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Abstract We highlight in this paper the competitive performance of the Iterated

Greedy algorithm (IG) for solving the flow shop problem under blocking. A new

instance of IG is used to minimize the total tardiness criterion. Basically, due to

the NP-hardness of this blocking problem, we employ another variant of the NEH

heuristic to form primary solution. Subsequently, we apply recurrently constructive

methods to some fixed solution and then we use an acceptance criterion to decide

whether the new generated solution substitutes the old one. Indeed, the perturba-

tion of an incumbent solution is done by means of the destruction and construction

phases. Despite its simplicity, the IG algorithm under blocking has shown its effec-

tiveness, based on Ronconi and Henriques benchmark, when compared to state-of-

the-art meta-heuristics.
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1 Problem Definition

We are engaged in this research with generating an efficient optimization tech-

nique for the subsequent scheduling problem. Each of N jobs from the job set

J = 1; 2;… ;N has to be processed on m consecutive machines from the machine

set M = (j = 1, 2,… ,m) during a pij time units. The process of each job on each

machine is exactly the same and once the process is started it may not be broken

down. A job i can have a given due date Di corresponding to the perfect time that it
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should be completed. Besides, each job can be processed only on one machine at a

time and each machine can process at most one job at a time. No passing is allowed.

Considering the above assumptions, we are facing some blocking constraints:

buffers between consecutive pair of machines are stated with zero capacity. That

is a current machine j may be blocked by the job it has processed if the next machine

is not discharged. This environment is completely different from the No-wait Flow

Shop setting where when a job is started on the first machine, it must be constantly

processed till its achievement on the last machine without interruption.

This research deals with the Blocking Flow Shop Scheduling Problem (BFSP)

to minimize the total tardiness of jobs, denoted as Fm|block|
∑

Tj according to the

notation proposed in [1]. This variant of flow shop problems has important impact

in manufacturing systems since when a job is not finished by its due date then sup-

plementary costs are incurred.

The tardiness is defined as the maximum time between zero and the lateness of a

job settled as the difference between the completion time of a job and its fixed due

date. In general, the Fm|block|Cmax is strongly NP-hard [2]. This is an immediate

consequence of the NP-hardness of the Fm||Cmax. The case of two machines (m = 2)

may be easily solved using Gilmore and Gomory’s scheme [3].

Formally, the BFSP may be formulated using the following equations [4], where

C
𝜋i,M = d

𝜋i,M is the completion time of job 𝜋i on machine M, d
𝜋i,j (i = 1, 2,… ,N; j =

0, 1, 2,… ,M) represents the departure time of job 𝜋i on machine j, and 𝛱 ∶=
(𝜋1, 𝜋2,… , 𝜋N) is a solution for the problem.

d
𝜋1,0 = 0 (1)

d
𝜋1,j =

∑ j
k=1p𝜋1,k j = 1, 2,… ,M − 1 (2)

d
𝜋i,0 = d

𝜋i−1,1 i = 2,… ,N (3)

d
𝜋i,j = max{d

𝜋i,j−1 + p
𝜋i,j, d𝜋i−1,j+1} i = 2,… ,N; j = 1, 2,… ,M − 1 (4)

d
𝜋i,M = d

𝜋i,M−1 + p
𝜋i,M i = 1, 2,… ,N (5)

TT(𝛱) =
n∑

i=1
(max{0, (C

𝜋i
− Di}) (6)

The literature regarding a BFSP is not extensive. Indeed, the tardiness criterion has

been studied fewer than the makespan and total flow time criteria. We rapidly review

the related literature.

As a constructive heuristics, we refer to the Profile Fitting (PF) [5], the Nawaz-

Enscore-Ham heuristic (NEH) [6], the MinMax (MM) and combination of MM and

NEH (MME) and combination of PF and NEH (PFE) [7] techniques. In [8, 9] the

NEH-WPT heuristic and a constructive and a GRASP-based heuristics for the BFSP

were introduced, respectively.



Total Tardiness Minimization in a Flow Shop . . . 95

Concerning meta-heuristics, we refer to the Genetic Algorithm (GA) proposed

in [10], the (Ron) algorithm developed in [11], and the Tabu Search (TS) and the

enhanced TS techniques used in [12]. Meanwhile, we cite the Hybrid Discrete Dif-

ferential Evolution (HDDE) algorithm introduced in [13] which was compared to the

Hybrid Differential Evolution (HDE) algorithm developed in [14], and the Iterated

Greedy (IG) method in [15].

Thus far, it was proven that RON, HDDE, and IG algorithms give competitive

results and may be considered as top techniques for the BFSP under makespan.

Now, under the total flow time criterion, we refer to the hybrid modified global-

best Harmony Search (hmgHS) algorithm and the Discrete Artificial Bee Colony

algorithm (DABC_D) technique presented in [8, 16], respectively, and the Greedy

Randomized Adaptive Search Procedures (GRASP) hybridized with the Variable

Neighbourhood Search (VNS) technique in [17].

