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Abstract Fuzzy multiset finite automata represent fuzzy version of finite automata

working over multisets. Description of these automata can be simplified to such a

form where transition relation is bivalent and only the final states form a fuzzy set. In

this paper it is proved that the simplified form preserves computational power of the

automata and way of how to perform the corresponding transformation is described.

Keywords Fuzzy multiset finite automata ⋅ Simplified fuzzy multiset finite

automata

1 Introduction

Fuzzy multiset finite automata were introduced by Wang et al. in [16]. They repre-

sent fuzzy version of finite automata working over multisets (also called bags) which

generalize sets in the respect that allow multiplied occurrence of its elements. Whilst

finite automata work over strings (i.e. order of the input symbols is strictly deter-

mined), work of multiset finite automata over multisets means that at any moment

of their computation, any remaining symbol of the input multiset can be processed

(see e.g. [4, 9]).

Further contribution to fuzzy multiset finite automata was made in [13] by intro-

ducing determinism and by formulating pumping lemmata for languages accepted

by both deterministic and non-deterministic fuzzy multiset finite automata. Further

explorations of these automata can be easier if we simplify their description. This

paper is devoted to the task.

Let us start with some notes concerning fuzzy finite automata whose theory is well

elaborated and which can inspire us a lot. Traditionally, the automata are defined with

fuzzy set of initial states, fuzzy transition relation, and fuzzy set of final states (cf.
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e.g. [5, 14]). Substitution of the fuzzy set of initial states by crisp one-element set (i.e.

only one initial state is considered with truth value 1) is easy to perform and widely

used. Further simplification consisting in change of fuzzy transition relation to crisp

one was described under some restricting condition by Bělohlávek in [1] and used

in many papers dealing for example with determinization process or minimization

of the automata (cf. [12] or [8]).

Contrary to fuzzy finite automata, deterministic and non-deterministic fuzzy

multiset finite automata have different computational power (see [13]), therefore

Bělohlávek’s approach cannot be used to determinization in the multiset case. Nev-

ertheless, resulting automata with bivalent transition relation will undoubtedly lead

due to their simpler form to easier elaboration of fuzzy multiset finite automata the-

ory.

The presented paper is organized as follows. Section 2.1 presents basic notions of

multisets and multiset finite automata. Section 2.2 is devoted to fuzzy multiset finite

automata. In Sect. 3, simplified fuzzy multiset finite automata are defined and their

computational power is proved to be equal to the computational power of standard

fuzzy multiset finite automata. Some possibilities of future research are mentioned

in Sect. 4.

2 Preliminaries

In the paper we use notation and basic notions from [13].

2.1 Multiset Finite Automata

We assume certain familiarity of the reader with basic notions from formal languages

and automata theory (cf. [7, 15]). Therefore, we skip the classical notion of finite

state automaton and start with multisets and multiset finite automaton.

We denote by𝐍 the set of all natural numbers including 0. If𝛴 is a finite nonempty

set of symbols we call it an alphabet. Cardinality of any alphabet 𝛴 is denoted by

card (𝛴).
For any alphabet 𝛴, a mapping 𝜎 ∶ 𝛴 → 𝐍 is called a finite multiset. Obviously,

each usual set U ⊆ 𝛴 is a multiset 𝜎U such that 𝜎U(x) = 1 iff x ∈ U. We use

denotation of [10, 11, 13]. So, we denote the set of all multisets over 𝛴 by 𝛴
⊕

.

𝛴
⊕

is a commutative monoid with operation of addition ⊕ and neutral element 𝟎
𝛴

,

defined as follows:

∙ (𝛼 ⊕ 𝛽)(x) = 𝛼(x) + 𝛽(x) for all x ∈ 𝛴,

∙ 𝟎
𝛴
(x) = 0 for all x ∈ 𝛴.

