, view, context)
∧ empower(org, subject, role) ∧ consider(org, action, activity)
∧ use(org, object, view) ∧ hold(org, subject, action, object, context)
→ Is Permitted(subject, action, object)

From Security Constraint to OrBAC Policy. Derivation of OrBAC pol-
icy from security constraint requires policy mining technology which parses the
configured rules and automatically reaches an instance of high level model cor-
responding to the deployed policy. Most of the existing RBAC based mining
methods [11,12] generate abstract policy by taking concrete rules as input. How-
ever, in our scenario, both abstract and concrete rules should be derived from
attribute-based description. The following is the problem definition.

Definition 1. Policy Mining Problem
Given a set of attribute of Subject S (HOST), a set of attribute of Action A,

a set of attributes of Objects O (VM), and SAO attr an attribute-based subject-
action-object assignment relation (Formulas 1, 2, 4), find a set of ROLES, a
subject-to-role assignment SR, a set of activity ACTIVITIES, an action-to-
activity assignment AA, a set of VIEWS, an object-to-view assignment OV
and RAV⊆ROLES×ACTIVITIES×VIEWS, a many-to-many mapping of role-
to-activity-to-view assignment relation3.

Algorithm 1 explains the generation of permission policy. First of all, after
receiving contracts from CSC and CSPs, broker extracts the attribute informa-
tion of each VM and HOST then generates three kinds of structures as input: (1)
VM list: storing all the attributes of related VMs; (2) HOST list: storing all the
attributes of related HOSTs; (3) VM security constraint list: storing all the secu-
rity constraints of CSC. After initialization of policy p, concrete action deploy is
assigned to a new activity (lines 2,3). Then the relevant HOSTID list ID h list
and relevant VMID list V M v list are generated from each term in VM security
constraint list cv (line 4–6). For example, the relevant HOSTID and VMID for
the security constraint permission([“certificate” : “true”], [“purpose” : “dev”])
are HOST1 and VM1. After finding the relevant VMID(s) and HOSTID(s), an
abstract permission with a new role currentRole and new view currentV iew
is created (line 7–9). Finally, all the HOSTIDs in ID h list are assigned to
currentRole and all the VMIDs in V M v list are assigned to currentV iew (line
10–15). The prohibition policy for CSP is generated in the same way by taking

2 A concrete prohibition policy Is Prohibited(subject, action, object) could be derived
by the same way from prohibition(org, role, activity, view, context).

3 In this paper, all the rules share the same action (“deploy”), organization (“super-
Cloud”) and context (“default”). For reasons of simplicity, we do not illustrate orga-
nization and context in algorithm and policy.

Expression and Enforcement of Security Policy for Virtual Resource 111

input of VM list, HOST list and HOST security constraint list. Step 1 in Fig. 2
demonstrates an example of permission and prohibition generation.

Algorithm 1. permissionGeneration(lv, lh, cv): permission policy generation
Input: VM list lv, HOST list lh, VM security constraint list cv
Output: OrBAC policy p
1: Initiate p
2: p.activity ← create new activity
3: p.consider(“deploy”, p.activity)
4: for cvi in cv do
5: ID h list ← get relevant HOSTID(s) from lh
6: ID v list ← get relevant VMID(s) from lv
7: p.currentRole ← create new role for HOSTs in ID h list
8: p.currentV iew ← create new view for VMs in ID v list
9: pi ← create permission: permission(p.currentRole, p.activiy, p.currentV iew)

10: for IDhi in ID h list do
11: p.empower(IDhi, p.currentRole)
12: end for
13: for IDvi in ID v list do
14: p.use(IDvi, p.currentV iew)
15: end for
16: end for
17: return p

3 Enforcement of Security Policy

3.1 QoS Filtering

Shown in Step 2 of Fig. 2, this process aims to disable the permission which
does not satisfy the QoS constraint. To this end, an evaluation between VM’s
performance requirements and HOST’s capacity will be conducted. For exam-
ple, in our scenario, QoS requirements contain the term of availability and the
deployment permission between VM2 and HOST1 is disabled.

3.2 Conflict Management

After generating OrBAC policies from security constraint and executing QoS
filtering, the broker aggregates permission rules of CSC and prohibition rules of
CSP like:

permission({hi}, vk) (5)

prohibition(hj , {vl}) (6)

In Formula 5, each VM vk has a set of hosts {hi} which allow it to be deployed
and in Formula 6, a set of VM {vl} are not permitted to deploy on the HOST

112 Y. Li et al.

hj . The rewriting of rules is used to detect conflicts between permissions and
prohibitions. A conflict corresponds to a situation where a subject HOST is both
permitted and prohibited to perform a given action deploy on a given object VM.
We divide conflicts into the following two types and for each type an allocation
solution is proposed.

Type I: Conflict With Concession Space. Defined in Formula 7, HOST
hj is permitted and prohibited simultaneously to deploy VM vk. In fact, except
for hj , VM vk has other allocation solutions. In this case, we disable hj from
the allocation permissions of vk (Formula 8). For example, in step 3 of Fig. 2,
permission({h1, h2}, v3) and prohibition(h1, v3) belong to this type and the
solution is disabling permission(h1, v3).

conflict TypeI(hj , vk) ← permission({hi}, vk) ∧ prohibition(hj , {vl})
∧ hj ∈ {hi} ∧ vk ∈ {vl} ∧ ({hi} \ hj) �= φ

(7)

disable(permission(hj , vk)) ← conflict TypeI(hj , vk) (8)

Type II: Conflict Without Concession Space. Shown in Formula 9, com-
pared with the conflict of type I, the difference is that in Type II, except for hi,
VM vk has no other deployment solutions. In this case, we adopt a priority based
approach proposed in [13] and introduce two labels p(h) and p(v) as priorities of
VM and HOST. p1 ≺ p2 means that p2 has higher priority than p1. As virtual
resource allocation is related to different factors such as risk and trust, the pri-
orities could be predefined by users or determined by the broker. For example,
some of CSPs’ prohibitions can be disabled by the broker in case that the CSC
has a low risk score. Making decisions on priority is beyond the scope of this
paper and here we suppose that CSPs obtain higher priority to fulfill all their
security requirements. Thus, in Formula 10, the current conflict resolution is
disabling the permission of hi. For example, the solution for permission(h3, v1)
and prohibition(h3, v1) is disabling the former rule.

conflict TypeII(hi, vk) ← permission(hi, vk) ∧ prohibition(hj , {vl})
∧ hi = hj ∧ vk ∈ {vl}

(9)

disable(permission(hi, vk)) ← conflict TypeII(hi, vk) ∧ p(vk) ≺ p(hi) (10)

3.3 Virtual Resource Allocation

The aim of previous steps is to generate the final VM allocation solution. Without
loss of generality, we demonstrate the generation of allocation solution from
security policy by considering the CSC’s preference on price. Algorithm 2 shows
the resource allocation process. It takes permission policy p, VM list lv, HOST
list lh and separation constraint c as input and generates the deployment solution
which maps VMs to HOSTs. In each permission rule, VMID and a list of its

Expression and Enforcement of Security Policy for Virtual Resource 113

possible target HOSTs are extracted (line 1–4). To satisfy the price preference
of CSC, the target HOSTs are ranked from low price to high price (line 5) thus
the one with the lower price will be chosen preferentially. The final deployment
solution depends on mainly two factors (line 9): (1) if the VM has coexistence
conflict with the VMs which have been already deployed on the HOST. (2) if the
HOST has enough volume to deploy the VM. Step 4 in Fig. 2 shows an example
of resource allocation.

Algorithm 2. resourceAllocation(p, lv, lh, c): virtual machine allocation
Input: OrBAC permission p, VM list lv, HOST list lh, separation constraint c
Output: deployment solution
1: for each concrete rule ri in p do
2: if ri is active then
3: IDvi ← get object in ri
4: ID h list ← get all the HOSTIDs permitted for IDvi in ri
5: Rank ID h list from low price to high price
6: for IDhj in ID h list do
7: vi ← get VM from lv by IDvi

8: hj ← get HOST from lh by IDhj

9: if IDvi not in separation constraint c
and hj has enough volume for vi
and vi has not been allocated then

10: add (vi attaches host hj) to solution
11: end if
12: end for
13: end if
14: end for
15: return solution

4 Implementation and Evaluation

SUPERCLOUD [14] is a European project which aims to support user-centric
deployments across multi-cloud and enable the composition of innovative trust-
worthy services. Its main objective is to build a security management architecture
and infrastructure to fulfill the vision of user-centric secure and dependable
clouds of clouds. One use case is developing a middle-ware layer between CSC
and CSPs and this middle-ware could allocate virtual resources on physical
infrastructures. In this context, there is a need to consider a multi-cloud envi-
ronment with security constraints. For example, virtual resources should not be
mapped to physical resources that do not comply with its security requirements;
physical resources should not deploy virtual resources that are potentially harm-
ful to its operation; or virtual resources should not coexist on the same physical
resource as another potentially malicious virtual resource [15].

114 Y. Li et al.

In order to implement and evaluate our virtual resource allocation framework,
we setup an IaaS cloud environment on a physical machine (Intel(R) Core(TM)
i7-4600U 2.7 GHz with 16 GB of RAM running Windows 7). Then different VMs
(2 cores and 2 GB of RAM) are created on VirtualBox platform with Ubuntu
system. We now install DevStack [16] based cloud framework, a quick instal-
lation of OpenStack [17] ideal for experimentation. Each VM is regarded as a
physical HOST for the purpose of experimentation. At the same time, a JAVA
based program runs as cloud broker and it connects VirtualBox platform by
SSH protocol. The OrBAC policy is generated and managed by the JAVA-based
OrBAC API [18]. Figure 3 illustrates our experimental architecture.

Fig. 3. Implementation for virtual resource allocation

4.1 Experiment 1: Contract Processing

This experiment measures the duration for contract processing which is the
runtime required by the broker to process the JSON [19] based WS-Agreement
file and generates VM and HOST list. Since there does not exist a great difference
between SLA contracts of VM and HOST, here we measure contract processing
time for VMs. We vary the VM number from 0 to 125 and for each number we
randomly generate service attributes in different quantity from 5 to 20. Figure 4
shows the result. For a small scope of VM and attribute number, the runtime
is very low (30 ms). The time increases with bigger scope of VM and attribute
number. The maximum duration of the experiment is less than 100ms which
indicates that the runtime is acceptable.

4.2 Experiment 2: Policy Generation

In the second experiment, we analyze the required time for OrBAC policy gener-
ation (Algorithm 1 for permission and similar algorithm for prohibition genera-
tion) once contracts are processed by the broker. In Fig. 5, we study the amount
of time the broker takes to generate security policies with increasing number of

Expression and Enforcement of Security Policy for Virtual Resource 115

VM and HOST. For example, 60 as values in x-axis and y-axis indicates that
there exist 60 VMs and HOSTs and the corresponding value in z-axis (400 ms)
shows the short time needed to generate the OrBAC policies.

4.3 Experiment 3: Allocation Latency

Our third experiment investigates the impact of VM number and HOST number
on the execution time of Algorithm 2. In Fig. 6, VM and HOST number vary from
10 to 60. Given 60 as VM and HOST number, the allocation latency takes about
only 1 s. In real case, as HOST number is limited, the estimation of allocation
latency is acceptable and it confirms the efficiency of our resource allocation
algorithm.

4.4 Experiment 4: Price

The experiment measures the cost for CSC after VM allocation. We generate
VMs randomly from 10 to 60 and configure 8 HOSTs. For simplicity, each HOST
is supposed to provide only one type of IaaS solution with price fixed from 0.02
dollars/hour to 0.08 dollars/hour4. Then we compare the total price between
two allocation solutions (Fig. 7). The first solution is Algorithm 2 which concerns
CSC’s price preference and the second solution does not consider it thus VMs are
allocated arbitrary on HOSTs. As a result, Algorithm 2 shows a great advantage
in reducing the deployment cost.

5 Related Work

Although virtual resource scheduling problems are NP-complete, it is well-
studied by the research community by proposing various heuristic and approx-
imate approaches for addressing different issues. Among three service mod-
els (SaaS, PaaS and IaaS) of cloud computing, virtual resource allocation in
IaaS cloud has been considered by some works in the literature. Some of these
works [20,21] focus on the capacity of CSP. In this case, some strategies like
immediate, best effort and Nash equilibrium [22] have been applied to alloca-
tion algorithm in order to optimize the deployment algorithm with constraints
such as QoS and energy [23]. Another effort is SLA-oriented resource manage-
ment [24]. Among lots of requirements of CSC, security is a critical issue to
be taken into account [25]. Bernsmed et al. [26] present a security SLA frame-
work for cloud computing to help potential CSCs to identify necessary protec-
tion mechanisms and facilitate automatic service composition. Berger et al. [27]

4 The prices are inspired from current cloud IaaS solution of Amazon EC2 and
Microsoft Azure. For example, in Amazon EC2, price for the instance of m4.xlarge
(4 cores, 16 GB RAM) is 0.239$/h and it costs 0.308$/h (4 cores, 7 GB RAM) for
the instance of A3 in Microsoft Azure.

116 Y. Li et al.

0

2
5

5
0

7
5

1
0
0

1
2
5

0

10

20

30

40

50

60

70

80

90

100

VM number

T
im

e
(m

s)

5 Attributes

10 Attributes

15 Attributes

20 Attributes

Fig. 4. Time for contract processing

10 20 30 40 50 6010
20

30
40

50
60

0

100

200

300

400

500

VM number HOST number

T
im

e
(m

s)

Fig. 5. Time for policy generation

10 20 30 40 50 6010
20

30
40

50
60

0

200

400

600

800

1,000

1,200

VM number HOST number

T
im

e
(m

s)

Fig. 6. Latency for VM allocation

10 20 30 40 50 60
0

20

40

2 4.3
7

10
13.5 14

4.7

10.9

18.2
22.4

26

32

VM number

P
ri

ce
(d

o
ll
a
r/

h
)

With price preference

Without price preference

Fig. 7. Total price for VM allocation

take isolation constraint and integrity guarantee into consideration and imple-
ment controlled access to network storage based on security labels. In [28], dif-
ferent virtual resource orchestration constraints are resumed and expressed by
attribute-based paradigm. Regarding these constraints, a conflict-free strategy
is developed to mitigate risks in IaaS Cloud [29]. Most of above works have been
motivated from security requirements expressed by CSC. In [30], CSP speci-
fies its security requirements including forbid constraint which forbids a set of
VM instances from being allocated on a specified HOST. However, in multi-
cloud environment, as CSC and CSPs do not have vision of each other before
establishing contract, specifying security requirement can be very tricky for both
sides. The main focus of these efforts is scheduling VMs either for the purpose
of high-performance computing or satisfying security constraints according to
the requirements of CSC. Our approach is to capture security and non-security
requirement from both CSC and CSP, and apply a formal policy model to drive
virtual resource allocation.

6 Conclusion

In this paper, we have presented, formalized and enforced security requirement
for virtual resource allocation. We first present the SLA contracts for CSC and

Expression and Enforcement of Security Policy for Virtual Resource 117

CSPs which contain service capacity, QoS and security constraint. We then trans-
form the attribute-based SLA contract to concrete OrBAC policies. Finally, we
allocate virtual resources after resolving conflicts in policies and demonstrate the
efficiency and reliability of our solution by OpenStack-based implementation.

In future works, we plan to investigate the decision making during the con-
flict resolution. Another potential direction is to develop a suitable front-end
application interface for SLA contract specification.

Acknowledgments. The work reported in this paper has been supported by ANRT
(Association Nationale de la Recherche et de la Technologie) and Orange as a CIFRE
(Conventions Industrielles de Formation par la REcherche) thesis and the work of
Nora Cuppens-Boulahia and Frédéric Cuppens has been partially carried out in the
SUPERCLOUD project, funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 643964.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification
(ws-agreement). In: Open Grid Forum. vol. 128, 216 (2007)

2. Li, Y., Cuppens-Boulahia, N., Crom, J.M., Cuppens, F., Frey, V.: Reaching agree-
ment in security policy negotiation. In: 2014 IEEE 13th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 98–105. IEEE (2014)

3. Muñoz, H., Kotsiopoulos, I., Micsik, A., Koller, B., Mora, J.: Flexible SLA nego-
tiation using semantic annotations. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 165–175. Springer, Heidelberg
(2010)

4. http://www.irmosproject.eu/
5. Ziegler, W., Jiang, M., Konstanteli, K.: Optimis sla framework and term languages

for slas in cloud environment. OPTIMIS Project Deliverable D 2 (2011)
6. http://en.wikipedia.org/wiki/DevOps
7. Kalam, A.A.E., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,

Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In:
Proceedings of the IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, POLICY 2003, pp. 120–131. IEEE (2003)

8. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 2, 38–47 (1996)

9. Cuppens, F., Cuppens-Boulahia, N.: Modeling contextual security policies. Int. J.
Inf. Secur. 7(4), 285–305 (2008)

10. Coma, C., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.R.: Context ontology for
secure interoperability. In: Third International Conference on Availability, Relia-
bility and Security, ARES 2008, pp. 821–827. IEEE (2008)

11. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: finding a minimal descrip-
tive set of roles. In: Proceedings of the 12th ACM Symposium on Access Control
Models and Technologies, pp. 175–184. ACM (2007)

12. Hachana, S., Cuppens-Boulahia, N., Cuppens, F.: Mining a high level access control
policy in a network with multiple firewalls. J. Inf. Secur. Appl. 20, 61–73 (2015)

http://www.irmosproject.eu/
http://en.wikipedia.org/wiki/DevOps

118 Y. Li et al.

13. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level conflict manage-
ment strategies in advanced access control models. Electron. Notes Theor. Comput.
Sci. 186, 3–26 (2007)

14. http://www.supercloud-project.eu/
15. Fernando, M.V., Ramos, N.N.: Preliminary architecture of the multi-cloud network

virtualization infrastructure. Technical report (2015)
16. http://docs.openstack.org/developer/devstack/
17. https://www.openstack.org/
18. Autrel, F., Cuppens, F., Cuppens-Boulahia, N., Coma, C.: Motorbac 2: a security

policy tool. In: 3rd Conference on Security in Network Architectures and Informa-
tion Systems (SAR-SSI 2008), pp. 273–288. Loctudy, France (2008)

19. http://en.wikipedia.org/wiki/JSON
20. Ferreira Leite, A., Alves, V., Nunes Rodrigues, G., Tadonki, C., Eisenbeis, C.,

Alves, M., de Melo, A.C.: Automating resource selection and configuration in inter-
clouds through a software product line method. In: 2015 IEEE 8th International
Conference on Cloud Computing (CLOUD), pp. 726–733. IEEE (2015)

21. Nathani, A., Chaudhary, S., Somani, G.: Policy based resource allocation in IaaS
cloud. Future Gener. Comput. Syst. 28(1), 94–103 (2012)

22. Wei, G., Vasilakos, A.V., Zheng, Y., Xiong, N.: A game-theoretic method of fair
resource allocation for cloud computing services. J Supercomputing 54(2), 252–269
(2010)

23. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

24. Buyya, R., Garg, S.K., Calheiros, R.N.: Sla-oriented resource provisioning for cloud
computing: challenges, architecture, and solutions. In: International Conference on
Cloud and Service Computing (CSC 2011), pp. 1–10. IEEE (2011)

25. Li, Y., Cuppens-Boulahia, N., Crom, J.-M., Cuppens, F., Frey, V., Ji, X.: Sim-
ilarity measure for security policies in service provider selection. In: Jajodia,
S., Mazumdar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 227–242. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-26961-0 14

26. Bernsmed, K., Jaatun, M.G., Undheim, A.: Security in service level agreements for
cloud computing. In: CLOSER, pp. 636–642 (2011)

27. Berger, S., Cáceres, R., Goldman, K., Pendarakis, D., Perez, R., Rao, J.R., Rom,
E., Sailer, R., Schildhauer, W., Srinivasan, D., et al.: Security for the cloud
infrastructure: trusted virtual data center implementation. IBM J. Res. Dev. 53(4),
1–12 (2009)

28. Bijon, K., Krishnan, R., Sandhu, R.: Virtual resource orchestration constraints in
cloud infrastructure as a service. In: Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, pp. 183–194. ACM (2015)

29. Bijon, K., Krishnan, R., Sandhu, R.: Mitigating multi-tenancy risks in iaas cloud
through constraints-driven virtual resource scheduling. In: Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies, pp. 63–74. ACM
(2015)

30. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: IEEE 15th International Conference on Com-
putational Science and Engineering (CSE 2012), pp. 170–177. IEEE (2012)

http://www.supercloud-project.eu/
http://docs.openstack.org/developer/devstack/
https://www.openstack.org/
http://en.wikipedia.org/wiki/JSON
http://dx.doi.org/10.1007/978-3-319-26961-0_14

Software Defined Networking
Reactive Stateful Firewall

Salaheddine Zerkane1(&), David Espes2, Philippe Le Parc2,
and Frederic Cuppens3

1 LabSTICC, IRT B<>COM, UBO, Télécom Bretagne,
35510 Cesson-Sévigné, France

Salaheddine.ZERKANE@b-com.com
2 LabSTICC, IRT B<>COM, UBO, 29200 Brest, France

{David.Espes,Philippe.Le-Parc}@univ-brest.fr
3 LabSTICC, IRT B<>COM, Télécom Bretagne, 35510 Cesson-Sévigné, France

Frederic.Cuppens@telecom-bretagne.eu

Abstract. Network security is a crucial issue of Software Defined Networking
(SDN). It is probably, one of the key features for the success and the future
pervasion of the SDN technology. In this perspective, we propose a SDN reactive
stateful firewall. Our solution is integrated into the SDN architecture. The appli-
cation filters TCP communications according to the network security policies.
It records and processes the different states of connections and interprets their
possible transitions into OpenFlow (OF) rules. The proposition uses a reactive
behavior in order to reduce the number ofOpenFlow rules in the data plane devices
and to mitigate some Denial of Service (DoS) attacks like SYN Flooding. The
firewall processes the Finite StateMachine of network protocols so as to withdraw
useless traffic not corresponding to their transitions’ conditions.
In terms of cost efficiency, our proposal empowers the behavior of Openflow

compatible devices to make them behaving like stateful firewalls. Therefore,
organizations do not need to spendmoney and resources on buying andmaintaining
conventional firewalls. Furthermore, we propose an orchestrator in order to spread
and to reinforce security policies in thewhole networkwith afine grained strategy. It
is thereupon able to secure the network by filtering the traffic related to an appli-
cation, a node, a subnetwork connected to a data plane device, a sub SDN network
connected to a controller, traffic between different links, etc. The deployment of
rules of the firewall becomes flexible according to a holistic network view provided
by the management plane. In addition, the solution enlarges the security perimeter
inside the network by securing accesses between its internal nodes.

Keywords: Software defined networking � Stateful firewall � Security �
Orchestration � TCP

1 Introduction

Classical networks are complex due to the lack of abstraction and due to the hetero-
geneity of the network infrastructure. They are costly in terms of deployment, main-
tenance and reconfiguration. Also, their structure is statically defined which makes

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 119–132, 2016.
DOI: 10.1007/978-3-319-33630-5_9

tedious their provisioning and upgrading. In this context, Software Defined Networking
(SDN) proposes new network architecture [1] to face the challenges of legacy net-
works. It is based on the physical separation of the data plane and the control plane.

The SDN architecture is organized in two layers. The data plane is responsible for
forwarding the network traffic. It is organized into a set of SDN compatible devices
connected to each other. The control plane embeds the network intelligence: the
controller and the network applications. It is responsible for network configuration and
for programming the data plane devices. It offers also an interface to the network
applications, to enable them manipulating the data plane layer. They interact with the
controller by a Northbound API which allows them also to collect network data and to
transfer their commands to the controller, via a specific interface.

The controller interacts with the data plane via a standardized southbound API.
OpenFlow [2, 3] is the most common interface. It enables the controller to install
Openflow rules in the data plane layer and reprogram it through its flow tables. A flow
table is a collection of flow entries. Each entry is a composition of matching fields, an
instruction describing the way of executing a set of actions and many counters to keep
traffic statistics. The data plane devices process the traffic according to their OpenFlow
tables. The inward packets’ headers are compared to the matching fields. If there is a
correspondence between them then the instruction is executed. More, the controller can
add, modify and delete flow entries. It collects the counters andmay receive encapsulated
packets in Openflow format (packet-in) from the data plane devices to process them.

Potentially, SDN will offer [4] advanced abstractions by adding visibility to net-
work applications and services and by simplifying network administration. It will
enable transparent levels of scalability while elevating user experience. It will save
costs of network provisioning, deployment and maintenance. Additionally, it will
enhance network agility by easing network function virtualization and automating
network configuration.

SDN security is challenging and two sided [5]. On one side, SDN facilitates the
development and the integration of flexible, efficient and controllable security solutions.
It empowers security applications by providing them a network holistic view. However,
on the other side, it introduces new vulnerabilities into the network. Some of them can
have major impacts on the network. For example, breaching the controller will put the
entire network beneath the attacker’s control.

We propose a SDN stateful reactive firewall to protect the network from illicit
access. SDN firewalls offer many advantages compared to traditional firewalls. They
are cost effective because they enable to elevate the data plane with firewalling
behavior. Thus, legacy firewall devices are no longer needed. They are also flexible
since the controller can at any time reconfigure them and deploy them in any place.
They offer a management interface for administrators to ease their tasks. Also, they
enable them to apply efficiently the network security policies in the data plane devices.

Many stateless SDN firewall had been proposed in the SDN realm. We are the first
to propose an operational stateful SDN firewall. Moreover, our solution can also handle
stateless communications.

The proposed firewall behaves in a reactive mode according to a generic algorithm.
The later takes in entry the Finite State Machine (FSM) of any network protocol and
produces the appropriate Firewall machine. In each transition, it incorporates as set of

120 S. Zerkane et al.

OF rules to express the corresponding action. We propose a first implementation to
process TCP traffic. It receives connection synchronization packets, verifies their
legitimacy against the security policies and validates them. The reactive behavior of the
firewall saves flow table’s space in the data plane devices by reducing the number of
the installed flow rules. Besides, the firewall processes the traffic according to the states
of the connection. For each connection’s state, it receives only the traffic corresponding
to the transitions from this state. This mechanism enables to restrict the traffic to useful
communications and to mitigate some DoS attacks like Syn flooding.

Our solution is entirely integrated into the SDN architecture. We take full advan-
tage of the SDN paradigm in terms of automatization, flexibility, abstraction and
efficiency. In this regards, the firewall spreads dynamically the security policies
according to its global view and adapts its behavior whenever the topology is updated.
It installs its rules in any OpenFlow compatible device and enables the later to behave
according to the access control decisions alike a firewall. Besides, it enables the user to
express its policies without worrying about their installation and maintenance in the
network. In addition, it enables to save costs related to repetitive firewall maintenance
and provisioning tasks.

The architecture of the solution is as following. The application layer runs above
the controller. It expresses the logic of the firewall. Below, in the data plane layer, we
integrate a set of Openflow rules. These rules express the security policies according to
OpenFlow. Besides the two conventional SDN layers, we propose a management level
to orchestrate and reinforce the security policies. It enables the configuration of the
firewall management and provides the administrator with a global view on the network.

The remainder of this paper is organized as follow. In Sect. 2, we describe the state of
the art of SDN firewalls. In Sect. 3, we present the architecture and algorithm of our
solution. We provide in Sect. 4 the details of its implementation and the results of the
performance tests. Finally, we conclude with some insights and related perspectives, in
Sect. 5.

2 Related Work

A firewall is a mechanism used to protect a network by filtering the traffic coming or
going to an untrusted network [6]. It matches the packets’ headers of the untrusted
network with a set of security policies, and it filters them in order to allow only the
accepted traffic to enter the network. A security policy is a set of filtering rules
expressing the security policies of the organization [7]. Each filtering rule gathers 3
blocks. (1) A priority is used to determine the order of the rule’s execution. (2) Many
matching fields enable the classification of a packet based on the values of its headers.
(3) An action is applied to allow or deny the packet to its destination. There are mainly
3 types of firewalls [8–10]: stateless, stateful and application firewalls.

Stateless firewalls neither process nor keep in memory the different states of a
connection. They do not take into consideration dynamic network information such as
port source negotiation. Therefore, they are vulnerable and can be breached. Stateful
firewalls have been introduced to resolve the shortcomings of the previous technology.
They record in their memory the different states of a connection. They use, in addition,

Software Defined Networking Reactive Stateful Firewall 121

the attributes related to the states of a connection in their matching fields. Application
firewalls are advanced stateful firewalls. They use application layer matching fields to
classify packets and handle application level threats.

There are several works in the field of SDN stateless firewalls. Most of these
solutions use Openflow rules to express the firewall security policies. The authors in
[11–13] propose such SDN stateless firewalls. Their solutions forward to the controller
the unknown traffic for processing. The controller then, parses the packet headers and it
matches their values with the policy rules. The administrator can install the firewall
policy rules in the data plane using the Openflow protocol. In this case the controller
interprets these policies into Openflow rules and sends them to the data plane devices.

Besides, many SDN controllers propose their own version of stateless SDN firewall
[14]. These firewalls lack of user graphical interface and are connectionless. FleXam
[15–17] is an extension of Openflow which integrates a stateless firewall. It runs on the
controller and provides a means to specify a set of flow filters on specified parts of a
packet. Then, it applies the associated action to the packets.

Moreover, some SDN frameworks have been proposed to implement stateless
firewall functions. FRESCO [18, 19] offers the possibility to instantiate predefined
security modules and connect them together into a SDN stateless firewall. Flowguard
[20, 21] is another SDN framework. It provides means to build Openflow stateless
firewall rules into the data plane and to verify flow rule policy violations.

We have found in the literature one proposition [22] related to SDN stateful fire-
walls. The solution is based on Openflow and adds three new tables. This firewall
keeps a table in the controller to save the connections’ states and to synchronize the
controller with the connection updates happened on the data plane tables. The other two
tables are in the switch. One table manages the actual states of the connections and the
other enables the data plane devices to process the next states. The limitation of this
firewall relies on its excessive memory space consumption in the data plane and the
volume of the generated traffic with the controller in order to keep it synchronized.

3 Firewall Design

Our solution is integrated into the SDN architecture and uses Openflow as a way to
express the security policies. It is stateful since it records the states of the connections,
and processes the information related to these states to protect the network. The
behavior of the firewall is reactive. It reacts to the traffic by filtering packets and
accordingly installs the appropriate Openflow rules to manage their connection.

3.1 Firewall General Architecture

Our solution (see Fig. 1) is distributed into 3 levels. (1) The higher level offers
orchestration services including a security policies management. (2) A stateful firewall
application is integrated on the top of the control layer. It is responsible for processing
the states of the connections and installing the Openflow rules and filters connection
requests according to the security rules. (3) An OpenFlow level expresses the security
policies with OF rules which are installed in the data plane layer.

122 S. Zerkane et al.

The orchestrator offers a management interface so that the administrator can
express the security policies and access to the network global view. The orchestrator
can be considered as a federation point because it collects the security policies and
propagates them to the controllers. Also, it collects network data such as statistics and
network logs and keeps them into its database. Based on these data, the orchestrator
constructs a holistic network view including the network topology. In order to reinforce
and propagate the security policies, it uses an Access Table. It contains all the stateful
and stateless security policies specified by the administrator. The orchestrator manages
this table to propagate the security policies into the network.

The orchestrator can also configure the behavior of the Firewall Applications
dynamically. When the latter receives a new configuration, it loads the corresponding
module and stops the old one. Such configurations options are the behavior mode:
stateful or stateless, the event mode: periodic (according to a timer) or instantaneous
(according to a sensor) and the topology discovering mode: static (topology data
provided by the user) or dynamic (by learning dynamically the topology).

Each time a new controller joins the orchestrator, the latter sends to this controller
the security policies that concern the part of the network it controls. These security
policies are recorded in the Access table of the firewall application. Each controller is
connected to the orchestrator by a Rest API. It enables any type of controller to interact
with our orchestrator. It ensures also the interactions between each controller and its
instance of the Firewall Application.

When a new data plane device joins the controller, the firewall application produces
an OF universal rule and sends it to the new connected side. This rule matches with
connection initialization packets and executes a forward to controller action. The
firewall application also configures the data plane device by setting its table miss entry.
In this case, all packets without a correspondence are dropped by default. Hence, each
synchronization packet is sent to the controller which then transmits it to the firewall
application. The latter then, verifies if the connection is legitimate or not using the
Access table. In case the connection is rejected the packet is dropped.

Each instance of the firewall application uses a state table to record the connections’
states and their attributes. This table enables the application to keep track of the
connection, its state and its possible transitions to the next states. It is also used to
create State OF rules in order to restrict the traffic only to the packets corresponding to
the actual state and its possible transitions. This mechanism guaranties that the con-
troller receives only the events triggering the transitions from the actual state of the
Active connection. As an outcome, the Firewall Application reduces the load on the
controller and mitigates some DoS attacks like Syn flooding. Because, we can restrict
the number of synchronization requests for a connection, and clean the traffic from
packets which are inconsistent with the connection state. For example, when a con-
nection’s synchronization succeeds, the firewall denies any further synchronization
demand for it.

The data plane devices store in their Openflow tables (see Fig. 1) the security
policies in the Openflow rule structure. The universal rule matches with any syn-
chronization packet and executes a forward to the controller action. The Stateless rules
express the stateless policies of the firewall. The Stateful rules correspond to the
stateful behavior of the firewall Application and the tables miss entry to process

Software Defined Networking Reactive Stateful Firewall 123

unmatched traffic. Except for synchronization packets, any other traffic is dropped in
the data plane devices, if it is not corresponding to a legitimate connection state in the
firewall application. Therefore it contributes to mitigate some DoS attacks since
spoofed traffic will be directly dropped in the data plane devices.

The data plane devices perform firewalling behaviors by running the above OF
entries. In the SDN architecture, each data plane device can be seen as a firewall from
an external point of view. Thus, instead of using dedicated and specialized hardware,
the SDN firewall elevates the behavior of the switch by reprogramming it according to
the network security policies.

3.2 Firewall Generic Algorithm

The Class Firewall_General_Behaviour describes the generic algorithm of the firewall.
The algorithm is thought in a way to process the Finite States Machine (FSM) of any
communication protocol. It takes as entries the observed network events. Then, it
verifies them with the preconditions of the actual FSM’s state. If they fulfill the pre-
conditions, it applies the corresponding actions. The firewall adapts the FSM’s actions
according to OF protocol by interpreting the original actions into OF rules. Then, it
transits to the new state.

In our work we apply the generic algorithm to TCP communications. It has been
instantiated with TCP states, transitions, their preconditions and actions. We also
encapsulate some transitions’ actions with Openflow rules in order to comply with
Openflow standard.

In the first step, the Orchestrator sends the Universal OF Rule and the settings of the
table miss to all the Firewall Application instances. The following program code
describes the structure of the universal OF Rule for TCP communications.

Fig. 1. SDN Stateful firewall general architecture

124 S. Zerkane et al.

Through the controller, the Firewall Application is constantly listening to a
potential connection of new data plane devices. It reacts to the network events by
propagating the received Universal Rule and the settings of the table miss. It also,
installs the Openflow Stateful Rules when the state transitions are triggered. The
Firewall Application observes networks events according to two modes:

1. Periodic Mode: in this mode (see the Firewall_Periodic_Mode Class) the firewall
sets a timer to observe periodically new network events coming from the controller.
When the timer reaches its threshold, it sends a request to the controller to check if
any new data plane device has been connected or if any update happened in any
known data plane device. Once an alteration is observed, the firewall generates the
corresponding Openflow Universal Rule and the configuration of the table miss.
Then, it installs them on the new data plane device.

2. Instantaneous Mode: The firewall (see the Firewall_Instantaneous_Mode Class)
puts in place a sensor into the controller to collect new network events coming into
it. When the sensor detects a new data plane device, it prompts the firewall
immediately. Then, the firewall generates the corresponding Openflow Universal
Rule with the settings of the table miss and installs them on the new data plane
device.

The firewall application uses one of the previous modes to update the data plane
devices. When it receives a synchronization packet, it verifies its legitimacy. It checks
in the access table if the connection is accepted or denied. If there is no specified policy
for the connection in the table, it is denied by default. If the connection is accepted, an

Software Defined Networking Reactive Stateful Firewall 125

entry is created in the connection table. Then, the firewall verifies if the preconditions
in the packet activate any of the transitions from the actual connection’s state. If a
transition is found, the firewall applies the corresponding actions associated with it, and
then, it sends delete requests to the data plane device to remove the previous State
Openflow rules. In the opposite case, the packet is dropped. Finally it updates the state
in the state table and installs the new corresponding State OF rules. This mechanism
lessens the load of the traffic into the controller, because the data plane devices send
only the packets that can prompt the available transitions. Any traffic outside this zone
is automatically dropped in the data plane device.

4 SDN Firewall Proof of Concept

Wehave implemented the firewall on the RYU [23] controller using the Python language.
RYU is a software component SDN controller. It provides means to use multi-threading,
to parse and serialize packets and to communicate with different data plane devices. We
based our implementation on the instantiation of the generic algorithm for TCP. Then, we
deploy a testbed to measure the performance of the SDN firewall.

126 S. Zerkane et al.

4.1 Implementation

The firewall API (see Fig. 2) comprises two packages. The orchestrator package runs in
the management layer. It offers a General user Interface to manage the security policies
and the OF rules. It allows adding, modifying and displaying the security policies and
manages the static topology information. It offers to the administrator the possibility to
configure many parameters of the firewall such as event modes, behavior modes, etc. It
keeps open sockets with all the Firewall Application instances to communicate with
them. Through these canals, it sends management commands and collects network
events.

The core package (Firewall_Application) is running on the Ryu Controller. It is
mainly formed of the following components. (1) The firewall Manager Module keeps
an open socket with the orchestrator. It sends the data coming from the other modules
to the orchestrator and vice versa. (2) The Interpreter module translates the Admin-
istrator rules into Openflow rules according to the specification of the Openflow pro-
tocol. (3) The State_Table keeps the connection states, their properties and the firewall
policies. (4) The Logger class collects information on the firewall components, con-
nections data and traffic statistics. (5) The Static_Topology class provides data on the
network topology. (6) The Sentinel singleton is responsible for the interaction with the
controller. It configures also the firewall components and instantiates them. (7) The
Engine class expresses the behavior of the firewall in handling all the phases of a
stateful connection and in processing the communication between the client and the
server.

Fig. 2. Firewall API class diagram

Software Defined Networking Reactive Stateful Firewall 127

4.2 Test and Results

We deploy and configure our test environment (see Fig. 3) in mininet [24]. The latter is
a Python application to emulate virtual networks. Our mininet environment comprises
3 clients and a HTTP server. All are connected by their virtual network interfaces to a
virtual switch (OVS [25]). Each client runs a Python script which generates a number
of simultaneous queries to request data from the HTTP server. The Ryu controller is
remotely connected to the virtual switch via the virtual channel offered by mininet. It
offers an execution environment to the Firewall Application and ensures all its inter-
actions with the virtual environment. Besides we run the orchestrator and we connect it
with a socket to the firewall Application. Our environment is running under Ubuntu 14,
64 bits, 2 GB of RAM and 2 processors at 2.8 GHz. The effective average latency
between the controller and the switch is 0.25 ms, while the chosen bandwidth is
1 GB/s.

We perform two different experiments in order to show the impact of the firewall on
the connections’ processing times and its effects on the user quality of service. In the
first experiment (see Fig. 3) we remove from the test bed the orchestrator and the
firewall Application. Then, we activate the learning switch module of the Controller so
that it behaves like a learning switch. In this case, the virtual switch sends the
unmatched traffic to the controller. The latter maintains dynamically a table associating
each IP and Mac host addresses with an OVS port number. When the route is found in
the table, the controller installs the corresponding OF Rules to enable the switch to
forward directly the traffic to its destination. In case it does not find a port for the
unmatched packet, it broadcasts the packet to all the switch ports and it waits for an
answer to add the new correspondence (Fig. 4).

In the second experiment (see Fig. 3), we run the Firewall Application on the
Controller. We connect to them the Orchestrator and we disable the learning switch
module in order to let our firewall handling all the traffic.

Fig. 3. SDN Firewall experiment Environment

128 S. Zerkane et al.

In the two cases, the clients generate the same number of simultaneous TCP
connections. We started the tests with 10 simultaneous connections and ended at 1000
simultaneous connections per second in a continuous and a constant interval of time.
We perform in every experiment the following measurements: the average processing
time of a packet-in and the average TCP connection time (the average time needed to
process a complete TCP session). Furthermore, in the case of the experiment 2, we
measured the maximum and minimum time of packet-in processing.

We analyze the data with two objectives. The first one is the performance of the
firewall compared with a controller without a firewall (the learning switch controller).
In this case, we are interested in observing how much extra time the Firewall needs to
process the packet-in and the connections. Performance results are presented in Figs. 5
and 6. In the second case, we focus on the scalability of the firewall by observing the
evolution of the packet-in processing time zones with the number of simultaneous
connections. The results are presented in Fig. 7.

Figure 5 displays the Average packet-in processing time. We observe in both
experiments a rather constant average time. The average packet-in processing time of
the Firewall stays between 0.9 ms and 0.7 ms. For the learning switch controller it is
almost constant around 0.5 ms. The firewall takes 0.3 ms more than the learning switch
from 10 to 250 simultaneous connections then this extra time decreases to 0.2 ms till
1000 simultaneous connections. The time added by the firewall can be considered as
inconsequential. It does not also inflate with the surge of the number of parallel
connections.

Fig. 4. SDN Learning Switch experiment Environment

Fig. 5. Average processing times of packet-in

Software Defined Networking Reactive Stateful Firewall 129

The results regarding the average TCP connections time are shown in Fig. 6. In the
case of the firewall the Average time is almost steady (around 3.3 ms) from 10 to 100
simultaneous connections while for the learning switch the average time decreases from
2.6 ms to 1.4 ms. From 100 simultaneous connections, the average time of the firewall
increases till 250 simultaneous connections (5.4 ms) and then stays almost steady.
While for the learning switch it continues in each step to increase reaching at the end a
value of 4.7 ms. The processing time added by the firewall increases from 0.6 ms to
3.8 ms then decreases to 0.9 ms. The extra time added by the firewall in this case is
also insignificant and scale very well with the increase of the number of simultaneous
connections. In terms of Quality of Experience (QoE) this time is indiscernible for the
user and does not reach the TCP timeouts values.

In Fig. 7, we observe the amplitude of the Packet-in processing time values for the
firewall. It is almost steady (around 1.8 ms) all along the growth of the simultaneous
connections. The interval of the packet-in processing time values is as following. The
maximum values are between 2 ms and 1.6 ms while the minimum values are between
0.2 ms and 0.01 ms. The maximum and minimum values are related to RYU multi-
threading processing. The Engine threads are created by the Sentinel and then are put in
a queue. If the queue reaches an important size, the packet-in processing time increases
to the maximum values.

Fig. 6. Average TCP connections processing times

Fig. 7. Firewall Packet-in time values domain

130 S. Zerkane et al.

5 Conclusion

We introduce in this paper the first SDN reactive firewall. We speak about the
advantages of our solution in terms of flexibility, performance, security enforcement
and effectiveness. We discuss about its conceptual foundations based on a general
algorithm specified for the TCP protocol. Finally, we show the details of its imple-
mentation, its deployment in a virtual environment and the results of the tests.

We add to the SDN architecture an orchestrator to manage the network according to
a holistic view. We also integrate a Firewall Application which enforces the security
policy.

In terms of performance, our solution adds a negligible delay to process packet-in
or TCP connections. Regarding scalability, we show that the time processing does not
increase with the number of simultaneous connections. These results are encouraging
and confirm the effectiveness of our proposition.

We plan to consider the following enhancements in order to improve our solution.
The first improvement will focus on the evaluation part. We will deploy the SDN test
bed in a real environment. All the SDN elements will be hosted in dedicated powerful
machines. We will push the firewall capabilities to their limits in order to measure the
maximum number of connection that it can handle and the impacts on the network
performances. In the second enhancement, we propose to develop a meta-firewall on
the management plane. The orchestrator will instantiate it dynamically into different
firewall applications and will place them in different SDN locations. This specialization
will take into account the global view of the orchestrator, the spatial, historical and
temporal context of the SDN network and the type of the network communication
protocol.

References

1. Kreutz, D., Ramos, F.M.V., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: A comprehensive survey. Proc. IEEE 103, 14–76 (2014)

2. The Open Networking Foundation, OpenFlow Switch Specification (2014)
3. Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using OpenFlow: A survey.

IEEE Commun. Surv. Tutorials 16(1), 493–512 (2014)
4. Jammal, D.M., Singh, T., Shami, A., Asal, R., Li, Y.: Software-defined networking state of

the art and research challenges. J. Comput. Netw. 72, 1–24 (2014)
5. Schehlmann, L., Abt, S., Baier, H.: Blessing or curse? Revisiting security aspects of

Software-Defined Networking. In: 10th International Conference on Network and Service
Management, pp. 382–387 (2014)

6. Sharma, R.K., Kalita, H.K., Issac, B.: Different firewall techniques: A survey. In: 5th
ICCCNT (2014)

7. Zeidan, S., Trabelsi, Z.: A survey on firewall’s early packet rejection. In: International
Conference on Innovation and Information Technology, pp. 203–208 (2011)

8. Bidgoli, H.: Packet filtering and stateful firewalls, Handbook of Information Security,
Threats, Vulnerabilities, Prevention, Detection, and Management, pp. 526–536. Wiley,
New Jersey (2006)

Software Defined Networking Reactive Stateful Firewall 131

9. Trabelsi, Z.: Teaching stateless and stateful firewall packet filtering: A hands-on approach.
In: 16th Colloquium for Information Systems Security Education, pp. 95–102 (2012)

10. Guo, F., Chiueh, T.-C.: Traffic Analysis: From Stateful Firewall to Network Intrusion
Detection System, RPE report, New York (2004)

11. Collings, J., Liu, J.: An OpenFlow-based prototype of SDN-oriented stateful hardware
firewalls. In: IEEE 22nd International Conference on Network Protocols, Chapel Hill (2014)

12. Pena, J.G., Yu, W.E.: Development of a distributed firewall using software defined
networking technology. In: 4th IEEE International Conference on Information Science and
Technology, pp. 449–452 (2014)

13. Yoon, C., Park, T., Lee, S., Kang, H., Shin, S., Zhang, Z.: Enabling security functions with
SDN: A feasibility study. Comput. Netw. 85(1389–1286), 19–35 (2015)

14. Suh, M., Park, S.H., Lee, B., Yang, S.: Building firewall over the software-defined network
controller. In: The 16th International Conference on Advanced Communications
Technology, pp. 744–748 (2014)

15. Shirali-Shahreza, S., Ganjali, Y.: Efficient implementation of security applications in
openflow controller with FleXam. In: 21st Annual Symposium on High-Performance
Interconnects, pp. 49–54 (2013)

16. Shirali-Shahreza, S., Ganjali, Y.: FleXam: Flexible sampling extension for monitoring and
security applications in OpenFlow. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, pp. 167–168 (2013)

17. Shirali-Shahreza, S., Ganjali, Y.: Empowering software defined network controller. In: IEEE
International Conference on Communication, pp. 1335–1339 (2013)

18. Shin, S., Porras, P., Yegneswaran, V., Gu, G.: A framework for integrating security services
into software-defined networks. In: 2013 Open Networking Summit (2013)

19. Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.: FRESCO: Modular
composable security services for software-defined networks. In: Network and Distributed
System Security Symposium, pp. 1–16 (2013)

20. Hu, H., Han, W., Ahn, G.-J., Zhao, Z.: Towards a Reliable SDN Firewall, Open Networking
Summit (2014)

21. Hu, H., Han, W., Ahn, G.-J., Zhao, Z.: FLOWGUARD: Building robust firewalls for
software-defined networks. In: HotSDN 2014 (2014)

22. Juan, W., Jiang, W., Shiya, C., Hongyang, J., Qianglong, K.: SDN (self-defending network)
firewall state detecting method and system based on OpenFlow protocol. China Patent CN
104104561 A, 11 August 2014

23. RYU Team, component-based software defined networking framework. http://osrg.github.
io/ryu/. Accessed 27 August 2015

24. Heller, B.: Reproducible network research with high-fidelity emulation. Doctoral Thesis.
Stanford University (2013)

25. OpenVSwitch. http://openvswitch.org/. Accessed 2 September 2015

132 S. Zerkane et al.

http://osrg.github.io/ryu/
http://osrg.github.io/ryu/
http://openvswitch.org/

Phishing and Data Sharing

Teaching Phishing-Security: Which Way is Best?

Simon Stockhardt(B), Benjamin Reinheimer(B), Melanie Volkamer(B),
Peter Mayer, Alexandra Kunz, Philipp Rack, and Daniel Lehmann

Technische Universität Darmstadt, Darmstadt, Germany
{simon.stockhardt,benjamin.reinheimer,melanie.volkamer,peter.mayer,

alexandra.kunz,philipp.rack,daniel.lehmann}@secuso.org
https://secuso.org

Abstract. Ever more processes of our daily lives are shifting into the
digital realm. Consequently, users face a variety of IT-security threats
with possibly severe ramifications. It has been shown that technical mea-
sures alone are insufficient to counter all threats. For instance, it takes
technical measures on average 32 h before identifying and blocking phish-
ing websites. Therefore, teaching users how to identify malicious websites
is of utmost importance, if they are to be protected at all times. A num-
ber of ways to deliver the necessary knowledge to users exist. Among the
most broadly used are instructor-based, computer-based and text-based
training. We compare all three formats in the security context, or to be
more precise in the context of anti-phishing training.

Keywords: IT-security training · User study · Computer-based train-
ing · Instructor-based training · Text-based training · Phishing

1 Introduction

As our daily lives increasingly shift into the digital world, the number and variety
of security threats the average user faces on a daily basis increases as well. Tech-
nical measures are in place to mitigate these security threats, but they do not
offer sufficient protection [17]. One example that demonstrates this insufficiency
is phishing: it takes on average 32 h until automated phishing detection iden-
tifies and blocks malicious websites. During that time frame users will remain
unprotected if not taught how to protect themselves [11,16,21]. Security training
is widely accepted as one of multiple components for achieving higher end-user
IT-security [2]. Corresponding training approaches exist in different formats,
all offering different advantages and disadvantages. Especially instructor-based
training, computer-based training, and text-based training have been proposed
for delivering all kinds of IT-security knowledge to average end-users [13,14,20].

Instructor-based training describes training situations in which an instruc-
tor teaches the participants. Due to the presence of the instructor, this situation
allows for real-time feedback, questions and answers, as well as shifting the focus

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 135–149, 2016.
DOI: 10.1007/978-3-319-33630-5 10

136 S. Stockhardt et al.

of the training to suit the learners’ needs [8]. The term computer-based train-
ing describes training that is necessarily aided by technology (e.g. computers,
tablets, smartphones). The learner can train individually at the most convenient
times and can always stop learning to return at a later point in time. Like the
instructor-based training it also allows for direct feedback on the users perfor-
mance. Text-based training is based on reading material (e.g. printouts, PDF,
etc.). Analogously to computer-based training, text-based training offers self-
paced, individualized learning of the content. However, due to the static nature
of the format text-based training does not offer the possibility for individual
feedback or other interactive elements. In its basic form it does not require an
instructor or electronic devices (though some forms of text delivery, e.g. through
PDFs or websites, obviously necessitate a respective device). While the formats
have been compared in empirical evaluations, the existing literature lacks studies
comparing all three formats in the phishing context, when delivering the same
content with each format.

The goal of this work is to comparatively evaluate the three formats
instructor-based training, computer-based training, and text-based training
when delivering the same content through each format. For this purpose we
conducted a user study researching the following aspects: (1) effectiveness of
transferring the knowledge to the user, (2) user satisfaction, (3) confidence, and
(4) efficiency of the training formats. Our results indicate that instructor-based
training transfers knowledge significantly more effectively than any other format.
Instructor-based training also achieves the highest scores in user satisfaction and
confidence. Furthermore, text-based training is the most efficient format (time
spent with this format leads to more correct answers in comparison to the same
amount of time spent with any other format).

2 Training Material

Forourevaluationweuse theanti-phishing trainingNoPhish (secuso.org/nophish),
as it exists in all three different delivery formats: instructor-based, computer-based
and text-based training. Also NoPhish has previously undergone research deliv-
ered as computer-based and instructor-based training and has iteratively been
improved [4,5].

2.1 NoPhish Content

The NoPhish training content is based on findings from different academic dis-
ciplines. Firstly it is based on learning principles [22] such as practice, effect,
repetition and direct feedback in order to deliver an effective learning experi-
ence. Secondly it is based on a user-centered design [1].

The training is split into two parts: the introductory part and the main
part. The introductory part of the training material contains general informa-
tion about phishing. This includes possible consequences of phishing attacks to
emphasize the risks. It is based on the fact, that the URL is the only reliable

Teaching Phishing-Security: Which Way is Best? 137

Fig. 1. Structure of the URL.

indicator when it comes to deciding whether or not a website is a phish. As shown
by [10,15]. Afterwards, it explains where to find the URL, which is especially
important when using a mobile device. Users are more vulnerable to phishing
when using a mobilve device [9]. How the URL is structured is also explained
(Fig. 1).

The main part is split into four different lessons, which cover the most
common URL spoofing tricks [21]. Each lesson explains a specific spoof-
ing trick, namely (1) IP/Random URL, (2) Subdomain/Path (e.g. https://
facebook.login.com, https://login.com/facebook), (3) Name Extension (e.g.
http://facebook-login.com) and (4) Spelling (e.g. http://facebok.com). Infor-
mation about the spoofing trick contains detailed explanations on the type of
attacks as well as a number of legitimate and fraudulent examples (Fig. 2). Exam-
ples increase in complexity during the course of the training to challenge learners.
The number of examples per newly introduced spoofing trick increases with later
lessons.

2.2 Training Formats

The training formats differ from each other in terms of how the training is
delivered to the participants. We explain the differences in this section.

Instructor-Based Training: The exercises are given to the participants to be clas-
sified as phishing or legitimate in a plenary session. Answers are to be openly
discussed in the audience. The audience is encouraged to give feedback and
helpful advice if an example was answered incorrectly. During the exercises the
instructor moderates the discussion and answered questions to clarify misunder-
standings.

Computer-Based Training: The computer-based training format is delivered via
an Android application and is self administered by the participants. The appli-
cation gives direct feedback on correctness of answers. The exercise part was
designed in a playful manner containing gamification elements like lives and
“levels” (Fig. 3). The purpose of using gamification elements was to motivate
users. Progress in the game is granted only if a predefined number of phishing
and legitimate URLs has been identified correctly.

https://facebook.login.com
https://facebook.login.com
https://login.com/facebook
http://facebook-login.com
http://facebok.com

138 S. Stockhardt et al.

Fig. 2. Example taken from NoPhish PDF.

Fig. 3. Example screenshots taken from NoPhish android application.

Text-Based Training: The text-based training issues participants with the same
NoPhish PDF used in instructor-based training. This training format precludes
provision of feedback. Participants can take as much time as they wanted in
reading through the Material.

3 Methodology

We conducted a user study to answer the following research questions:

Research Question 1 - Effectiveness: (a) How effective are the formats in transfer-
ring knowledge to the participants? (b) Are there significant differences between
the three formats?

Teaching Phishing-Security: Which Way is Best? 139

Research Question 2 - User satisfaction: (a) How satisfying is it to learn with
each format? (b) Are there significant differences between the three formats?

Research Question 3 - Confidence: (a) What impact do the training formats
have on people’s confidence regarding their own abilities in correctly identifying
legitimate and fraudulent websites attacks? (b) Are there significant differences
between the three formats?

Research Question 4 - Time efficiency: (a) How much does a training group
increase in correctly recognizing phishing and legitimate URLs per minute
spent with the training? (b) Are there significant differences between the three
formats?

3.1 Study Design

A between subject design was used to answer our research questions. The instruc-
tor started by informing all participants about the purpose of the study and
emphasized the aim of evaluating the material rather then the individual stu-
dents knowledge. We obtained the consent of every student. For minors we
obtained the consent of their parents. The study was run in Germany. For
answering our research questions we send an instructor into the partaking school
to administer the different training formats to the participants. The instructor
had an active part in instructor-based training and was passive in computer-
based training as well as text-based training. The course of the user study was
split into the following phases:

Pre-Questionnaire: Participants were asked to fill out a pre-questionnaire which
contained 16 screenshots of webpages in a randomized order. Eight of these
screenshots had been altered to show a phishing URL in the adress bar while
the other eight screenshots showed legitimate URLs. Every URL spoofing cat-
egory was used twice. Participants were asked the following questions for each
screenshot: (1) Is the screenshot showing a phishing website or the legitimate
website? (2) How certain are you with your decision?

Training: We followed with the specific training format. The duration of text-
based training and computer-based training differed between participants. While
instructor-based training took exactly 45 min the other two formats differed
between participants. When participants had finished they received the Post-
Questionnaire.

Post-Questionnaire: The post-questionnaire contained 32 screenshot of web-
pages (Table 1) in a randomized order with 16 already shown in the pre-
questionnaire and 16 new ones. As in the pre-questionnaire we added eight
legitimate and eight phishing screenshots again using every URL spoofing cate-
gory twice. Therefore we ended with 16 phishing, 16 legitimate screenshots and
utilized every URL spoofing category four times.

140 S. Stockhardt et al.

General Survey: Following the post-questionnaire, participants were asked to
answer socio-demographic questions. We also included three statements based
on the system usability scale (SUS) [3] that were to be answered via a 5 point
Likert scale, namely:

– I enjoyed learning about phishing the way I did.
– I think I learned a lot.
– What I learned will help me protecting myself in the future.

3.2 Recruitment

We recruited our participants at a school. School settings offer access to groups of
participants that are homogenous in terms of sociodemographic factors like age
and educational level. For this purpose we contacted a vocational0 school which
has over one thousand students in total split over different professionalisation
branches. The school management valued our study as complementary to the
schools curriculum and cooperated with us by allowing us to use school hours
of 90 min to carry out both the training as well as the evaluation. This had
an impact on students motivation, it can be expected to make the results more
transferable to education in other contexts where participants are obliged to take
part in IT-security trainings (e.g. company context). The user study was carried
out in three different classes which were randomly assigned to one of the three
training formats. All participants taking part in this study were recruited from
the branch of information assistants.

Table 1. Legimitate and phishing URLs used in pre/post-questionnaires.

Pre and post questionnaire Post questionnaire only

Original https://www.chefkoch.de/login.php https://www.amazon.de/Angebote/b/...

https://www.ebay.de/rpp/Deals/reisen-... https://epaper.bild.de/

https://www.gmx.net/produkte/mail/... https://secure.ikea.com/webapp/wcs/...

https://plus.google.com/u/0/me https://touch.linkedin.com/login.html

https://www.m.spiegel.de/panorama/... https://www.stepstone.de/5/index.cfm...

https://www.blumen.tchibo.de/login... https://tagesschau.de/frontpage:.

https://www.t-online.de/wetter/... https://www.welt.de/sonderthemen/...

https://blog.xing.com/category/german/ https://de.yahoo.com/...

Phishing IP/Random URL

https://www.lhjwrpik.com/signin/Raum... https://www.lesen.de/abo/digital

https://130.83.162.6/signup/ https://198.176.23.15/Ip/pw/login

Subdomain/Path

https://badcat.com/mobile.twitter.com/... https://events-ma.de/www.gutefrage.net...

https://web.de.emailclient.com/ https://login.live.dub123.com/login.srf...

Name Extension

https://www.paypal-sicher.com/web... https://www.zalando-zahlungsarten.de/...

https://www.shopping-esprit.de/cgi/h2/... https://de.wikipedia-login.org/index...

Spelling

https://www.maxdorne.de/?fwe=true&... https://www.0tto.de/damenmode/...

https://www.windows.mircosoft.com/de... https://id.sueddeutsche.de/login

https://www.chefkoch.de/login.php
https://www.amazon.de/Angebote/b/
https://www.ebay.de/rpp/Deals/reisen-
https://epaper.bild.de/
https://www.gmx.net/produkte/mail/
https://secure.ikea.com/webapp/wcs/
https://plus.google.com/u/0/me
https://touch.linkedin.com/login.html
https://www.m.spiegel.de/panorama/
https://www.stepstone.de/5/index.cfm
https://www.blumen.tchibo.de/login
https://tagesschau.de/frontpage
https://www.t-online.de/wetter/
https://www.welt.de/sonderthemen/
https://blog.xing.com/category/german/
https://de.yahoo.com/
https://www.lhjwrpik.com/signin/Raum
https://www.lesen.de/abo/digital
https://130.83.162.6/signup/
https://198.176.23.15/Ip/pw/login
https://badcat.com/mobile.twitter.com/
https://events-ma.de/www.gutefrage.net
https://web.de.emailclient.com/
https://login.live.dub123.com/login.srf
https://www.paypal-sicher.com/web
https://www.zalando-zahlungsarten.de/
https://www.shopping-esprit.de/cgi/h2/
https://de.wikipedia-login.org/index
https://www.maxdorne.de/?fwe=true&
https://www.0tto.de/damenmode/
https://www.windows.mircosoft.com/de
https://id.sueddeutsche.de/login

Teaching Phishing-Security: Which Way is Best? 141

4 Results

In total, 81 participants participated. We recruited all participants from the same
school and 33 participants had a secondary school leaving certificate, 45 had a
high school qualification and three participants had a university degree. The
group that took part in instructor-based training had 30, computer-based train-
ing 25 and text-based training 26 participants. The instructor-based training
group had 2 female and 28 male participants with a mean age of 17.33 (±1.06)
and the computer-based training group had 10 female and 14 male participants
with a mean age of 20.48 (±4.82). The text-based training group had 2 female
and 24 male participants with a mean age of 21.62 (±5.177).

Research question 1 - Effectiveness: Starting with (a) the effectiveness in knowl-
edge transfer of the different formats and (b) the differences in effectiveness
between the formats, we measured effectiveness as the number of correct answers
for both phishing URLs, legitimate URLs and overall.

(a) First of all we look at the general effectiveness in knowledge transfer.
Therefore we evaluated the mean difference between pre-questionnaire and post-
questionnaire. A repeated measures ANOVA determined that the mean cor-
rect answers differed statistically significant between pre- and post-questionnaire
(F(1, 78) = 3918.92, P < 0.001, η2 = .98).

(b) Likewise to the general effectiveness in knowledge transfer the training
format (Fig. 4) showed a statistically significant difference for the mean differ-
ences (p < .001, η2 = .255).

Fig. 4. Mean correct answers for pre & post legimitate and phishing URLs with 95 %
confidence interval (in %).

Post-hoc tests for overall correct answers using the Games Howell correc-
tion, for different number of participants per group and violated homogeneity
of variance, revealed that the difference between computer-based training and
instructor-based training is statistically significant (p < .001). The same goes for

142 S. Stockhardt et al.

computer-based training and text-based training (p = .004). Whereby instructor-
based training and text-based training do not differ significantly from each other
(p = .445).

Looking at the results of the repeated measures ANOVA, every training
showed a significant improvement in detecting both phishing and legitimate
URLs as their representative part. Taking this into account post-hoc tests showed
further significant differences between the three formats. The instructor-based
training achieved both the highest post score for correct answers and the highest
improvement in score from pre-questionnaire to post-questionnaire. Nevertheless
only looking at the correct answers they do not score significantly better than
the text-based training.

Further analyzing the results separated into phishing (Fig. 5a) and legitimate
(Fig. 5b) URLs, there is a change. While the results for phishing URLs remain
the same, as computer-based training differs statistically from instructor-based
(p < .001) and text-based training (p < .001) and instructor-based training does
not differ significantly from text-based training (p = .997), this is not the case
for legitimate URLs. Only considering these computer-based training remains
significant below instructor-based training (p = .009). This time there is no
statistical significant difference between text-based training and both computer-
based (p = .843) and instructor-based training (p = .108).

Fig. 5. Mean correct answers for pre & post split into phishing and legimitate with
95 % confidence interval (in %).

Research question 2 - User satisfaction: We looked at (a) the satisfaction for
each format and (b) the differences between the three formats.

(a) As shown in Table 2 all formats achieve high results for overall satisfac-
tion (from 4.09 to 4.46). Split into the questions, starting with the first one,

Teaching Phishing-Security: Which Way is Best? 143

instructor-based training achieved the highest mean score with (4.57± .568), fol-
lowed by text-based (4.38± .637) and computer-based training (4.2± .764). For
question two instructor-based training again achieved the highest mean score
with (4.34± .814), this time next is computer-based (3.88± .971) and text-based
training (3.65±1.198). For the third question the order is instructor-based train-
ing with a mean score of (4.47± .776), text-based (4.31± 1.011) and computer-
based training (4.20 ± .816).

Table 2. User satisfaction split into three questions and overall per format.

Format 1. Enjoyed? 2. Learned? 3. Protection? Overall

Instructor-based training 4.57 (.57) 4.34 (.81) 4.47 (.78) 4.46

Computer-based training 4.2 (.76) 3.88 (.97) 4.2 (.82) 4.09

Text-based training 4.38 (.64) 3.65 (1.2) 4.31 (1.0) 4.11

(b) Starting with the differences for the three training formats over all three
questions the one-way ANOVA suggest that there is no statistically significant
differences between the training formats (F (2, 80) = 3.023, p = .51).

Divided into the three questions, starting with “I enjoyed learning about
phishing the way I did.” The results of the one-way ANOVA showed no
statistically significant difference between the training formats (F (2, 80) =
2.138, p = .125).

Next participants had to rate the sentence “I think I learned a lot.” The
results of the one-way ANOVA showed a statistically significant difference
between all formats (F (2, 79) = 3.433, p = .037). A Games-Howell post-hoc
test showed that participants from the text-based training answered significant
lower compared to the computer-based training (p = .74) and to those in the
instructor-based training (p = .045). There was no statistically significant dif-
ference between the instructor-based training and the computer-based training
(p = .153).

Finally participants had to rate the sentence “What I learned will help me
protecting myself in the future.” The results of the one-way ANOVA showed no
statistically significant difference between formats (F (2, 80) = .658, p = .521).

Research question 3 - Confidence Level: We looked at (a) the impact the train-
ing formats have on people’s confidence regarding their own abilities in cor-
rectly identifying legitimate and fraudulent websites attacks and (b) differences
between the three formats?

(a) Therefore we analyzed the confidence level for all formats in between
the pre- and post-questionnaire. A repeated measure ANOVA determined that
the mean correct answers differed statistically significant between pre- and post
questionnaire (F(1, 71) = 150.71, P < 0.001, η2 = .68).

144 S. Stockhardt et al.

(b) Just as the difference between the pre- and post-questionnaire the train-
ing formats (Table 3) showed a statistically significant difference for the mean
differences (p = .002, η2 = .16).

Table 3. Average user confidence pre-questionnaire and post-questionnaire per format.

Format Pre Post Difference

Instructor-based training 3.22 (.80) 4.73 (.27) 1.51

Computer-based training 3.58 (.79) 4.58 (.52) 1.00

Text-based training 4.12 (.50) 4.67 (.31) 0.55

Post-hoc tests using the Games Howell correction revealed that the difference
between text-based training and instructor-based training is statistically signifi-
cant (p < .001). Whereby computer-based training and instructor-based training
do not differ significantly from each other (p = .76), as well as computer-based
and text-based training (p = .098).

Looking at the results of the repeated measures ANOVA, every training
showed a significant improvement in confidence. Post-hoc tests showed further
significant differences between the three formats. The instructor-based training
achieved both the highest post confidence, the highest improvement in confidence
and achieved a significant higher confidence than the text-based training.

Research question 4 - Time efficiency: For the fourth and final research question
we wanted to know (a) how much the training formats increase the correctly
recognition of phishing and legitimate URLs per minute spent with the training
and (b) the differences between the three formats.

(a) Table 4 shows the mean time efficiency for the formats. Furthermore, it
shows that on average for every minute that the instructor-based group spent
with the training, they were able to increase the amount of correct answers
given by 0.64 on average. For computer-based training it is on average 0.92 more
correct answers per minute and for text-based training on average 1.03 more
correct answers

Table 4. Time taken and time efficiency per format. Improvement per minute = per-
centage of improvement of correct answers divided by mean time.

Format Mean time (minutes) Improvement per minute

Instructor-based training 45 0.64

Computer-based training 26.5 0.92

Text-based training 18 1.03

(b) A Kruskal-Wallis H test showed that there was a statistically significant
difference in time spent between the different trainings, χ2(2) = 35.01, p < 0.001.

Teaching Phishing-Security: Which Way is Best? 145

Median in formats computer-based training and text-based training were 26.5
and 18 min; the distributions in the two formats differed significantly (U =
55.5, Z = −3.17, p = 0.002, η2 = .26).

Regarding our time efficiency although the instructor-based training had
the biggest improvement (+28.85 %) it is only an improvement of 0.64 correct
answers per minute spent. The second best improvement was achieved by the
training that took part in computer-based training (+24.5 %) which results in
an improvement of 0.92 correct answers per minute spent. Finally the text-based
training training achieved lowest general improvement (+18.63 %). Considering
the time spent for the training they achieve the highest score with an improve-
ment of 1.03 correct answers per minute spent.

5 Discussion

All training methods improve participants ability in phishing detection and their
ability in identifying legitimate webpages significantly. Furthermore, they felt sig-
nificantly more confident in judging webpages after the training. However, the
results of the user study show significant differences between the different train-
ing formats. Considering efficiency, user satisfaction and confidence, instructor-
based training format achieved the best results. It performed significantly better
than the other two formats. At the same time it achieved the lowest time effi-
ciency. This result is in line with the findings in [7]. The authors showed that a
social situation and a familiar context like for the pupils in our instructor-based
group has a positive learning effect. While the improvement in confidence dif-
fers, all three formats achieve a very high score around 4.7 of 5. Not surprisingly,
instructor-based training takes more time. While we decided to go for 45 min,
in a company instructor-based training requires more time, e.g. as participants
need to reach the class room and get back to their offices. Thus, while the secu-
rity level in the company would increase more than with the other levels, it
might not be chosen because of the time (and maybe the costs and the lack of
flexibility to decide when to learn and to take breaks).

Interestingly, text-based training performs better than computer-based train-
ing. With respect to efficiency, user satisfaction and confidence it achieves the
second best results. The results of research question 4 indicate that spending
some more minutes with the material is likely to improve the results even fur-
ther. Thus, if time is a limited resource text-based training is the best training
format as it clearly achieves the best results in time-efficiency. Furthermore,
participants improved also significantly in making proper decisions as well as in
detecting phishing webpages.

A possible explanation for this results is that participants were able to chose
their own pace when going through the training. While one can miss important
messages when lacking concentration during instructor-based training this can-
not happen with text-based training. Participants could go back and read earlier
explanations again. Furthermore, it might be easier reading the URL letter by

146 S. Stockhardt et al.

letter when the PDF is displayed at the screen right in front of them other than
displayed by a projector on the wall. What would be interesting but has not
been tested is the effect it would have if people do not learn the entire content
at once but would start one day and come back at a later time.

The results of the computer-based training group indicate, that this method is
not particularly more effective or satisfying than the other two formats; however
more expensive, as it needs to be developed. The unexpectedly low improvement
of the computer-based training group might possibly be affected by the small
screen size of the smartphones. Reading through educational material via a small
smartphone screen might not be the best way to partake in security training.
While on the other hands it offers a potential for even more interactive train-
ing formats. Our results for computer-based training are inline with the results
in [19]. However, the authors of [12] got a greater effect than instructor-based
training. It needs to be studied further, why their results differ.

Limitations: Participants saw a high amount of phishing examples in a short
time frame. Such a high frequency exposure to phishing URLs would likely never
happen in a real scenario. While this is the typical problem of phishing studies,
this is not a major concern for our study as we compare which format performs
better in communicating the content of the NoPhish training concept.

While the text-based training and computer-based training usually have the
innate option of pausing at any convenient moment, our study design precluded
this possibility. Which effort pausing has to the results needs to be studied in
future.

The training was given by a motivated instructor. It is possible that the very
positive results of the instructor-based training group can in part be attributed
to this fact. But this is a limitation with instructor-based training in general
that does not specifically apply to our study design.

Students in the school setting are primed for instructor-based training. This
is different from a company setting. Thus, using the instructor-based approach
in companies may perform less good than in a school.

Our sample is not representative of the general population, as participants
were all students in the professionalisation branch of information assistants. Such
they brought an above average general knowledge of IT related problems. How-
ever, it shows that also those people lack knowledge in phishing security. Fur-
thermore, earlier evaluations on NoPhish showed significant improvements also
for lay people.

6 Related Work

In our study, we used the NoPhish training materials, which are freely available
in the three formats in question (instructor-based, computer-based, and text-
based). All of the formats provide the same content to the user. In the following,
we present similar research comparing different IT-security training formats.

Teaching Phishing-Security: Which Way is Best? 147

Sheng et al. [20] compared the effectiveness of different educational materi-
als to identify phishing websites. Their study included two groups using text-
based training and one group using computer-based training. They did not
include instructor-based training in their comparison. For their text-based solu-
tions they used “three consumer oriented educational web pages from the first
page of Google search results using the search query phishing” and the cartoon
PhishGuru. The computer-based training used the Anti-Phishing Phil game. The
formats used in their study provided different content to the users and not all of
them are freely available. The authors did not find any difference in the number
of users that fall for phishing between the different formats.

Kumaraguru et al. [14] reports on the comparison of three formats for improv-
ing the users’ skills in terms of detecting phishing attacks. They developed two
embedded training designs (computer-based training) and another format con-
sisting of simple email security notices (text-based training). The embedded
training designs consisted of regularly sent phishing emails. The results of their
study indicate that the embedded training designs (computer-based training)
were more effective than simple security notices (text-based training).

Khan et al. [13] compared different education material formats based on psy-
chological theories, including instructor-based training, computer-based training
(traditional and video games), and text-based training (newsletter articles and
posters). They categorize instructor-based training as efficient but unattractive.
In their opinion, computer-based training has the advantage of allowing users
to learn at their own pace, while being resource-extensive and relatively expen-
sive. For the text-based materials they summarize that these are efficient ways to
deliver information, but that it cannot be verified if the information was actually
read by the user.

Schilliger and Schmid [19] discuss multiple formats from a theoretical point
of view. They see advantages in computer-based training. It can efficiently serve
to big groups, due to its support of time and location independent learning.
Furthermore, it is much easier to track the learners’ success. With regard to
text-based training, the authors believe that it is best used to remind people of
content they already learned before. Concerning instructor-based training, they
argue that it should be as short and as memorable as possible to increase the
effectiveness.

Reid [18] developed a software program that supports the delivery of impor-
tant information. He used a commercial set of knowledge level questions and
measured the success of his computer-based technique. The results indicate that
frequent repetition of training activities increases knowledge retention.

Canova et al. [6] did a small scale lab and retention study of the NoPhish
android application. They found significant effects of the application when it
comes to transferring the information to the participants both immediately after
the study aswell as five months after the participants had taken part in the study.

148 S. Stockhardt et al.

7 Conclusion and Future Work

We conducted a user study comparing the three different training formats
computer-based training, instructor-based training and text-based training with
respect to their effectiveness, user satisfaction, confidence and time efficiency.
We note that every format lead to a significant improvement of participants IT-
security knowledge and confidence in handling the tasks. Also, participants of
all groups were satisfied with their respective training format. Instructor-based
training created the most promising results regarding three of our four research
questions (effectiveness, user satisfaction, confidence). However it performed the
worst in our fourth research question (time efficiency). The text-based train-
ing format performed slightly worse than instructor-based training. However
it has applications in scenarios where time is the most pressing matter as it
is the most time efficient formats. Though computer-based training performed
worse than the other two formats it still provided for a significant improvement
in URL detection. Computer-based training via smartphones enables users to
learn whenever they want, wherever they want and for any duration they seem
fit and it has benefits when it comes to flexibility in application.

While our study focused on the possible gains of different formats of security
training we did not evaluate how the required expenditures differ. A realistic cost
assessment including creation and maintenance of the materials remains an area
of future work. Also we plan the evaluate the retention of the transmitted knowl-
edge in the future. A comparative analysis of the effect small screensizes have
on training effectiveness also remains a topic for further research. Another open
issue for future work will be to evaluate whether the rules can be implemented
into a usable security tool that automatically addresses incoming E-Mails.

Acknowledgement. This work has been developed within the project ‘KMU
AWARE’ which is funded by the German Federal Ministry for Economic Affairs
and Energy under grant no. BMWi-VIA5-090168623-01-1/2015. The authors assume
responsibility for the content.

References

1. Abras, C., Maloney-Krichmar, D., Preece, J.: User-centered design. In: Bainbridge,
W. (ed.) Encyclopedia of Human-Computer Interaction, vol. 37(4), pp. 445–456.
Sage Publications (2004)

2. Bada, M., Sasse, A., Nurse, J.R.C.: Cyber security awareness campaigns: Why do
they fail to change behaviour?. In: International Conference on Cyber Security for
Sustainable Society, pp. 118–131. Global Cyber Security Centre (2015)

3. Brooke, J.: SUS-A quick and dirty usability scale. In: Usability Evaluation in Indus-
try, vol. 189(194), pp. 4–7. Taylor and Francis (1996)

4. Canova, G., Volkamer, M., Bergmann, C., Borza, R.: NoPhish: An anti-phishing
education app. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp.
188–192. Springer, Heidelberg (2014)

Teaching Phishing-Security: Which Way is Best? 149

5. Canova, G., Volkamer, M., Bergmann, C., Borza, R., Reinheimer, B., Stockhardt,
S., Tenberg, R.: Learn to spot phishing URLs with the android NoPhish app.
In: Bishop, M., Miloslavskaya, N., Theocharidou, M. (eds.) Information Security
Education Across the Curriculum. IFIP AICT, vol. 453, pp. 87–100. Springer,
Heidelberg (2015)

6. Canova, G., Volkamer, M., Bergmann, C., Reinheimer, B.: NoPhish app evaluation:
lab and retention study. In: USEC 2015. Internet Society (2015)

7. Das, S., Kim, H., Dabbish, L.A., Hong, J.I.: The effect of social influence on security
sensitivity. In: SOUPS, vol. 14. ACM (2014)

8. Desai, M.S., Richards, T., Eddy, J.P.: A field experiment: instructor-based training
vs. computer-based training. J. Instr. Psychol. 27(4), 239 (2000). George Uhlig
Publisher

9. Felt, A.P., Wagner, D.: Phishing on mobile devices. USEC 2011, Internet Soci-
ety (2011)

10. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: ACM workshop on Recurring malcode, pp.
1–8. ACM (2007)

11. Greg, A., Rasmussen, R.: Global Phishing Survey: Trends and Domain Name
Use in 2H2014 (2015). http://internetidentity.com/wp-content/uploads/2015/05/
APWG Global Phishing Report 2H 2014.pdf. Accessed 13 March 2016

12. Harrington, S.S., et al.: A comparison of computer-based and instructor-led train-
ing for long-term care staff. J. Contin. Educ. Nurs. 33(1), 39 (2002)

13. Khan, B., Alghathbar, K.S., Nabi, S.I., Khan, M.K.: Effectiveness of information
security awareness methods based on psychological theories. Afr. J. Bus. Manage.
5(26), 10862–10868 (2011). Academic Journals

14. Kumaraguru, P., Rhee, Y., Acquisti, A., Cranor, L.F., Hong, J., Nunge, E.: Pro-
tecting people from phishing: the design and evaluation of an embedded training
email system. In: CHI, pp. 905–914. ACM (2007)

15. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1245–1254. ACM (2009)

16. Ng, B.Y., Kankanhalli, A., Xu, Y.C.: Studying users’ computer security behavior:
A health belief perspective. Decis. Support Syst. 46(4), 815–825 (2009). Elsevier

17. Ramzan, Z.: Phishing attacks and countermeasures. In: Stavroulakis, P., Stamp,
M. (eds.) Handbook of Information and Communication Security, pp. 433–448.
Springer, Heidelberg (2010)

18. Reid, D.: Knowledge Retention in Computer-Based Training. University of Calgary,
Calgary (2001)

19. Schilliger, B., Schmid, R.: Entwickeln einer Awareness-Kampagne für einen
sicheren Umgang mit dem Internet an mittelgrossen Berufs-oder Matu-
ritätsschulen. Ph.D. thesis, Hochschule Luzern, Wirtschaft (2010)

20. Sheng, S., Holbrook, M., Kumaraguru, P., Cranor, L.F., Downs, J.: Who falls
for phish?: a demographic analysis of phishing susceptibility and effectiveness of
interventions. In: CHI, pp. 373–382. ACM (2010)

21. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.,
Nunge, E.: Anti-phishing phil: the design and evaluation of a game that teaches
people not to fall for phish. In: SOUPS, pp. 88–99. ACM (2007)

22. Thorndike, E.L.: The Fundamentals of Learning. Teachers College Bureau of Pub-
lications, New York (1932)

http://internetidentity.com/wp-content/uploads/2015/05/APWG_Global_Phishing_Report_2H_2014.pdf
http://internetidentity.com/wp-content/uploads/2015/05/APWG_Global_Phishing_Report_2H_2014.pdf

On Gender Specific Perception
of Data Sharing in Japan

Markus Tschersich1, Shinsaku Kiyomoto2, Sebastian Pape1(&),
Toru Nakamura2, Gökhan Bal1, Haruo Takasaki2,

and Kai Rannenberg1

1 Chair of Mobile Business and Multilateral Security,
Goethe University Frankfurt, Frankfurt, Germany

sebastian.pape@m-chair.de
2 KDDI R&D Laboratories Inc., Saitama, Japan

Abstract. Privacy and its protection is an important part of the culture in the
USA and Europe. Literature in this field lacks empirical data from Japan. Thus,
it is difficult– especially for foreign researchers – to understand the situation in
Japan. To get a deeper understanding we examined the perception of a topic that
is closely related to privacy: the perceived benefits of sharing data and the
willingness to share in respect to the benefits for oneself, others and companies.
We found a significant impact of the gender to each of the six analysed
constructs.