Besides, we cite the effective hybrid discrete artificial bee colony algorithms pro-

posed in [18], and the Revised Artificial Immune Systems (RAIS) technique in [19].

A three-phase algorithm under Cmax is presented in [20] and a Discrete Particle

Swarm Optimization algorithm with self-adaptive diversity control was treated in

[21].

Also, we cite the Memetic Algorithm (MA) in [22], the chaos-induced discrete

self organizing migrating algorithm in [23], the Iterated Local Search algorithm

(ILS) coupled with a Variable Neighbourhood Search (VNS) in [24], and the Block-

ing Genetic Algorithm (BGA) and Blocking Artificial Bee Colony (BABC) algo-

rithms in [25].

Under tardiness measure, few papers were found. Basically, the Tabu Search

method proposed in [26], the NEH-based method called (FPDNEH) and the Greedy

Randomized Adaptive Search Procedure(GRASP) developed in [9], and the Iterated

Local Search algorithm (ILS) hybridized with the Variable Neighbourhood Search

(VNS) technique in [24].

Therefore, it is interesting to intensify research to develop simple algorithms

which are easy to adapt and implement in practical applications. In this paper we

propose an Iterated Greedy algorithm (IG) to minimize the tardiness of scheduled

jobs in a flow shop environment with blocking. We restrict our attention solely to

permutation schedules.

Following this brief definition, the paper is structured as follows. The IG algo-

rithm under blocking is explained in Sect. 2. Section 3 presents the numerical exper-

iments, and Sect. 4 summarizes the conclusions.

2 Iterated Greedy Algorithm for the Blocking
Flow Shop Problem

The iterated greedy algorithm is very well adapted to solve combinatory problems,

and especially various flow shop instances [27]. In an iterative way, the greedy

method uses constructive techniques to generate new solution based on some other
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fixed solution, and then decides if it will be accepted and replace the old one based

on some acceptance criterion.

The destruction and construction stages are employed to obtain a sequence of

solution. The destruction stage deletes some elements from the designated solution.

After that, a new sequence is obtained by reforming a whole solution based on con-

structive heuristic, which rearranges the removed elements in some order to form a

final sequence. Optionally, the obtained sequence (final) may be subjected to local

search stage for enhancement.

One important point to note is that IG is closely related to the Iterated Local

Search (ILS). The difference between them is that in IG the perturbation of an incum-

bent solution is done by means of the destruction and construction phases, whereas

in ILS the perturbation is done just for escaping from local optimum.

Now, details of the algorithms are presented below.

2.1 Seed Sequence

To yield the initial sequence, the PF-NEH(x) heuristic proposed in [25] has been

used. Nevertheless, instead of generating x solutions at the end of the heuristic, we

select only the permutation with the minimum tardiness value. With a probability

Pls, we have also used a local search technique based on the insertion operator to

generate neighboring solution. A fixed job is removed from its first position and

reinserted in all feasible places. Then, the new obtained sequence is recorded only

when there is an enhancement in the objective value. The final permutation 𝛱

s
thus

generated forms the seed sequence.

2.2 Destruction and Construction Phases

The destruction stage is started based on the initial seed sequence generated as

explained earlier. Iteratively, the current stage starts with a whole sequence 𝛱

s
and

then removes [q ∗ 𝛱

s
] randomly jobs from 𝛱

s
. The degree of destruction q is drawn

in the range [0,1]. This yields two sub-solutions: the first one models the removed

jobs 𝛱
r
, and the second represents the rest of the sequence after deleting jobs 𝛱

s
.

In the construction stage, a final solution 𝛱

c
is then reformed by replacing the

previously extracted jobs in the order in which they were removed.

The procedures of the destruction and construction stages are as in Tables 1

and 2.
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Table 1 Procedure destruction stage (𝛱
s
, q)

Begin
Stage 1: Set 𝛱

r
empty

Stage 2: Let 𝛱
q ← 𝛱

s

Stage 3: For i = 1 to (q ∗ |𝛱q|) Do
𝛱

q ← Remove a randomly selected job from 𝛱

q

𝛱

r ← Include the removed job in 𝛱

r

End

Table 2 Procedure construction stage (𝛱
q
, 𝛱

r
)

Begin
Stage 1: Let 𝛱

c ← 𝛱

q

Stage 2: For j = 1 to |𝛱 r| Do
𝛱

c ← Best permutation obtained after inserting job 𝜋

r
j in all possible positions of 𝛱

c

End

2.3 Acceptance Measure and Final IG Algorithm
Under Blocking

An acceptance measure is applied to decide wether the generated sequence will be

accepted or not. As in [27, 28], we have used the Simulated Annealing (SA) accep-

tance measure to approve ‘bad’ solutions with some fixed probability.

This acceptance criterion is employed with a certain temperature value depending

on the number of jobs, machines, and on other tractable parameter 𝜆:

Tempt = 𝜆 ∗
∑N

i=1
∑M

j=1 pij
10 ∗ M ∗ N

(7)

Let TT(𝛱 s) and TT(𝛱c) be respectively the total tardiness values of the current

incumbent solution and the new reconstructed solution. Also, let rand() be a function

returning a random number sampled from a uniform distribution between 0 and 1.