Further, for any multisets 𝛼, 𝛽 ∈ 𝛴
⊕

, we define the difference 𝛼 ⊖ 𝛽 and the

inclusion 𝛼 ⊑ 𝛽 by
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∙ (𝛼 ⊖ 𝛽)(x) = max{0, 𝛼(x) − 𝛽(x)} for all x ∈ 𝛴,

∙ 𝛼 ⊑ 𝛽 iff 𝛼(x) ≤ 𝛽(x) for all x ∈ 𝛴.

We use the notation ⟨y⟩ for singleton multisets, i.e. ⟨y⟩(x) = 0 for x ≠ y and ⟨y⟩(y) =
1. If ai = a ∈ 𝛴 for i ∈ {1,… ,m}, we write ⟨a⟩m

instead of ⟨a1⟩⊕…⊕ ⟨am⟩.

For a multiset 𝛼, we denote the number of occurrences of a symbol a ∈ 𝛴 in 𝛼 by

|𝛼|a. By cardinality of a multiset 𝛼 we understand card (𝛼) =
∑

a∈𝛴 |𝛼|a.

The interested reader can find more about multiset theory for example in [2, 3].

Definition 1 A shape multiset finite automaton is an ordered quintuple

A = (Q, 𝛴, 𝛿, q0,F)where Q is a nonempty finite set of states,𝛴 is the input alphabet,

q0 is the initial state, F ⊆ Q is the set of final states, and 𝛿 is the transition relation

𝛿 ⊆ Q × 𝛴 × Q.

We extend the relation 𝛿 to relation 𝛿
∗
⊆ Q × 𝛴

⊕ × Q in the recursive way:

1. (q, 𝟎
𝛴
, r) ∈ 𝛿

∗
iff r = q,

2. (q, 𝛼, s) ∈ 𝛿
∗

if there are r ∈ Q, a ∈ 𝛴 such that ⟨a⟩ ⊑ 𝛼, (q, a, r) ∈ 𝛿 and

(r, 𝛼 ⊖ ⟨a⟩, s) ∈ 𝛿
∗
.

The shape multiset language L(A) accepted by the multiset finite automaton A is

defined by

L(A) = {𝛼 ∈ 𝛴
⊕| (q0, 𝛼, q) ∈ 𝛿

∗
for some q ∈ F}.

Otherwise stated, the multiset language L(A) consists of all multisets 𝛼 such that the

automaton A starting its computation in q0 with 𝛼 on its ‘input’ finishes its work in

a final state with 𝟎
𝛴

on its ‘input’. Realize that computation of the automaton A does

not depend on some strict order of symbols in the ‘input multiset’.

Note that in [10], the transition relation of a multiset finite automaton is not con-

fined only to single symbols of 𝛴 but is defined on the same basis as our relation 𝛿
∗

(i.e. instead of symbols of 𝛴 it uses multisets over 𝛴) which is accompanied by

demand of finiteness of such transition relation. However in the same paper, the

statement about irrelevance of these differences is made. Namely, there is mentioned

mutual transformation between automata of these two definitions without change of

the accepted multiset language.

2.2 Fuzzy Multiset Finite Automata

In this paper we consider fuzzy sets with truth values in the unit interval [0, 1], i.e.

a fuzzy set in a universe set X is any mapping A ∶ X → [0, 1], A(x) being interpreted as

the truth degree of the fact that “x belongs to A” and being called membership value.

A fuzzy relation R between sets X and Y is defined as a mapping R ∶ X ×Y → [0, 1].
Analogously, a fuzzy ternary relation R̃ is defined as a mapping R̃ ∶ X × Y × Z →
[0, 1]. For any fuzzy set A, the set supp(A) = {a ∈ X|A(a) > 0} is called support
of A.
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Definition 2 A fuzzy multiset finite automaton (FMFA) is an ordered quintuple A =
(Q, 𝛴, 𝛿, q0,F) where Q is a nonempty finite set of states, 𝛴 is the input alphabet, q0
is the initial state, F ∶ Q → [0, 1] is a fuzzy set in Q, and 𝛿 ∶ Q ×𝛴 × Q → [0, 1] is

the fuzzy transition relation.