1 Introduction

In the Western world privacy and its protection is an important part of the culture. In
the United States and especially in Europe people care about their privacy and therefore
also the majority of research about privacy is based on data collection in
North-America and Europe [1].

Despite some efforts by Asoh et al. [2] and Takasaki et al. [3], literature in the field
of privacy lacks empirical data from Japan. Thus, compared to the USA and Europe, it
is difficult for foreign researchers to understand the situation in Japan. In Hofstede’s
taxonomy for cultural patterns [4, 5] individualism versus collectivism as a cultural
norm is identified as one important criterion. Japanese culture — inspired by Confucian
and Buddhism philosophy — differs from western culture where individualism is
emphasized [6] and therefore, the protection of oneself has a higher importance. As
opposed to this, people of the Japanese culture try to identify their role within the
groups they are interacting with [7]. Societal harmony is very important to Japanese
people and they try to avoid troubling others [8]. This leads them to be more open to
share personal information. Additionally, not sharing data is also often understood as
isolation from a group. As data sharing often has a major impact on one’s privacy, the
perception of sharing is very relevant for the behaviour with regard to privacy and its
protection. Besides general cultural differences, also the role of men and women differ
between the western and the eastern society. This matches another criterion set by
Hofstede [4, 5], which distinguishes between cultures that emphasize masculinity

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 150–160, 2016.
DOI: 10.1007/978-3-319-33630-5_11

versus femininity. Based on tenets of Confucianism, taking care on major caregiving
responsibilities is the traditional role of women in the Japanese culture [9]. Caused by
women’s responsibilities in society, the concept of privacy could be more unfamiliar
for women than for men. Even though the Japanese society is highly influenced by the
western culture, it is interesting to see whether women and men differ in the perceived
benefits of sharing data for others and their willingness to e.g. share data.

The paper is structured as follows. Section 2 gives an introduction into privacy
research in Japan. Further, Sect. 2 describes the research model and the hypotheses. In
Sect. 3 the used methodology is explained. Section 4 summarizes the results of the
study, followed by a discussion and conclusions in Sect. 5.

2 Background and Hypotheses

2.1 Related Work

The economics of privacy including empirical studies relating to the consumer’s pri-
vacy calculus have been evolving [10]. Especially, from late 1990, with the emerging
of the Internet, empirical studies have focused on online shopping or online banking.
From 2003, online search and 2005 social networks were in the focus. Chellappa and
Sin [11] and other research papers around the same years are mostly based on online
shopping or personalized services, which are almost the same category of applications.
Consumers’ benefits are mostly financial ones (discounts, points, etc.). But for the
usage of social networks the consumers’ benefits are not financial ones but
non-financial ones including sharing feelings in a group. A study by Lu et al. [12]
demonstrated that social adjustment benefits, i.e. the opportunity of establishing a
social identity by integrating into desired social groups, can also have an effect on the
intended disclosure behaviour.

The “Act on the Protection of Personal Information” was passed in 2003 and has
been enforced in Japan since 2005 [13]. The objectives of this act are to balance the
usability of personal information and the protection of individual rights and benefits, and
to protect any information that could identify an individual. The act is under revision in
terms of expanding coverage of intended data and building an auditing system including
privacy commissioners. Recently, for adjusting to the change of international privacy
attitudes such as the change in the Privacy Guideline by OECD in 2013 [14], a Con-
sumer Privacy Bill of Rights in US in 2012, and the regulation on the protection of
individuals with regards to the processing personal data was passed the European
parliament, the law reform proposal on privacy in Japan was published in Jun., 2014.
Asoh et al. [2, 15] presented users’ privacy concerns in recommendation services using
personal data in Japan, and showed that service categories (shopping, navigation and
healthcare) did not directly affect to users’ privacy concerns. Takasaki et al. [3] analysed
privacy concerns for on-line personalization services in Japan. However, in this field

On Gender Specific Perception of Data Sharing in Japan 151

there is a lack of empirical data in Japan. This paper intends to show relevant input for
designing and implementing privacy protection policies based on empirical data in
Japan.

2.2 Hypotheses

Ahead of a potential revelation of personal information humans perform an economic
decision-making process [16]. In the so called privacy calculus, users of information
systems weigh the potential costs and benefits of sharing their personal information
with specific services, institutions, or persons [1, 17–20]. On the risk side, users take
into account the privacy concerns as well as the perceived likelihood and damage of a
privacy violation.

On the benefit side, users consider positive effects of the revelation of personal
information. The benefits highly depend on the type of service a user could reveal
personal information to. Literature describes different examples especially from the
field of social network sites [21]. However, literature so far focused on personal
benefits from the revelation of personal information. A focus on the western world
literature might explain all benefits by focusing just on the user itself. For example,
Kobsa [22] determined that gender effects on internet privacy concerns could not be
clearly established. From our studies, we confirm the gender effects (especially, women
with children are more concerned about privacy protection also they tend to show the
strong willingness of personalized service usage).

However, in the Japanese culture privacy is a construct that is tied to egotism [23, 24].
Consequently, Japanese users also reflect the benefits for others and also companies.
Earlier studies [2, 3, 15] suggest gender effects in Japan. Especially, womenwith children
are more concerned about privacy protection and also tend to show the strong willingness
of personalized service usage. Thus, based on the even higher responsibility of Japanese
women in society we hypothesize:

– H1a: Female and male Japanese will differ in their perception that they themselves
can benefit when they reveal personal information.

– H1b: Female and male Japanese will differ in their perception that others can benefit
when they reveal personal information.

– H1c: Female and male Japanese will differ in their perception that companies can
benefit when they reveal personal information.

Result of the Privacy Calculus is the intension to reveal personal information [18].
Thus, if users decide to share personal information, they will be willing to reveal for
their personal benefit or the benefit of someone else. Also in the willingness to share we
expect an impact of the gender due to women’s responsibility in the Japanese culture.
Therefore, we hypothesize:

152 M. Tschersich et al.

– H2a: Female and Male Japanese will differ in their willingness to share personal
information for their personal benefit.

– H2b: Female and Male Japanese will differ in their willingness to share personal
information for others’ benefit.

– H2c: Female and Male Japanese will differ in their willingness to share personal
information for companies’ benefit.

Users’ decisions in the context of computer systems are highly depending on the
self-efficacy to specific technologies. Self-efficacy is about what individuals believe
about their ability to use a system e.g. effectively [12], and the higher the self-efficacy
the greater is the performance achievement. Computer self-efficacy is based on users’
attitudes towards computers and their anxiety [25]. Users can differ in their attitude and
anxiety and this could bias their decision-making in the privacy calculus and their
perceived willingness. Thus, attitude and anxiety are added to our model (cf. Fig. 1) as
covariates to address this potential bias.

3 Methodology

3.1 Participants

To get generalizable results, we ran the study with male and female participants with
different age and educational background. Overall 9,287 persons participated in the
study. For both female and male participants the average age is about 45 years and the
distribution to the gender and age groups is also quite equal as shown in Fig. 2.

Fig. 1. Overview of the hypotheses and the influencing factors

On Gender Specific Perception of Data Sharing in Japan 153

Participants were collected by publishing an online survey which collected 10000
questionnaires and was executed by a research company. Data was collected from
March 12, 2015 until March 19, 2015. We removed responses from people who
engaged in research business and advertising business from the participants. We did not
select the participants according to where they lived, whether they were married, or
whether they had a child, etc.

3.2 Measurement Instrument

An instrument was built to measure impact on the perceived benefits or the willingness
to share. The measurement instrument is built out of three to five items for each of the
six constructs. As literature and theories do not give items for this construct, we created
items by ourselves. Table 1 displays the used items per construct.

The use of new and not tested items increases the need of testing their validity and
reliability. Therefore, to test the validity a confirmatory factor analysis (CFA) was
performed. The results confirm the items of each construct. Subsequently, the reliability
of the scale was tested by checking Cronbach’s alpha. According to [20] the alpha
values as listed in Tables 2 and 3 are excellent. Further, there was no need to skip items
based on the Kaiser-Meyer-Olkin value, because for no construct the dropping of an
item increased this value. Thus, we ended up with a measurement instrument including
22 items for the six constructs to be analysed.

Fig. 2. Gender and age distribution

154 M. Tschersich et al.

3.3 Procedure

The questions were implemented on a web-based questionnaire system by a research
company. Selected participants received an instruction for the system from the com-
pany, and accessed the system via their own devices. The participants entered their
answers via the web-interfaces.

4 Results

4.1 Descriptive Statistics

We analysed the data set and calculated the mean value and the standard deviation
(SD) of the descriptive statistics. Both groups, female and male, were handled indi-
vidually. This allows a comparison of both groups to identify deviations as displayed in
Table 1. The comparison shows that the mean values are lower in the case of the female
participants than in the case of the male participants. So compared to the male par-
ticipants the female participants perceived lower sharing benefits in general. Further
they have a lower willingness to share personal information.

Further, in the case of the data sharing benefits, all participants perceive most
benefits for companies compared to benefits for themselves or even for others. Par-
ticipants’ highest willingness to share personal is for their own benefit. They are less
willing to share for others’ benefits and even less for the benefit of companies.

4.2 Impact Analysis

To identify the impact of the gender on the different perceived privacy benefits and the
willingness to share we run an Analysis of covariance (ANCOVA) for each construct.

Table 1. Used items per construct

Female Male

SD SD

P
er

ce
iv

ed

da
ta

sh
ar

in
g

be
ne

fi
ts

Oneself 3.778 1.002 3.850 1.017

Others 3.488 1.150 3.677 1.124

Companies 3.855 1.102 3.999 1.062

W
ill

in
gn

es
s

to
 s

ha
re

Personal benefit 3.483 1.220 3.751 1.202

Others’ benefit 3.027 1.264 3.361 1.235

Companies’ benefit 2.931 1.266 3.242 1.247

On Gender Specific Perception of Data Sharing in Japan 155

The ANCOVA is used, because this statistical method allows handling the influencing
factors “Attitudes” and “Anxiety” (that we had identified in Sect. 2.2) as covariates and
so allows filtering out the effect of these influencing factors on the impact. Thus, the
bias of attitudes and anxiety of the participants on the result can be prevented, which
increases the accuracy of the result. However general linear models like ANCOVA
require some assumptions to be fulfilled by the data:

Table 2. Constructs on “Perceived privacy benefits”

Construct Items Cronbach’s
alpha

Perceived data
sharing benefits
(“Me”)

Sharing personal information with online service
providers can provide me with personalized services
tailored to my activity context.

.926

Sharing personal information with online service
providers can provide me with more relevant
information tailored to my preferences or personal
interests.

Sharing personal information with online service
providers can provide me with the kind of
information or service that I might like.

In general, I believe that I can profit from sharing
personal information with online service providers.

I think that I benefit from sharing personal information
with online service providers.

Perceived data
sharing benefits
(“Others”)

It can provide benefits for other people if I share my
personal information with online companies.

.946

If I share my personal information with online
companies, other people can profit from it.

In general, I think that it is good for other people if I
share my personal information with online
companies.

It can be useful for other people if I share my personal
information with online companies.

I’m willing to share personal information with online
companies if it is useful for them.

I’m in general willing to share personal information
with online companies, if I see a benefit for them.

Perceived data
sharing benefits
(“Companies”)

I believe that online companies can profit from my
personal information if I share it with them.

.892

I believe that it is good for the success of online
companies if I share personal information with them.

I can support online companies by providing them with
my personal information.

I think that it is good for online companies if I provide
them with my personal information.

156 M. Tschersich et al.

1. The assumption of normality was tested with the Kolmogorov-Smirnov test [26] and
reveals that the data of the analysed six constructs is not normal distributed. How-
ever, according to the Central Limit Theorem a parametric test can still be used [27].

2. Further, in the case of using ANCOVA the independence of variable (in this case
gender) and covariate needs to be checked. The results of the Levene’s test [27]
indicate that the covariates are independent from each of the analysed six constructs.

The results of the ANCOVA show a highly significant impact of the gender to each
of the six analysed constructs. Thus, female and male Japanese people differ in their
perception of privacy benefits for oneself, for others and for companies. The same is
true for the willingness to share for someone’s benefits.

Table 4 shows the result of the ANCOVA. The F-value displays the result of the
F-test as a calculation of the quotient of the variance of the answers of the different
experimental groups (in our case women and men). This first step allows the next step,
which is the check, whether the null hypothesis (H0), that there would be no significant
difference between the different experimental groups (men and women), can be falsi-
fied. For this we look at the significance levels (Sig., p-values): A p-value below .05
reveals a significant difference between both experimental groups, a p-value below .001
reveals that the difference is highly significant. Both thresholds are commonly used for

Table 3. Constructs on “Willingness to share”

Construct Items Cronbach’s
alpha

Willingness to share
(I benefit)

In general, I’m willing to share personal information
with online companies if I can profit from it.

.916

I’m willing to share personal information with online
companies if they provide me with useful services.
If I see a benefit for myself, I’m in general willing to
share personal information with online companies.

Willingness to share
(others benefit)

In general, I’m willing to share personal information
with online companies if other people can profit
from it.

.950

I’m willing to share personal information with online
companies if they provide other people with useful
services.
If I see a benefit for other people, I’m in general
willing to share personal information with online
companies.

Willingness to share
(companies
benefit)

In general, I’m willing to share personal information
with online companies if they can profit from it.

.951

I’m willing to share personal information with online
companies if it is useful for them.
I’m in general willing to share personal information
with online companies, if I see a benefit for them.

On Gender Specific Perception of Data Sharing in Japan 157

this kind of experiments [25]. In our case all the p-values are so small, that they are
closer to 0.000 than to 0.001.

The high significance (Sig., p-value < .001) of the covariates “Attitudes” and
“Anxiety” as shown in Table 4, demonstrates that the covariates predict the particular
dependent variables. Therefore, the perceptions and the willingness are influenced by
participants’ anxiety and attitudes towards using computer systems. After the effect of
anxiety and attitudes has been filtered out by the ANCOVA, the adjusted effect of the
gender on the six analysed constructs has a significance value of p < .001 as displayed
in Table 4 as well. Thus, the statistical tests show that the Hypotheses H1a, H1b, and
H1c as well as H2a, H2b, and H2c can be accepted and that the gender of Japanese
participants has a significant impact on the perceived benefits and the willingness to
share for someone’s benefit.

5 Discussion and Conclusion

The results show a highly significant impact of the gender to each of the six analysed
constructs. Thus, female and male Japanese people differ in their perception of privacy
benefits for oneself, for others and for companies. The same is true for the willingness
to share for someone’s benefits. Anxiety and attitudes were identified as biases on the
measured effects. However gender still has a significant impact on the effects.

Future research should be done to investigate the differences in the perception of
privacy in respect to the peoples’ culture. It will be interesting if there is a difference
between the obtained result for Japan and e.g. Europe or the USA. Additionally, it
would be interesting to investigate “Cross-cultural Sharing”: Does the willingness to
share data with someone belonging to the same culture differ from sharing with
someone belonging to another culture?

Further research should also be done regarding the age groups of people. Does the
willingness to share data depend on whether they are e.g. Digital Natives or Digital
Immigrants [28]?

Finally, practical consequences of our findings should be examined. E.g. would it
make sense to offer different services to the different groups?

Table 4. Results of the ANCOVA

Oneself Others Companies
F Sig.

(p-value)
F Sig.

(p-value)
F Sig.

(p-value)

Perceived benefit for… Anxiety 135,503 .000 140,548 .000 56,401 .000
Attitudes 104,633 .000 43,152 .000 79,175 .000
Gender 27,316 .000 105,988 .000 51,217 .000

Willingness to share for
… benefit

Anxiety 114,074 .000 145,547 .000 167,888 .000
Attitudes 90,705 .000 31,918 .000 29,131 .000
Gender 148,010 .000 233,217 .000 213,816 .000

158 M. Tschersich et al.

References

1. Smith, H.J., Dinev, T., Xu, H.: Information privacy research: An interdisciplinary review.
MIS Q. 35(4), 989–1015 (2011)

2. Asoh, H., Ono, C., Habu, Y., Takasaki, H., Takenaka, T., Motomura, Y.: An acceptance
model of recommender systems based on a large-scale internet survey. In: Ardissono, L.,
Kuflik, T. (eds.) UMAP Workshops 2011. LNCS, vol. 7138, pp. 410–414. Springer,
Heidelberg (2012)

3. Takasaki, H., Kouguchi, T., Jitsuzumi, T.: A study on causes for privacy concerns about
personalized services on mobile devices. J. Public Util. Econ. 2, 25–34 (2014)

4. Hofstede, G.: Culture’s Consequences: comparing values, behaviors, institutions, and
organizations across nations, 2nd edn. SAGE Publications, Thousand Oaks, CA (2001)

5. Hofstede, G., Hofstede, G.J.: Cultures and Organizations: Software for the Mind. McGraw
Hill Professional, New York (2004)

6. Nakamura, M.: Privacy: Current Status and Pending Issues in Japan. NRI Papers, no.
131 (2008)

7. Miltgen, C.L., Peyrat-Guillard, D.: Cultural and generational influences on privacy concerns:
a qualitative study in seven European countries. EJIS 23(2), 103–125 (2014)

8. Orito, Y., Murata, K.: Privacy protection in Japan: cultural influence on the universal value.
In: Electronic Proceedings of Ethicomp (2005)

9. Hashizume, Y.: Gender issues and japanese family-centered caregiving for frail elderly
parents or parents-in-law in modern japan: from the sociocultural and historical perspectives.
Public Health Nurs. 17(1), 25–31 (2000)

10. Taylor, C.R.: Consumer privacy and the market for customer information. RAND J. Econ.
35(4), 631–650 (2004)

11. Chellappa, R.K., Sin, R.G.: Personalization versus privacy: An empirical examination of the
online consumer’s dilemma. Inf. Technol. Manage. 6(2), 181–202 (2005)

12. Lu, Y., Tan, B., Hui, K.L.: Inducing customers to disclose personal information to internet
businesses with social adjustment benefits. In: Agarwal, R., Kirsch, L.J., DeGross, J.I. (eds.)
Proceedings of 25th International Conference on Information Systems, Washington, DC,
December 9-12, pp. 272–281 (2004)

13. Japan, Act on the Protection of Personal Information (2003)
14. OECD: OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal

Data, http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyand
transborderflowsofpersonaldata.htm

15. Asoh, H., Takasaki, H., Ono, C., Habu, Y., Takenaka, T., Motomura, Y.: An Analysis on the
Intention to Use Recommendation Services Using Lifelogs, no. 4, pp. 846–854 (2015)

16. Awad, N.F., Krishnan, M.: The personalization privacy paradox: An empirical evaluation of
information transparency and the willingness to be profiled online for personalization.
MIS Q. 30(1), 13–28 (2006)

17. Culnan, M.: Consumer awareness of name removal procedures: Implications for direct
marketing. J. Dir. Mar. 9(2), 10–19 (1995)

18. Dinev, T., Hart, P.: An extended privacy calculus model for e-commerce transactions. Inf.
Syst. Res. 17(1), 61–80 (2006)

19. Tschersich, M. Botha, R.A.: Understanding the impact of default privacy settings on
self-disclosure in social networking services: Building a conceptual model and measurement
instrument. In: Proceedings of the 19th Americas Conference on Information Systems,
(2013)

20. Kline, P.: The Handbook of Psychological Testing, 2nd edn. Routledge, London (2000)

On Gender Specific Perception of Data Sharing in Japan 159

http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm
http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm

21. Tschersich, M., Botha, R.A.: Exploring the impact of restrictive default privacy settings on
the privacy calculus on social networking sites. In: Presented at the Twenty Second
European Conference on Information Systems (2014)

22. Kobsa, A.: Privacy-enhanced personalization. Commun. ACM 50(8), 24–33 (2007)
23. Ess, C.: Lost in translation intercultural dialogues on privacy and information ethics

(introduction to special issue on privacy and data privacy protection in Asia). Ethics Inf.
Technol. 7(1), 1–6 (2005)

24. Kitiyadisai, K.: Privacy rights and protection: foreign values in modern thai context. Ethics
Inf. Technol. 7(1), 17–26 (2005)

25. Torzadeh, G., Doll, W.J.: The development of a tool for measuring the perceived impact of
information technology on work. Omega 27(3), 327–339 (1999)

26. Massey Jr., F.J.: The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc.
46(253), 68–78 (1951)

27. Field, A.: Discovering statistics using SPSS, 2nd edn. Sage Publications Limited, London
(2006)

28. Prensky, M.: Digital Natives, Digital Immigrants (2001)

160 M. Tschersich et al.

TORPEDO: TOoltip-poweRed Phishing
Email DetectiOn

Melanie Volkamer1,3(B), Karen Renaud2, and Benjamin Reinheimer1

1 SECUSO, Computer Science Department, TU Darmstadt, Darmstadt, Germany
{melanie.volkamer,benjamin.reinheimer}@secuso.org

2 School of Computing Science, University of Glasgow, Glasgow, UK
karen.renaud@glasgow.ac.uk

3 Karlstad University, Karlstad, Sweden

Abstract. We propose a concept called TORPEDO to improve phish
detection by providing just-in-time and just-in-place trustworthy tooltips
to help people judge links embedded in emails. TORPEDO’s tooltips con-
tain the actual URL with the domain highlighted and delay link activa-
tion for a short period, giving the person time to inspect the URL before
they click. Furthermore, TORPEDO consists of an information diagram
to explain phish detection. We evaluated TORPEDO in particular with
respect to its effectiveness: Compared to the worst case ‘status bar’. as
used in Thunderbird and Web email clients. TORPEDO performed sig-
nificantly better in detecting phishes and identifying legitimate emails
(85.17 % versus 43.31 % correct answers for phish). A proof of concept
implementation is available as a Thunderbird Add-On.

1 Introduction

Phishing is merely a modern equivalent of a confidence trick that has been
carried out for centuries: to deceive someone to derive some personal benefit.
The first time that the term “phishing” was used to refer to this digital version
of confidence tricking was on January 2, 19961. Phishing messages offer a link
embedded in an email message that entices the recipient to click. Email recipients
are likely to click on links due to their widespread legitimate use. If they do click,
it redirects them to a website masquerading as the real thing or downloads some
malware onto their computer. Twenty years after its emergence, phishing still
succeeds [11,39]. Automated detection is a powerful tool against phishing, but
the fact that it takes, on average, 28.75 h to detect new phish websites [2] means
that users have to detect phishing messages themselves during the discovery
window. However, many people are unable to distinguish legitimate from phish
messages. Since there is no financial bar on the number of emails phishers can
send, this means a sizeable number of people are snared every day.

The goal of our research was to propose a solution to reduce phishers’ success
in the email environment significantly (note, we studied the approach in the
1 The mention occurred in alt.online-service.america-online.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 161–175, 2016.
DOI: 10.1007/978-3-319-33630-5 12

162 M. Volkamer et al.

Fig. 1. Just-in-time, just-in-place, trustworthy tooltips as shown in the upper-left part.
The entire figure is displayed when more information is requested.

email environment but it could be easily adopted to other message formats such
as Facebook and Twitter messages). To achieve this goal, we needed first to
understand why people fall for phishing. We thus carried out a literature review
and a cognitive walk-through analysis of emails as displayed by commonly-used
desktop and webmail clients. Based on our findings, we proposed a concept
called TORPEDO (TOoltip-poweREd Phish Email DetectiOn) to assist users
by providing a just-in-time, just-in-place, trustworthy tooltips that display the
actual URL with the domain highlighted in bold (see Fig. 1). Furthermore, we
disable the link briefly, introducing a short delay, to increase the likelihood that
people will check the URL before clicking on it. Finally, we provide users with
an extended information diagram to explain the phish detection process. An
evaluation delivered significant improvements (85.17 % for phish, 91.57 % for
legitimate emails compared to 43.31 % and from 63.66 % when only providing
the URL in the status bar, as Thunderbird does it for instance). We implemented
a corresponding Thunderbird Add-On, as a proof-of-concept.

2 Identifying Ons Why People Fall for Phish

It is important to understand why people fall for phish in order to support them
the better. To identify possible reasons for people falling victim to phish, we
carried out a literature review and conducted a cognitive walk-through analysis.

2.1 Literature Review

A phishing email contains a number of signals that may indicate that the email is
a phish, the most reliable of which is the actual URL as explained in [15,26] Many
people do not realise this but, just in case they do, phishers routinely obfuscate
the URL to dampen down this signal (e.g. using http://amazon.shop-secure.com

http://amazon.shop-secure.com

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 163

to phish amazon accounts). Our literature review revealed a number of papers
in which the authors showed that the reality is different since many people focus
on other signals, applying various flawed heuristics, namely:

– The Sender: People are likely to trust emails from friends [16] or from rep-
utable businesses [41].

– The Look and Feel: People judge emails’ trustworthiness based on their first
impression, informed by a recognisable logo [4,30], attractive design [30,35],
the use of their name or the provision of the company’s contact details [17].

– The Email Content: People read the email in order to judge the trustwor-
thiness thereof. Relied-upon indicators are the grammar and spelling quality
[30,35]. Researchers also showed that people are more likely to fall for a phish
when: emotions such as excitement, fear or anxiety [4,35] are provoked, a sense
of urgency is invoked [30,34], existing attitudes and beliefs (wanting to believe
that the scammer is honest) are exploited [32], or persuasive and influencing
techniques are used [35,38]. Researchers argue that under such conditions of
arousal people’s decision-making abilities are impaired and they are less likely
to pick up danger signals [37].

– Wrong Parts of the URL: Some people do look at the URL [17]. However,
they misinterpret the URL due to a lack of knowledge of the semantics of
URLs [9,40]. Some people are reassured by the mere presence of HTTPS in the
embedded link and look no further [14]. Others are reassured by the brand
name being embedded ‘somewhere in the URL’ [17].

2.2 Cognitive Walk-Through Analysis

For one week, we carefully considered emails that we received, examining the
embedded URLs to identify possible challenges which could impair or encourage
phish detection. We examined Thunderbird and Apple Mail as well as Web inter-
faces from three popular Web email clients. We made the following observations:

– Information not provided where expected/needed: Thunderbird2 as well as the
Web email clients, display the actual URL destination in the status bar at the
bottom of the window. Problem: The status bar is some distance away from
the user’s current attentional focus and might easily be missed. The text of
the email is far more prominent and thus likely to be focused on.

– Tooltip provided by sender: Some email senders provide a tooltip which
appears when the mouse hovers over the link when using Thunderbird or
the Web email clients3 while the actual URL is still displayed in the status
bar. Providing such tooltip is actually a very simple attack since the phisher
only needs to provide a “title=” attribute.
Problem: The tooltip encourages examination of the URL by appearing where
the user’s attention is focused. If the recipient relies only on the tooltip, a
phisher would be successful when providing a reassuring URL.

2 Note, this is different for Apple Mail and also for Outlook.
3 Again, this is different for Apple Mail and for Outlook.

164 M. Volkamer et al.

– Redirection: Some email providers seem to make phish detection difficult, if
not impossible. These clients do not display the actual URL in the status bar,
but rather an (obfuscated) URL, a so-called dereferer (see Fig. 2). Web mail
providers argue that they do this to protect their users (due to some checks
before redirecting users to the actual web page). Problem: This approach
makes it almost impossible for even the most security aware to detect the
perfidy of the link.

– Tiny URLs: Some senders of (legitimate) emails use shortened URLs to redi-
rect the person to a different website.
Problem: From the URL it is impossible to know where a click will send people
to. It is necessary to use external services to get the final destination.

– Habituation: While Apple Mail shows a toolbar next to the link in the email,
it does so (obviously) for both legitimate and phishing emails.
Problem: While knowing that one should check the URL in the tooltip before
clicking, due to habituation people are not very likely to check each URL or
even a high percentage.

– Mouse hover vs. clicking: In order to get the relevant information in both
desktop clients as well as in the Web email clients, one need to touch the link
with the mouse while one must not click.
Problem: It is likely that users are not cautioned enough and instead of only
moving the mouse to the link they already click before having checked.

Fig. 2. Status bar displays an obfuscated URL for an embedded URL

2.3 Reasons Why People Fall for Phishing

From the above findings, the following reasons can be deduced:

1. Not being aware that the URL is the only reliable signal: making a decision
based on the wrong signal.

2. Not knowing which displayed URL to trust. There are three options: embed-
ded in email text, in the displayed tooltip, or in the status bar.

3. Not having access to the actual URL (destination) due to URLs being
obscured – either because of redirection or the use of tiny URLs.

4. Not consulting the URL carefully enough before clicking due to accidental
clicks and/or habituation effects.

5. Not knowing how to distinguish authentic from phish URLs.

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 165

3 TORPEDO as Possible Solution

We try to address all of these reasons with TORPEDO. TORPEDO proves just-
in-time and just-in-place trustworthy tooltips which contain the actual URL with
the domain highlighted. It delays link activation for a short period. Furthermore,
TORPEDO consists of an information diagram to explain phish detection, to be
used together with the tooltips (when first used and on demand). We explain
in the following paragraphs the different aspects and how they are supposed to
address the identified reasons.

Just-in-time means that the tooltip appears when the person hovers their
mouse over an embedded link. This addresses ‘Reason 1’ by making the reliable
signal more prominent (at least compared to the status bar used by Thunderbird
and the Web email clients). Just-in-place means that it appears right next to the
link (i.e. more precisely right below the link) and only there. This addresses ‘Rea-
son 1’ and ‘Reason 2’ by making the most important signal the most prominent
one and always displaying it at the same position. Highlighting the domain in
bold letters (similar to the highlighting in the addressbar of some Web browser)
focuses attention on the most important part of the URL addressing ‘Reason 5’.

Disabling the link for a short period , perhaps three seconds while providing
continuous feedback in terms of a counter showing the time left to click (3, 2, 1s)
increases the likelihood of people examining the link before clicking, addressing
‘Reason 4’. Note, the delay is configurable to give users control. Furthermore, a
white list is maintained to remember domains users have already clicked on twice
before (requiring two clicks means that domains will not as easily be accidentally
white listed). Whitelisted links will be activated immediately and not be subject
to any delay to not annoy users.

Trustworthiness, first, requires overwriting tooltips provided by the email
sender. This, together with the tooltip appearing just-in-time and just-in-place,
addresses ‘Reason 2’. It also addresses ‘Reason 3’ partially by providing the
actual URL, instead of the obfuscated one the phisher wants the user to see.
Figure 3(a) shows how we propose to handle the redirections (‘redirectUrl=’)
aspect of ‘Reason 3’, i.e. providing the actual URL and informing the user that
this is the second but final destination. There are two possibilities to address
the ‘tiny URLs’4 aspects of ‘Reason 3’: (1) automatically replace these URLs
by the actual one using the service from http://longurl.org, or (2) inform users
and let them decide whether to check for the actual URL using this service.
From a usability point of view the first option looks more promising; however,
from a security and privacy perspective the second one is more promising (as
e.g. the tool would send requests although the user does not want to visit the
corresponding page). We decided to go for option (2) by default but allowing to
configure option (1). Thus, users would first see the upper tooltip of Fig. 3(b)
and the other one once decided to check for the actual URL.

4 According to Wikipedia popular shortening services are: bit.ly, goo.gl, ow.ly, t.co,
TinyURL, and Tr.im. The URL is parsed accordingly. Those services are addressed.

http://longurl.org

166 M. Volkamer et al.

(a) Redirection case (b) Shortened URL case

Fig. 3. Example tooltips

Information diagram, to support users in phish detection in general but in
particular in checking the URL. This diagram (see Fig. 1) addresses mainly ‘Rea-
son 5’. It was iterated several times based on feedback from lay people. The
diagram is shown when users initially start using our tooltips. Since users are
not regularly confronted with phishing emails they may forget the rules after
installation, the diagram is also available on-demand. The information diagram
contains the following content while using a process approach explaining step by
step what to do while considering the URL manipulation tricks introduced in
[7] namely obfuscation, misleading, mangle and camouflage:

– In Step 1, we suggest focusing only on the URL. This addresses the fact that
people do not focus on the URL (‘Reason 1’). It is also explained that the
remaining parts of the URL can easily be faked.

– In Step 2 we recommend that people actually only consider the highlighted
part of the URL displayed in the tooltip.

– In Step 3, we explain that they should check whether the brand name is
highlighted (to address misleading URLs such as http://amazon.shop-secure.
com but also obvious phishes such as IP addresses). More precisely, we explain
that they should ignore the remaining parts of the URL.

– In Step 4, we advise them to check for extensions of the brand name such
as in http://amazon-shopping-in-America.com. This the most difficult phish-
ing URL to detect as some companies use such extensions in their authentic
domain. We, thus, recommend that they search at Google if they are not sure.

– In Step 5, we recommend that they check letter by letter to identify small
modifications in the domain name (to pick up http://mircosoft.com).

4 Evaluation

We wanted to evaluate TORPEDO’s effectiveness, efficiency and user-engendered
confidence in terms of properly judging the authenticity of emails, as compared
to the status quo status bar display in Thunderbird and the considered Web

http://amazon.shop-secure.com
http://amazon.shop-secure.com
http://amazon-shopping-in-America.com
http://mircosoft.com

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 167

email clients. To do so, we conducted a between-subjects online study launched
on SoSciSurvey with participants randomly associated to one of two groups:

– Status bar: The group sees the URLs in the status bar.
– TORPEDO: The group sees the URL in a tooltip with domain highlighted

in bold while having seen the information diagram.

Moreover, we formulated the following hypotheses:

– H1 – Phish detection: The TORPEDO group will detect more phishing
emails, as compared to the status bar group.

– H2 – Authentic eMail identification: The TORPEDO group will identify
more authentic emails, as compared to the status bar group.

– H3 – Efficiency: The TORPEDO group will judge emails more quickly, as
compared to the status bar group5.

– H4 – Confidence: The TORPEDO group will be more certain of their judge-
ments, as compared to the status bar group.

4.1 Study Procedure

The study comprised the following three phases6:
Phase 1 – Welcome: General information was provided, including the goal of
the study, number of phases, the estimated duration, and data protection. We
explained that it was important not to seek assistance (we did not elaborate by
citing Google, as this could have been counter productive). We introduced the
main tasks: They should imagine that their friend Max Müller is about to work
through his emails. Since Max has accounts at all the companies in question, it
is important for him to know which emails are authentic and which are phish.
Therefore, they were asked to help him to judge the emails based on screenshots
which Max provides to them on the following pages.
Phase 2 – Judging screenshots: Participants were presented with screenshots of
16 emails (8 authentic / 8 phish) each on a different web service and in random
order. The TORPEDO group got in addition the information diagram, both
before starting to answer questions as well as below each screenshot. Participants
were asked: Is the email authentic? Then participants were then asked: How
certain are you that you properly judged the displayed emails. The TORPEDO
group was also asked to comment on the information diagram.
Phase 3: Demographics: We requested demographic information.

4.2 Creation of Email Screenshots

We selected 16 web service providers based on the degree of popularity based on
Alexa (see Table 1). For all of these, we determined what authentic emails look
5 Note, on the one hand it is important that people take their time to check the URL,

however in addition, if they know what to consider, they can make decisions faster.
6 Questions were translated from German for this paper.

168 M. Volkamer et al.

like (including the ‘from’ address). All emails addressed the ‘Heartbleed-Bug’.
The text recommended that the recipient change their password and provided a
link to facilitate this. The text slightly differed from one email to the next but the
meaning remained the same. All raising some (but not strong) pressure to change
the password. Then, half of the screenshots were ‘turned into’ a screenshot of
a phish email by modifying the URL. For the TORPEDO group a tooltip was
added to display the relevant link. We decided to simulate a worst-case scenario,
i.e. advanced phishing emails which can only reliably be detected by checking the
URL. We wanted to investigate the difference between the status bar and tooltip,
and not the impact of various different signals. All emails were personalised.
We also used HTTPS for both phish and non-phish displays because we did not
want the absence or presence of HTTPS to constitute a cue due to the findings
in Sect. 2.1. Next, we considered which URL manipulation techniques to apply
to get a representative set of manipulated URLs. Researchers have identified
different URL manipulation classifications [7,15,25]. We used the categories from
[7] with each type’s anticipated success depending on how well users understand
URLs and the thoroughness of their URL checking:

– Obfuscate: The phish URL is composed of an arbitrary name or IP address.
Note, the brand name of the authentic website does not appear.

– Mislead: The phish URL embeds the authentic name somewhere (e.g. in the
subdomain or the path) in order to allay suspicions.

– Mangle: The phish URL includes letter substitutions, different letter ordering,
or misspelling e.g. arnazon instead of amazon.

– Camouflage: The domain name of the phish URL contains the brand name
together with an extension or a different top level domain.

4.3 Ethics, Recruitment, and Incentives

Our University’s ethical requirements with respect to respondent consent and
data privacy were met. Participants first read an information page on which they
were assured that their data would not be linked to their identity and that the
responses would only be used for study purposes. Furthermore, using SoSciSur-
vey ensured that data was stored in Germany and thus subject to German data
protection law. No debriefing was necessary. We recruited participants through a
platform called Workhub, which is a German equivalent of Amazon Mechanical
Turk. Every Workhub participant receives e3.

5 Results and Discussion

The demographics are summarized for both groups in Table 2. Participants in
the TORPEDO group, on average, detected phishing emails 85.17 % of the time
and they, on average, identified legitimate emails as such 91.57 % of the time.

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 169

Table 1. Legitimate(L) and Manipulated(M) URLs incl. type of manipulation.

Brand URL (abbreviated with ‘...’)

Postbank L: https://banking.postbank.de/rai/login

Ebay L:https://signin.ebay.de/ws/eBayISAPI.dll?SignIn\&UsingSSL...

Xing L: https://login.xing.com/login?dest url=https%3A%2F%2Fwww...

Google L: https://accounts.google.com/login?hl=de

Dropbox L: https://www.dropbox.com/s/VPrize8EppElIxxWOwETRB87Pe733AR...

Telekom L: https://accounts.login.idm.telekom.com/oauth2/auth?response...

Zalando L: https://www.zalando.de/login/

MediaMarkt L: https://www.mediamarkt.de/webapp/wcs/stores/servlet/Logo...

Facebook L: https://www.facebook.com/login

(Obfuscate) M: https://130.83.167.26/login

Flickr L: https://login.yahoo.com

(Obfuscate) M: https://www.xplan.com/signing/flickr/

Twitter L: https://twitter.com/login

(Mislead) M: https://twitter.webmessenger.com

Amazon L: https://www.amazon.de/ap/signin

(Mislead) M: https://www.amazon.de.buecherkaufen.de/ap/signing?...

DeutscheBank L: https://www.deutsche-bank.de

(Mangle) M: https://meine.cleutsche-bank.de/trxm/db/init.do?login...

Maxdome L https://www.maxdome.de/

(Mangle) M: https://www.maxdorne.de/?fwe=true\&Force-login-layer=true

Paypal L: https://www.paypal.com/signin/?country.x=DE\&locale...

(Camouflage) M: https://www.paypalsecure.de/webapps/mpp/home

GMX L: https://www.gmx.net

(Camouflage) M: https://meinaccount.gmxfreemail.de/

The corresponding percentages for the control group are: 43.31 % for phish detec-
tion and 63.66 % for identifying legitimate emails. Note, participants, on aver-
age, detected Camouflaged URLs 72.09 % of the time in the TORPEDO group
and 38.37 % in the status bar group, Misleading URLs 87.21 % versus 30.23 %,
Mangled URLs 91.86 % versus 37.20 %) and Obfuscated URLs 89.53 % versus
67.44 %. Furthermore, the corresponding numbers for the answer ‘I do not know’
are (TORPEDO/status bar): 3.49 %/6.98 %, 2.91 %/7.56 %, 2.33 %/8.14 %, and
5.81 %/5.23 %. The descriptive data for H3 and H4 is depicted in Fig. 4.

As to the violation of homogeneity of variances for the compared groups we
started our analyses with Mann-Whitney U tests for every hypothesis supple-
mented with an approximated effect size.

H1 – Phish Detection: Our analysis shows a significantly improved detection
rate for phish Emails for participants in the TORPEDO group, as compared to
those in the statusbar group (U = 210, p < .001, η2 = 0.455).

https://banking.postbank.de/rai/login
https://signin.ebay.de/ws/eBayISAPI.dll?SignIn&UsingSSL
https://login.xing.com/login?dest_url=https%3A%2F%2Fwww
https://accounts.google.com/login?hl=de
https://www.dropbox.com/s/VPrize8EppElIxxWOwETRB87Pe733AR
https://accounts.login.idm.telekom.com/oauth2/auth?response
https://www.zalando.de/login/
https://www.mediamarkt.de/webapp/wcs/stores/servlet/Logo
https://www.facebook.com/login
https://130.83.167.26/login
https://login.yahoo.com
https://www.xplan.com/signing/flickr/
https://twitter.com/login
https://twitter.webmessenger.com
https://www.amazon.de/ap/signin
https://www.amazon.de.buecherkaufen.de/ap/signing?
https://www.deutsche-bank.de
https://meine.cleutsche-bank.de/trxm/db/init.do?login
https://www.maxdome.de/
https://www.maxdorne.de/?fwe=true&Force-login-layer=true
https://www.paypal.com/signin/?country.x=DE&locale
https://www.paypalsecure.de/webapps/mpp/home
https://www.gmx.net
https://meinaccount.gmxfreemail.de/

170 M. Volkamer et al.

Table 2. Demographics

Participants Average Age Median Youngest Oldest Male IT expert

Status bar 43 25.70 23 17 54 25 5

TORPEDO 43 27.86 26 18 60 25 2

Fig. 4. Descriptive data for timing and certainty of correct decision.

H2 – Authentic Email Identification: Our analysis shows a significantly
improved identification rate of authentic Emails for participants in the TOR-
PEDO group, as compared to those in the status bar group (U = 304, p < .001,
η2 = 0.374).

H3 – Efficiency: Our analysis shows that participants in the TORPEDO
group were significantly more efficient than participants in the status bar group
(U = 676.5, p = .032, η2 = 0.053).

H4 – Confidence: Our analysis shows that participants in the TORPEDO
group were significantly more certain about their decisions than participants in
the status bar group (U = 536.5, p < .001, η2 = 0.155).

Diagram Feedback. We used open coding to analyse the free text answers. We
came up with the following categories: ‘grateful’, ‘nothing to improve’, ‘confus-
ing’, ‘too much information’, ‘too little information’, and ‘small improvements’.
Most of the participants (29 from 43 in total) were happy with the diagram, not
mentioning anything to improve. Three were grateful. Eight mentioned that the
diagram was confusing and five added that the confusion cleared once they read
it. Two participants considered the diagram to contain too much information
while another two participants complained about it giving too little information
(requesting more examples). Three provided small suggestions for improvement:
provide a title, and reconsider the usage of terms such as phish and URL.

Discussion. The results show that, in the studied scenario, we significantly
improved phish detection as well as the identification of legitimate emails with
TORPEDO. The detection rates for all four phishing types increased, too. The
participants in the TORPEDO group are also more confident that they made

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 171

the proper decision in comparison to the status bar group. The decision making
process is also significantly more efficient. Operating more quickly can, in the
long run, lead to more errors being made. It is worth providing people with
information such as that given in the information diagram since it is easy to apply
and requires the email recipient to spend less time checking each individual email.
The feedback to the information diagram showed that there is not much need to
improve the diagram other than making the numbers clearer and adding a title.
We acknowledge that the diagram might not provide sufficient information for
some people. In these few cases, we recommend extending our defence approach
with existing proven training approaches (see Sect. 6).

Limitations. We acknowledge that we evaluated the approach in a best-case
scenario as their primary task was security. Phishing effectiveness evaluations in
field studies are not possible due to ethical and legal constraints. Lab studies also
have their limitations because participants would not use a study laptop instead
of their own. We also acknowledge that the URLs were displayed the entire time
and not only when hovering the mouse over the link. This only partially simulates
the proposed delay. Note, we only used HTTPS since we wanted to assess their
ability to check the actual URL, not the presence or absence of HTTPS. Finally,
we acknowledge that the sample was not representative.

6 Related Work

Researchers have proposed different ways of addressing phishing:

Automated Detection. Phishing emails can be detected either pre- or post-
click. Emails can be analysed by the email provider before being forwarded to the
user. This analysis includes checking the integrated URLs against several black-
lists provided by companies such as Microsoft, Google and phishTank. Other
checks can also be carried out. For example, to look at differences between
displayed and actual domain names [12] or carry out an NLP analysis of the
actual email text [36]. If the email is delivered and the person clicks, post-click
detection can also occur. Web browsers or Add-ons can check the URL against
various blacklists or check the web site content in combination with the actual
URL. A number of different approaches for these checks have been proposed
[3,27,28,31]. In both pre- and post-click checks a risky situation can either lead
to blocking or a warning e.g. [24,29,40,42]. As a final comment, there is an
inherent flaw to post-click warnings. The human tendency to consistency makes
it less likely for people to even want to detect the deceptive nature of any site if
they have already committed to the process [8]. They have judged the email to
be legitimate. Withdrawing at this stage is unlikely. TORPEDO does not aim
to replace detection approaches but to complement them in order to help people
to protect themselves in case none of the checks detects the phish or it is simply
during the pre-detection window [2].

Training. A number of researchers have focused on training users to spot
phish [1,5,6,18,20–22,33] but most of them address phish detection in a web

172 M. Volkamer et al.

browser context. Researchers have shown that training improves phish detection
rates. Training has two drawbacks as compared to TORPEDO. First, people
need to be aware that there is a problem and that they need to be active in
dealing with it. Otherwise they will not undergo training. This problem was
addressed by Kumaraguru [23] by employing the concept of teachable moments,
where people are given instructions or training when they almost fall for a phish.
In their scheme, instead of blocking a link they allow it, and then show them
that they almost fell for a phish. Second, people may forget the information the
training imparted as they are not confronted with phishing emails every day.
Again the teachable moment approach can help. However, we think providing
the information graphic on demand, as and when required, is the safer approach
as it might be that the next time they forget how to check the teachable moment
mechanism may not be installed and they would be unprotected. Dodge et al.
[10] report a different approach, post-click training. They send out fake phish
messages and then train people who click on the links. They report a positive
effect. However, this approach can only be taken within an organisation. A few
participants in our evaluation had trouble understanding our diagram. For those,
more exhaustive training may help them. Note, the training, as such, would be
shorter than what would be required without TORPEDO.

Combining Approaches. We propose TORPEDO to complement existing
approaches to address the email phishing problem. Other researchers have also
proposed combining approaches to maximise phish protection. Khonji et al. [19]
suggest a two-pronged approach, the first prong being user training, and the sec-
ond being automated detection. The latter includes blacklists, machine learning
and visual similarity detection. Frauenstein and Von Solms [13] propose combin-
ing human, organisational and technical measures. The first includes awareness
and training, the second policies and procedures and the last one includes auto-
mated measures to detect phish.

7 Conclusion and Future Work

Phishing is a thorny issue. Trying to filter out phishing emails before they reached
the end users reduces the problem. Great strides have been made in this direction
but no one will claim that any automated system will catch 100 % of phishing
emails. So, it is up to the end users to protect themselves. The research we
have presented here offers a way to support end users by deploying TORPEDO
providing just-in-time, just-in-place, trustworthy tooltips; disabling links for a
short period of time; detection of re-directions and tiny URLs, and providing a
diagram at installation, or on demand, that encapsulates phish detection advice
in a step by step fashion. This approach was evaluated and improved. We found
that it highly significantly improved phish and legitimate email detection, made
such detection significantly faster and led to people feeling more confident about
their judgements compared to the status bar approach as used in Thunderbird
and Web email clients. With 85.17 % phish detection compared to 43.31 % with
the status bar URL display, it can only be hoped that the different email clients

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 173

and email providers deploy this approach as soon as possible. Until then, peo-
ple can use the TORPEDO Add-on we developed. As future work, we plan to
conduct acceptance tests to determine whether TORPEDO will indeed be used.
We also plan to extend this approach to mobile email clients.

Acknowledgement. This work was developed within the project ‘KMU AWARE’
which is funded by the German Federal Ministry for Economic Affairs and Energy
under grant no. BMWi-VIA5-090168623-01-1/2015. The authors assume responsibility
for the content.

References

1. Alnajim, A., Munro, M.: An anti-phishing approach that uses training intervention
for phishing websites detection. In: 6th International Conference on Information
Technology: New Generations, pp. 405–410. IEEE (2009)

2. APWG Internet Policy Committee: Global Phishing Survey: Trends and
Domain Name Use in 2H2013 (2013). http://docs.apwg.org/reports/APWG
GlobalPhishingSurvey 2H2013.pdf. Accessed 13 March 2016

3. Bar-Yossef, Z., Keidar, I., Schonfeld, U.: Do not crawl in the DUST: different URLs
with similar text. TWEB 3(1), 1–31 (2009). ACM

4. Blythe, M., Petrie, H., Clark, J.A.: F for fake: four studies on how we fall for phish.
In: CHI, pp. 3469–3478. ACM (2011)

5. Canova, G., Volkamer, M., Bergmann, C., Borza, R.: NoPhish: an anti-phishing
education app. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp.
188–192. Springer, Heidelberg (2014)

6. Canova, G., Volkamer, M., Bergmann, C., Borza, R.: Learn to spot phishing URLs
with the android nophish app. In: Bishop, M., Miloslavskaya, N., Theocharidou,
M. (eds.) Information Security Education Across the Curriculum. IFIP Advances
in Information and Communication Technology, vol. 453, pp. 87–100. Springer,
Heidelberg (2015)

7. Canova, G., Volkamer, M., Bergmann, C., Reinheimer, B.: NoPhish app evaluation:
lab and retention study. In: USEC. Internet Society (2015)

8. Cialdini, R.B., Cacioppo, J.T., Bassett, R., Miller, J.A.: Low-ball procedure for
producing compliance: commitment then cost. J. Pers. Soc. Psychol. 36(5), 463
(1978). APA

9. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: CHI, pp. 581–590.
ACM (2006)

10. Dodge, R.C., Carver, C., Ferguson, A.J.: Phishing for user security awareness.
Comput. Secur. 26(1), 73–80 (2007). Elsevier

11. Erkkilä, J.-P.: Why we fall for phishing. In: Conference on Human Factors in
Computer Systems. ACM (2011)

12. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: 16th
International Conference on World Wide Web, pp. 649–656. ACM (2007)

13. Frauenstein, E.D., von Solms, R.: Phishing: how an organization can protect itself.
In: Information Security South Africa Conference, pp. 253–268. Information Secu-
rity South Africa (2009)

14. Friedman, B., Hurley, D., Howe, D.C., Felten, E., Nissenbaum, H.: Users’ concep-
tions of web security: a comparative study. In: CHI, pp. 746–747. ACM (2002)

http://docs.apwg.org/reports/APWG_GlobalPhishingSurvey_2H2013.pdf
http://docs.apwg.org/reports/APWG_GlobalPhishingSurvey_2H2013.pdf

174 M. Volkamer et al.

15. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: Recurring Malcode, pp. 1–8. ACM (2007)

16. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007). ACM

17. Jakobsson, M., Tsow, A., Shah, A., Blevis, E., Lim, Y.: What instills trust? a
qualitative study of phishing. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and
USEC 2007. LNCS, vol. 4886, pp. 356–361. Springer, Heidelberg (2007)

18. Jansson, K., von Solms, R.: Simulating malicious emails to educate end users on-
demand. In: 3rd Symposium on Web Society, pp. 74–80. IEEE (2011)

19. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. Commun.
Surv. Tutorials IEEE 15(4), 2091–2121 (2013). IEEE

20. Kirlappos, I., Sasse, M.A., Education, S.: Against phishing: a modest proposal for
a major rethink. Secur. Priv. 10(2), 24–32 (2012). IEEE

21. Kumaraguru, P., Rhee, Y., Acquisti, A., Cranor, L.F., Hong, J., Nunge, E.:
Protecting people from phishing: the design and evaluation of an embedded train-
ing email system. In: CHI, pp. 905–914. ACM (2007)

22. Kumaraguru, P., Rhee, Y., Sheng, S., Hasan, S., Acquisti, A., Cranor, L.-F.,
Hong, J.: Getting users to pay attention to anti-phishing education: evaluation
of retention and transfer. In: Anti-phishing WG, pp. 70–81. ACM (2007)

23. Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L.F., Hong, J.: Teaching Johnny
to fall for phish. Trans. Internet Technol. 10(2), 1–7 (2010). ACM

24. Li, L., Helenius, M.: Usability evaluation of anti-phishing toolbars. J. Comput.
Virol. 3(2), 163–184 (2007). Springer

25. Lin, E., Greenberg, S., Trotter, E., Ma, D., Aycock, J.: Does domain highlighting
help people identify phishing sites? In: CHI, pp. 2075–2084. ACM (2011)

26. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists learning to detect
malicious web sites from suspicious URLs. In: 15th SIGKDD, pp. 1245–1254. ACM
(2009)

27. Marchal, S., François, J., State, R., Engel, T.: Proactive discovery of phishing
related domain names. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012.
LNCS, vol. 7462, pp. 190–209. Springer, Heidelberg (2012)

28. Maurer, M.-E., Herzner, D.: Using visual website similarity for phishing detection
and reporting. In: CHI, pp. 1625–1630. ACM (2012)

29. Maurer, M.-E., Luca, A.D., Kempe, S.: Using data type based security alert dialogs
to raise online security awareness. In: SOUPS, p. 2. ACM (2011)

30. Naidoo, R.: Analysing urgency and trust cues exploited in phishing scam designs.
In: 10th International Conference on Cyber Warfare and Security, p. 216. Academic
Conferences Limited (2015)

31. Prakash, P., Kumar, M., Kompella, R.R., Gupta, M.: PhishNet: predictive black-
listing to detect phishing attacks. In: INFOCOM, pp. 1–5. IEEE (2010)

32. Rusch, J.J.: The “social engineering” of internet fraud. In: Internet Society Annual
Conference. Internet Society (1999)

33. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.,
Nunge, E., Phil, A.-P.: The design and evaluation of a game that teaches people
not to fall for phish. In: SOUPS, pp. 88–99. ACM (2007)

34. Stajano, F., Wilson, P.: Understanding scam victims: seven principles for systems
security. Commun. ACM 54(3), 70–75 (2011). ACM

35. University of Exeter School of Psychology. The psychology of scams: Provoking
and committing errors of judgement, University of Exeter (2012)

TORPEDO: TOoltip-poweRed Phishing Email DetectiOn 175

36. Verma, R., Shashidhar, N., Hossain, N.: Detecting phishing emails the natural
language way. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 824–841. Springer, Heidelberg (2012)

37. Vishwanath, A., Herath, T., Chen, R., Wang, J., Rao, H.R.: Why do people get
phished? testing individual differences in phishing vulnerability within an inte-
grated, information processing model. Decis. Supp. Syst. 51(3), 576–586 (2011).
Elsevier

38. Wang, J., Chen, R., Herath, T., Rao, H.: An empirical exploration of the design
pattern of phishing attacks. Inform. Assurance, Security & Privacy Services, Emer-
ald Publishers (2009)

39. Webroot. Webroot 2015 Threat Brief. http://www.webroot.com/shared/pdf/
Webroot 2015 Threat Brief.pdf. Accessed 13 March 2016

40. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phish-
ing attacks? In: CHI, pp. 601–610. ACM (2006)

41. Xu, Z., Zhang, W.: Victimized by phishing: a heuristic-systematic perspective. J.
Internet Bank. Commer. 17(3), 1 (2012). ARRAY Development

42. Zhang, Y., Egelman, S., Cranor, L.F., Hong, J.: Phinding phish: evaluating anti-
phishing tools. In: NDSS. School of Computer Science, Internet Society (2007)

http://www.webroot.com/shared/pdf/Webroot_2015_Threat_Brief.pdf
http://www.webroot.com/shared/pdf/Webroot_2015_Threat_Brief.pdf

Social Networks

SybilRadar: A Graph-Structure Based
Framework for Sybil Detection in On-line Social

Networks

Dieudonné Mulamba(B), Indrajit Ray, and Indrakshi Ray

Department of Computer Science, Colorado State University,
Fort Collins, CO 80523, USA

{mulamba,indrajit,iray}@cs.colostate.edu

Abstract. Online Social Networks (OSN) are increasingly becoming
victims of Sybil attacks. These attacks involve creation of multiple col-
luding fake accounts (called Sybils) with the goal of compromising the
trust underpinnings of the OSN, in turn, leading to security and the pri-
vacy violations. Existing mechanisms to detect Sybils are based either
on analyzing user attributes and activities, which are often incomplete
or inaccurate or raise privacy concerns, or on analyzing the topological
structures of the OSN. Two major assumptions that the latter category
of works make, namely, that the OSN can be partitioned into a Sybil and
a non-Sybil region and that the so-called “attack edges” between Sybil
nodes and non-Sybil nodes are only a handful, often do not hold in real
life scenarios. Consequently, when attackers engineer Sybils to behave like
real user accounts, these mechanisms perform poorly. In this work, we
propose SybilRadar, a robust Sybil detection framework based on graph-
based structural properties of an OSN that does not rely on the tradi-
tional non-realistic assumptions that similar structure-based frameworks
make. We run SybilRadar on both synthetic as well as real-world OSN
data. Our results demonstrate that SybilRadar has very high detection
rate even when the network is not fast mixing and the so-called “attack
edges” between Sybils and non-Sybils are in the tens of thousands.

Keywords: Security of on-line social networks · Sybil attacks and
detection · Graph structures · Graph metrics

1 Introduction

The success of Online Social Networks (OSNs) [11] such as Facebook, Twitter,
LinkedIN, and Google+, have made them a lucrative target for attackers. Owing
to their open nature, they are specifically vulnerable to a new form of threat call
Sybils. In a Sybil attack, an adversary creates a large number of fake identities
or forges a large number of existing identities and uses those to target the trust
underpinnings of the OSN [7]. Various types of malicious attacks can be launched

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 179–193, 2016.
DOI: 10.1007/978-3-319-33630-5 13

180 D. Mulamba et al.

this way such as, social spamming [30], malware distribution [33], and private
data collection [5]. Therefore, it is important to provide OSN administrators a
tool for detecting Sybil accounts automatically, speedily and accurately.

Although much effort has been devoted to design such a tool, existing Sybil
defense approaches are efficient against a näıve attacker but can be evaded by
sophisticated ones. An attacker can evade a “content-based approach” in which
different features of OSN user-level attributes and activities are analyzed to
discriminate them from fake account activities [28], by creating fake accounts
whose features are similar to those of real accounts. On the other hand, sev-
eral researches [10,17,34] have shown that “structure-based approaches”, which
model the OSN as graph with nodes and edges respectively representing user
accounts and social relationships, can be evaded by an attacker who succeeds in
creating a large number of edges between the fake accounts and the benign ones.
This happens specially in weak-trust OSNs. Given that extracting and selecting
appropriate features from users attributes and activities for content-based Sybil
detection is challenging, prone to inaccuracies, and often raises privacy issues, we
propose SybilRadar, a Sybil detection mechanism that is based on graph-based
structural properties of OSNs. SybilRadar is able to protect OSNs with weak
trust relationships against Sybil attacks. We exprimentally evaluate the accuracy
of SybilRadar in detecting Sybils using real world OSN data. Our results show
that SybilRadar has much better detection accuracy than the closest competitor.

The rest of the paper is organized as follows. Section 2 discusses major works
in OSN Sybil defense. In Sect. 3 we present the system model for SybilRadar. We
discuss why assumptions in existing structure-based detection mechanisms are
invalid under real world settings. We end the section with a discussion on our
attack model. The main design of SybilRadar is presented in Sect. 4. We discuss
the major intuitions in our design and the different graph metrics that we used.
Section 5 presents the experimental setup and evaluation of SybilRadar including
comparison with SybilRank, which is the closest in design to SybilRadar. We
conclude in Sect. 6 with a discussion of our results and pointers to future work.

2 Related Works

Several studies have shown that OSNs are very vulnerable to Sybil attacks.
Facebook [14], Twitter [20,30], and Renren [34] have each experienced signifi-
cant amount of spams whose origins were Sybil attacks. Several researchers have
investigated approaches to defend against Sybil attacks on Online Social Network
following studies that have been conducted to assess the severity of these attacks.
Two bodies of works have been proposed in order to mitigate Sybils. The first
body of works that we call content-based approaches leverages user behaviors
and employs machine-learning techniques to learn and classify these behaviors.
OSN nodes deviating significantly from these nodes are called Sybils. The second
body of works that we call structure-based approaches leverages graph-theoretic
proprieties of the social network. Nodes that exhibit significantly different
properties than others are identified as Sybils.

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 181

Content-based approaches aim to find Sybil accounts by using a classifier
trained using machine-learning techniques. The most recent user activities are
analyzed to extract some unique features that will serve as inputs on which a
classifier is built. Machine-learning techniques such as clustering, support vec-
tor machines, and Bayesian networks are used to build the classifier. Some of
these approaches are used for spam detection such as blacklisting, whitelisting,
and URL filtering [29,30,32]. While many of these approaches have very high
detection rates, the problem with these approaches is that they are only as
good as the data that are used to train the classifiers. We believe that identi-
fying proper features from user attributes and activities is challenging because
these attributes often contain incomplete, inaccurate and sometimes purpose-
fully misleading information. Additionally, a sophisticated attacker can create
fake accounts presenting features similar to the ones one of real accounts, thus
evading detection. We also believe creating such user profiles can lead to privacy
breaches and are not supportive of such techniques. Consequently, We do not
consider content-based approaches in our work any further.

Structure-based approaches model an OSN as a graph with user accounts
and social relationships respectively represented by nodes and links. These
approaches determine some graph-theoretic characteristics of nodes which
are then used to discriminate Sybils from the real ones. Existing structure-
approaches are based on two assumptions. The first is that the social graph
will be partitioned into two distinct regions, one region with the Sybil nodes and
the other one with benign nodes. The second assumption is that there will be
only a small number of attack edges between the two regions, as a consequence
of the strong trust relationship in the social graph. Several mechanisms use these
approaches to detect Sybil communities, which are tight-knit communities that
have a small quotient-cut from the honest region of the graph [9,37,38].

SybilRank [6] is one of the most well-known techniques. It uses graph-theoretic
properties of the OSN social graph to compute the likelihood of users to be Sybils
in order to perform the ranking. The detection starts with the administrator
determining some known real users as initial seed node. A short random walk is
run with the known seeds. At the end of the random walk, all nodes are given
trust values which are the landing probabilities for the random walk. SybilRank
then ranks all the nodes based on their trust value. Nodes having higher trust
value will be at the top, while the nodes with lower trust values will be lowly
ranked. SybilRank performs almost linearly in the size of the social graph.

However, SybilRank is based on certain assumptions that several researches
[24,27] have proven not to be true in real life. In addition to these researches,
Yang et al. show that Sybils on Renren blend into the social graph rather than
forming tight communities [34]. Mohaisen et al. show that many social graphs
are not fast-mixing, which is a necessary precondition for the structure-based
Sybil detector of SybilRank to be effective [24]. SybilRadar, on the other hand,
does not make any of these assumptions.

Integro [4] is an approach that extends SybilRank. It is developed without the
two assumptions on which SybilRank is based on. Integro is a hybrid approach.

182 D. Mulamba et al.

It mixes content-based approach with a structure-based approach in order to
detect Sybils. Integro first determines unique features for users which are used
to build a feature-vector. The feature-vectors are used to train a classifier that
predicts potential victims of Sybil attacks. After finding the potential victims, the
edges in the social graph are given weights based on whether they are adjacent
to the potential victims or not. The ranking is then performed by a modified
random walk. Integro achieved a 95 % precision in detecting Sybils. Our approach
produces similar detection accuracy without using any content-based techniques.

SybilFrame [15] relaxes the assumptions that the social network can be par-
titioned into two distinct regions – Sybil and non-Sybil – and that there exists
only a small number of attack edges between the two regions. SybilFrame is
also a hybrid approach that leverages the attributes of an individual node along
with a measure of correlation between connected nodes in order to classify nodes
among benign and Sybils. SybilFrame operates in two steps. In the first step the
initial network data are fed into the framework from which node unique features
are extracted in order to compute node prior information. In Step 2, the node
prior information are provided to the posterior inference layer in order to com-
pute the correlation between nodes. This nodes correlation is computed using
Markov Random Field, and along with the Loopy Belief Propagation method, it
provides the posterior information of nodes which is used to perform the ranking
of nodes.

3 Preliminaries

We begin by presenting the system model for our work. We then introduce
the notion of strong and weak trust relationships in OSNs. We explain why
SybilRank does not perform well in a real-world OSN with weak trust. We end
this section with a discussion of our attack model.
System Model: Trust relationship between two OSN users allows one to assess
the information based upon which further information sharing can be performed
or a service can be expected [18], and is the underpinning on which OSNs are
built. Consider the social network topology as defined by a graph G = (V,E)
comprising a set of vertices V, denoting users on the social network and E a set of
edges, representing trust relationships (or friendship) between users. We assume
trust relationships are mutual (bi-directional) and represent it with undirected
edges between the users in the graph G. Two kind of nodes are considered
here – an honest node and a Sybil node. A honest node that has accepted, or is
susceptible to accepting a friend request from a Sybil node is considered to be
a victim node. The subgraph of G containing all the honest nodes is considered
to be the honest region of the OSN, while the Sybil region is the subgraph of G
containing all sybil nodes.

We consider three kind of edges. Attack edges are those connecting victim
nodes in an honest region and Sybil niodes. Sybil edges connet Sybil nodes to each
other. Finally we have honest edges that connect honest nodes with each other.

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 183

OSNs with weak trust: In early studies [25,37], OSNs were assumed to have
strong trust relationships. OSNs with strong trust are those that possess the
property of fast-mixing. For Sybil detection purposes, this boils down to a social
network with a small cut, which is a set of edges whose removal will disconnect
the graph into two distinct regions – the honest region and the Sybil region [39].
In other words, in a social network with strong trust we can distinguish the two
distinct regions and there is a very limited number of attack edges between the
regions (in the tens). OSN with weak trust, on the other hand, is a network that
does not display the fast-mixing property. Indeed, it was demonstrated [24] that
not many social networks are fast-mixing. In this work, we assume an OSN with
weak trust, which is in contrast to SybilRank.

Attack Model: We assume that an attacker can create an unlimited number
of Sybil nodes constituting a subgraph (the Sybil region) whose topology is
beyond the control of the OSN provider. Attackers can create as many number
of attack edges as they want, but they do not have control on how many of
those attacks edges will be successful in establishing victims. Our Sybil defense
mechanism is built around the assumption that we know at least one honest
node. This assumption is reasonable since such information can be provided by
the administrator of the OSN after a carefully designed process for that purpose.
Same assumption is made by other works as well. In addition, we assume that the
attacker does not have complete knowledge of the entire OSN topology, since this
will require him to crawl the entire network. However, the attacker can acquire
the knowledge about a subgraph of the OSN.

4 SybilRadar System Design

SybilRadar operates in three steps. The process starts with the network dataset
(set of nodes and edges) being fed to the SybilRadar framework. The first step
involves the computation of similarity values between a given pair of nodes. The
chosen similarity metric is the Adamic-Adar metric [1], which is based on the
notion of common friends between any given pair of nodes. The intuition for
choosing this metric is that honest nodes will have more friends in common
that Sybil nodes. In the second step, the result from the first step is refined
using another similarity metric which is the Within-Inter-Community metric
(WIC) [31]. This metric leverages the underlying community structure of the
given social graph. The Louvain method [3] is used to find the social graph
community information that is fed to the WIC similarity metric computation.
This step produces the prior information which is the similarity values of any
given pair of nodes driven by the community they belong to. We end this step
with a tuning of the nodes similarity values for those nodes with a similarity value
greater than 1. We assign the resulting similarity values to the social graph edges
as their weights. In the third step, we run a Modified Short Random Walk on
the weighted social graph. This step produces trust values, which are the node’s
landing probabilities of the random walk. These values are assigned to each node
as the posterior information in order to perform the ranking of nodes.

184 D. Mulamba et al.

4.1 Predicting Attack Edges

Similarity metrics have been extensively used in the field of link prediction in
networks. The link prediction problem consists of predicting possible future links
based on observing existing links in a given network. Sybils try to maliciously
create trust relationships with honest nodes by creating attack edges. Our algo-
rithm tries to predict these bad links. The prediction of future possible links can
be based on observing unique and recent features of nodes present in the net-
work, or can be based on structural properties of nodes present in the network.
In the first case, feature similarity metrics are used, while structural similarity
metrics are used in the latter case. Interested readers are referred to [21,23]
for link prediction works using feature similarity metrics, and references [13,35]
for link prediction works based on structural similarity metrics. In OSNs node
attributes are not always available. For example, users may not complete their
profiles or provide inaccurate or misleading information to protect their sensitive
information. Moreover, trying to learn user behavior, where complete informa-
tion is available, may raise privacy concerns. This leads us to consider structural
similarity metrics, which are based solely on the structure of the social graph
induced by trust relationships between users [16].

We adopt the Adamic-Adar metric [1] to compute an initial similarity value
of pairs of nodes. For a given OSN graph G = (V,E), let x and y be two nodes
and Γ (x) and Γ (y) be the sets of neighbors of x and y. The Adamic-Adar (or
simply Adamic) similarity measure is given by

SAA
x,y =

∑

w∈Γ (x)∩Γ (y)

1
log | Γ (w) | (1)

Given the initial social graph, running the Adamic similarity metric on each
pair of nodes results in a weighted social graph with the weight on a link being
the similarity value of nodes adjacent to that link. For a given social graph
G = (V,E) and for each edge (u1, u2) ∈ E, the similarity value Adamic(u1, u2)
becomes its weight w(u1, u2). After computing the Adamic similarity metric we
make the following observations:

1. We have three sets of edges: edges with weight w(u1, u2) = 0, those with
weight w(u1, u2) ∈ [0, 1], and the edges with weight w(u1, u2) > 1.

2. For the attack edges, at least 95 % of them have their weight w(u1, u2) = 0,
and less than 5 % have their weight w(u1, u2) ∈ [0, 1], while about zero to an
infinitely small number of them have their weight w(u1, u2) > 1.

3. The situation for honest edges is quite different. At least 90% of them
have their weight w(u1, u2) > 1, and about less than 5% have their weight
w(u1, u2) ∈ [0, 1], whereas those with weights w(u1, u2) = 0 are also less than
5%.

We were able to make these observation because the social graph used for
simulation purpose is derived from a synthetic network whose attack edges, Sybil
edges and honest edges are known beforehand. We were able to predict about

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 185

90% of existing attack edges. We made similar observation later with our real
data. We observe that predicting attack edges can be very helpful. since it can
reveal nodes that have potentially been victims of Sybil attacks. This can be
a valuable information for a system administrator. Note, however, that not all
edges that have their w(u1, u2) = 0 are all attack edges. In other words, some
honest edges, as well as some Sybil edges, have their weight equal to 0. This is
due to the fact that not all pairs of honest nodes or Sybil nodes have common
friends, which is the criteria used in computing the similarity value using the
Adamic metric.

4.2 Further Refinement of Attack Edge Detection

We next observed that there was an extreme case where our current Sybil detec-
tion algorithm completely looses its accuracy. This situation arises when the
number of attack edges far exceeds the number of honest nodes.

This situation is not desirable because, at this level, any attacker that can
succeed to create a huge number of attack edges compared to the number of
benign accounts and get a high degree of certainty of having a significant number
of his Sybil accounts evading the Sybil detection mechanism. We observe that
among the attack edges that were not detected a significant number have their
weights w(u1, u2) ∈ [0, 1]. These edges are mixed with a significant portion of
other non attack edges which also have their weight w(u1, u2) ∈ [0, 1]. We want
to filter out as many attack edges as we can in order to increase the number of
detected attack edges. For this purpose, we leverage properties of communities
(or clusters) in networks.

Community Detection. OSNs typically display clustering characteristics. The
idea of using a clustering structure when designing a similarity metric was
advanced by [12] who showed that link prediction measures based on structural
similarity perform poorly for a network with a low clustering structure. This
inspired [31] to first divide the network into communities, and use this cluster-
ing structure information in designing a similarity metric for the link prediction
problem. In order to measure the quality of a community structure, Newman
et al. [26] introduced a modularity function Q. Given a social graph G = (V,E),
the modularity function can be expressed as follows:

Q =
1

2m

∑
(Aij − kikj

2m
)δ(Ci, Cj) (2)

where ki and kj are respectively the degree of nodes i and j. Aij represents an
element of the adjacency matrix, and m is the size of E which is the set of edges
of the given graph G. Ci and Cj are the respective communities to which i and
j belong. The parameter δ is the Kronecker delta symbol whose value is 1 when
both i and j belong to the same community, and is 0 when both nodes belong
to different communities. The goal of community detection is to divide a net-
work into communities in a manner that maximizes the value of the modularity.

186 D. Mulamba et al.

In our Sybil detection algorithm we use a modularity optimization method called
the Louvain Method [3].

To identify clusters, we first collect all the edges with weight w(u1, u2) ∈ [0, 1],
and for each of these edges we compute the similarity value of its end nodes using
the Within Inter Cluster (WIC) similarity metric [31]. This metric is built based
on the notion of within-cluster common neighbors and inter-cluster common
neighbors. For a given graph G = (V,E), and nodes u, v, w ∈ V , w is said to be a
within-cluster common neighbor of u and v if w belongs to the same community
as them. Otherwise, w is said to be an inter-cluster common neighbor of u and v.
The WIC metric is defined to be the ratio between the size of the set of within-
and inter-cluster common neighbors [31].

Running the WIC similarity metric on edges with weight w(u1, u2) ∈ [0, 1]
results in this set of edges being reduced in size. Some of its edges are converted
to edges with weight w(u1, u2) > 1 while the remaining are converted to edges
with weight w(u1, u2) = 0, thus increasing the size of the set of attack edges. We
terminate this preprocessing with a tuning that aims to scale down all weights
w(u1, u2) > 1 to w(u1, u2) = 1. The benefit of this transformation is a gain in
the accuracy and the stability of the detection mechanism. We are now ready to
proceed to the ranking of nodes in order to declare which ones are Sybil nodes,
and which ones are benign nodes.

4.3 Trust Propagation

To rank the nodes, each node in the OSN is assigned a degree-normalized landing
probability of a modified short random walk. The walk starts from a known non-
Sybil node. Using this node, we compute the probability of a modified random
walk to land on each node ui after k steps. This landing probability is analogous
to the strength of the trust relationship between the nodes, and each step of the
walk’s probability distribution is considered as a trust propagation process [6].

Early terminated walk: The modified random walk used by SybilRadar is called
a short walk because it is an early terminated walk [36]. A random walk that is
run long enough will end up with with all the nodes in the social graph having an
uniform trust value. The uniform trust value is called the convergence value of the
random walk [2]. The number of steps k required for a random walk to converge
is called the mixing time of the social graph. Several researches [10,22,24] have
shown that for various social networks, the mixing time is larger than O(log n)
with n being the number of nodes in the social graph. To compute the trust
values, SybilRadar adapts the Power Iteration method [19]. In SybilRadar the
modified power iteration is terminated after O(logn) iterations.

Our modified power iteration method takes as input the transition matrix
of social graph, where each element of the matrix is the probability of the ran-
dom walk to transition from one node to another. The method is executed as
a succession of transition matrix multiplications, and at each step the iteration
computes the trust distribution over nodes. It works as follows. We define the
trust value on a node v after i iterations as T (v), and the total trust as the value

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 187

T ≥ 1. Given s1, . . . , sk the selected trust seeds, we initialize the power iteration
by distributing the total trust among the trust seeds as follows:

T (0)(v) =

{
T/k if v is a trusted seed
0 otherwise

(3)

After the initialization step, each node vi is assigned a trust value T (vi). The
process then proceeds with each node vi evenly distributing its trust value T (vi)
to each of its neighbor vj during each round of power iteration. Each node vi

then updates its trust value in accordance with the trust values received from
its neighbors. The trust distribution is done proportionally to w(vi, vj)÷deg(vj)
which is the ratio of the weight on the edge between the node vi and its neighbor
vj over the degree of the neighbor node vj . The use of the weight ensures that
a big fraction of the total trust will be distributed to benign accounts rather to
Sybil accounts. This results in benign accounts having higher trust value than
Sybil accounts. The entire process is summarized in Eq. (4).

T (k)(vi) =
∑

(vi,vj)∈E

T (k−1)(vj)
w(vi, vj)
deg(vj)

(4)

After O(logn) iterations, the resulting trust value T (vi) assigned to each
node vi is normalized according to vi degree. The normalization process involves
dividing each node trust value by its degree. This transformation is motivated by
the fact that trust propagation is influenced by the node degree, and that this
results in the trust propagation being biased toward node with higher degree
when the number of iterations grows larger. The normalization ensures that
benign nodes get trust values that are close in value [6]. This is influential in
identifying Sybil nodes after the ranking.