If TT(𝛱c) ≥ TT(𝛱 s), Then 𝛱

c
is accepted as the new incumbent solution if:

rand() ≤ exp{TT(𝛱c) − TT(𝛱 s)∕Tempt} (8)

Considering all previous subsections, the proposed IG algorithm under blocking

goes as in Table 3.
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Table 3 IG algorithm under blocking

Begin
Stage 1: Set the parameters: Pls, q, 𝜆 and MCN.

Stage 2: Obtain the initial sequence using the PF-NEH(x) heuristic. Depending on the local

probability rate Pls, improve this solution using the local search technique. Let the final

permutation 𝛱

s
be the seed sequence.

Stage 3: Let 𝛱
∗ = 𝛱

s

Stage 4:

While termination condition is not met Do
∙𝛱q = Destruction-phase (𝛱 s

, q)
∙𝛱c = Construction-phase (𝛱q)
∙𝛱c′ = Local-phase (𝛱c

,Pls)
∙ If TT(𝛱c′ ) < TT(𝛱 s) Then

– 𝛱

s ∶= 𝛱

c′

– If TT(𝛱 s) < TT(𝛱∗) Then

∗ 𝛱

∗ ∶= 𝛱

s

∙ Else If (rand() ≤ exp{TT(𝛱 s) − TT(𝛱c′ )∕Tempt}) Then

– 𝛱

s ∶= 𝛱

c′

Stage 5: Return the best solution found 𝛱

∗

End

3 Numerical Experiments

This section focuses on computational experience with the proposed IG algorithm

under blocking. Its performance obtained by comparing the resulting solutions (total

tardiness) with respect to one competitive algorithm from the literature was inves-

tigated. We performed experiments on a well-known set of benchmark instances

[9]. These instances are composed of 5 groups which are a combination of 20, 50,

100, 200 and 500 jobs with 5, 10 and 20 machines. The processing times of jobs

and due dates are uniformly distributed between [29, 99] and P(1 − T − R∕2) and

P(1 − T + R∕2), respectively. T is the tardiness factor, R is the due-date range [30],

and P is a valid LB [31].

As well, the Relative Percentage Deviation (RPD) is numbered once an instance is

launched (with 10 replications) and calculated according to the following recursion.

TTA
is the tardiness value obtained using the proposed technique and TTMin

repre-

sents the minimum tardiness value obtained among the two compared algorithms.

RPD(A) = (TTA − TTMin) × 100
TTMin (9)
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The IG algorithm under blocking is coded in Visual C++ and run on an Intel Pen-

tium IV 2.4 GHz PC with 512 MB of memory. Our technique establishes a relatively

simple mechanism where there are basically four parameters which must be properly

established. These are the MCN, Pls, 𝜆, and q. We analyzed these parameters using

one generated instance with n = 150 andm = 10. The due dates of the jobs were gen-

erated following the TWK rule [32]. We fix this size since it represents a challenge

given the number of jobs and machines that must be satisfied (large instance). For

each analysis, we vary only the parameter of interest to study its impact on the final

solution and on the convergence rate of the IG. After extensive testing, parameters

were set to the following values: MCN = 100, Pls = 0.2, 𝜆 = 2, and q = 3.

3.1 Evaluation of the IG Algorithm Under Blocking

To prove the good quality of our presented IG for the BFSP, we wanted to compare

our technique to other meta-heuristics that are already used in the literature for deal-

ing with our problem. Our IG was compared against the obtained results by the GA

algorithm based on the path relinking technique (GA_PR) in [33]. This technique

has shown higher efficiencies in solving benchmark for large scale instances. There-

fore, this technique was selected for comparison with the IG under blocking. In fact,

Table 4 summarizes the computational results of the two compared techniques for

all combination of jobs and machines, and where the total tardiness solutions were

averaged (comparisons were made based on the ARPD metric).

By analyzing Table 4, it can be seen that IG algorithm presents better average

results than the GA_PR in the different scenarios. For all test instances, with N ∗
M varying from (20*5) up to (500*20), the greedy technique enhanced all results.

The tested algorithm outperforms the GA_PR algorithm in 97% of the classes, and

considering the number of superior results, our method outperformed the GA_PR in

398 of the 480 test-problems.

4 Final Remarks

Different from other sophisticated techniques, this greedy algorithm has few para-

meters to be adjusted, which makes it more simpler to be implemented and used to

solve the BFSP. Also, the IG under blocking presented a significant improvement

in all test instances. Its superiority against GAPR algorithm should be attributed to

the smart combination of greedy stages (destruction and construction), local search,

as well as to the use of new version of the PF-NEH heuristic. Future work involv-

ing the tardiness criterion could include designing another procedure for comparing

algorithms. We also expect to apply the IG for multi-objective scheduling problems.
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