A state q ∈ Q is called a final state of A if F(q) > 0. We extend the fuzzy relation

𝛿 to fuzzy relation 𝛿
∗ ∶ Q × 𝛴

⊕ × Q → [0, 1] in the following way.

∙ 𝛿
∗(q, 𝟎

𝛴
, r) = 0 for r ≠ q and 𝛿

∗(q, 𝟎
𝛴
, q) = 1,

∙ 𝛿
∗(q, 𝛼, s) = max

r∈Q
a∈𝛴, ⟨a⟩⊑𝛼

{𝛿(q, a, r) ∧ 𝛿
∗(r, 𝛼 ⊖ ⟨a⟩, s)}

for all 𝛼 of positive cardinality.

The fuzzy multiset language L(A) accepted by the FMFA A is defined by

∙ L(A)(𝛼) = max
q∈Q

{
𝛿
∗(q0, 𝛼, q) ∧ F(q)

}
for all 𝛼 ∈ 𝛴

⊕

and is called a FMFA-language.

Analogously to the note following Definition 1 we should mention that the defi-

nition of a fuzzy multiset finite automaton in [16] differs from our definition (taken

from [13]) in two respects. First, it uses fuzzy set of initial states. Second, it defines

fuzzy transition relation on multisets
1

over 𝛴 (and not on symbols of 𝛴). Neither

of these differences is fundamental. Both of them are removable with help of Theo-

rems 4.1 and 4.2 from [16].

Example 1 Consider FMFA A = (Q, 𝛴, 𝛿, q0,F) where

Q = {q0, q1, q2},

𝛴 = {a, b},

𝛿(q0, a, q1) = 0.8,

𝛿(q1, a, q2) = 𝛿(q1, b, q0) = 0.5,

𝛿(q2, b, q1) = 0.4,

𝛿(qi, x, qj) = 0 otherwise,

F(q0) = 0, F(q1) = 1, F(q2) = 0.3.

We can illustrate the automaton lucidly with help of Fig. 1 where we utilize graphical

representation which is used for fuzzy finite automata (cf. e.g. [6]). In the labelled

directed graph, its nodes represent states of the automaton, the initial state is indi-

cated by the arrow pointing at it from nowhere, each final state q is depicted by

double circle including the value of F(q) (if the value is missing, the default value 1
is assumed), and each arc in the graph coincides with a non-null transition (if the arc

goes from state q to state r and 𝛿(q, a, r) = 𝜇 then the arc is labelled by a∕𝜇).

Consequently, for example

𝛿
∗(q1, ⟨a⟩⊕⟨b⟩, q1)= max{𝛿(q1, a, q2) ∧ 𝛿(q2, b, q1), 𝛿(q1, b, q0) ∧ 𝛿(q0, a, q1)} =

= max{0.5 ∧ 0.4, 0.5 ∧ 0.8} = 0.5

1
Unfortunately, this is not accompanied by necessary demand of finite support of the fuzzy relation.

However omission of this condition would cause invalidity of Theorems 4.2 and 5.2 in [16].
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Fig. 1 Graphical

representation of fuzzy finite

automata

q0 q1 q2

b/0.5

a/0.8

b/0.4

a/0.5
0.3

Obviously

𝛿
∗(q0, ⟨a⟩3 ⊕ ⟨b⟩, q0) = 0,

𝛿
∗(q0, ⟨a⟩3 ⊕ ⟨b⟩, q1) = 0,

𝛿
∗(q0, ⟨a⟩3 ⊕ ⟨b⟩, q2) = 0.5,

and

L(A)(⟨a⟩3 ⊕ ⟨b⟩) = max
{
𝛿
∗(q0, ⟨a⟩3 ⊕ ⟨b⟩, q2) ∧ F(q2)

}
= 0.5 ∧ 0.3 = 0.3.