5 System Evaluation

We first evaluate SybilRadar using both a synthetic network and a real dataset
collected from Facebook. For both evaluations we employ procedures that other
researchers have used in this line of work. We compare SybilRadar against Sybil-
Rank which takes the same structure-based approach that is also based on the
use of the power iteration method albeit on an unweighted graph unlike Sybil-
Radar which uses a weighted graph.

Comparing SibilRadar to SybilRank will help highlight the role played
by similarity metrics in detecting Sybil accounts. In addition, SybilRank has
been demonstrated to outperform other previous structure-based methods [6].
Although Integro outperforms SybilRank, it is not a pure structure-based app-
roach since it leverages account’s feature information collected from recent users
activities. We have indicated earlier our reservations for using user attributes
or activities in Sybil detection. For this reason, we are not including it in our
comparison.

188 D. Mulamba et al.

Evaluation metric: To express SybilRadar’s performance, we use the Area Under
the Receiver Operating Characteristic Curve (AUC). AUC for our purpose is
defined as the probability to have a randomly selected benign node ranked higher
than a randomly selected Sybil node. The AUC is a tradeoff between the False
Positive Rate and the True Positive Rate of the classifier. A perfect classifier has
an AUC of 1 while a random classifier has an AUC of 0.5. Therefore, we expect
our classifier to perform better than a random classifier, and to have an AUC as
close as possible to 1.

5.1 Evaluation on Synthetic Networks

The synthetic network is generated using known social network models. First,
the honest and the Sybil regions are generated by providing relevant parameters
to the network model, like the number of nodes, and the average degree of
nodes. Then, the attack edges are generated following the scenario chosen in the
experiment. They can be randomly generated or generated in a way to target
some specific honest nodes.

Initial Evaluation: We generate the honest region and the Sybil region using
the Powerlaw model. The honest region has a size 4000 nodes while the Sybil
region has 400 nodes. Both regions have an average degree of 10. The attack
scenario chosen simulates an attacker randomly generating 2000 attack edges.
The weights on the edges are set to be the values resulting from the two similarity
metrics previously described in this Sect. 4.2. For this experiment, we select 20
trust seeds from the honest region. These are supposed to be some nodes that
the OSN system administrator is absolutely certain to be honest nodes.

Results: Comparing the ranking quality of both SybilRank and SybilRadar under
the chosen scenario, the results show that SybilRadar outperforms SybilRank.
SybilRadar resulted in an AUC which is always greater than 0.95, an AUC that
is higher than SybilRank’s AUC of 0.90.

Varying the number of attack edges: In the next experiment, we keep the honest
and the Sybil regions as set up in the previous Basic Evaluation. In order to
stress-test the platforms being compared, we decide to successively vary the
number of attack edges from 1000 to 10000. We want to investigate how the
increase in number of attack edges affects the performance of both platforms.

Results: This result can be seen in Fig. 1(a). As the number of attack edges
increases, we notice that SybilRank is unable to keep its initial performance,
with its AUC dropping from 0.97 to less than 0.6. Meanwhile, the increase in the
number of attack edges affects the performance of SybilRadar only marginally.
Its AUC still stays above 0.90. This highlights the effectiveness of using similarity
metrics in detecting Sybil nodes in the case of social graphs with weak trust.

Varying the size of the Sybil region: In this experiment, we explore how the
increase in the size of the Sybil region affects the performance of both platforms.

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 189

For this purpose, we design a honest region with 4000 nodes, and an average
degree of 10. The attacker is able to create randomly 4000 attack edges. We
vary the size of the Sybil region from 100 to 500 nodes each with an average
degree of 10.

Results: The experiment results (see Fig. 1(b)) show that SybilRadar and Sybil-
Rank react differently to the increase in the size of the Sybil region. When the
size of the Sybil region is relatively small compared to the size of the honest
region, SybilRank performs poorly. SybilRank performance improves when the
size of the Sybil region get relatively bigger. However, as illustrated in Fig. 1(b),
SybilRadar displays a stable performance that is less sensitive to the size of the
Sybil region.

(a) Varying number of attack edges (b) Varying size of the Sybil region

Fig. 1. Performance on synthetic data

5.2 Evaluation on Real-World Twitter Network

To study if our choice of data in the previous experiments biased our results,
we also evaluated the performance of SybilRadar under larger datasets from
a different OSN, namely, the Twitter network. The dataset we used is a com-
bination of four datasets: The FakeProject dataset, the Elezioni2013 dataset,
the TWT dataset, and the INT dataset [8]. The FakeProject dataset contained
profiles of real users who received friend requests from @TheFakeProject, an
account created for The FakeProject that was initiated in 2012 at IIT-CNR, in
Pisa-Italy. The Elezioni2013 dataset was generated in 2013 for a sociological
research undertaken by the University of Perugia and University of Rome, La
Sapienza. The TWT dataset and the INT dataset were a set of fake accounts pur-
chased respectively from the fake accounts providers http://twittertechnology.
com and http://intertwitter.com. The first two datasets mentioned provided the
honest nodes while the last two datasets provided the fake nodes [8].

Pre-processing: Since the Twitter network is directed, we considered only the set
of bidirectional edges. This provided us with an initial network of 469,506 nodes
and 2,153,427 edges. We further refined this network by removing all nodes with

http://twittertechnology.com
http://twittertechnology.com
http://intertwitter.com

190 D. Mulamba et al.

degree less than 1. The resulting twitter network then comprised 135,942 nodes
and 1,819,864 edges. The honest region comprised 100,276 nodes and 634,127
edges while the Sybil region was constituted of 35,666 nodes and 1,086,352 edges.
The two regions were connected by 99,385 attack edges.

Results: We ran SybilRadar several times using the Twitter dataset described
above. SybilRadar resulted in an AUC which was always greater than 0.95 as
shown in Fig. 2.

Fig. 2. Performance on Twitter dataset

6 Conclusion

In this paper, we presented a new framework for detecting Sybil attacks in an
Online Social Network. In a Sybil attack, an adversary creates a large number
of fake identities in an OSN or forges existing identities. The adversary then
uses these fake identities to influence the underlying trust basis of the OSN
and perform malicious activities such as social spamming, malware distribution
and private data collection. Sybils are a significant threat to the OSN. While
they cannot be prevented in most OSNs because of their open nature, this work
provides a solution by which the OSN operator can automatically, speedily and
accurately detect such Sybils.

SybilRadar belongs to the class of Sybil detection techniques that rely on
the graph structure of the OSN. This is in contrast to the alternate group of
detection mechanisms that rely of identifying features related to user attributes
and activities. We believe that while the second class of detection algorithms
may provide good detection results on carefully cleaned up OSN data, in real
life such data is difficult to obtain since OSN users frequently leave their pro-
files incomplete or use misleading information purposefully. Moreover, trying to
obtain user activity related data may raise serious privacy concerns. As a result,
SybilRadar relies on just the structural properties of the OSN graph. We used
a variety of OSN test data – both synthetic as well as real-world – to evalu-
ate the detection accuracy of SybilRadar. Our experimental results show that

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 191

SybilRadar performs very well – much better than the most well known similar
technique – even for OSNs that have the weak trust model and which have a
very large number of attack edges between Sybil nodes and honest nodes.

For future work, we plan to add a temporal dimension to our detection frame-
work. Sybil behavior will most likely not be static but change with time. We
expect to see major differences in how structural properties of honest nodes
change over time and how that of Sybil nodes change. We would like to inves-
tigate how this can be modeled to detect Sybils. Also, although we are not a
big supporter of using user attributes and activities in Sybil detection, we admit
that these techniques can provide somewhat better results. We would like to
investigate if and how these techniques can be integrated with SybilRadar so as
to improve it but in a manner that does not raise any privacy issues related to
OSN users.

References

1. Adamic, L., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230
(2001)

2. Behrends, E.: Introduction to Markov Chains with Special Emphasis on Rapid
Mixing. Advanced Lectures in Mathematics. Springer, Wiesbaden (2000)

3. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008
(2008)

4. Boshmaf, Y., Logothetis, D., Siganos, G., Leŕıa, J., Lorenzo, J., Ripeanu, M.,
Beznosov, K.: Integro: leveraging victim prediction for robust fake account detec-
tion in OSNs. In: Proceedings of NDSS (2015)

5. Boshmaf, Y., Muslukhov, I., Beznosov, K., Ripeanu, M.: The socialbot network:
when bots socialize for fame and money. In: Proceedings of the 27th Annual Com-
puter Security Applications Conference, pp. 93–102. ACM (2011)

6. Cao, Q., Sirivianos, M., Yang, X., Pregueiro, T.: Aiding the detection of fake
accounts in large scale social online services. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, p. 15 USENIX
Association (2012)

7. Chang, W., Wu, J.: A Survey of Sybil Attacks in Networks. Technical report,
Department of Computer and Information Science, Temple University

8. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: Fame for sale:
efficient detection of fake twitter followers. Decis. Support Syst. 80, 56–71 (2015)

9. Danezis, G., Mittal, P.: Sybilinfer: detecting sybil nodes using social networks. In:
NDSS. San Diego, CA (2009)

10. Dellamico, M., Roudier, Y.: A measurement of mixing time in social networks. In:
Proceedings of the 5th International Workshop on Security and Trust Management,
Saint Malo, France, September 2009

11. Ellison, N.B., et al.: Social network sites: definition, history, and scholarship. J.
Comput. Mediat. Commun. 13(1), 210–230 (2007)

12. Feng, X., Zhao, J., Xu, K.: Link prediction in complex networks: a clustering
perspective. Eur. Phys. J. B 85(1), 1–9 (2012)

13. Fire, M., Tenenboim-Chekina, L., Puzis, R., Lesser, O., Rokach, L., Elovici, Y.:
Computationally efficient link prediction in a variety of social networks. ACM
Trans. Intell. Syst. Technol. (TIST) 5(1), 10 (2013)

192 D. Mulamba et al.

14. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and char-
acterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, pp. 35–47. ACM (2010)

15. Gao, P., Gong, N.Z., Kulkarni, S., Thomas, K., Mittal, P.: Sybilframe: A Defense-
in-Depth Framework for Structure-Based Sybil Detection. arXiv preprint. (2015).
arXiv:1503.02985

16. Geisser, S.: Predictive Inference, vol. 55. CRC Press, Boca Raton (1993)
17. Ghosh, S., Viswanath, B., Kooti, F., Sharma, N.K., Korlam, G., Benevenuto, F.,

Ganguly, N., Gummadi, K.P.: Understanding and combating link farming in the
twitter social network. In: Proceedings of the 21st International Conference on
World Wide Web, pp. 61–70. ACM (2012)

18. Golbeck, J.: Trust and nuanced profile similarity in online social networks. ACM
Trans. Web (TWEB) 3(4), 12 (2009)

19. Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J.
Comput. Appl. Math. 123(1), 35–65 (2000)

20. Grier, C., Thomas, K., Paxson, V., Zhang, M.: @ Spam: The underground on 140
characters or less. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, pp. 27–37. ACM (2010)

21. Kahanda, I., Neville, J.: Using transactional information to predict link strength
in online social networks. ICWSM 9, 74–81 (2009)

22. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: natural cluster sizes and the absence of large well-defined clusters.
Internet Math. 6(1), 29–123 (2009)

23. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods
in link prediction. In: Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 243–252. ACM (2010)

24. Mohaisen, A., Yun, A., Kim, Y.: Measuring the mixing time of social graphs. In:
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement,
pp. 383–389. ACM (2010)

25. Nagaraja, S.: Anonymity in the wild: mixes on unstructured networks. In: Borisov,
N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 254–271. Springer, Heidelberg
(2007)

26. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

27. Shi, L., Yu, S., Lou, W., Hou, Y.T.: Sybilshield: An agent-aided social network-
based sybil defense among multiple communities. In: Proceedings of IEEE INFO-
COM, pp. 1034–1042. IEEE (2013)

28. Stein, T., Chen, E., Mangla, K.: Facebook immune system. In: Proceedings of the
4th Workshop on Social Network Systems, p. 8. ACM (2011)

29. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In:
Proceedings of the 26th Annual Computer Security Applications Conference, pp.
1–9. ACM (2010)

30. Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect:
an analysis of twitter spam. In: Proceedings of the ACM SIGCOMM Conference
on Internet Measurement Conference, pp. 243–258. ACM (2011)

31. Valverde-Rebaza, J.C., de Andrade Lopes, A.: Link prediction in complex networks
based on cluster information. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-
Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS, vol. 7589, pp. 92–101. Springer,
Heidelberg (2012)

http://arxiv.org/abs/1503.02985

SybilRadar: A Graph-Structure Based Framework for Sybil Detection 193

32. Wang, A.H.: Don’t follow me: spam detection in twitter. In: Proceedings of the
International Conference on Security and Cryptography (SECRYPT), pp. 1–10.
IEEE (2010)

33. Yan, G., Chen, G., Eidenbenz, S., Li, N.: Malware propagation in online social
networks: nature, dynamics, and defense implications. In: Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, pp.
196–206. ACM (2011)

34. Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao, B.Y., Dai, Y.: Uncovering social
network sybils in the wild. ACM Trans. Knowl. Discov. Data (TKDD) 8(1), 2
(2014)

35. Yao, F., Chen, L.: Similarity propagation based link prediction in bipartite net-
works. In: Network Security and Communication Engineering: Proceedings of the
International Conference on Network Security and Communication Engineering
(NSCE 2014), Hong Kong, 25–26 December 2014, p. 295. CRC Press (2015)

36. Yu, H.: Sybil defenses via social networks: a tutorial and survey. ACM SIGACT
News 42(3), 80–101 (2011)

37. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social
network defense against sybil attacks. In: IEEE Symposium on Security and Pri-
vacy, SP 2008, pp. 3–17. IEEE (2008)

38. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.D.: Sybilguard: Defending
against sybil attacks via social networks. IEEE/ACM Trans. Netw. 16(3), 576–
589 (2008)

39. Zhao, X., Li, L., Xue, G.: Authenticating strangers in fast mixing online social
networks. In: Global Telecommunications Conference (GLOBECOM 2011), pp.
1–5. IEEE (2011)

Collateral Damage of Facebook Apps: Friends,
Providers, and Privacy Interdependence

Iraklis Symeonidis1(B), Fatemeh Shirazi1, Gergely Biczók2,
Cristina Pérez-Solà1,3, and Bart Preneel1

1 ESAT/COSIC and iMinds, KU Leuven, Leuven, Belgium
iraklis.symeonidis@esat.kuleuven.be

2 MTA-BME Future Internet RG,
Budapest University of Technology and Economics, Budapest, Hungary

3 dEIC, Universitat Autònoma de Barcelona, Barcelona, Spain

Abstract. Third-party apps enable a personalized experience on social
networking platforms; however, they give rise to privacy interdependence
issues. Apps installed by a user’s friends can collect and potentially mis-
use her personal data inflicting collateral damage on the user while leav-
ing her without proper means of control. In this paper, we present a
multi-faceted study on the collateral information collection of apps in
social networks. We conduct a user survey and show that Facebook users
are concerned about this issue and the lack of mechanisms to control it.
Based on real data, we compute the likelihood of collateral information
collection affecting users; we show that the probability is significant and
depends on both the friendship network and the popularity of the app.
We also show its significance by computing the proportion of exposed
user attributes including the case of profiling, when several apps are
offered by the same provider. Finally, we propose a privacy dashboard
concept enabling users to control the collateral damage.

1 Introduction

Online Social Networks (OSNs) have become a dominant platform for people to
express themselves, interact with each other and get their daily entertainment.
By design and popularity, Facebook has morphed into a massive information
repository storing users’ personal data and logging their interaction with friends,
group, events, and pages. The sheer amount and potentially sensitive nature of
such data have raised a plethora of privacy issues for Facebook users, such as
the lack of user awareness, cumbersome privacy controls, accidental informa-
tion disclosure, unwanted stalking, and reconstruction of users identities, see
Wang et al. [22].

Applications, Providers, Permissions, and Control. Complicating the
Facebook privacy landscape, users can also enjoy apps for a personalized social

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 194–208, 2016.
DOI: 10.1007/978-3-319-33630-5 14

Collateral Damage of Facebook Apps 195

experience. Apps can be developed either by Facebook itself or by third-party
app Providers (appPs). Facebook relies on permission-based platform security
and applies the least privilege principle to third-party apps. For installation and
operation, each app requests from the user a set of permissions, granting the app
the right to access and collect additional information (steps 1 to 4 in Fig. 1a).
After the user’s approval, apps can collect the user’s personal data and store it
on servers outside Facebook’s ecosystem and completely out of the user’s control
(steps 5 to 6).

User User’s friends

App Server

Facebook

1.
A
cc
ep
t
pe

rm
is
si
on

s

2. Auth. and App access

4.
R
un

A
pp

3. Get Access Token

5.
Ac
ces
s T

oke
n

6.
Ge
t U

ser
’s I

nfo
rm
ati
on

Online Social Network

Friends

DBu

App A2

App A3

App A4App A1

App Prov1
Photos, Location

BirthdayLikes

User friend1 friend2

Fig. 1. a. Facebook app architecture, b. Collateral information collection

Initially, Facebook enabled apps to collect profile attributes of users’ friends
by assigning separate permissions to each profile attribute. Later, Facebook has
replaced this with a single permission to conform with US Federal Trade Com-
mission (FTC) regulations on data collection [3]. Conformity notwithstanding,
apps are still able to collect up to fourteen profile attributes via friends [20]. Of
course, users have app-related privacy controls at their disposal; however, they
are scattered at multiple locations, such as the user’s personal profile (visibility
levels per attribute) or the apps menu (attributes friends can bring with them to
apps). Taking into account that default settings are very much pro-sharing, frag-
mented and sometimes curiously worded, privacy control settings could promote
incorrectly set policies or complete neglect from users [22].

Privacy Interdependence, Profiling, and Legislation. The suboptimal pri-
vacy controls and the server-to-server (and potentially offline) communication
between Facebook and appP make any protection mechanism hard to apply [9].
As a result, the user’s profile items can be arbitrarily retrieved by an appP with-
out automatic notification or on-demand approval by the user through friends.
Since the privacy of an individual user is affected by the decisions of other users
(being partly out of their control), this phenomenon is referred to as privacy
interdependence [6]. From an economic point of view, sharing a user’s infor-
mation without her direct consent can lead to the emergence of externalities.
While sharing someone else’s information may yield benefits for her (positive
externality, e.g., personalized experience in social apps), it is also almost cer-
tain to cause a decrease in her utility (negative externality, e.g., exposed profile
items). Existing research is limited to pointing out the existence of and risks

196 I. Symeonidis et al.

stemming from such negative externalities in the Facebook app ecosystem [6],
and its potential impact on app adoption [16,17].

Neglected by previous work, third party appPs can be owners of several apps
(e.g., appP1 offers app A1, A2, A3 and A4, see Fig. 1b). For instance, Vipo
Komunikacijos and Telaxo are appPs offering 163 and 130 apps, among those
99 and 118 with more than 10, 000 monthly active users, respectively (extracted
from the Appinspect dataset [5]). As a consequence, an appP may cluster several
apps and thus get access to more profile items. Moreover, every app retrieves the
Facebook user ID that uniquely identifies a user over apps; hence, the appP could
build a combined full profile of the user. We refer to this process as profiling,
analogously to the term used in the context of consumer behavior in market-
ing [13]. However, with the help of apps installed by a user’s friends, appPs could
profile a user partly or entirely without her consent, which constitutes a privacy
breach, and could induce legal consequences.

From the legal point of view, both the European Data Protection Directive [2]
and the guidelines of FTC [3] require prior user consent for the collection and
usage of personal data by data controllers (i.e., Facebook or appPs). According
to FTC, apps cannot imply indirect consent through privacy settings; while the
European Commission requires transparency and fairness from the data con-
troller about the nature, amount, and aim of data collection: this requirement is
not met here with data processing potentially going beyond the users’ legitimate
expectation.

Motivated by the above privacy issues of Facebook apps we define as collateral
damage the privacy loss inflicted by the acquisition of users’ personal data by
apps installed by users’ friends, and by appPs offering multiple apps thereby
enabling user profiling.

Contribution. We have identified four research questions to further our under-
standing of indirect and collateral information collection in the case of Facebook
apps.

– Are the users aware of and concerned about their friends being able to share
their personal data? We conducted an online survey of 114 participants, to
identify the users’ views on collateral information collection, lack of notifica-
tion and not being asked for their approval. Our survey provides evidence that
participants are very concerned and their concern is bidirectional: the large
majority of users wants to be notified and potentially restrict apps’ access to
profile items both when their friends might leak information about them and
vice versa.

– What is the likelihood that an installed app enables the collateral information
collection? We develop a formula to estimate the probability of this event. We
show how the likelihood depends on the number of friends and the number
of active users of apps. Moreover, based on results obtained from simulations,
we show how the likelihood depends on specific network topologies and app
adoption models.

Collateral Damage of Facebook Apps 197

– How significant is the collateral damage? We develop a mathematical model
and quantify the proportion of user attributes collected by apps installed only
by the user’s friends, including the case of profiling, when several apps belong
to the same appP. We compute the significance on several snapshots of the
most popular Facebook apps using the Appinspect dataset [5].

– How can we raise user awareness and help them make informed decisions? For
this end, we discuss a dashboard that enhances transparency by providing an
overview of installed apps and the type and total amount of profile attributes
collected by apps and, more importantly, appPs.

The rest of the paper is organized as follows. Section 2 presents the user
survey. Section 3 presents the mathematical model of collateral damage and cal-
culates the likelihood of a user being affected by collateral information collection.
Section 4 extends the model and quantifies collateral information collection illus-
trated by a case study of popular apps. Section 5 presents the high-level design
for a privacy dashboard providing users with proper notifications and control.
Section 6 describes future work and concludes the paper.

2 User Survey

In this section, we tackle the research question: “are users concerned about
collateral information collection?” To answer this question, we conducted an
online survey investigating users’ views about the disclosure of personal data
by Facebook apps installed by the users’ friends, and to identify users’ con-
cerns about unconsented information collection on Facebook; 114 participants
answered the survey. Participants were recruited from the authors’ direct and
extended friend circles (including mostly, but not only, Facebook friends). Hence,
a large proportion of participants have an age between 20 and 35 and are well
educated. We found that users are concerned about collateral information collec-
tion in general, and remarkably concerned when information collection is uncon-
sented. Furthermore, the majority of users prefer to take action to prevent col-
lateral information collection. We have to stress that our survey provides us
with evidence that users are concerned about the information collection of apps
through their users’ friends. However, we are not able to extrapolate our findings
to the general Facebook population.

2.1 Methodology

After a short introduction, our survey consisted of four main parts. First, we
assessed users’ standpoints and concerns about default privacy settings and the
lack of notification for indirect and unconsented information collection. This
assessment is necessary to be able to differentiate users who are concerned inde-
pendent of their intentions to take actions against such practices. The second
part of the survey explores what type of personal data on Facebook users find
most sensitive. The third part of our survey is twofold: (1) whether users want

198 I. Symeonidis et al.

to be notified when their friends’ apps can collect their personal data or when
their installed apps can collect personal data of their friends; (2) which actions
users prefer to take in such cases. Users replied the survey questions by marking
their responses on a scale of 1 to 5 where 1 stands for “not concerned at all and 5
stands for “extremely concerned”; we also provided a text field where necessary.
The fourth part of the survey collects demographics and information regarding
the participants’ use of Facebook apps.

2.2 Results

For the first part, we observe that for all four statements users show concern
(see Fig. 2). For example, 66% of users are at least very concerned about the
default privacy setting of Facebook that allows apps to collect information from
the user’s friends. Similarly, 77% of users are at least very concerned about
not being notified when their friends enable collateral information collection
and 67% for not being notified when one of the user’s own apps can collect
their friends’ information. Finally, 81% of users are at least very concerned
about collateral information collection through apps of their friends without
their approval. Note that Golbeck et al. [11] have investigated how informed
users are regarding the privacy risks of using Facebook apps. Their findings
show that users do not always comprehend what type of data is collected by
apps even when they have installed the app themselves. Therefore, it is safe to
assume incomplete understanding of apps installed by their friends, which is in
line with our results. Note that in Fig. 2, there is a slight difference between
participants opinion on statement B on the one hand and statements C and D
on the other hand for users which are not concerned. This difference might be
because statement B is directly related to the users’ information loss. Moreover,
statement B would burden the user less than C and D, where action by the users
is required.

For the second part of our survey, we found that although users are concerned
about a number of attributes, the sensitivity is relatively subjective and differs
between users. However, it is noteworthy that certain attributes are standing out
and have been marked as sensitive by a large proportion of the participants. For
example, most of the users identify photos (84% are at least very concerned),

A B C D
0

20

40

60

3 1 3 3

11
6 8

4

11
6 8

4

33 34
38

29
34

43

29

53

P
er

ce
n
ta

g
e

(%
)

Not concerned at all Slightly concerned Moderately concerned Very concerned Extremely concerned

A.Default privacy setting for CIC

B.Lack of notification / friends Apps

C.Lack of notification / my Apps

D.Lack of consent

Fig. 2. Results for the first part of the survey where we asked participants about their
opinions on four statements regarding default settings, lack of notification (for friends
and for the user herself), and lack of consent for collateral information collection (CIC).

Collateral Damage of Facebook Apps 199

videos (79%), their current location (76%), and family and relationships (54%)
as sensitive profile attributes. The least sensitive profile attributes are proved
to be to be birthday and sexual orientation. Note that the sensitivity of the
attributes is likely to depend on the context. For example, although a birthday
attribute might seem harmless on its own, participants might feel different if a
weather app would be collecting this information.

In the third part of the survey, we found that 77% of users always want
to be notified when friends’ apps can collect their personal data, 22% only
want to be notified in particular cases, while only about 1% do not want to be
notified at all. Moreover, 69% of users always want to be notified when their apps
are collecting information from their friends, 27% in particular cases, and only
about 1% not at all. We observe that users are also seriously concerned about
damaging their friends’ privacy: this corroborates findings on other-regarding
preferences from the literature [8,18]. Notification tools can be very useful to
enhance privacy awareness for unconsented data collection. Note that Golbeck
et al. have shown that the privacy awareness of users can be changed significantly
through educational methods [11]. When participants were asked which action
they would want to take if notified that friends’ apps are about to collect their
information (multiple answers allowed), 99 out of 114 participants answered that
they would restrict access to their personal data while 8 participants answered
that they would unfriend their Facebook friend. Only 5 participants answered
that they would take no action. We have to stress that the reaction of a user may
strongly depend on the relationship between the user and their friends. When
participants were asked what action they would want to take if they are notified
that one of their apps is about to collect their friends’ information (multiple
answers allowed), 64 out of 114 replied that they would restrict access to their
friends’ personal information for this app. Only 5 out of 114 answered that they
would take no action. The answers to the questions in the third part help to
confirm that the answers of our participants in the first part were not due to
salience bias; participants who were concerned in the first part about not being
notified for the collateral information collection replied that they also want to
take an action in the third part.

The last part of our survey collected demographics and statistics about Face-
book and app usage. Participants were between 16 and 53 years old with an aver-
age age of 29 years. They have had their Facebook accounts for between 6 months
and 10 years, respectively. Moreover, 69% of our participants have installed an
app at least once, and among those 87% have installed 1 or 2 apps in the
last six months. 54% of the participants were female, 42% male while 4% pre-
ferred not to disclose their gender. Participants varied greatly in their number of
friends, from 10 to 1000. 51% changed their privacy settings on Facebook; 79%
restricted who could see their profile information, 41% who could see them in
searches, and 35% who can collect their information through friends apps (mul-
tiple answers were allowed). Interestingly, users who already took an action by
restricting their permissions to their friends apps by 90% choose to be notified
too. One explanation could be that privacy settings on Facebook are constantly

200 I. Symeonidis et al.

changing and tracking these changes might be cumbersome [22]. Furthermore,
82% of our participants had higher education, where 55% had IT background
based on personal interest and 44% through higher education. We conclude from
our survey that users are concerned about the collateral information collection,
and prefer being notified and try to prevent such type of information collection1.

3 Likelihood of Collateral Information Collection

In this section, we investigate the likelihood of a user’s friend installing an app
which enables collateral information collection. We build a simple mathematical
model and develop a formula to estimate the probability this event occurs. Then,
we present case studies taking into account different friendship network topolo-
gies and app adoption models. Furthermore, we use the Appinspect dataset [5]
to instantiate our estimations, and resort to simulations for computing the prob-
ability for different network types.

Let an Online Social Network (OSN) with k users and the corresponding set
be denoted by the set F , i.e., F = {u1, . . . , uk}. The user is denoted by u, with
u ∈ F . Let f be a friend of u and Fu the set of u’s friends, i.e., f ∈ Fu. Clearly,
Fu ⊆ F . Moreover, let Aj an app and L the set of all Ajs that are offered by the
OSN to every ui, and s the size of the set, i.e., L = {A1, . . . , As}. Moreover, let
AUj be the number of users who have installed Aj . For our likelihood estimation
we consider the number of Monthly Active Users (MAU) to represent the number
of active users. For instance, currently Facebook has k = 1.3 × 109 users (i.e.,
MAU) [19] and more than s = 25, 000 Apps [5].

To estimate the likelihood that u’s personal data can be collected via the Aj ,
installed by f , we compute the probability of at least an arbitrary f installing any
available Aj . Let Qf be the probability of f installing Aj which enables collateral
information collection. For all the friends of u (i.e., Fu) the probability of not
installing any Aj is the product of probabilities for each f (this assumes that
these probabilities are independent, which seems a reasonable approximation).
Let Ω be the probability of at least one of u’s friends installing Aj (regardless if
u has installed Aj), i.e.,

Ω = 1 −
∏

f∈Fu

(1 − Qf) . (1)

First, we compute the likelihood Ω when the probability for a friend of the
user installing an app is uniformly distributed among all friends.

Case Study 1 – Uniform Distribution. Each f decides whether to install Aj

without considering any app adoption signals from other users. The probability
of at least a friend of u installing Aj is uniformly distributed among u’s friends,
and equals 1 − Q (Remark: Q = Qf1 = · · · = Qfk′ where 1 ≤ k′ ≤ k). Q is then
computed as all users who installed the app divided by the number of users of
the OSN (in the active user sense):
1 http://iraklissymeonidis.info/survey.

http://iraklissymeonidis.info/survey

Collateral Damage of Facebook Apps 201

Q =
AUj

|F| . (2)

We used the publicly available Appinspect dataset provided by Hubert
et al. [5,12] to extract the range of MAU of apps which enable collateral informa-
tion collection. The dataset consists of 16, 808 Facebook apps between 2012 and
2014. It contains the application name, id, number of active users (daily, weekly
and monthly) and the requested permissions. To illustrate the influence of differ-
ent values of MAUs on Ω, we consider the upper tier of apps, i.e., over 500, 000
MAU, while the most popular app that collects friends’ data has 10, 000, 000
MAU, therefore 5 · 105 ≤ AUj ≤ 1 · 107. To cover most users, we assume the
number of friends for a given u (|Fu|) to be between 0 and 1000. Finally, we
estimate the population of Facebook to be 1.1 · 109 MAU for the period of 2012
to 2014 [19].

For Ajs with AUj ≥ 5 · 106 the probability Ω grows steeply with the average
number of friends (see Fig. 3a). For an average of 200 friends the probability
Ω is more than 0.6. For a user with 300 friends and more, the probability Ω
exceeds 0.8. (Note that most Facebook users have more than 200 friends [21].)
From Eqs. (1) and (2) it is clear that Ω depends strongly on AUj . For instance,
our most popular app TripAdvisor2 has approximately 1 · 107 MAU (i.e., AUj ≈
1 · 107); assuming that on average a user has 200 friends [21] (i.e., |Fu| ≈ 200).
Considering F = 1.1 · 109 (the population of Facebook) we estimate that the
probability of at least one of u’s friends installing TripAdvisor is larger than
78% (Ω ≥ 0.78).

Case study 2 – Non-uniform Distribution. Realistic social networks do not
conform to the uniformity assumption. Network degree has been reported to fol-
low a power law [15,24] and the clustering coefficient has been found to be much
higher than in random networks [15]. Moreover, app adoption has been proclaimed
to be affected by different signals [16]. We have resorted to simulations in order to
introduce these factors into the estimation of the probability Ω.

Fig. 3. Likelihood of collateral information collection based on a. real data [5] (left,
per MAU) and b. simulations (right, with k = 10, 000 and d = 30).
2 https://www.facebook.com/games/tripadvisor.

https://www.facebook.com/games/tripadvisor

202 I. Symeonidis et al.

Our simulations generate synthetic networks to compute Ω. Regarding the
friendship network, we have considered three different, well-known models:
Bara- bási-Albert [4] (BA), Watts-Strogatz [23] (WS), and Erdős-Rényi [10] (ER).
Regarding app adoption, two different models have been implemented: uniform
(unif), where all users install an app with the same probability (that is, inde-
pendently of installations by their friends); and preferential (prop), where the
probability of a user installing an app is proportional to the number of its friends
that have already installed the app.

Regarding the simulations, for each of the configurations (pairs of network and
app adoption models), we have computed the probability Ω for one of the user’s
friends installing an app with respect to the fraction of the users of the network
that installed the app. To make the results of different network models compara-
ble, we fixed both the number of nodes in the network, k, and the mean degree, d.
Then, we tuned the parameters of the models to achieve these properties.

We performed simulations for network sizes k ∈ [100, 10, 000] and mean
degree d ∈ [10, 60]. Due to space constraints we include the results of just
one set of simulations, but the conclusions we have drawn can be extrapolated
to the other tested settings. Figure 3b draws the probabilities obtained from
networks with k = 10, 000 and d = 30 (results averaged over 100 simulations)
and from the analytical uniform app adoption case. Most of the configurations
give probability values very close to those obtained when using the formula;
the three exceptions are: ba-unif, ws-prop, and ba-prop. The Barabási-Albert
model generates graphs with a few very high degree nodes (hubs) and lots of
low degree nodes. When combining networks generated with the Barabási-Albert
model with a uniform app adoption model, the probability for a hub to install an
app is the same as for any other node. To the contrary, when combining BA with
the prop app adoption model, hubs have a higher probability of installing the
app than non-hubs, since having a higher degree makes them more likely to have
(more) friends with the app installed. As a consequence, each installation affects,
in mean, more users, and thus Ω increases. Concerning ws-prop, the Watts-
Strogatz model generates very clustered networks;3 when an app is installed by
a member of a community, it gets adopted by all other members easily. However,
each new installation inside the same community implies a small increase on the
overall Ω, because most of the users affected by the installation were already
affected by installations from other members of the community. We observe that
the probability computation (i.e., Ω) is conditioned on both the network and app
adoption models. However, we found that there is a significant probability for a
user’s friend to install an app which enables collateral information collection for
different networks and app adoption models.

4 Significance of Collateral Information Collection

In this section, we develop a mathematical model and compute the volume of
the user’s attributes that can be collected by apps and appPs when installed by
3 The expected clustering coeff. can be adjusted with the rewiring prob. parameter.

Collateral Damage of Facebook Apps 203

the users’ friends. Our calculations are based on several snapshots of the most
popular apps on Facebook using the Appinspect dataset [5].

Users and Users’ Friends. Each user ui in an OSN (i.e., ui ∈ F) has a per-
sonal profile where each u can store, update, delete and administer her personal
data [7]. A u’s profile consists of attributes ai such as name, email, birthday
and hometown. We denote the set of attributes of a u’s profile as T and n as
the size of T , i.e., T = {a1, . . . , an}. For instance, Facebook currently operates
with a set of n = 25 profile attributes. Let Fu∗ be the union of u’s friends and
the u itself and f∗ an element of Fu∗, i.e., f∗ ∈ Fu∗. Clearly, Fu∗ = {u} ∪ Fu

and Fu ∩ {u} = ∅, as u is not a friend of u. For instance, Fu∗ = {u, f1, . . . , fk′}
describes a user u and its k′ friends, where 1 ≤ k′ ≤ k.

Applications and Application Providers. Let L be the set of apps an app
provider (appP) can offer to every ui in an OSN and s the size of this set, i.e.,
L = {A1, . . . , As}. Let Aj , for 1 ≤ j ≤ s, be the set of attributes that each Aj can
collect, i.e., Aj ⊆ T . Each Aj is owned and managed by an appP denoted by Pj .
The set of Ajs that belong to Pj it is denoted by Pj , i.e., Pj ⊆ L. The set of all
Pjs is denoted by AP and m the size of the set, i.e., AP = {P1, . . . , Pm}. From
our analysis we identified s = 16, 808 apps and m = 2055 appPs on Facebook
indicating that a Pj can have more than one Aj , i.e., Pj = {A1 . . . As′} with
1 ≤ s′ ≤ 160 [5].

4.1 Profiling

Application j. When Aj is activated by f∗ (i.e., f∗ ∈ Fu∗), a set of attributes
ai can be collected from u’s profile. We denote by Au,Fu∗

j an Aj that users in Fu∗

installed and as Au,Fu∗
j the set of attributes ai that Au,Fu∗

j can collect from u’s

profile. Clearly, Au,Fu∗
j ⊆ Aj ⊆ T . The set of all Au,Fu∗

j s installed by the users in
Fu∗ is denoted by Lu,F

u∗
. Clearly, Lu,F

u∗ ⊆ L.
We denote by �ai a vector of length n which corresponds to ai, i.e., �ai =

[
1
0 . . . 0

i
10 . . .

n
0]. Moreover, we consider �Au,Fu∗

j as a vector of length n, which cor-

responds to Au,Fu∗
j , i.e.,

�Au,Fu∗
j =

∨

a∈Au,Fu∗
j

�a ⇔ �Au,Fu∗
j [i] =

{
1 if ai ∈ Au,Fu∗

j ,

0 if ai /∈ Au,Fu∗
j ,

(3)

for 1 ≤ i ≤ n and 1 ≤ j ≤ s.
Note that:

– x ∪ y =

{
z = 0 if x = y = 0,

z = 1 otherwise.
and �x ∨ �y = �z where �x[i] ∨ �y[i] = �z[i].

For instance, an Au,Fu∗
j = {a1, ai, an} is represented as �Aj = �a1 ∨ �ai ∨ �an =

[
1
10 . . . 0

i
10 . . . 0

n
1]. It represents the attributes that can be collected by Aj when

is installed by f (i.e., the user’s friend).

204 I. Symeonidis et al.

Application Provider j . Each appP consists of a set of Au,Fu∗
j s denoted by

Pu,Fu∗
j which users in Fu∗ installed. Each Pu,Fu∗

j can collect attributes of u’s

profile. To identify which ais can be collected by Pj we consider �Pu,Fu∗
j as a

vector of length n (i.e., n ∈ T), which corresponds to Pu,Fu∗
j , i.e.,

�Pu,Fu∗
j =

∨

A∈Pu,f∗
j

f∗∈Fu∗

�Au,f∗
=

∨

A∈Pu,Fu∗
j

�Au,Fu∗
. (4)

Note that: �Pu,Fu∗
j =

∨

f∗∈Fu∗

�Pu,f∗
j = (�Pu

j ∨ �Pu,f1
j ∨ · · · ∨ �Pu,fi

j), where Fu∗ =

{u, f1, . . . , fi} and �Pu,u = �Pu.
The complexity of this operation for all f∗ in Fu∗ is O(n × |Pu,Fu∗

j |).

4.2 Degree of collateral Information Collection

Friends f of u (f ∈ Fu) allow access to u’s profile by installing Ajs. We denote
by Πu

Au
j ,A

u,Fu

j

the number of attributes that can be collected by Aj exclusively

from u’s friends (and not through the user herself, i.e., u /∈ Fu). Let �Πu
Au

j ,A
u,Fu

j

be a vector of length n which Πu
Au

j ,A
u,Fu

j

provides, where n = |T |, where

�Πu
Au

j ,A
u,Fu

j

= �A′u
j

∧
�Au,Fu

j . (5)

Note that: �x′ ∧ �x = [
1
0 . . .

n
0] and �x′ ∨ �x = [

1
1 . . .

n
1].

The complexity of this operation for all f∗ in Fu∗ is O(n4 × |Au
j | × |Au,Fu

j |).
Similarly, we denote by �Πu

Pu
j ,Pu,Fu

j

the number of attributes that can be col-

lected by Pj exclusively from u’s friends in Fu, i.e.,

�Πu
Pu

j ,Pu,Fu

j

= �P ′u
j

∧
�Pu,Fu

j . (6)

4.3 The Case of Facebook Applications

To examine the problem, we extended our analysis for the apps (i.e., Ajs) and
appPs (i.e., Pjs) on Facebook using the Appinspect dataset [5,12]. For each Aj ,
apart from the application name and id, the dataset provides us with the requested
permissions and the Ajs each Pj owns. We computed the proportion of attributes
an Aj and Pj can collect through: 1) the user’s friends and the user herself
(i.e., profiling, Fu∗) and 2) only the user’s friends (i.e., degree of collateral infor-
mation collection, Fu). From 16, 808 apps, 1202 enables collateral information col-
lection. Our analysis focuses on Ajs and Pjs that have more than 10, 000 MAU;
there are 207 and 88 respectively in each category4.
4 http://iraklissymeonidis.info/Fb apps statistics/.

http://iraklissymeonidis.info/Fb_apps_statistics/

Collateral Damage of Facebook Apps 205

Profiling, Fu∗. Performing the analysis over the dataset, we found that 72.4% of
Ajs and 62.5% of Pjs can collect one attribute from Fu∗. For all Ajs and all Pjs,
48.6% and 28.7% of attributes which are considered sensitive by the participants
of our survey (such as photos, videos, location and family-relationships) can
be collected. Considering location related attributes such as current location,
hometown, work history and education history, the proportion of attributes that
can be collected are 23.5% from Ajs and 23.2% from Pjs.

Degree of Collateral Information Collection, Fu. For Ajs installed only by
Fu, 28.9% of them show a degree of collateral information collection equal to 1;
similarly, 36.3% of all Pjs. Moreover for Fu, we identified that the proportion of
sensitive attributes that can be collected from Ajs and Pjs is 46.8% and 37%,
respectively; while the proportion of collectable location related attributes is
22.5% for Ajs and 36.9% for Pjs.

We conclude that the size of the two sets of sensitive attributes, collected via
profiling versus exclusively through friends, are both significant and, surprisingly,
comparable to each other. We also found that a considerable amount of attributes
concerning the user’s location can be collected by either Ajs or Pjs.

5 Damage Control: Privacy Dashboard

Our survey results have shown that users from our survey are not only concerned
about the collateral information collection: they also want to be notified and
restrict access to their personal data on Facebook. They also consider removing
the apps that can cause collateral damage. The need for transparency calls for a
Transparency Enhancing Technology solution, raising awareness of personal data
collection and supporting the users’ decision-making on the sharing of personal
data [1,14]. Hence, we propose a dashboard that can help users to manage their
privacy more efficiently, and control the collateral information collection (see
Fig. 4 for an initial user interface design). Technically speaking, the dashboard
illustrates how the user’s data disclosure takes place through the acquisition
of the user’s personal data via apps (and respective appPs) installed by their
Facebook friends. It displays the nature and proportion of the user’s personal
data that can be collected by apps and, more importantly, appPs.

From our survey, we have concluded that Facebook users are more concerned
about certain types of personal information such as photos, videos, location, and
relationships. Our dashboard can accommodate the visualization of profiling and
the degree of collateral information collection by assigning different weights to
each attribute in the user’s profile. These weights can be then manually fine-
tuned by the user. Detailed design and implementation of the dashboard remain
the next step in our future work. Additional information such as claimed purpose
of collection by the apps can be added in the dashboard. Moreover, further
functionality can be added to the dashboard such as leading the users from the
dashboard to uninstall the app (this would follow the European Data Protection
Directive 95/46/EC [2]).

206 I. Symeonidis et al.

Fig. 4. Privacy dashboard: user interface concept

Finally, our survey shows that users also care about the damage that they
might cause to their friends by installing apps (bidirectional concern). Comple-
menting the privacy dashboard, we will also look into providing transparency
with an enriched app authorization dialogue at the time of installation. Building
on the basic design in [22], the enriched dialogue will direct the attention of users
to the existence and volume of collateral damage to-be-inflicted on their friends.

6 Conclusion and Future Work

In this paper we have presented a multi-faceted study concerning the collateral
damage caused by friends’ apps in social networking sites. Using a user survey,
mathematical modeling, and real data from Facebook, we have demonstrated
the importance and quantified the likelihood and significance of such collateral
information collection. Furthermore, to the best of our knowledge, we have been
first to report the potential user profiling threat that could be achieved by appli-
cation providers: they can gain access to complementary subsets of user profile
attributes by offering multiple apps.

Our main findings are the following. First, our survey shows that the vast
majority of users are very concerned and would like proper notification and
control mechanisms regarding information collection by apps installed by their
friends. Also, they would potentially like to restrict apps’ access to profile items
both when their friends’ apps might collect information about them and vice
versa. As for future work, we are aiming at conducting similar surveys among
users of social platforms other than Facebook, and extending the demographic
range of participants. We also intend to investigate the relevance of the users
concerns and demographic background, attribute values, and sensitivity to par-
ticular contexts (e.g., via use cases).

Second, we have quantified the probability that a user is affected by the col-
lateral information collection by a friend’s app. Assuming a simple app adoption
model, an app with more than 500, 000 users may indirectly collect information
from the average user with 80% likelihood, irrespective of the user itself having
installed the app or not. Moreover, non-uniform app adoption and network mod-
els also yield high likelihood. As future work, we aim to extend our simulations
regarding both network size and realistic app adoption models.

Third, based on real data, we have quantified the significance of collateral infor-
mation collection by computing the proportion of attributes collected by apps
installed by the users’ friends. We have found that a significant proportion of
sensitive attributes, such as photos, videos, relationships and location, can be

Collateral Damage of Facebook Apps 207

collected from apps either by the user’s friends and the user herself (i.e., 48.6%) or
exclusively from the user’s friends (i.e., 46.8%); surprisingly, these values are com-
parably high. Furthermore, a considerable amount of location-related attributes
can be collected by both friends’ apps and profiling appPs. As a future work, we
aim to enrich our mathematical model by incorporating other parameters such as
sensitivity.

Finally, we outline a conceptual design for a privacy dashboard which is
able to notify the user about the existence and extent of collateral damage, and
empower her to take restrictive actions if deemed necessary. We also hint that
an enriched app authorization dialogue would complement the dashboard by
providing estimates on potential damage to the user’s friends at the time of
installation. The detailed design and implementation of these solution concepts
constitute important future work for us.

Acknowledgments. We notably want to thank Markus Hubert and SBA Research
Center for providing us with the necessary material for our study. A thank you to
Faruk Gologlu, Filipe Beato, and all the anonymous reviewers who helped for better
shaping the idea and the quality of the text. This work was supported in part by
the Research Council KU Leuven (C16/15/058), the Spanish Government (TIN2014-
55243-P and FPU-AP2010-0078), the Catalan Government (AGAUR 2014SGR-691)
and by Microsoft Research through its PhD Scholarship Programme. G. Biczók has
been supported by the János Bolyai Research Scholarship of the Hungarian Academy
of Sciences.

References

1. Council of the EU Final Compromised Resolution. http://www.europarl.europa.
eu. Accessed Feb 2015

2. Directive 95/46/EC of the European Parliament and of the Council. http://ec.
europa.eu/. Accessed April 2015

3. FTC and Facebook agreement for 3rd party apps. http://www.ftc.gov/. Accessed
February 2015

4. Albert, R., Barabási, A.: Statistical mechanics of complex networks. CoRR, cond-
mat/0106096 (2001)

5. AppInspect. A framework for automated security and privacy analysis of OSN
application ecosystems. http://ai.sba-research.org/. Accessed Sept 2015

6. Biczók, G., Chia, P.H.: Interdependent privacy: Let me share your data. In 17th
FC, Okinawa, Japan, pp. 338–353 (2013)

7. Boyd, D., Ellison, N.B.: Social network sites: definition, history, and scholarship.
J. Comput. Mediated Commun. 13(1), 210–230 (2007)

8. Cooper, D., Kagel, J.H.: Other regarding preferences: a selective survey of experi-
mental results. Handbook of Experimental Economics (2009)

9. Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
TaintDroid: an information flow tracking system for real-time privacy monitoring
on smartphones. Commun. ACM 57, 99–106 (2014)

10. Erdös, P., Rényi, A.: On the evolution of random graphs. In: Publication of the
Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

http://www.europarl.europa.eu
http://www.europarl.europa.eu
http://ec.europa.eu/
http://ec.europa.eu/
http://www.ftc.gov/
http://ai.sba-research.org/

208 I. Symeonidis et al.

11. Golbeck, J., Mauriello, M.L.: User Perception of Facebook App Data Access: A
Comparison of Methods and Privacy Concerns. University of Maryland, Maryland
(2014)

12. Huber, M., Mulazzani, M., Schrittwieser, S., Weippl, E.R.: Appinspect: large-scale
evaluation of social networking apps. In: COSN 2013, Boston, pp. 143–154 (2013)

13. Jobber, D., Ellis-Chadwick, F.: Principles and Practice of Marketing, 7th edn.
McGraw-Hill Higher Education, New York (2012)

14. McDonnel, N., Troncoso, C., Tsormpatzoudi, P., Coudert, F., Métayer, L.: Deliv-
erable 5.1: State-of-play: Current practices and solutions. FP7 PRIPARE project.
http://pripareproject.eu. Accessed May 2015

15. Mislove, A., Marcon, M., Gummadi, P.K., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: 7th ACM SIGCOMM,
San Diego, pp. 29–42 (2007)

16. Pu, Y., Grossklags, J.: An economic model and simulation results of app
adoption decisions on networks with interdependent privacy consequences. In:
Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 246–265.
Springer, Heidelberg (2014)

17. Pu, Y., Grossklags, J.: Using conjoint analysis to investigate the value of interde-
pendent privacy in social app adoption scenarios. In: 36th ICIS (2015)

18. Stahl, D.O., Haruvy, E.: Other-regarding preferences: Egalitarian warm glow,
empathy, and group size. J. Econ. Behav. Organ. 61, 20–41 (2006)

19. Statista. Leading Social Networks Worldwide as of January 2016. http://www.
statista.com. Accessed Sept 2015

20. Symeonidis, I., Tsormpatzoudi, P., Preneel, B.: Collateral damage of online social
network applications. In: 2nd ICISSP, Rome (2016)

21. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook
social graph. CoRR, abs/1111.4503 (2011)

22. Wang, N., Xu, H., Grossklags, J.: Third-party apps on Facebook: Privacy and the
illusion of control. In: 5th ACM CHIMIT, pp. 4:1–4:10. ACM (2011)

23. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 409–410 (1998)

24. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions
in social networks and their implications. In: 4th ACM EuroSys, pp. 205–218,
New York (2009)

http://pripareproject.eu
http://www.statista.com
http://www.statista.com

Software Vulnerabilities

Automated Source Code Instrumentation
for Verifying Potential Vulnerabilities

Hongzhe Li, Jaesang Oh, Hakjoo Oh, and Heejo Lee(B)

Department of Computer Science and Engineering, Korea University,
Seoul, South Korea

{hongzhe,jaesangoh,hakjoo oh,heejo}@korea.ac.kr

Abstract. With a rapid yearly growth rate, software vulnerabilities
are making great threats to the system safety. In theory, detecting and
removing vulnerabilities before the code gets ever deployed can greatly
ensure the quality of software released. However, due to the enormous
amount of code being developed as well as the lack of human resource
and expertise, severe vulnerabilities still remain concealed or cannot be
revealed effectively. Current source code auditing tools for vulnerabil-
ity discovery either generate too many false positives or require over-
whelming manual efforts to report actual software flaws. In this paper,
we propose an automatic verification mechanism to discover and ver-
ify vulnerabilities by using program source instrumentation and concolic
testing. In the beginning, we leverage CIL to statically analyze the source
code including extracting the program CFG, locating the security sinks
and backward tracing the sensitive variables. Subsequently, we perform
automated program instrumentation to insert security probes ready for
the vulnerability verification. Finally, the instrumented program source
is passed to the concolic testing engine to verify and report the existence
of an actual vulnerability. We demonstrate the efficacy and efficiency of
our mechanism by implementing a prototype system and perform experi-
ments with nearly 4000 test cases from Juliet Test Suite. The results show
that our system can verify over 90 % of test cases and it reports buffer
overflow flaws with Precision = 100 % (0 FP) and Recall = 94.91 %.
In order to prove the practicability of our system working in real world
programs, we also apply our system on 2 popular Linux utilities, Bash
and Cpio. As a result, our system finds and verifies vulnerabilities in a
fully automatic way with no false positives.

Keywords: Automatic instrumentation · Security sinks · Security
constraints · Vulnerability verification

This research was supported by Institute for Information & communications Technol-
ogy Promotion(IITP) grant funded by the Korea government(MSIP)(R0190-15-2011,
Development of Vulnerability Discovery Technologies for IoT Software Security).

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 211–226, 2016.
DOI: 10.1007/978-3-319-33630-5 15

212 H. Li et al.

1 Introduction

Even though security experts are making best efforts to ensure the software
security, the number of software vulnerabilities is still increasing rapidly on a
yearly basis, leaving great threats to the safety of software systems. According
to the Common Vulnerabilities and Exposures(CVE) database [1], the number
of CVE entries has increased from around 1000 CVEs yearly in 2000 to over
8000 yearly in 2015. The discovery and removal of vulnerabilities from software
projects have become a critical issue in computer security. Nowadays, because of
enormous amount of code being developed as well as limited manpower resource,
it becomes harder and harder to audit the entire code and accurately address
the target vulnerability.

Security researchers have devoted themselves into developing static analysis
tools to find vulnerabilities [9]. The large coverage of code and access to the
internal structures makes these approaches very efficient to find potential warn-
ings of vulnerabilities. However, they often approximate or even ignore runtime
conditions, which leaves them a great amount of false positives.

Recently, more advanced static analysis methods are proposed [4,5,15]. They
either encode insecure coding properties such as missing checks, un-sanitized
variables and improper conditions into the analyzer for vulnerability discovery,
or they model the known vulnerability properties and generate search patterns
to detect unknown vulnerabilities. Even though these approaches can find vul-
nerabilities using search patterns and exclude the majority of code needed to be
inspected, they still require security-specific manual efforts to verify the vulner-
ability at the very end, which is neither efficient for vulnerability discovery nor
feasible for non-security specialists to use it.

According to the previous efforts of researchers, finding exact vulnerabilities
in a fully automatic way has been challenging. To automate the overall process of
vulnerability detection and verification, we classify the potential vulnerable secu-
rity sinks into basic 4 types and apply security constraint rules(corresponding
to each type) to automatically instrument vulnerability triggering probes into
the source code in order to verify vulnerabilities. In this paper, we propose an
automatic mechanism to detect and verify software vulnerabilities from C code
by using program source instrumentation and concolic testing. In the begin-
ning, we leverage CIL [3] (C intermediate language) to statically analyze the
source code including extracting the program CFG(control flow graph), locating
the sensitive security sinks and backward tracing the sensitive variables. Subse-
quently, we classify the security sinks into 4 basic types and perform automated
program instrumentation to insert security probes according to different prop-
erties of the security sink types, ready for the vulnerability verification. Finally,
the instrumented program source is passed to the concolic(CONCrete + sym-
bOLIC) testing engine [10,11] to report and verify the existence of an actual
vulnerability. We here focus on buffer overflow vulnerabilities since this type of
vulnerability is the major cause for malicious intensions such as invalid memory
access, denial of service(system crach) and arbitrary code execution. We demon-
strate the efficacy and efficiency of our mechanism by implementing a prototype

Automated Source Code Instrumentation 213

system and perform experiments with 4000 buffer overflow test cases from Juliet
Test Suite [14]. The results show that our prototype system gets a detection
result with Precision = 100% and Recall = 94.91%. In order to prove the
practicability of our system working in real world programs, we also apply our
mechanism on Linux utilities such as Bash and Cpio. As a result, our system
finds and verifies vulnerabilities in a fully automatic way with no false positives.

Main contributions of our study are described as follows:

– Fully Automated Verification for Vulnerability Discovery. We pro-
pose, design and implement a fully automated verification mechanism to detect
and verify vulnerabilities with zero interference of manual efforts, which can
expand the system usability to more general users such as non-security spe-
cialist.

– Memory Space Analysis(MSA) for Verifying Security Requirements.
We verify the existence of vulnerabilities by generating triggering inputs which
violate security constraints(SC). The memory space analysis(MSA) enables
us to track the size of buffer space at runtime and set the SC conditions
accurately. It decreases the false positives for vulnerability verification.

2 Related Work

Source code auditing have been actively researched by security researchers for
software assurance and bug finding. Previous researchers have proposed different
approaches for static source code auditing and have developed source code static
analysis tools for vulnerability discovery.

Flawfinder [9] applies a pattern matching technique to match the security
sinks in the source code and report them as vulnerabilities. Even though these
approaches can analyze large amount of source code and report vulnerabilities
fast, they generate too many false positives due to a lack of analysis about
program data flow and control flow information.

Chucky [15] statically taints the source code and identifies missing conditions
linked to security sinks to expose missing checks in source code for vulnerability
discovery. VCCFinder [4] proposes a method of finding potentially dangerous
code with low false positive rate using a combination of code-metric analysis
and meta-data from code repositories. It also trains a SVM classifier by the
vulnerability commits database to flag code as vulnerable or node. Yamaguchi
et al. [5] models the known vulnerability properties and generate search patterns
for taint-style vulnerabilities. The generated search patterns are then represented
by graph traversals which is used for vulnerability mining in a code property
graph database [6]. Even though these approaches can find vulnerabilities using
search patterns and exclude the majority of code needed to be inspected, they
still require security-specific manual efforts to verify the vulnerability at the very
end, which is neither efficient for vulnerability discovery nor feasible for general
users(nonspecialist) to use it. Driven by this, there is an urgent need to build

214 H. Li et al.

a fully automatic system to accurately catch vulnerabilities within reasonable
time as well as the expansion of usability to more general users.

Based on the weakness of the above discussion, we are looking into an auto-
matic and efficient way to do vulnerability verification. Symbolic execution has
been proposed to do program path verification but it cannot resolve complex pro-
grams with enormous amount of path constraints [12]. Concolic testing [10,11]
was proposed to improve symbolic execution in order to make it more practi-
cal in real world programs. KLEE [11] was developed to automatically generate
high-coverage test cases and to discover deep bugs and security vulnerabilities in
a variety of complex code. CREST-BV [10] has shown a better performance than
KLEE in branch coverage and the speed of test case generation. However, these
approaches suffer from path explosion problem which stops them from scaling
to large programs.

CLORIFI [8] is the closest research to this paper. It proposes a method to
detect code clone vulnerabilities by the combination of static and dynamic analy-
sis. However, it has not been fully automated and it still requires manual efforts
to do source instrumentation for concolic testing, which is still a tedious task.
In this paper, we propose, design and implement a fully automated verification
mechanism to detect and verify vulnerabilities. In our mechanism, we do vul-
nerability verification using concolic testing after an automated sink detection
and source code instrumentation process, which reduces false positives. We also
applies the runtime buffer memory space analysis(MSA) to track the real size of
a buffer space which helps us to improve the accuracy of vulnerability discovery.

3 Proposed Mechanism

Discovery of vulnerabilities in a program is a key process to the development of
secure systems. In order to find exact vulnerabilities in a fast and accurate way
and to reduce the tedious manual efforts for vulnerability verification, we propose
a fully automated mechanism to detect and verify software vulnerabilities by
taking advantage of both static analysis and concolic testing.

Before we go into detailed description of our approach, the general process is
illustrated in Fig. 1. Our mechanism mainly consists of 3 phases which are code
transformation, automated instrumentation, and vulnerability verifi-
cation. In the phase of code transformation, we first leverage the library of CIL
to parse the source code into CIL program structures such as function defin-
itions, variables, statements, expressions and so on, and calculate the control
flow graph(CFG) information of each function. The reason why we do CIL code
transformation is to simplify code structures for efficient static analysis. We
then identify the security sinks(potential vulnerable) to get potential vulnerable
points. In the second phase, we apply backward data tracing on sensitive vari-
ables of each sink to find the variable input location. Then, we perform automatic
program instrumentation and prepare the testing object for vulnerability verifi-
cation. In the last phase of automated instrumentation, we verify each potential
security sink to report vulnerabilities using concolic testing.

Automated Source Code Instrumentation 215

(1) Code transformation (2) Automated instrumentation (3) Vulnerability verification

S

S

F

a=b

Sink(a)

Source:
c= input

Entry function F

b=c

Ancestor:

+ assert();

+ sym_input();

+ mysizeof();

Fig. 1. General overview of our approach.

3.1 Using the CIL

CIL (C Intermediate Language) [3] is a high-level representation along with a
set of tools that permit easy analysis and source-to-source transformation of C
programs. The reason why we use CIL is that it compiles all valid C programs
into a few core constructs without changing the original code semantics. Also CIL
has a syntax-directed type system that makes it easy to analyze and manipulate
C programs. Moreover, CIL keeps the code location information which enables
us to pinpoint the exact location when reporting vulnerabilities(an example is
shown in Fig. 5).

By using the provided APIs of CIL, we are able to flatten complex code
structures into simple ones (e.g., all looping constructs are reduced to a single
form, all function bodies are given explicit return statements). Subsequently,
we extract and calculate the control flow graphs(CFGs) of each function using
some wrapped module of CIL. Each created node in CFG corresponds to a single
instruction in the source code, referred from Sparrow [7], a stable and sound
source code analysis framework. Treating the most basic code unit(instruction
level) as a CFG node can help us precisely and rapidly address the sensitive
sinks and variables as well as providing convenience for the backward sensitive
data tracing which will be explained in detail in the following sections.

3.2 Identification of Security Sinks and Sensitive Variables

Since most of buffer overflow vulnerabilities are caused by attacker controlled
data falling into a security sink [13], it is crucial to first dig out security sinks.
In this paper, we focus on the security sinks which often lead to buffer overflow
vulnerabilities. Before that, we explain the definition of security sinks and how
they can be classified according to argument properties.

Security Sinks: Sinks are meant to be the points in the flow where data depend-
ing from sources is used in a potentially dangerous way. Typical security-sensitive
functions and memory access operations are examples of security sinks. Several
typical types of security sinks are shown in Table 1.

As we can see from the Table 1, basically, security sinks are either security
sensitive functions or a buffer memory assignment operation by index. Further
more, according to the number of arguments and whether there is a format

216 H. Li et al.

string(“%s”) argument inside a security sensitive function, we classify the secu-
rity sensitive functions into 3 types in order to generalize the automatic process
of backward tracing and program instrumentation which will be explained in
following parts. Along with the last type(buffer assignment), we classify the
security sinks of buffer overflow vulnerability into 4 types.

Table 1. Sink classification and variable location

Sink type Description Argument format Sensitive functions Variable positions

Type 1 functions with two

arguments

fn(dst,src) strcpy, wcscpy strcat,

wcscat

2

Type 2 functions with three

arguments

fn(dst,src,n) memcpy, memmove,

strncpy strncat,

wcsncpy, wcsncat

2,3

Type 3 function with format

strings

fn(dst,n,“%s”,src) snprintf, swprintf 2,4

Type 4 memory operations buffer[i] = expr dstbuf[i] = ‘A’ index:i

– Type 1: Security sensitive functions with 2 arguments: a destination buffer
pointer(dst) and a source buffer pointer(src). The typical argument format is:
fn(dst,src) and the sensitive variable is the 2nd variable(src) in the argument
list. The instances of sinks include: strcpy, wcscpy, strcat and wcscat.

– Type 2: Security sensitive functions with 3 arguments: a destination buffer
pointer(dst), a source buffer pointer(src) and a number of bytes integer(n).
The typical argument format is fn(dst,src,n) and sensitive variable is the 2nd
variable(src) and 3rd argument(n) in the argument list. The instances of sinks
include: memcpy, memmove, strncpy, strncat, wcsncpy and wcsncat.

– Type 3: The security sensitive functions with format string argument: a des-
tination buffer pointer(dst), a number of bytes integer(n), a format string
argument and a source buffer pointer(src). The typical argument format is
fn(dst,n,format,src) and the sensitive variable is the 2nd variable(n) and the
4th argument(src). The instances of sinks include: snprintf and swprintf.

– Type 4: The buffers are assigned by some value using buffer array index.
This case causes buffer overrun when the index is out of buffer size bound.
The typical format is: buffer[index] = expr and sensitive variable is the index.
A instance of this type of sink is: dstbuf[i] = ‘A’.

After the classification of security sinks, we identify the security sinks as
potential vulnerabilities using a fast pattern matching approach over the CIL
structures of the source code and extract sensitive variables needed to be back-
wardly traced in the following step based on the table above.

3.3 Backward Data Tracing

Since instrumentation points are needed before performing automated instru-
mentation, we propose backward data tracing to find the program input place

Automated Source Code Instrumentation 217

Fig. 2. Backward data tracing.

and treat it as an instrumentation point. Backward data tracing finds the pro-
gram input location for the corresponding sensitive variables in the sink which
reduces the whole input search space of a program. This will help us greatly
improve the efficiency for the vulnerability verification. We perform intra- and
inter-procedure backward tracing based on the nodes of the control flow graph
extracted from CIL. Figure 2 shows the concept of intra-procedure and inter-
procedure backward tracing respectively.

Concepts and Definitions. As shown in Fig. 2(1), starting from a security
sink, we begin to backwardly trace the corresponding sensitive variable until we
reach the source of the sensitive data. In order to understand the process of
backward tracing, there are several terms that we need to know.

Source: Source is the original definition point of a variable. It is the node where
the value of the variable does not depend on any other variable. For instance, the
starting points where un-trusted input data is taken by a program. The Source
is one the following 2 cases.

– v0 = gets(); Assignment node where the left variable is assigned by a user
input function such as gets(), scanf() and read(). We also maintain a user
input function list.

– v0 = 5; Assignment node where the left variable is assigned by a constant.

Ancestor: The ancestor A of a node N is described as: the traced sensitive
data of N gets its value from A. Ancestor nodes are intermediate nodes while
sensitive data gets propagated. The ancestor node of a certain variable v0 could
be one of the 4 cases below:

– v0 = expression(v1); Node where variable assigned by expression
– v0 = f(m,n, ...); Node where variable assigned by function return value

218 H. Li et al.

– f(v0); Node where variable assigned inside a function call
– void f(char v0); Node for function declaration

The Description of Procedure. As shown in Fig. 2, the intra-procedure back-
ward tracing starts from the initial sensitive variable in the security sink such
as sink(x) in Fig. 2(1) and recursively find its ancestor and identify a new vari-
able needed to be traced. The intra-procedure backward tracing stops when the
current node is the Source of the traced sensitive variable(whole backward trac-
ing also stops) or it stops when the current node is the function entry node.
In the later case, Source cannot be found in the current function and the data
flow comes from argument passing of the function call, so we need further do
inter-procedure backward tracing to find the Source of the sensitive variable.
The inter-procedure tracing(see Fig. 2(2)) starts from intra-procedure tracing.
It then checks the return node of intra-procedure backward tracing. If the node
is Source, the procedure returns and backward tracing ends. If the node is the
function entry node, the procedure finds out all the call sites of the current func-
tion and identifies the corresponding sensitive variable in each call site. Then it
applies intra-procedure backward tracing on sensitive variables in each call site
as a new starting point. The whole backward tracing stops and exits when the
Source of the sensitive variable in the security sink is found.

3.4 Program Source Instrumentation

After backward tracing, we get security sinks and Sources of the corresponding
sink and store them into a list of sinks(sink list) and a list of Sources(source list)
accordingly. We also establish a sink-source mapping between the 2 lists which
helps us to correctly find the corresponding source for a certain sink. To instru-
ment the program source, we make security probes(assertions) based on our pre-
defined security requirements (Table 2) right before the security sink and replace
the source input statement with symbolic values. To automate the overall process
of source code instrumentation, we generalize the security constraint rules for
the 4 basic types of vulnerability to automatically instrument bug triggering
probes into the source code in a more generalized way.

Program Constraints(PC) and Security Constraints(SC): Program con-
straints are generated by following a specific branch according to conditional
statements in the program. Program inputs which satisfy a set of program con-
straints are meant to execute a certain path of the program. Security constraints
are clearly high-level security requirements, which is also used as our baseline to
make security probes before the security sinks. For instance, the length of the
string copied to a buffer must not exceed the capacity of the buffer. We define
security requirements for security sinks such us security-sensitive functions and
buffer assignment with index based on the condition that related arguments
must satisfy to ensure the security of software systems. In our work, we have
collected 14 library functions from Juliet Test Suite which are well known to
be “insecure” for buffer overflows as security-sensitive functions and generated

Automated Source Code Instrumentation 219

security requirements for them. Table 2 shows part of our predefined security
constraints for security sinks. When there are inputs which satisfy program con-
straints but violates security constraints(PC ∧ SC) at a certain point during
the execution, the program is considered to be vulnerable. To suggest a way to
extend the method to cover other types of vulnerabilities, we will investigate
the vulnerability features and define more sinks and the corresponding security
requirements for vulnerability types such as integer overflows, format strings and
divide-by-zeros.

Table 2. Security requirements for security sinks

Security sinks Security requirement Description

strcpy(dst,src) dst.space > src.strlen Space of dst should be bigger
than the string length of src

strncpy(dst,src,n) (dst.space ≥ n) ∧ (n ≥ 0) Space of dst should be bigger
or equal to the positive
integer n

strcat(dst,src) dst.space > dst.strln + src.strlen Space of dst should be bigger
than the total string length
of dst and src

getcwd(buf,size) (buf.space ≥ size) ∧ (size ≥ 0) Space of buf should be bigger
or equal to the positive
integer size

fgets(buf,size,f) (dst.space ≥ size) ∧ (size ≥ 0) Space of dst should be bigger
or equal to the positive
integer size

buf[i] = expr. buf.space > i Space of buf should be bigger
than the index value i

Instrument Input Location and the Security Sink: To instrument the
input location, we first iterate over all the element in the source list, if the
current Source takes the data from user input such as command line, network
data, or a file, we replace the user input data with symbolic input values. For
example, “a = readfile();” will be replaced by “a = sym input();”.

To instrument the security sink, we insert an assertion statement right
before the security sink based on the security rules defined in Table 2. For
example, before the sink strcpy(dst, src), we insert an assertion statement
assert(dst.space > strlen(src)). However, there is a problem here. We can easily
get the length of a string by using “strlen()” function(C library function), but
the space of a buffer is hard to be determined at runtime as well as at compile
time. Someone may say, we can always get the size of a buffer by “sizeof()”.
This is not correct when we measure the size of the buffer memory space. E.g.,
if we want to get the real space that dst points to, we cannot use “sizeof(dst)”

220 H. Li et al.

because it will always return the actual size of a pointer itself which is the num-
ber 4 at 32 bit architectures. In order to get the real buffer size of a buffer
pointer, we propose a pointer analysis approach to correctly get the buffer size
at program runtime.

Memory Space Analysis(MSA) at Runtime: As we can see from Table 2, in
the security requirement rules, we have to get the “buffer.space” value to accu-
rately set the bug triggering condition and instrument the sinks. However, the
common static analysis of source code cannot get the runtime updating infor-
mation about memory size of a buffer pointer. This usually will result in an
inaccurate assertion of SC violating condition, which makes the system gener-
ate possible false positives when reporting vulnerabilities. The runtime memory
space analysis enables us to accurately track the real size of a pointer’s buffer
space and helps us to correctly instrument the program so as to ensure high
accuracy of vulnerability verification. We make a library called “libmysizeof”
and it provides 3 major functions: mysizeof store(), mysizeof propagate() and
mysizeof getspace(). We insert mysizeof functions in the corresponding place in
the source code. The steps are shown below:

– Iterate over all the instructions in the source code and identify buffer allocation
statement such as buf = malloc(n); and char buf[100];. Then, we store the
buffer pointer name and the corresponding size in a global map M by inserting
mysizeof store() function at the current location.

– Identify each pointer propagation instruction such us p 2 = p 1 + 5;. The
mysizeof propagate() will propagate the size of p 1 to get the size of p 2 accord-
ing to the operation and store the size of p 2 into the map M. We then insert
this mysizeof propagate() function at the current location.

– When we need to get the runtime size of a pointer’s buffer space, we insert
mysizeof getspace() function at a certain location in the source code to get the
correct buffer space.

After inserting “mysizeof” functions, we can get the accurate size of a
pointer’s buffer space at runtime. The buffer size information can then be used
in the assertions. For instance, assert(mysizeof getspace(dst) > strlen(src)).
Figure 3 shows an example of instrumenting pointer analysis functions along
with input and sink instrumentation.

Until here, we prepare a testing source object from the program input to
the potential vulnerable sinks. This object is usually a small part of the whole
program source which helps us to release the burden of next stage.

3.5 Vulnerability Verification Using Concolic Testing

We apply concolic testing in our mechanism to verify the potential vulnerabili-
ties. The general principle of the verification is to find inputs which satisfy all the
program constraints(PCs) but violate the security constraints(SCs) as shown in
Fig. 1. Symbolic execution and concolic execution have been widely used in soft-
ware testing and some have shown good practical impact, such as KLEE [11] and

Automated Source Code Instrumentation 221

Fig. 3. Automatic instrumentation.

CUTE [2]. However, they suffer from path explosion problem which makes them
cannot scale well to large real world programs. In our scenario, the backward
tracing module helps us to find the program inputs which are related to the sen-
sitive data instead of the whole program input space. This can mitigate the path
explosion problem mentioned before. Our approach for concolic testing to verify
potential vulnerabilities mainly follows a general concolic testing procedure [10].
However, the difference is that we focus on generating an input to execute the
vulnerable branch instead of generating inputs to traverse every possible paths
of the program. Hence, it is more cost efficient when doing concolic testing.

4 Experimental Results

4.1 Implementation

System Prototype: We have implemented our mechanism by developing a pro-
totype system. Our system consists of 3 phases: code transformation, auto-
mated instrumentation, and vulnerability verification. Its architecture is
described in Fig. 4. The system is used to discover buffer overflow vulnerabilities
in software projects.1

Environment Setup: We performed all experiments to test our automatic
vulnerability detection and verification system on a desktop machine running
Linux Ubuntu 14.04 LTS (3.3 GHz Intel Core i7 CPU, 8 GB memory, 512 GB
hard drive).

Dataset: For the experiment, we prepared 2 kinds of datasets - Juliet Test
Suite and Linux utilities. First one is Juliet Test Suite provided by US National
Security Agency(NSA) which has been widely used to test the effectiveness of
vulnerability detection tools. To test our tools, we prepared 3,969 files for stack
based buffer overflow vulnerabilities, each of which belongs to 4 basic types
1 Our program and sample scripts are available at http://cssa.korea.ac.kr/clorifi.

http://cssa.korea.ac.kr/clorifi

222 H. Li et al.

Program instrumentation

CFGSinks

Backward tracing
Buffer pointer analysis

instrumentation

Program instrumentation

1. Sink instrumentation
2. Input instrumentation

Security
requirements

Vulnerability verification using concolic testing

Instrumented
program

Concolic testing
executor

Random
initial input

Hit the
Vulnerability

Report/confirm
a vulnerability

Collect constraints
on current path

Search constraints
On a different path

Solve new constraints

Test cases
for a new path

Yes

No

Iteration stops when
1. Vulnerability triggered
2. Execution threshold

Source.c Loading to CIL
structures

CIL analysis

Extraction of CFG

Identification of
security sinks

Sink list

Fig. 4. The system architecture.

based on our sink classification in Table 1. The second dataset is 2 famous Linux
utilities, Bash and Cpio, which is used to prove the practicability of our system.

4.2 Experimental Results

We have conducted our experiments with two types of dataset.

Juliet Test Suite. We tested our approach with 3,969 testcases of Stack Based
Buffer Overflow vulnerabilities of Juliet Test Suite. The number of samples cov-
ered in Table 3 states the number of cases that we verified (over 90% in total).
Our processing time for 3,969 testcases is nearly 20 min, which includes about
2 min of instrumentation and 17 min of concolic testing. Table 3 shows the num-
ber of testcases processed, number of good and bad sinks, and elapsed time of
instrumentation and concolic testing for each type.

We checked the rest of the cases that we couldn’t verify and found out that
our frontend parser cannot handle non-standard coding style such as wide string
L“AAA”(222 cases). Besides, our tool failed to correctly instrument the source
code when handling function pointers(76 cases) and complex use of pointers such
us pointer’s pointer(105 cases).

A working example is shown in Fig. 5. Sub figures in Fig. 5 indicate the
sequence of our mechanism. Figure 5(1) shows the result of CIL transformation
of a file named CWE121 Stack Based Buffer Overflow CWE131 memcpy 01.c.
Then we show the instrumentation result of this case in Fig. 5(2). The assertion
assert(dst.space ≥ n)∧(n ≥ 0) is automatically inserted before the sinkmemcpy.
Figure 5(3) shows the execution result of concolic testing. In this step, it actually
verifies the vulnerability by checking whether the execution of program violates

Automated Source Code Instrumentation 223

Table 3. Type of vulnerabilities and base information of experiment

Type Number of Elapsed Time Elapsed Time Number of Number of

Samples Covered (Instrumentation) (Concolic Testing) Bad Sinks Good Sinks

1 2,065/2,217 78.816 s 547.879 s 2,217 3,126

2 695/732 25.893 s 175.986 s 732 1,008

3 292/296 10.535 s 68.504 s 296 408

4 715/724 26.150 s 197.690 s 724 1,048

Total 3,767/3,969 141.394 s 990.059 s 3,969 5,590

Fig. 5. Snapshot results of different phases

the assertion or not. By using this mechanism, our approach can detect and verify
the vulnerabilities in the Juliet Test Suite in a fully automatic way.

The Comparative Detection Results. We show the number of false positives
regarding to each type of sink in Table 4. As we can see, when we apply our sys-
tem with MSA, we get no false positives while there are some false positives(233
in total) when MSA is not applied. The memory space analysis technique finds
the real size of the buffer space at runtime and accurately set the condition for
violating security constraint(bug triggering condition). When the MSA is not
applied, the real runtime memory size of a pointer in the violation condition can
only be set by approximation, which results in false positives. MSA can help our
system completely reduce false positives.

We also compare our system with Flawfinder [9] which is a source code audit-
ing tool widely used in security communities. We measure the precision (TP

TP+FP),
recall(TP

TP+FN) and F1 Value(2P∗R
P+R) for each tool: (1) our system with MSA; (2)

our system without MSA; (3) Flawfinder. As shown in Fig. 6, our system applied
with MSA gets the highest Precision of 100 % which means 0 false positives. In
terms of Recall, Our system with MSA gets Recall of 94.91%. Flawfinder has
the highest Recall value, however, its Precision is quite low. F1 value is a more
comprehensive indicator for evaluation, our system with MSA gets the highest
F1 value of 97.43 %. For the false negatives, our tool failed to correctly instru-
ment the source code when handling the cases involving function pointers and
complex use of pointers such as pointer’s pointer(total 181 cases). This makes the

224 H. Li et al.

Table 4. False positives with or w/o MSA

Sink type # of FP with MSA # of FP without MSA

1 0 102

2 0 58

3 0 25

4 0 48

Total 0 233

Fig. 6. Detection performance and comparison

tool cannot trigger the failure of the assertion when a real vulnerability exists,
which contributes to false negatives.

Case1: Cpio-2.6(CVE-2014-9112). We also demonstrate the effectiveness of
our system by real open source projects. Figure 7 shows a vulnerability in pro-
gram Cpio-2.6 which is a program to manage archives of files. This vulnerability
is caused by an integer overflow induced buffer overflow. at line 8, the numeric

Fig. 7. CVE-2014-9112 vulnerability
from Cpio-2.6

Fig. 8. CVE-2012-3410 vulnerability
from Bash-4.2

Automated Source Code Instrumentation 225

operation can cause an integer overflow and results in 0 bytes allocation for
“link name”. The buffer overflow is at line 10 when the program is trying to
write “c filesize” number of bytes to 0 space buffer. We apply our system to
automatically report out this vulnerability in a fully automatic way by generat-
ing an input which makes “filesize c = 0xfffffff”.

Case2: Bash-4.2(CVE-2012-3410). We also apply our system to Bash-4.2
and successfully verifies the vulnerability in Fig. 8. Our system identifies the
sink “strcat”, backwardly tracing the user input and set the violating condition
of security constraint by automatic instrumentation. The system reports out this
vulnerability with a triggering input “path = /dev/fd/aaaa...aa(35′a′s)”.

5 Conclusion

In this paper, we propose, design and implement an automated verification
mechanism for vulnerability discovery. Different from other source code auditing
methods, our mechanism needs no human interference with extremely low false
positive rate and it can expand the system usability to non-security specialist.
It takes source code as input, detects and verifies the existence of vulnerabil-
ity in a fully automatic way. What’s more, the memory space analysis(MSA)
enables us to set violating condition of security requirements accurately so as
to report vulnerabilities with higher accuracy. We developed a prototype sys-
tem and conducted several experiments with Juliet test cases and also real open
source projects. The results show that our system can detect and verify vulner-
abilities with low false positives within reasonable time.

However, there are concerns and limitations as well. To the current stage,
our system focuses on buffer overflow vulnerability. In future research, we will
study the features of other kinds of vulnerability and expand the vulnerability
type coverage. Moreover, due to the incapability of handling complex data types
such as nested structures in C code, function pointers and pointer’s pointer, the
system is limited to be working on programs with relatively small amount of
source code. The source code analysis and automatic instrumentation will be
further generalized to cover large programs.

References

1. MITRE group.: Common Vulnerabilities and Exposures (CVE). https://cve.mitre.
org/

2. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In:
ACM International Symposium on Foundations of Software Engineering, pp. 263–
272 (2005)

3. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language
and tools for analysis and transformation of C programs. In: Nigel Horspool, R.
(ed.) CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

4. Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Acar, Y.:
Vccfinder: Finding potential vulnerabilities in open-source projects to assist code
audits. In: Proceedings of the 22nd ACM CCS, pp. 426–437 (2015)

https://cve.mitre.org/
https://cve.mitre.org/

226 H. Li et al.

5. Yamaguchi, F., Maier, A., Gascon, H., Rieck, K.: Automatic inference of search
patterns for taint-style vulnerabilities. In: IEEE Symposium of Security and Pri-
vacy, pp. 797–812 (2015)

6. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulnera-
bilities with code property graphs. In: IEEE Symposium of Security and Privacy,
pp. 590–604 (2014)

7. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided by
impact pre-analysis. ACM SIGPLAN Not. 49(6), 475–484 (2014)

8. Li, H., Kwon, H., Kwon, J., Lee, H.: CLORIFI: software vulnerability discovery
using code clone verification. Pract. Experience Concurrency Comput. 28(6), 1900–
1917 (2015)

9. Wheeler, D.: Flawfinder (2011). http://www.dwheeler.com/flawfinder
10. Kim, M., Kim, Y., Jang, Y.: Industrial application of concolic testing on embedded

software: Case studies. In: IEEE International Conference on Software Testing,
Verification and Validation, pp. 390–399 (2012)

11. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: USENIX Symposium on
Operating Systems Design and Implementation, vol. 8, pp. 209–224 (2008)

12. Zhang, D., Liu, D., Lei, Y., Kung, D., Csallner, C., Wang, W.: Detecting vul-
nerabilities in C programs using trace-based testing. In: IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 241–250 (2010)

13. Di Paola, S.: Sinks: Dom Xss Test Cases Wiki Project. http://code.google.com/p/
domxsswiki/wiki/Sinks

14. Boland, T., Black, P.E.: Juliet 1.1 C/C++ and Java test suite. J. Comput. 45(10),
89–90 (2012)

15. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: Exposing missing
checks in source code for vulnerability discovery. In: ACM CCS, pp. 499–510 (2013)

http://www.dwheeler.com/flawfinder
http://code.google.com/p/domxsswiki/wiki/Sinks
http://code.google.com/p/domxsswiki/wiki/Sinks

An Information Flow-Based Taxonomy
to Understand the Nature of Software

Vulnerabilities

Daniela Oliveira1(B), Jedidiah Crandall2, Harry Kalodner3, Nicole Morin4,
Megan Maher4, Jesus Navarro5, and Felix Emiliano4

1 University of Florida, Gainesville, USA
daniela@ece.ufl.edu

2 University of New Mexico, Albuquerque, USA
3 Princeton University, Princeton, USA

4 Bowdoin College, Brunswick, USA
5 NVIDIA, Santa Clara, USA

Abstract. Despite the emphasis on building secure software, the number
of vulnerabilities found in our systems is increasing every year, and well-
understood vulnerabilities continue to be exploited. A common response
to vulnerabilities is patch-based mitigation, which does not completely
address the flaw and is often circumvented by an adversary. The prob-
lem actually lies in a lack of understanding of the nature of vulnerabili-
ties. Vulnerability taxonomies have been proposed, but their usability is
limited because of their ambiguity and complexity. This paper presents a
taxonomy that views vulnerabilities as fractures in the interpretation of
information as it flows in the system. It also presents a machine learning
study validating the taxonomy’s unambiguity. A manually labeled set of
641 vulnerabilities trained a classifier that automatically categorized more
than 70000 vulnerabilities from three distinct databases with an average
success rate of 80 %. Important lessons learned are discussed such as (i)
approximately 12 % of the studied reports provide insufficient information
about vulnerabilities, and (ii) the roles of the reporter and developer are
not leveraged, especially regarding information about tools used to find
vulnerabilities and approaches to address them.

1 Introduction

Despite the security community emphasis on the importance of building secure
software, the number of new vulnerabilities found in our systems is increasing
with time; The 2014 Symantec Internet Security report announced that 6,787
new vulnerabilities occurred in 2013. This represents a 28 % increase in the
period 2013–2014, compared to a 6 % increase in the period 2012–2013 [5]. Fur-
ther, old and well-studied vulnerabilities, such as buffer overflows and SQL injec-
tions, are still repeatedly reported [3].

This material is based upon work supported by the National Science Foundation
under Grant Nos. #1149730, #0844880, #0905177, and #1017602.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 227–242, 2016.
DOI: 10.1007/978-3-319-33630-5 16

228 D. Oliveira et al.

A common approach to address vulnerabilities is patch-based mitigation tar-
geting specific exploits. This approach may not completely address the vulnera-
bility since it fails to address its essence, and does not generalize well with similar
vulnerabilities exploited differently. Take the file-system TOCTTOU vulnerabil-
ity as an example. Dean and Hu [17] provided a probabilistic solution for filesys-
tem TOCTTOU that relied on decreasing the chances of an attacker to win all
races. In their solution, the invocation of the access() ... open() sequence of
system calls is followed by k additional calls to this pair of system calls. From
the application layer viewpoint, the solution addresses the concurrency issue
because the chances that the attacker will win all rounds are small. Borisov et al.
[10], however, observed that this vulnerability crosses the boundary between the
application and the operating system layers, and allowed an attacker to win the
race by slowing down filesystem operations. This caused the victim process to
be likely suspended after a call to access().

A first step towards viewing cyber security as a science is understanding
software vulnerabilities scientifically. Weber et al. [31] also argue that a good
understanding and systematization of vulnerabilities aids the development of
static-analysis or model checking tools for automated discovering of security
flaws.

Taxonomies decrease the complexity of understanding concepts in a par-
ticular field. Taxonomy-based vulnerability studies have been tried since the
70 s [7,8,18,21] but they were proved ambiguous by Bishop and Bailey [9], who
showed how the same vulnerability was put into multiple categories depending
on the layer of abstraction it was being analyzed. The other problem with cur-
rent taxonomies is their complexity. For example, CWE v1.9 has 668 weaknesses
and 1043 pages. Ambiguous and complex taxonomies not only confuse a devel-
oper, but also hinder the widespread development of automated diagnosis tools
leveraging its categories as points for checks.

This paper introduces a concise taxonomy for understanding the nature of
vulnerabilities that views vulnerabilities as fractures in the interpretation of
information as it flows in the system. In a seminal paper on computer viruses [15],
Cohen said that “information only has meaning in that it is subject to interpre-
tation.” This fact is at the crux of vulnerabilities in systems. As information
flows from one process to another and influences the receiving process’ behavior,
interpretations of that information can lead to the receiving process doing things
on the sending process’ behalf that the system designer did not intend to allow as
per the security model. Information, when viewed from the different perspectives
for the various levels of abstraction that make up the system (OS, application,
compiler, architecture, Web scripting engine, etc.), should still basically have the
same interpretation. The lack of understanding on the nature of vulnerabilities
cause defense solutions to focus on only one perspective (application, compiler,
OS, victim process or attacker process) and become just mitigation solutions
that are rapidly circumvented by a knowledgeable adversary.

To validate the unambiguity and usefulness of this taxonomy, a machine
learning-based [32] study was conducted using a training set of 641 manually

An Information Flow-Based Taxonomy to Understand the Nature 229

classified vulnerabilities from three public databases: SecurityFocus [35],
National Vulnerability Database (NVD) [1] and Open Sourced Vulnerability
Database (OSVDB) [2]. This manually labeled set was used to train a machine
learning classifier built with the Weka suite of machine learning software [32].
More than 70000 vulnerabilities from a ten year period from the three databases
were automatically classified with an average success rate of 80 %, demonstrating
the unambiguity potential of the taxonomy.

Important lessons learned in this study are discussed. First, there are a sig-
nificant number of poorly reported vulnerabilities (approximately 12 % of the
vulnerabilities in the manually classified set), with descriptions containing insuf-
ficient or ambiguous information. This type of report pollutes the databases and
makes it hard to address vulnerabilities scientifically, and disseminate relevant
information to the security community. Second, the roles of the reporter and
the developer are not leveraged and important information has not been added
to reports, such as tools used to find vulnerabilities and approaches taken to
address them. Finally, the lack of standards on vulnerability reports and across
databases adds complexity to the goal of addressing vulnerabilities scientifically,
as they are viewed as dissimilar, independent and unique objects. The paper
also discusses the application of such taxonomy in the context of automated
diagnosis tools to assist the developer.

This paper’s contributions are as follows:

1. A concise taxonomy for understanding the nature of vulnerabilities based on
information-flow that can be easily generalized and understood is proposed.

2. The taxonomy’s categories and their information-flow nature are discussed
against notorious vulnerabilities, such as buffer overflows, SQL injection, XSS,
CSRF, TOCTTOU, side-channels, DoS, etc..

3. A large scale machine learning study validating the taxonomy’s unambiguity
is presented. In this study a manually labeled set of 641 vulnerabilities trained
a classifier that automatically categorized more than 70000 vulnerabilities
from three distinct databases with an average success rate of 80 %.

4. Important lessons learned are discussed such as (i) approximately 12 % of the
studied reports provide insufficient information about vulnerabilities, and (ii)
the roles of the reporter and developer are not leveraged, especially regarding
information about tools used to find vulnerabilities and approaches to address
them.

5. A discussion of the application of this taxonomy in automated diagnosis tools
is provided.

The rest of the paper is organized as follows. Section 2 presents the proposed
taxonomy and discusses notorious vulnerabilities from the perspective of infor-
mation flow. Section 3 presents the machine learning study conducted to evaluate
the taxonomy. Section 4 discusses related work and Sect. 5 concludes the paper.

230 D. Oliveira et al.

2 The Taxonomy

This paper introduces a new vulnerability taxonomy based on information flow.
The goal was to produce an unambiguous taxonomy that can be leveraged to
address software vulnerabilities scientifically. Vulnerabilities are viewed as frac-
tures in the interpretation of information as it flows in the system. Table 1 details
with examples the proposed taxonomy and its categories. The following sections
describe each one of these categories with some examples and how they can be
viewed in terms of information flow.

Please notice that there is no design flaw category because this study under-
stands that all vulnerabilities are ultimately caused by design flaws. Vulnerabil-
ities are weaknesses in the design and/or implementation of a piece of software
that allow an adversary to violate the system security policies regarding the
three computer security pillars: confidentiality, integrity and availability.

2.1 Control-Flow Hijacking

These vulnerabilities allow an attacker to craft an exploit that communicates
with a process in a malicious way, causing the adversary to hijack the process’
control-flow. There are several vulnerabilities that fall into this category: all types
of buffer overflows [20] (stack, heap, data, dtors, global offset table, setjmp and
longjmp, double-frees, C++ table of virtual pointers, etc.), format string, SQL
injection [28] and cross-site scripts (XSS) [30]. Code-reuse attacks [26] are con-
sidered a capability of an attacker after leveraging a stack-based buffer overflow
and not a vulnerability in itself.

In a general memory corruption attack an adversary provides a victim process
with a set of bytes as input, where part of these bytes will overwrite some con-
trol information with data of the attacker’s choice (usually the address of a
malicious instruction). This control information contains data that will even-
tually be loaded into the EIP register, which contains the address of the next
instruction to be executed by the CPU at the architecture level.

For these cases, the fracture in the interpretation of information occurs when
user input crosses boundaries of abstractions. User input is able to influence the
OS, which manages the process address space and the control memory region
being abused. User input also influences the architecture layer as it is directly
written into the EIP register. For buffer overflows on the heap, data, and dtors
areas, an attacker overwrites a data structure holding a function pointer with
a malicious address. The effect is the same in all cases: the function will be
eventually called, and its address will be loaded into the EIP register.

In a SQL injection [28] user input is directly combined with a SQL command
written by an application developer, and this allows an attacker to break out
of the data context when she supplies input as a combination of data, control
characters and her own code. This malicious combination causes a misinterpre-
tation of data input as it is provided by the web scripting engine. The script-
ing engine, which processes user input, misinterprets it as data that should be
concatenated with a legitimate command created by the application developer.

An Information Flow-Based Taxonomy to Understand the Nature 231

Table 1. Taxonomy categories.

Category Description Examples

Control-flow hijacking Vulnerabilities where
information flows from
the input to a process
into the control flow of
the process causing its
execution to be hijacked

Buffer overflows,
memory corruption,
SQL injection,
cross-site scripts

Process confusion Vulnerabilities where
information flows from
the security metadata of
one object into a security
decision about another

TOCTTOU, confused
deputy, cross-site
request forgery
(CSRF)

Side-channels Vulnerabilities where
information flows from
physical or side-effects of
the operation or
communication channels
of the system into an
illegitimate
authentication decision
or information
disclosure.

Physical: timing/power
and electromagnetic
attacks. Communi-
cations/operation:
man-in-the-middle,
replay, /proc
filesystem attacks

Exhaustion Vulnerabilities where a
significant amount of
information flows into a
process causing
unavailability
(exhaustion of resources)
or an illegitimate
authentication decision
(exhaustion of input
space)

Resources: DoS, TCP
SYN flood, ICMP
flood. Input space:
password cracking
and dictionary
attacks

Adversarial accessibility Vulnerabilities where
information is allowed to
flow to the attacker’s
process causing a breach
of confidentiality,
illegitimate
authentication or
interference with system
functionality

Assignment of weak
permissions to
system objects,
access control
errors, and
non-control-data
attacks [14]

232 D. Oliveira et al.

The SQL query interpreter then parses the input provided by the scripting engine
as SQL code that should be parsed and executed. The misinterpretation between
the web scripting engine and the SQL query interpreter causes the vulnerability.

2.2 Process confusion

This type of vulnerability allows an attacker to confuse a process at a higher layer
of abstraction where this process is usually acting as a deputy, performing some
task on behalf of another lower privileged process. A fracture in the interpreta-
tion of information allows the security metadata of one object to be transferred
into a security decision about another object. A classic example is TOCTTOU,
one of the oldest and most well-studied types of vulnerability [23]. It occurs
when privileged processes are provided with some mechanism to check whether
a lower-privileged process should be allowed to access an object before the priv-
ileged process does so on the lower-privileged process’ behalf. If the object or
its attribute can change either between this check and the actual access that
the privileged process makes, attackers can exploit this fact to cause privileged
processes to make accesses on their behalf that subvert security. The classic
example of TOCTTOU is the sequence of system calls access() followed by
open():

if (access("/home/bob/symlink",

R_OK | W_OK) != -1)

{

// Symbolic link can change here

f = fopen("/home/bob/symlink", "rw");

...

}

What makes this a vulnerability is the fact that the invoker of the privileged
process can cause a race condition where something about the filesystem changes
in between the call to access() and the call to open(). For example, the file
/home/bob/symlink can be a symbolic link that points to a file the attacker
is allowed to access during the access() check (e.g., file /home/bob/bob.txt)
that bob can read and write, but at a critical moment is changed to point to a
different file that needs elevated privileges for access (e.g., /etc/shadow).

Consider that the security checks for /home/bob/bob.txt (including
stat()ing each of the dentry’s and checking the inode’s access control list) get
compressed into a return value for the access() system call that is stored in
register EAX. This information is interpreted to mean that bob is allowed to
access the file referred to by /home/bob/symlink.

The information crosses the boundary between an OS abstraction (the ker-
nel) and a user-level abstraction into the EAX register, which contains the return
value (architecture layer abstraction). Then a control flow transfer conditioned
on the EAX register is now transformed into a decision to open the file pointed
to by /home/bob/symlink. The interpretation of information becomes fractured
in this information flow between the return value and the open() system call,

An Information Flow-Based Taxonomy to Understand the Nature 233

which occurs at the architecture layer. To the OS, the value returned in regis-
ter EAX was a security property of /home/bob/bob.txt. At the architectural
level the value of the program counter (register EIP), which contains the exact
same information, is implied to be a security property of /etc/shadow. The
information is the same, but when viewed from different perspectives for the
different layers of abstraction that make up the system the interpretation has
been fractured.

TOCTTOU is a much broader class of vulnerabilities and no all cases are
related to UNIX filesystem atomicity issues [29].

2.3 Side-Channels

This type of vulnerability allows an attacker to learn sensitive information about
a system such as cryptographic keys, sites visited by a user, or even the options
selected by the user when interacting with web applications by leveraging phys-
ical or side-effects of the system execution or communications.

Examples of such vulnerability are found in systems where the execution
of certain branches is dependent on input data, causing the program to take
varying amounts of time to execute. Thus, an attacker can gain information
about the system by analyzing the execution time of algorithms [12]. Other
physical effects of the system can be analyzed, such as hardware electromagnetic
radiation, power consumption [27] and sound [34]. An attacker can also exploit
weaknesses in the communication channels of a process to breach confidentiality
[13,19,33].

As example, first consider a timing attack (Physical side-channel) where an
adversary attempts to break a cryptosystem by analyzing the time a crypto-
graphic algorithm takes to execute [12]. The cryptographic algorithm itself does
not reveal cryptographic keys, but the leaking of timing information is a side-
effect of its execution. This information flows from the server machine to the
client machine and is interpreted in the client (the attacker’s machine) as tokens
of meaningful information. The combination of these tokens of information over
several queries allows the attacker to succeed by making correlations among the
input, the time to receive an answer, and the key value.

Another example is a Man-in-the-middle (MiM) vulnerability (Communica-
tions / Operation), which is a form of eavesdropping where the communication
between two parties, Alice and Bob, is monitored by an unauthorized party, Eve.
The eavesdropping characteristic of MiM vulnerabilities implies that authenti-
cation information is leaked through a channel not anticipated by the system
designer (usually the network). In the classic example, Alice asks for Bob’s pub-
lic key, which is sent by Bob through the communication channel. Eve is able
to eavesdrop the channel and intercepts Bob’s response. Eve sends a message
to Alice claiming to be Bob and passing Eve’s public key. Eve then fabricates a
bogus message to Bob claiming to be Alice and encrypts the message with Bob’s
public key. In this attack information flows from the communication channel
between Alice’s and Bob’s processes into an illegitimate authentication decision
established by Eve.

234 D. Oliveira et al.

2.4 Exhaustion

This type of vulnerability allows an adversary to compromise the availability or
confidentiality of a system by artificially increasing the amount of information
the system needs to handle. This augmented information flow can leave the sys-
tem unable to operate normally (attack on availability) or can allow an attacker
to illegitimately authenticate herself into the system (attack on confidentiality).
The Exhaustion category was subdivided into two subcategories (exhaustion of
resources and exhaustion of input space) due to their differences in nature and also
because they target different security pillars, respectively availability and confi-
dentiality. They both belong to the same broader category because they leverage
an artificial increase in the amount of information flowing into the system.

Exhaustion of resources vulnerabilities allow an attacker to cause a steep con-
sumption of a system’s computational resources, such as CPU power, memory,
network bandwidth or disk space. A classic example is the standard DoS attack:
an attacker saturates a target machine with communication requests so that the
machine is left short of resources to serve legitimate requests. The victim server
process does not handle the uncommon case (exploited by attackers) of a steep
increase in the amount of information it has to handle.

Exhaustion of input space vulnerabilities are leveraged to allow an adver-
sary to illegitimately authenticate herself into the system by exploiting a great
portion of a vulnerable process authentication input space. For example, in a
password cracking attack an adversary repeatedly attempts password strings in
the hope that one of them will allow her to authenticate herself into the system.
A system will be vulnerable to this type of attack depending on the strength of
the password. A secure system can tolerate a steep increase in authentication
information flowing into it (password guesses) without its confidentiality being
compromised, or guard itself against an exhaustion attack, by for example, lock-
ing the system after a few failed attempts.

2.5 Adversarial Accessibility

These vulnerabilities occur when weaknesses in the system design and implemen-
tation allow information to flow to an adversary or her process when it should
not, as per the system security policies. A classic example is when weak permis-
sions are assigned to system objects, allowing an adversary access to sensitive
information or abstractions. This illegitimate information flow to the attacker
can also result in authentication breaches. For instance, a vulnerable access con-
trol mechanism that does not perform all necessary checks can allow an attacker
to authenticate herself in the system and access its resources.

3 Evaluation

The goal of this study was to evaluate how faithfully the categories reflect
real vulnerabilities and to assess the taxonomy’s potential for classifying vul-
nerabilities unambiguously. This analysis leveraged three well-known public

An Information Flow-Based Taxonomy to Understand the Nature 235

vulnerability databases: SecurityFocus (SF) [4], National Vulnerability Database
(NVD) [1], and Open Source Vulnerability Database (OSVDB) [2].

The study employed machine learning to classify a large number of vulnera-
bilities according to the proposed taxonomy. In this analysis we used the Weka
data mining software [32]. The study started with the manual classification,
according to the proposed taxonomy, of 728 vulnerabilities from SecurityFocus
(202 vulnerabilities), NVD (280 vulnerabilities), and OSVDB (246 vulnerabil-
ities) databases. This manual classification was done independently by four of
the authors, with an inter-rater agreement of approximately 0.70 (see Table 2).
A vulnerability report contains the following attributes (names vary per data-
base): ID, title, description, class, affected software and version, reporter, exploit
and solution. For purposes of classification, the most important attributes in a
vulnerability report are the title and the description. The class attribute was
observed to be highly ambiguous; SecurityFocus, for instance, classifies highly
distinct vulnerabilities as Design error. The manual classification selected vulner-
abilities in descending chronological order, starting with the most recent vulner-
abilities in the respective databases. As some categories were under-represented
in the most recent set of reported vulnerabilities and the goal was to build a
large and well-represented training set, the authors manually searched for reports
fitting under-represented categories in the past. This process showed that the
taxonomy was easily applied, even though some questions were raised about vul-
nerabilities with poor or ambiguous descriptions. Table 3 shows a summary of
the manual classification.

Approximately 12 % of the most recent vulnerability reports contain insuffi-
cient or ambiguous information to reason about the corresponding security flaw.
For example, the SecurityFocus vulnerability report with BID 55977 only reveals
that a certain software is vulnerable. To avoid polluting the training set and
confusing the machine learning classifier, all vulnerabilities with insufficient or
ambiguous descriptions (87 total) were filtered out of the manually labeled set.

The study proceeded with the automated extraction of all vulnerability
reports from NVD, OSVDB and SecurityFocus for the periods of 2013-2012,
2009-2008, and 2004-2003. The goal was to classify vulnerabilities from three
distinct periods over the last decade and identify trends and patterns. A total
of 70919 vulnerabilities were extracted (37030 from OSVDB, 23155 from NVD
and 10506 from Security Focus) forming the testing set to be categorized by the
machine learning classifier. We used the Näıve Bayes algorithm as it is popular
for text classification.

All the reports collected for the training and testing set were pre-processed
by a parser that converted them into the Weka’s ARFF format [32]. The parser
used the Weka’s String to Word vector filter [32], which turned each word in the
title or description into an attribute, and checked whether or not it was present.
The filter removed stopwords and established a threshold on the number of words
kept per machine learning sample.

Table 4 summarizes the results obtained for the automated classifica-
tion of vulnerabilities for the three databases studied. Control-flow hijacking

236 D. Oliveira et al.

Table 2. Examples of manually classified vulnerabilities.

Category Database/ID Description (Abridged)

Control-flow hijacking SF 54982 “glibc is prone to multiple stack-based
buffer-overflow vulnerabilities because
it fails to perform boundary checks on
user-supplied data”.

Process confusion NVD 2013-2709 “Cross-site request forgery vulnerability
in the FourSquare Checkins plugin
allows remote attackers to hijack the
authentication of arbitrary users”.

Side-channels OSVDB 94062 “RC4 algorithm has a cryptographic flaw
.. the first byte output by the PRG ...
correlating to bytes of the key ...
allows attacker to collect keystreams
to facilitate an attack”

Exhaustion NVD 1999-1074 “Webmin does not restrict the number of
invalid passwords that are entered for
a valid username, ... allow remote
attackers to gain privileges via brute
force password cracking.

Adversarial accessibility NVD 2013-0947 “EMC RSA Authentication Manager
allows local users to discover cleartext
operating-system passwords ... by
reading a log file or configuration
file.”

No information SF 55977 “Oracle Outside In Technology is prone
to a local security vulnerability. The
‘Outside In Filters’ sub component is
affected. Oracle Outside In
Technology is vulnerable.”

Ambiguous SF 39710 JBoss is prone to multiple
vulnerabilities, including an
information-disclosure issue and
multiple authentication-bypass issues.
An attacker can exploit these issues to
bypass certain security restrictions to
obtain sensitive information...”

Table 3. Manual classification of vulnerabilities.

Database Control-flow

hijacking

Process

confusion

Side chan-

nels

Exhaustion Adversarial

accessibility

No info Ambiguous

SF (202) 60 (30%) 32 (16%) 27 (13%) 34 (17%) 18 (9%) 17 (8%) 14 (7%)

NVD (280) 149 (53%) 8 (3%) 24 (8%) 35 (12%) 30 (11%) 11 (4%) 23 (8%)

OSVD (246) 150 (61%) 9 (4%) 26 (10%) 32 (13%) 15 (6%) 8 (3%) 3 (1%)

Total (728) 359 (49%) 49 (7%) 77 (10%) 101 (14%) 63 (9%) 36 (5%) 51 (7%)

An Information Flow-Based Taxonomy to Understand the Nature 237

vulnerabilities make more than 50 % of all reported vulnerabilities in all data-
bases, followed by Adversarial accessibility (19 %), Exhaustion (16 %), Side-
channels (3 %) and Process confusion (2 %). This trend was consistent in all
databases and did not change much over the last decade.

The standard method of stratified tenfold cross validation [32] was used to
predict the success rate of the classifier, which obtained, respectively, success
rates of 84.6 %, 73.1 %, and 82 % for the OSVDB, NVD, and SecurityFocus
databases. The authors believe that two reasons prevented the classifiers from
obtaining higher success rates: (i) the non-negligible number of reports with
insufficient information about the vulnerability; approximately 12 % for the most
recent vulnerabilities appearing in the training set for all three databases, and
(ii) DoS vulnerabilities, which depending on how they are exploited can be clas-
sified as Exhaustion or Control-flow hijacking. For example, an attack that works
by sending a very large number of requests to a server, so as it does not have
sufficient resources to serve legitimate requests exploits an Exhaustion vulner-
ability. On the other hand, a buffer overflow that crashes the application (still
changing the control-flow according to the attacker’s choice) is usually named
a DoS attack in vulnerability reports, even though the root cause of the vul-
nerability does not involve exhaustion of resources. Table 5 shows examples of
vulnerabilities automatically categorized by the classifier.

3.1 Discussion

Approximately 12 % of all examined reports do not provide sufficient information
to understand the corresponding vulnerabilities. These descriptions specify the
capabilities of attackers after the vulnerability is exploited, or just mention that
an unspecified vulnerability exists.

Also, important information on the process of finding vulnerabilities is usu-
ally not provided: reporter contact information, tools used to discover vulnera-
bilities, whether the vulnerability was discovered through normal software usage
or careful inspection, exploit examples and steps to reproduce the vulnerability.
Certain reports provide URLs for exploits or steps to reproduce the flaw, but
many of these links are invalid as if this information were ephemeral. This infor-
mation should be permanently recorded; it is invaluable to educate developers
during the software development cycle and help the security community build a
body of knowledge about the nature of vulnerabilities.

The lack of this important information in vulnerability reports shows that
the roles played by reporters and developers are undermined. Reports discussing
strategies for finding vulnerabilities could help developers designing more secure
software. Further, it would be invaluable to the security community and other
developers information on how the vulnerability was addressed. For example, was
the vulnerability caused by a weakness on a particular API ? Did the developer
use a particular tool or strategy to address the vulnerability?

238 D. Oliveira et al.

Table 4. Automated classification of vulnerabilities.

Period Total Control-flow

hijacking

Process con-

fusion

Side-channels Exhaustion Adversarial

accessibility

OSVDB

2013-12 14270 9261 (64.8%) 555 (3.8%) 440 (3%) 1521 (10.6%) 2493 (17.4%)

2009-08 16945 10770 (63.5%) 66 (0.4%) 126 (0.7%) 3099 (18.2%) 2884 (17%)

2004-03 5815 2990 (51.4%) 0 21 (0.3%) 1318 (22.6%) 1486 (25.5%)

All 37030 23021 (62.1%) 621 (1.6%) 587 (1.5%) 5938 (16%) 6863 (18.5%)

NVD

2013-12 7822 4062 (51.9%) 239 (3%) 321 (4.1%) 1141 (14.5%) 2059 (26.3%)

2009-08 11361 7021 (61.7%) 207 (1.8%) 310 (2.7%) 1388 (12.2%) 2435 (21.4%)

2004-03 3972 1958 (49.2%) 57 (1.4%) 132 (3.3%) 690 (17.3%) 1135 (28.5%)

All 23155 13041 (56.3.1%) 503 (2.1%) 763 (3.2%) 3219 (13.9%) 5629 (24.3%)

SecurityFocus

2013-12 2071 1057 (51%) 122 (5.8%) 60 (2.8%) 335 (16.1%) 497 (23.9%)

2009-08 5788 4216 (72.8%) 172 (2.9%) 168 (2.9%) 661 (11.4%) 571 (9.8%)

2004-03 2647 710 (26.8%) 1264 (47.7%) 512 (19.3%) 1264 (47.7%) 139 (5.2%)

All 10506 5983 (56.9%) 316 (3%) 750 (7.1%) 2260 (21.5%) 1207 (11.4%)

All databases consolidated

2013-12 24163 14380 (59.5%) 916 (3.7%) 820 (3.3%) 2997 (12.4%) 5049 (20.8%)

2009-08 34094 22007 (64.5%) 445 (1.3%) 604 (1.7%) 5148 (15%) 5890 (17.2%)

2004-03 12434 5658 (45.5%) 1321 (10.6%) 665 (5.3%) 3272 (26.3%) 2790 (22.4%)

All 70691 42045 (59.4%) 1440 (2%) 2100 (2.9%) 11417 (16.1%) 13699 (19.3%)

A lack of standardization among vulnerability reports across databases was
also observed. This makes it very difficult to understand actual trends and sta-
tistics about vulnerabilities; they are viewed as one of a kind and not addressed
together according to their similarities. Finally, there is no guarantee that a
vulnerability is reported in a public database only after the vendor had been
informed about the issue. A responsible reporter should always report the vul-
nerability first with the vendor or developer and allow them a reasonable amount
of time (e.g., 30 days) to address the issue before making it public in a database.

4 Related Work

The first efforts towards understanding software vulnerabilities happened in the
70 s through the RISOS Project [7] and the Protection Analysis study [18].
Landwehr et al. [21] proposed a taxonomy based on three dimensions: genesis,
time, and location, and classified vulnerabilities as either intentional (malicious
and non-malicious) or inadvertent. Aslam [8] introduced a taxonomy targeting
the organization of vulnerabilities into a database and also the development
of static-analysis tools. Bishop and Bailey [9] analyzed these vulnerability tax-
onomies and concluded that they were imperfect because, depending on the layer
of abstraction that a vulnerability was being considered in, it could be classified
in multiple ways.

An Information Flow-Based Taxonomy to Understand the Nature 239

Table 5. Examples of vulnerabilities automatically categorized by the classifier.

Category Database/ID Description (Abridged)

Control-flow hijacking NVD 2003-0375 “XSS vulnerability in member.php of
XMBforum XMB allows remote
attackers to insert arbitrary HTML
and web script via the “member”
parameter.”

Process confusion OSVDB 94899 “DirectAdmin Backup System contains a
flaw as an unspecified email account
function creates temporary files
insecurely. It is possible for attacker
to use a symlink attack against an
unspecified file to gain elevated
privileges”.

Side-channels OSVDB 95626 “WhatsApp Messenger contains a flaw
triggered when attacker intercepts a
payment request via a MiM attack ...
allow the attacker to redirect user to
arbitrary web page”

Exhaustion SF 58500 “IBM Integrator is prone to a DoS
vulnerability. Remote attackers can
exploit this issue to cause an
application to consume excessive
amounts of memory and CPU time,
resulting in a DoS condition”

Adversarial accessibility NVD 2013-3431 Cisco Video Surveillance Manager does
not require authentication for access
to VSMC monitoring pages, allows
remote attackers to obtain sensitive
configuration information.

Lindqvist and Jonsson [22] presented a classification of vulnerabilities with
respect to the intrusion techniques and results. The taxonomy on intrusion
techniques has three global categories (Bypassing Intended Controls and Active
and Passive Misuse of Resources), which are subdivided into nine subcategories.
The taxonomy on intrusion results has three broader categories (Exposure,
Denial of Service and Erroneous Output), which are subdivided into two lev-
els of subcategories.

More recently the Common Weakness Enumeration (CWE) [6] was intro-
duced as a dictionary of weaknesses maintained by the MITRE Corporation
to facilitate the use of tools that can address vulnerabilities in software. The
Open Web Application Security Project (OWASP) was also created to raise
awareness about application security by identifying some of the most critical
risks facing organizations. Even though these projects do not define themselves
as taxonomies, their classification is ambiguous. For example, CWE-119 and

240 D. Oliveira et al.

CWE-120 are two separate weaknesses that address buffer overflows. Also,
OWASP classifies injection and XSS as different categories, even though XSS
concerns malicious code being injected into a web server.

There are also discussions about the theoretical and computational science
of exploit techniques and proposals to do explicit parsing and normalization of
inputs [11,16,24,25]. Bratus et al. [11] discuss “weird machines” and the view
that the theoretical language aspects of computer science lie at the heart of prac-
tical computer security problems, especially exploitable vulnerabilities. Samuel
and Erlingsson [25] propose input normalization via parsing as an effective way
to prevent vulnerabilities that allow attackers to break out of data contexts.
Crandall and Oliveira [16] discussed in a position paper the information-flow
nature of software vulnerabilities.

In this work vulnerabilities are viewed as fractures in the interpretation of
information as it flows in the system. It is not attempted to pinpoint a location
for a vulnerability because they can manifest in several locations or semantic
boundaries. Further, the primary goal of our taxonomy is to address ambiguity,
which makes it difficult to reason about vulnerabilities effectively.

5 Conclusions

This paper presented a new vulnerability taxonomy that views vulnerabilities as
fractures in the interpretation of information as it flows in the system. Notorious
vulnerabilities are discussed in terms of the taxonomy’s categories. A machine
learning study evaluating the taxonomy is presented. Almost 71000 vulnerabili-
ties were automated classified with an average success rate of 80 %. The results
showed the taxonomy’s potential for unambiguous understanding of vulnerabil-
ities. Lessons learned were discussed: (i) control-flow hijacking vulnerabilities
represent more than 50 % of all vulnerabilities reported, a trend that was not
changed over the last decade, (ii) approximately 12 % of recent vulnerabilities
reports have insufficient information about the security flaw, (iii) the lack of
standards in reporting makes it difficult to address vulnerabilities scientifically.
This work will hopefully shed light on how the security community should app-
roach vulnerabilities and how to best develop automatic diagnostic tools that
find vulnerabilities automatically across layers of abstraction.

References

1. National Vulnerability Database. http://nvd.nist.gov/home.cfm
2. Open Source Vulnerability Database. http://www.osvdb.org/
3. Security Focus Vulnerability Notes, bugtraq id 66483. http://www.securityfocus.

com/bid/66483
4. SecurityFocus. http://www.securityfocus.com/
5. Symantec - Internet Security Threat Report. http://www.symantec.com/content/

en/us/enterprise/other resources/b-istr main report v19 21291018.en-us.pdf
6. The Common Weakness Enumeration (CWE). http://nvd.nist.gov/cwe.cfm

http://nvd.nist.gov/home.cfm
http://www.osvdb.org/
http://www.securityfocus.com/bid/66483
http://www.securityfocus.com/bid/66483
http://www.securityfocus.com/
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://nvd.nist.gov/cwe.cfm

An Information Flow-Based Taxonomy to Understand the Nature 241

7. Abbot, R.P., Chin, J.S., Donnelley, J.E., Konigsford, W.L., Webb, D.A.: Security
Analysis and Enhancements of Computer Operating Systems. NBSIR 76–1041,
Institute for Computer Sciences and Technology, National Bureau of Standards
(1976)

8. Aslam, T.: A Taxonomy of Security Faults in the UNIX Operating System (1995)
9. Bishop, M., Bailey, D.: A Critical Analysis of Vulnerability Taxonomies. Technical

Report CSE-96-11, University of California at Davis (1996)
10. Borisov, N., Johnson, R., Sastry, N., Wagner, D.: Fixing races for fun and profit:

how to abuse atime. In Proceedings of the 14th conference on USENIX Security
Symposium, SSYM 2005, vol. 14, Berkeley, CA, USA. USENIX Association, p. 20
(2005)

11. Bratus, S., Locasto, M.E., Patterson, M.L., Sassaman, L., Shubina, A.: Exploit
programming.: From buffer overflows to “Weird Machines” and theory of compu-
tation. USENIX: login, December 2011

12. Brumley, D., Boneh, D.: Remote timing attacks are practical. USENIX Security
(2003)

13. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications: A
reality today, a challenge tomorrow. In: IEEE Symposium on Security and Privacy
(2010)

14. Chen, S., Xu, J., Sezer, E.: Non-control-hijacking attacks are realistic threats. In:
USENIX Security (2005)

15. Cohen, F.: Computer viruses: Theory and experiments. In: 7th DoD/NBS Com-
puter Security Conference Proceedings, pp. 240–263, September 1984

16. Crandall, J., Oliveira, D.: Holographic vulnerability studies: Vulnerabilities as frac-
tures in terpretation as information flows across abstraction boundaries. In: New
Security Paradigms Workshop (NSPW) (2012)

17. Dean, D., Hu, A.J.: Fixing races for fun, profit: How to use access(2). In: Proceed-
ings of the 13th Conference on USENIX Security Symposium, Berkeley, CA, USA,
vol. 13, p. 14. USENIX Association (2004)

18. Bisbey II, R., Hollingsworth, D.: Protection Analysis Project Final Report.
ISI/RR-78-13, DTIC AD A056816, USC/Information Sciences Institute (1978)

19. Jana, S., Shmatikov, V.: Memento: Learning secrets from process footprints. In:
IEEE Symposium on Security and Privacy (2012)

20. Kyung-Suk, L., Chapin, S.J.: Buffer overflow, format string overflow vulnerabilities.
Softw. Pract. Experience 33(5), 423–460 (2002)

21. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of com-
puter program security flaws. ACM Comput. Surv. 26(3), 211–254 (1994)

22. Lindqvist, U., Jonsson, E.: How to systematically classify computer security intru-
sions. In: IEEE Symposium on Security and Privacy (1997)

23. McPhee, W.S.: Operating system integrity in OS/VS2. IBM Syst. J. 13(3), 230–252
(1974)

24. Pieters, W., Consoli, L.: Vulnerabilities and responsibilities: dealing with monsters
in computer security. J. Inf. Commun. Ethics Soc. 7(4), 243–257 (2009)

25. Samuel, M., Erlingsson, U.: Let’s parse to prevent pwnage (invited position paper).
In: Proceedings of the 5th USENIX Conference on Large-Scale Exploits and Emer-
gent Threats, LEET 2012, Berkeley, CA, USA, p. 3. USENIX Association (2012)

26. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM CCS, pp. 552–561 (2007)

27. Spadavecchia, L.: A network-based asynchronous architecture for cryptographic
devices. Edinburgh Research Archive (2005)

242 D. Oliveira et al.

28. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, pp. 372–382. ACM, New
York (2006)

29. Wang, R., Chen, S., Wang, X., Qadeer, S.: How to shop for free online - secu-
rity analysis of cashier-as-a-service based web stores. In: Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP 2011, pp. 465–480. IEEE Computer
Society (2011)

30. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
30th International Conference on Software Engineering, ICSE 2008. ACM, New
York (2008)

31. Weber, S., Karger, P.A., Paradkar, A.: A software flaw taxonomy: aiming tools at
security. In: Software Engineering for Secure Systems (SESS) (2005)

32. Witten, I.W., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

33. Zhang, K., Wang, X.: Peeping tom in the neighborhood: keystroke eavesdropping
on multi-user systems. USENIX Security (2009)

34. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. In:
ACM Conference on Computer and Communications Security (CCS) (2005)

35. Security Focus Vulnerability Notes. bid == Bugtraq ID. http://www.securityfocus.
com

http://www.securityfocus.com
http://www.securityfocus.com

XSS PEEKER: Dissecting the XSS Exploitation
Techniques and Fuzzing Mechanisms of Blackbox

Web Application Scanners

Enrico Bazzoli1, Claudio Criscione2, Federico Maggi1(B), and Stefano Zanero1

1 Politecnico di Milano, Milano, Italy
federico.maggi@polimi.it

2 Google Zürich, Zürich, Switzerland

Abstract. Black-box vulnerability scanners can miss a non-negligible
portion of vulnerabilities. This is true even for cross-site scripting (XSS)
vulnerabilities, which are relatively simple to spot. In this paper, we
focus on this vulnerability class, and systematically explore 6 black-box
scanners to uncover how they detect XSS vulnerabilities, and obtain
useful insights to understand their limitations and design better detection
methods. A novelty of our workflow is the retrofitting of the testbed so as
to accommodate payloads that triggered no vulnerabilities in the initial
set. This has the benefit of creating a systematic process to increase
the number of test cases, which was not considered by previous testbed-
driven approaches.

1 Introduction

Web application vulnerabilities are one of the most important and popular secu-
rity issues, constantly making it to the top list of disclosed vulnerabilities [13,18].
Cross-site scripting (also known as XSS) is a prevalent class of web application
vulnerabilities [10]. In June 2013, XSS was reported as the most prevalent class
of input validation vulnerabilities by far [16].

Black-box vulnerability scanners are widely used in the industry but, unfor-
tunately, they can miss a non-negligible portion of vulnerabilities [2,14,17]
or report non-existing, non-exploitable or uninteresting vulnerabilities [17].
Although XSS vulnerabilities are relatively easy to discover, previous work
showed that black-box scanners exhibit shortcomings even in the case of XSS
flaws.

To our knowledge there is no detailed study of black-box web vulnerabil-
ity scanners that focused specifically on XSS vulnerabilities and their detection
approaches. Previous work and commercial benchmarks included XSS bugs as
part of the set of flaws in testbed web applications, but not as the main focus.
Also, previous work measured the detection rate and precision of the scanners
mainly with the goal of benchmarking their relative performance. Although these

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 243–258, 2016.
DOI: 10.1007/978-3-319-33630-5 17

244 E. Bazzoli et al.

indicators are important, we believe that providing precise insights on the struc-
ture, generality, fuzzing mechanism and overall quality of the XSS detection
approaches could help web application developers to design better escaping and
validation routines, and scanner vendors to understand the reasons behind scan-
ner weaknesses.

These goals require a new perspective. A näıve approach would be to launch
the scanners against large set of web applications, with difficult-to-find entry
points, complex session mechanisms, etc. Normally, this kind of testbeds are
adopted by vendors to demonstrate their product’s sophistication. However,
since our goal is not to challenge a scanner, but to analyze its payloads, exploita-
tion approaches and fuzzing algorithms, we need a comprehensive set of targeted
test cases that the scanner can easily find and exercise, such that the number
of extracted payloads is maximized. From here the name of our tool, “XSS
Peeker,” that implements our workflow.

XSS Peeker works at the network level and decodes the HTTP layer to find
and extract the XSS payloads. In addition, XSS Peeker streamlines tedious
tasks such as finding groups of related payloads, which we call templates, making
automatic analysis and result visualization feasible even in the case of large
amounts of payloads. Our research is not limited to individual scanners: we
observed how cross-scanner analysis yields very interesting results.

Part of our contributions is a testbed web application, Firing Range (http://
public-firing-range.appspot.com) It is designed such that it is easy for the scan-
ner to find the vulnerable entry points. Moreover, it is very easy to add new
vulnerable entry points. Indeed, as part of our workflow, whenever XSS Peeker
encounters a payload that does not trigger any vulnerability, it displays an infor-
mative alert to the developer who can quickly prepare a test case that would
satisfy specifically that payload. We applied this process iteratively, running new
scans and collecting new payloads. Last, a difference of our testbed application
with respect to the state of the art is the inclusion of specific test cases for DOM
XSS vulnerabilities, one of the most recently discovered and emerging sub-classes
of XSS flaws [5,7].

Overall, our methodology and results are useful to answer questions such
as: which payloads are used by security scanners to trigger XSS vulnerabilities?
Can we rank them and identify a set of “better” payloads? Is a scanner exer-
cising all the entry points with the expected payloads? A direct application of
our results toward improving the quality of a scanner is, for example, to mini-
mize the size and number of characters used in the payloads, while keeping the
detection rate constant. Payloads of short size and with a smaller character set
have in general higher chances of bypassing filters, and thus higher possibilities
of uncovering unknown vulnerabilities. Using better payloads also means gen-
erating fewer requests and thus completing a test in a shorter time (i.e., better
scanning efficiency). Clearly, these are just a couple of examples, which we for-
malize through a set of criteria later in the paper. This type of analysis should
be focused on a scanner testing phase in isolation, which is best achieved with
a fully synthetic test bed: a realistic test application would not improve the

http://public-firing-range.appspot.com
http://public-firing-range.appspot.com

XSS PEEKER: Dissecting the XSS Exploitation Techniques 245

quality of our analysis in any of our measures and would introduce yet another
experimental parameter to factor in all our considerations.

In summary, we make the following contributions:

– A publicly available testbed web application that exposes a wide range of
non-trivial XSS vulnerabilities, augmented with the new cases progressively
discovered while running the scanners.

– A methodology to analyze how black-box web application scanners work by (1)
extracting the payloads from the HTTP requests, (2) clustering them to scale
down the evaluation challenge and keep it feasible, and (3) evaluating each
cluster in terms of use of evasion, compactness, and other quality indicators.

– A publicly available prototype of XSS Peeker (https://bitbucket.org/necst/
xss-peeker)

– A detailed evaluation of 6 scanners: Acunetix 8.0, NetSparker 3.0.15.0, N-
Stalker 10.13.11.28, NTOSpider 6.0.729, Skipfish 2.10b and w3af 1.2.

2 Background

Before describing our approach in detail, we introduce the essential background
concepts and terminology on web application XSS vulnerabilities and black-box
scanners.

XSS attacks consist in the execution of attacker-controlled code (e.g.,
JavaScript) in the context of a vulnerable web application. In this paper, we
refer to the portion of malicious code as payload. Without aiming for a com-
plete taxonomy, XSS vulnerabilities and attacks can be divided in stored and
reflected. In reflected attacks the victim is tricked (e.g., through links or short
URLs [8] embedded in e-mail or instant messages) into sending a specially crafted
request—which embeds the actual payload, which is bounced back to the client
immediately. In stored XSS attacks the moment the payload is injected is decou-
pled from the moment that it is effectively displayed and executed by the victim,
as the attacker’s code achieves some form of persistence.

DOM-based attacks [6] can be seen as an orthogonal category. They
rely on the insecure handling of untrusted data through JavaScript (e.g.,
document.write(‘<script ...>’)) rather than static inclusion of payload
(e.g., <script ...>) in the rendered page.

Black-box web vulnerability scanners leverage a database of known exploits,
including XSS payloads, used to trigger and detect potential vulnerabilities.
They start by crawling the target web application to enumerate all reachable
entry points (e.g., links, input fields, cookies), then they generate (mutations
of) input strings based on their database, inject the resulting payload in the
entry points and finally analyze the HTTP responses using an oracle to validate
the presence of vulnerabilities (e.g., by looking for the injected payload in the
output).

https://bitbucket.org/necst/xss-peeker
https://bitbucket.org/necst/xss-peeker

246 E. Bazzoli et al.

3 Firing Range: Test Case Generation

The implementation of the testbed web application is a key point. Given our
goals and needs, the requirements of such a testbed are: (i) to have clearly
defined vulnerabilities and entry points, (ii) to be easily customizable, (iii) to
contain the main types of XSS vulnerabilities. Large, full-fledged testbed web
applications have been implemented in previous works [1–3] and are constantly
made available to the public, but they do not entirely meet our requirements
and approach. Although requirement (iii) is easy to ensure by modifying existing
testbed applications, ensuring (i) and (ii) implies a complete redesign and re-
engineering. In fact, existing testbed applications are not focused on extracting
as many payloads as possible from the scanner. Contrarily, they are focused
on challenging the scanner’s capabilities of discovering hard-to-find vulnerable
entry points. Given these premises, we decided that it was easier to implement
our own testbed and release it to the community.

3.1 Design Challenges

Meeting the above requirements is tricky. On one hand, as pointed out in [2],
the complexity of some applications can hinder the coverage of the scanner. On
the other hand, there is no guarantee of comprehensiveness of the testbed.

We decided to address these shortcomings explicitly while designing Firing
Range. Our testbed exposes all vulnerabilities through HTML anchors, and vul-
nerable parameters are provided with sample input to improve discoverability.
This approach allows to run testing sessions by providing the full list of vulnera-
ble URLs, thus removing any crawling-related failure entirely. Furthermore, each
vulnerable page is served as a standalone component with no external resources
such as images or scripts, as to create a minimal, clean and efficient test case.
The result is that the scanner focuses on the juicy part: the exploit generation
and fuzzing.

3.2 Implementation Challenges

The main implementation challenge when creating a testbed is of course deciding
which tests to include. We wanted our initial set to cover as many cases as
possible, but there was no such list readily available in previous literature.

Since we basically wanted to test the detection of XSS on an HTML page, we
observed that the HTML parsers in modern browsers have a finite set of states,
which make a good starting point to create test cases. Thus, we created one test
per HTML parser state. To this end we analyzed the different contexts identified
by the contextual auto-escaper described in [12]: simply reversing the perspec-
tive of a parser, tasked with applying proper escaping to malicious payloads,
provided us with clear samples of the different contexts. We generated test cases
covering each of them with the goal of (1) producing a “vulnerable baseline” of
the different states of an HTML parser and (2) inducing the scanners to inject
as many payloads as possible.

XSS PEEKER: Dissecting the XSS Exploitation Techniques 247

HTML contexts are however not enough to generate test cases for DOM
XSSs, which exploits interactions between the DOM generated by parsing the
original HTML and JavaScript code. For DOM XSS, we started from the XSS
Wiki1, and other openly available collections of sample vulnerabilities, and gen-
erated a list of valid DOM sinks and sources—which, notably, include sources
other than URLs such as cookies and browser storage. Each one of our DOM
tests couples one of these sinks and sources. In the following example, the source
is location.hash and the sink is innerHTML of a <div> node:

DOM XSS from location.hash to innerHTML.

<body>
<script>
var payload = window.location.hash.substr(1);
var div = document.createElement(’div’);
div.id =’divEl’;
document.documentElement.appendChild(div);

var divEl = document.getElementById(’divEl’);
divEl.innerHTML = payload;

</script>
</body>

We then varied the sources and sinks, obtaining test cases like the following ones:

DOM XSS from documentURI to document.write().

<body>
<script>
var payload = document.documentURI;
document.write(payload);

</script>
</body>

DOM XSS from window.name to eval().

<body>
<script>
var payload = window.name;
eval(payload);

</script>
</body>

We manually verified all the initial tests as exploitable with an appropriate
payload or attack technique.

3.3 Iteratively Discovered Test Cases

During our experimental evaluation XSS Peeker discovered payloads that were
not exercising any test case (i.e., vulnerability). Instead of limiting our analysis
to report this gap, our approach is to iteratively construct new test cases and
progressively re-run all the scanners. In other words, our testbed application
is dynamic by design. The details of this iterative procedure are described in
Sect. 4.4, whereas the numbers of test cases that we had to add in order to
accommodate an existing exploitation payload are reported in Sect. 5.4.

This iterative process produced 42 new test cases that were not identified
by our initial seeding. In other word, we use the testbed web application as an

1 https://code.google.com/p/domxsswiki/wiki/Introduction.

https://code.google.com/p/domxsswiki/wiki/Introduction

248 E. Bazzoli et al.

oracle with respect to the scanner, and we use the scanner as an oracle with
respect to the web application. As a result, this dual approach greatly improved
the testbed and provided new insights on the internals of each scanner.

When considering XSS Peeker’s analysis perspective, there is no functional
difference between stored and reflected XSS. The difference is whether the echoed
payload is stored or not. However, from the point of view of the payload analysis,
which is our core focus, reflected or stored XSSs are equivalent. Therefore, for
ease of development and of experimental repeatability, our testbed web applica-
tion only contains reflected vulnerabilities.

Our publicly available testbed includes full details of the vulnerabilities. For
the sake of brevity, we refer the reader directly to http://public-firing-range.
appspot.com for a complete list of live test cases and commented source code.

4 XSS PEEKER: Analysis Workflow

XSS Peeker automates the extraction and analysis of XSS payloads by fol-
lowing an iterative approach, divided in four phases (the first three completely
automated, the fourth partially relying on manual inputs).

4.1 Phase 1 (Payload Extraction)

The high-level goal of this phase is to obtain, for each scanner, the entire set of
XSS payloads used by each scanner for each entry point in the testbed applica-
tion. To this end, this phase first captures (using libpcap) the traffic generated
by the scanners during the test and performs TCP stream reassembly to the full
HTTP requests.

The first challenge is to automatically separate the HTTP requests used for
the actual injection (i.e., containing one or more payload) from the requests
used for crawling or other ancillary functionalities, which are not interesting.
The ample amount of payloads generated makes manual approaches unfeasible.
Therefore, we rely on two heuristics:

Signature Payloads: Most scanners use signature payloads (i.e., payloads that
contain strings that are uniquely used by that scanner). Therefore, we derived
the signature payloads for each scanner and compiled a whitelist that allows
this heuristic to discard the uninteresting requests.

Attack Characters: Since we know the testbed application, we guarantee that
there is no legitimate request that can possibly contain certain characters in
the header or body parameters. These characters include, for example, <, >,
’, ", and their corresponding URL-percent encodings. Such characters should
not be present in a crawling request by construction, and since they are often
required to exploit XSS vulnerabilities, we have empirically observed them
as linked to vulnerability triggering.

http://public-firing-range.appspot.com
http://public-firing-range.appspot.com

XSS PEEKER: Dissecting the XSS Exploitation Techniques 249

To complement the previous heuristics and maximize the number of identified
payloads, we perform pairwise comparisons between requests issued by each
couple of scanners. For each couple, we extract the body and URL of the two
requests and check if they have the same path and the same query parameters.
If so, we compare the values of each query parameter. By construction, Firing
Range provides only a single value for each parameter, thus any mismatch has to
be originated by the scanner fuzzing routine. Once a pair of requests is flagged as
a mismatch, we performed manual inspection to isolate the payload. The number
of such cases is rare enough to make this a manageable process. We iteratively
applied and improved these heuristics until this cross-scanner analysis generated
empty output, and we could confirm through manual inspection that no more
test requests were missed (i.e., all payloads considered).

We can focus just on query parameters because of the design of our testbed,
which provides injection points exclusively on query parameters. Even if almost
all scanners also test path injection, we chose not to analyze them. Indeed,
manual analysis confirmed that scanners used the very same set of payloads
observed during parameter injection.

4.2 Phase 2 (Payload Templating)

Given the large number of payloads generated by each scanner, manu-
ally analyzing and evaluating each of them separately is practically unfea-
sible. A closer inspection of the payloads, however, revealed self-evident
clusters of similar payloads. For example, the following payloads: <ScRiPt
>prompt(905188)</ScRiPt> and <ScRiPt>prompt(900741)</ScRiPt> differ
only for the parameter value. To cluster similar payloads, inspired by the app-
roach presented in [11], we developed a recursive algorithm for string templating.
Without going into the details, the approach presented in [11] is to start from a
set of template elements that produce fully random or dictionary based sequences
of symbols. Using a large corpus of spam emails, the approach is to derive the
full spam email template by generalizing the template elements. Emails, however,
are much larger, structured, and richer of contextual symbols than our exploita-
tion payloads. Therefore, the approach described in [11] cannot be applied as
is. Essentially, we cannot easily define the concept of “template elements” in
such a small space. Therefore, as part of our contributions, we create a new
approach that is well suited for short strings. In a nutshell, rather than following
a top-down approach that starts from template elements, our idea is to elicit
the template following a bottom-up approach, starting from the strings that it
supposedly generated.

More formally, a template, in our definition, is a string composed by lexi-
cal tokens (e.g., a parenthesis, a function name, an angular bracket), that are
common to all the payloads that generated it, and variable parts, which we
represent with placeholders. The NUM placeholders replace strings that contains
only digits, whereas the STR placeholders replace strings that contains alphanu-
meric characters. For instance, the template for the above example is <ScRiPt
>prompt(90 NUM)</ScRiPt>

250 E. Bazzoli et al.

To generate the templates we leveraged the Levenshtein (or edit) distance
(i.e., the minimum number of single-character insertions, deletions, or substitu-
tions required to transform string A to string B).

At each recursion, our algorithm receives as an input a list of strings and per-
forms a pairwise comparison (without repetition) between elements of the input
list. If the Levenshtein distance between each two compared strings is lower than
a fixed threshold, we extract the matching blocks between the two strings (i.e.,
sequences of characters common to both strings). If the length of all matching
blocks is higher than a given threshold, the matches are accepted. Non-matching
blocks are then substituted with the corresponding placeholders. The output of
each recursion is a list of generated templates. All payloads discarded by the
Levenshtein or matching-block thresholding are appended to the list of output
templates, to avoid discarding “rarer” payloads (i.e., outliers) and losing useful
samples. The thresholds (maximum Levenshtein distance and minimum match-
ing block length) are decremented at each cycle by an oblivion factor, making
the algorithm increasingly restrictive. We selected the parameters, including the
oblivion factor, through empirical experimentation, by minimizing the number
of templates missed. This automatic selection yielded the following values: 20,
0.9 (default case); 20, 0.9 (Acunetix), 15, 0.5 (NetSparker); 15, 0.8 (NTOSpider);
15, 0.9 (Skipfish); 15, 0.5 (W3af). The algorithm stops when a recursion does
not yield any new templates.

4.3 Phase 3 (Template Evaluation)

We want to assess the quality of payloads in terms of filter-evasion capabilities
and amount of mutations used by the scanner. Given our observations above,
we apply such evaluation to templates, as opposed to each single payload.

More precisely, the quality of a template is expressed by the following tem-
plate metrics, which we aggregate as defined in Sect. 5.3. Note that the rationale
behind each metric is explained on payloads, whereas the metric itself is calcu-
lated on the templates.

M1 (Length), int: The longer a payload is, the easier to spot and filter (even by
accident). Thus, we calculate the length of each payload template to quantify
the level of evasion capability.

M2 (Number of distinct characters), int: The presence of particular char-
acters in a ayload could hit server-side filters, or trigger logging. The pres-
ence of a character instead of another could reveal an attempt to mutate the
string (e.g., fuzzing). A symbol can have different meanings depending on the
actual context. From this rationale we obtain that a payload with a small set
of characters is “better” than one leveraging rare characters. We calculate
this metric on the variable part of each template (i.e., excluding the STR ad
NUM tokens).

M3 (Custom callbacks) bool: Rather than using standard JavaScript func-
tions like alert, a scanner can use custom JavaScript function callbacks to
bypass simple filters. We interpret this as an evasion attempt. If a template

XSS PEEKER: Dissecting the XSS Exploitation Techniques 251

contains a function outside the set of built-in JavaScript functions, we set
this metric to true.

M4 (Multiple encodings), bool: Encoding a payload may let it pass unno-
ticed by some web applications’ filters. However, some applications do not
accept certain encodings, resulting in the application not executing the pay-
load. A payload that uses multiple encodings is also more general because, in
principle, it triggers more state changes in the web application. We set this
metric to true if the template contains symbols encoded with a charset other
than UTF-8 and URL-percent, thus quantifying the level of evasion.

M5 (Number of known filter-evasion techniques), int: With this metric
we quantify the amount of known techniques to avoid filters in web applica-
tions. For each template we calculate how many known techniques are used
by matching against the OWASP list2.

Although other metrics could be designed, we believe that these metrics are
the bare minimum to characterize a scanner’s capabilities and understand more
deeply the quality of the payloads that it produces and process.

4.4 Phase 4 (Retrofitting Negative Payloads)

At the end of a scan, each scanner produces a report of the detected vulnerabil-
ities. We use a report-parsing module that we developed (and released) for each
scanner, and correlate the results with the payloads extracted. In this way we
identify payloads that triggered vulnerabilities, which we call positive payloads
and those that did not, called negative payloads.

We manually verified each negative payload to ensure that it was not our
report-parsing module failing to correlate. We found that there are at least four
reasons for which a negative payload occur:

– The payload was malformed (e.g., wrong or missing characters, incorrect struc-
ture) and it was not executed. This is a functional bug in the scanner.

– The payload was designed for a different context than the one it was mistak-
enly injected in.

– The scanner used what appears to be the “right” payload for the test case,
but the detection engine somehow failed to detect the exploit.

– The payload was redundant (i.e., the scanner already discovered a vulnerabil-
ity) in the same location thanks to another payload, and thus will not report
it again.

Since one of our goals was to create a testbed application as complete as pos-
sible, we wanted to ensure that all negative payloads had a matching test case
in our application. With manual analysis, we proceeded to discard malformed
and redundant payloads from the list of negative payloads. For each remaining
negative payloads we produced a specific vulnerable test case.

2 https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

252 E. Bazzoli et al.

To avoid introducing a bias in the results, we crafted each new test case
to be triggered exclusively by the payload type for which it has been created,
whereas the other payloads of the same scanner are rejected, filtered, or escaped.
Of course, nothing would prevent other scanners from detecting the case with a
different payload and that was indeed the intended and expected behavior.

5 Experimental Results

We tested 4 commercial scanners (in random order, Acunetix 8.0, NetSparker
3.0.15.0, N-Stalker 10.13.11.28, NTOSpider 6.0.729), for which we obtained ded-
icated licenses with the support of the vendors, and 2 open-source scanners (in
random order, Skipfish 2.10b, and w3af 1.2). Because performing a comparative
analysis is not the point of this paper, the scanners are weakly anonymized and
they appear as Scanner1, Scanner2, etc., in our results.

We installed each scanner on a dedicated virtual machine (VM) to guarantee
reproducibility and isolation (i.e., Debian 6.0.7 for Skipfish and W3af, and Win-
dows 7 Professional for Acunetix, NetSparker, N-Stalker and NTOSpider). We
used Wireshark to capture the traffic. When possible, we configured each scan-
ner to only look for XSS vulnerabilities, and to minimize the impact of other
variables, we left the configuration to its default values and kept it unchanged
throughout all the tests.

We tested Firing Range several times with each scanner. No scanner reported
false positives, which is an expected result since we did not design any test cases
to trick them like Bau et al. [1] did in their testbed application.

Of course, simply running scanners against a test application and analyzing
their reports is not enough to evaluate their payloads. As Doupé et al. [2] did
in their study, we wanted to understand the behavior of a scanner in action to
be able to explain their results. Our approach, however, differs noticeably since
Doupé et al.’s main concern is about the crawling phase of the scanner, whereas
we focus on the attack phase, and specifically on the payloads.

5.1 Payload Extraction Results

The number of extracted payloads for all scanners is shown in Fig. 1(a).
Since the detection rate is approximately the same for all scanners (on the

first version of Firing Range, before Phase 4 (Retrofitting Negative Pay-
loads)), the number of distinct payloads, shown in Fig. 1(a), is interesting: the
detection technique of Scanner 3 uses far fewer payloads, while achieving the
same detection of others. The comparatively larger number of payloads observed
in the first 2 scanners is due to the use of unique identifiers tied to each of
requests. Arguably, these identifiers are used to link a result back to the request
that originated it even if server side processing had moved it around—this
property is important when detecting stored XSS.

XSS PEEKER: Dissecting the XSS Exploitation Techniques 253

(a) Extracted payloads. (b) Generated templates.

Fig. 1. Output summary of Phase1 and Phase2, respectively.

Recommendation (Baseline Payloads). Having a good, strong source of
baseline payloads (e.g., from exploit databases3) makes a significant difference
in terms of payload-to-detection rate. Having a diverse set of distinct payloads
is better (although harder) than having a small set of initial payloads used
to generate many payloads by automatic mutation or fuzzing. This does not
mean that scanner designers should not mutate the baseline payloads to generate
new ones. Mutation and fuzzing are fundamental, but should not substitute the
research effort by the vendor, who should ensure a rich supply of exploitation
payloads whenever new vulnerabilities are discovered.

5.2 Payload Templating Results

The number of payloads alone, however, does not tell much about the actual
quality and type of the payloads. More interesting conclusions about the fuzzying
algorithm adopted by each scanner can be drawn by comparing Fig. 1(a) vs. (b).
Indeed, after applying the clustering process of Phase 2 (Payload Templating),
we notice immediately the limited number of templates (i.e., reflecting the attack
patterns), as shown in Fig. 1(b).

The larger number of templates generated for Scanner 2 is an index of
lower efficiency of the scanner, in terms of amount of requests and time spent
for detecting a given set of vulnerabilities. In fact, while detecting the very same
set of vulnerabilities as the other scanners, Scanner 2 employs 3–4 times the
number of payload templates (i.e., distinct exploit patterns).

At this point in the analysis we could already see some scanners emerging
as clearly more efficient due to the smaller number of templates they use. For
example, Scanner 2 uses more complex payload templates such as:

-STR-‘"--></style></script><script>alert(0x0000-STR-_NUM_)
</script>

3 http://exploit-db.com/search/?action=search&filter description=cross&filter
platform=0&filter type=6.

http://exploit-db.com/search/?action=search&filter_description=cross&filter_platform=0&filter_type=6
http://exploit-db.com/search/?action=search&filter_description=cross&filter_platform=0&filter_type=6

254 E. Bazzoli et al.

The templates for Scanner 4 are numerous and very different from each other,
due to the wide variety of generated payloads. The (low number of) templates
from Scanner 5 show that its payloads are significantly different from the rest.
The templates that cover most of the payloads are:

-->">’>’"<obf000084v209637>
.htaccess.aspx-->">’>’"<obf000085v209637>
.htaccess.aspx-->">’>’"<obf000_NUM_v209637>
-STR--->">’>’"<obf_NUM_v209637>

which capture the scanner developer’s particular interest in generic payloads
that can highlight the incorrect escaping of a number of special characters at
once. This approach is not found in any other scanner.

Scanner 6 created a large number of templates, sign of strong use of non-
trivial mutations and fuzzying.

Recommendations (Mutation and Context). From our results we learn
that designing good mutation mechanism is not easy to implement. Näıve
approaches such as those adopted by Scanner 1, which only appends a pro-
gressive number to “fuzz” the payload, do not pay back in more vulnerabili-
ties detected. Instead, it is inefficient as it exercises the application with the
very same (small) number of payload templates, which are actually all dupli-
cate (except for the progressive number). This can be partially mitigated if
the scanner implements an intelligent algorithm that figures out that N “very
similar payloads” (e.g., same strings, except for 1–2 characters) are continuously
generating the same (negative) result. Setting a limit on this is a simple yet effec-
tive technique to keep efficiency under control. Moreover, a contextual parsing
approach is recommended to select a candidate subset of potentially successful
payloads, before attempting the injection. Although having an identifier (e.g.,
incremental number) for each injected payload is useful (e.g., for matching stored
XSS or multiple injection points in a single page), it should not be used alone
as a fuzzying mechanism.

Table 1. Summary of template evaluation.

SCANNER MUTATIONS (M4) CALLBACKS (M3) FILTER EVASION (M2, M4, M5)

1
2
3
4
5
6

XSS PEEKER: Dissecting the XSS Exploitation Techniques 255

5.3 Template Evaluation Results

During this phase we evaluated each of the templates on the metrics defined in
Sect. 4.3. Figure 2 reports the mean of M1 (Length) calculated over the num-
ber of templates produced by each scanner. This is an interesting finding, which
can be interpreted in two ways. On the one side, the length of the templates is
in line with the minimum length of real-world payloads required to exploit XSS
vulnerabilities, which is around 30 characters [4,15], which somehow justifies the
choice of the payloads. On the other hand, such a long string may fail to exploit
a vulnerable entry point that simply cuts the payload off, even without a proper
filter. Although this can be a good way for the scanner to avoid flagging unex-
ploitable vulnerabilities (false positives), it has been shown that multiple small
payloads can be combined to generate a full attack [9]. However, the scanners
that we examined miss these occurrences.

We notice that Scanner 1 employs significantly longer payloads than Scan-
ner 5. This can be explained, considering that Scanner 5’s M5 is zero, meaning
that it uses no known filter-evasion techniques: thus, Scanner 5 is less sophis-
ticated than Scanner 1.

Using M2–M5, we derived Table 1, which gives a bird’s eye view on the use
of mutations, filter evasion and use of callbacks from each scanner. Regarding
mutations and callbacks, we use M3 (Custom callbacks) and M4 (Multiple encod-
ings), respectively, whereas for filter evasion, if at least one template has a non
empty character set (from M2), uses multiple encodings (from M4), and adopt
at least one evasion technique (from M5) we conclude that the scanner performs
filter evasion.

As it can be seen, both random mutations and filter-evasion techniques are
widely employed in the scanners that we tested. Nevertheless, these techniques
are ineffective at triggering all the vulnerable entry points. In fact, most of them
yield poor-quality payloads, as detailed in Sect. 5.4. Instead, the use of custom
callbacks over parsing or standard JavaScript functions is not common among
the scanners that we tested.

Fig. 2. Mean M1 (Length) over the templates of each scanner.

256 E. Bazzoli et al.

Recommendations (Payload Quality Ranking). This section answers one
of the question that we stated in the introduction of this paper, which is actually
one of the questions that motivated us to pursue this work: Can we rank [them]
and identify a set of “better” payloads? Although the results of our experiments
can be used to rank the scanners based, for example, on the quality metrics,
unfortunately none of the scanners that we reviewed offer feedback to the ana-
lyst regarding the “quality” of the payloads that successfully triggered vulner-
abilities. Although we can assume that it always possible for an attacker to
send an arbitrarily crafted URL to the victim, certain payloads are more likely
to pass undetected by network- or application-level protections (e.g., ModSecu-
rity), which in case of legacy web applications are the only viable alternative to
patching. Therefore, a successful payload with, say, a small character set, which
adopts filter-evasion techniques while keeping a short length overall, should be
ranked as “high risk”. This additional feedback could be part of the typical
vulnerability-ranking part that some vendors include in their reports.

5.4 Retrofitting Negative Payloads Results

XSS Peeker’s workflow iteratively adds new test cases in our testbed to account
for payloads that triggered no vulnerabilities (i.e., negative payloads). This
section answers one of the questions that we stated in the introduction, that
is: “Is a scanner exercising all the entry points with the expected payloads?”
The expected result was the reduction of the number of negative payloads to
zero. So, we ran all the scanners against the new testbed and analyzed the
results (note that the payloads of Scanner 1 were all already covered by our
initial test case, thus we created no additional cases).

Unfortunately, as Fig. 3(a) shows, scanners failed to detect most of the new
vulnerabilities. The most surprising finding is that the very same scanners that
generated a negative payload would still fail to detect and report the new test
case introduced for it, even if we manually confirmed that all of the negative
payloads do in fact trigger an XSS on their respective new cases.

This may indicate a bugged response-parsing routine (i.e. a functional bug
in the scanner). In other cases, by manually analyzing the requests toward the
new cases, we discovered that some scanners did not exercise the test case with
the “right” payload: a faulty (or random) payload-selection procedure somehow
failed to choose it, using it instead in test cases where it would turn out to be inef-
fective; a different bug class in scanners. Another interesting result is that, after
the introduction of the new cases, some scanners started using payloads we had
not observed before. This behavior suggests some degree of context awareness,
as scanners would only generate this new set of templates after having observed
these new contexts. However, even in this case we observed a staggering high
rate of failures for the new corner cases we added.

These findings would have been very difficult to reveal with a static set
of vulnerabilities, as opposed to the incremental approach that we adopted.
Figure 3 shows the overall results produced by each scanner after including the
new test cases. Although scanners did not achieve the expected results, this

XSS PEEKER: Dissecting the XSS Exploitation Techniques 257

(a) “New” test cases alone. (b) Overall comparison.

Fig. 3. Summary of final results after Phase 4. “New”, “Base” (initial test cases),
“Detected” (true positive), and “Not Detected” (false negative).

process allowed us to greatly increase our coverage of test cases for attacks
supported by the analyzed scanners, and to produce a state of the art testbed
for future work.

Recommendations (Continuous Testing). Although scanner vendors take
testing very seriously, it is not trivial to account for the side-effect caused by
adding new vulnerability cases to the testbed web applications. Adopting a retro-
fitting approach similar to the one that we implemented could be a first step
toward finding corner cases (e.g., exercising a vulnerability with an incorrect
payload) or bugs similar to the ones that we discovered.

6 Conclusions

This vertical study on XSS vulnerability scanners proposes quality metrics of
6 commercial and open-source products through passive reverse engineering of
their testing phases, and manual and automated analysis of their payloads. Fur-
thermore, we created a reusable and publicly available testbed.

By iterating on payloads that triggered no test cases, we were able to notice-
ably improve our test application and draw important conclusions about each
scanner’s inside workings. One of the key results is that, despite having some
kind of awareness about context, all of the tested scanners were found wanting
in terms of selecting the attack payloads and optimizing the number of requests
produced. A significant number of detection failures suggest bugs and instabil-
ity in the detection engines, while the high variance in types and features of
the payloads we inspected makes the case for cooperation in defining common,
efficient and reliable payloads and detection techniques.

258 E. Bazzoli et al.

References

1. Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: automated black-
box web application vulnerability testing. In: IEEE SSP, pp. 332–345, May 2010.
doi:10.1109/SP.2010.27

2. Doupé, A., Cova, M., Vigna, G.: Why johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010.
LNCS, vol. 6201, pp. 111–131. Springer, Heidelberg (2010)

3. Foundstone: Hacme Bank v2.0 (2006). http://www.foundstone.com/us/resources/
proddesc/hacmebank.html

4. Gnarlysec: XSS and ultra short URLs (2010). http://gnarlysec.blogspot.ch/2010/
01/xss-and-ultra-short-urls.html

5. Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., Yang, E.Z.: mXSS attacks:
attacking well-secured web-applications by using innerHTML mutations. In: CCS,
pp. 777–788. ACM (2013)

6. Klein, A.: DOM based cross site scripting or XSS of the third kind (2005). http://
www.webappsec.org/projects/articles/071105.shtml

7. Lekies, S., Stock, B., Johns, M.: 25 million flows later: large-scale detection of
dom-based XSS. In: CCS, pp. 1193–1204. ACM (2013)

8. Maggi, F., Frossi, A., Zanero, S., Stringhini, G., Stone-Gross, B., Kruegel, C.,
Vigna, G.: Two years of short urls internet measurement: Security threats and
countermeasures. In: WWW, pp. 861–872 (2013)

9. Mutton, P.: XSS in confined spaces (2011). http://www.highseverity.com/2011/
06/xss-in-confined-spaces.html

10. Open Web Application Security Project: Top ten (2013). https://www.owasp.org/
index.php/Top 10 2013-Top 10

11. Pitsillidis, A., Levchenko, K., Kreibich, C., Kanich, C., Voelker, G.M., Paxson,
V., Weaver, N., Savage, S.: Botnet judo: fighting spam with itself. In: DNSS, San
Diego, California, USA. The Internet Society, March 2010

12. Samuel, M., Saxena, P., Song, D.: Context-sensitive auto-sanitization in web tem-
plating languages using type qualifiers. In: CCS, pp. 587–600. ACM (2011)

13. Dell SecureWorks: Dell SecureWorks Threat Report for 2012 (2012). http://www.
secureworks.com/cyber-threat-intelligence/threats/2012-threat-reviews

14. Suto, L.: Analyzing the accuracy and time costs of web application securi-
tyscanners (2010). http://www.ntobjectives.com/files/Accuracy and Time Costs
of Web App Scanners.pdf

15. Toews, B.: XSS shortening cheatsheet (2012). http://labs.neohapsis.com/2012/04/
19/xss-shortening-cheatsheet

16. Tudor, J.: Web application vulnerability statistics (2013). http://www.contextis.
com/files/Web Application Vulnerability Statistics - June 2013.pdf

17. Vieira, M., Antunes, N., Madeira, H.: Using web security scanners to detect vul-
nerabilities in web services. In: IEEE/IFIP DSN, pp. 566–571, June 2009

18. IBM X-Force: IBM X-Force 2013 Mid-Year Trend and Risk Report (2013). http://
securityintelligence.com/cyber-attacks-research-reveals-top-tactics-xforce

http://dx.doi.org/10.1109/SP.2010.27
http://www.foundstone.com/us/resources/proddesc/hacmebank.html
http://www.foundstone.com/us/resources/proddesc/hacmebank.html
http://gnarlysec.blogspot.ch/2010/01/xss-and-ultra-short-urls.html
http://gnarlysec.blogspot.ch/2010/01/xss-and-ultra-short-urls.html
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://www.highseverity.com/2011/06/xss-in-confined-spaces.html
http://www.highseverity.com/2011/06/xss-in-confined-spaces.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.secureworks.com/cyber-threat-intelligence/threats/2012-threat-reviews
http://www.secureworks.com/cyber-threat-intelligence/threats/2012-threat-reviews
http://www.ntobjectives.com/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://www.ntobjectives.com/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://labs.neohapsis.com/2012/04/19/xss-shortening-cheatsheet
http://labs.neohapsis.com/2012/04/19/xss-shortening-cheatsheet
http://www.contextis.com/files/Web_Application_Vulnerability_Statistics_-_June_2013.pdf
http://www.contextis.com/files/Web_Application_Vulnerability_Statistics_-_June_2013.pdf
http://securityintelligence.com/cyber-attacks-research-reveals-top-tactics-xforce
http://securityintelligence.com/cyber-attacks-research-reveals-top-tactics-xforce

TPM and Internet of Things

A Utility-Based Reputation Model
for the Internet of Things

Benjamin Aziz1(B), Paul Fremantle1, Rui Wei2, and Alvaro Arenas3

1 School of Computing, University of Portsmouth, Portsmouth, UK
{benjamin.aziz,paul.fremantle}@port.ac.uk

2 Department of Computer and Information Technology, Beijing Jiaotong University,
Beijing, China

12120463@bjtu.edu.cn
3 IE Business School, IE University, Madrid, Spain

alvaro.arenas@ie.edu

Abstract. The MQTT protocol has emerged over the past decade as a
key protocol for a number of low power and lightweight communication
scenarios including machine-to-machine and the Internet of Things. In
this paper we develop a utility-based reputation model for MQTT, where
we can assign a reputation score to participants in a network based on
monitoring their behaviour. We mathematically define the reputation
model using utility functions on participants based on the expected and
perceived behaviour of MQTT clients and servers. We define an architec-
ture for this model, and discuss how this architecture can be implemented
using existing MQTT open source tools, and we demonstrate how exper-
imental results obtained from simulating the architecture compare with
the expected outcome of the theoretical reputation model.

Keywords: Internet of things · Utility reputation · Trust management

1 Introduction

The Internet of Things (IoT) is an area where there is significant growth: both in
the number of devices deployed and the scenarios in which devices are being used.
One of the challenges for the Internet of Things is supporting network protocols
which utilise less energy, lower bandwidth, and support smaller footprint devices.
One such protocol is the MQ Telemetry Transport (MQTT) protocol [15], which
was originally designed to support remote monitoring and Supervisory Control
And Data Acquisition (SCADA) scenarios but has become popular for the IoT.

Another challenge with IoT networks is that small devices may not perform
as well as needed due to a number of factors including: network outages or poor
network performance due to the use of 2G or other low bandwidth networks,
power outages for devices powered by batteries, deliberate vandalism or envi-
ronmental damage for devices placed in public areas, and many other such chal-
lenges. Therefore we identified that a reputation model for devices connecting by
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 261–275, 2016.
DOI: 10.1007/978-3-319-33630-5 18

262 B. Aziz et al.

MQTT would be a useful construct to express consumers’ (applications’) trust
in the behaviour and performance of these devices as well as measure the level of
performance of the server aggregating data from such devices according to some
predefined Service Level Agreement (SLA). In addition, we implemented the
reputation model to demonstrate that it could be used in real MQTT networks.

Our model of reputation is based on the notion of a utility function, which
formally expresses the consumer’s level of satisfaction related to various issues
of interest against which the reputation of some entity is measured. In the case
of MQTT networks, one notable such issue is the Quality of Service (QoS) with
regards to the delivery of messages; whether messages are delivered exactly once,
more than once or at most once to their consumers. The model, inspired by
previous works [6,19], is general enough to be capable of defining the reputation
of client devices and servers at various levels of abstraction based on their level
of performance in relation to the delivery of messages issue of interest.

The paper starts with an overview of the MQTT protocol (Sect. 2). From this,
we then mathematically define the reputation model for MQTT clients and server
(Sect. 3), based on their ability to keep to the requirements of the protocol. We
then outline a system architecture (Sect. 4) for monitoring the MQTT protocol
and thereby being able to calculate the reputation by observing the behaviour
of MQTT clients and server in a real network. We show how this system was
implemented and we demonstrate the results of this implementation (Sect. 5).
Finally we look at related work (Sect. 6) and conclude the paper outlining areas
for further research (Sect. 7).

2 MQTT Overview

MQTT [9] is described as a lightweight broker-based publish/subscribe messag-
ing protocol that was designed to allow devices with small processing power
and storage, such as those which the IoT is composed of, to communicate over
low-bandwidth and unreliable networks. The publish/subscribe message pattern
[10], on which MQTT is based, provides for one-to-many message distribution
with three varieties of delivery semantics, based on the level of QoS expected
from the protocol. In the “at most once” case, messages are delivered with the
best effort of the underlying communication infrastructure, which is usually IP-
based, therefore there is no guarantee that the message will arrive. This protocol
is termed the QoS = 0 protocol. In the second case of “at least once” semantics,
certain mechanisms are incorporated to allow for message duplication. Despite
the guarantee of delivering the message, there is no guarantee that duplicates
will be suppressed. This protocol is also known as the QoS = 1 protocol. Finally,
for the last case of “exactly once” delivery semantics, also known as the QoS
= 2 protocol, the published message is guaranteed to arrive only once at the
subscribers. The protocol also defines message structures needed in communica-
tions between clients, i.e. end-devices responsible for generating data from their
domain (the data source) and servers, which are the system components respon-
sible for collating source data from clients/end-devices and distributing these
data to interested subscribers. Servers are often also referred to as brokers, as
they intermediate between the data publishers and subscribers.

A Utility-Based Reputation Model for the Internet of Things 263

3 A Reputation Model for MQTT

We show in this section how the model of reputation defined for business
processes in [7,8] can be adapted, with minimum changes, to the MQTT protocol
to obtain the reputation of client devices and the server.

3.1 Monitoring Events

Central to the model defined by [7,8] was the notion of an event, which is a signal
produced by an independent monitor system, which is monitoring the interac-
tions occurring between the different entities in the monitored environment, in
this case the client and server entities participating in the MQTT protocol. An
event is defined as follows:

Event : TimeStamp × Ag × Msg × Id × N

where TimeStamp is the timestamp of the event generated by the monitor
system issuing it, Ag is the identity of the agent (client device or server) to
whom the event is related, Msg is the specific message of interest (e.g. Publish
and Pubrel messages), Id is an identity value of the protocol instance and finally,
N is a natural number representing the number of times the message Msg has
been monitored, i.e. was sent.

For example, the following event, issued at monitor system’s local time:

evex1 = (12:09:52, temp sensor ,Publish, 1234, 2)

denotes that the temp sensor device has been monitored, within the instance
number 1234 of the protocol, to have sent twice the Publish message to the server
responsible for collecting environment temperature data. On the other hand, the
following event issued at local time 12:19:02:

evex2 = (12:19:02, temp server ,Publish, 1234, 1)

denotes that the server responsible for the environment temperature,
temp server, has been monitored, within the same instance number 1234 of
the protocol, to have published only once the specific message Publish to the
subscribers of the temperature topic. In both these examples, the assumption is
that the monitor system is capable of detecting that the protocol instance being
monitored has terminated before it issues any events related to that instance.
Although theoretically this is impossible due to the halting problem, in practi-
cal terms, the monitor system can assume the protocol to have terminated after
some reasonable amount of time has elapsed since the last protocol message.

The monitor generates events in the above form, which are used by a repu-
tation engine to determine the reputation values for client devices and servers
in an MQTT-based environment. The reputation engine will then use a util-
ity function pre-supplied to the engine by subscribers to determine the level of
satisfaction of a subscriber with regards to the results reported within an event:

264 B. Aziz et al.

utility : Event × SLA → [0, 1]

∀(t , a,m, i ,n) ∈ Event , sla ∈ SLA • utility((t , a,m, i ,n), sla) = r ∈ R

This utility function will consider a SLA, defined as follows:

SLA : Ag × Top × Iss → N
0

Here the SLA considers an issue of interest to the subscriber, Iss, which will be in
our case the QoS level value fixed to one of 0, 1 or 2, expected from a particular
agent Ag in relation to a specific topic Top. The outcome of the utility function
is a real number r representing the satisfaction level of the subscriber in terms
of both the SLA and the real values reported by events.

For example, consider the following SLA instance

sla = ((temp server , temperature,QoS), 2)

then given the event evex2, the utility function could return the following value:

utility(t,temp server,Publish,1234,1,((temp server,temperature,QoS),2))= 1

This indicates that the subscriber’s requirements have been fulfilled, as indicated
by their SLA (r = 1), with the results reported by the event evex2. On the other
hand, considering the same SLA, the utility function might return:

utility(t,temp server,Publish,1234,0,((temp server,temperature,QoS),2))= 0

to show that the subscriber has a satisfaction value of 0 since the number of
times the message was delivered to the subscriber is lower (i.e. 0) than what
its QoS level is defined in the SLA (i.e. 2), therefore breaching the exactly-once
delivery semantics to the subscriber principle in MQTT.

Since the number of times a message is delivered will either confirm or not to
the level of QoS expected by the subscriber, in all of the above cases, the score
given will reflect either total satisfaction (i.e. 1) or total dissatisfaction (i.e. 0).

3.2 Reputation Models

After introducing the main notions of an event and a utility function, we can now
define models of reputation for the clients (e.g. sensor devices) and the MQTT
server (broker) that aggregates the messages from the clients before publishing
them to the subscribers. The subscribers are assumed to be the business appli-
cations or data consumers, and we do not include them in the reputation model.
The MQTT standard does not prohibit a client from acting as both a device
(i.e. source of data) and a subscriber (i.e. consumer of data). However, in our
case, we only measure the reputation of the “source of data” clients.

A Utility-Based Reputation Model for the Internet of Things 265

The Server Reputation Model. The first reputation model reflects the
behaviour of MQTT servers. Given a set of events, Event, captured by the
monitor system and relevant to the server for whom the reputation is being
calculated, then we can define the server’s reputation function computed at a
particular point in time and parameterised by a specific SLA as follows:

[Srv ,SLA,TimeStamp]
s rep sla : Srv × SLA × TimeStamp → [0, 1]

∀ esets : ℘(Event) •

s rep sla(s, sla, t) =

∑

ev ∈esets .snd(ev) =fst(sla) = s ∧ id top(ev , sla)
ϕ(t,te)utility(ev ,sla)

#esets

where #s denotes the cardinality of a set s and ϕ(t , te) is a time discount function
that puts more importance (emphasis) on events registered closer in time to the
moment of computing the reputation. One definition of ϕ(t , te) could be the time
discount function defined by [13], which we redefine here as ϕ(t , te) = e− t−te

λ ,
where t is the current time at which the reputation is calculated, te is the
timestamp of the event being considered and λ is recency scaling factor used to
adjust the value of the function to a scale required by the application. After this,
the server reputation function, s rep sla, is defined as the weighted average of
the utilities obtained from all the generated events with respect to some SLA.

The above definition aggregates the set of all relevant events, i.e. the events
that first have the same server name as that appearing in the SLA and second
that are on an instance of the protocol related to the topic of the SLA. The first
condition is checked using the two operators fst and snd, which will return the
first and second elements of a tuple, whereas the second condition is checked
using the predicate id top(ev , sla), which returns a True outcome if and only if
the identity number of an instance of a protocol captured by ev corresponds to
the topic value mentioned in the SLA sla. Considering the example events of the
previous section, we would have the following calculation of id top(ev , sla):

id top(12:09:52, temp server ,Publish, 1234, 1, ((temp server , temperature,QoS),
2)) = True

The above definition calculates the sum of the time-discounted utility func-
tion values, with respect to the given SLA and the events gathered, and average
these over the total number of events gathered (#esets) in any one instance
when this reputation value is calculated.

Based on the definition of s rep sla, we next aggregate the reputation of a
server across every SLA that binds that server to its subscribers:

266 B. Aziz et al.

[Srv ,TimeStamp]
s rep : Srv × TimeStamp → [0, 1]

∀ slasets : ℘(SLA) • s rep(s, t) =

∑

sla ∈ slasets .fst(sla) = s
s rep sla(s,sla,t)

#slasets

Which provides a more general indication of how well a server s behaves in
relegation to a number of subscribers. This reputation is again calculated in a
particular point in time, t , however it is straightforward to further generalise
this reputation function over some time range, between t and t ′.

The Client Device Reputation Model. After introducing the reputation
model of the server, we define here the client’s reputation model. Like the server,
a client might also be implementing the QoS correctly, but it requires multiple
reconnections, duplicate messages etc., while the server does not. For instance,
if the devices are not sending PINGs or responding to them, or this is delayed,
it might indicate a problem is more likely to occur in the future. Similarly,
if the device needs to send multiple duplicate messages or needs to be sent
duplicate messages, it also might indicate possible failure in the future. Thus,
the reputation model for a client may be based on either the “Keep Alive/PING”
case or the “Client’s Retransmission Procedure” case. However, we start with
the definition of an overall reputation model that generalises these two cases.

Given a set of events, Event, captured by the monitor system relevant to some
client, then we define the client’s reputation function computed at a particular
point in time in a specific process (Keep Alive/PING procedure or retransmission
procedure) and parameterised by a specific SLA as follows:

[Client ,SLA,TimeStamp,Procedure]
c rep sla p : Client × SLA × TimeStamp × Procedure → [0, 1]

∀ psets : ℘(Event) • c rep sla p(c, sla, t , p) =
∑

ev∈psets .snd(ev) =fst(sla) = c ∧ id top(ev,sla)
ϕ(t,te)utility(ev ,sla)

#psets

This definition gathers the set of all related events, i.e. the events that first
have the same client name as that appearing in the SLA and second that are
on an instance of the protocol related to the topic of the SLA. The definition is
parameterised by the client, an SLA, a timestamp and the specific procedure (e.g.
Keep Alive/PING or retransmission). The SLA represents what the expectation
is, from the server’s point of view, of the client’s behaviour in the context of the
specific procedure. Similar to the case of s rep sla, a utility function is applied
to measure the satisfaction of the server, in a time-discounted manner, in relation
to the client’s behaviour and this is then averaged over the total number of events
captured in a specific instance of time.

A Utility-Based Reputation Model for the Internet of Things 267

For example, consider the case of the Keep Alive/PING procedure, then
c rep sla ka is defined as the time-discounted average of the utilities obtained
from all generated events with respect to the Keep Alive/PING procedure.

[Client ,SLA,TimeStamp,KeepAlive]
c rep sla ka : Client × SLA × TimeStamp × KeepAlive → [0, 1]

∀ psets : ℘(Event) • c rep sla ka(c, sla, t , ka) =
∑

ev∈kapingsets .snd(ev) =fst(sla) =c ∧ id top(ev,sla)
ϕ(t,te)utility(ev ,sla)

#kapingsets

In this procedure, the client sends a Pingreq message within each KeepAlive
time period, then the receiver answer with a Pingresp message when it receives
a Pingreq message from the gateway to which it is connected. Clients should use
KeepAlive timer to observe the liveliness of the gateway to check whether they
are connected to broker. If a client does not receive a Pingresp from the gateway
even after multiple retransmissions of the Pingresq message, it fails to connect
with gateway during the Keep Alive period.

Hence, for the above example, using id top to show a set of related events ev
corresponds to the topic value mentioned in the SLA, sla, we would have that:

id top(12 : 09 : 52, client,Pingreq ,False,False, 1234, 1, ((client , temperature,
QoS), 0)) = True

The event evkaping = (12 : 09 : 52, client,Pingreq,False,False, 1234, 1) gen-
erated by the monitor, could reflect a client device that has sent once the
Pingreq message to connect to the gateway within the instance number 1234
of the protocol during the Keep Alive period. Then, given the SLA instance
sla = ((client, temperature,QoS), 0), the client should deliver this Pingreq mes-
sage in relation to a specific topic (in this case temperature) at most once within
each KeepAlive time period, but there is no guarantee the message will arrive.

From the definition of c rep sla p, we generate a more general reputation
for some client in a particular point in time t within a period, Period, as follows:

[Client ,SLA,TimeStamp]
c rep sla : Client × SLA × TimeStamp → [0, 1]

∀ periodsets : ℘(Period) • c reps la(c, sla, t) =
∑

ev∈periodsets .snd(ev) =fst(sla) = c ∧ id top(ev,sla)
c rep sla p(c,sla,t,p)

#periodsets

Giving an example based on the Keep Alive/PING procedure, assume the
KeepAliveTimer is set to 60, then calculating c rep sla(c, sla, t) will give us

268 B. Aziz et al.

the reputation of the client device during the whole Keep Alive period of 60
seconds. In another example, based on the retransmission procedure, we assume
that Nretry is set to 10. Aggregating over the c rep sla(c, sla, t) values yields
reputation in relation to the client’s retransmissions within a 10 time-unit limit.

Finally, based on the definition of c rep sla, we can further generalise the
reputation value over all relevant SLAs for a specific client, c, and in a particular
point in time, t , as follows:

[Client ,SLA]
c rep : Client × SLA → [0, 1]

∀ slasets : ℘(SLA) • c rep(c, t) =

∑

crep(c, t) = sla ∈ slasets .fst(sla) = c
c rep sla(s,sla,t)

#slasets

This definition gives a more general indication of how well the client device
generally behaves in relation to the SLAs it holds with the server (possibly on
behalf of the subscribers dealing with the server). These could include scenarios
where the clients might use the Keep Alive/PING procedure to observe the live-
liness of the gateway to check whether they are connected to a broker. Moreover,
in the case of messages that expect a response, if the reply is not received within
a certain time period, the client will be expected to retransmit this message.

The reputation model of a client in different procedures might cause dif-
ferent failures. Thus, as we demonstrated above the first reputation model,
c rep sla p, will lead to new models with slight variations capturing this variety
of failures. For example, for the case of a client’s retransmission procedure, all
messages that are “unicast” to the gateway and for which a gateway’s response
is expected are supervised by a retry timer Tretry and a retry counter Nretry.
The retry timer Tretry is started by the client when the message is sent and
stopped when the expected gateway’s reply is received. If the client does not
receive the expected gateway’s reply during the Tretry period, it will retransmit
the message. In addition, the client should terminate this procedure after Nretry
number of retransmissions and should assume that it is disconnected from the
gateway. The client should then try to connect to another gateway only if it fails
to re-connect again to the previous gateway.

One such client reputation, is defined based on a specific TRetry timer:

[Client ,SLA,TimeStamp,TRetry]
c reptr sla tr : Client × SLA × TimeStamp × TRetry → [0, 1]

∀ tretrysets : ℘(Event) • c reptr sla tr(c, sla, t , tr) =
∑

ev∈ kapingsets .snd(ev) = fst(sla) = c ∧ id top(ev , sla)
ϕ(t,te)utility(ev ,sla)

#tretrysets

A Utility-Based Reputation Model for the Internet of Things 269

For example, consider the following sla = ((client, temperature,QoS), 1), then
given the event evtretry = (12 : 09 : 52, client,Publish,False,True, 1234, 2), it
could reflect an event in the retransmission procedure. If the client does not
receive a Puback message with QoS level 1 within a time period defined by the
TRetry value, the client may resend the Publish message with the DUP flag set.
When the server receives a duplicate message from the client, it re-publishes the
message to the subscribers, and sends another Puback message.

Similarly, another variation of the client’s reputation function may be based
on the NRetry counter instead:

[Client ,SLA,TimeStamp,NRetry]
c repnr sla nr : Client × SLA × TimeStamp × NRetry → [0, 1]

∀nretrysets : ℘(Event) • c reptr sla tr(c, sla, t ,nr) =
∑

ev ∈ kapingsets .snd(ev) = fst(sla) = c ∧ id top(ev , sla)
ϕ(t,te)utility(ev ,sla)

#nretrysets

Again, for the above definition, for sla = ((client, temperature,QoS), 2), and
given the event evnretry = (12 : 09 : 52, client,Publish,False,False, 1234, 1), it
could indicate that the client should not retransmit again in the retransmission
period due to the fact that QoS is set to 2 (meaning the message is guaranteed
to be delivered exactly-once to the subscribers). In this case, the DUP flag must
be set to False, in order to prevent a retransmission.

4 A Reputation System Architecture for MQTT

Our architecture for a reputation system for an MQTT network is composed of
a reputation monitor and a reputation engine, as shown in Fig. 1.

Fig. 1. The reputation system architecture.

270 B. Aziz et al.

The architecture defines the capabilities of the various components in an
MQTT network. The reputation monitor (also sometimes referred to as the
proxy) will monitor the MQTT interactions that take place among the MQTT
network components, namely the client devices, server and subscribers. Monitor-
ing implies that the reputation monitor will issue events to the reputation engine
whenever these are required after each time it has captured an MQTT commu-
nication relevant to the utility functions predefined by the consumers (possibly
the subscribers). These events could represent aggregations/abstractions of data
collected from such communications, in order to minimise the additional network
traffic created by this process.

Once an event has arrived at the reputation engine, it is either stored for
applying further aggregations/abstractions or it is used immediately to compute
new updates for the various reputation values for the clients and the server. The
calculations are based on the reputation models defined in the previous sections,
and the updates to these reputation values are then stored in a local reputation
database. In our architecture, we only consider the monitoring problem, however,
it is easy to extend this architecture in the future to include a control step, where
the reputation values for different participants are then used to impact/feed back
into the MQTT network communications.

5 Simulation of the Model

We implemented the architecture, described in the previous section, by running
a number of off-the-shelf open source tools. First, we used the Mosquitto tool
[1] as the broker (server). Mosquitto is an open source MQTT broker written in
the C language that implements the MQTT protocol version 3.1. The Mosquitto
project is highly portable and runs on a number of systems, which made it an
effective choice for our experiments.

In order to simulate the client, we used the source code for the Eclipse Paho
MQTT Python client library [2], which comes with Java MQTT client API and
implements versions 3.1 and 3.1.1 of the MQTT protocol. This code provides
a client class, which enables applications to connect to an MQTT broker to
publish messages, receive published messages and to subscribe to topics. It also
provides some helper functions to make publishing one off messages to an MQTT
server very straightforward. Using this library we created a set of programs that
would publish and subscribe to the Mosquitto broker. Finally, to implement the
monitoring function we needed to capture all the traffic between the client and
the server. For this we extended the Paho MQTT test proxy [2], which acts as a
“reverse proxy”, impersonating an MQTT server and sending all the traffic on
to a real broker after capturing the messages. The proxy represents a mediator
between clients and the broker. By extending this proxy we were able to trace
all the packets being sent and received and send monitoring information to our
reputation engine in order to calculate the reputation of the client and broker.

A Utility-Based Reputation Model for the Internet of Things 271

5.1 Results

To begin with, we assume that the network will misbehave with regards to the
messages that are exchanged among the various entities in the system. This mis-
behaviour is modelled as the network dropping some messages according to a
predefined rate (e.g. 0–100 %). There could be other sources of network misbe-
haviour, such as the insertion of new messages and the repetition or modification
of transmitted messages, however, for simplicity, we consider only the suppres-
sion of messages as our example of how the network could misbehave and how
such misbehaviour would affect the reputation of MQTT clients and servers.

In our case, we chose the rate of successful message delivery to be in the range
of 50 % to 100 %, where 50 % means that one message in every two is dropped
by the network, and 100 % means that every message is delivered successfully to
its destination. This latter case is equivalent to the normal behaviour discussed
above. There are a number of tools that can drop network packets selectively.
However, we created a new tool based on the above-mentioned proxy that specif-
ically targets disrupting MQTT flows by dropping MQTT packets. The tool
allowed us to target a percentage of dropped packets and therefore calculate the
reputation under a given percentage of packet loss.

Since our aim is to demonstrate, in general terms, how reputation-based
trust can be obtained in an IoT system such as an MQTT network, and for
simplicity, we opted to consider only one source of misbehaviour, namely message
suppression, without considering the other sources. Despite the fact that such
sources are also interesting, they do not affect the generality of our approach.

5.2 Reputation Results

To compute the reputation value of clients and servers, we collected events related
to the QoS level agreed between the client and the server throughout the 5-minute
measurement window, and used the server and client reputation model proposed
in Sect. 3.2 to calculate their reputation values. The QoS level monitoring is impor-
tant as it is directly related to the issue of message suppression when messages
are communicated over the unreliable network. In the presence of such abnormal
behaviour, the reputation values of the clients and the server are shown in Fig. 2
versus the rate of successful message delivery (0.5 to 1).

From this figure, we note that despite starting at low reputation levels in
line with the low delivery rate of messages, these reputation values will increase
reaching the optimal value of 1 when the rate of delivery of messages is 1. This
optimal case represents the case of normal behaviour when every message is
delivered successfully to its destination.

6 Related Work

Reputation is a general concept widely used in all aspects of knowledge rang-
ing from humanities, arts and social sciences to digital sciences. In computing

272 B. Aziz et al.

Fig. 2. Reputation values for the clients (c rep) and servers (s rep) vs. the rate of
successful message delivery.

systems, reputation is considered as a measure of how trustworthy a system
is. There are two approaches to trust in computer networks: the first involves
a “black and white” approach based on security certificates, policies, etc. For
example, SPINS [17], develops a trusted network. The second approach is prob-
abilistic in nature, where trust is based on reputation, which is defined as a
probability that an agent is trustworthy. In fact, reputation is often seen as
one measure by which trust or distrust can be built based on good or bad past
experiences and observations (direct trust) [14] or based on collected referral
information (indirect trust) [5].

In recent years, the concept of reputation has shown itself to be useful in many
areas of research in computer science, particularly in the context of distributed
and collaborative systems, where interesting issues of trust and security manifest
themselves. Therefore, one encounters several definitions, models and systems of
reputation in distributed computing research (e.g. [12,14,20]).

There is considerable work into reputation and trust for wireless sensor net-
works, much of which is directly relevant to IoT trust and reputation. The
Hermes [22] and E-Hermes [23] systems utilise Bayesian statistical methods to
calculate reputation based on how effectively nodes in a mesh network propagate
messages including the reputation messages. Similarly TRM-IoT [11] evaluates
reputation based on the packet-forwarding trustworthiness of nodes, in this case
using fuzzy logic to provide the evaluation framework. Another similar work is
CORE [16] which again looks at the packet forwarding reputation of nodes.

Our approach differs from the existing research in two regards: firstly, the
existing reputation models for IoT utilise the ability of nodes to operate in
consort as the basis of reputation. While this is important in wireless sensor

A Utility-Based Reputation Model for the Internet of Things 273

networks, there are many IoT applications that do not utilise mesh network
topologies and therefore there is a need for a reputation model that supports
client-server IoT protocols such as MQTT. Secondly, the work we have done
evaluates the reputation of a reliable messaging system based on the number
of retries needed to successfully transmit a message. Although many reputation
models have been based on rates of packet forwarding, the analysis of a reliable
messaging system (like MQTT with QoS >1) is different as messages are always
delivered except in catastrophic circumstances. Therefore we looked at the effort
and retries required to ensure reliable delivery instead. We have not seen any
similar approach to this and consider this the major contribution of the paper.

7 Conclusion

To conclude, we defined in this paper a model of reputation for IoT systems, in
particular, for MQTT networks, which is based on the notion of utility functions.
The model can express the reputation of client and server entities in an MQTT
system at various levels, and in relation to a specific issue of interest, in our case
the QoS level of the delivery of messages in the presence of a lossy network. We
demonstrated that it is possible, using off-the-shelf open source MQTT tools, to
implement an architecture of the reputation system that monitors the MQTT
components, and we showed that the experimental results obtained from running
such a system validate the theoretical model.

Future work will focus on adapting the reputation model and its architecture
and implementation to other IoT standards, e.g. the Advanced Message Queu-
ing Protocol (AMQP) [21], the Extensible Messaging and Presence Protocol
(XMPP) [4], the Constrained Application Protocol (CoAP) [18] and the Sim-
ple/Streaming Text Oriented Messaging Protocol (STOMP) [3]. We also plan to
consider other issues of interest when calculating reputation where satisfaction is
not necessarily a binary decision, for example, the quality of data generated by
client devices and the quality of any filtering, aggregation or analysis functions
the server may apply to such data in order to generate new information to be
delivered to the consumers. Further, we intend to apply Bayesian statistics to
the results to improve the probabilistic calculation of the reputation values.

Some other interesting, though more advanced areas of research, include the
strengthening of the model to be able to cope with malicious forms of client and
server behaviour, for example, collusion across such entities in order to produce
fake reputation values for a targeted victim, and a study on the welfare of IoT
ecosystems based on the different rates of the presence of ill-behaved and well-
behaved entities in the ecosystem, and how variations in the presence ratio of
such entities would lead to a notion of reputation reflecting the wider ecosystem.

274 B. Aziz et al.

References

1. Mosquitto: An open source mqtt v3.1/v3.1.1 broker. http://mosquitto.org/.
Accessed 11 Mar 2016

2. Paho. http://www.eclipse.org/paho/. Accessed 11 Mar 2016
3. STOMP: The Simple Text Oriented Messaging Protocol. https://stomp.github.io.

Accessed 11 Mar 2016
4. XMPP Standards Foundation. http://xmpp.org. Accessed 11 Mar 2016
5. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: HICSS

2000: Proceedings of the 33rd Hawaii International Conference on System Sciences,
vol. 6. IEEE Computer Society, Washington, DC (2000)

6. Arenas, A.E., Aziz, B., Silaghi, G.C.: Reputation management in collaborative
computing systems. Secur. Commun. Netw. 3(6), 546–564 (2010)

7. Aziz, B., Hamilton, G.: Reputation-controlled business process workflows. In: Pro-
ceedings of the 8th International Conference on Availability, Reliability and Secu-
rity, pp. 42–51. IEEE CPS (2013)

8. Aziz, B., Hamilton, G.: Enforcing reputation constraints on business process work-
flows. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 5(1),
101–121 (2014)

9. Banks, A., Gupta, R.: MQTT Version 3.1.1 (2015)
10. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems.

SIGOPS Oper. Syst. Rev. 21(5), 123–138 (1987)
11. Chen, D., Chang, G., Sun, D., Li, J., Jia, J., Wang, X.: Trm-iot: A trust man-

agement model based on fuzzy reputation for internet of things. Comput. Sci. Inf.
Syst. 8(4), 1207–1228 (2011)

12. Fullam, K., Barber, K.: Learning trust strategies in reputation exchange networks.
In: AAMAS 2006: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 1241–1248. ACM Press (2006)

13. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. Auton. Agent. Multi-Agent Syst. 13(2), 119–
154 (2006)

14. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

15. Locke, D.: MQ Telemetry Transport (MQTT) V3.1 Protocol Specification (2010)
16. Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to enforce

node cooperation in mobile ad hoc networks. In: Jerman-Blažič, B., Klobučar, T.
(eds.) Advanced Communications and Multimedia Security. IFIP, vol. 100, pp.
107–121. Springer, Heidelberg (2002)

17. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.E.: Spins: Security protocols
for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

18. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Protocol
(CoAP) draft-ietf-core-coap-18. https://tools.ietf.org/html/draft-ietf-core-coap-
18. Accessed 11 Mar 2016

19. Silaghi, G.C., Arenas, A., Silva, L.: Reputation-based trust management sys-
tems and their applicability to grids. Technical report. TR-0064, Institutes on
Knowledge and Data Management & System Architecture, CoreGRID - Network
of Excellence, February 2007. http://www.coregrid.net/mambo/images/stories/
TechnicalReports/tr-0064.pdf

http://mosquitto.org/
http://www.eclipse.org/paho/
https://stomp.github.io
http://xmpp.org
https://tools.ietf.org/html/draft-ietf-core-coap-18
https://tools.ietf.org/html/draft-ietf-core-coap-18
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0064.pdf
http://www.coregrid.net/mambo/images/stories/TechnicalReports/tr-0064.pdf

A Utility-Based Reputation Model for the Internet of Things 275

20. Silaghi, G.C., Arenas, A., Silva, L.M.: Reputation-based trust management systems
and their applicability to grids. Technical report TR-0064, Institutes on Knowl-
edge and Data Management and System Architecture, CoreGRID - Network of
Excellence, February 2007

21. Vinoski, S.: Advanced message queuing protocol. IEEE Internet Comput. 10(6),
87–89 (2006)

22. Zouridaki, C., Mark, B.L., Hejmo, M., Thomas, R.K.: Hermes: A quantitative trust
establishment framework for reliable data packet delivery in manets. J. Comput.
Secur. 15(1), 3–38 (2007)

23. Zouridaki, C., Mark, B.L., Hejmo, M., Thomas, R.K.: E-hermes: A robust cooper-
ative trust establishment scheme for mobile ad hoc networks. Ad Hoc Netw. 7(6),
1156–1168 (2009)

Advanced Remote Firmware Upgrades
Using TPM 2.0

Andreas Fuchs(B), Christoph Krauß, and Jürgen Repp

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{andreas.fuchs,christoph.krauss,juergen.repp}@sit.fraunhofer.de

Abstract. A central aspect for securing connected embedded systems
are remote firmware upgrades to deal with vulnerabilities discovered after
deployment. In many scenarios, Hardware Security Modules such as the
Trusted Computing Group’s Trusted Platform Module (TPM) 2.0 are
used as a security-anchor in embedded systems. In this paper, we discuss
the benefits of TPM 2.0 for securing embedded systems and present a
concept for advanced remote firmware upgrade of an embedded system
with enforcement of Intellectual Property Rights and Privacy protec-
tion of device-resident data (i.e., data that remains on the device during
the flashing process). This concept utilizes unique features of TPM 2.0.
Furthermore, a prototypical implementation using a hardware TPM 2.0
and the TPM Software Stack 2.0 low-level System API is presented as a
proof-of-concept.

1 Introduction

Information Technology (IT) is one of the main drivers for innovations in our
everyday private and work life. Especially, the use of highly connected embedded
systems is increasingly growing, e.g., to enable new (safety-critical) applications
in areas such as automotive, aerospace, energy, healthcare, manufacturing, or
entertainment. An example is a connected car which communicates with other
cars or the infrastructure to increase traffic safety and efficiency.

However, the increased connectivity (even to the Internet) and physical acces-
sibility of the embedded systems also introduces new threats with regard to IT
security and privacy. Successful attacks may have serious consequences - even to
life and limb of people.

One approach for securing embedded systems is the use of Hardware Security
Modules (HSMs) as a security-anchor. An HSM provides secure storage for cryp-
tographic keys, a secure execution environment for (cryptographic) operations,
and additional mechanisms such as secure boot to ensure the integrity of the
platform. One promising approach is the use of the latest version of the Trusted
Platform Module (TPM) 2.0, an international open standard developed by the
TCG. TPM 2.0 and the corresponding TPM Software Stack (TSS) provide a
high flexibility which is of great value to cost-efficiently secure different types
of embedded systems on the basis of one common standard. TPM and TSS 2.0
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 276–289, 2016.
DOI: 10.1007/978-3-319-33630-5 19

Advanced Remote Firmware Upgrades Using TPM 2.0 277

can be realized in different specialized profiles. For example, the TCG already
specified a TPM 2.0 Automotive Thin Profile [22] which is suitable for small
resource-constrained electronic control units (ECUs) in a car such as an engine
control unit. For more powerful embedded systems, other profiles such as PC
Client might be appropriate. Also the TPM 2.0 itself provides a high flexibility.
In contrast to TPM 1.2, a TPM 2.0 can be realized not only as an additional
hardware chip (which provides high security but also introduces high costs) but
also as a System on Chip (SoC) or Firmware TPM. Thus, one general approach
can be applied to different types of embedded systems.

A central aspect to ensure security is the support for remote firmware
upgrades to deal with vulnerabilities discovered after deployment. A great chal-
lenge for remote upgrades is the protection of device-resident data, i.e., data
that remains on the device during the flashing process. Device-resident data
are usually large data sets which are not changed for the upgrade and contain
intellectual property of the manufacturer or data created on the device dur-
ing operation containing person-related data. It must be ensured that only new
upgrades by the original firmware manufacturer can be installed and downgrade
attacks or attempts to install malicious firmware upgrades are prevented.

In this paper, we first discuss the benefits of integrating TPM / TSS 2.0 in
an embedded system. Next, we present a concept for advanced remote firmware
upgrade of such an embedded system using the TPM 2.0 as a trust anchor for
realizing an enhancement to the classical secure boot. Our concept addition-
ally includes the enforcement of intellectual property rights (IPR) and privacy
protection for device-resident data. As proof-of-concept, we implemented our
concept for an automotive head unit using a hardware TPM 2.0 and the TPM
Software Stack 2.0 low-level System API.

This paper is organized as follows. In Sect. 2, we present background on
TPM / TSS 2.0 and related work. Our concept and prototypical implementation
is presented in Sect. 3. Finally, Sect. 4 concludes the paper.

2 Background and Related Work

In the last years, the security of embedded devices has been intensively inves-
tigated. The attacks on firmware upgrades go back to hacks against consumer
electronics like the Playstation Portable [1] in the mid 2000 s all the way to most
recent attacks against safety critical systems such as automotive ECUs [8,16].

In order to prevent completely arbitrary firmware to run, different vendor
solutions and standards have been implemented. On x86 systems UEFI intro-
duced Secure Boot in 2013 [26]. Gaming consoles include solutions of signed
software since Playstation 2 and XBox 360 [27]. IPhones and Android phones
included Secure Booting features from the beginning [2,3]. Automotive ECUs
provide Secure Boot via SHE and EVITA [9,10,25]. All these basic Secure Boot
schemes, however, target primarily the integrity of the base firmware. The secu-
rity of device-resident data during such firmware upgrade in terms of confiden-
tiality as well as integrity is not targeted by any of these solutions; especially
not the binding of these against trustworthy and fresh basic firmware images.

278 A. Fuchs et al.

In order to provide the security for device-resident data in our proposed
scheme, the functionalities of the Trusted Platform Module (TPM) 2.0 are used.
Alternative solutions such as Intel TXT, TrustZone, Security Fuse Processor, or
Secure Elements [4,6,11], can usually not directly provide these feature without
further extensions. Intel SGX and some GlobalPlatform Trusted Execution Envi-
ronment [7,12] provide similar capabilities, but only for applications running
within the shielded environment, not the Rich Operating System. The means
for retaining the security of the resident data during upgrade needs to be manu-
ally implemented within each application. Alternative HSMs such as TPM 1.2,
SHE or Evita [10,17,25] cannot provide the specific feature that are required
within this proposed concept. Specifically, Enhanced Authorization of TPM 2.0
is required in order to provide the security guarantees for this paper.

2.1 Background on TPM 2.0 and TSS 2.0

The second iteration of the Trusted Platform Module (TPM), namely the TPM
2.0 Library Specification [18] has been released by the Trusted Computing Group
(TCG) in October 2014. It provides a catalog of functionalities that can be
used to build TPMs for different platforms. Since then, a so-called TPM profile
has been released for PC Clients [21] in January 2015, but also a TPM profile
for Automotive Thin [22] in March 2015. In June 2015, the TPM 2.0 was also
approved by ISO as successor to TPM 1.2 in ISO/IEC 11889:2015 [23].

Accompanying the TPM specifications, the TCG has engaged with the spec-
ification of a TPM Software Stack (TSS) 2.0 for this new generation of TPMs.
It consists of multiple Application Programming Interfaces (APIs) for differ-
ent application scenarios. A so-called Feature Level API has been published for
review [19] in November 2014 and is currently still under development. It tar-
gets high-level application in the Desktop and Server domain. For lower-level
applications, such as embedded, the so-called System API specification [24] was
released as a final version in January 2015 in conjunction with the TPM Com-
mand Transmission Interface (TCTI) for IPC module abstraction. The System
API and TCTI were designed such that embedded applications could leverage
on TPM 2.0 functionalities whilst minimizing requirements against the plat-
forms. As such, they can for example be used in heap-less scenarios where only
stack-based memory allocation are possible.

2.2 Difference of TPM 2.0 to TPM 1.2

Compared with TPM 1.2, TPM 2.0 is a complete rewrite. Many of the new
features were not compatible with the data type and function layout of TPM
1.2. The main purpose of TPM 2.0 remained to provide Roots of Trust for
Storage and Reporting. In combination with a Root of Trust for Measurement,
this allows the provisioning of reliable identities, securely stored secrets, and
reporting and enforcement of software integrity. The new features of TPM 2.0
in comparison to TPM 1.2 include:

Advanced Remote Firmware Upgrades Using TPM 2.0 279

– Cryptographic Agility: Whilst TPM 1.2 was restricted to RSA ≤ 2048 bit and
SHA1, TPM 2.0 merely provides placeholders for cryptographic algorithms
that can be filled up with from the TCG’s Algorithm Registry [20]. The PC-
Client TPM Profile for example requires RSA, ECC, SHA1, SHA256 . . .

– Symmetric Algorithms: TPM 1.2 was bound to use RSA for all encryptions.
This was time consuming and inefficient. TPM 2.0 also supports symmetric
cryptography such as AES and HMACs.

– Enhanced Authorization: TPM 1.2 was very limited on authorization mech-
anisms. In general, it used SHA1 hashes of passwords. In addition, some
functions further had the possibility to include bindings to a single set of
PCR values (such as key usage and sealing). With TPM 2.0 the concept of
Enhanced Authorization was included, which allows the forming of arbitrary
policy statements based on a set of policy commands. This provides a high
flexibility requiring multiple factors to be fulfilled but also to allow different
paths for policy fulfillment.

– Non-Volatile Memory: With TPM 2.0 the capabilities of the TPM’s integrated
non-volatile memory (NV-RAM) were enhanced. They can now be used as
counters, bitmaps, and even extended PCRs.

– Many more enhancement were made. A lot of those are outline in [5].

2.3 Platform Configuration Registers

One of the core functionality of TPMs is the capability to store the status of the
software/firmware that was started on a device. In order to do so, each software
component – starting from the pre-BIOS as Root of Trust for Measurement –
calculates a hash of the next component in the boot-chain and sends this hash to
the TPM. These hashes are called configuration measurements and stored within
the TPM’s Platform Configuration Registers (PCRs). For space efficiency, those
measurements are not stored in plain, but as a hash-chain, such that a PCR’s
value represents a hash-chain of the measurements of the boot-chain.

The TPM’s PCRs can be used to report or protect the device’s integrity. The
most well-known case is the concept of Remote Attestation, where a signature
over a selection of PCRs is transferred to a remote entity. This entity can then
determine the current configuration of a device and assess its trustworthiness.
Another use case is local attestation, where certain actions of the TPM – such
as data sealing (cf. Sect. 2.4) – can be restricted to specific device configuration
states via PolicyPCR (cf. Sect. 2.6).

2.4 Data Sealing

The Trusted Platform Module (TPM) 2.0 has the capability for sealing data
similar to the TPM 1.2. The purpose of sealing is to encrypt data with the TPM
and to ensure that only this TPM can unseal the data again. In order to unseal
the data, an authentication secret can be provided or a policy session that follows
the scheme for Enhanced Authorization (cf. Sect. 2.6) can be used.

280 A. Fuchs et al.

2.5 NV-RAM Counters

A TPM comes with an internal non-volatile memory. This memory can be used
to make keys of the TPM persistent but can also be allocated by applications.
The set of TPM2 NV * commands provides ways to allocate memory in so called
NV-Indices and perform read and write operations.

With TPM 2.0 additional classes of NV-Indices were introduced: Extend-
able NV-Indices and NV-Counters. The latter can be used to define strongly
monotonic 64 bit counters that may only be incremented but not directly writ-
ten, reset, or decremented. In order to prevent attackers from merely freeing and
reallocating an NV-counter with a smaller value, any NV-counter is initialized to
the highest value that has ever been present in any NV-counter of the TPM. This
way, decrementation of NV-counter is always prevented. One of the main pur-
poses of NV-counters is the use in Enhanced Authorization via TPM2 PolicyNV
against a maximal value.

2.6 Enhanced Authorization

With TPM 2.0 a new concept for authorizing functions of objects was introduced
under the name Enhanced Authorization. Any object that requires authorization
can either be authorized using a secret value assigned during creation (similar
to TPM 1.2) or using a policy following this scheme.

Enhanced Authorization consists of a set of policy elements that are each
represented via a TPM command. Currently, eighteen different policy elements
exist that can be concatenated to achieve a logical and in arbitrary order
and unlimited number. Two of these policy elements – PolicyOr and Policy
Authorize – act as logical or. Due to implementation requirements, policy state-
ment are, however, neither commutative nor distributive. Once defined they need
to be used in the exact same order. In this paper, we use the following notation:

Policyabc := PolicyX1() ∧ PolicyX2() ∧ . . . PolicyXn()

where Policyabc is the “name” for this policy, such that it can be referred to
from other places and PolicyXi() describes the n concatenated TPM2 Policy
commands that are required to fulfill this policy.

Out of the eighteen currently defined Policy commands of the TPM 2.0
library specification, the following four policies are utilized in our concept
described in Sect. 3. They are now explained in more detail.

TPM2 PolicyOr. The PolicyOr element allows the definition of logical or of
up to eight policy branches. Each of these policy branches itself can be an arbi-
trary combination of policy elements of unlimited length. In order to satisfy
a PolicyOr, one of the branches needs to be satisfied before calling the Poli-
cyOr command. To add further branches, multiple PolicyOr elements can be
combined. In this paper, we represent a PolicyOr as

Policyabc := PolicyOr([Branch1] ∨ [Branch2] ∨ . . .)

Advanced Remote Firmware Upgrades Using TPM 2.0 281

TPM2 Policy Authorize. PolicyAuthorize allows the activation of policies
after the definition of an object. In order to achieve this, a public key Kpub is
registered with a policy. This policy element then acts as a placeholder for any
other policy branch that is signed with the corresponding private key Kpriv.
In order to satisfy such a policy, a branch needs to be satisfied first, and then
PolicyAuthorize is called with the cryptographic signature that authorizes this
branch as allowed. If such a signature for the currently satisfied branch can be
provided, then the PolicyAuthorize element is also fulfilled. Logically, a Poli-
cyAuthorize can be viewed as an or for all branches that were signed with the
corresponding private key.

Policyabc := PolicyAuthorize(Kpub
abc)

Authorization1 := Sig(Kpriv
abc , [Branch1])

Authorization2 := Sig(Kpriv
abc , [Branch2])

After signatures have been provided for certain branches, we say:

Policyabc := PolicyAuthorize(Kpub
abc ,[Branch1]∨

[Branch2])

TPM2 PolicyPCR. The PolicyPCR element allows functions on an object
inside the TPM to be restricted to a specific combination of PCR values and
thereby software configurations. A similar but less flexible capability also existed
with TPM 1.2 with the keyUsageInfo for keys and digestAtRelease for sealed
data. With TPM 2.0 this capability can now be applied to any authorization
policy. It can further be targeted at certain operations only. In combination with
PolicyOr and PolicyAuthorize it is possible to also authorize several software
versions.

Policyabc := PolicyPCR(SoftwareV ersion)

TPM2 PolicyNV. The PolicyNV element provides the possibility to include
NV-indices into the evaluation of a policy. This can be used to switch between dif-
ferent modes of operation, by selectively enabling and disabling certain branches
of a PolicyOr and PolicyAuthorize. Furthermore, it can be used to invalidate
branches of a PolicyOr and PolicyAuthorize when combined with an NV-counter,
as this paper presents.

Policyabc := PolicyNV (NV index, operation, value)

An example could be the comparison of the NV index NVabc against a maximum
allowed value of 20. If and only if the number stored within this NVabc is smaller
or equal to 20 can this policy element be fulfilled. Otherwise, it would fail.

Policyabc := PolicyNV (NVabc,≤, 20)

282 A. Fuchs et al.

3 Remote Firmware Upgrades Retaining IPR
and Privacy

A Trusted Platform Module 2.0 can be used for a multitude of application cases.
One of those cases is the realization of secure remote firmware upgrades with the
protection of IPR-related data material and privacy sensitive information stored
in device-resident data. The remainder of this paper will focus on this use case.

3.1 Scenario

Firmware upgrades are a necessity of all software based systems to fix bugs
and vulnerabilities. During such a software upgrade, not all data stored on a
device shall be replaced by the incoming firmware upgrade. The two categories
of data not included in a software upgrade are large unchanged data sets and
data created on the device during operation.

The requirements that come along with this is that consecutive software ver-
sions need to have access to this data, whilst it needs to be stored inaccessible
to malicious firmware images. Also this data must become inaccessible to old
versions of the firmware after an upgrade in order to prevent so called “down-
grade attacks”. In a downgrade attack, an attacker installs an outdated version
of the firmware that has known vulnerabilities in order to exploit them. Such
attacks have for example been used for breaking the first generation of PlaySta-
tion Portable. The classic realizations of sealing, as employed by TPM 1.2 [17],
however, is not applicable in these scenarios, because they do not allow the
“updating” of referenced PCR values from the sealed blobs.

Classically, this would have to be done by allowing the updater to “reseal”
the data for the state after upgrading, which requires the upgrade module to be
privileged. Furthermore, it was impossible to disallow usage of the old seal for
accessing the data. With the framework for “Enhanced Authorization” (EA) in
TPM 2.0, it is possible to achieve this use case respecting the circumstances and
requirements outlined above. In the following, the set of requirements is listed,
the concept described, and a prototypical implementation outlined.

3.2 Requirements

The requirements for securing large data sets and personal information during
a firmware upgrade can be summarized as follows:

1. Provide confidentiality of IPR and user data.
2. Only allow original manufacturer firmware to read/write data.
3. Prevent access by old firmware after an upgrade to new firmware.
4. Do not require “privileged mode” such as updaters to unseal the data.

3.3 Concept

Our concept for providing these requirements can be divided into three phases:
Provisioning, Firmware Upgrade, and Firmware Usage.

Advanced Remote Firmware Upgrades Using TPM 2.0 283

Provisioning. After provisioning of the device, the very first thing should be
the definition of an NV index that represents the device’s currently required
minimal firmware version. This has to be done first, in order to ensure that the
NV index is initialized with a value of 0 (read Zero), cf. Sect. 2.5 for details.
This counter is initialized as a single 64 bit unsigned integer value and then
incremented once in order to be readable:

NVV ersion := TPM2 NV DefineSpace(counter)
TPM2 NV Increment(NVV ersion)

The IPR and user data is stored in an encrypted container or partition on
the devices flash that lays outside of the actual firmware binaries. The key to
this encrypted container is then sealed with the TPM to the following policy:

PolicySeal := TPM2 PolicyAuthorize(Kpub
Manu)

This policy allow the manufacturer as the owner of Kpriv
Manu to issue new policies

in the future for accessing the stored data. For the initial firmware of version v1,
the manufacturer will provide the following policy:

Sig
(
Kpriv

Manu,
[
TPM2 PolicyPCR(Firmwarev1)∧
TPM2 PolicyNV (NVV ersion ≤ v1)

])

The PCRs that represent the integer state of Firmwarev1 may be used until
the nv index NVV ersion that represents the currently required minimal version
exceeds the value of v1.

PolicySeal :=TPM2 PolicyAuthorize
(
Kpub

Manu,
[
TPM2 PolicyPCR(Firmwarev1)∧
TPM2 PolicyNV (NVV ersion ≤ v1)

])

Note that the signed policy cannot be part of those components of the
firmware that is measured into the representing PCRs. The reason is that this
would lead to a cyclic relation that cannot be fulfilled.

Firmware Upgrade. Whenever a firmware upgrade is issued by the manu-
facturer, it will be accompanied by a newly signed policy, that (similar to the
original policy) grants access to the encrypted container based on the PCR rep-
resentation of that firmware. This access again is only granted until the NV index
representing the minimum required version exceeds this firmware’s version:

Sig
(
Kpriv

Manu,
[
TPM2 PolicyPCR(Firmwarev2)∧
TPM2 PolicyNV (NVV ersion ≤ v2)

])

284 A. Fuchs et al.

This leads to PolicySeal being:

PolicySeal :=TPM2 PolicyAuthorize
(
Kpub

Manu,
[
TPM2 PolicyPCR(Firmwarev1)∧
TPM2 PolicyNV (NVV ersion ≤ v1)

]

∨[
TPM2 PolicyPCR(Firmwarev2)∧
TPM2 PolicyNV (NVV ersion ≤ v2)

])

During the update process, the updater mode stores the firmware including
its policy on the device’s flash drive. However, it does not require access to the
encrypted container.

A similar concept with TPM 1.2 would have required that the updater mode
would have required access to the encrypted container and to reseal the secret,
or the manufacturer would have to have known the secret and bind it for the new
PCR values. This is one of the main benefits of this TPM 2.0 based approach.

Firmware Runtime. Whenever a legitimate firmware version starts, it can
unseal the necessary data and read/write to these storage areas. In order to
invalidate access by outdated firmware versions, during each start, the firmware
will check the currently stored minimal required firmware version inside the TPM
counter and increment it to its own firmware version. This invalidates the usage
of PolicyAuthorize branches for previous firmware version, since they require a
lower value for the NVV ersion counter. Firmware should only perform this incre-
ment when it successfully completed its self test and started up correctly, since a
recovery of the previous version is impossible afterwards. Instead the issuing of
a new firmware version would be required. Of course a manufacturer may choose
to issue a certain recovery firmware version, or multiple such version by, e.g.,
encoding those as the “odd version” vs. regular firmware as “even versions”.

We write the increment of the NV counter as

TPM2 NV Increment(NVV ersion, v1)

which invalidates any older policies and thereby any outdated firmwares. This
leads to:

PolicySeal :=TPM2 PolicyAuthorize
(
Kpub

Manu,
[
TPM2 PolicyPCR(Firmwarev1)∧
TPM2 PolicyNV (NVV ersion ≤ v1)

])

A similar concept with TPM 1.2 could only have removed the sealed blobs
for older versions from the flash drive, but in case of a readout of the flash from
an earlier state, there would have been no possibility to actually disable these
older policies with the TPM. This is another main benefit of this TPM 2.0 based
approach.

Advanced Remote Firmware Upgrades Using TPM 2.0 285

3.4 Security Considerations

The presented concept relies on the correct cryptographic and functional exe-
cution of a TPM 2.0 implementation for the encryption and correct handling
of the policy tickets respectively. Furthermore, the scheme relies upon a set of
specific assumptions in order to function properly:

– The private ticket signing key of the vendor must be kept confidential.
– The provisioning needs to use the correct ticket public key for verification.
– The scheme does not protect against runtime-attacks against software.

3.5 Prototypical Implementation

The described concept was implemented in a proof-of-concept demonstrator for
a typical automotive Head Unit. An Intel NUC D34010WYK in combination
with Tizen In-Vehicle Infotainment (IVI) [14] using Linux kernel 4.0 was chosen
for this implementation. These 4th generation NUCs are one of first commercial
off-the-shelf (COTS) devices equipped with a TPM 2.0 implementation. Our
demonstrator is shown in Fig. 1.

Fig. 1. TPM 2.0 head unit demonstrator

To protect IPR and privacy sensitive data, the Linux LUKS implementation
(Linux Unified Key Setup) is used to create and to open an encrypted container
for storing this data. The key for the encrypted container in turn is protected
by TPM 2.0’s enhanced authorization mechanisms as described in Sect. 2.6.

For ease of demonstration the representation of firmware versions in the PCR
values was simplified – namely not calculations of the overall firmware hashes.
Instead of measuring the complete firmware at boot and extending a PCR with
this measurement, we measure a single file into the PCR called version file.
A TPM monotonic counter is used to represent the version number.

286 A. Fuchs et al.

Note that the standard Linux Integrity Measurement Architecture (IMA)
[15] could also not be used in practice for this scenario. Due to the event-driven
startup mechanisms under modern Linux systems, the exact order of PCR exten-
sion can vary, which renders them unusable for sealing. Instead, the complete
image would have to be measured from within the initial ramdisk. A future
publication will demonstrate a possible approach based on e.g. [13].

In Algorithms 1 and 4, we assume that the TPM 2.0 equivalent of a Storage
Root Key (SRK) – a TPM Primary Key under the Storage Hierarchy – is
already computed. If the NV counter NV C is already defined, it is used directly.
Otherwise NV C gets defined.

Provisioning. When the device is started for the first time, the following steps
shown in Algorithm1 are executed for provisioning the protected storage. It
consists of the definition of the NV version counter, the instantiation of the
policy, the creation of the LUKS container and the sealing of the LUKS key.

Algorithm 1 (Provisioning)
/* NV Creation */
if not defined(NV C) then

NV C := TPM2 NV DefineSpace(counter)
/* Policy Initialization */
pubkey := TPM2 LoadExternal(pub key manu)
policy := TPM2 PolicyAuthorize(pubkey)
/* LUKS creation */
S := generate random key()
create crypto fs(S)
/* Sealing */
SRK := get srk()
encSRK(S) := TPM2 Create(S, SRK, policy)
save(encSRK(S))

To ease readability, we wrapped some of the details within simplified func-
tion calls. All functions prefixed with TPM2 are equivalent of corresponding
TPM functions. not defined(NV C) will check, whether the NV index has been
defined by performing a TPM2 NV Read and checking the resulting value.
The public key pub key manu of the manufacturer, loaded into the TPM,
is bound to the object S encrypted by SRK via the policy calculateded by
TPM2 PolicyAuthorize. The corresponding private key to pub key manu now
can be used to alter policies necessary for unsealing the encrypted key S.

Firmware Release. Algorithm 2 shows how the manufacturer can produce sig-
natures for new firmware versions with a corresponding TPM 2.0 policy without
using a TPM. The function compute policy calculates the policy based on the
PCR value, after extending a PCR by the firmware digest, and the version of
the firmware. This computation is performed by the manufacturer according to
the TPM2.0 specification. This policy will be signed with the private key of the

Advanced Remote Firmware Upgrades Using TPM 2.0 287

manufacturer. The device later must be able to associate the policy and the
signature with the version to be installed.

Algorithm 2 (Firmware release)
policy(version) := compute policy(digest(version file), version))
signature(version) := sign(policy(version), priv key manu)

Upgrade. Algorithm 3 shows the steps executed to install a new firmware ver-
sion signed by the manufacturer. The new version will be active after the next
reboot (see Algorithm 4). The version of a signed firmware to be installed must be
greater or equal to the current NV counter because this demonstrator should be
able to execute the provisioning process several times and the hardware TPM’s
monotonic counter cannot be decremented again. To be more precise, even if the
counter is undefined by TPM2 NV UndefineSpace it is not possible to reset
the counter to a smaller value because for the next definition the counter will
be initialized to be the largest count held by any NV counter over the lifetime
of the TPM. In practice it would be possible to store the initial policy directly
in the firmware image for version 1.

Algorithm 3 (Upgrade)
version := get latest signed version number()
signature(version) := get signature(version)
policy(version) := get policy(version)
save(version file, version)

In order to perform the simulated upgrade of the firmware binary, we increment
the value encoded within the firmware representing version file.

Runtime. The steps described in Algorithm 4 are executed in the boot process
to mount the encrypted container. They consist of the PCR extension with the
digest of the version file, the satisfaction of the policy, using this policy for
unsealing the container key, the opening of the encrypted container and then
the invalidation of old firmware by incrementing the NV version counter.

Algorithm 4 (Mount encrypted file system)
/* Satisfying the policy */
version := load(version file)
TPM2 PCR Extend(digest(version file))
approved policy := load policy(policy(version))
signature := load signature(signature(version))
pubkey := TPM2 LoadExternal(pub key manu)
ticket := TPM2 V erifySignature(signature, pubkey, approved policy)
session := TPM2 StartPolicySession()
session.TPM2 PolicyPCR(PCR)
session.TPM2 PolicyNV (NV C,<=, version)
policy := TPM2 PolicyAuthorize(pubkey, ticket, approved policy)

288 A. Fuchs et al.

/* Unsealing the container key and mount */
SRK := get srk()
encSRK(S) := load()
TPM2 Load(encSRK(S))
S := TPM2 Unseal(encSRK(S), session)
mount crpyto fs(S)
firmware self test()
/* Invalidate old firmwares */
while TPM2 NV Read(NV C) < version do

TPM2 NV Increment(NV C)

The functions load policy and load signature will load the policy respective the
signature associated by the manufacturer with the version stored in the ver-
sion file. The session.TPM2 Policy function represents an execution of those
policy commands on the TPM, referring to the policy session session. For the
signed approved policy, a ticket derived from this policy and the public key
of the manufacturer is computed by TPM2 V erifySignature, if the signature
verification is successful. The current policy value of the session will be com-
pared with the approved policy and the TPM then validates that the parame-
ters to TPM2 PolicyAuthorize match the values used to generate the ticket.
After the crypto file system is mounted, the device should perform a self test
firmware self test and the NV counter will be incremented until the value
which corresponds to the current firmware version is reached. Thus, the object
encSRK(S) can’t be unsealed by firmware versions less than version, providing
protection against downgrade attacks.

4 Conclusion

In this paper, we discussed the benefits of integrating a TPM 2.0 (and the
corresponding TSS 2.0) as HSM in an embedded system and presented a new
concept for advanced remote firmware upgrades of such an embedded system
while additionally enforcing intellectual property rights (IPR) and privacy pro-
tection for device-resident data. This new approach is only possible by using
new features introduced by TPM 2.0 such as NV-RAM counters and Enhanced
Authorization. Our approach secures device-resident data by ensuring that only
new firmware upgrades of the manufacturer can be installed and downgrade
attacks or attempts to install malicious firmware upgrades are prevented. In our
prototypical implementation for an automotive head unit, we protected device-
resident data of the manufacturer (i.e., navigation maps) and of the car user
(i.e., contacts and preferred navigation destinations) against unauthorized access
before, during, and after an upgrade. Our general concept can be applied in dif-
ferent application scenarios using different TPM and TSS 2.0 profiles.

Advanced Remote Firmware Upgrades Using TPM 2.0 289

References

1. How to Downgrade a PSP. http://www.wikihow.com/Downgrade-a-PSP
2. Android: Verified boot. https://source.android.com/security/verifiedboot/
3. Apple: iOS Security. Technical report Apple, p. 5 (2015)
4. ARM Security Technology: Security technology - building a secure system using

trustzone technology (2009)
5. Challener, D., Arthur, W.: A Practical Guide to TpPM 2.0: Using the Trusted

Platform Module in the New Age of Security. Apress, New York (2015)
6. Freescale: Secure Boot - For QorIQ Communications Processors (2011). http://

cache.freescale.com/files/32bit/doc/white paper/QORIQSECBOOTWP.pdf
7. Global Platforms: Trusted execution environment specifications (2011). http://

www.globalplatform.org/specificationsdevice.asp
8. Greenberg, A., Miller, C., Valasek, C.: Hackers Remotely Kill a Jeep on the High-

way - With Me in It. Wired, San Francisco (2015)
9. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Security

requirements for automotive on-board networks. In: 9th International Conference
on Intelligent Transport Systems Telecommunications (ITST 2009). IEEE (2009)

10. Hersteller Initiative Software (HIS) AK Security: SHE-Secure Hardware Extension,
version 1.1st edn (2009)

11. Intel: Trusted Execution Technology
12. Intel: Software guard extensions programming reference (2014)
13. Corbet, J.: dm-verity. https://lwn.net/Articles/459420/
14. Linux Foundation, Tizen Association: Tizen. https://www.tizen.org/
15. Linux Weekly News: The Integrity Measurement Architecture. https://lwn.net/

Articles/137306/
16. Miller, C., Valasek, C.: A Survey of Remote Automotive Attack Surfaces. Blackhat,

Las Vegas (2014)
17. Trusted Computing Group: TPM Main Specification, Level 2 Version 1.2, Revision

116th edn, March 2011
18. Trusted Computing Group: Trusted PlatformModule Library Specification, Family

2.0, Level 00, Revision 01.16th edn, October 2014
19. Trusted Computing Group: TSS Feature API Specification, Family 2.0, Level 00,

Revision 00.12nd edn, November 2014
20. Trusted Computing Group: Algorithm Registry, revision 01.22nd edn (2015)
21. Trusted Computing Group: PC Client Platform TPM Profile (PTP) Specification,

Family 2.0, Revision 00.43rd edn, January 2015
22. Trusted Computing Group: TCG TpPM 2.0 Library Profile for Automotive-Thin,

version 1.0edn, March 2015
23. Trusted Computing Group: Trusted Computing Group TpPM 2.0 Library Speci-

fication Approved as an ISO/IEC International Standard, June 2015
24. Trusted Computing Group: TSS System Level API and TPM Command Trans-

mission Interface Specification, Family 2.0, Revision 01.00edn, January 2015
25. Weyl, B., Wolf, M., Zweers, F., Gendrullis, T., Idrees, M.S., Roudier, Y., Schweppe,

H., Platzdasch, H., El Khayari, R., Henniger, O., et al.: Secure on-board architec-
ture specification. Evita Deliverable D3.2 3, 2 (2010)

26. Wilkins, R., Richardson, B.: UEFI Secure Boot in Modern Computer Security
Solutions. Technical report, UEFI Forum (2013)

27. van Woudenberg, J.: 20 ways past secure boot. https://www.riscure.com/
documents/10 ways past secure boot v1.0 jvw shakacon.pdf

http://www.wikihow.com/Downgrade-a-PSP
https://source.android.com/security/verifiedboot/
http://cache.freescale.com/files/32bit/doc/white_paper/QORIQSECBOOTWP.pdf
http://cache.freescale.com/files/32bit/doc/white_paper/QORIQSECBOOTWP.pdf
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
https://lwn.net/Articles/459420/
https://www.tizen.org/
https://lwn.net/Articles/137306/
https://lwn.net/Articles/137306/
https://www.riscure.com/documents/10_ways_past_secure_boot_v1.0_jvw_shakacon.pdf
https://www.riscure.com/documents/10_ways_past_secure_boot_v1.0_jvw_shakacon.pdf

Sidechannel Analysis

RegRSA: Using Registers as Buffers to Resist
Memory Disclosure Attacks

Yuan Zhao1,2,3, Jingqiang Lin1,2, Wuqiong Pan1,2(B), Cong Xue1,2,3,
Fangyu Zheng1,2,3, and Ziqiang Ma1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{yzhao,linjq,wqpan,cxue13,fyzheng,zqma13}@is.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Memory disclosure attacks, such as cold-boot attacks and
DMA attacks, allow attackers to access all memory contents, therefore
introduce great threats to plaintext sensitive data in memory. Register-
based and cache-based schemes have been used to implement RSA
securely, at the expense of decreased performance. In this paper, we
propose another concept named register buffer, which makes use of all
available registers as secure data buffer, no matter scalar registers or vec-
tor registers. The plaintext sensitive data only appear in register buffer.
Based on this concept, we finish a security implementation of 2048-bit
RSA called RegRSA, to defeat against memory disclosure attacks. The
1024-bit Montgomery multiplication in RegRSA runs entirely in register
buffer, by performing computations using scalar instructions and regis-
ters, maintaining intermediate variables in vector registers. Due to the
size limitation of register buffer, several variables out of Montgomery
multiplications are spilled into memory. RegRSA encrypts these vari-
ables with AES before saving in memory. Furthermore, RegRSA employs
a windowing method and the CRT speed-up to accelerate RSA, and
minimizes the data exchange between registers and memory to reduce
the workload of AES encryption/decryption. The evaluation on Intel
Haswell i7-4770R shows that, the performance of RegRSA achieves a
factor of 0.74 compared to the regular RSA implementation in OpenSSL
and is much greater than PRIME, the existing register-based scheme for
2048-bit RSA. Moreover, RegRSA allows multiple instances to run on a
multi-core CPU simultaneously, which makes it more practical for the
real-world applications.

Keywords: Memory disclosure attack · Register · RSA · Montgomery
multiplication

Y.Zhao—This work was partially supported by National 973 Program under award
No. 2014CB340603 and No. 2013CB338001, and Strategy Pilot Project of Chinese
Academy of Sciences under award No. XDA06010702.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 293–307, 2016.
DOI: 10.1007/978-3-319-33630-5 20

294 Y. Zhao et al.

1 Introduction

RSA [26] is the most prevalent asymmetric cryptographic algorithm. Although
this algorithm is considered computationally secure, the RSA implementations
face various security threats. Memory disclosure attacks, such as cold-boot
attacks [15] and DMA attacks [28], allow attackers to obtain all memory con-
tents, which makes plaintext private keys in memory unsafe. Besides, the sen-
sitive data used or produced during RSA private-key operations, which can be
used to derive the private key, should not appear in memory in plaintext. These
sensitive data shall be stored in some secure storage when they participate in
the private-key computations.

Registers and L1 caches in CPUs dedicated to one core, become the required
secure storage because they are exclusive to the thread currently running on
this CPU core under certain controls [10,11]. L1 caches are much larger than
registers and programmes can be coded in high-level languages. But malicious
binaries running on one CPU core could exploit the last-level cache (LLC) to
flush a L1 cache line of other cores to memory with the hardware cache coher-
ence mechanism. The existing cache-based scheme [11] forces all other cores that
share LLC, into the no-fill cache mode during the cryptographic computations,
and sharply reduces the memory access performance of these cores. Moreover, it
does not support multiple instances on the cores that shares LLC. The advantage
of register-based scheme is that registers are unaffected by other cores, which
builds the possibility of executing multiple instances on a multi-core CPU simul-
taneously. However, the challenge is that registers might be not enough for the
asymmetric cryptographic implementation, which requires (sensitive) data to be
swapped between registers and memory frequently (results in frequent symmet-
ric encryptions before being written into memory and decryptions after being
loaded into registers). So the key point of register-based schemes is to implement
the most frequent function entirely in registers as far as possible.

In order to implement an efficient register-based RSA system against mem-
ory disclosure attacks, we should choose an implementation method of RSA
which has advantages both on speed and storage consuming. Redundant repre-
sentation [14] is the major method for vector-instruction implementations, which
achieves high speed but demands much more storage space. PRIME [10] adopts
redundant representation method. In order to finish register-based RSA imple-
mentation, PRIME has to abandon CRT method and its performance is greatly
degraded. Another vector approach [6] adopts 2-way single instructions to imple-
ment Montgomery multiplication, which consumes less storage than redundant
representation method. But the authors in [6] point out that its speed is lower
than 64-bit scalar implementation. So the register-based scheme adopting 64-bit
scalar instructions is our mainly concerned.

1.1 Contributions

In this paper, we propose an 2048-bit RSA implementation named RegRSA,
resistant to memory disclosure attacks. Our basic idea is to keep all plaintext

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 295

sensitive data only in registers when being used in RSA private-key computa-
tions. The performance of RegRSA is close to the implementation in OpenSSL
and it allows multiple instances to run on a multi-core CPU simultaneously. Our
major contributions are described as follows:

• We propose a concept named register buffer that makes use of all available
registers as secure data buffer. We also summarize the available registers in
newer CPUs and the instructions used to move data between different kinds
of registers.

• We make full use of 704-byte register buffer in Intel Haswell CPU to implement
an 1024-bit Montgomery multiplication running entirely in register buffer, by
performing computations using scalar instructions and registers, maintaining
intermediate variables in vector registers.

• We use a fixed windowing method to speed up Montgomery exponentiation,
and finish a CRT-enabled 2048-bit RSA implementation. The precomputed
table and intermediate variables are encrypted and stored in OS kernel heap
or stack. We present several improvements on using AES-NI [13] to reduce the
cost of AES key expansion for each data block.

1.2 Related Work

Cold-boot attacks and DMA attacks have been explored to access sensitive data
in memory. The first attack exploiting the remanence effect of RAM was reported
in [1]. In 2008, the work in [15] presented an cold-boot attack which recovered
cryptographic keys by freezing the RAM chips. The study in [28] provided an
overview of cold-boot attacks and the proposed counter-measures. DMA attacks
are launched from peripherals through high-speed peripheral ports like PCI [8]
and Firewire [4]. TRESOR-HUNT [3] presented an advanced DMA attack to get
the AES key in privileged registers by compromising the integrity of OS kernel.

In order to resist memory disclosure attacks, register-based and cache-based
schemes are proposed. The register-based schemes employ registers as the secure
storage, such as AESSE [23], Amnesia [27] and TRESOR [24] which keep AES
keys in registers and computed AES using registers only. PRIME [10] is the first
register-based scheme for 2048-bit RSA private-key operations, but its perfor-
mance is greatly degraded. The study in [29] proposed an elliptic curve cryptog-
raphy implementation using CPU registers. On the other hand, the cache-based
schemes employ caches to store sensitive data. FrozenCache [25] exploited CPU
caches to store keys outside RAM. Copker [11] proposed a method to perform
RSA private-key operations within CPU caches. Existing RSA implementations
against memory disclosure attacks including PRIME and Copker, cannot sup-
port simultaneous multiple instances on multi-core CPUs well. Mimosa [12] is
the first work to protect sensitive data using hardware transactional memory,
which essentially stores data in caches; but it requires special CPU hardware
features.

296 Y. Zhao et al.

1.3 Outline

The rest of this paper is organized as follows. Section 2 introduces the available
registers in CPU. Sections 3 and 4 describe the design and the implementation of
RegRSA. In Sect. 5, we evaluate RegRSA in terms of security and performance.
We conclude this paper in Sect. 6.

2 Available Registers in Commodity CPUs

Registers are classified into user-accessible registers and special internal regis-
ters. User-accessible registers can be read or written by CPU instructions, while
internal registers cannot be accessible by instructions. On Intel CPUs, the most
commonly-used x86 platform, instructions include scalar instructions and vector
instructions. Firstly, scalar integer instructions operate on scalar registers, also
called general purpose registers (GPRs); and scalar floating-point instructions
operate on floating-point registers. Secondly, Intel vector instruction sets include
MMX [9], SSE [18] and AVX [21]. The registers for MMX are called MM reg-
isters, which are physically the same registers with floating-point registers. The
registers for SSE are called XMM registers, and the registers for AVX are the
extensions of XMM registers called YMM registers. XMM registers are the low
128-bit of YMM registers. A 64-bit CPU has more registers and every scalar
register is double size. Users on 64-bit OS can manipulate these greater-size reg-
isters. For example, on an Intel Haswell CPU, there are sixteen 64-bit GPRs,
eight 64-bit MM registers and sixteen 256-bit YMM registers. The total space of
these registers is 704-byte. Besides, there are four 64-bit debug registers (DRs)
available if the operating system prohibits debugged applications access these
registers [24].

Table 1. Instructions used to move data between different kinds of registers

GPR MM XMM YMM DR

GPR MOV MOV VMOV/PINR/VPINR - MOV

MM MOV MOV MOVQ2DQ - -

XMM VMOV/PEXTR/VPEXTR MOVDQ2Q MOVDQA/VMOVDQA VINSERTI128 -

YMM - - VEXTRACTI128 VMOVDQA -

DR MOV - - - -

Scalar registers, MM registers and YMM registers can be used as secure stor-
age for sensitive computations. The data in different kinds of registers may be
exchanged frequently. Table 1 summarizes the instructions used to move data
between different kinds of registers. Note that, scalar registers and XMM regis-
ters can exchange data with most other registers, so they could be the hub of
data exchange or keep the most commonly used data. Specifically, instructions
PINR and VPINR insert a 64-bit data item from a scalar register to the partic-
ular location in a XMM register. The difference between PINR and VPINR is

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 297

that, PINR is a legacy instruction that keeps the high 128-bit of the destination
YMM register unchanged, but with performance penalty. VPINR is an new AVX
instruction which will clear the high 128-bit of destination YMM register with
no performance penalty.

3 System Design

In this section, we present the design goals of RegRSA. Then, we propose the
concept of register buffer and describe the architecture of RegRSA on top of
register buffer.

3.1 Design Goals

The target of this work is to design a secure and efficient 2048-bit RSA imple-
mentation as follows.
Security Goal. All the sensitive data including cryptographic keys (AES keys
and RSA private keys) and intermediate variables does not appear in the mem-
ory in the form of plaintext, against cold-boot attacks [15] and other memory
disclosure attacks.
Performance Goal. The speed of RegRSA should be close to regular imple-
mentations, e.g., OpenSSL. Multiple optimization techniques are expected to be
exploited in RegRSA, such as Montgomery multiplication [22], the windowing
method [19] for modular exponentiation, and the CRT speed-up [19].
Assumptions. First, the OS kernel is trustworthy, which means an attacker can
not tamper the OS kernel to launch attacks such as TRESOR-HUNT [3]. Second,
the system initialization before any user-space process is safe for users to input
a password to derive an AES key in privileged debug registers [24]. Finally, the
register features are available in hardware and software platform, that is, CPUs
and the OS are 64-bit, and necessary instruction extensions including AVX,
AES-NI and MULX are ready.

3.2 Register Buffer

Existing register-based schemes [10,24,29] have investigated the usage of reg-
isters for storing sensitive data, but only focused on some registers (not all
available registers). The high-speed implementations of cryptographic algorithms
have explored the cooperation of different kinds of instructions and registers to
accelerate cryptograph computing, but such implementations do not systemati-
cally consider the security of keys.

In this paper, we propose a concept named register buffer, which makes use
of all available registers as secure data buffer, no matter scalar registers or vector
registers. As the registers are used to provide operands and accept results for
certain instructions, register buffer requires the comprehensive cooperation of
different kinds of instructions and registers for efficient computing and secure
storage. As described in Fig. 1, register buffer is divided into two sets of registers:

298 Y. Zhao et al.

Fig. 1. Register buffer

computation-reg and storage-reg. Computation-reg is a set of registers which
provides inputs and receives results for on-going instructions. Storage-reg is a
set of registers for maintaining data unused in the current period. The registers
are ready to be converted between computation-reg and storage-reg depending
on which kind of instructions are being executed. Data are plaintext in register
buffer. When data have to be stored in memory (RAM or caches), they are
encrypted with AES. In brief, register buffer deems that all available registers
are secure storage resources which should be fully utilized for efficiency and
security.

3.3 RegRSA Architecture

From an implementation point of view, RegRSA is divided into three levels: (1)
the modular multiplication level, (2) the modular exponentiation level and (3)
the RSA level. The high level calls the lower level by sending parameters and
receiving results. The architecture and the data transfer between registers and
main memory are depicted in Fig. 2.

In the modular multiplication level, we design and implement an all-
register 1024-bit Montgomery multiplication which computes Montgomery
multiplication by using scalar instructions and registers, maintaining para-
meters in vector registers. In the modular exponentiation level, we apply
the windowing method for 1024-bit Montgomery exponentiation. We com-
pute, encrypt and save precomputed table in the kernel heap, and then load
the precomputed values depending on the exponents and decrypt the val-
ues. Based on the CRT method, we implement 2048-bit RSA by perform-
ing two 1024-bit Montgomery exponentiations. The encrypted Montgomery
exponents are loaded from memory and the results of Montgomery exponen-
tiations are encrypted and swapped between registers and the kernel stack.
In all levels, all the sensitive data in RAM are encrypted with AES and
the AES key is in debug registers. Note that, the major computations,

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 299

Fig. 2. RegRSA architecture

Montgomery multiplication, do not need to exchange data between register and
memory, so the performance degradation from data encryption/decryption and
exchange is not significant.

4 Implementation

In this section, we describe the detailed implementation of RegRSA: in particu-
lar, the assembly codes of RegRSA to gain the complete control of registers, and
the integration of RegRSA into Linux kernel because such implementation must
run in kernel mode otherwise task switching may dump registers into RAM.

4.1 Montgomery Multiplication Implementation

1024-bit Montgomery multiplication [22] performs the computation S = A×B×
R−1 (mod M), R = 21024, 0 � A,B < M < R. Coarsely Integrated Operand
Scanning (CIOS) [20] is an interleaved Montgomery multiplication method with
three 1024-bit inputs A, B, M and one 64-bit input µ (−M−1 mod 264). As
depicted in Fig. 3, we employ scalar registers and scalar instructions to perform
Montgomery multiplication, while keeping three 1024-bit inputs in YMM regis-
ters, 64-bit input in a scalar register and saving the 64-bit intermediate variables
qj (qj = Sj × µ mod 264) in MM registers. We make full use of 704-byte reg-
ister buffer to finish the first all-register 1024-bit Montgomery multiplication
implementation.

According to 64-bit Linux call convention, registers RBX, RBP, RSP, R12,
R13, R14, R15 must be protected, we push these registers except RSP into
stack. Since the left fifteen 64-bit scalar registers are not enough for computing
the whole 1024-bit Montgomery multiplication in one time, we split Montgomery
multiplication into four parts. The first part performs A[0 ∼ 7] × B[0 ∼ 7] +
M [0 ∼ 7]×(q0 ∼ q7), the second part performs A[8 ∼ 15]×B[0 ∼ 7]+M [8 ∼ 15]×

300 Y. Zhao et al.

(q0 ∼ q7), the third part performs A[0 ∼ 7] ×B[8 ∼ 15] +M [0 ∼ 7] × (q8 ∼ q15)
and the fourth part is A[8 ∼ 15] × B[8 ∼ 15] + M [8 ∼ 15] × (q8 ∼ q15). The
j-th round computation of the first part is depicted in Fig. 3. Instruction MULX
[18] is used to perform 64-bit scalar multiplication. The summation variable S
occupies nine scalar registers and is updated in every round, and qj in MM
registers is moved back when needed. Eight MM registers are enough for storing
q0 ∼ q7 or q8 ∼ q15 for eight rounds. Besides, the final subtraction in Montgomery
multiplication is always performed, whether or not S is no less than M , to
eliminate the timing side-channel [7].

4.2 Montgomery Exponentiation Implementation

We use the fixed windowing method [19] to speed up Montgomery exponen-
tiation. The size of window is 6-bit (64 entries). For CRT-enabled RSA, two
different moduli are needed; i.e., for the private-key parameters p and q, two
tables of Cp

k and Cq
k (k = 0, · · · , 63) which share a memory space. At the

beginning of Montgomery exponentiation, we prepare precomputed table: com-
pute and encrypt Cp

2 ∼ Cp
63 (or Cq

2 ∼ Cq
63), save them into kernel memory.

Cp
0, Cp

1 (or Cq
0, Cq

1) are also encrypted and saved in the precomputed table
for the const time of table lookup. Then we get the precomputed value from the
precomputed table to YMM registers depending on the exponent, and decrypt
them using 128-bit AES. Since the maximum size of kernel stack is 8KB which
still has to save struct thread info at the stack bottom, 6-bit precomputed table
which needs 8 KB memory cannot be saved in kernel stack. So we use system
function kmalloc to allocate 8KB memory on the kernel heap for precomputed
table before beginning RegRSA, and use function kfree to free memory after

Fig. 3. First part of our 1024-bit Montgomery multiplication implementation

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 301

finishing RegRSA. We load all entries of the precomputed table in sequence when
we need certain precomputed values.

AES-NI instruction extension [13] is used to implement AES encryp-
tion/decryption and key expansion by hardware. In this study, we present several
improvements on using AES-NI. First, AES-128 and AES-256 only need one 128-
bit temporary register in the key expansion. Second, we derive the round keys
from the last round to the first round which is very useful for AES decryption.
Third, we perform on-the-fly bulk AES encryption/decryption which uses one
round key to process multiple 128-bit data blocks and then the next round key,
which sharply reduces the cost of key expansions for each data block.

4.3 RSA Implementation

We utilize the CRT method and our 1024-bit Montgomery exponentiation imple-
mentation to finish 2048-bit RSA private-key operations. The input parameters
are copied from the user space memory to the kernel space memory, including
the CRT parameters p, Cp, dp, q, Cq, dq, q−1 mod p, and Montgomery parame-
ters R2 mod p, R2 mod q, −p−1 mod 2r, −q−1 mod 2r. The parameters dp, dq,
q−1 mod p, R2 mod p, R2 mod q, −p−1 mod 2r, −q−1 mod 2r are constant for
each private key, while Cp = C mod p and Cq = C mod q which need to be com-
puted on the fly for each ciphertext C. All the above parameters are encrypted
with AES when they are stored in memory. As described in Algorithm 1, the
CRT speed-up requires two 1024-bit Montgomery exponentiations for 2048-bit
RSA. As register buffer is not enough to hold the result of one Montgomery
exponentiation while performing another, we keep the intermediate variables
encrypted in memory.

Algorithm 1. Implementation of 2048-bit RSA Private-key Operation
Input: The CRT parameters p, Cp, dp, q, Cq, dq, q

−1 mod p, and Montgomery para-
meters R2 mod p, R2 mod q, −p−1 mod 2r, −q−1 mod 2r

Output: Plaintext M .
1: Load parameters p, Cp, dp, R

2 mod p, −p−1 mod 2r from RAM to registers and
decrypt them with AES

2: Mp ← Cp
dp mod p

3: Encrypt Mp with AES and save it in RAM
4: Load parameters q, Cq, dq, R2 mod q, −q−1 mod 2r from RAM to registers and

decrypt them with AES
5: Mq ← Cq

dq mod q
6: Encrypt Mq with AES and save it in RAM
7: Load Mp, Mq, q, q

−1 mod p, R2 mod p, −p−1 mod 2r from RAM to registers and
decrypt them with AES

8: M ← Mq + [(Mp − Mq) × (q−1 mod p) mod p] × q
9: return M

302 Y. Zhao et al.

4.4 Integration in Linux Kernel

We integrate RegRSA into Linux kernel to ensure no data in registers would
leak into main memory.

Char module. We integrate RegRSA into a char module and compile this
module into Linux kernel. The module provides an interface for user space with
the system call ioctl. The user processes can use the interface to send the inputs
to RegRSA and receive the results. In kernel space, RegRSA can access privileged
debug registers for AES keys (and all other registers).

Atomicity. Before the execution of RegRSA, kernel preemption is suspended by
calling preempt disable and interrupts are disabled by calling local irq save.
So data in registers will not be written into main memory by context switch dur-
ing the RegRSA computations. Finally, kernel preemption is restored by calling
preempt enable and interrupts are enabled by calling local irq restore. As
non-maskable interrupts (NMIs) cannot be disabled by software settings, we
adopt the solution in Copker [11]. We modify NMI handlers to clear registers
with sensitive data, including scalar registers, MM registers and YMM registers.

4.5 AES Key

AES key is securely produced and maintains safety after OS initialization.

AES key derivation. By utilizing an existing technique in TRESOR [24], we
have patched the linux kernel to let user input a password before any userland
process startup. We assume the password is strong enough to defeat against
brute-force attacks. Moreover, the user can update AES keys by changing the
password after a while.

AES key protection. Also like in TRESOR [24], AES key is stored in
debug registers which cannot be accessed from user space. System functions
ptrace set debugreg and trace get debugreg are patched to ensure the user
process cannot set four debug registers dr0 to dr3 or get their values.

5 Evaluation

In this section, we conduct security analysis on RegRSA, evaluate its perfor-
mance and the impact of RegRSA. In the end, we discuss some further consider-
ations. The system is evaluated on this platform: Intel Haswell i7-4770R CPU,
8GB memory and OS is Ubuntu 14.04 64-bit. We turn off Turbo Boost of Intel
Haswell i7-4770R for stable frequency 3.2GHz, in the performance experiments.

5.1 Security Analysis

Memory Disclosure Attacks. First, we explore the security for the situ-
ation of only one RegRSA running instance on CPU. The input parameters

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 303

are all sensitive data, including CRT parameters and Montgomery parameters,
which are encrypted with AES before passing from user space to kernel space.
AES key is in privileged debug registers, no user process could read or write
these registers. Due to the atomic execution of RegRSA, no data in registers will
leak into main memory by task switch. In the Montgomery multiplication level,
all the intermediate variables are produced and kept in registers. In the Mont-
gomery exponentiation level, the precomputed table is encrypted before stored in
RAM, and the precomputed values are decrypted in XMM registers. In the RSA
level, the results of Montgomery exponentiation are encrypted before stored in
memory and decrypted after reading into registers. All the data in registers are
eliminated before leaving the atomic region. In a word, all the sensitive data in
main memory are encrypted, and the plaintext sensitive data appear in registers
only.

Also, we have done experimental evaluation on RegRSA. We used Kdump to
dump kernel memory while RegRSA was performing RSA private-key operations.
We searched AES keys and RSA private keys in the captured image and found
no matching strings.

When there are multiple instances of RegRSA on several CPU cores, no
matter how many requests received from user space, only one RegRSA instance
is running on a single CPU core in a moment due to the atomic execution. As
each RegRSA instance owns its own variables in kernel stack and heap, RegRSA
can execute multiple instances on different CPU cores which will not interfere
with each other.

Cache-based Timing Side-Channels. RegRSA is resistant to cache-based
timing side channel attacks [2,5,7]. We employ the fixed windowing method in
Montgomery exponentiation and the final subtraction in Montgomery multipli-
cation is always performed, so there is no branch in the execution flow. Thus,
there is no timing side channels in RegRSA based on instruction paths. When
we perform the table-lookup in Montgomery exponentiation, we load the pre-
computed table as a whole. This makes attackers could not learn which entry
RegRSA accesses and deduce the exponents. Therefore, there is no timing side
channels attacks based on data access.

5.2 Performance

Comparison with OpenSSL. We launch different numbers of threads in user
space to send RSA private-key operation requests to RegRSA. Because of simul-
taneous multithreading (SMT), eight threads make RegRSA occupy the CPU
fully. RegRSA is compared with OpenSSL version 1.0.1f, in different concurrent
levels. The numbers of RSA private-key operations per second and the ratios of
the performances between RegRSA and OpenSSL are given in Table 2.

As the number of threads increases, the performance becomes better, either
for RegRSA or OpenSSL. RegRSA achieves at least a factor of 0.74 compared
to the speed of OpenSSL. The efficiency degradation of 26 % is acceptable, to
defeat against memory disclosure attacks.

304 Y. Zhao et al.

Table 2. Comparison with OpenSSL

of Concurrent Threads 1 4 8

RegRSA 637 2537 2638

OpenSSL 858 3308 3571

RegRSA / OpenSSL 0.74 0.77 0.74

Comparison with PRIME. We expect to compare RegRSA with PRIME
[10] on the same platform. Because we do not have the source code of PRIME,
the comparison with PRIME is conducted through OpenSSL – we assume the
OpenSSL in [10] is identical with that in this paper (version 1.0.1f). Table 3
presents the speed ratio of PRIME and RegRSA to OpenSSL, respectively. So we
can see that the efficiency of RegRSA is far beyond PRIME; moreover, RegRSA
can execute 8 instances on quad-core CPUs simultaneously.

5.3 Impact on Concurrent Tasks

As RegRSA disables kernel preemption and interrupts during its running, the
stable of the operating system and the performance of other applications may
be effected. We initiate eight user threads to continuously send RSA private-key
operation requests. Through a period of observation, we see that the operating
system works properly without disruptions, and the response of OS is normal as
well. Then we use the SysBench benchmark to evaluate the performance impact
on concurrent tasks. We run the CPU test of SysBench and execute the test in
four situations. The first is no computing-intensive tasks performing during the
test. The second is same as OS stable test with running eight user threads to send
requests to RegRSA. The third is to start eight threads to perform a “mock”
RegRSA in user space. This mock RegRSA does not disable kernel preemption
and interrupts, and use a fixed value as the AES key – other configurations are
the same as those of RegRSA. The fourth is to perform OpenSSL speed test
for 2048-bit RSA private-key operations in eight threads. Test parameters of
SysBench are 8 threads, 10,000 requests and prime numbers up to 20000. The
test score is the average time for each request.

The results are presented in Table 4. There is no significant difference between
the situations of RegRSA, mock RegRSA and OpenSSL. So disabling kernel
preemption and interrupts in RegRSA does not cause obvious negative effects.

Table 3. Comparison with PRIME

Latency (ms) Speed Ratio

PRIME 21.0 -

OpenSSL [10] 1.8 -

PRIME / OpenSSL [10] - 0.086

RegRSA / OpenSSL 1.0.1f - 0.74

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 305

Table 4. Impact on other applications

Idle RegRSA kernel space Mock RegRSA user space OpenSSL

SysBench (ms) 2.83 5.94 5.87 5.98

5.4 Discussions

SMT. SMT on Intel CPUs also known as Hyper-Threading (HT), which is used
to improve the efficiency of processing units in CPUs. HT provides two hard-
ware threads on each core. Each thread has a separate set of registers that can
be used for RegRSA. So RegRSA can run at most eight instances on a quad-core
HT CPU simultaneously. Two threads on one CPU core will facilitate instruc-
tion pipelining which improves performance of RegRSA slightly; see Table 2 for
details.

Full Memory Encryption. The aim of full memory encryption is to provide
confidentiality of the entire software stack outside the CPU [17]; therefore, mem-
ory disclosure attacks are defeated. However, existing memory encryption suffer
significant performance degradation [16].

Other CPUs. If a CPU possesses multiple registers including scalar registers,
MM registers and YMM registers, and supports AES-NI instruction set and
MULX instruction, it may be a suitable platform for RegRSA. So besides Intel
CPUs, other CPUs like AMD can also be considered. For example, AMD Carrizo
CPUs also support AVX2, MULX and AES-NI, it can be a potential candidate.

6 Conclusion

We propose a concept named register buffer that makes use of all available reg-
isters as secure data buffer, and design and implement 2048-bit RSA named
RegRSA. In RegRSA, all the sensitive data appeared in main memory are
encrypted, and the plaintext data are protected in registers to defeat against
memory disclosure attacks. The evaluation on Intel Haswell i7-4770R showed
that, the performance of RegRSA achieves at least a factor of 0.74 compared
to the RSA implementation of OpenSSL. Moreover, RegRSA supports multiple
instances on multi-core CPUs simultaneously, which makes RegRSA more prac-
tical for the real-world applications against memory disclosure attacks. We will
explore to use two sets of registers of Hyper-Threading for one RSA computation
instance in the future.

References

1. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: 2nd Usenix
Workshop on Electronic Commerce, vol. 2, pp. 1–11 (1996)

2. Bernstein, D.: Cache-timing attacks on AES (2005)

306 Y. Zhao et al.

3. Blass, E.-O., Robertson, W.: TRESOR-HUNT: Attacking CPU-bound encryption.
In: 28th Annual Computer Security Applications Conference, pp. 71–78. ACM
(2012)

4. Böck, B., Austria, S.B.: Firewire-based physical security attacks on windows 7, efs
and bitlocker. Secure Business Austria Research Lab (2009)

5. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: 8th Work-
shop on Cryptographic Hardware and Embedded Systems, pp. 201–215 (2006)

6. Bos, J.W., Montgomery, P.L., Shumow, D., Zaverucha, G.M.: Montgomery mul-
tiplication using vector instructions. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 471–490. Springer, Heidelberg (2014)

7. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

8. Carrier, B.D., Grand, J.: A hardware-based memory acquisition procedure for dig-
ital investigations. Digit. Invest. 1(1), 50–60 (2004)

9. DuLong, C., Gutman, M., Julier, M., et al.: Complete Guide to MMX Technology.
McGraw-Hill Professional, New York (1997)

10. Garmany, B., Müller, T.: PRIME: Private RSA infrastructure for memory-less
encryption. In: Proceedings of the 29th Annual Computer Security Applications
Conference, pp. 149–158. ACM (2013)

11. Guan, L., Lin, J., Luo, B., Jing, J.: Copker: Computing with private keys without
ram. In: 21st ISOC Network and Distributed System Security Symposium (NDSS)
(2014)

12. Guan, L., Lin, J., Luo, B., Jing, J., Wang, J.: Protecting private keys against
memory disclosure attacks using hardware transactional memory. In: 36th IEEE
Symposium on Security and Privacy (Oakland) (2015)

13. Gueron, S.: Intel Advanced Encryption Standard (AES) New Instructions Set
(2010)

14. Gueron, S., Krasnov, V.: Software implementation of modular exponentiation,
using advanced vector instructions architectures. In: Özbudak, F., Rodŕıguez-
Henŕıquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 119–135. Springer, Hei-
delberg (2012)

15. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

16. Henson, M., Taylor, S.: Beyond full disk encryption: Protection on security-
enhanced commodity processors. In: Jacobson, M., Locasto, M., Mohassel, P.,
Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 307–321. Springer, Hei-
delberg (2013)

17. Henson, M., Taylor, S.: Memory encryption: A survey of existing techniques. ACM
Comput. Surv. (CSUR) 46(4), 53 (2014)

18. Intel. Intel 64 and ia-32 architectures software developer’s manual volume 2 (2a,
2b & 2c): Instruction set reference, a-z (2015)

19. Koc, C.K.: High-speed RSA implementation. Technical report, RSA Laboratories
(1994)

20. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing montgomery multi-
plication algorithms. Micro, IEEE 16(3), 26–33 (1996)

21. Lomont, C.: Introduction to intel advanced vector extensions. Intel White Paper
(2011)

22. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks 307

23. Müller, T., Dewald, A., Freiling, F.C.: AESSE: A cold-boot resistant implemen-
tation of AES. In: 3rd European Workshop on System Security, pp. 42–47. ACM
(2010)

24. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: USENIX Security Symposium, p. 17 (2011)

25. Pabel, J.: Frozen cache. Blog (2009). http://frozenchache.blogspot.com
26. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
27. Simmons, P.: Security through amnesia: a software-based solution to the cold boot

attack on disk encryption. In: 27th Annual Computer Security Applications Con-
ference, pp. 73–82. ACM (2011)

28. Wetzels, J.: Hidden in snow, revealed in thaw: Cold boot attacks revisited. arXiv
preprint (2014). arXiv:1408.0725

29. Yang, Y., Guan, Z., Liu, Z., Chen, Z.: Protecting elliptic curve cryptography
against memory disclosure attacks. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M.
(eds.) ICICS 2015. LNCS, vol. 8958, pp. 49–60. Springer, Heidelberg (2015)

http://frozenchache.blogspot.com
http://arxiv.org/abs/1408.0725
http://arXiv.org/abs/1408.0725

Uncertain? No, It’s Very Certain!

Recovering the Key from Guessing
Entropy Enhanced CPA

Changhai Ou1,2, Zhu Wang1(B), Degang Sun1, Xinping Zhou1,2, and Juan Ai1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{ouchanghai,wangzhu,sundegang,zhouxinping,aijuan}@iie.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. It has always been the concern of side channel analysis that
how to recover the key with a probability of about 1.00 under the con-
dition that the number of power traces is very small and the success
rates is very low. In order to recover the key, the attacker has to try
to reduce the guessing entropy to decrease the uncertainty of the key.
Unfortunately, guessing entropy is only a evaluation of attack ability
in most cases. In this paper, we introduce the statistical characteristics
of guessing entropy and propose guessing entropy enhanced CPA (GE-
CPA). Its feasibility is verified in theory and experiment. Experiments on
both AES algorithm implemented on an AT89S52 single chip and power
trace set secmatv1 of DES encryption on the side channel attack stan-
dard evaluation board(SASEBO) from the website DPA contest v1. The
experimental results show that, by only repeating the experiments less
than 30 times, our GE-CPA can effectively recover the key even under
the bad condition that success rate only ranges from 5 % to 8 %. Thus,
the problem is well solved.

Keywords: Guessing entropy · CPA · Guessing entropy enhanced CPA ·
GE-CPA · Side channel · DPA contest v1

1 Introduction

Standaert et al. proposed two evaluation methods success rate and guessing
entropy to evaluate the efficiency of side channel attacks [14]. Souissi et al.
detailed that, on one hand, the first-order success rate denoted the probability
that, given a pool of traces, the attack’s best guess was the correct key; On the
other hand, the guessing entropy measured the position of the correct key in a
list of key hypotheses ranked by a kind of side channel attack [13]. A. Venelli
expressed guessing entropy as the average position of the correct hypothesis in
the sorted hypothesis vector of an attack [16]. The positions of wrong keys are
not taken into consideration.

In short, as well as the concept of entropy firstly proposed by Shannon [12],
which denotes the uncertainty of information, guessing entropy is also used to
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 308–320, 2016.
DOI: 10.1007/978-3-319-33630-5 21

Uncertain? No, It’s Very Certain! 309

denote the uncertainty of information. The higher the guessing entropy, the
greater uncertainty of the key.

1.1 Related Works

There are three main types of applications of the guessing entropy:
Firstly, as well as success rate in [6,11,15,17], guessing entropy is used to

evaluate the efficiency of side channel attacks. In other words, guessing entropy
is used to evaluate the uncertainty of key [4,7,10].

Secondly, as well as entropy, guessing entropy is also used to evaluate the
uncertainty of information. The information here is not limited to the key. For
example, Michael Backes and Boris Köpf proposed a novel approach for quan-
tifying a system’s resistance to unknown message side channel attacks using
guessing entropy [2].

Thirdly, guessing entropy is used to improve the efficiency of side channel
attacks. Nassar et al. proposed an empirical approach named Rank Corrector
(RC) aiming at enhancing most side channel attacks [9]. The main principle of
RC is to detect and discard the false keys hypotheses when analyzing the ranking
evolution. With the increase number of power traces, the correct key will reach
the first position. Martin et al. constructed an extremely efficient algorithm that
accurately computing the rank of a (known) key in the list of all keys [8]. This
approach is tweaked and can be also utilised to enumerate the most likely keys
in a parallel fashion.

However, the above improvements only consider that guessing entropy changes
with the number of power traces used in each repetition. They don’t consider the
relationship between the repetitions and guessing entropy. So, very different from
[8], we make use of the information leaking from the guessing entropy to recover
the key rather than only a kind of evaluation in this paper. Our scheme signifi-
cantly improves the efficiency of CPA.

1.2 Our Contributions

It is difficult to recover the key using in cryptographic device with a probabil-
ity of about 1.00 under the condition that the number of power traces is very
small and the success rate is very low. To solve the problem, we propose guess-
ing entropy enhanced CPA (GE-CPA) in this paper. Its feasibility is proved in
theory and experiment. Experiments on an AT89S52 single chip and the Side
Channel Attack Standard Evaluation Board (SASEBO) show that, our scheme
can effectively recover the key with a probability of about 1.00 even under the
condition that the success rate of traditional CPA is only about 5% to 8%.
Thus, the problem is well solved.

1.3 Organization

This paper is organized as follows. The concept of guessing entropy in side chan-
nel attack is given in Sect. 2. In Sect. 3, we introduce our guessing entropy

310 C. Ou et al.

enhanced CPA (GE-CPA). Then, in Sect. 4, experiments on AES algorithm
implemented on an AT89S52 single chip and power trace set secmatv1 on DES
algorithm implemented on the side channel attack standard evaluation board
(SASEBO) from the website DPA contest V 1 [1] are performed to compare our
GE-CPA with traditional CPA. Finally, we conclude this paper in Sect. 5.

2 Guessing Entropy

Similar to Shannon entropy, guessing entropy (GE) [14] in side channel attacks
also denotes the uncertainty of information. Guessing entropy is defined as the
key position in side channel attack. For example, the attacker performs CPA
on AES and gets 256 correlation coefficients corresponding to guessing key from
0 to 255. Then, the correlation coefficients are sorted in descending order. The
bit length of key corresponding to the same intermediate value is 8. For each
28 possible key in each experiment, if the guessing entropy of guessing key
k

′
(
0 ≤ k

′ ≤ 28 − 1
)

is in the position ν, the guessing entropy is equal to ν.
The guessing entropy, which represents the uncertainly of the key used in

cryptographic device, is widely used to evaluate the efficiency of side channel
attacks.

3 Guessing Entropies Enhanced CPA

In this section ,we will introduce the statistical characteristics of guessing entropy.
Then, we introduce the way to determine the correct key from guessing entropy
enhanced CPA (GE-CPA). The attack flow and the special success rate of our
GE-CPA are also given in this section.

3.1 The Statistical Characteristic of Guessing Entropy

We have shown the guessing entropy defined by Standaert et al. [14] in Sect. 2.
The location i of the correct key s is returned for each experiment. In this paper,
We assume that all keys are likely to be the correct one. However, the correct
key is the most superior one of all possible keys. Thus, different to [14], in order
to select the optimal key, we calculate guessing entropies for all possible keys.
Each guessing key returns a guessing entropy for each repetition. We sort the
guessing entropies in descending order and assign different scores according to
their positions in the guessing vector. For example, small guessing entropies are
given higher scores.

Suppose that the bit length of key corresponding to the same intermediate
value is ξ. For each of 2ξ possible keys in each repetition, if the guessing entropy
of guessing key k

′
(
0 ≤ k

′ ≤ 2ξ − 1
)

is ν, then we define the score of guessing

entropy of k
′
as

Wk′ = 2ξ + 1 − ν. (1)

Uncertain? No, It’s Very Certain! 311

3.2 Determine the Correct Key from Guessing Entropies

Standaert et al. also defined the first order success rate in [14]. A guessing key is
returned in each experiment. If this key is the correct one, then we say that the
attack experiment satisfies the first order success. Similar to their definition, we
define a successful CPA [3] if the correct key s satisfies

s = argmax
k

{Wk} . (2)

Actually, the Eq. (2) is usually satisfied when the guessing entropy of the cor-
rect key is close to 1. That’s to say, if the number of power traces used in our
experiment is n, then the probability

lim
n→∞ Pr[s = argmax

k
{Wk}] = 1. (3)

For each successful repetition, the score of guessing entropy of the correct
key is greater than these of wrong guessing keys. So, guessing entropy can be
used to distinguish the correct key from the wrong ones. This is why guessing
entropy can also contribute to the key recovery.

Let n denote the number of power traces used in each repetition. We define
a function of scores of guessing entropies corresponding to guessing key k

′
on η

repetitions (Exp1, Exp2, · · · , Expγ) as

ψ
(
γ, n, k

′)
= f

(
WExp1

k′ ,WExp2

k′ , · · · ,W
Expγ

k′

)
. (4)

Actually, ψ can be any function of the scores of guessing entropies, such as
multiplication, addition, etc. In this paper, we only use a very simple function

ψ
(
γ, n, k

′)
=

1
η

η∑

i=1

WExpi

k′ . (5)

The limit of function ψ is equal to 2ξ if the guessing key k
′
is correct. However,

if the guessing key is incorrect, the limit of ψ is equal to 2ξ+1
2 . That’s to say, for

each repetition i (1 ≤ i ≤ η), the following formula 6 is satisfied.

lim
γ→∞ ψ (γ, n, s) > lim

γ→∞ ψ (γ, n, δ) δ ∈ {
0, 1, · · · , 2ξ − 1

} \ {s} . (6)

Formula (6) indicates that when the number of power traces we use in each exper-
iment is large enough, the average score of guessing entropies limγ→∞ ψ (γ, n, s)
of correct key s will be the maximum with a limitation of 2ξ. The limits of
scores of guessing entropies of other wrong guessing keys are 2ξ+1

2 . That is why
the correct key falls in the location of largest score. So as to meet the definition
of the first order success rate in [14]. Thus, the feasibility of GE-CPA is well
explained in theory.

312 C. Ou et al.

3.3 Attack Flow

In the above Subsect. 3.2, we show how to recover the key from GE-CPA. Suppose
that we randomly encrypt m plaintexts and acquire m power traces. The number
of repetitions C is set to 0, the array W

[
0 · · · 2ξ − 1

]
saves the scores of guessing

entropies for all possible keys from 0 to 2ξ − 1, and k indicates the number
of power traces added in each repetition. The steps to recover the key using
GE-CPA are as follows:

Step 1: The attacker randomly selects n(n << m) power traces and the corre-
sponding n plaintexts. He then sets the number of repetitions C = C + 1.

Step 2: For each guessing key, he calculates the assumed power consumption
using power model(i.e. Hamming distance model). Then, he calculates the corre-
lation coefficients between the assumed power consumption and the power traces.
All correlation coefficients are returned, which is different from traditional CPA.

Step 3: The attacker sorts the correlation coefficients, determines the score of
guessing entropy for each possible key keyi. Then, he adds them to the array of
scores of guessing entropies W . Actually, Other functions like multiplication can
also be used.

Step 4: The attacker sorts the array W , determines the score of guessing entropy
for each key. If the score of guessing entropy of the correct key is still not the
maximum in W , then, n = n + k. Otherwise, he goes to step 1.

The greater the score of guessing entropy of the correct key, the higher cer-
tainty the key is. The correct key can be recovered with a probability of 1.00
when the score of guessing entropy corresponding to the correct key is equal to
256.

3.4 Success Rate in Guessing Entropy Enhanced CPA

The relationship between different repetitions and guessing entropies has not
been taken into consideration in traditional side channel attacks. They just judge
whether an experiment is successful. Therefore, in the statistics, the success rate
will be close to a fixed value (i.e. 0.50), which not grows with the increase number
of repetitions. In our GE-CPA, we consider the relationship between repetitions
and guessing entropies. When the number of power traces used in each repetition
is sufficient to make the score of guessing entropy corresponding to the correct
key larger than those of wrong keys, the success rate grows with the increase
number of repetitions. Finally, the success rate of GE-CPA is close to 1. Thus,
the success rate of GE-CPA is very different from that of traditional side channel
attacks.

Actually, the number of power traces in each repetition is far from infinity.
The score of guessing entropy of the correct key is just close to a fixed value
larger than 2ξ+1

2 rather than 2ξ after many repetitions if the number of power
traces we use in each repetition is relatively small. That is to say, the score of
guessing entropy corresponding to the correct key will be larger than other ones

Uncertain? No, It’s Very Certain! 313

corresponding to wrong guessing keys. In this case, the correct key can also be
distinguished from the wrong ones.

Suppose that we randomly select τ power traces from a total number of
N and repeat this operation γ times. The average score of guessing entropy
of the correct key is μ

(
μ > 2ξ+1

2

)
. The limits of scores of guessing entropies

corresponding to the wrong guessing keys are 2ξ+1
2 when γ → ∞. Let T

γ,Cτ
N

suc and
T

γ,Cn
N

unsuc denote the number of successful and unsuccessful repetitions respectively,
then

lim
γ→∞ T

γ,Cτ
N

suc = γ. (7)

Then, the success rate φ of our GE-CPA is

φ = lim
γ→∞

T
γ,Cτ

N
suc

T
γ,Cτ

N
suc + T

γ,Cτ
N

unsuc

= 1 (8)

Actually, the variable γ doesn’t need to be infinity, the greater the variable γ is,
the closer to μ the average score of guessing entropy of the correct key will be.
The score of guessing entropy of the correct key is obviously larger than those of
wrong keys after many repetitions. γ is less than 30 when only a small number of
power traces with success rate ranging from 5% to 8% are used. Failure will not
happen if more repetitions are done. This also demonstrates the high efficiency
of our GE-CPA.

4 Experimental Results

4.1 Experiments on AT89S52 Single Chip

Our first experiment is performed on an AT89S52 single chip. The clock fre-
quency of this chip is 12 MHz. The minimum instructions takes 12 clock cycles
for execution. We utilize a Tektronix DPO 7254 oscilloscope, and the sampling
rate is set to 1GS/s. The output of S-box in the first round of AES encryption
is chosen as the attack point. We test the instruction ‘MOV CA,@A + DPTR’,
which treats the value of register A as the offset and treats the address DPTR
of S-box as the base address, then looks up table S-box and writes the result
back to register A (as shown in Fig. 1).

We randomly encrypt 4000 plaintexts and acquire 4000 power traces. Each
power trace contains 5000 time samples. We calculate the correlation coefficients
between each time sample and Hamming weights of the outputs of S-box. We
randomly choose 150 power traces and the corresponding success rate is 93%.
We randomly choose power traces from a total number of 150 and repeat this
operation for 200 times to calculate the success rate and guessing entropy (as
shown in Fig. 2). The success rate ranges from 1% to 61% when 10 ∼ 110 are
used. The corresponding guessing entropies range from 115.9 to 1.35 (as shown
in Fig. 2(b)). When 40, 60, 80 and 100 power traces are used, the success rates
reach 3%, 7.6%, 11% and 16.5%. The corresponding guessing entropies reach
29.5, 12.5, 5.1 and 2.2 respectively.

314 C. Ou et al.

P Key

XOR

State

SBOX

State

ShiftRows

Attack point

MOV A, KEY[i]
MOV R1, PlaintextByte[i]

XRL A, R1

MOVC A, @A+DPTR

LCALL ShiftRows

MixColumns LCALL MixColumns

Fig. 1. The output of S-box in the first round of AES algorithm.

The experimental results of our GE-CPA are shown in Fig. 3. The key even
can be recovered after only 10 repetitions when 40 power traces with a success
rate of 5.5% are used. This also indicates that our GE-CPA can significantly
improve the efficiency of CPA. The average score of guessing entropy of the
correct key is close to 226.5, which is stably larger than these corresponding to
wrong keys. When more power traces are used in each repetition, the guessing
entropy corresponding to correct key decreases, leading to the increase of the
corresponding score of guessing entropy.

The guessing entropies are 29.5, 12.5, 5.1 and 2.2 when 40, 60, 80 and 100
power traces are used respectively. With more repetitions, the average score of
guessing entropy corresponding to the correct key are close to 226.5, 243.5, 250.9

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(a)

Number of power traces

S
uc

ce
ss

 r
at

e

0 20 40 60 80 100
0

20

40

60

80

100

120
(b)

Number of power traces

G
ue

ss
in

g
en

tr
op

y

Fig. 2. Success rate (a) and guessing entropy (b) of CPA on AT89S52.

Uncertain? No, It’s Very Certain! 315

0 50 100 150
0

50

100

150

200

250

300
80 power traces

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

50

100

150

200

250

300
100 power traces

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

50

100

150

200

250

300
40 power traces

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

50

100

150

200

250

300
60 power traces

Number of repetitions

S
co

re
s

of
 G

E

Fig. 3. Score of guessing entropy for each key in different repetitions when 60, 80, 100
and 120 power traces are used in each repetition.

and 253.8 respectively. Other scores of guessing entropies corresponding to wrong
keys are relatively smaller.

The experimental results will be better if a small number of power traces are
randomly selected from a large power trace set in each repetition. However, this
paper tries to solve the problem that how to recover the key with a probability
of about 1.00 under the condition that the number of power traces is small,
and success rates is low. So, we only consider to use a small number of power
traces in our experiment. For example, we use 150 power traces in total in this
experiment. If we randomly select 150 power traces from a total number of 4000
to perform CPA, the success rate is equal to 0.93, which is less than 1.00.

4.2 Experiments on SASEBO

Our second experiment is on DES algorithm implemented on the side channel
attack standard evaluation board (SASEBO). We use the power trace set of
DPA contest v1 provided on the website of DPA contest [1]. 5000 power traces
of power trace set secmatv1 are downloaded. We attack the first S-box with 6
bits input and 4 bits output in the last round of the DES algorithm (as shown
in Fig. 4). We use the 14000th ∼ 16000th time samples in our experiments.

We randomly select 200 power traces from a total number of 5000 and repeat
the operation 200 times. The first order success rate is about 80%. Then, we
randomly select power traces from a total number of 200 to perform CPA. The
success rates range from 1% to 39% when 10 ∼ 140 power traces are used (as
shown in Fig. 5(a)). The corresponding guessing entropies range from 33.6 to

316 C. Ou et al.

Li-1 (32 bit)

XOR
SBOX

Ri-1 (32 bit)

Expansion

XOR

Substitution

Ri (32 bit)Li (32 bit)

48 bit

48 bit

48 bit

32 bit

32 bit

F

(a) (b)

Fig. 4. DES algorithm. (a) shows a round of DES, and (b) shows the S-box of DES.

6.13 (as shown in Fig. 5(b)). When 40, 60, 80 and 100 power traces are used,
the success rates reach 3%, 7.6%, 11% and 16.5% (as shown in Fig. 5(a)). The
corresponding guessing entropies are 25.56, 19.4, 16.1 and 10.8 respectively (as
shown in Fig. 5(b)).

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of power traces

S
uc

ce
ss

 r
at

e

(a)

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

Number of power traces

G
ue

ss
in

g
en

tr
op

y

(b)

Fig. 5. Success rate (a) and Guessing entropy (b) of CPA on SASEBO.

When more power traces are used, the guessing entropy corresponding to
the correct key decreases, leading to the increase of the corresponding score (as
shown in Fig. 6). The score of guessing entropy corresponding to the correct key
becomes the largest one after 5 repetitions when average 60,100 and 120 power
traces are used.

However, in order to obtain a stable success rate, the experiments with aver-
age 60 power traces have better results than that with 80 power traces. This
also indicates, the guessing entropies of the initial several experiments are very
important, which may affect the starting position of success. The score of guess-
ing entropy of the correct key will be greater if more power traces are used

Uncertain? No, It’s Very Certain! 317

after a few repetitions. However, this doesn’t mean the difference of the scores
of guessing entropies between the correct key and wrong keys is better. Because
of the limited number of repetitions, less power traces used in each repetition
may get greater difference.

When 80 power traces are randomly selected, the score of guessing entropy
of the correct key becomes stable in different repetitions (as shown in Fig. 7).
Sometimes, the experiment has a good beginning (as shown in Fig. 7(a)), the
score of guessing entropy of the correct key becomes the maximum after 1 ∼ 6
repetitions. However, it gradually reduce after 7 repetitions. The change is stable
after 26 repetitions. The score of guessing entropy of the correct key is sometimes
small at the beginning of our experiments. However, it becomes the maximum
after many repetitions (as shown in Fig. 7(b)). Regardless of the beginning, the
correct key can finally be distinguished from the wrong ones.

It is worth noting that we use a total number of 200 power traces to compare
the difference of guessing entropies between the correct key and wrong keys.
Actually, when 60 power traces are used in each repetition, our GE-CPA can
recover the key (As shown in Fig. 6). Some power traces may be repeatedly
selected if the total number of power traces is small and the number of repetitions
is large. The effectiveness may be a little worse than randomly selecting power
traces from a large power trace set. In addition, the quality of this power trace
set may affect the experimental results. However, the experimental results are
almost the same if we randomly select 60 power traces from a total number of
120 or 200.

0 50 100 150
0

10

20

30

40

50

60

70
60 power traces

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

10

20

30

40

50

60

70

X: 26
Y: 44.96

80 power traces

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

10

20

30

40

50

60

70
100 power traces

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

10

20

30

40

50

60

70
120 power traces

Number of repetitions

S
co

re
s

of
 G

E

Fig. 6. Scores of guessing entropies for each key in different repetitions when 60, 80,
100 and 120 power traces are used in each repetition.

318 C. Ou et al.

0 50 100 150
0

10

20

30

40

50

60

70
(a)

Number of repetitions

S
co

re
s

of
 G

E

0 50 100 150
0

10

20

30

40

50

60

70

X: 20
Y: 46.7

(b)

Number of repetitions

S
co

re
s

of
 G

E

Fig. 7. Scores of guessing entropies for each key in different repetitions when 80 power
traces are randomly selected in each repetition.

Komano et al. proposed built-in determined sub-key correlation power analy-
sis, 65 power traces are used to recover the key. Which is more efficiency than
our GE-CPA [5]. We also simply compare the efficiency of our guessing entropy
enhanced CPA (GE-CPA) with other enhanced side CPA attacks shown on the
web site of DPA contest v1 [1]. Hideo used 107 power traces by using his advanced
BS-CPA. Yongdae used 119 power traces by using his “CPA with chosen order”.
Daisuke used 120 power traces by using his “Dual round attack by BS-CPA
using improved power model”. The efficiency of those attacks are similar to our
GE-CPA. Benedikt used 329 power traces by using the difference of means on
the last round of DES. Victor used 322 power traces by using his “CPA on the
16th round of the DES selecting the good temporal window”. Other attacks
using more power traces are not deteiledly introduced here. Our GE-CPA is
more efficiency than these attacks.

5 Conclusion

As a common evaluation to evaluate the effectiveness of side channel attacks,
guessing entropy is used to measure the uncertainty of the key. In this paper, we
analyze the statistical characteristics of guessing entropy and propose GE-CPA.
Experiments on AES algorithm implemented on an AT89S52 single chip and
power trace set secmatv1 of DES algorithm implemented on the side channel
attack standard evaluation board (SASEBO) from the website DPA contest v1
show that our scheme can efficiently recover key. Our scheme can significantly
improve the effectiveness of CPA.

Actually, CPA is just a common type of side channel analysis. Guessing
entropy can enhance many other types of side channel analysis like DPA and
template attack, etc. This also indicates the practicability of our scheme.

Acknowledgment. This research is supported by the Nation Natural Science Founda-
tion of China (No. 61372062). The authors would like to thank the anonymous referees
of IFIP SEC 2016 for the suggestions to improve this paper.

Uncertain? No, It’s Very Certain! 319

References

1. Dpa contest. http://www.dpacontest.org/home/
2. Backes, M., Köpf, B.: Formally bounding the side-channel leakage in unknown-

message attacks. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 517–532. Springer, Heidelberg (2008)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012)

5. Komano, Y., Shimizu, H., Kawamura, S.: Bs-cpa: built-in determined sub-key cor-
relation power analysis. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
93(9), 1632–1638 (2010)

6. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 35–54. Springer, Heidelberg (2014)

7. Luo, Q., Fei, Y.: Algorithmic collision analysis for evaluating cryptographic sys-
tems and side-channel attacks. In: IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 75–80. IEEE (2011)

8. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014)

9. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: “Rank Correction”: a new side-
channel approach for secret key recovery. In: Joye, M., Mukhopadhyay, D., Tun-
stall, M. (eds.) InfoSecHiComNet 2011. LNCS, vol. 7011, pp. 128–143. Springer,
Heidelberg (2011)

10. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast coun-
termeasure for aes, secure against 1st and 2nd-order zero-offset scas. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1173–1178.
IEEE (2012)

11. Rivain, M.: On the exact success rate of side channel analysis in the gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 165–183. Springer, Heidelberg (2009)

12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

13. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal
components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang,
D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011)

14. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of side-
channel key recovery attacks. In: Proceedings of the 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques Advances
in Cryptology - EUROCRYPT, pp. 443–461, Cologne, Germany, 26–30 April, 2009

15. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: an empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

http://www.dpacontest.org/home/

320 C. Ou et al.

16. Venelli, A.: Efficient entropy estimation for mutual information analysis using B-
splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron,
D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010)

17. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

Software Security

Advanced or Not? A Comparative Study
of the Use of Anti-debugging and Anti-VM

Techniques in Generic and Targeted Malware

Ping Chen(B), Christophe Huygens, Lieven Desmet, and Wouter Joosen

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{ping.chen,christophe.huygens,

lieven.desmet,wouter.joosen}@cs.kuleuven.be

Abstract. Malware is becoming more and more advanced. As part of
the sophistication, malware typically deploys various anti-debugging and
anti-VM techniques to prevent detection. While defenders use debug-
gers and virtualized environment to analyze malware, malware authors
developed anti-debugging and anti-VM techniques to evade this defense
approach. In this paper, we investigate the use of anti-debugging and
anti-VM techniques in modern malware, and compare their presence in
16,246 generic and 1,037 targeted malware samples (APTs). As part of
this study we found several counter-intuitive trends. In particular, our
study concludes that targeted malware does not use more anti-debugging
and anti-VM techniques than generic malware, although targeted mal-
ware tend to have a lower antivirus detection rate. Moreover, this paper
even identifies a decrease over time of the number of anti-VM techniques
used in APTs and the Winwebsec malware family.

1 Introduction

In recent years, a new category of cyber threats, known as Advanced Persistent
Threat (APT), has drawn increasing attention from the industrial security com-
munity. APTs have several distinguishing characteristics which make them quite
different from traditional threats [7]. For example, APTs target mostly compa-
nies in critical sectors and governmental institutions [11]; the threat actors in
APT attacks are highly-organized and well-resourced group, and can even be
state-sponsored [17], and they use stealthy techniques, stay low and slow to
evade detection.

APT attacks are widely assumed to be more advanced than traditional
attacks, mainly because the threat actors are highly organized, working in a
coordinated way, and are well-resourced, having a full spectrum of attack tech-
niques. However, it is unclear whether the targeted malware (malware used in
APT attacks) are also more advanced than generic malware (malware used in
traditional attacks) or not. To better understand APT attacks, we investigate the
difference between targeted malware and generic malware, in order to answer the

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 323–336, 2016.
DOI: 10.1007/978-3-319-33630-5 22

324 P. Chen et al.

research question: “Is targeted malware more advanced than generic malware?”
In particular, we focus on comparing the usage of anti-debugging and anti-VM
techniques in targeted and generic malware.

To defend against malware, defenders have turned to the collection and analy-
sis of malware as mechanisms to understand malware and facilitate detection of
malware. In response to this, malware authors developed anti-debugging and
anti-VM techniques to avoid being analyzed, hence increasing the difficulty of
detection. In this paper, we use the presence of anti-debugging, the presence of
anti-VM techniques and the antivirus detection rate as metrics to measure the
malware’s ability to evade malware analysis and antivirus products. All three
measurements can be achieved via static analysis on the malware samples.

By analyzing 1,037 targeted malware samples, as well as 16,246 generic mal-
ware samples from 6 different families, we report the usage of anti-debugging and
anti-VM techniques in malware. We then compare the presence measurements
between targeted and generic malware, and correlate them with their antivirus
detection rate, and we examine their evolution over time.

As part of this study we found several counter-intuitive trends. In particular,
our study concludes that targeted malware does not use more anti-debugging and
anti-VM techniques than generic malware. Moreover, this paper even identifies
a decrease over time of the number of anti-VM techniques used in APTs and the
Winwebsec malware family.

The contributions in this paper are as follows:

– We report on the presence of anti-debugging and anti-VM techniques on
17,283 malware samples, and their associated antivirus detection rate (Sect. 4)

– We analyse and discuss the presence of anti-debugging and anti-VM tech-
niques over time (Sect. 5.2)

– We analyse and discuss the correlation between the presence of anti-debugging
and anti-VM techniques and the antivirus detection rate (Sect. 5.3)

2 Overview

2.1 Research Questions

In this paper, we compare the targeted malware and generic malware by inves-
tigating the following research questions:

Q1: Does targeted malware use more anti-debugging techniques?
Q2: Does targeted malware use more anti-VM techniques?
Q3: Does targeted malware have lower antivirus detection rate?

Since APT attacks are more advanced and sophisticated, one might expect
that the targeted malware (the weapons of APT attacks) may use more anti-
debugging and anti-VM techniques to evade defensive analysis, and have lower
antivirus detection rate. We describe the details about these three metrics
in Sect. 3, and present the analysis result on these questions in Sect. 4.

Advanced or Not? A Comparative Study of the Use of Anti-debugging 325

Additionally, we are interested about the evolution of the usage of anti-
debugging and anti-VM techniques, and how does the use of anti-debugging
and anti-VM techniques impact antivirus detection. More specifically, we test
the following hypotheses:

H1a: The use of anti-debugging techniques in malware is increasing over time
H1b: The use of anti-VM techniques in malware is increasing over time
H2a: The use of anti-debugging techniques has negative effect on antivirus

detection
H2b: The use of anti-VM techniques has negative effect on antivirus

detection

While defenders put more and more effort to fight against malware, we
assume malware authors are using more and more anti-debugging and anti-VM
techniques to thwart the defense, in other words, the use of anti-debugging and
anti-VM techniques in malware might increase over years. And the use of these
evasive techniques might help malware to evade some antivirus products. To test
the hypotheses, we present correlation analysis in Sect. 5.

2.2 Dataset

The targeted malware samples used in our study are collected from various pub-
licly available reports on APT attacks [9,14,15,17,19,24]. These reports are pub-
lished by security companies such as FireEye and Kaspersky, to provide technical
analysis over various APT attacks, and they typically include the hashes of the
discovered targeted malware. With the malware hashes, we then use VirusTotal
Private API [2] to search and download these samples.

In this way, we collected 1,037 targeted malware samples ranging from 2009
to 2014. The date information of a malware is extracted from the timestamp
attribute in a PE file. For our comparative study, a dataset of more than 16,000
malware samples that belong to 6 generic malware families was collected from
VirusTotal. For each malware family and each year (from 2009 to 2014), we use
VirusTotal Private API to search for maximum 600 malware samples.

Compared to targeted malware, these malware families are more popular
and well understood in the industry. The number of samples belonging to each
malware family and the corresponding brief description are shown in Table 1.

3 Metrics

In this paper, we use the presence of anti-debugging, the presence of anti-VM
techniques and the antivirus detection rate as metrics to measure the malware’s
ability to evade malware analysis and antivirus products.

We only focus on these three metrics that can be detected through static
analysis. While there are other metrics that can be used to measure the sophis-
tication of malware, such as stealthy network communication, self-deleting exe-
cution, they require executing the malware in a targeted environment. Since it is
difficult to determine the targeted environment for executing malware, we leave
out the dynamic analysis.

326 P. Chen et al.

Table 1. Overview of malware dataset

Malware family Discovered year # of samples Brief description

Sality 2003 2926 general and multi-purpose [5]

Zbot 2007 3131 banking trojan

Winwebsec 2009 2741 rogueware, fake antivirus [6]

Ramnit 2010 2950 information stealer [4]

Zeroaccess 2011 1787 botnet, bitcoin mining [22]

Reveton 2012 1711 ransomware [25]

Targeted (APT) 2009 1037 targeted malware

3.1 Anti-debugging Techniques

In order to thwart debuggers, malware authors use anti-debugging techniques to
detect the presence of debuggers and compromise the debugging process. There
are many anti-debugging techniques, we focus on detecting the anti-debugging
techniques that are known in literature [10]. Since the complete list of anti-
debugging techniques is too verbose, we only show those are detected in our
malware dataset, as shown in Table 2.

The anti-debugging techniques that are found in our study can be catego-
rized into three types. The use of Windows APIs is the easiest way to detect a
debugger. Additionally, malware can check several flags within the PEB (Process
Environment Block) structure and the process’ default heap structure to detect
debuggers. The third way to use some instructions that trigger characteristic
behavior of debuggers (e.g., use RDTSC to measure execution time).

Table 2. Popular anti-debugging techniques

Type Name

Windows APIs IsDebuggerPresent, SetUnhandledExceptionFilter, FindWindow,

CheckRemoteDebuggerPresent, NtSetInformationThread,

NtQueryInformationProcess, GetProcessHeap, GetTickCount,

NtQuerySystemInformation, OutputDebugString, BlockInput,

QueryPerformanceCounter, VirtualProtect, SuspendThread,

WaitForDebugEvent, SwitchDesktop, CreateToolhelp32Snapshot

Flags PEB fields (NtGlobalFlag, BeingDebugged)

Heap fields (ForceFlags, Flags)

Instructions RDTSC, RDPMC, RDMSR, ICEBP, INT3, INT1

To detect these anti-debugging techniques in a malware sample, we first look
for the Windows APIs in the import address table (IAT) of the PE file. Next, we
use IDA [1] to automatically disassemble the sample and generate an assembly
listing file, and then search for the specific instructions in the assembly listing
file to detect the use of flags and instructions. If any of these techniques are
found in the IAT or the assembly listing file, we consider the malware sample
use anti-debugging techniques.

Advanced or Not? A Comparative Study of the Use of Anti-debugging 327

3.2 Anti-VM Techniques

There are mainly three types of VM detection techniques [20,21]: (1) Interaction
based. Sandboxes emulate physical systems, but without a human user. Malware
detects VM by checking common human interactions such as mouse movement
and mouse clicks. (2) Artifacts based. Virtual machines may have unique artifacts
such as service list, registry keys, etc. And some CPU instructions such as SIDT
have characteristic results when executed inside virtual machines. Malware can
leverage these differences to detect sandboxing environment. (3) Timing based.
Due to the large number of file samples to examine, sandboxes typically monitor
files for a few minutes. Malware authors can configure the malware to execute
only after some sleeps, or after a given date and time, in order to avoid being
analyzed. Table 3 shows the anti-VM techniques that are found in our malware
samples. Details about these techniques can be found in [20,21].

Table 3. Popular anti-VM techniques

Type Name

Windows APIs GetCursorPos, Sleep, NtOpenDirectoryObject, NtEnumerateKey

GetSystemFirmwareTable, NtQueryVirtualMemory, NtQueryObject

Instructions SIDT, SLDT, SGDT, STR, IN, SMSW, CPUID

Strings ‘sbiedll.dll’, ‘dbghelp.dll’, ‘vmware’

To detect these anti-VM techniques in a malware sample, we follow the same
method for detecting anti-debugging techniques. Additionally, we extract strings
from a PE file, in order to search for the specific strings. If any of these techniques
are found, we consider the malware sample use anti-VM techniques.

3.3 Antivirus Detection Rate

Since the adoption of AV products, malware authors are consistently trying to
evade them. There are various techniques and tools [18] to build malware that
can bypass common AV products.

In this paper, we use antivirus detection rate as a metric to compare mal-
ware’s ability to bypass AV products. We get the detection results from 56 AV
engines provided in VirusTotal. Since AV engines frequently update their signa-
tures in order to detect malware samples that are not previously spotted by their
engines, the reports in VirusTotal might not reflect the current status of these
AV engines. To compare the AV detection rate of different malware families,
we rescanned all malware samples within two days in December 2014 by using
VirusTotal’s API [2] to get the most recent detection results.

328 P. Chen et al.

4 General Findings

4.1 The Usage of Anti-debugging and Anti-VM Techniques

To answer questions Q1, Q2, we first calculate the percentage of samples that
use anti-debugging and anti-VM techniques for each malware family. As shown
in Table 4, the majority of samples use either anti-debugging or anti-VM tech-
niques. 68.6 % targeted malware samples use anti-debugging techniques, which
is less than most generic malware families, and 84.2 % targeted malware samples
use anti-VM techniques, which is more than all generic malware families. Thus
by simply comparing the percentage of samples in each family, we can see that
anti-debugging techniques are less popular in targeted malware, and anti-VM
techniques are more commonly found in targeted malware.

Table 4. Percentage of samples using anti-debugging/anti-VM techniques in each mal-
ware family

Family % Anti-debug. % Anti-VM Family % Anti-debug. % Anti-VM

Sality 89.6% 76.2% Ramnit 85.8% 71.6%

Zbot 72.9% 39.7% Zeroaccess 41.6% 50.4%

Winwebsec 80.0% 52.9% Reveton 74.8% 62.8%

Targeted (APT) 68.6% 84.2%

We then calculate the average the number of detected anti-debugging/anti-
VM techniques in each family, and compare the average numbers of generic
malware family to targeted malware using Z-test. Z-test is a statistical function
that can be used to compare means of two samples. With a Z value bigger than
2.58 and p-value smaller than 1 %, we can say that the means of two samples
are significantly different.

As shown in Table 5, the average number of detected anti-debugging tech-
niques in targeted malware is neither smallest nor biggest. Since all the Z values
are bigger than 2.58, with p-values smaller than 1 %, we can accept all the
hypotheses that the average number of detected anti-debugging in targeted mal-
ware is significantly different to all generic malware families. In other words,
targeted malware do not necessarily use more anti-debugging techniques than
generic malware. Thus the answer to question Q1 is still negative.

As for the use of anti-VM techniques, it is the same case as the use of anti-
debugging techniques. Targeted malware do not necessarily use more anti-VM
techniques than generic malware. Hence the answer to question Q2 is also neg-
ative. The results can be better illustrated in box plots. As shown in Fig. 1, the
average number of anti-debugging/anti-VM techniques in targeted malware is
less than some generic malware family.

Advanced or Not? A Comparative Study of the Use of Anti-debugging 329

Table 5. Average number of anti-debugging/anti-VM techniques in each family

Malware Family Anti-debugging Anti-VM

of techniques Z value, p-value # of techniques Z value, p-value

Sality 3.59 11.4, 4.17× 10−30 1.25 8.4, 3.60−17

Zbot 2.05 6.2, 6.34× 10−10 0.48 15.9, 5.83−57

Winwebsec 1.75 11.4, 2.63× 10−30 0.71 8.8, 1.06−18

Ramnit 3.76 13.3, 2.57× 10−40 1.30 10.2, 1.57−24

Zeroaccess 0.96 20.3, 2.27× 10−91 0.17 40.0, 0

Reveton 1.78 7.5, 4.89× 10−14 0.48 15.2, 2.45−52

Targeted (APT) 2.57 Not Applicable 0.94 Not Applicable

Fig. 1. Number of detected anti-debugging/anti-VM techniques in each sample in each
family

4.2 Antivirus Detection Rate

To answer question Q3, we calculate the average number of antivirus detections
from 56 AV scanners for each malware family, and then compare the average
numbers of generic malware family to targeted malware using Z-test. As shown
in Table 6, targeted malware has the smallest average number of antivirus detec-
tions. And the Z-test results shows that all the Z values are bigger than 2.58,
with p-value smaller than 1 %. So we accept the hypothesis that targeted mal-
ware has significant lower antivirus detections than generic malware, and the
the answer to question Q3 is positive.

Table 6. Average number of antivirus detections for each malware family

Family # detections Z value, p-value Family # detections Z value, p-value

Sality 45.7 20.2, 1.35× 10−90 Ramnit 49.8 37.8, 0

Zbot 44.6 15.3, 8.49× 10−50 Zeroaccess 47.9 36.0, 3.04−284

Winwebsec 46.7 35.5, 4.39× 10−276 Reveton 44.5 16.5, 1.71−61

APT 39.5 Not Applicable

330 P. Chen et al.

To better illustrate the result, we made a box plot to show the number of
AV engines that detected each sample in each family (in Fig. 2). We can clearly
observe that targeted malware have a lower antivirus detection rate, compared
to generic malware. Figure 2 shows that all box plots have long whiskers (with
the exception of the Reveton malware), which indicates some malware samples
(0.8 %) are only detected by a few antivirus engines (less than 10).

Fig. 2. Number of AV engines that detected each sample in each family

As for the evolution of antivirus detection rate (in Fig. 3), we can observe that
the detection rate tends to decrease over years. This is because malware samples
that have been discovered earlier are well populated in antivirus repositories, and
being analyzed more often than newly discovered malware samples. Compared
to generic malware, targeted malware samples have lower detections for most of
the time. We would expect older malware samples to have high detections, but
there are still about 13 antivirus engines that cannot detect targeted malware
that already discovered in 2009 and 2010.

5 Correlation Analysis

In order to test hypothesis H1a, H1b, H2a, H2b, we use Spearman’s rank
correlation to investigate the evolution of the use of anti-debugging and anti-VM
techniques, and the correlation between the use of anti-debugging (or anti-VM)
techniques and antivirus detection rate.

5.1 Spearman Correlation

Spearman’s rank correlation coefficient is a nonparametric measure of the
monotonicity of the relationship between two variables. It is defined as the

Advanced or Not? A Comparative Study of the Use of Anti-debugging 331

Fig. 3. Evolution of antivirus detection rate

Pearson correlation coefficient between the ranked variables. However, unlike
the Pearson correlation, the Spearman correlation does not assume that both
variables are normally distributed. It is a nonparametric statistic, which do not
rely on assumptions that the dataset is drawn from a given probability distri-
bution. The result of Spearman correlation varies between −1 and +1, and a
positive coefficient implies that as one variable increases, the other variable also
increases and vice versa. When using Spearman correlation to test statistical
dependence, we set the significance level to 5 %. The p-value is calculated using
Student’s t-distribution. We accept the hypothesis only if the p-value is smaller
than the significance level.

5.2 Evolution of the Use of Anti-debugging and Anti-VM
Techniques

To test hypothesis H1a, H1b, we use Spearman correlation to measure the
correlation between the number of anti-debugging/anti-VM techniques found in
malware and the time when the malware is created. The build date of a malware
sample is extracted from the timestamp attribute in the PE file. While the
timestamp attribute might be incorrect, since malware authors can set arbitrary
value for it, there is little incentive for them to do this.

Table 7 shows the Spearman correlation coefficient and p-value for each mal-
ware family. We can observe that there is positive correlation for most malware
families, which implies that malware authors tend to use more and more anti-
debugging techniques over years. The Winwebsec and Zbot family also have a
positive correlation coefficient, but the p-values are bigger than the significance
level, thus we reject the hypothesis for Winwebsec and Zbot family.

While for the use of anti-VM techniques, only four malware families have
a positive correlation coefficient, the others do not show a positive correlation
between the use of anti-VM techniques and build date. The Winwebsec and APT
family have negative correlation coefficients, and the p-values are smaller than

332 P. Chen et al.

the significance level, which implies that the use of anti-VM techniques decreases
over years. We think this decrease may be attributed to the great increase in
the usage of virtualization. Some malware authors are starting to realize that
the presence of a virtual machine does not necessarily mean the malware is
being analyzed, since more and more organizations are adopting virtualization
technology.

Table 7. Spearman correlation between the use of anti-debugging (or anti-VM) tech-
niques and build date

Malware Family anti-debugging vs. time anti-VM vs. time

coefficient p-value coefficient p-value

Sality 0.23 9.1 × 10−38 0.31 1.9 × 10−66

Zbot 0.31 0.08 −0.01 0.39

Winwebsec 0.02 0.36 −0.43 6.7 × 10−129

Ramnit 0.29 6.1 × 10−62 0.26 1.7 × 10−48

Zeroaccess 0.56 4.3 × 10−149 0.52 8.2 × 10−127

Reveton 0.45 2.2 × 10−85 0.54 2.1 × 10−129

Targeted (APT) 0.29 1.1 × 10−20 −0.26 4.6 × 10−16

To better illustrate the evolution of the use of anti-debugging and anti-VM
techniques, we group malware samples by the year in which they are compiled
and then calculate the percentage of samples using anti-debugging (or anti-
VM) techniques in each group. As shown in Figs. 4 and 5, the percentage of
samples using anti-debugging techniques in APT malware tend to go up, while
the percentage of samples using anti-VM techniques decrease over years. The
evolution trends are consistent with the Spearman correlation coefficients in
Table 7.

5.3 Correlation Between the Use of Anti-debugging (or Anti-VM)
Techniques and Antivirus Detection Rate

To test hypothesis H2a, H2b, we use Spearman correlation to measure the cor-
relation between the number of anti-debugging (or anti-VM) techniques found in
malware and the number of positive detections. As shown in Table 8, most mal-
ware families (except the Winwebsec malware) show negative correlation between
the use of anti-debugging techniques and antivirus detection rate, which implies
that the use of anti-debugging techniques might help malware to evade antivirus
products. While for the use of anti-VM techniques, there are four malware fami-
lies having a negative correlation coefficient. The Winwebsec and APT malware
show positive correlation between the use of anti-VM techniques and antivirus
detection rate, this might due to the decreasing use of anti-VM techniques in
both families, as shown in the previous section.

Advanced or Not? A Comparative Study of the Use of Anti-debugging 333

Fig. 4. Evolution of the use of anti-debugging techniques

Fig. 5. Evolution of the use of anti-VM techniques

Table 8. Spearman correlation between the use of anti-debugging (or anti-VM) tech-
niques and antivirus detection rate

Malware Family detection rate vs. anti-debugging detection rate vs. anti-VM

coefficient p-value coefficient p-value

Sality −0.1 8.1 × 10−9 −0.07 5.2 × 10−5

Zbot −0.17 3.3 × 10−22 −0.20 3.8 × 10−30

Winwebsec 0.05 0.004 0.29 3.7 × 10−57

Ramnit −0.13 1.6 × 10−13 0.004 0.80

Zeroaccess −0.63 1.1 × 10−198 −0.61 8.7 × 10−183

Reveton −0.22 7.2 × 10−21 −0.30 3.5 × 10−37

Targeted (APT) −0.26 1.2 × 10−16 0.13 1.6 × 10−5

334 P. Chen et al.

5.4 Summary

We summarize the hypotheses testing results in Table 9. For the use of anti-
debugging techniques, hypothesis H1a and H2a are accepted for targeted
malware and most generic malware (except the Winwebsec and Zbot family),
which indicates that both targeted and generic malware are increasing use anti-
debugging techniques and the use of anti-debugging techniques might help mal-
ware to evade antivirus products.

For the use of anti-VM techniques, we observe two different trends. Some mal-
ware families (Sality, Ramnit, Reveton) accept hypothesis H1b and H2b, while
targeted malware and Winwebsec malware reject hypothesis H1b and H2b.
There are two possible explanation for the decreasing usage of anti-VM tech-
niques in targeted malware and Winwebsec malware: (1) Some targeted machines
are increasingly using virtualization technology, thus malware authors discard
anti-VM techniques in order to target these machines. (2) Malware authors are
using new anti-VM techniques which we cannot detect.

Table 9. Hypotheses testing results with Spearman correlation

Family H1a H1b H2a H2b Family H1a H1b H2a H2b

Sality A A A A Ramnit A R A NA

Zbot NA NA A A Zeroaccess A A A A

Winwebsec NA R R R Reveton A A A A

APT A R A R

A: Accepted, NA: Not Accepted due to a bigger p-value
R: Rejected, the opposite hypothesis is accepted

6 Related Work

APT Attacks. Research on targeted attacks and APTs are mostly from indus-
trial security community. Security service providers (e.g., FireEye, Symantec)
periodically publish technical reports that various APT attacks [9,14,15,17,19,
24]. Recently, this topic also become hot in academia. In [23], Thonnard et al.
conducted an in-depth analysis of 18,580 targeted email attacks, showing that a
targeted attack is typically a long-running campaign highly focusing on a limited
number of organizations. In [16], Le Blond et al. presented an empirical analysis
of targeted attacks against a Non-Governmental Organization (NGO), showing
that social engineering is an important component of targeted attacks.

Giura and Wang [12] introduced an attack pyramid model to model tar-
geted attacks, and implemented a large-scale distributed computing framework
to detect APT attacks. Hutchins et al. [13] proposed a kill chain model to track
targeted attack campaigns and proposed an intelligence-driven strategy to adapt
defense based on the gathered intelligence.

Anti-debugging and Anti-VM in Malware. Chen et. al. developed a
detailed taxonomy for anti-debugging and anti-VM techniques [8], and they also

Advanced or Not? A Comparative Study of the Use of Anti-debugging 335

proposed a novel defensive approach to mislead the attacker, by disguising the
production systems as monitoring systems. A recent survey of the use of anti-
debugging and anti-VM techniques in malware is presented by Branco et. al. [3],
in which they introduced various static detection methods for anti-debugging
and anti-VM techniques, and run an analysis over 4 million samples to show the
state of evasion techniques in use.

7 Conclusion

In this paper, we have analyzed the presence of anti-debugging and anti-VM
techniques in 17,283 malware samples, by using static analysis. As part of this
analysis, we have compared the presence measurements between targeted and
generic malware, we have correlated them with their antivirus detection rate,
and we have examined their evolution over time.

As expected, we have observed that both targeted malware and generic mal-
ware often use anti-debugging and anti-VM techniques. The analysis results also
confirmed the hypotheses that the number of anti-debugging techniques used
tend to increase over years, and that their presence has a negative correlation
with the antivirus detection rate.

At the same time, this study revealed two counter-intuitive trends: (1) The
study concluded that targeted malware does not use more anti-debugging and
anti-VM techniques than generic malware, whereas targeted malware tend to
have a lower antivirus detection rate; (2) This paper identified a decrease over
time of the number of anti-VM techniques used in APTs and the winwebsec
malware family. This conflicts with the original hypothesis that APTs try to
evade analysis and detection by using anti-VM techniques, and strongly contrasts
with other malware families where the opposite trend holds.

Acknowledgements. We would like to thank VirusTotal for providing us a private
API, and the anonymous reviewers for their comments. This research is partially funded
by the Research Fund KU Leuven, iMinds, IWT, and by the EU FP7 projects WebSand,
NESSoS and STREWS. With the financial support from the Prevention of and Fight
against Crime Programme of the European Union (B-CCENTRE).

References

1. IDA. https://www.hex-rays.com/products/ida/
2. VirusTotal Private API. https://www.virustotal.com
3. Branco, R.R., Barbosa, G.N., Neto, P.D.: Scientific but not academical overview

of malware Anti-debugging, Anti-disassembly and Anti-VM. In: Blackhat (2012)
4. Microsoft Malware Protection Center. Win32/Ramnit. http://www.microsoft.

com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Ramnit
5. Microsoft Malware Protection Center. Win32/Sality. http://www.microsoft.com/

security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Sality
6. Microsoft Malware Protection Center. Win32/Winwebsec. http://www.microsoft.

com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Winwebsec

https://www.hex-rays.com/products/ida/
https://www.virustotal.com
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Ramnit
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Ramnit
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Sality
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Sality
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Winwebsec
http://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Winwebsec

336 P. Chen et al.

7. Chen, P., Desmet, L., Huygens, C.: A study on advanced persistent threats. In: De
Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 63–72. Springer,
Heidelberg (2014)

8. Chen, X., et al. Towards an understanding of anti-virtualization and anti-debugging
behavior in modern malware. In: IEEE International Conference on Dependable
Systems and Networks, pp. 177–186 (2008)

9. Cylance. Operation Cleaver (2014)
10. Peter Ferrie. The Ultimate Anti-Debugging Reference (2011)
11. FireEye: FireEye Advanced Threat Report: 2013 (2014)
12. Giura, P., Wang, W.: Using large scale distributed computing to unveil advanced

persistent threats. Science 1(3) (2013)
13. Hutchins, E.M., et al.: Intelligence-driven computer network defense informed by

analysis of adversary campaigns and intrusion kill chains. In: Proceedings of the
6th International Conference on Information Warfare and Security (2013)

14. Kaspersky: The Icefog APT: A Tale of Cloak and Three Daggers (2013)
15. Kaspersky: Energetic Bear - Crouching Yeti (2014)
16. Le Blond, S., Uritesc, A., Gilbert, C., Chua, Z.L., Saxena, P., Kirda, E.: A look at

targeted attacks through the lense of an NGO. In: Proceedings of the 23rd USENIX
Conference on Security Symposium, pp. 543–558. USENIX Association (2014)

17. Mandiant: APT1: Exposing One of China’s Cyber Espionage Unit (2013)
18. Mohanty, D.: Anti-Virus Evasion Techniques Virus Evasion Techniques Virus

Evasion Techniques and Countermeasures. http://repo.hackerzvoice.net/depot
madchat/vxdevl/papers/vxers/AV Evasion.pdf

19. Arbor Networks: Illuminating the Etumbot APT Backdoor (2014)
20. Rin, N.: Virtual Machines Detection Enhanced (2013). http://artemonsecurity.

com/vmde.pdf
21. Singh, A., Zheng, B.: Hot Knives Through Butter: Evading File-based Sandboxes

(2014)
22. Symantec: Trojan.Zeroaccess. http://www.symantec.com/security response/

writeup.jsp?docid=2011-071314-0410-99
23. Thonnard, O., Bilge, L., O’Gorman, G., Kiernan, S., Lee, M.: Industrial espionage

and targeted attacks: understanding the characteristics of an escalating threat.
In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp.
64–85. Springer, Heidelberg (2012)

24. Villeneuve, N., et al.: Operation Ke3chang: Targeted Attacks Against Ministries
of Foreign Affairs (2013)

25. Wikipedia: Ransomware -Reveton. http://en.wikipedia.org/wiki/Ransomware#
Reveton

http://repo.hackerzvoice.net/depot_madchat/vxdevl/papers/vxers/AV_Evasion.pdf
http://repo.hackerzvoice.net/depot_madchat/vxdevl/papers/vxers/AV_Evasion.pdf
http://artemonsecurity.com/vmde.pdf
http://artemonsecurity.com/vmde.pdf
http://www.symantec.com/security_response/writeup.jsp?docid=2011-071314-0410-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-071314-0410-99
http://en.wikipedia.org/wiki/Ransomware#Reveton
http://en.wikipedia.org/wiki/Ransomware#Reveton

NativeProtector: Protecting Android
Applications by Isolating and Intercepting

Third-Party Native Libraries

Yu-Yang Hong(B), Yu-Ping Wang, and Jie Yin

National Laboratory for Information Science and Technology,
Tsinghua University, Beijing 10084, China

hyy13@mails.tsinghua.edu.cn, {wyp,yinjie}@mail.tsinghua.edu.cn

Abstract. An increasing number of Android developers are incorpo-
rating third-party native libraries in their applications for code reuse,
CPU-intensive tasks and other purposes. However current Android secu-
rity mechanism can not regulate the native code in applications well.
Many approaches have been proposed to enforce security of Android
applications, but few of them involve security of the native libraries in
Android applications.

In this paper, we propose NativeProtector, a system that regulates
the third-party native libraries in Android applications. The standalone
Android application is separated into two components: the server app
and the client app where server app contains the native libraries for pro-
viding services from the native libraries while the client app contains the
rest parts of the original app. The client app binds to the server app
at the launching time, and all native function calls are replaced with
interprocess calls to the server app. NativeProtector also generates the
stub libraries intercept system calls in server app and enforce security
of the native libraries in server app. We have implemented a prototype
of NativeProtector. Our evaluation shows that NativeProtector can suc-
cessfully detect and block the attempts of performing dangerous oper-
ations by the third-party native libraries in Android applications. The
performance overhead introduced by NativeProtector is acceptable.

Keywords: Android security · Native libraries · Process isolation · Call
interception

1 Introduction

Android dominated the smartphone market with a share of 82.8 % in the second
quarter of 2015 [6]. This trend is benefited from the great increase of third-party
Android applications, because they can be easily downloaded and installed. How-
ever, numbers of malicious applications also occur to leak user private informa-
tion and perform dangerous operations. Therefore, preventing privacy leaks and
enabling fine-grained control in Android applications are necessary.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 337–351, 2016.
DOI: 10.1007/978-3-319-33630-5 23

338 Y.-Y. Hong et al.

Many approaches have been proposed to protect the security of Android
applications, but they often focus on Java code, because Android applications are
often written in Java language. In fact, Android also provides JNI (Java Native
Interface) for calling native libraries in applications, and many developers tend to
use third-party native libraries to reuse existing code or perform CPU-intensive
tasks (such as image filtering and video encoding). However, the security of these
third-party native libraries is often omitted [19]. In the Android system, these
native libraries can access the entire process address space and share all the
permissions which the user grants to the whole applications, and they are also
uncovered by Java security mechanism. Thus, malicious native libraries are very
dangerous for Android security.

To the best of our knowledge, only a few existing approaches focus on the
security of native libraries in Android. NativeGuard [21] is a typical framework
which uses process isolation to sandbox native libraries of applications. It has
two main advantages. Firstly, NativeGuard separates native libraries to another
standalone application, so native libraries can not fully access the entire appli-
cation address space, and the interaction between native libraries and Java code
is fulfilled via Android Inter-Process Communication (IPC) mechanism. Sec-
ondly, the generated native-library application is no longer granted permissions,
so dangerous operations can not be performed.

However, NativeGuard still has some limitations. Firstly, because no permis-
sions are granted to the native-library application, the benign native libraries
crash when they need necessary permissions. Secondly, NativeGuard lacks fine-
grained control of the native libraries to manager their behaviors.

To ensure the security of native libraries in Android, we propose a practi-
cal approach named NativeProtector. On one hand, inspired by NativeGuard,
we use the process isolation to prevent the native libraries from accessing the
entire application address space and limit the permissions of native libraries.
On the other hand, we perform fine-grained control of native libraries by instru-
menting the third-party native libraries and intercepting native-library calls to
access private data and perform dangerous system calls. In detail, the third-party
native libraries are separated as a standalone application, so the access of native
libraries to Java code is restricted by fine-grained access control. By combining
isolation and interception, we can ensure the security of native libraries with-
out crashing benign native libraries. Meanwhile, NativeProtector is very easy to
deploy. It can run as a common application without the root privilege because
NativeProtector statically instruments the target application. Hence, no modi-
fication is required for the Android framework.

The main contributions of this paper are following:

– By combining isolation and interception, we have proposed a practical app-
roach named NativeProtector, to protect Android applications from malicious
third-party native libraries.

– We have built a prototype of NativeProtector to separate an application to the
native-library application and Java code, and instrument the native libraries
to perform fine-grained access control.

NativeProtector: Protecting Android Applications by Isolating 339

– We have evaluated NativeProtector on real-world and manually crafted appli-
cations. The experimental results show that NativeProtector is effective for
security and compatible for many applications, and the performance overhead
is also acceptable.

The rest of this paper is organized as follows: Sect. 2 provides some back-
ground information on Android security and JNI, we also talk about dynamic
loading and linking in Android. In Sect. 3 we describe the threat model of Native-
Protector and defenses provided by NativeProtector. Section 4 goes through
details about NativeProtector’s implementation. In Sect. 5 we evaluate effec-
tiveness, compatibility and overhead of NativeProtector. Related work is shown
in Sect. 6. Section 7 gives the conclusion of this paper.

2 Background

In this section, we first briefly give an overview of Android security, and then
introduce some important concepts in Android to help to better understand
NativeProtector.

2.1 Android Security Overview

Android OS is an open-source software stack for mobile devices consisting of
a Linux kernel, Android application framework and system applications. In
Android, each application runs in a separate sandboxed environment that iso-
lates data and code from other applications which is guaranteed by Linux
kernel’s process isolation. One application can not access to another applica-
tion’s address space and private data. Inspired by this mechanism, the third-
party native libraries can be separated as another application to ensure that
they can not access to the entire application’s address space or private data.

2.2 Java Native Interface

Similar to the desktop Java program, Android provides the Java Native Interface
(JNI) to define a framework for Java code and native code to call each other.
Commonly, developers use native libraries in their applications for code reuse,
CPU-intensive task or application hardening. Android provides Native Develop
Kit (NDK) [2] to allow developers to implement parts of applications in native
languages like C and C++. NDK compiles native source code files into shared
libraries which can be loaded dynamically under the request of the application’s
java code. When a native function is invoked, it will be passed a special data
structure of type JNIEnv, which allows the native code to interact with the java
code [20]. For instance, the native code can use JNIEnv->FindClass(“Sample”)
to locate the Java class “Sample” and call its functions. Inspired by this mecha-
nism, these key JNI related functions can be interposed to intercept the access
to private data and dangerous function calls based on predefined policies.

340 Y.-Y. Hong et al.

2.3 Dynamic Loading and Linking

Android adopts its own dynamic loader and linker for native libraries. Unlike the
desktop Linux operating system, Android’s loader do not take the lazy Binding
policy, which means the loader will recursively resolve all the external functions
when the application is loading into the memory. But the PLT/GOT [7] struc-
ture is still used for dynamic linking. In particular, for an ELF file which has
some external functions, its call sites to an external function is actually jump
instruction to a stub function in the Procedure Linkage Table (PLT). This stub
function performs a memory load on a entry in the Global Offset Table (GOT)
to retrieve the real target address of this function call. When a native library
is loaded, the loader resolves all external functions and fills them in the GOT
entries.

3 System Design

In this section, we first give the threat model of NativeProtector, and then we
explain how can we prevent the damage from the third-party native libraries
and the defenses provided by NativeProtector.

3.1 Threat Model

There are three main advantages for using native libraries or native code in
Android applications: a) porting applications between platforms; b) reusing
existing libraries or providing libraries for reuse; c) increasing performance in
certain cases, particularly for CPU-intensive applications like pixel rendering,
image filtering and games. For these advantages, many Android developers tend
to incorporate native libraries in their applications. But these native libraries
are always developed by the third party, so they can be malicious. Note that
a carefully designed Android application may have security check on passing
sensitive data to native library. However, the developers usually trust the native
libraries and fail to perform such checks.

Similar to existing solutions [21], we assume an adversary model that the
third-party native libraries in the applications are not trustworthy, but some
native libraries are essential to the functionalities of the applications. We need
to ensure the applications with third-party native libraries work as normally as
possible when restricting the third-party native libraries’ unprivileged operations
such as accessing to the private data.

In this paper, the developer is trustworthy so that the Java code of the appli-
cations is trustworthy. As there are many approaches of enforcing the security
of Java code in Android applications [13,16,25,26], it’s reasonable that the Java
code can be regulated well even though it involving some malicious code.

NativeProtector: Protecting Android Applications by Isolating 341

Fig. 1. System architecture of NativeProtector

3.2 Defenses Provided

As shown in Fig. 1, NativeProtector separates the original app to two standalone
apps. One of them consists of Java bytecode and the resources of the original
app (like layouts, values et al.). The other consists of the third-party native
libraries implemented as an Android service [3]. The Java one acts as the client,
and the native one acts as the server. These two apps communicate with each
other via Android IPC. In this way, the security of native libraries is controlled
by Android’s existing process isolation security mechanisms, which means the
third-party native libraries can not access to the entire application address space.
To support arbitrary applications, where source code is not always available, we
craft the application separation process in bytecode instead of source code.

To control the third-party native libraries’ access to private data and dan-
gerous operations, NativeProtector inserts hooking libraries into the server app
which contains the third-party libraries. These hooking libraries intercept the
interactions between the third-party native libraries and the system to enforce
various security policies. To control the third-party native libraries’ access to
private data and dangerous operations by JNI calls, we also intercept the JNI
calls called by the native code to enforce security policies.

Use Case: For each app to be installed, NativeProtector separates it into two
standalone apps. They are both installed on the user’s cellphone and the server
app is installed as an Android service. When the client app is launched, it starts
the server app and binds to the service of the server app. When the client app
needs to call the functions in the native libraries, the client app will interact
with the server app through IPC.

342 Y.-Y. Hong et al.

4 Implementation

We have implemented a prototype of NativeProtector in Java and C program-
ming languages.

4.1 Apk Repackaging

Each Android application is distributed as a package file format which is named
APK (Android Application Package). An APK file contains a manifest file named
AndroidManifest.xml, the application’s code in form of dex bytecode, XML
resources like activity layouts, other resources such as images, and the native
libraries which are standalone Linux shared object files (.so). To support arbi-
trary applications, all we worked is on the APK file.

An APK file is actually a ZIP compression package, which can be easily
decompressed with decompression tools. Because the Android SDK puts all the
application’s compiled bytecode in a single file called classes.dex, and the XML
files are also compressed, we can not edit the bytecode or XML files directly to
add our protection code. We need to take the original APK files, disassemble it
to a collection of individual classes and XML files, add NativeProtector’s code
in them, and then reassemble all the things back to new APK files.

To perform this task we choose apktool [5], a tool for Android applications
reverse engineering which can decode resources to nearly original form and
rebuild them after making some modifications. In NativeProtector apktool is
taken in the repackaging process. We first take apktool to disassemble the APK
file to manifest file and resources, the native libraries, and the application’s
bytecode which is in the smali format. Then we use these files to generate the
client app source files and server app source files. Meanwhile, we insert our stub
libraries into the server app source files to intercept the private data access and
dangerous operation for enforcing security policies. Finally, we use apktool to
reassemble the client app and server app to APK files, and install them on the
user’s phone.

4.2 Native Libraries Isolation

NativeProtector isolates the native libraries to another application as an Android
service. Actually, it generates several AIDL(Android Interface Definition Lan-
guage [1]) interfaces and assistant smali code, and then modifies the launcher
Activity and the JNI calls in the applications to achieve isolation. Figure 2. shows
the detailed process of the isolation of NativeProtector. Next, we illustrate some
key points in the isolation process.

Generate Server Application. After disassembling the original app’s APK
file by apktool, all smali files of the application are analyzed to record native
function information. Then for each native function, NativeProtector creates a
corresponding AIDL interface and an Android wrapper function in the server for

NativeProtector: Protecting Android Applications by Isolating 343

Fig. 2. Isolation process of NativeProtector

communicating with the client. When the client calls the native function, there is
an IPC call to the corresponding wrapper function with the same parameter, and
the wrapper function invokes the native function through the AIDL interface.
Finally, the native functions with AIDL interfaces and wrapper functions are
reassembled into the server app using apktool.

Generate Client Application. After the server app is generated, we use the
generated AIDL interfaces to craft the client app. We analyze all the smali
files of the original app automatically to change the native function calls to
corresponding AIDL calls. Then we use apktool to reassemble the Java bytecode
of the original app which has been modified as above mentioned, the AIDL
interfaces corresponding to the server app, and the other resource files of the
original app to the client app as an APK file.

Modify the Launcher Activity. To make the client app works normally we
need to ensure that at the very beginning in the client app, the server app’s
service is bound to the client app and the client app can call the native func-
tions normally. Launcher activity is the starting execution point of an Android
application. A callback method of the activity named onCreate is automatically
invoked by the system when the application is launched. So NativeProtector
locates this callback method in the launcher activity, and inserts code to bind
to the server app to ensure that the client app is launched together with the
server app.

344 Y.-Y. Hong et al.

4.3 Native Libraries Interception

In the process of the native libraries isolation, NativeProtector instruments the
native libraries for intercepting the private data access and dangerous operations.
This interception is implemented as some hooking libraries which are packed in
the server app, and we let the server app load the hooking libraries and perform
the hooking operation for native libraries interception. NativeProtector also pro-
vides a policy manager employing various security policies to enforce security.
Next we detail the native libraries interception process of NativeProtector.

Efficient Interception. The PLT/GOT structure is used for dynamic linking
in Android. The call sites to external functions in Android native libraries are
jump instructions to stub functions in PLT, and the stub functions then perform
memory load on the entries in the GOT to retrieve the real address of these
functions. We can exploit this mechanism to perform the required interposition.
We scan every loaded native library and overwrite each GOT entry with pointer
to our stub function. In this way, we can intercept the private data access and
dangerous operations.

Policies. As we are able to insert hooking libraries which can intercept the
private data access and dangerous operations to monitor the third-party native
libraries, we can introduce the various security policies in NativeProtector to
enforce security. At present, we implement some typical security policies in
NativeProtector. In theory, NativeProtector can perform as a flexible framework
to adopt many more useful security policies.

In NativeProtector, we monitor mainly three kinds of operations, including
accessing private data, connecting to remote server and sending SMS (Simple
Message Service) messages. We consider those operations, because they cover
the two ends of path that may leak private data. The policies taken by Native-
Protector to regulate the third-party native libraries in these three operations
are described below:

– Private Data Policy. This policy protects the user’s private data such as
IMEI, IMSI, phone number, location, stored SMS messages and contact list.
These private data can be accessed from the system services provided by
Android Framework APIs. These Android Framework APIs call a single call
to the ioctl() function. NativeProtector intercepts the calls to ioctl(), and
parses the data passed in the calls to determine which service is accessed.
Then we can know which private data is accessed by the native libraries and
decide whether allow the private data access of the native libraries.

– Network Policy. Android uses connect() function for socket connection. All
Internet connections in Android call this function eventually. NativeProtector
can intercept this function to control the Internet access of the native libraries.
We restrict the native libraries to connect to only a specific set of IP addresses
and prevent the native libraries from connecting to malicious IP addresses.

NativeProtector: Protecting Android Applications by Isolating 345

With these whitelist and blacklist policies, we can ensure the native libraries
are regulated int network, and the normal use of the native libraries is not
affected. The whitelist and blacklist can be managed by user, or be retrieved
from a trusted server.

– SMS Policy. In Android framework, applications can not send SMS messages
on their own. The applications must invoke RPCs to the SMS service through
Binder. All the interactions with Binder call ioctl() function eventually. As we
mentioned above, NativeProtector intercepts the calls to ioctl(). Thus we can
get the destination number and the content of the SMS message to inform
the users, and decide whether to allow this operation or not. Meanwhile we
can take a blacklist policy to prevent the native libraries from sending SMS
messages to premium numbers. As NativeProtector only block sending SMS
message to premium numbers, calling to those numbers is not blocked unless
the phone call policy is adopted.

5 Evaluation

In this section, we evaluate the effectiveness, compatibility and performance of
our prototype of NativeProtector. The experiments are performed on a Google
Nexus 4 phone running Android 4.4.2.

5.1 Effectiveness

To show the effectiveness of NativeProtector, we have manually designed a demo
app. This demo app contains a malicious but inseparable native library, which
is used by the demo app for network connection. But this malicious native
library gets the location information of the phone and send to a known malicious
server. The demo app uses native system calls to perform this process instead
of Java APIs.

This demo app demonstrates that the third-party native libraries may make
use of the permissions assigned to the applications and cause security violations.
As for NativeGuard [21], it simply separates the native libraries to another server
app, and gives no permissions to the server app. This approach indeed restricts
the third-party native libraries’ access to all the application’s process address
which can change the execution of java code, but it also leads to the result that
the third-party native libraries can not work any more. In this app, the native
library can not connect to the network, even for the benign servers.

NativeProtector can improve the situation by combining separation and inter-
ception. For this demo app, NativeProtector separates the native library to the
server app and generates hooking libraries to the server app. The server app has
the permissions same as the original app, so the third-party native library can
work well. But when the third-party native library accesses to the phone loca-
tion (private data in the test), and when the third-party native library connects
to the malicious IPs in the blacklist, the hooking libraries will intercept these

346 Y.-Y. Hong et al.

dangerous function calls and block them. In this way, NativeProtector can help
the app to use the third-party native libraries functionality and prevent appli-
cations from the malicious third-party native libraries.

5.2 Compatibility

To test the compatibility of our NativeProtector prototype, we have collected
20 popular apps from APKPure [4] store, a applications store which can ensure
the applications download from it are the same as Google Play store. These
applications are downloaded from the leaderboard of the hot free applications
chart of the store in November 2015. NativeProtector successfully separates 15 of
20 applications. The five failed applications are due to the apktool. Two of them
fail in the disassembling stage before NativeProtector’s separation, and three of
them fail in the assembling stage after NativeProtector’s separation. Then we
manually test the applications after separation by playing with the instrumented
applications and using the functionalities of the instrumented applications. In the
test, all the 15 applications processed by NativeProtector can work well. During
the testing, we found that there are response delays in some applications. But on
the whole, NativeProtector introduces acceptable overhead and does not affect
the app’s functionalities. Details about the evaluated applications are presented
in Table 1.

5.3 Performance

For NativeProtector, a security framework which takes process isolation and
system call interception, the runtime overhead depends greatly on the inten-
sity of context switches and API invocations we intercepted (like connect()).
In Sect. 5.2, not mach delay is felt when testing in the real-world applications
hardened by NativeProtector. To quantify the performance overhead, we talk
about the NativeProtector’s performance overhead in the extreme cases. We
crafted two artificial application to represent the two extreme cases. One is test-
ing the influence of the intensity of context switches on the NativeProtector’s
performance overhead, and the other is testing the NativeProtector’s overhead
affected by the API invocations we intercepted.

Firstly, we crafted an application which compresses a medium size file (about
5.6 MB) stored on the phone with the popular Zlib library. The Java code of the
application divides this file to small segments and passes one to Zlib which per-
form the compression. Then the Java code passes the next one to Zlib. When Zlib
library is sandboxed by NativeProtector, the segments size has a great impact
on the performance overhead, as small segment size means frequent context
switches between Java and native code. Table 2 presents the overhead introduced
by enabling NativeProtector in Zlib benchmark application that compresses the
file with different segment size. All the performance time is the average over 5
tests. The results table illustrates that higher overhead comes up with smaller
segments size. And the overhead can be 81.79 % when the segments size is 1KB.
But in the real world, few applications will perform context switches as frequently

NativeProtector: Protecting Android Applications by Isolating 347

Table 1. Apps used in compatibility test (∗: failed by apktool)

App Size Package name

DuoLingGo 9 M com.duolingo

ES File Browser∗ 5.9 M com.estrongs.android.pop

Shadowsocks 3.7 M com.github.shadowsocks

IMO 6.7 M com.imo.android.imoim

Arrow Desktop 4.5 M com.microsoft.launcher

Microsoft Outlook 18.1 M com.microsoft.office.outlook

Snapseed 20.7 M com.niksoftware.snapseed

Brightest LED Flashlight 5.1 M com.surpax.ledflashlight.panel

Tiger VPN 5.8 M com.tigervpns.android

Tumblr 21.1 M com.tumblr

Twitter 21.7 M com.twitter.android

HideMe VPN 5.8 M io.hideme.android

OpenVPN Connect 2.3 M net.openvpn.openvpn

New York Times∗ 1.2 M org.greatfire.nyt

WiFi key∗ 6.3 M com.halo.wifikey.wifilocating

Touch VPN 4.7 M com.northghost.touchvpn

Firefox 40.1 M org.mozilla.firefox

AliExpress Shopping App∗ 10 M com.alibaba.aliexpresshd

Clean Master 16.6 M com.cleanmaster.mguard

WiFi Toolbox∗ 7.7 M mobi.wifi.toolbox

as this test. They utilize native libraries to perform CPU-intensive operations like
image compression and conversion, without frequently making context switches.
Thus NativeProtector brings acceptable overhead to the real-world applications.

Secondly, we crafted an application which use native libraries to connect to a
remote server and send a message. This application tries to connect the remote
sever and send message ten times. After these operations are done, it logs the
time consumed. We tested both the original application and the application hard-
ened by NativeProtector for five times against the randomness. Table 3 shows
the result of this test. We can see that NativeProtector introduces an overhead
of 50 % in this test, which we believe is acceptable as real-world applications will
not invoke the APIs NativeProtector intercepted frequently.

In summary, the evaluation demonstrates that NativeProtector can enforce
security on the native libraries in Android applications with acceptable overhead
in most real-world applications where context switches between Java and native
code are not frequent and the API invocations we intercepted are not frequently
used.

348 Y.-Y. Hong et al.

Table 2. Performance on Zlib benchmark application

Segments Size Without NativeProtector With NativeProtector Overhead

1 KB 21905 ms 39822 ms 81.79 %

2 KB 15093 ms 23948 ms 58.67 %

4 KB 10585 ms 15507 ms 46.50 %

8 KB 8993 ms 11399 ms 26.75 %

16 KB 8494 ms 9585 ms 12.84 %

Table 3. Performance on API invocations

First test Second test Third test Forth test Fifth test Average

Without NP 608 ms 543 ms 512 ms 438 ms 619 ms 544 ms

With NP 960 ms 743 ms 788 ms 672 ms 916 ms 816 ms

Overhead 50 %

6 Related Work

6.1 Android App Security

With the increasing popularity of Android and the increasing malware threats,
many approaches to secure Android applications have been proposed. Some of
them extend the Android framework to perform fine-grained control of Android
applications at runtime [10,11,14,18,22,28]. AppFence [14] retrofits the Android
operating system to return mock data of the sensitive resources to the imperi-
ous applications. CRePE [11] allows both the user and authorized third parties
to enforce fine-grained context-related polices. Deepdroid [22] intercepts Binder
transactions and traces system calls to provide portability and fine-grained con-
trol. The other approaches perform security enforcement at the application layer
[8,9,12,17,23,27]. Aurasium [23] uses native library interposing to enforce arbi-
trary policies at runtime. Appcage [27] hooks into the application’s Dalvik virtual
machine instance to sandbox the application’s dex code and uses SFI (Software
Fault Isolation) to sandbox the application’s native code. Boxify [9] combines
the strong security guarantees of OS security extensions with the deployability
of application layer solutions by building on isolated processes to restrict privi-
leges of untrusted applications and introducing a novel application virtualization
environment. NativeProtector takes the application layer approach. It can run
in the user’s phone and does not need to modify the Android framework, so it
can be easily deployed.

6.2 Untruseted Code Isolation

Android’s UID-based sandboxing mechanism strictly isolates different applica-
tions in different processes. With this strong security boundary naturally sup-
ported by Android, many approaches have been proposed to isolate untrusted code

NativeProtector: Protecting Android Applications by Isolating 349

in another process [15,19,21,24].Dr.Android andMr.Hide [15] revokes allAndroid
platform permissions from the untrusted applications and applies code rewriting
techniques to replace well-known security-sensitive Android API calls in the moni-
tored application with calls to the separate reference monitor application that acts
as a proxy to the application framework. AdSplit [19] and AFrame [24] isolate the
third-party advertising libraries which is the JAR format into separate processes.
NativeGuard [21] isolates native libraries into a non-privileged application.But the
benign native libraries which need permission to perform legal task can not work
any more, because it lacks the fine-grained access control of the native libraries.
NativeProtector adopts the idea of isolation, and instruments the native libraries
to take fine-grained access control of native libraries.

7 Conclusion

We have presented the design, implementation and the evaluation of NativeProtec-
tor, a system to regulate the third-party native libraries in Android applications.
NativeProtector separates the native libraries and generated hooking libraries to
another server app, and the rest part of the original app is generated as the client
app. The client app binds to the server app at the launching time, and all native
function calls are replaced with the IPCs to the server app. The hooking libraries
intercept system calls in server app to enforce security of native libraries in the
server app. We have implemented a prototype of NativeProtector. Our evalua-
tion shows that NativeProtector can successfully regulate the third-party native
libraries in Android applications and introduces acceptable overhead.

References

1. Android Interface Definition Language (AIDL). http://developer.android.com/
intl/zh-cn/guide/components/aidl.html

2. Android NDK. http://developer.android.com/intl/zh-cn/ndk/index.html
3. Android Service. http://developer.android.com/reference/android/app/Service.

html
4. apkpure.com. https://apkpure.com
5. Apktool. http://ibotpeaches.github.io/Apktool/
6. Android market share in Q2 (2015). http://www.idc.com/prodserv/smartphone-

os-market-share.jsp
7. PLT and GOT, the key to code sharing and dynamic libraries. https://

www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-
libraries.html

8. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard – Enforcing user requirements on android apps. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 543–548. Springer,
Heidelberg (2013)

9. Backes, M., Bugiel, S., Hammer, C., et al.: Boxify: Full-fledged app sandboxing for
stock Android. In: Proceedings of 24th USENIX Security Symposium (USENIX
Security 2015) (2015)

http://developer.android.com/intl/zh-cn/guide/components/aidl.html
http://developer.android.com/intl/zh-cn/guide/components/aidl.html
http://developer.android.com/intl/zh-cn/ndk/index.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/Service.html
https://apkpure.com
http://ibotpeaches.github.io/Apktool/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

350 Y.-Y. Hong et al.

10. Bugiel, S., Heuser, S., Sadeghi, A.R.: Flexible and fine-grained mandatory access
control on android for diverse security and privacy policies. In: Proceedings of 22th
USENIX Security Symposium (USENIX Security 2013), pp. 131–146 (2013)

11. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-related policy enforce-
ment for Android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

12. Davis, B., Sanders, B., Khodaverdian, A., et al.: I-ARM-Droid: A rewriting frame-
work for in-app reference monitors for android applications. In: Proceedings of
Mobile Security Technologies (2012)

13. Enck, W., Gilbert, P., Han, S., et al.: TaintDroid: an information-flow tracking sys-
tem for realtime privacy monitoring on smartphones. Proc. ACM Trans. Comput.
Syst. (TOCS) 32(2), 5 (2014)

14. Hornyack, P., Han, S., Jung, J., et al.: These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications. In: Proceedings
of the 18th ACM Conference on Computer and Communications Security, pp.
639–652. ACM (2011)

15. Jeon, J., Micinski, K.K., Vaughan, J.A., et al.: Dr. Android and Mr. Hide: fine-
grained permissions in android applications. In: Proceedings of the 2nd ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices, pp. 3–14. ACM
(2012)

16. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model
and enforcement with user-defined runtime constraints. In: Proceedings of the 5th
ACM Symposium on Information, Computer and Communications Security, pp.
328–332. ACM (2010)

17. Rasthofer, S., Arzt, S., Lovat, E., et al.: Droidforce: enforcing complex, data-
centric, system-wide policies in android. In: 2014 Ninth International Conference
on Availability, Reliability and Security (ARES), pp. 40–49. IEEE (2014)

18. Russello, G., Jimenez, A.B., Naderi, H., et al.: Firedroid: hardening security in
almost-stock android. In: Proceedings of the 29th Annual Computer Security
Applications Conference, pp. 319–328. ACM (2013)

19. Shekhar, S., Dietz, M., Wallach, D.S: AdSplit: Separating smartphone advertising
from applications. In: Proceedings of 21th USENIX Security Symposium, pp. 553–
567 (2012)

20. Siefers, J., Tan, G., Morrisett, G.: Robusta: Taming the native beast of the JVM.
In: Proceedings of the 17th ACM Conference on Computer and Communications
Security, pp. 201–211. ACM (2010)

21. Sun, M., Tan, G.: NativeGuard: Protecting android applications from third-party
native libraries. In: Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless & Mobile Networks, pp. 165–176. ACM (2014)

22. Wang, X., Sun, K., Wang, Y., et al.: DeepDroid: dynamically enforcing enterprise
policy on android devices. In: Proceedings of 22nd Annual Network and Distributed
System Security Symposium (NDSS 2015). The Internet Society (2015)

23. Xu, R., Sadi, H., Anderson, R.: Aurasium: Practical policy enforcement for android
applications. In: Proceedings of 21th USENIX Security Symposium, pp. 539–552
(2012)

24. Zhang, X., Ahlawat, A., Du, W.: AFrame: isolating advertisements from mobile
applications in Android. In: Proceedings of the 29th Annual Computer Security
Applications Conference, pp. 9–18. ACM (2013)

25. Zhang, Y., Yang, M., Xu, B., et al.: Vetting undesirable behaviors in android apps
with permission use analysis. In: Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security, pp. 611–622. ACM (2013)

NativeProtector: Protecting Android Applications by Isolating 351

26. Zhao, Z., Osono, F.C.C.: TrustDroid: Preventing the use of SmartPhones for infor-
mation leaking in corporate networks through the used of static analysis taint
tracking. In: MALWARE, pp. 135–143 (2012)

27. Zhou, Y., Patel, K., Wu, L., et al.: Hybrid user-level sandboxing of third-party
android apps. In: Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (2015)

28. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on Android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011)

A Progress-Sensitive Flow-Sensitive Inlined
Information-Flow Control Monitor

Andrew Bedford1(B), Stephen Chong2, Josée Desharnais1, and Nadia Tawbi1

1 Laval University, Quebec, Canada
andrew.bedford.1@ulaval.ca

2 Harvard University, Cambridge, USA

Abstract. We present a novel progress-sensitive, flow-sensitive hybrid
information-flow control monitor for an imperative interactive language.
Progress-sensitive information-flow control is a strong information secu-
rity guarantee which ensures that a program’s progress (or lack of) does
not leak information. Flow-sensitivity means that this strong security
guarantee is enforced fairly precisely: we track information flow accord-
ing to the source of information and not to an a priori given variable
security level. We illustrate our approach on an imperative interactive
language. Our hybrid monitor is inlined: source programs are translated,
by a type-based analysis, into a target language that supports dynamic
security levels. A key benefit of this is that the resulting monitored pro-
gram is amenable to standard optimization techniques such as partial
evaluation.

1 Introduction

Information-flow control is a promising approach to enable trusted systems to
interact with untrusted parties, providing fine-grained application-specific con-
trol of confidential and untrusted information. Static mechanisms for information-
flow control (such as security type systems [12,14]) analyse a program before
execution to determine whether its execution satisfies the information flow
requirements. This has low runtime overhead, but can generate many false pos-
itives. Dynamic mechanisms (e.g., [4]) accept or reject individual executions at
runtime and thus can incur significant runtime overheads. Hybrid information-
flow control techniques (e.g., [8]) combine static and dynamic program analysis
and strive to achieve the benefits of both: precise (i.e., per-execution) enforcement
of security and low runtime overhead.

We present a novel progress-sensitive [2], flow-sensitive hybrid information-
flow control monitor for an imperative interactive language. Our monitor pre-
vents leaks of confidential information, notably via progress channels, while
limiting over approximation, thanks to flow sensitivity and its inline nature.
Our monitor is inlined: source programs are translated into a target language
that supports dynamic security levels [15]. The type-based translation inserts
commands to track the security levels of program variables and contexts, and to
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 352–366, 2016.
DOI: 10.1007/978-3-319-33630-5 24

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 353

control information flow. A key benefit is that the resulting monitored program
is amenable to standard optimization techniques such as partial evaluation [7].

The translation to the target language performs a static analysis using three
security levels: L (for low-security information), H (for high-security informa-
tion), and U (for unknown information). If the program is statically determined
to be insecure, then it is rejected. Otherwise, the translation of the program
dynamically tracks the unknown security levels, and ensures that no leak occurs.

Our main contributions are twofold. This work is one of the first hybrid mon-
itor that enforces both flow and progress-sensitive information security; more-
over, the combination of channel-valued variables, flow-sensitivity and progress-
sensitivity presents a couple of issues that we solve.

Motivating Examples

Channel Variables. Our source language supports channel variables whose secu-
rity level can be statically unknown. This leads to use a special security level,
U , which delays the decision to accept or reject certain programs to runtime.
Indeed, a channel level needs upward or downward approximation according to
its use and this cannot be approximated, as the following example shows.

Progress Channels. The progress of a program, observable through its outputs,
can reveal information. In the following program, the occurrence of an output
on the public channel reveals a confidential information controlling the loop
termination.

The most common way to prevent leaks through progress channels is to forbid
loops whose execution depends on confidential information [10,13], but it leads
to the rejection of many secure programs, such as the following.

354 A. Bedford et al.

Inspired by Moore et al. [9], we use an oracle to determine the termination
behaviour of loops. If it tells that a loop always terminates (cf Listing 1.3),
then there is no possible leak of information. If the oracle says it may diverge,
then a risk of information leak is flagged. The oracle is a parameter based on
termination analysis methods brought from the literature [6].

Structure. In Sect. 2, we present the imperative language used to illustrate our
approach. Section 3 defines the non-interference property. Section 4 describes our
typed-based instrumentation mechanism, explains the type system, and presents
the target language in which the instrumented programs are written; it is an
extension of the source language with dynamic security levels. Section 5 is a
summary of related work. Finally, we conclude in Sect. 6.

2 Source Language

Source programs are written in a simple imperative language. We suppose that
the interaction of a program with its environment is done through channels.
Channels can be, for example, files, users, network channels, keyboards, etc.
These channel constants are associated to a priori security levels, private or
public. This is more realistic than requiring someone to manually define the level
of every variable of the program; their level can instead be inferred according to
the sources of information they may hold.

2.1 Syntax

Let V be a set of identifiers for variables, and C a set of predefined communication
channels. The syntax is as follows.

x ∈ V ∪ C
n ∈ Z

e ::= x | n | e1 op e2 | read x
cmd ::= skip | x := e | if e then cmd1 else cmd2 end |

while e do cmd end cmd1; cmd2 send x1 to x2

Values are integers (we use zero for false and nonzero for true), or channel names.
Symbol op stands for arithmetic or logic binary operators. We write Exp for the
set of expressions. W.l.o.g., we assume each channel consists of one value, which
can be read or modified through read operation and send command respectively.
It is easy to generalize to channels consisting in sequences of values.

2.2 Semantics

A memory m : V � C → Z � C is a partial map from variables and channels to
values, where the value of a channel is the last value sent to this channel. More
precisely a memory is the disjoint union of two maps of the following form:

mv : V → Z � C, mc : C → Z,

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 355

where � stands for the disjoint union operator. We omit the subscript when-
ever the context is clear. We write m(e) = r to indicate that the evaluation of
expression e under memory m returns r.

The semantics of the source language is mostly standard and is illustrated in
Fig. 1. Program configurations are tuples 〈cmd ,m, o〉 where cmd is the command
to be evaluated, m is the current memory and o is the current output trace. A
transition between two configurations is denoted by the −→ symbol. We write
−→∗ for the reflexive transitive closure of the −→ relation.

We write v ::vs for sequences where v is the first element of the sequence, and
vs is the rest of the sequence. We write ε for the empty sequence. An output trace
is a sequence of output events: it is of the form o = (v0, ch0) :: (v1, ch1) :: . . .
where vk ∈ Z is an integer value, and chk is a channel, k ∈ N. The rule for
sending a value appends a new output event to the end of the trace. (We abuse
notation and write o :: (v, ch) to indicate event (v, ch) appended to trace o.)

〈skip, m, o〉−→〈stop, m, o〉
m(e) = r

〈x := e, m, o〉−→〈stop, m[x �→ r], o〉

m(x1) = v ∈ Z m(x2) = ch ∈ C
〈send x1 to x2, m, o〉−→〈stop, m[ch �→], o :: (v, ch))〉

〈cmd1, m, o〉−→〈stop, m′, o′〉
〈cmd1; cmd2, m, o〉−→〈cmd2, m

′, o′〉
〈cmd1, m, o〉−→〈cmd ′

1, m
′, o′〉 cmd ′

1 �= stop

〈cmd1; cmd2, m, o〉−→〈cmd ′
1; cmd2, m

′, o′〉

m(e) �= 0 =⇒ i = 1 m(e) = 0 =⇒ i = 2

〈if e then cmd1 else cmd2 end, m, o〉−→〈cmd i, m, o〉

m(e) �= 0

〈while edo cmd end, m, o〉−→〈cmd ;while edo cmd end, m, o〉

m(e) = 0

〈while e do cmd end, m, o〉−→〈stop, m, o〉

Fig. 1. Semantics of the source language

We write 〈cmd ,m, ε〉 ↓ o if execution of configuration 〈cmd ,m, ε〉 can produce
trace o, where o may be finite or infinite. For finite o, 〈cmd ,m, ε〉 ↓ o holds if
there is a configuration 〈cmd ′,m′, o〉 such that 〈cmd ,m, ε〉 −→∗ 〈cmd ′,m′, o〉.
For infinite o, 〈cmd ,m, ε〉 ↓ o holds if for all traces o′ such that o′ is a finite
prefix of o, we have 〈cmd ,m, ε〉 ↓ o′.

3 Security

We define an execution as secure if the outputs on public channels do not reveal
any information about the inputs of private channels. This is a standard form of

356 A. Bedford et al.

non-interference (e.g., [12,14]) adapted to our particular language model. More
formally, we require that any two executions of the programs starting from initial
memories that have the same public channel inputs, produce the same publicly
observable outputs. This means that an observer of the public output could
not distinguish the two executions, and thus learns nothing about the inputs of
private channels.

Before formally defining non-interference, we first introduce some helpful
technical concepts. We assume a lattice of security levels (L,) with two ele-
ments: L (Low) for public information and H (High) for private information,
ordered as L 	 H. The projection of trace o to security level �, written o��, is
its restriction to output events whose channels’ security levels are less than or
equal to �. Formally,

ε�� = ε

((v, ch) ::o)�� =
{

(v, ch) :: (o��) if levelOfChan(ch) 	 �
o�� otherwise

where levelOfChan(ch) denotes the security level of channel ch (typically speci-
fied by the administrator).

We say that two memories m and m′ differ only on private channel inputs if
mv = m′

v and

∀ch ∈ C.levelOfChan(ch) = L ⇒ mc(ch) = m′
c(ch).

Definition 1 (Progress-Sensitive Non-Interference).
We say that a program p satisfies progress-sensitive non-interference if for

any two memories m and m′ that agree on public variables and public channel
inputs, and for any (finite or infinite) trace o such that 〈p,m, ε〉 ↓ o, then there
is some trace o′, such that 〈p,m′, ε〉 ↓ o′ and o�L = o′ �L.

This definition of non-interference is progress-sensitive in that it assumes that
an observer can distinguish an execution that will not produce any additional
observable output (due to termination or divergence) from an execution that will
make progress and produce additional observable output. Progress-insensitive
definitions of non-interference typically weaken the requirement that o�L = o′ �L
to instead require that o�L is a prefix of o′ �L, or vice versa.

4 Type-based Instrumentation

We enforce non-interference by translating source programs to a target language
that enables the program to track the security levels of its variables. The trans-
lation performs a type-based static analysis of the source program, and rejects
programs that clearly leak information (i.e. the translation fails).

In this section, we first present the security types for the source language
(in order to provide intuition for the type-directed translation) followed by the
description of the target language, which extends the source language with run-
time representation of security levels. We then present the translation from the
source language to the target language.

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 357

4.1 Source Language Types

Source language types are defined according to the following grammar. The
security types are defined as follows:

L � ::= L | U | H
ValT σ ::= int | int� chan

VarT τ ::= σ�

Security levels in types include L and H, and also U (Unknown), which is
used to represent a statically unknown security level. The translated program will
explicitly track these statically unknown security levels at runtime. The security
levels are organized in a lattice (L,), where L = {L,U,H} and L 	 U 	 H,
(H �	 U �	 L). The associated supremum is denoted . We derive two order
relations that allow us to deal with the uncertainty level.

Definition 2. The relations 	s, surely less than, and 	m, maybe less than, are
defined as follows

�1 	s �2 if (�1 	 �2) ∧ ¬(�1 = �2 = U)
�1 	m �2 if (�1 	 �2 ∨ �1 = U ∨ �2 = U)

Intuitively, we have � 	s �′ when we can be sure statically that � 	 �′ will be
true at runtime, and we have � 	m �′ when it is possible that � 	 �′ at runtime.
For example, U �	s L but U 	m L.

Value types are the types of integers (int) and channels. Type int� chan is
the type of a channel whose values are of security level �.

Variables types associate a security level with a value type. Intuitively, σ�

represents the type of a variable whose value type is σ, and whose variable type
is �, the latter is an upper bound of the information level influencing the value.

We instrument source programs to track at runtime the security levels that
are statically unknown. That is, if a variable x has type σU for some value type
σ, then the instrumented program will have a variable that explicitly tracks
the security level of variable x. Moreover, if σ is the unknown channel type
(intU chan) then the instrumented program will have a variable that explicitly
tracks the security level of the channel that is assigned to x. In order to track
these security levels, our target language allows their runtime representation.

The Uncertain Level. As illustrated in Listing 1.1, a channel level needs
upward or downward approximation according to its use. This is the main reason
underlying the use of the uncertainty level U . After the conditionals of that
listing, d has type (intUchan)L because it contains either a low or high channel
and its value is assigned in a context of level L. Our typing system accepts this
program in both Case 1 and Case 2, but inserts runtime checks. If the condition
lowValue > 0 is false at runtime, then sending of a highValue on d would be
safe, and Case 1 should be accepted, while Case 2 should be rejected since it
attempts to send a high level value to a public channel. On the contrary, if
lowValue > 0 appears to be false at runtime, then Case 1 should be accepted
and Case 2 rejected.

358 A. Bedford et al.

The uncertainty is unavoidable in the presence of flow sensitivity and channel
variables. Indeed, we point out that we cannot be pessimistic about the level of
variable channels in this program. The output command suggests that a safe (yet
too strong) approximation for d would be a low security level. Yet, the input
command suggests that a safe (yet too strong) approximation for d would be a
high security level, which contradicts the previous observation. Consequently, if
we are to accept the program in Listing 1.1, in both cases, we need an alternative
security type, U , to carry on with the analysis.

4.2 Syntax and Semantics of Target Language

Our target language is inspired by the work of Zheng and Myers [15], which
introduced a language with first-class security levels, and a type system that
soundly enforces non-interference in this language. The syntax of our target
language is defined as follows. The main difference with the source language is
that it adds support for level variables (regrouped in the set Vlevel), a runtime
representation of security levels.

x ∈ V ∪ C
x̃ ∈ Vlevel

n ∈ Z

k ::= L | H

� ::= k | x̃ | � | �1 �2 | �1 � �2
::= x | n | 1 op 2 | readx

e ::= | �
cmd ::= skip | (x1, . . . , xn) := (e1, . . . , en) |

if e then cmd1 else cmd2 end | cmd1; cmd2 |
while e do cmd end | send x1 to x2 |
if �1 	 �2 then (sendx1 tox2) else fail end

Dynamic types will allow a verification of types at runtime: this is the goal
of the new send command, nested in a conditional – call it a guarded send –
that permits to check some conditions on security levels before sending a given
variable to a channel. If the check fails, the program aborts. In the target lan-
guage, only security levels L and H are represented at runtime. The security
level U used in the source language typing is replaced by variables and expres-
sions on variables. Level expressions support operators for supremum, infimum
and complement (where L = H and H = L); these are defined in Sect. 4.3.

For simplicity, we assume that security levels can be stored only in a restricted
set of variables Vlevel ⊆ V. Thus, the variable part mv of a memory m now has the
following type mv : (Vlevel → {L, H})	 (V \Vlevel → Z	C). Furthermore we assume
that Vlevel contains variables pc and hc, and, for each variable x ∈ V \ Vlevel

there exist level variables xlev; for channel variables, we also have a level vari-
able for their content, that is, the level of the information stored in the channel
that the variables point to, written xch. They will be used in instrumented pro-
grams to track security levels. For example, if x is a channel variable of security

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 359

type (int� chan)�′ , then the values of these variables should be xch = � and
xlev = �′ (this will be ensured by our instrumentation). Variables pc and hc
hold the security levels of the context and halting context respectively. What
these are will be explained in Sect. 4.3. Note that the simultaneous assignment
(x1, . . . , xn) := (e1, . . . , en) is introduced to ensure coherence between the value
of a label variable and the level of the value assigned to the corresponding vari-
able. For all other common commands, the semantics of the target language is
the same as in the source language.

4.3 Instrumentation as a Type System

Our instrumentation algorithm is specified as a type system in Fig. 2. Its pri-
mary goal is to inline monitor actions in the program under analysis, thereby
generating a safe version of it. Its secondary goal is to reject programs that con-
tain obvious leaks of information. The inlined actions are essentially updates and
checks of level variables to prevent a send command from leaking information.

The typing rules of variables and constants have judgements of the form
Γ � e : σ�, telling that σ� is the variable type of e. The instrumentation judge-
ments are of the form Γ, pc, hc � cmd : t, h, Γ ′, [[cmd]] where Γ, Γ ′ : V�C → VarT
are typing environments (initially empty), cmd is the command under analysis,
pc is the program context, hc is the halting context, t is the termination type
of cmd , h is the updated halting context, and [[cmd]] is the instrumented com-
mand. The latter is often presented using a macro whose name starts with gen.
The program context, pc, is used to keep track of the security level in which a
command is executed, in order to detect implicit flows. The halting context, hc,
is used to detect progress channels leaks. It represents the level of information
that could cause the program to halt (due to a failed guarded send command)
or diverge (due to an infinite loop). In other words, it is the level of information
that could be leaked through progress channels by an output. The termination t
of a command is propagated in order to keep the halting context up to date. We
distinguish five termination types T = {T,D,ML,MU ,MH}, where T means
that a command terminates for all memories, D, diverges for all memories, ML,
MH and MU mean that a command’s termination is unknown statically; the sub-
script is used to indicate on which level the termination depends. For example,
the termination of the loop in Listing 1.2 is MH because it can either terminate
or diverge at runtime, and this depends on information of level H. The loop
in Listing 1.3 on the other hand is of termination type T because, no matter
what the value of highValue is, it will always eventually terminate. Similarly, a
loop whose condition is always true will have termination type D since it always
diverges. The precision of this analysis depends on the oracle precision.

The instrumentation of a program p begins by inserting commands to initial-
ize a few level variables: pc, hc are initialized to L, as well as the level variables
xlev and xch for each variable x ∈ V appearing in p. Similarly, level variables clev
and cch associated with each channel c used in p are also initialized, but the latter
rather gets initialized to levelOfChan(c). After initialization, instrumentation is
given by the rules of Fig. 2. We now explain these rules.

360 A. Bedford et al.

levelOfChan(nch) = �

Γ
 nch : (int� chan)L Γ
 n : intL

Γ (x) = τ

Γ
 x : τ

Γ
 c : int�chan�c

Γ
 read c : int���c

Γ
 e1 : int�1 Γ
 e2 : int�2

Γ
 e1 op e2 : int�1��2 Γ, pc, hc
 skip : T, hc, Γ, skip

Γ
 e : σ�e

Γ, pc, hc
 x := e : T, hc, Γ [x �→ σpc��e], genassign

Γ (x) = int�x Γ (c) = (int� chan)�c

(pc � hc � �x � �c) �m �

Γ, pc, hc
 send x to c : T, hc � �c, Γ, gensend

Γ
 e : int�e h3 = �j∈{1,2}d(Γ, pc � �e, cmdj)
⊥ /∈ (Γ1 � Γ2) h = (h1 � h2 � h3 � level(t1 ⊕�e t2))

Γ, pc � �e, hc
 cmdj : tj , hj , Γj , [[cmdj]] j ∈ {1, 2}
Γ, pc, hc
 if e then cmd1 else cmd2 end : (t1 ⊕�e t2), h, Γ1 � Γ2, genif

O(e, cmd , Γ � Γ ′) = to h = d(Γ, pc � �e, cmd)
�t = level(t) �o = level(to) ⊥ /∈ (Γ � Γ ′) Γ � Γ ′
 e : int�e

Γ � Γ ′, (pc � �e), (hc � �t � h′)
 cmd : t, h′, Γ ′, [[cmd]]

Γ, pc, hc
 while e do cmd end : to, h � h′ � �o, Γ � Γ ′, genwhile

Γ, pc, hc
 cmd1 : D, h, Γ1, [[cmd1]]

Γ, pc, hc
 cmd1; cmd2 : D, h, Γ1, [[cmd1]]

t1 �= D Γ, pc, hc
 cmd1 : t1, h1, Γ1, [[cmd1]]
Γ1, pc, h1
 cmd2 : t2, h2, Γ2, [[cmd2]]

Γ, pc, hc
 cmd1; cmd2 : t1 o
9 t2, h2, Γ2, [[cmd1]]; [[cmd2]]

Fig. 2. Instrumentation and typing rules for the source language

Rules (S-Chan) and (S-Int) specify the channels type and integer con-
stants. Rule (S-Var) encodes the typing of a variable, as given by environment
Γ . Rule (S-Op) encodes expression typing and excludes channel operations. Rule
(S-Read) specifies the current c value type. To prevent implicit flows, the spec-
ified security level takes into account the assignment context of channel variable
c, hence the supremum � �c Rule (S-Assign) specifies the type of x from the
one of e to prevent explicit flows, and from pc, to prevent implicit flows. Its
instrumentation is given by the following macro:

genassign =
{
(x, xlev) := (e, pc elev) if σ = int
(x, xlev, xch) := (e, pc elev, ech) if σ = int�′chan

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 361

The variable elev represents the level of expression e, as specified by Rule
(S-Op). For example if e = x + read c, then elev = xlev cch clev. If e = x + y
then elev = xlev ylev. Rule (S-Send) requires (pc hc �x �c) 	m �. The
four variables on the left-hand side correspond to the information level possibly
revealed by the output to x2. The instrumentation translates it as follows

gensend pc � hc � xlev � clev � cch
x c

hc := hc � clev

The halting context records the possible failure of the guarded send, it is
updated with the assignment context of the channel. The following example
illustrates why this is necessary.

Assume that unknownValue is private and false at runtime. Then the first
guarded send is accepted, but allowing an output on a low security channel
subsequently would leak information about unknownValue. Updating hc will
affect the check of all subsequent guarded send. Updating hc with xlev or pc is
not necessary since their value will be the same for all low-equivalent memories.

For the conditional rules, we need a union of environments that maps to each
variable appearing in both branches the supremum of the two variable types, and
for each channel variable appearing in both branches the security level U if the
levels of their content differ.

Definition 3. The supremum of two environments is given as dom(Γ1 � Γ2) =
dom(Γ1) ∪ dom(Γ2), and

(Γ1 � Γ2)(x)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Γi(x) if x∈dom(Γi)\dom(Γj), {i,j}={1,2} ∨ Γ1(x)=Γ2(x)
(intUchan)�2��′

2
if Γ1(x) = (int�1 chan)�2

∧ Γ2(x) = (int�′
1
chan)�′

2
∧ �1 �= �′

1

σ���′ if Γ1(x) = σ� ∧ Γ2(x) = σ�′

⊥ otherwise.

The symbol ⊥ is used to indicate that a typing inconsistency occured, e.g. when
a variable is used as an integer in one branch and as a channel in another.

The function level : T → L returns the termination level (i.e., the level that
termination depends on) and is defined as:

level(t) =

{
L if t ∈ T, D
� if t = M�

362 A. Bedford et al.

Two operators are used to compose terminations types, ⊕, used in the typing of
conditionals, and o

9, used in the typing of sequences. They are defined as follows.

t1 ⊕� t2 =

⎧
⎪⎪⎨

⎪⎪⎩

t1 if t1 = t2 ∧ [t1 �= ML ∨ � = L]
ML if � = L ∧ t1 �= t2 ∧ {t1, t2} ⊆ {T, D,ML}
MH if � = H ∧ [M�′ ∈ {t1, t2}, �′ ∈ L or {t1, t2} = {T, D}]
M〈���1��2〉 otherwise, t1 = M〈�1〉, t2 = M〈�2〉

where 〈e〉 is e, a level expression, without evaluation. We will evaluate 〈e〉 to U
in the instrumentation type system (Fig. 2). We prefer to write 〈e〉 to emphasise
the fact that U is the approximation of an expression.

t1 o
9 t2 =

⎧
⎪⎨

⎪⎩

M�1��2 if t1 = M�1 and t2 = M�2

ti if tj = T, {i, j} = {1, 2}
D otherwise

The following example shows one more requirement. If in Listing 1.5 variable
unknownChannel is a public channel at runtime, and if the last send command
is reached and executed, it would leak information about highValue. The same
leak would happen if instead of the guarded send we had a diverging loop.

The following function d : ((V�C → VarT)×L×Cmd) → L, is used to update
the halting context, where Cmd is the set of commands. It approximates the
information level that could be leaked through progress channels by a possibly
failed guarded send in an unexecuted branch. Here, if Γ (c) = (int� chan)�′ , then
we write Γch(c) = � and Γlev(c) = �′.

d(Γ,pc, cmd) =

{
pc � (

c∈dc
(Γch(c) Γlev(c))) if dc ∩ mv = ∅

pc otherwise

In this definition, dc represents the set of dangerous channels, that is, the ones
appearing in at least one guarded send in [[cmd]]; mv is the set of variables that
may be modified in cmd . Intuitively, if all the dangerous channels are of level
H and not modified inside cmd , then we know that these guarded send cannot
fail. If we cannot be sure of their level, then the halting context is updated with
level pc. The supremum over the security levels of channels is taken in case the
value of the channels is sensible (for example if lowValue was H in Listing 1.1).

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 363

(S-If) Its instrumentation is given by the following macro:

oldpcν pc
e

pc := oldpc

i pc pc � elev
hd(hifν , mvother, dcother);
[[cmd i]];
hc := hc � hif;

uphc(t1, t2, elev);
update(mvother)

where dcj represents the set of channels appearing in at least one guardedSend
in [[cmd j]], mvj is the set of variables that may be modified in cmd j , tj is the
termination type of cmd j , elev is the guard condition’s level expression and �e is
the level of this guard (as computed by the typing system).

The instrumented code starts by saving the current context to oldpcν (the
symbol ν indicates that it is a fresh variable). The program context is updated
with the security level of the guard condition. The if itself is then generated.
In each branch, function hd, function d’s at runtime, evaluates the information
level possibly revealed by a failed guarded send in the other branch.

hd(h, mv, dc) =

{
h := (pc � (�

c∈dc
cch � clev)) if dc∩mv=∅

h := pc otherwise

This must be computed before executing [[cmdj]] because we want to evaluate
whether the untaken branch could halt the execution or not. This must be done
before [[cmdj]] as the latter could modify the level of the dangerous channels.

Function uphc is used to generate the code updating the halting context.

uphc(t1, t2, elev) =

{
skip if t1 = t2 ∈ {T, D}
hc := hc � elev otherwise

The rational underlying uphc use is to protect the guard value from being
revealed. If we know that both branches behave similarly, then the adversary
will not be able to deduce private information. On the other hand, if the two
branches may not behave the same way, then we have to perform hc := hcelev.

The following function updates the level variables of the untaken branch’s
modified variables so that they have similar types in all low-equivalent memories.

update(mv) =

{
skip if mv = ∅
(x, xlev) := (x, xlev � pc); update(mv\{x}) if x ∈ mv.

In a situation like the following listing, this function permits to update x’s level, to
protect unknownValue.

364 A. Bedford et al.

(S-Loop) Typing the while involves a fixed point computation due to the flow
sensitivity. It is easy to show that this computation converges. The typing relies on O,
a statically called oracle computing the termination loop type (to).

oldpcν pc

e
[[cmd]]

pc := oldpc

pc := pc � elev;
update(mv);
hd(hwhileν , mv, dc);
hc := hc � hwhile;

uphc(to, to, elev);

The inserted commands are similar to those of the if . The level variables and halting
context are updated before the loop in case an execution does not enter the loop. They
must be updated at the end of each iteration for the next iteration.

(S-Seq1) is applied if cmd1 always diverges; we then ignore cmd2, as it will never
be executed. Otherwise, (S-Seq2) is applied. The halting context returned is h2 instead
of h1 � h2 because h2 already takes into account h1.

In a longer version, we present a type system for the target language. We show that
a well typed program satisfies the progress-sensitive non-interference property 1, and
that a program generated by our typing system is well typed.

5 Related Work

There has been much research in language-based techniques for controlling information
flow over the last two decades.

Le Guernic et al. [8] present the first hybrid information-flow control monitor. The
enforcement is based on a monitor that is able to perform static checks during the
execution. The enforcement is not flow-sensitive but it takes into account concurrency.
In Russo and Sabelfeld [11], the authors state that purely dynamic enforcements are
more permissive than purely static enforcements but they cannot be used in case of
flow-sensitivity. They propose a hybrid flow-sensitive enforcement based on calling
static analysis during the execution. This enforcement is not progress sensitive.

Moore et al. [9] consider precise enforcement of flow-insensitive progress-sensitive
security. Progress sensitivity is also based on an oracle’s analysis, but they call upon it
dynamically while we do it statically. We have also introduced additional termination
types to increase the permissiveness of the monitor.

Chudnov and Naumann [5] inline a flow-sensitive progress-insensitive hybrid mon-
itor and prove soundness by bisimulation. We inline a flow-sensitive progress-sensitive
hybrid monitor, and we prove soundness using a mostly-standard security-type system
for the target language.

Askarov and Sabelfeld [3] use hybrid monitors to enforce information security in
dynamic languages based on on-the-fly static analysis. They provide a model to define
non-interference that is suitable to progress-sensitivity and they quantify information
leaks due to termination [2].

Askarov et al. [1] introduce a progress-sensitive hybrid monitoring framework where
the focus is on concurrent programs, and the use of rely-guarantee reasoning to enable
fine-grained sharing of variables between threads. Each thread is guarded by its own
local monitor (progress- and flow-sensitive). Their local monitor could be replaced by
a variant of our inlined monitor.

https://drive.google.com/file/d/0B6UAN3Jd1Fg0eW55ejVmMkg0R1E

A Progress-Sensitive Flow-Sensitive Inlined Information-Flow 365

6 Conclusion

We have presented a hybrid information flow enforcement mechanism in which the
main contributions are the following.

(a) Our monitor is one of the first hybrid monitor that is both flow- and progress-
sensitive. It is more precise and introduces less overhead than currently available solu-
tions (e.g., [9,10]). Since our monitor is inlined, it can be easily optimized using classical
partial evaluation techniques, [7].

(b) We solve a few issues such as (1) the fact that it is not possible to approximate
the level of a channel (by introducing a level U) and (2) the need to approximate the
level of information that could be leaked through progress channels (by introducing a
function d).

We believe our approach to be generalizable to complex lattices, but it will require
a few alterations. Instead of only one uncertain level U , we would use sets of possible
levels (U is, in some sense, an abstraction of the set {L, H}) that are ordered pointwise.
That is, {L} � {L, H} � {H}. The function d would have to be adapted. Namely, the
complement operation in d would have to be replaced with the following expression:
{� : � �� Γch(c)} ∩ {� : � �� pc}.

Future work includes extensions to concurrency, declassification and information
leakage due to timing. We would like to scale up the approach to deal with real world
languages and to test it on elaborate programs.

References

1. Askarov, A., Chong, S., Mantel, H.: Hybrid monitors for concurrent noninterfer-
ence. In: Computer Security Foundations Symposium (2015)

2. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Proceedings of the European Symposium on
Research in Computer Security: Computer Security (2008)

3. Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for
dynamic languages. In: CSF (2009)

4. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
In: Proceedings of the Workshop on Programming Languages and Analysis for
Security (2009)

5. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: Proceedings
of the 23rd IEEE Security Foundations Symposium (2010)

6. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

7. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial evaluation and automatic program
generation. Prentice Hall, Englewood Cliff (1993)

8. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based con-
fidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol.
4435, pp. 75–89. Springer, Heidelberg (2008)

9. Moore, S., Askarov, A., Chong, S.: Precise enforcement of progress-sensitive secu-
rity. In: CCS 2012 (2012)

10. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: CSFW. IEEE (2006)

11. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
CSF, pp. 186–199. IEEE Computer Society (2010)

366 A. Bedford et al.

12. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

13. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: POPL (1998)

14. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2), 167–187 (1996)

15. Zheng, L., Myers, A.C.: Dynamic security labels and noninterference. In: Dimi-
trakos, T., Martinelli, F. (eds.) Formal Aspects in Security and Trust. IFIP, vol.
173. Springer, Heidelberg (2005)

Privacy

Deducing User Presence from Inter-Message
Intervals in Home Automation Systems

Frederik Möllers(B) and Christoph Sorge

CISPA, Saarland University, Saarbrücken 66123, Germany
{frederik.moellers,christoph.sorge}@uni-saarland.de

Abstract. Privacy in Home Automation Systems is a topic of increasing
importance, as the number of installed systems constantly grows. In this
paper we investigate the ability of an outside observer to link sets of
message timestamps together to predict user presence and absence. The
question we try to answer is: If attacker Eve has captured 1 hour of traffic
from victim Alice’s HAS and knows whether Alice was present at that
time, can Eve deduce Alice’s state by capturing another hour of traffic?
We apply different statistical tests and show that in certain situations,
the attacker can infer the user’s presence state with absolute confidence.

Keywords: Traffic analysis · Home automation · Statistical analysis ·
Privacy

1 Introduction

Home Automation Systems (HASs) are rapidly gaining popularity. They can
be used to control lights, window blinds, heating etc. Wireless HASs are cur-
rently most popular for use in private homes, as the installation is easier than
for their wired counterparts. However, previous research has shown privacy risks
of wireless HASs [17]: A passive eavesdropper can derive information about user
habits from message contents and metadata. Message encryption—the obvious
countermeasure—does not prevent analysis of communication patterns: packets
sent by a remote control to a door lock reveal that a user is locking or unlocking
a door. Even if addresses are obfuscated, message intervals could reveal informa-
tion, e.g. about absence or presence of users interacting with the HAS. In this
paper, we study the extent of information leakage through message intervals in
HASs. Our contribution consists of two parts: We present a new attack vector
which passive adversaries can use to infer information about the presence of users
from the timings of messages alone. Additionally, we analyse the success rates
of this approach and determine conditions under which a high confidence can
be achieved. While we acknowledge that certain situations are not distinguish-
able by software using our model (e.g. a user being asleep and not interacting
with the system vs. a user being absent), the goal is to find out whether or not
situations exist in which a correct statement can be reliably achieved.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 369–383, 2016.
DOI: 10.1007/978-3-319-33630-5 25

370 F. Möllers and C. Sorge

The paper is structured as follows: In Sect. 2 we give an overview of existing
research in similar areas. Section 3 contains the definition of our system model
as well as our model of the attacker. In Sect. 4 we summarise the attack method
whose effectivity we are investigating. Section 5 contains the description of our
analysis procedure and is followed by its results in Sect. 6. We conclude the paper
and provide an outlook on future work in Sect. 7.

2 Related Work

Several authors have pointed out the privacy risks of HASs. Jacobsson et al.
provide an overview of security and privacy risks in HASs [8]. A survey by
Denning et al. states “activity pattern privacy” with the sub-goals of “presence
privacy” (which we investigate in the paper at hand) and protection of occupant
identities as HAS security goals [5]. Privacy implications of specific systems have
been studied by Mundt et al., who derived information about user habits from
the communication of office building automation systems [14], and were able
to eavesdrop on communication of a wired bus system from a distance of 5 cm
[13]. In our own previous work, we have demonstrated the extent of information
leakage from a wireless HAS that neither encrypts communication nor attempts
to obfuscate sender and receiver addresses [17]. Moreover, we have studied legal
aspects of HASs that use data processing in the cloud [16]. Packet inter-arrival
times as a side channel have been considered by Wendzel et al. [19], but their
work focuses on establishing covert channels. Our contribution instead addresses
the problem of deducing information from existing timings.

As wireless HASs are a specific type of wireless sensor networks (WSNs),
some general results about WSNs might apply. There is a considerable body of
literature on privacy in WSNs. In their survey [10], Li et al. distinguish between
data privacy (concerning both the queries and the sensed data) and context
privacy, with the latter term referring to both location privacy and temporal
privacy. A number of publications consider traffic analysis in WSNs as a means
to breach location privacy [4,11,20], but this aspect is not very relevant in HASs.
While temporal privacy (which concerns the ability of an attacker to determine
the timing of an event detected by the WSN) is related to the problem we
investigate, we do not consider individual events in the paper at hand.

The use of traffic analysis (i.e. analysis of traffic patterns without consid-
eration of communication contents) is not restricted to particular networks;
the distribution of message inter-arrival times is commonly considered in traffic
analysis. For example, Moore and Zuev [12] use that distribution (among other
discriminators) to classify internet traffic; Bissias et al. [2] use inter-arrival times
to identify web sites in encrypted, proxied HTTP traffic. Celeda et al. [18] use
traffic analysis in Building Automation Networks to detect attacks.

3 System and Attacker Model

For our analysis we assume the following situation. A user Alice has installed a
home automation system. The system generates messages based on automation

Deducing User Presence from Inter-Message Intervals 371

rules and in reaction to user behaviour. Both the rules and Alice’s habits are
known only to Alice. As the idea of this paper is to analyse if certain information
can be deduced from message timings alone, it makes sense to exclude all other
possible sources of information an attacker might be able to use. Real-world
observations as well as publicly known statistics (e.g. “The average user is asleep
during the night and at work from 09:00 to 17:00.”) are explicitly neglected here.

The network topology of our model is a fully connected graph with respect to
intended communication. This means that any two devices which are intended
to communicate with each other can do so directly. This model is used in many
available products; only few systems employ multi-hop communication. However,
the research presented in this paper can be used as a base for developing dummy
traffic schemes in both types of systems.

The communication is fully encrypted and packets are padded to a fixed
length. Both message payloads and message headers (including source and des-
tination addresses) are hidden from an outside observer.

In certain situations, low-level channel information can be used to try and
fingerprint devices when both sender and receiver are static [1,3,6]. For the
analysis at hand, we disregard this possible source of information. We argue that
these kinds of attacks require a level of effort and dedication from the attacker
which is unrealistic for common houses or when mounting traffic analysis attacks
on a large scale against many buildings at once. Furthermore, countermeasures
against these attacks have been explored in literature. We thus assume that the
attacker cannot determine the source of a packet by these means.

We model our attacker—Eve—as a global passive adversary. Eve can detect
any communication happening within the network, i.e. she can capture any
packet being transmitted. However, Eve cannot break the packet encryption
and she cannot distinguish between different devices by other means such as
triangulation or wireless device fingerprinting.

Eve’s goal is to determine whether or not Alice is at home at a given time.
For this, we assume she has the following a priori information about Alice’s
home automation system:

1. Eve knows that Alice’s HAS does not generate dummy traffic.
2. Eve has captured all communication packets during one hour of HAS opera-

tion. She also knows whether Alice was at home during this time.

The reason why we choose an interval of one hour for item 2 is twofold. On the
one hand, a time frame of more than one hour allows Eve to mount sophisticated
device fingerprinting attacks [6], invalidating our assumptions. However, it also
makes decisions less useful: The longer the time frame, the less likely Alice is to
keep this state during the next minutes or hours. On the other hand, a shorter
time frame makes decisions harder, as there is less data to base an assumption
on. We performed the same experiments with time frames of half an hour and
two hours, getting nearly the same results: The difference in the AUC values in
Sect. 6.3 was 0.005 on average with a maximum of 0.104.

372 F. Möllers and C. Sorge

Using the available information, Eve needs to decide at a given time whether
Alice is currently at home or not. Eve can capture the communication packets
again for the same time frame to try and deduce Alice’s presence state.

4 Attack Methodology

Our analysis works as follows: We assume the role of the attacker, Eve. Using
the captured communication packets from two different time frames of one hour
each, we try to find similarities in the statistical distribution of timestamps
or inter-message intervals. We apply three different statistical tests to the two
samples: The Kolmogorow-Smirnow Two-Sample Test [9], the Chi-Square Test
of Independence [15] and the “Message Counts Test”.

The statistical tests used here tackle the null hypothesis that the two sam-
ples have the same underlying distribution function. Instead of rejecting the null
hypothesis with a certain confidence at a threshold depending on the desired
confidence, we analyse the computed test statistics and try to determine suit-
able thresholds ourselves. The reason behind this is twofold: On the one hand,
we do not have any a priori knowledge about the underlying distribution func-
tions. On the other hand, we want to determine whether the difference in the
distributions between two samples with different user states is high enough to
allow a distinction based on the calculated test statistics. If this is the case, we
can subsequently calculate thresholds and resulting confidence values for HASs.

4.1 Kolmogorow-Smirnow Test (KS Test)

The Kolmogorow-Smirnow Test for homogeneity [9] is based on the empirical
cumulative distribution functions of the two input samples. Informally speaking,
it measures the maximum vertical distance between the two curves. Formally,
given to samples X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , ym] with respective
empirical cumulative distribution functions FX and FY , it computes the value

D = sup
a

|FX(a) − FY (a)| (1)

If the result D is high, the null hypothesis is rejected.
We use the SciPy1 implementation of the KS 2-sample test from SciPy ver-

sion 0.14.0 and apply it to the inter-message time intervals. In addition to the
KS statistic D (sometimes referred to as dmax or Da,b in literature), the imple-
mentation computes a p-value as a function of D and the sample sizes. This
accounts for the fact that large samples with the same underlying distribution
are expected to show less differences than smaller samples (as per the law of
large numbers). We examine both the value of D as well as the p-value.

1 http://www.scipy.org, accessed 2015-12-18.

http://www.scipy.org

Deducing User Presence from Inter-Message Intervals 373

4.2 Chi-Square Test (χ2 Test)

Pearson’s Chi-Square Test [15] follows a similar approach as the KS test, but
calculates the sum of squared differences between the actually measured frequen-
cies and the expected ones. In the 2-sample form, the expected frequencies are
estimated by taking the average frequencies of the two samples. Formally, the
test expects categories and respective frequencies as inputs. Given two samples
and m categories, these frequencies can be written as X = [x1, x2, . . . xm] and
Y = [y1, y2, . . . , ym], where xi is the number of elements in the first sample which
fall into the i-th category. Using the intermediate definitions

n = nx + ny =
m∑

i=1

xi +
m∑

i=1

yi (2)

∀z ∈ {x, y} : Ez,i =
nz × (xi + yi)

n
(3)

the test statistic is then defined as

χ2 =
n∑

i=1

(xi − Ex,i)2

(Ex,i)
+

n∑

i=1

(yi − Ey,i)2

Ey,i
(4)

If the value of χ2 is high, the null hypothesis (“The two samples have the
same underlying distribution function.”) is rejected.

For the Chi-Square Test, we use a custom implementation. Similar to the
Kolmogorow-Smirnow Test, it is applied to the inter-message time intervals.

As the test expects the two samples to be categorized into bins, we need to
do this before calculating the actual test statistic. Literature suggests to choose
bin sizes so that no bin contains less than 5 elements for any sample [7]. Thus,
we adaptively choose bins of varying size. The lower bound for the first bin is
the lowest value in any of the two input samples. The upper bound for a bin
(which is also the lower bound for the next bin) is chosen as the smallest number
which results in at least 5 elements of each sample falling into this bin. We thus
guarantee that at least 5 values are in each bin for each sample. An example for
the binning approach is depicted in Fig. 1. For the Chi-Square Test we calculate
and examine the test statistic.

Fig. 1. Example of the approach used for binning using a minimum bin size of 5. The
bounds are chosen so that at least 5 elements of each sample fall into one bin.

374 F. Möllers and C. Sorge

4.3 Message Counts Test (MC Test)

Our “Message Counts Test” divides the number of messages in the larger sample
by the number of messages in the smaller one and subtracts 1, resulting in a
value within [0,+∞[. Higher values indicate larger differences in the amounts of
messages, just as higher results in the other tests indicate different distributions.
The idea behind it is that if the sheer amount of activity in the system is very
different to that during the reference time frame, the user state is likely to be
different. For example, if the reference capture was taken while Alice is present
and the capture in question shows lower activity, Alice is likely to be absent.

Formally, given two samples X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , ym],
the test statistic is defined as

Similar to the Chi-Square test, we calculate and examine the test statistic.

C =
max(n,m)
min(n,m)

− 1 (5)

5 Analysis Procedure

We obtained input data for our analysis by collecting packet captures from two
real-world home automation systems. System 1 is an installation using Home-
Matic hardware, an off-the-shelf solution for consumers, which was already used
as a base for our previous work on this topic [17]. The owner voluntarily cap-
tured all traffic for 36 days and provided us with the log files as well as presence
and absence times. System 2 is data from a custom system, built by combining
multiple automation products from different manufacturers. Traffic was recorded
for 37 days and published in a series of news articles2.

As a first step, we annotate each message with the user state: Present
and Absent are chosen based on the available data. A third state, Asleep is
introduced to handle the fact that during night hours (22:00 to 08:00), users are
usually asleep and thus the activity of the system is reduced. Due to the vague
nature of the Asleep state and the fact that we cannot be sure whether the
users were actually asleep during this time, we exclude it from further analysis
and only investigate messages whose state is either Present or Absent.

Analysing each system by itself, we construct (non-overlapping) intervals of 1
hour each and during which the user state did not change. For each interval, we
gather the messages sent during this time into Message Groups. Each Message
Group is thus identifiable by its system and the timestamp of the first message.
Also, as per the construction of intervals described above, each group has a fixed
user state. For System 1, we obtain 180 Message Groups with state Present,
136 Message Groups with state Absent and 237 Message Groups with state
Asleep. For System 2, the numbers are 223, 125 and 296, respectively.

For all non-identical combinations of Message Groups (only considering those
with states Present and Absent)—167, 941 in total—we perform the 3 statis-
tical tests mentioned in Sect. 4. We then visualize the results in boxplots, both
2 http://spon.de/aeDkn, accessed 2015-12-18.

http://spon.de/aeDkn

Deducing User Presence from Inter-Message Intervals 375

overall per system as well as individually for each combination of user states.
In a second step, we test different thresholds for all tests and plot the true and
false positive rates in ROC diagrams.

6 Analysis Results

6.1 Test Suitability in the General Case

At first, we plot all test results by system and test and only distinguish between
the two cases whether or not the samples have different user states. This section
gives a general and quick overview over the suitability of the tests for our pur-
poses. If the plots of the two cases differ significantly, the test results carry a
high amount of information and if they are largely the same, the information
immediately available from the test result is limited. The plots are visualised
in Fig. 2 for both systems. The boxplots do not show any immediately obvious
peculiarities. For both systems and all tests, the boxes overlap and thus suggest
that the tests cannot be used as a universal oracle telling Eve whether the 2
compared samples have been taken with the same user state.

Fig. 2. General test results for both systems. The boxes extend from the first to the
third quartile. The whiskers extend up to 1.5× IQR past the boxes, where IQR is the
interquartile range. If IQR = 0 (as with the χ2 Test for different states in System 2),
the whiskers extend up to the minimum and maximum values. Red lines mark the
medians while red squares mark the arithmetic means. Blue plus signs show outliers
beyond the whiskers (Color figure online).

376 F. Möllers and C. Sorge

System 1. For System 1, the χ2 Test values are broadly spread. Comparing
samples with the same user state yields values from 0 to 53.5, samples from
different states lead to values from 0 to 57.2. This suggests that there may be an
upper bound to the value for samples of the same state and that values above
this limit indicate a different state of the two compared samples.

The KS Test statistic D ranges from 0.04 to 0.66 for the same state and from
0.04 to 0.72 for different states. Like the Chi-Square test, this suggests an upper
bound for the value in the same-state case.

The KS p-values again provide similar information. For the same state, the
values range from 6.41 × 10−12 to 1 − 10−11, for different states they range from
4.76×10−15 to 1−10−12. The null hypothesis (“The two samples originate from
the same distribution [=the same state].”) is rejected for p-values lower than a
threshold. The lower minimum value for different results shows that the default
thresholds are not useful in our scenario.

The MC Test provides the least useful results. The values are in fact mis-
leading: While they range from 0 to 20.6 for samples with the same state and the
minimum is the same for different states, the maximum value in the latter case
is only 14.4. This shows that while the user state does not change, the number
of messages being generated in a given time frame can differ significantly.

System 2. The results for System 2 offer much less information than those
for System 1. The χ2 Test values range from 0 to 82.8 for samples with the
same state and from 0 to 45.8 for samples with different states. As shown in
Fig. 2, 75% (the lower three quartiles) of the tests with different states had the
result 0. These values are misleading if interpreted in the same way as those of
System 1. Intuitively, the values should be higher for different states (and they
are for System 1). We conclude that either the test’s usefulness depends on the
type of the HAS or that the previous results were not representative.

The KS Test statistic D yields values in the full range [0, 1] for samples with
the same state. While this already indicates that the test is not useful for this
system, the same range of values for samples with different states support this.

Consequently, the KS Test p-values are inconclusive as well: They range from
1.13×10−16 to 1 for the same state and from 2.28×10−8 to 1 for different states.

The MC Test surprisingly yields the exact same range of values for both
cases: The results range from 0 to 235 in both cases.

6.2 Test Suitability per State Pair

In the next step we take a closer look at the different combinations of user states.
Our hypothesis is that the tests may give useful results for certain combinations
of states and less useful results for others. This section deals with the perfor-
mance of the tests for a given pair of user states. Figure 3 summarizes the results
for both systems.

Deducing User Presence from Inter-Message Intervals 377

Fig. 3. Per state pair test results for both systems. The plot parameters are the same
as for Fig. 2. The reason why the combination Present-Absent does not appear is
the symmetry of all tests: T (a, b) = T (b, a).

System 1. Results of the χ2 Test for System 1 do not yield much more informa-
tion than what we could already see from the general evaluation. The two cases
in which the user states are the same largely overlap and the ranges of values
are almost the same. The same holds for both statistics of the KS Test. The
MC Test provides some new results: If both samples have the state Absent,
the values do not go above 0.71. This means that if Eve obtains a sample known
to have the state Absent, and gets higher value when comparing it to a sec-
ond (unknown) sample, she can be sure that Alice was present during the time
frame of the second sample. However, this is only the case for 2.4% of the tested
Absent-Present sample pairs.

System 2. In contrast to System 1, the boxplot of the χ2 Test for System 2
exhibits obvious differences between the state pairs. If one of the samples has
the state Absent, 75% of the tests evaluate to 0. Similarly to the MC Test for
System 1, the plots show that there is a threshold above which Eve can be sure
that Alice is Present if her first (known) sample has the state Absent. This
threshold is at 8.45 and 2.12% of the Absent-Present pairs reach a higher

378 F. Möllers and C. Sorge

value. However, also similar to System 1, Eve cannot make such a confident
decision if her known sample has state Present.

The KS Test does not show such features; this is consistent with System 1.
The MC Test confirms the observation from the χ2 Test and yields another

threshold. The threshold value is 81 and 1.77% (494 out of 27, 875) of the tests
with different states result in higher values. Surprisingly, though, none of these
494 Message Group pairs gave a result above the threshold for the χ2 Test. In
fact, some pairs even evaluated to 0 in the χ2 Test. This is highly interesting, as
it suggests that a combination of different tests with the same input data can
provide significantly more information than one test alone. Using the thresholds
of both tests, Eve can identify 3.89% or 1084 of 27, 875 Message Group pairs as
having different states if one of the samples is known to have the state Absent.

6.3 The Effect of Different Thresholds on Classification Rates

As shown in the previous section, some tests exhibit maximum values for certain
state combinations, and knowing such values may enable Eve to infer Alice’s user
state at a given time with absolute confidence. Below these, however, statements
about presence and absence are more difficult to make. In this section we examine
the effect of different chosen threshold values on the classification rates.

We compute True and False Positive Rates TPR and FPR for all possible
threshold levels using the data from the tests previously conducted. In our case,
the rates are defined as follows:

If s(a) is the state of a sample a, T (a, b) is the test result of the pair (a, b), t
is the threshold value below which sample pairs are classified as having the same
state and Na,b(cond) is the number of sample pairs a, b which satisfy a condition
cond, then

TPR =
Na,b(s(a) = s(b) ∧ T (a, b) < t)

Na,b(s(a) = s(b))
(6)

FPR =
Na,b(s(a) �= s(b) ∧ T (a, b) < t)

Na,b(s(a) �= s(b))
(7)

TPR is the number of correctly classified same-state pairs divided by the
total number of same-state pairs and FPR is the number of different-state-pairs
which were incorrectly classified as having the same state divided by the total
number of different-state pairs. TPR is a measure for how well the test can
identify samples with the same state as the source and FPR is a measure for
how often the test falsely reports two samples for having the same state.

In order to visualise the rates, we plot ROC (Receiver Operating Character-
istics) curves and calculate the AUC (Area Under Curve) for all of them. ROC
curves illustrate how fast the test performance drops (i.e. how fast the False
Positive Rate increases) when raising the threshold to get a higher True Positive
Rate. The AUC is a numerical measure for this quality: In the ideal case (the
test has a TPR of 1.0 and a FPR of 0.0) the value is 1 and in the worst case (the
test does not perform better than randomly guessing), the value is 0.5. Values

Deducing User Presence from Inter-Message Intervals 379

below 0.5 are similar to values above, since the test result interpretation can be
inverted to invert the ROC curve (i.e. values above the threshold are interpreted
as indicators for a same-state pair).

A selection of ROC curves is depicted in Fig. 4. Some tests (most notably the
χ2 Test for System 2) yield high values for both rates with the lowest possible
threshold, which is why the curves do not start at the origin [0, 0]. To calcu-
late the AUC for these cases, we use the line of no-discrimination—the values
obtained by randomly guessing—up to the FPR of the lowest threshold (the X
coordinate). From there on, we proceed with the regular estimation and calculate
the area below the straight line between two subsequent data points.

Most curves do not exhibit large deviations from the mean line. For System 1,
both the χ2 Test and the two KS Tests yield an AUC between 0.52 and 0.57.
Only the MC Test performs slightly better, the AUC is 0.525 for a source sample
with state Present and 0.688 for an Absent source sample (shown in Fig. 4).

Overall, the results for System 1 suggest that statistical tests are only of
limited use in deducing user states from inter-message intervals.

System 2 mostly confirms this observation, although the performance of the
different tests varies drastically.

The χ2 Test performs badly: For a Present source sample, the minimum
obtainable False Positive rate is 91.6% at a True Positive Rate of 61.3% (the
threshold value in this case is 0). For an Absent source sample, the minimum
False Positive rate is consequently the same, but the minimum True Positive
rate is 98.0%. The KS Test and the MC Test perform much better. Their AUC
values are relatively high and significant True Positive rates can be obtained
while keeping the False Positive rates below 50%.

From the analysis of the ROC curves we draw two conclusions. Firstly some
tests exhibit a significant deviation from the line of no-discrimination. Combining
multiple tests could further improve the results and yield more information.
Secondly we can confirm our previous observation that extreme threshold values
lead to absolute certainty in the classification.

6.4 Feasibility of Detection in Practice

The statistical tests do not yield clear results in all cases we examined. However,
upper or lower bounds can be determined in some cases, which then allow Eve to
make statements with absolute confidence. The requirements for these thresholds
to be useful for Eve are not hard to meet: She needs a source sample which—
when tested in conjunction with samples of a different state—yields values above
or below the thresholds.

To verify the practicability of this attack we divide our traffic data into a
training set and a test set. For training, we use the first 70 % of our data (221
Message Groups from System 1, 244 Message Groups from System 2).

We perform all aforementioned tests on the training data and calculate
thresholds for Message Group pairs with the same state. Using these thresh-
old, we choose one Message Group for every system and state where the amount
of correct classifications among the training data is maximized—i.e. the Group

380 F. Möllers and C. Sorge

Fig. 4. ROC curves for different tests and source states. Blue points show the actual val-
ues, dotted red lines of no-discrimination show linear ascension from [0, 0] to [1, 1]—the
values obtained by randomly guessing. The graphics indicate that the test performance
strongly depends on the system and the source sample. As noted in Sect. 6.1, the χ2

Test for System 2 produces counterintuitive results (Color figure online).

Deducing User Presence from Inter-Message Intervals 381

with the highest TPR among the training data. We then check each of these
Groups against the test data and calculate True and False Positive Rates using
the thresholds calculated from the training data before.

For System 1 using an Absent source sample, we reach a TPR of 5.3 % and
a FPR of 1.1 %. This suggests that the attack is not useful in practice. Using a
Present source sample, however, the FPR is at 0 while the TPR reaches 1 %.
It is thus only a matter of time until Eve can successfully identify an Absent
sample if she has a suitable Present source sample. For System 2, the best
Absent source sample achieves a TPR of 5.8 % while the FPR also stays at 0.
However, in the data for this System no suitable Present source sample exists.
The tests do not yield thresholds which allow for an unanimous classification.

This particular attack is not likely to be encountered in reality: Eve would
have to manually observe Alice’s home for several hours or even days, annotating
the captured traffic with the user states for every one-hour sample. However, the
experiment shows that under the right circumstances, unanimous classification is
possible. The experiment supports the theory that system-wide thresholds exist
which allow for a classification of states with absolute certainty. The follow-up
question whether such thresholds exist for a manufacturer or production series
remains to be answered.

7 Conclusion and Outlook

In this paper we have performed the first analysis of inter-message intervals in
Home Automation using statistical goodness of fit tests. We have used sample
data from two real world installations to measure the ability of an attacker in
deducing user states. In particular, we tried to answer the question:

If Eve has captured 1 hour of traffic from the Alice’s HAS and knows whether
Alice was present at that time, can Eve deduce Alice’s state by capturing another
hour of traffic?

Comparing and combining various tests, we were able to identify conditions
under which the question above could be confidently answered with yes.

The χ2 Test provides little information with regard to the question. However,
the MC Test and, in some cases, the KS Test reveal identifiable discrepancies
between samples with different states. A combination of all three tests allow an
attacker to mount a practical attack on the system and infer the user state by
passively listening after obtaining a suitable source sample.

For future work, we will work on new tests and combine them with those
applied in this paper in order to obtain more information. At the same time,
we will study the different properties of HASs to find out if there are filtering
techniques which can be applied to the samples in order to make the tests more
effective. Since this increases the abilities of an attacker to predict user presence
and absence without physical labour, we will also develop dummy traffic schemes
for use in HASs. These offer users the ability to mask their traffic and hide their
state from unauthorized observers.

382 F. Möllers and C. Sorge

References

1. Bagci, I.E., Roedig, U., Schulz, M., Hollick, M.: Gathering tamper evidence in Wi-
Fi networks based on channel state information. In: Proceedings of ACM WiSec
2014, pp. 183–188. ACM, New York (2014)

2. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy vulnerabilities in
encrypted HTTP streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS,
vol. 3856, pp. 1–11. Springer, Heidelberg (2006)

3. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with
radiometric signatures. In: Proceedings ACM MobiCom 2008, pp. 116–127. ACM,
New York (2008)

4. Deng, J., Han, R., Mishra, S.: Counter measures against traffic analysis attacks in
wireless sensor networks. In: Proceedings IEEE/CreateNet SecureComm 2005, pp.
113–126 (2005)

5. Denning, T., Kohno, T., Levy, H.M.: Computer security and the modern home.
CACM 56(1), 94–103 (2013)

6. Desmond, L.C.C., Yuan, C.C., Pheng, T.C., Lee, R.S.: Identifying unique devices
through wireless fingerprinting. In: Proceedings ACM WiSec 2008. pp. 46–55.
ACM, New York (2008)

7. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research, 6th edn. Oliver and Boyd, Edinburgh (1963)

8. Jacobsson, A., Boldt, M., Carlsson, B.: A risk analysis of a smart home automation
system. Future Generation Computer Systems 56, 719–733 (2016)

9. Kolmogorow, A.N.: Sulla determinazione empirica di una legge di distributione.
Giornale dell’Istituto Italiano degli Attuari 4, 1–11 (1933)

10. Li, N., Zhang, N., Das, S.K., Thuraisingham, B.: Privacy preservation in wireless
sensor networks: A state-of-the-art survey. Ad Hoc Netw. 7(8), 1501–1514 (2009)

11. Li, Y., Ren, J.: Source-location privacy through dynamic routing in wireless sensor
networks. In: Proceedings IEEE INFOCOM, pp. 1–9 (2010)

12. Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis tech-
niques. In: Proceedings ACM SIGMETRICS 2005, pp. 50–60. ACM, New York
(2005)

13. Mundt, T., Dähn, A., Glock, H.W.: Forensic analysis of home automation systems.
In: HotPETs 2014 (2014)

14. Mundt, T., Kruger, F., Wollenberg, T.: Who refuses to wash hands? Privacy issues
in modern house installation networks. In: IEEE BWCCA 2012, pp. 271–277 (2012)

15. Pearson, K.: On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. In: Kotz, S., Johnson, N. (eds.)
Breakthroughs in Statistics, pp. 11–28. Springer Series in Statistics, Springer New
York (1992)

16. Möllers, F., Sorge, C.: Hausautomationssysteme im Datenschutzrecht. In: Co-
operation: Proceedings of the 18th Legal Informatics Symposium IRIS 2015, pp.
553–558. Österreichische Computer Gesellschaft, German (2015)

17. Möllers, F., Seitz, S., Hellmann, A., Sorge, C.: Extrapolation and prediction of
user behaviour from wireless home automation communication. In: Proceedings of
ACM WiSec 2014, pp. 195–200. ACM, New York (2014)

18. Čeleda, P., Krejč́ı, R., Krmı́ček, V.: Flow-based security issue detection in building
automation and control networks. In: Szabó, R., Vidács, A. (eds.) EUNICE 2012.
LNCS, vol. 7479, pp. 64–75. Springer, Heidelberg (2012)

Deducing User Presence from Inter-Message Intervals 383

19. Wendzel, S., Kahler, B., Rist, T.: Covert channels and their prevention in building
automation protocols: a prototype exemplified using bacnet. Proc. IEEE Green-
Com 2012, 731–736 (2012)

20. Yao, L., Kang, L., Shang, P., Wu, G.: Protecting the sink location privacy in
wireless sensor networks. Personal and Ubiquitous Comput. 17(5), 883–893 (2013)

Privacy by Design Principles in Design of New
Generation Cognitive Assistive Technologies

Ella Kolkowska1(&) and Annica Kristofferson2

1 School of Business, Örebro University, Örebro, Sweden
ella.kolkowska@oru.se

2 School of Science and Technology, Örebro University, Örebro, Sweden
annica.kristoffersson@oru.se

Abstract. Today, simple analogue assistive technologies are transformed into
complex and sophisticated sensor networks. This raises many new privacy
issues that need to be considered. In this paper, we investigate how this new
generation of assistive technology incorporates Privacy by Design (PbD) prin-
ciples. The research is conducted as a case study where we use PbD principles as
an analytical lens to investigate the design of the new generation of digitalized
assistive technology as well as the users’ privacy preferences that arise in use of
this technology in real homes. Based on the findings from the case study, we
present guidelines for building in privacy in new generations of assistive
technologies and in this way protect the privacy of the people using these
technologies.

Keywords: Privacy requirements � Privacy by design � Assistive technology �
Cognitive decline � Aging in place

1 Introduction

Assistive technology (AT) is a broad term used to describe any item, object, device or
system that enables disabled people to perform a task that they would otherwise be
unable to do, or increase the ease and safety by which certain tasks can be performed.
AT plays an important role in supporting elderly people in living independently at
home [1]. In this paper, we focus on AT suitable for elderly with a mild cognitive
decline, e.g., dementia. The rapid development of cognitive assistive technologies
(CAT) paves the way for new and more efficient solutions that improve the quality of
life for people being affected by cognitive decline while decreasing their caregivers’
burden of care [2]. Today, we are rapidly moving from analogue CAT accessible only
for the user of the specific device to digital replicas, and further extensions of the CAT
involving sensor networks but also technologies accessible by remote caretakers. In this
paper, we refer to this technology as the new generation of CAT. The development of
CAT raises many new privacy issues which need to be considered [3–5] but unfor-
tunately, most of today’s development projects are technically oriented and focus on
functionality and technical effectiveness of the developed solutions [5, 6]. Conse-
quently, the privacy of the user is often not sufficiently considered during development
and implementation of the new generation of CAT [5].

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 384–397, 2016.
DOI: 10.1007/978-3-319-33630-5_26

The concept of Privacy-by-Design (PbD) advocated by EU [7] aims to ensure
privacy protection and personal control over the information collected when IT systems
are used. PbD principles are formulated to support the designers in taking the pro-
tection of privacy into account during the development of technologies (such as CAT)
that in turn results in better privacy protection for the users of these technologies.

In this paper, we investigate how the new generation of CAT incorporates PbD
principles with respect of elderly users’ privacy requirements. Based on our findings,
we formulate a set of guidelines for building in elderly users’ privacy preferences into
CAT and in this way protect the privacy of the people using them. A starting point for
this research is a set of PbD principles suggested by Cavoukian et al. [8] for the context
of personal health monitoring. The main contribution of the paper is adding a users’
perspective to the existing technology-focused PbD principles.

The paper is structured as follows. Section 2 describes and discusses the PbD
concept and PbD principles. Section 3 describes the new generation of CAT at focus in
this case study. Section 4 presents our research method. Section 5 reports on our
analysis of the case study. In Sect. 6, we discuss the results and present a set of
guidelines for building into privacy in the new generation of CAT. Section 7 concludes
the paper.

2 Privacy by Design Principles

Protection of privacy regarding sensitive personal data, is legally regulated in most
countries and therefore cannot be overlooked in design and use of the new generation
of CAT. It is also recognized that people, generally are not capable or not interested in
protecting their own sensitive information, thus there is a need for standardization and
automatization of privacy protection [7]. PbD is a way of embedding privacy into the
design specifications of technologies. Cavoukian et al. [8] suggest seven PbD princi-
ples for the context of personal health monitoring These seven principles are an
adjustment of the general OECD “Guidelines on the Protection of Privacy and
Transborder Flows of Personal Data” [8]. The seven PbD principles formulated by
Cavoukian et al. for the context of health care monitoring are [8]:

1. Proactive not Reactive; Preventative not Remedial. The PbD approach is charac-
terized by proactive rather than reactive measures. The first principle emphasizes that it
anticipates and prevents privacy invasive events before they happen.

2. Privacy as the Default Setting. The second principle means that no action is required
by the users to protect their privacy because it is built into the system, by default.

3. Privacy Embedded into Design. The third principle emphasizes the importance of
embedding privacy into the design and architecture of IT systems and business prac-
tices from the beginning and not add it afterwards.

4. Full Functionality - Positive-Sum, not Zero-Sum. The fourth principle considers
privacy as an integral part of the system without diminishing its functionality.

Privacy by Design Principles in Design 385

5. End-to-End Security - Full Lifecycle Protection. The fifth principle relates to the life
cycle management of information and stresses that data should be protected in all data
handling from its beginning (collection) to its end (destruction). I.e., this principle is
important to ensure privacy of the people using the technology when it is in use.

6. Visibility and Transparency - Keep it Open. The sixth principle states that data
protection should be visible and transparent to the different stakeholders, e.g. users and
providers. In the context of our case study, this principle means that the users are
informed about what data is being collected and for what purpose, how the data is
being used, and who can access it.

7. Respect for User Privacy - Keep it User-Centric. This principle means that the
individual’s privacy should be an interest of designers and operators of health systems.

Cavoukian et al. [8] define information privacy as an individual’s ability to exercise
control over the collection, use, disclosure and retention of his or her personal infor-
mation, including personal health information. Nordgren [9] argues that the PbD
principles suggested by Cavoukian et al. are supportive in ensuring privacy of the
patients in the context of personal health monitoring, although they have two limita-
tions: (1) PbD cannot solve all privacy problems because responsible handling of
information by human agents is also important, and (2) automated data protection is
useful in many cases, but it is not desirable in all cases. Generally, socially-oriented
research on privacy in this context is sparse. Previous research shows that elderly
people’s privacy preferences are not sufficiently investigated in development of CAT
[5, 10, 11]. Usually, it is assumed-at least implicitly-that a “common” CAT user does
not care about privacy [11]. Consequently, development of such technologies is often
functionality-driven without taking care of privacy issues that arise in use of such
technologies in real settings [5, 6]. That is against the PbD thinking. Our interest lies in
studying the privacy concerns that arise in use of CAT in real settings as well as their
potential, in case of unforeseen usage in the future. Since the importance of respecting
the users’ privacy is especially empathized in the seventh PbD principle we decided to
conduct a case study focusing on the users’ privacy preferences that come up in use of
CAT in relation to Cavoukian et al.’s seven PbD principles.

3 System Description

An example of the new generation of CAT is HOMEbasic1, which is a “safety and
security” package for those who need a combination of time and memory support,
environmental monitoring and alarm functionalities. HOMEbasic in its standard package
consists of a MEMOplanner and a sensor network (a door magnet, a stove sensor, an
on/off sensor, two motion sensors and a lamp actuator). The MEMOplanner supports the
user with the calendar reminders and sensor-based reminders listed in Table 1 by issuing

1 Abilia, HOMEbasic i2, http://www.abilia.com/sv/produkt/homebasic-i2?product_category=34 2015-
11-09.

386 E. Kolkowska and A. Kristofferson

http://www.abilia.com/sv/produkt/homebasic-i2?product_category=34

an auditory and visual reminder. Additionally, the light is automatically turned on when
the user’s feet are detected beside the bed tominimize the risk of falls during nighttime. In
the current version, all information is saved locally within the MEMOplanner. While
disabled by default upon delivery, a USB remote control can be provided to those who
need to administer MEMOplanner. Provided that MEMOplanner is connected to the
Internet, users (for example relatives or caregivers) with the USB can access all func-
tionalities inMEMOplanner, i.e. alsoWindows. There is only one access level for remote
administrators, hence, users provided with a USB can access and edit the content of the
calendar, contacts, and photos from remote. A Vera 3 gateway communicates both with
the sensors using the Z-wave protocol2 andwith theMEMOplanner (usually viaWiFi but
a cabled connection is possible). The Vera gateway can also connect the MEMOplanner
to the Internet. By default, the triggered reminders are not stored within the Vera or sent
remotely to any administrator.

4 Research Method

This research was conducted as a case study where we investigated the CAT described
in Sect. 3, as well as privacy concerns that arose in use of this technology in real
homes. Although results from case study research cannot be statistically generalized,
this approach supports collection of rich context-specific details and in this way reveals
important information about the object under study and increases the understanding of
the specific context [12]. By using this methodology, we were able to study the users’
expectations and needs regarding privacy and the new generation of CAT’s possibility
to address these needs in depth.

Table 1. Summary of functionality of HOMEbasic

2 Abilia, MEMOplanner Handbook, fttp://www.abilia.com/sites/abilia.com/ files/field_resource_file/
4X2650_Handbook_MEMOplanner_S525.pdf 2015-11-06.

Privacy by Design Principles in Design 387

http://www.abilia.com/sites/abilia.com/

4.1 Selection of Participants

We looked for test persons who had some sort of a cognitive decline. All seven test
persons (μ = 71.6 years old) were men and lived together with their wives
(μ = 65.7 years old) in ordinary housing/private residences outside nursing homes. All
test persons and four of the wives were retired. Two wives were still working full-time
and one was working part-time. Additional details about the case settings can be found
in [13]. In sum, the CAT was deployed and used in seven Swedish homes during a
period of approx. six months.

4.2 Data Collection

Data was collected in five stages: (1) functionality and privacy in design of HOMEbasic,
(2) users’ general privacy preferences, (3) observation of users’ privacy preferences
when using HOMEbasic, (4) users’ privacy preferences in relation to HOMEbasic’s
current and future functionality (scenarios), and (5) users’ opinions about the methods
used for implementation and introduction of HOMEbasic.

Stage 1: functionality and privacy in design of HOMEbasic. In this stage, we wanted to
gain a general understanding about HOMEbasic’s functionality and the implemented
privacy measures. For that reason, we participated in two demonstrations of
HOMEbasic where we could interact with the system and ask questions. We also
reviewed the HOMEbasic documentation and manuals and interviewed the developers.
Finally, we interviewed experts responsible for prescription of this (and similar) CAT
to end-users.

Stage 2: users’ general privacy preferences. In this stage, data was collected through
semi-structured interviews with the test persons and their relatives when the CAT was
deployed. The interviews aimed to collect data about the participants’ general
requirements and preferences regarding privacy and their expectations/worries
regarding privacy of information handled by the CAT. At this first interview session,
the test persons and their relatives were interviewed separately. The interviews focused
on three areas: (1) general privacy awareness and preferences, (2) privacy preferences
in interaction with health care and elderly care, (3) privacy concerns in relation to use
of the CAT. Aspects discussed within these areas were related to: the interviewees’
privacy enhancing behaviors when using ICT, knowledge about privacy regulation,
privacy awareness, privacy concerns etc.

Stage 3: observation of users’ privacy preferences when using HOMEbasic’s. During
the test period, we visited the test sites regularly and observed how the CAT was used.
We also discussed users’ privacy concerns that come up during the use of CAT.

Stage 4: users’ privacy preferences in relation to HOMEbasic’s current and future
functionality. This stage focused on privacy concerns in relation to present and future
potential functionality of the CAT and was conducted when the CAT was removed
from the homes. Future scenarios were developed based on the current trends in
development of CATs aiming at integrating these technologies as a part of health care

388 E. Kolkowska and A. Kristofferson

Table 2. CAT’s functionality and scenarios used during the interviews

Privacy by Design Principles in Design 389

and home care. For that reason, it is assumed in some scenarios that health care
professionals and home care staff are able to access the data collected by the CAT. Use
case-based scenarios steered the interview. We formulated at least one scenario for each
CAT existing functionality in the CAT (see Table 2) and several possible scenarios for
use of this functionality in the future. By default, the triggered alarms are not stored
within the Vera or sent remotely to any administrator. However, accessing information
about trigged alarms could allow home care staff and/or health care professionals to
monitor changes in behaviors of the person using a CAT. For instance, more frequent
actuation of the lamp sensor at nights could indicate that the elderly person has sleep
problems or more frequently issued sensor-based reminders could indicate a decline of
the elderly person’s health condition. Such information could help the caregivers to
react on the changes and help the elderly person in a more efficient way. Thus we
included scenarios 10–15 assuming that it will be possible in the future.

For each scenario, the participants were asked a few questions revealing their
privacy preferences, for instance: How does it make you feel? Why? What emotions
does this event raise? Why? How would you like to change the situation to feel okay?

Stage 5: users’ opinions about the methods used for implementation and introduction
of HOMEbasic. This interview session, which was conducted one month after the CAT
had been removed, focused on the test person’s and the relative’s reflections on the
approach taken in this case study. The questions asked during these interviews were:
What do you think about the information you got about the CAT? What do you think
about the introduction and training? In relation to each question, we asked several
follow up question such as: Was it enough/not enough? How would you like to get the
information/training? What was missing?

4.3 Data Analysis

The collected data was analyzed in 4 steps. First, we identified the privacy preferences
highlighted by the users in relation to the CAT’s functionality during all stages of data
collection. Second, we identified the privacy implementations from the material col-
lected during the first stage of data collection in order to find how PbD principles were
incorporated into the design of HOMEbasic. Third, we identified the users’ unsolved
privacy requirements in relation to each of these principles. Finally, based on the
analysis and current literature, we formulated guidelines for applying PbD principles in
design of the new generations of CAT.

5 CAT Users’ Privacy Requirements

In this section we describe users’ privacy requirements in relation to the current and
possible, future functionality of HOMEbasic. The section is structured according to the
functionality categories presented in Table 1. For clarity, illustrative examples in
relation to each principle are provided.

390 E. Kolkowska and A. Kristofferson

5.1 Calendar Visualization

Some privacy concerns regarding this functionality came up already during the second
stage of data collection (see Sect. 4.2), when we asked about users’ privacy concerns in
relation to HOMEbasic before they started to use it. Mainly the relatives expressed
privacy concerns in this stage, while the test persons were less worried about privacy
violation when using HOMEbasic. For instance, a relative in the test site that still had a
teenage child at home was very concerned about the child’s privacy and did not want to
add any events that would reveal information about the child into the calendar even if
this information would be helpful for the father who suffered from a strong cognitive
decline. Another wish that came up during this stage of data collection was the pos-
sibility to delete “old” data stored in the MEMOplanner. This requirement was
expressed by both the test persons and their relatives. Users preferred the data to be
deleted frequently by default but if it was not possible they wanted to be reminded to do
it by themselves. The users informed that the MEMOplanner may store detailed
descriptions about how the activities should be performed, including sensitive infor-
mation about the test person’s health condition and needs. An interesting reflection that
was made by one of the relatives during this stage of data collection was that privacy
requirements change in line with progression of the disorder. The respondent
explained: I think that when you get to that stage when you can no longer cope with
things alone and need home care to help you with everything, the privacy is already
forgotten. It is a sad part of it, but so it is. This means that privacy requirements are not
static and that the new generation of CAT should be able to handle these changes.

During this stage of data collection, two relatives also mentioned a need for limiting
access to the information visible in the MEMOplanner. This need becomes more
apparent during stage 3 and 4 of the data collection. For instance during stage 3, we
could observe that one of the wives kept deleting events that already occurred from the
calendar. Asking her about the reason for doing it, she answered: We could have done
something in the morning, then maybe we had guests in the afternoon or evening, and
then I thought that they did not need to know what we have done in the morning.

When discussing scenarios 1–2 in stage 4 of the data collection, we found that both
the test persons and the relatives are concerned about possible privacy violations when
the information in the MEMOplanner is visible for strangers who for different reasons
are present in the elderly peoples’ home. One of our respondents told us: I would not
like it if a stranger looked at our planning [in the MEMOplanner]. I would feel
uncomfortable. In this case, I would need to turn the calendar off, or somehow make
information invisible. For now, the calendar is completely open. Another respondent
explained: The idea is to put everything in the MEMOplanner, e.g., that you have to
visit a special doctor. You may not want everyone to know about this and about what
you do during the days. I think it depends on family relationships and how you are as a
person. Some people do not want others to know anything…. Thus, we identified a
clear need for a possibility to sometimes hide the information in the MEMOplanner.

Privacy by Design Principles in Design 391

5.2 Calendar Reminders

The users’ privacy concerns related to this functionality were identified mainly in stage
3 and 4 of the data collection (see Sect. 4.2). For instance, while visiting a test site, we
noticed that the volume of the reminders was heavily lowered. As a consequence, the
test person could hardly hear the voice reminders. When we asked them why they
lowered the volume for the reminders, the wife explained that she felt embarrassed
when the neighbors could hear the voice reminders so she decided to lower the volume.
Additional clear privacy preferences were formulated by the users during stage 4 when
we discussed scenarios 5 and 6. We found that the users had different privacy pref-
erences regarding this functionality. While some users did not mind if other people
heared the reminders, other users were clearly uncomfortable with this. One of our test
persons told us: I don’t feel comfortable with this. It makes you feel sick! I try not to
think about my disorder all the time. In this case, I would get lots of questions that I do
not want to get or discuss. It’s a party and I also want to have fun. I would like the
MEMOplanner or the reminders to be switched off just then.

5.3 Additional Functionality and Remote Access

Privacy concerns related to this, future possible way of using MEMOplanner were
revealed during stage 4 when we discussed scenarios 3–4 and 7–9. The current version
of the MEMOplanner offers the possibility to store contacts and photos and to use
Skype for communication. In the future scenarios, we assumed that home care per-
sonnel will have remote access to the MEMOplanner to be able to help the user to plan
the activities. In the current version of the CAT, all information is equally accessible
for all users and there is no possibility to restrict access to certain parts of the stored
data. However, while discussing scenarios 3–4 and 7–9, we found that photos and in
some cases contacts are considered as sensitive for some users and for that reason they
should not be accessible for all categories of current or future users. One test person
told us: I would not like it if the homecare staff looked at my photos without permission.
This is not a part of their job! Maybe they would not do it, but because I cannot prevent
it, I cannot be sure. Thus, the users emphasized the importance of access control
mechanisms allowing them to decide who is permitted to access specific information
stored in the MEMOplanner (e.g., planning, details regarding each planned event,
photos etc.). One of the users said: you do not want everyone to know what information
you put in [the calendar]. Then you can get worried about how that information is
disseminated. You should be able to control who sees what. As it is in other systems;
some people can access the information and others cannot.

5.4 Sensor-Based Reminders and Actuation

Privacy concerns in relation to the future use of these functionalities were discussed in
stage 4 of the data collection using scenarios 10–15. We found that most test persons
would welcome such functionality if the main reason for it was to help them in their
disorder. However, there was a clear difference in the users’ privacy concerns

392 E. Kolkowska and A. Kristofferson

depending on which group of caregivers that would monitor the sensor-based remin-
ders and actuations. The users did not have any restrictions in the case of health care
professionals. They did not even care if they would be informed about the monitoring
in advance or not. The users were more restrictive in the case of homecare staff. They
could accept the monitoring if they were informed in advance about the purpose and
extent of the monitoring. They also highlighted it as important to limit the number of
home care staff (preferably only one contact person) that could access the log data.
Generally, they felt that monitoring could increase their sense of safety at home, when
they could no longer cope with the basic things by themselves.

Table 3 summarizes the users’ privacy requirements (R) in relation to CAT’s
functionality. Some of the requirements were clearly stated by the users, others were
derived by the researchers based on users’ statements.

6 Guidelines for Applying PbD Principles in Design of CAT

In this section, we discuss findings from the case study in relation to the PbD principles
formulated by Cavoukian et al. [8] and existing literature. Based on the discussion, we
formulate a set of guidelines for applying PbD principles in design and use of the new
generation of CAT.

Table 3. Summary of the users’ privacy requirnements in relation to CAT’s functionality

Privacy by Design Principles in Design 393

6.1 Principle 1: Proactive not Reactive; Preventative not Remedial

The importance of privacy protection is not emphasized in the documentation of the
CAT which focuses on the description of functionality allowing users to live safely and
independently in their homes. Based on the documentation, we can conclude that the
design of HOMEbasic is safety- and functionality-driven and users’ privacy is not
especially emphasized. However the users highlighted many privacy concerns in
relation to the existing and future possible use of CAT (see Sect. 5). They also
expressed several privacy requirements in relation to this technology (see Table 3).
Following the first PbD principle means to design CATs with these privacy require-
ments in mind to be able to prevent privacy invasive events before they happen.
Therefore the identified privacy requirements should be considered when CAT are
designed. Another important finding from our case study is that different users expe-
rience different events as privacy invasive and that contexts in which CAT are used are
very different. The problem of not addressing the diversity of elderly users is high-
lighted in literature. The elderly users are often treated as a homogenous group with
similar needs and preferences [5, 11]. But to be able to truly meet elderly peoples’
needs and preferences, the designers need to acknowledge and understand the differ-
ences [6]. Thus, the designers of the new generation of CAT should consider the variety
of users and contexts in which CAT can be used and design adaptable privacy solu-
tions that prevent the privacy invasive events to happen (Guideline 1). By adaptable
solutions we mean flexible solutions that are possible to adapt to the diverse privacy
requirements and diverse context of the elderly users homes.

6.2 Principle 2: Privacy as the Default

We found that privacy is built into HOMEbasic to some degree. For instance, the
product’s documentation states that the possibility to remotely access the
MEMOplanner is disabled by default and must be turned on manually because of
privacy concerns. In this way, the data stored in the MEMOplanner is protected against
unauthorized usage by default and the users do not need to take any additional action to
protect the sensitive data in the default setup.

However, we discovered several examples (see Sect. 5) when protection of privacy
required users to actively take necessary actions, otherwise there was a risk for privacy
violation. In some cases, the desired level of protection was not even achievable because
of lacking technical implementations, i.e., access control and screen saver. We found
that our participants would like the CAT to protect their privacy by default. Protecting
privacy by default may result in inflexible and unadaptable solutions that cannot handle
changing privacy requirements. As described in Sect. 5.1, the elderly person’s health
situation can change over time and this can lead to changed privacy preferences.
Treating privacy requirements as static is considered as being problematic in the liter-
ature [5, 14]. Thus, the designers of the new generation of CAT should investigate users’
privacy preferences to find situations when privacy protection can be built into the
technology by default. Default settings should be balanced with flexibility (Guideline 2).

394 E. Kolkowska and A. Kristofferson

6.3 Principle 3: Privacy Embedded into Design

Regarding the third principle, we found that users would like to have additional tech-
nical solution to protect their privacy. It is argued in literature that most people are not
capable of protecting their own sensitive information [9], thus embedding privacy in
technical solutions is important. However it is also argued that solely technical solutions
cannot solve the complex privacy challenges that arise when using the new generation of
CAT [5]. Thus, designers of new generation of CAT should provide users with privacy
guidelines and recommendations on how to protect privacy when the CAT is in use.
Such guidance is missing in the CAT’s documentation and manuals. (Guideline 3)

6.4 Principle 4: Functionality—Positive-Sum, not Zero-Sum

Our findings in relation to principle 4 indicate that it is not easy to balance utility and
privacy in use of the new generation of CAT. In the provided examples (see Sect. 5),
we can see that privacy measures such as hiding information in the MEMOplanner or
lowering the volume of the reminders may lead to a decreased possibility to support the
person affected by cognitive decline (see Sects. 5.1 and 5.2). The conflict between
privacy and other values such as safety and autonomy is well known in literature and
often highlighted as problematic [9]. Thus, designers of the new generation of CAT
should perform a privacy and utility analysis when a new functionality is added to the
system (Guideline 4). There are situations where new functionality does not contribute
to utility and jeopardize privacy. Such development should be avoided.

6.5 Principle 5: End-to-End Lifecycle Protection

Although we studied only a small sample of seven test sites, we could observe dif-
ferences in privacy preferences that depended on contextual variables such as family
situation, family relationships, how active the elderly people were and how many
people who visited their homes. We argue that these different privacy needs would not
be identified if we did not studied the use of CAT in real settings. Thus, we can
conclude that it is important to study CAT in use to be able to implement privacy
measures that are relevant and adapted to the specific needs of the different users. The
problem of a lack of real experiences of using CAT in practice and thus a lack of
knowledge about possible privacy concerns that can arise when using such technology
is highlighted in literature as problematic [3, 11]. We argue that designers of CAT
should consider privacy aspects regarding the use of CAT in real settings already
during the development process (Guideline 5). It can be done by involving significant
stakeholders, such as primary users, secondary users, health care professionals, and
other formal and informal caregivers in design of CAT.

6.6 Principle 6: Visibility and Transparency

To comply with this PbD principle is a challenge in the CAT context because often
elderly people have difficulties in understanding the consequences that the implemented

Privacy by Design Principles in Design 395

technology have on their privacy. The problem is also highlighted in literature. For
instance Bowes et al. [11] argue that elderly people do not have the necessary (technical)
background to formulate the appropriate privacy requirements and understand the pri-
vacy consequences of the implemented CAT. Although most of the participants told us
(see 4.2, stage 5) that they experienced the CAT to be complex and sometimes difficult
to use, they were able to discuss privacy issues in relation to it. The understanding came
after they had used the CAT for some time in their homes and because we used methods
and tolls to exemplify and visualize current and future use of the CAT i.e. scenarios,
audio/video presentation. Thus we argue that it is important to use specific methods and
tools to make the privacy consequences understandable and clear for the elderly people
who will use the new generation of CAT (Guideline 6).

6.7 Principle 7: Respect for the Users’ Privacy

Regarding the seventh principle, we can conclude that elderly people are both capable
and willing to engage in discussions about their privacy preferences. We also found
(see Sect. 4.2, stage 2) that elderly people do care about privacy. Generally,
they are careful about how they reveal their personal information in use of technology,
Internet, social media and even in their everyday life. They are mostly concerned that
their personal information may be used by criminals. Regarding revealing health
information, they totally trust health care professionals and are not concerned about
providing such information to health care organizations. Regarding privacy in relation
to information handled by CAT, we can conclude that the preferences differed between
the users’ depending on personal preferences, environmental factors, and family rela-
tionships. Thus, we argue that designers of CAT should involve the elderly users in the
design of the new generation of CAT and the design of privacy solutions in relation to
this technology (Guideline 7).

7 Conclusion

The rapid development of cognitive assistive technologies (CAT) from simple ana-
logue assistive devices into complex and sophisticated sensor networks raises many
new privacy issues that are not sufficiently addressed in design and use of these
technologies in real homes. This paper investigated how the new generation of CAT
incorporates PbD principles suggested by Cavoukian et al. [8]. Special attention was
put on that users’ privacy preferences that arise in use of new generation of CAT in real
homes. Based on our empirical findings and a literature review, we suggest a set of
guidelines for applying Cavoukian et al.’s PbD principles in design and use of the new
generation of CAT. Using these guidelines will help to build in users’ privacy
requirements in the design of a new generation of CAT and in this way protect the
privacy of the elderly people using these technologies.

Generally, we can conclude that the existing PbD principles focus on technical
aspects of privacy and often reduce privacy to the protection of personal data. Our
examples (see Sect. 5) show that some privacy concerns arising in the use of CAT are

396 E. Kolkowska and A. Kristofferson

beyond this narrow view of privacy. For instance, we found that privacy in this context
is not only related to the primary user of the CAT but also to people who are in the
user’s environment such as a child or wife etc. We argue that more research of
non-technical privacy aspects of privacy in this context is needed.

Acknowledgment. The authors would like to thank the elderly participants and the Länsför-
säkringar Research Foundation for making this study possible.

References

1. Frennert, S.A., Forsberg, A., Östlund, B.: Elderly people’s perception of a telehealthcare
system: relative advantage, compatibility, complexity and observability. J. Technol. Hum.
Serv. 31, 218–237 (2013)

2. Koch, S., Marschollek, M., Wolf, K.H., Plischke, M., Haux, R.: On health-enabling and
ambient-assistive technologies. What has been achieved and where do we have to go?
Methods Inf. Med. 48, 29–37 (2009)

3. Kosta, E., Pitkänen, O., Niemelä, M., Kaasinen, E.: Mobile-centric ambient intelligence in
Health- and Homecare-anticipating ethical and legal challenge. Sci. Eng. Ethics 16, 303–323
(2010)

4. Shankar, K., Camp, L.J., Connelly, K., Huber, L.: Aging, privacy, and home-based
computing: developing a design framework. IEEE Pervasive Comput. 11, 46–54 (2012)

5. Zwijsen, S.A., Niemeijer, A.R., Hertogh, C.M.P.M.: Ethics of using assistive technology in
the care for community-dwelling elderly people: An overview of the literature. Aging
Mental Health 15, 419–427 (2011)

6. Frennert, S.A., Östlund, B.: Review: seven matters of concern of social robots and older
people. Int. J. Soc. Robot. 6, 299–310 (2014)

7. European Commission: Proposal for a regulation of the European Parliament and of the
Council on the protection of individuals with regard to the processing of personal data and
on the free movement of such data (General Data Protection Regulation) (2012)

8. Cavoukian, A., Fisher, A., Killen, S., Hoffman, D.: Remote home health care technologies:
how to ensure privacy? Build it in: Privacy by design. Identity Inf. Soc. 3, 363–378 (2010)

9. Nordgren, A.: Privacy by design in personal health monitoring. Health Care Anal. 23,
148–164 (2013)

10. Mort, M., Roberts, C., Pols, J., Domenech, M., Moser, I.: Ethical implications of home
telecare for older people: a framework derived from a multisited participative study. Health
Expect. 18, 438–449 (2015)

11. Bowes, A., Dawson, A., Bell, D.: Implications of lifestyle monitoring data in ageing
research. Inf. Commun. Soc. 15, 5–22 (2012)

12. Yin, R.K.: Case Study Research-Design and Methods. SAGE Publications, Thousand Oaks
(1994)

13. Kristoffersson, A., Kolkowska, E., Loutfi, A.: Assessment of expectations and needs of a
sensor network to promote elderly’s sense of safety and security. In: The Seventh
International Conference on Advances in Human-Oriented and Personalized Mechanisms,
Technologies, and Services, CENTRIC 2014, pp. 22–28 (2014)

14. Remmers, H.: Environments for ageing, assistive technology and self-determination: ethical
perspectives. Inf. Health Soc. Care 35, 200–210 (2010)

Privacy by Design Principles in Design 397

A Trustless Privacy-Preserving Reputation
System

Alexander Schaub1(B), Rémi Bazin1, Omar Hasan2, and Lionel Brunie2

1 Ecole Polytechnique, 91128 Palaiseau, France
alexander.schaub@polytechnique.edu

2 University of Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, 69621 Lyon, France

Abstract. Reputation systems are crucial for distributed applications
in which users have to be made accountable for their actions, such as
e-commerce websites. However, existing systems often disclose the iden-
tity of the raters, which might deter honest users from submitting reviews
out of fear of retaliation from the ratees. While many privacy-preserving
reputation systems have been proposed, we observe that none of them is
simultaneously truly decentralized, trustless, and suitable for real world
usage in, for example, e-commerce applications. In this paper, we present a
blockchain based decentralized privacy-preserving reputation system. We
demonstrate that our system provides correctness and security while elim-
inating the need for users to trust any third parties or even fellow users.

1 Introduction

These days, reputation systems are implemented in various websites, where they
are crucial for the customer experience. For instance, buyers are inclined to
pay more for goods if the seller has a good reputation [1]. One of the first
and best-studied systems in the e-commerce domain is the reputation system at
ebay.com [2]. Its main objective is to help prospective customers to determine
the trustworthiness of the sellers, and thus minimize the risk of fraud.

A study [2] showed that users may retaliate in case of negative feedback,
and thus raters are less likely to provide honest feedback. In order to avoid this
problem, several privacy preserving solutions have been proposed. Some of them
try to hide the identity of the ratee [3–5], while others try to hide the rating
[6–8] while making the aggregated reputation public.

While some of the existing privacy preserving reputation systems might be
suitable for e-commerce applications, we observe that each one of them comes
with its drawbacks. For example, Kerschbaum’s system [9] has been specifically
designed with e-commerce in mind. However, it is a centralized system, and thus
can potentially be abused by the central authority. Other schemes [8] achieve
anonymity even in this context, but are not trustless.

Given these considerations, we would like to achieve a trustless reputation sys-
tem, i.e. one that does not require the participants to trust other users or entities
to not disrupt the protocol or to breach their privacy. This privacy-preserving
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
J.-H. Hoepman and S. Katzenbeisser (Eds.): SEC 2016, IFIP AICT 471, pp. 398–411, 2016.
DOI: 10.1007/978-3-319-33630-5 27

http://www.ebay.com/

A Trustless Privacy-Preserving Reputation System 399

reputation model should be suitable for e-commerce applications, and we will
therefore suppose that the identity of the customer is revealed during the trans-
actions that they can rate.

In order to achieve true trustlessness we also require our system to be decen-
tralized. One way to obtain decentralization is to use a distributed database in
order to store the ratings submitted by the customers. We will achieve this using
blockchains.

The blockchain technology, which became popular thanks to the BitCoin
protocol [10], has been used in various applications. Among these applications,
we can count a domain name system (DNS) named Namecoin. The blockchain
can be more generally, as explained in [11], seen as a public distributed database,
with all the participants agreeing about its state in a secure manner. In BitCoin,
for example, this database serves to store a ledger of the coins that each user
owns, as well as the transactions between the users.

Anonymous reputation systems are a natural application for the blockchain
technology. There have already been some attempts at building such systems
[12], however, there seems to be no usable solution yet.

We will leverage this technology in order to achieve the objectives of our
reputation system. It will enable us to build a truly decentralized system, that
does not require the participants to trust other users, as the integrity of the
rating-history can be verified by every user.

We propose a truly trustless, decentralized, anonymity preserving reputation
system that is suitable for e-commerce applications. It is based on the blockchain
technology, and will induce low overhead for the processing of transactions, while
at the same time be robust and allow customers to submit ratings as well as
textual reviews.

The rest of the paper is organized as follows. In Sect. 2, we will analyze
existing privacy-preserving systems and explain in further detail why they are
not suitable for e-commerce applications. In Sect. 3, we will explain the model
used for our system, and list the properties that we want to achieve. Then, in
Sect. 4, we will describe the necessary building blocks, and in Sect. 5, we will
present our system in detail. Finally, we will explain in Sect. 6, why this system
meets the expected goals. We conclude the paper in Sect. 7.

2 Related Work

Privacy preserving reputation systems have been studied in the literature for
a long time. One of the first proposed systems was designed by Pavlov et al.
[6] and uses primitives such as the secure sum and verifiable secret sharing.
It protects the confidentiality of the feedback by hiding the values of the sub-
mitted ratings. Hasan et al. [8] later introduced a system based on additive
homomorphic cryptography and Zero-Knowledge proofs where the privacy of a
given user can be preserved even in the presence of a large majority of malicious
users. A little later, Dimitriou et al. [7] proposed two protocols with a simi-
lar architecture to the systems presented by Hasan et al., with slightly higher

https://namecoin.info/

400 A. Schaub et al.

asymptotic complexity, however, less demanding in terms of resources for the
querier (he has to relay less messages, verify less proofs, etc.).

Some protocols [6–8,13,14] are truly decentralized and the feedback is
retrieved from the participants every time a querier wishes to learn the reputa-
tion of another participant. Therefore, all the nodes have to stay online in order
to contribute to the reputation system, which is not suitable for e-commerce
applications, but might be useful in other contexts, such as P2P applications.

Hence, we will focus on privacy-preserving methods that completely hide the
identity of the raters. Protocols of such type do already exist, however each one of
them has its own weaknesses. The works of Androulaki et al. [13] and Petrlic et al.
[14], for example, are instances of pseudonym based schemes. Nonetheless, these
two require a Trusted Third Party (TTP), and are thus not truly decentralized.
As the TTP has to be completely trusted for certain operations, its misbehavior
could breach the privacy of the users or the correctness of the system.

Anceaume et al. [3,4] proposed slightly different solutions. Instead of all
the information about the reputation of the users being held by a single TTP,
they distribute the trust using a DHT-structure: every peer holds some part of
the information, which allows to compute the reputation of a service provider.
Moreover, in their system, peers rate transactions between customers and ser-
vice providers, rather than directly rating service providers. This seems more
suitable for e-commerce applications, as one would typically rate every transac-
tion made with a service provider, rather than periodically update their opinion
on a given service provider. It also allows to introduce proofs of transactions,
which guarantee (more or less) that only transactions that really took place can
be rated. However, as the service provider creates those proofs, it is complicated
to ensure that he doesn’t generate proofs for transactions that did not happen,
in order to submit positive reviews by himself and wrongfully increase his own
reputation. Anceaume’s and Lajoie-Mazenc’s systems only offer little protection
against these attacks. The system proposed in [4] also makes use of complicated
zero-knowledge proofs and is thus quite costly to perform (several seconds for
each participant, up to a minute in certain cases).

None of those protocols are trustless, and therefore need either the customers
or the service providers (or both) to trust some entities not to tamper with the
system or to break privacy, without being able to verify that there is no bad
behavior. We eliminate this weakness in the system that we present in this
paper.

3 Our Model

3.1 Participants

For our system, we choose a model that is as close as possible to actual
e-commerce systems. As stated in Sect. 1, we will consider two types of users:
service providers (SP) who will sell goods or services, and customers who might
buy them. The most important part in e-commerce rating systems is the rating
of the service providers (as opposed to ratings from the seller about the buyer).

A Trustless Privacy-Preserving Reputation System 401

Therefore, we will only consider ratings from the customers about the SPs. Only
customers might be raters, and only SP will be ratees.

We will also suppose that the transaction will disclose the identity of the
customer: the SP will need the customer’s credentials, such as his credit card
number or address, in order to process the order. Even if the transaction is done
via an anonymous electronic currency such as Dashcoin or Zerocash, the service
provider will most certainly need the customer’s address in order to deliver the
good. We suppose that after every transaction between a customer and a SP,
the customer might rate the SP.

More formally, we will introduce the following notations:

S: The set of all the service providers (i.e. ratees)

C: The set of all the customers (i.e. raters)

P: The set of all the participants, P := S ∪ C. It is simply the set of all the
nodes participating in the network.

B: The blockchain.
As the blockchain defines an ordered set of blocks. A block is simply a set

of operations that are aggregated for maintenance reasons (it is more efficient
to store them this way). The blockchain can also be seen as a database whose
state will be the initial state (that is hard-coded) on which all the operations
contained in the subsequent blocks are applied.

Every time a new block is constituted, an award will be paid to the user
that constituted it. This works in a similar fashion as in the so-called “alt-
coins”. In our system, owning coins is mandatory in order to be allowed to
receive reputation. It also helps preventing spam and other kinds of attacks (as
described in Sect. 6.2).

A: The set of all the addresses of the participants.
These addresses will be used for maintenance. Every service provider will

own one address. They will be used, in particular, to hold and spend the coins
generated by the blockchain, but also to identify the service providers.

Service providers will have a unique address, as issuing reputation tokens will
cost coins and owning an address is necessary in order to own and transfer them.
As a service provider will not gain anything from having more than one address
(see Sect. 6.2 for more details), there is no need to try and enforce this policy.
Furthermore, it would be complex to enforce it in a decentralized fashion.

3.2 Operations

We will next describe the functions that are needed in our system. The protocols
that implement these functions will be described in the later sections. Most, if
not all, of these functions will be performed with respect to a given blockchain B,
or need to make calls to a random number generator (RNG). These are implicit
inputs of the protocols.

http://dashcoin.net/
http://zerocash-project.org/

402 A. Schaub et al.

For the Customer. These operations will be performed by a certain customer
c ∈ C.

– setup()
Generates a new public key, usable by the customer, for the transaction.

– get reputation(s)
Allows the customer to query the reputation of a service provider s ∈ S.

– get token(s, x)
Allows the customer to request a token that will prove that he was engaged
in a transaction x with the service provider s. Outputs a blinded token t̄x.

– unblind token(t̄x)
Unblinds the token that was retrieved using the get token protocol. Outputs
an unblinded token tx. The token is bound to the transaction. However, given
two tokens tx and tx′ , the service provider s will not be able to tell which
token belongs to which transaction.

– publish review(s, tx)
Allows the customer to publish a review about the service provider s ∈ S,
using the token tx previously unblinded.

For the Service Provider. This operation will be performed by the service
provider.

– issue token(c, x)
In response to a get token request from the customer c ∈ C, issues a blinded
token t̄ and sends it to the customer, if the customer is entitled to receive one,
i.e. he was really engaged in the transaction x.

Block-Chain Related Operations. These operations are mostly indepen-
dent from the underlying reputation model. However, a blockchain mechanism
is needed in order to store the reputation values in a reliable way. These opera-
tions can be performed by any node in the network.

– broadcast(op)
Broadcasts an operation op (which can be a review, a transaction, etc.) to all
the nodes running the protocol.

– compute balance(s)
For a service provider s ∈ S, representing an address addr, computes the
balance (in terms of coins) associated with this service provider.

– create new block(addr, b)
Broadcasts a newly mined block b. It will contain, among other data, reviews
and transactions, but also a proof that addr has the right to constitute the
next block.

The incentive for creating blocks are the coins. Every address who correctly
creates a block and broadcasts it will receive a certain amount of coins. They
serve as a currency within this system, in a similar fashion as in many cryp-
tocurrencies that have been developed since BitCoin. However, in our system,

A Trustless Privacy-Preserving Reputation System 403

the main usage of the coins is not to serve as an alternative currency. Rather,
they will be needed by the service providers in order to have the right to deliver
tokens. This also serves to limit spam from the service providers, who could
simply create as many tokens as they desire in order to boost their reputation.

3.3 Adversarial Model

We consider a malicious adversarial model with collusions. This model implies
that any participant in the protocol may behave arbitrarily and deviate from
the protocol at any time as deemed necessary. Service providers may want to
learn the identity of the customers that rated them, they might try to raise their
own reputation, and collaborate with other service providers. Customers may try
to submit reviews without having previously interacted with service providers,
might try to use the received token in order to rate other service providers, or
might try to otherwise disrupt the service. We will also suppose that there might
be attempts to disrupt the blockchain, such as forking in order to confuse new
participants.

3.4 Objectives

The objectives for our system are the following:

– Trustlessness
In an e-commerce system, we cannot expect customers to have pre-existing
trust towards other customers of the same SP. Therefore, our system should
not suppose that there is pre-existing subjective trust between users. No cus-
tomer should have to trust any entity not to deviate from the protocol in
order to break its privacy or change its rating. The protocol should ensure
that privacy and correctness are preserved even if other participants deviate
from the protocol. Therefore, it should also not rely on Trusted Third Parties,
or Certification Authorities, which, by definition, must be trusted to behave
faithfully.

– Suitability for e-commerce
As the identity of a customer will be most certainly revealed during a transac-
tion, the system should enforce the unlinkability of transactions and ratings,
i.e. for a given rating, it should not be possible to determine which transac-
tion it is related to (it should however be possible to identify the related SP).
It should, however, not be possible for a customer to submit a rating if no
transaction took place.

– Decentralization
We want to avoid any central point of failure as well as any single point of
control. Therefore, the system should not depend on one, two, or a small
number of nodes in order to work properly. We will even exclude Certification
Authorities, because they have proven unreliable in the past, either because
they became subject to attacks [15,16] or because they issued themselves
fraudulent certificates [17], and because they would induce some centralization
aspects in the system.

404 A. Schaub et al.

– Anonymity preservation
The anonymity of the customers should be preserved. More precisely, the
ratings and the identities of the customers should be unlinkable, as well as
the ratings among themselves. The later kind of unlinkability is also crucial
to preserve the anonymity of the users, as highlighted in [18,19].

– Robustness
Our system should be robust to classical attacks on reputation systems, in
particular bad-mouthing, ballot-stuffing, Sybil attacks and whitewashing.

4 Building Blocks

In order to be able to build this protocol, we will need two basic building
blocks: the blockchain and blind signatures.

4.1 Blockchain

A blockchain, as first desribed in [10], can be seen as a distributed, public data-
base, which can be read by every user running the appropriate program, but
on which writing has a cost, or cannot be done at any time by any user [11].
Every action that modifies this database is broadcasted among all the users in
the network, and they are recorded as “blocks”. The creation of those “blocks” is
controlled by mechanisms that vary between the different blockchain algorithms,
and the state of the database is the sum of all the actions in all the blocks at
a given moment in time. This concept has become popular due to the BitCoin
currency [10], which seems to be the first application making use of this idea.
Two families of blockchain systems have since then emerged.

The first one uses a mechanism for controlling the blockchain that is similar
to the one used in BitCoin, in which the probability of a participant creating
a new block is proportional to its computing power. The second one uses a
different mechanism, in which the amounts of coins held by the participant
define this probability. This is called Proof-of-Stake, and we advocate the use of
such a blockchain system for our protocol. More information about the different
blockchain systems can be found in the extended version of this paper [20].

4.2 Blind Signatures

A blind signature scheme is a protocol in which the signer of a message does
not learn anything about the content of the message that was signed. We expect
from such a system the following properties:

Unforgeablility
The signature cannot be falsified (only the user knowing some secret infor-
mation, such as a private key, can issue valid signatures).

Blindness
The signer does not learn anything about the message it signs (given the
information available to the signer, all possible messages are equally likely to
be about to be signed).

A Trustless Privacy-Preserving Reputation System 405

Untraceability
Once the message and signature have been revealed, the signer cannot deter-
mine when the message was signed.

For example, the blind signature scheme proposed by Okamoto [21], based
on bilinear pairings, could be used to instantiate this primitive, or the simpler
version based on the RSA algorithm, first proposed by Chaum [22]. As Chaum’s
version is simpler and faster, we will use this scheme in order to explain our
protocol.

5 Specification of the Protocol

5.1 An Overview

The proposed protocol could be summarized as follows:

1. Before contacting the service provider in order to perform a transaction,
the customer may compute the service provider’s reputation using the
get reputation protocol.

2. Once the customer retrieved the reputation of the service provider, he decides
whether to engage in a transaction with the SP or not.

3. If the customer decides to engage in a transaction, before a transaction takes
place, the customer creates a new public key, derived from a private/public key
pair, for the process. This key should be kept secret from the service provider
for the moment. It will be used to avoid token-theft Then, the transaction
takes place: for example, the customer sends the money, and the SP starts to
deliver the good.

4. Just after the transaction takes place, the customer asks the SP for a blinded
token by performing the get token protocol (which takes the freshly gener-
ated public key as input), and verifies that the SP has a sufficient balance
for issuing a token (using the compute balance protocol). The balance should
be greater than some n coins, since n coins will be deduced from the SP’s
account when the review will be integrated in the blockchain. The customer
then verifies the token (i.e. verifies that the signature is correct) and unblinds
it for later use with help of the unblind token protocol.

Requiring some coins to be spent in order to receive a review helps to
prevent ballot-stuffing attacks, as the SPs may, theoretically, issue an unlim-
ited amount of tokens to themselves and could therefore submit an unlimited
number of positive reviews for themselves. As for the token, it serves as a
proof that a transaction really occurred. It therefore helps to greatly reduce
the risk of bad mouthing attacks. It has to be blinded, so that the service
provider cannot link the token, and therefore the rating, to the transaction
and the identity of the customer.

5. Once the customer is ready to review the SP, he will broadcast a message
containing the address of the SP, the token, along with the rating of the
transaction and (optionally) a written review, a signature on this information,
as well as a pointer to the last review concerning the same service provider.
This is done via the publish review protocol. a cash system.

406 A. Schaub et al.

6. A participant wishing to earn coins (in order to be allowed to grant tokens
for example) verifies if he is allowed to constitute the next block. If it is the
case, he will run the constitute block protocol. The creation of blocks helps
to maintain a unique history of actions, avoids double-use of tokens, and is
incentivized through the reward in coins.

In the next sub-sections, we will describe the protocol in more detail.

5.2 Public Key Creation

Before the transaction takes place, the customer creates a new public key that
will be used for one transaction only (similar to what is recommended for BitCoin
addresses for example). This will be the public part of an ECDSA key [23].
It must not be communicated to the SP during the setup phase. An outline of
the setup protocol could look like follows:

Algorithm 1. Setup protocol
1: procedure setup(T)
2: (p, a, b, G, n, h) ← T // Those are the parameters of the elliptic curve used for

ECDSA, for example those of secp256k1
3: privKey ← rand(0, n)
4: pubKey ← privKey ∗ G

return (pubKey, privKey)

5.3 Blinded Token Exchange

Before the transaction takes place, the customer will receive a token from the
SP that will guarantee that its review will be accepted. For this purpose, the
customer hashes the previously generated public key and requests a blind sig-
nature on this, for example using Okamoto’s provable blind signature scheme
(in the complete, not partial blinding setup), or the much simpler Chaum’s blind
signature algorithm. This will make the token unlinkable to the transaction, and
therefore guarantee the anonymity. The customer will also check that there are
enough coins in the wallet associated with the SP. Then, the transaction can
take place.

If Chaum’s blind signature is used, then we can define the three protocols
get token(s), unblind token(t̄) and issue token(c) as in Algorithm 2.

We suppose that the customer knows the public key of the SP. How this is
done is out of scope of this paper.

A Trustless Privacy-Preserving Reputation System 407

Algorithm 2. Token exchange
1: procedure get token(s, pubKey, e, n, x) � (e, n) is the service provider’s public

RSA key pair, x the identifier of the transaction
2: m1 ← hash(pubKey) � hash is a cryptographic hash function such as sha256
3: r ← rand(0, n)
4: m1 ← m1r

e mod n
5: send((m1, x), s)
6: return (m1, r)

7: procedure issue token(c, m1, d, n, x) � (n, d) is the service provider’s private
RSA key pair

8: if verify(x) then � the service provider has to specify verify
9: t̄ ← md

1 mod n
10: send(t̄, c)
11: return t̄
12: procedure unblind token(t̄, r, e, n)
13: t ← t̄r−1 mod n
14: return t

5.4 Broadcasting the Review

Once the transaction is finished, the customer might want to wait for some time
(so that he is not the SP’s only customer for this period). After this period
of waiting, he might choose a rating for this transaction (say, an integer in
[|0; 5|]) and write a review about it. The review can give helpful information to
prospective customers, explain a bad rating, and helps distinguishing between
trustworthy and fake ratings. This information will be broadcast in the network,
along with the identifier of the SP, the token and the signature on the token.
This message will also contain the signature of the customer, and a pointer to the
last review concerning the service provider. The message that will be broadcast
can be represented as follows (Table 1):

Table 1. Structure of a broadcasted message containing a review

Field Description

addrs Address of the SP

pubKey The public key used for the transaction

token Token obtained from the SP (i.e. blind signature on pubKey)

rating Rating of the transaction (for example, an integer in [0; 5])

review A textual review on the transaction (optional)

sig Signature, using privKey, of (addss||pubKey||token||rating||review)

pointer Pointer to the last review about the same SP

408 A. Schaub et al.

5.5 Computing the Reputation

In order to compute the reputation, a new customer only needs the last block
containing a review about the SP whose reputation it seeks. Once this block has
been found, it is sufficient to follow the pointers in order to retrieve all the reviews
about this SP. For each review, the prospective customer might also verify the
correctness of the blinded tokens. Then, the customer can choose any aggregation
function he wishes (mean, median, or beta-reputation [24]), and could also read
the textual reviews in order to filter out outlier ratings (especially high or, more
probably, especially low ratings).

6 Analysis of the Protocol

6.1 Security Analysis

In this section, we list the theorems whose proof demonstrates that we achieve
the security objectives of our protocol. The proofs to the theorems are quite
straight forward and can be found in the extended version of the paper [20].

Theorem 1 (Token Unforgeability). Given a Service Provider’s public key,
and a poly-bounded (in a security parameter k) number of signatures from the Ser-
vice Provider on arbitrary messages, a user is not able to generate one more token
(i.e. signature on the hash of an address) except with negligible probability ε(k).

Remark 1. This implies that badmouthing attacks are not possible on this sys-
tem. Ballot-stuffing attacks, however, cannot be completely mitigated, as a ser-
vice provider can freely issue tokens. The currency introduced in this protocol
helps reducing the risk of ballot stuffing, as the service provider is limited on the
number of tokens he can issue, by the number of coins he owns.

Theorem 2 (Reputation Unforgeability). Given the public blockchain his-
tory, no service provider is able to advertise a reputation that is not its own
(except with negligible probability ε(k)).

Theorem 3 (Customer Anonymity). Given a rating published in the
blockchain concerning a given service provider, the identity from the customer
that originated this rating is indistinguishable, from the service provider’s point
of view, among all the customers that were previously involved in a transaction
with that service provider.

Theorem 4 (Customer Report Unlinkability). Given two different reports,
it is not possible to determine whether they were issued by the same customer or
not better than guessing at random.

The proposed protocol is able to hide the identity of the rater among all the
customers who interacted with a given service provider in a certain time interval,
therefore providing indistinguishability. We can devise a simple model that will
give an idea of the indistinguishability of the customer reviews. Suppose that

A Trustless Privacy-Preserving Reputation System 409

customers purchase goods from a given service provider. The arrival of customers
can be modeled by a Poisson process with parameter λ. We can also suppose
that, after receiving their good, customers will wait for a certain amount of time
before submitting a review. In our model, the customer will wait for a time T
that is uniformly distributed over [0; τ] for some τ > 0. In this case, we have the
following property:

Theorem 5 (Indistinguishability). If the arrival of customers is modeled as
a Poisson process of parameter λ and if customers wait for a duration that is
uniformly distributed over [0; τ] before submitting their review, then the identity
of a customer will be indistinguishable over a set of λτ customers in average.

6.2 Robustness Against Generic Attacks

In this section, we will explain how our proposed system copes with generic
attacks against reputation systems: bad-mouthing, ballot stuffing, Sybil attacks,
and whitewashing.

Bad-mouthing. Bad-mouthing consists in lying about the performance of a ser-
vice provider in order to decrease his reputation. This could be done, for exam-
ple, by a competitor. Our system prevents bad-mouthing thanks to the usage of
tokens, and this attack is prevented because token unforgeability is guaranteed
by the system.

Ballot-stuffing. Ballot stuffing is the opposite of bad-mouthing. This attack con-
sists in increasing one’s own reputation. As the service providers generate the
tokens that allow feedback-submission on their own, this attack could only par-
tially be mitigated with the use of coins, as explained in the remark concerning
token unforgeability.

Whitewashing. Whitewashing consists in exiting a system after having accumu-
lated bad reputation, in order to re-enter it again and removing the accumulated
bad reputation. As the initial reputation of a new service provider is 0, the ser-
vice provider would not gain much from leaving and re-entering the system with
a new identity. However, bad reviews are worse than no reviews, so there could
be an incentive in order to do so. One way to limit this would be to bind the
identity of a service provider to, for example, his website, through a specific
operation on the blockchain. The service provider could still change the domain
name, but again, this would cost money.

Sybil Attacks. Sybil attacks combine more or less the attacks described above.
They consist in creating multiple identities in the system in order to disrupt it.
They pose no more threat than the other types of attacks, as there is no concept
of “identity” for the customers in our system, and creating multiple identities
for a service provider can only be used to either perform whitewashing (if he
creates one identity after another) or ballot-stuffing (if he creates multiple fake
transactions).

410 A. Schaub et al.

7 Conclusion

Reputation systems need to be privacy-preserving in order to work properly,
without the raters having to be afraid of retaliation. Building a reputation sys-
tem that is privacy-preserving without any trust assumptions is not a trivial
task. However, such a system would be highly valuable, because there is much
less risk that the privacy of the users could be breached. We described such a
reputation system for e-commerce applications, and analyzed the security guar-
antees. Some points would still need attention in future work, such as the exact
way of generating coins that would ensure that service providers have enough of
them in order to be able to supply enough tokens for their customers, but at the
same time still limit ballot-stuffing attacks. Also, we must find a definite way
to address the problem of information leakage concerning the time at which the
reviews are submitted.

References

1. Resnick, P., Zeckhauser, R., Swanson, J., Lockwood, K.: The value of reputation
on ebay: a controlled experiment. Exp. Econ. 9(2), 79–101

2. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: empir-
ical analysis of ebays reputation system. Econ. Internet E-commer. 11(2), 23–25
(2002)

3. Anceaume, E., Guette, G., Mazenc, P.L., Prigent, N., Tong, V.V.T.: A Privacy
Preserving Distributed Reputation Mechanism, October 2012

4. Lajoie-Mazenc, P., Anceaume, E., Guette, G., Sirvent, T., Tong, V.V.T.: Efficient
Distributed Privacy-Preserving Reputation Mechanism Handling Non-Monotonic
Ratings, January 2015

5. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 400–407. Springer, Heidelberg (2010)

6. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized addi-
tive reputation systems. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust
2004. LNCS, vol. 2995, pp. 108–119. Springer, Heidelberg (2004)

7. Dimitriou, T., Michalas, A.: Multi-party trust computation in decentralized envi-
ronments in the presence of malicious adversaries. Ad Hoc Netw. 15, 53–66 (2014)

8. Hasan, O., Brunie, L., Bertino, E., Shang, N.: A decentralized privacy preserving
reputation protocol for the malicious adversarial model. IEEE Trans. Inf. Forensics
Secur. 8(6), 949–962 (2013)

9. Kerschbaum, F.: A verifiable, centralized, coercion-free reputation system. In: Pro-
ceedings of the 8th ACM Workshop on Privacy in the Electronic Society, WPES
2009, pp. 61–70. ACM, New York (2009)

10. Bitcoin, S.N.: A peer-to-peer electronic cash system (2008). https://bitcoin.org/
bitcoin.pdf

11. Pilkington, M.: Blockchain technology: principles and applications. In: Olleros,
F.X., Zhegu, M. (eds.) Research Handbook on Digital Transformations. Edward
Elgar, Northampton (2016)

12. Carboni, D.: Feedback based reputation on top of the bitcoin blockchain. arXiv
preprint arXiv:1502.01504 (2015)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1502.01504

A Trustless Privacy-Preserving Reputation System 411

13. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol.
5134, pp. 202–218. Springer, Heidelberg (2008)

14. Petrlic, R., Lutters, S., Sorge, C.: Privacy-preserving reputation management. In:
Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
2014, pp. 1712–1718. ACM, New York (2014)

15. Comodo report of incident - comodo detected and thwarted an intrusion on 26
march 2011. https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

16. Key internet operator verisign hit by hackers. http://www.reuters.com/article/
2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202

17. Maintaining digital certificate security. http://googleonlinesecurity.blogspot.fr/
2015/03/maintaining-digital-certificate-security.html

18. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, SP 2008, pp. 111–125, May 2008

19. Barbaro, M., Zeller, Jr., T.: A face is exposed for aol searcher no. 4417749, August
2006

20. Schaub, A., Bazin, R., Hasan, O., Brunie, L.: A trustless privacy-preserving repu-
tation system. Cryptology ePrint Archive, Report /016 (2016). http://eprint.iacr.
org/

21. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

22. Okamoto, T., Ohta, K., Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer,
Heidelberg (1990)

23. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

24. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference, vol. 5, pp. 2502–2511 (2002)

https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://googleonlinesecurity.blogspot.fr/2015/03/maintaining-digital-certificate-security.html
http://googleonlinesecurity.blogspot.fr/2015/03/maintaining-digital-certificate-security.html
http://eprint.iacr.org/
http://eprint.iacr.org/

Author Index

Adepu, Sridhar 91
Ai, Juan 308
Anand, Dhananjay 32
Arenas, Alvaro 261
Aziz, Benjamin 261

Bal, Gökhan 150
Bazin, Rémi 398
Bazzoli, Enrico 243
Bedford, Andrew 352
Biczók, Gergely 194
Brunie, Lionel 398
Budurushi, Jurlind 3
Bultel, Xavier 17

Câmara, Sérgio 32
Carmo, Luiz 32
Challa, Chandrashekar 76
Chen, Ping 323
Chong, Stephen 352
Crandall, Jedidiah 227
Criscione, Claudio 243
Crom, Jean-Michel 105
Cuppens, Frédéric 105, 119
Cuppens-Boulahia, Nora 105

Desharnais, Josée 352
Desmet, Lieven 323
Dhillon, Gurpreet 49, 76

Emiliano, Felix 227
Espes, David 119
Etudo, Ugo 49

Fremantle, Paul 261
Frey, Vincent 105
Fuchs, Andreas 276

Hasan, Omar 398
Hong, Yu-Yang 337
Huygens, Christophe 323

Joosen, Wouter 323

Kalodner, Harry 227
Kiyomoto, Shinsaku 150
Kolkowska, Ella 384
Krauß, Christoph 276
Kristofferson, Annica 384
Kulyk, Oksana 3
Kunz, Alexandra 135

Lafourcade, Pascal 17
Le Parc, Philippe 119
Lee, Heejo 211
Lehmann, Daniel 135
Li, Hongzhe 211
Li, Yanhuang 105
Lin, Jingqiang 293

Ma, Ziqiang 293
Maggi, Federico 243
Maher, Megan 227
Malaiya, Yashwant K. 62
Marky, Karola 3
Mathur, Aditya 91
Mayer, Peter 135
Möllers, Frederik 369
Morin, Nicole 227
Mulamba, Dieudonné 179

Nakamura, Toru 150
Navarro, Jesus 227
Neumann, Stephan 3

Oh, Hakjoo 211
Oh, Jaesang 211
Oliveira, Daniela 227
Ou, Changhai 308

Pan, Wuqiong 293
Pape, Sebastian 150
Pérez-Solà, Cristina 194
Pillitteri, Victoria 32
Preneel, Bart 194

Rack, Philipp 135
Rannenberg, Kai 150

Ray, Indrajit 62, 179
Ray, Indrakshi 179
Reinheimer, Benjamin 135, 161
Renaud, Karen 161
Repp, Jürgen 276

Samonas, Spyridon 49
Schaub, Alexander 398
Shirazi, Fatemeh 194
Smith, Kane 76
Sorge, Christoph 369
Stockhardt, Simon 135
Sun, Degang 308
Symeonidis, Iraklis 194

Takasaki, Haruo 150
Tawbi, Nadia 352
Tschersich, Markus 150

Volkamer, Melanie 3, 135, 161

Wang, Yu-Ping 337
Wang, Zhu 308
Wei, Rui 261

Xue, Cong 293

Yin, Jie 337
Younis, Awad 62

Zanero, Stefano 243
Zerkane, Salaheddine 119
Zhao, Yuan 293
Zheng, Fangyu 293
Zhou, Xinping 308

414 Author Index

	Preface
	Organization
	Contents
	Cryptographic Protocols
	Coercion-Resistant Proxy Voting
	1 Introduction
	2 Requirements for Proxy Voting
	3 Background
	3.1 Cryptographic Primitives
	3.2 JCJ/Civitas Scheme

	4 Proposed Proxy Voting Scheme
	4.1 Necessary Modifications
	4.2 Scheme Description

	5 Security of the Proposed Scheme
	5.1 Security Assumptions
	5.2 Security Evaluation

	6 Conclusion
	References

	A Posteriori Openable Public Key Encryption
	1 Introduction
	2 Random Coin Decryptable Public Key Encryption
	3 A Posteriori Openable Public Key Encryption
	4 Model and Security
	4.1 IND-CPA security
	4.2 IND-CSPA security
	4.3 Integrity

	5 Conclusion
	References

	Multicast Delayed Authentication for Streaming Synchrophasor Data in the Smart Grid
	1 Introduction
	2 Scenario Characteristics
	2.1 Security Considerations

	3 Related Work
	4 Proposed Solution
	4.1 TESLA
	4.2 inf-TESLA

	5 Evaluation Against TESLA
	6 Conclusion
	References

	Human Aspects of Security
	Developing a Human Activity Model for Insider IS Security Breaches Using Action Design Research
	Abstract
	1 Introduction
	2 Literature Review
	3 Method
	4 Artifact Description
	5 Evaluation
	6 Discussion
	6.1 Formal Layer
	6.2 Informal Layer
	6.3 Technical Layer

	7 Conclusions
	References

	Evaluating CVSS Base Score Using Vulnerability Rewards Programs
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Firefox Vulnerabilities Analysis
	3.2 Chrome Vulnerabilities Analysis

	4 Validation of CVSS Base Score
	4.1 Result
	4.2 Threats to Validity

	5 Discussion
	6 Conclusion and Future Work
	References

	Defining Objectives for Preventing Cyberstalking
	Abstract
	1 Introduction
	2 A Review of Existing Cyberstalking Literature
	3 Methodology
	3.1 Identifying Values
	3.2 Structuring Values
	3.3 Organizing Objectives

	4 Objectives for Preventing Cyberstalking
	4.1 Fundamental Objectives for Preventing Cyberstalking
	4.2 Means Objectives for Preventing Cyberstalking

	5 Further Research, Limitations and Conclusions
	References

	Cyber Infrastructure
	Using Process Invariants to Detect Cyber Attacks on a Water Treatment System
	1 Introduction
	2 Method
	2.1 Context: The SWaT testbed
	2.2 Experiments
	2.3 State Estimation
	2.4 Invariants

	3 Results
	3.1 Detection Effectiveness and Impact
	3.2 Selection of n and

	4 Discussion
	5 Conclusions and Future Work
	References

	Expression and Enforcement of Security Policy for Virtual Resource Allocation in IaaS Cloud
	1 Introduction
	2 Expression of Security Policy
	2.1 SLA Contract Expression
	2.2 Derivation of Security Policy

	3 Enforcement of Security Policy
	3.1 QoS Filtering
	3.2 Conflict Management
	3.3 Virtual Resource Allocation

	4 Implementation and Evaluation
	4.1 Experiment 1: Contract Processing
	4.2 Experiment 2: Policy Generation
	4.3 Experiment 3: Allocation Latency
	4.4 Experiment 4: Price

	5 Related Work
	6 Conclusion
	References

	Software Defined Networking Reactive Stateful Firewall
	Abstract
	1 Introduction
	2 Related Work
	3 Firewall Design
	3.1 Firewall General Architecture
	3.2 Firewall Generic Algorithm

	4 SDN Firewall Proof of Concept
	4.1 Implementation
	4.2 Test and Results

	5 Conclusion
	References

	Phishing and Data Sharing
	Teaching Phishing-Security: Which Way is Best?
	1 Introduction
	2 Training Material
	2.1 NoPhish Content
	2.2 Training Formats

	3 Methodology
	3.1 Study Design
	3.2 Recruitment

	4 Results
	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	On Gender Specific Perception of Data Sharing in Japan
	Abstract
	1 Introduction
	2 Background and Hypotheses
	2.1 Related Work
	2.2 Hypotheses

	3 Methodology
	3.1 Participants
	3.2 Measurement Instrument
	3.3 Procedure

	4 Results
	4.1 Descriptive Statistics
	4.2 Impact Analysis

	5 Discussion and Conclusion
	References

	TORPEDO: TOoltip-poweRed Phishing Email DetectiOn
	1 Introduction
	2 Identifying Ons Why People Fall for Phish
	2.1 Literature Review
	2.2 Cognitive Walk-Through Analysis
	2.3 Reasons Why People Fall for Phishing

	3 TORPEDO as Possible Solution
	4 Evaluation
	4.1 Study Procedure
	4.2 Creation of Email Screenshots
	4.3 Ethics, Recruitment, and Incentives

	5 Results and Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Social Networks
	SybilRadar: A Graph-Structure Based Framework for Sybil Detection in On-line Social Networks
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 SybilRadar System Design
	4.1 Predicting Attack Edges
	4.2 Further Refinement of Attack Edge Detection
	4.3 Trust Propagation

	5 System Evaluation
	5.1 Evaluation on Synthetic Networks
	5.2 Evaluation on Real-World Twitter Network

	6 Conclusion
	References

	Collateral Damage of Facebook Apps: Friends, Providers, and Privacy Interdependence
	1 Introduction
	2 User Survey
	2.1 Methodology
	2.2 Results

	3 Likelihood of Collateral Information Collection
	4 Significance of Collateral Information Collection
	4.1 Profiling
	4.2 Degree of collateral Information Collection
	4.3 The Case of Facebook Applications

	5 Damage Control: Privacy Dashboard
	6 Conclusion and Future Work
	References

	Software Vulnerabilities
	Automated Source Code Instrumentation for Verifying Potential Vulnerabilities
	1 Introduction
	2 Related Work
	3 Proposed Mechanism
	3.1 Using the CIL
	3.2 Identification of Security Sinks and Sensitive Variables
	3.3 Backward Data Tracing
	3.4 Program Source Instrumentation
	3.5 Vulnerability Verification Using Concolic Testing

	4 Experimental Results
	4.1 Implementation
	4.2 Experimental Results

	5 Conclusion
	References

	An Information Flow-Based Taxonomy to Understand the Nature of Software Vulnerabilities
	1 Introduction
	2 The Taxonomy
	2.1 Control-Flow Hijacking
	2.2 Process confusion
	2.3 Side-Channels
	2.4 Exhaustion
	2.5 Adversarial Accessibility

	3 Evaluation
	3.1 Discussion

	4 Related Work
	5 Conclusions
	References

	XSS PEEKER: Dissecting the XSS Exploitation Techniques and Fuzzing Mechanisms of Blackbox Web Application Scanners
	1 Introduction
	2 Background
	3 Firing Range: Test Case Generation
	3.1 Design Challenges
	3.2 Implementation Challenges
	3.3 Iteratively Discovered Test Cases

	4 XSS PEEKER: Analysis Workflow
	4.1 Phase 1 (Payload Extraction)
	4.2 Phase 2 (Payload Templating)
	4.3 Phase 3 (Template Evaluation)
	4.4 Phase 4 (Retrofitting Negative Payloads)

	5 Experimental Results
	5.1 Payload Extraction Results
	5.2 Payload Templating Results
	5.3 Template Evaluation Results
	5.4 Retrofitting Negative Payloads Results

	6 Conclusions
	References

	TPM and Internet of Things
	A Utility-Based Reputation Model for the Internet of Things
	1 Introduction
	2 MQTT Overview
	3 A Reputation Model for MQTT
	3.1 Monitoring Events
	3.2 Reputation Models

	4 A Reputation System Architecture for MQTT
	5 Simulation of the Model
	5.1 Results
	5.2 Reputation Results

	6 Related Work
	7 Conclusion
	References

	Advanced Remote Firmware Upgrades Using TPM 2.0
	1 Introduction
	2 Background and Related Work
	2.1 Background on TPM 2.0 and TSS 2.0
	2.2 Difference of TPM 2.0 to TPM 1.2
	2.3 Platform Configuration Registers
	2.4 Data Sealing
	2.5 NV-RAM Counters
	2.6 Enhanced Authorization

	3 Remote Firmware Upgrades Retaining IPR and Privacy
	3.1 Scenario
	3.2 Requirements
	3.3 Concept
	3.4 Security Considerations
	3.5 Prototypical Implementation

	4 Conclusion
	References

	Sidechannel Analysis
	RegRSA: Using Registers as Buffers to Resist Memory Disclosure Attacks
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Outline

	2 Available Registers in Commodity CPUs
	3 System Design
	3.1 Design Goals
	3.2 Register Buffer
	3.3 RegRSA Architecture

	4 Implementation
	4.1 Montgomery Multiplication Implementation
	4.2 Montgomery Exponentiation Implementation
	4.3 RSA Implementation
	4.4 Integration in Linux Kernel
	4.5 AES Key

	5 Evaluation
	5.1 Security Analysis
	5.2 Performance
	5.3 Impact on Concurrent Tasks
	5.4 Discussions

	6 Conclusion
	References

	Uncertain? No, It's Very Certain!
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions
	1.3 Organization

	2 Guessing Entropy
	3 Guessing Entropies Enhanced CPA
	3.1 The Statistical Characteristic of Guessing Entropy
	3.2 Determine the Correct Key from Guessing Entropies
	3.3 Attack Flow
	3.4 Success Rate in Guessing Entropy Enhanced CPA

	4 Experimental Results
	4.1 Experiments on AT89S52 Single Chip
	4.2 Experiments on SASEBO

	5 Conclusion
	References

	Software Security
	Advanced or Not? A Comparative Study of the Use of Anti-debugging and Anti-VM Techniques in Generic and Targeted Malware
	1 Introduction
	2 Overview
	2.1 Research Questions
	2.2 Dataset

	3 Metrics
	3.1 Anti-debugging Techniques
	3.2 Anti-VM Techniques
	3.3 Antivirus Detection Rate

	4 General Findings
	4.1 The Usage of Anti-debugging and Anti-VM Techniques
	4.2 Antivirus Detection Rate

	5 Correlation Analysis
	5.1 Spearman Correlation
	5.2 Evolution of the Use of Anti-debugging and Anti-VM Techniques
	5.3 Correlation Between the Use of Anti-debugging (or Anti-VM) Techniques and Antivirus Detection Rate
	5.4 Summary

	6 Related Work
	7 Conclusion
	References

	NativeProtector: Protecting Android Applications by Isolating and Intercepting Third-Party Native Libraries
	1 Introduction
	2 Background
	2.1 Android Security Overview
	2.2 Java Native Interface
	2.3 Dynamic Loading and Linking

	3 System Design
	3.1 Threat Model
	3.2 Defenses Provided

	4 Implementation
	4.1 Apk Repackaging
	4.2 Native Libraries Isolation
	4.3 Native Libraries Interception

	5 Evaluation
	5.1 Effectiveness
	5.2 Compatibility
	5.3 Performance

	6 Related Work
	6.1 Android App Security
	6.2 Untruseted Code Isolation

	7 Conclusion
	References

	A Progress-Sensitive Flow-Sensitive Inlined Information-Flow Control Monitor
	1 Introduction
	2 Source Language
	2.1 Syntax
	2.2 Semantics

	3 Security
	4 Type-based Instrumentation
	4.1 Source Language Types
	4.2 Syntax and Semantics of Target Language
	4.3 Instrumentation as a Type System

	5 Related Work
	6 Conclusion
	References

	Privacy
	Deducing User Presence from Inter-Message Intervals in Home Automation Systems
	1 Introduction
	2 Related Work
	3 System and Attacker Model
	4 Attack Methodology
	4.1 Kolmogorow-Smirnow Test (KS Test)
	4.2 Chi-Square Test (2 Test)
	4.3 Message Counts Test (MC Test)

	5 Analysis Procedure
	6 Analysis Results
	6.1 Test Suitability in the General Case
	6.2 Test Suitability per State Pair
	6.3 The Effect of Different Thresholds on Classification Rates
	6.4 Feasibility of Detection in Practice

	7 Conclusion and Outlook
	References

	Privacy by Design Principles in Design of New Generation Cognitive Assistive Technologies
	Abstract
	1 Introduction
	2 Privacy by Design Principles
	3 System Description
	4 Research Method
	4.1 Selection of Participants
	4.2 Data Collection
	4.3 Data Analysis

	5 CAT Users’ Privacy Requirements
	5.1 Calendar Visualization
	5.2 Calendar Reminders
	5.3 Additional Functionality and Remote Access
	5.4 Sensor-Based Reminders and Actuation

	6 Guidelines for Applying PbD Principles in Design of CAT
	6.1 Principle 1: Proactive not Reactive; Preventative not Remedial
	6.2 Principle 2: Privacy as the Default
	6.3 Principle 3: Privacy Embedded into Design
	6.4 Principle 4: Functionality—Positive-Sum, not Zero-Sum
	6.5 Principle 5: End-to-End Lifecycle Protection
	6.6 Principle 6: Visibility and Transparency
	6.7 Principle 7: Respect for the Users’ Privacy

	7 Conclusion
	Acknowledgment
	References

	A Trustless Privacy-Preserving Reputation System
	1 Introduction
	2 Related Work
	3 Our Model
	3.1 Participants
	3.2 Operations
	3.3 Adversarial Model
	3.4 Objectives

	4 Building Blocks
	4.1 Blockchain
	4.2 Blind Signatures

	5 Specification of the Protocol
	5.1 An Overview
	5.2 Public Key Creation
	5.3 Blinded Token Exchange
	5.4 Broadcasting the Review
	5.5 Computing the Reputation

	6 Analysis of the Protocol
	6.1 Security Analysis
	6.2 Robustness Against Generic Attacks

	7 Conclusion
	References

	Author Index