It is easy to see that

L(A)(𝛼) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0.8 if 𝛼 = ⟨a⟩,
0.5 if |𝛼|a = |𝛼|b + 1 > 1,
0.3 if |𝛼|a = |𝛼|b + 2,
0 otherwise.

□

Note that in [16], it is proven that the family of all FMFA-languages equals the

family of all fuzzy multiset regular languages (which are generated by fuzzy multiset

regular grammars).

3 A Simplified Form of Fuzzy Multiset Finite Automata

Definition 3 If a FMFA A = (Q, 𝛴, 𝛿, q,F) satisfies the condition 𝛿 ∶ Q×𝛴 ×Q →
{0, 1} we will call it a fuzzy multiset finite automaton in simplified form.

Note that FMFA in simplified form uses (non-fuzzy) transition relation and the

only ‘fuzzy’ component is represented by fuzzy set of final states.

Analogously to situation concerning fuzzy automata (see [1]), we are going to

explore computational power of the ‘simplified FMFA’.

Theorem 1 Each FMFA-language is accepted by a FMFA in simplified form.

Proof We will prove the theorem on the basis of ideas from [1] where analogous

statement concerned fuzzy (non-multiset) finite automata.

Let L(A) be a FMFA-language accepted by the FMFA A = (Q, 𝛴, 𝛿, q0,F). Since

Q and 𝛴 are finite we have finite support of both 𝛿 and F. Hence, I = {𝛿∗(q, 𝛼, s)|𝛼 ∈
𝛴

⊕ ∧ q, s ∈ Q} ∪ {F(q)|q ∈ Q} is finite. Therefore the set Q̃ consisting of all fuzzy

sets in Q with truth values in I (i.e. Q̃ ∶ Q → I) is finite and can represent a new set

of states. Now, consider the ‘simplified FMFA’ Ã = (Q̃, 𝛴, 𝛿, q̄0, F̃) where

∙ 𝛿 ∶ Q̃×𝛴 × Q̃ → {0, 1} is a transition relation defined for all Q̄, R̄ ∈ Q̃, a ∈ 𝛴 by

𝛿(Q̄, a, R̄) =

{
1 if R̄(q) = max

s∈Q

{
Q̄(s) ∧ 𝛿(s, a, q)

}
for all q ∈ Q,

0 otherwise,
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∙ q̄0 ∈ Q̃ is a fuzzy set defined by q̄0(q0) = 1 and q̄0(q) = 0 for q ≠ q0,

∙ F̃ ∶ Q̃ → I is a fuzzy set of fuzzy sets defined by F̃(Q̄) = max
q∈Q

{
Q̄(q) ∧ F(q)

}
for

all Q̄ ∈ Q̃.

We claim that L(A) = L(Ã).

(I) L(Ã)(𝟎
𝛴
)= max

Q̄∈Q̃

{
𝛿∗(q̄0, 𝟎𝛴, Q̄) ∧ F̃(Q̄)

}
= F̃(q̄0) = max

q∈Q

{
q̄0(q) ∧ F(q)

}
=

= F(q0) = F(q0) ∧ 𝛿
∗(q0, 𝟎𝛴, q0) = max

q∈Q

{
𝛿
∗(q0, 𝟎𝛴, q) ∧ F(q)

}
=

= L(A)(𝟎
𝛴
).

(II) For the verification of L(A)(𝛼) = L(Ã)(𝛼) with 𝛼 ≠ 𝟎
𝛴

, we will use the following

assertion.

Assertion: Let S̄ ∈ Q̃, 𝛼 ∈ 𝛴
⊕
, card (𝛼) = n > 0. If 𝛿∗(q̄0, 𝛼, S̄) = 1 then

there is a sequence
(
ai
)n

i=1 , 𝛼 = ⟨a1⟩ ⊕ … ⊕ ⟨an⟩ such that for all q ∈ Q,

S̄(q) = max
ri∈Q

{
𝛿(q0, a1, r1) ∧ 𝛿(r1, a2, r2) ∧ … ∧ 𝛿(rn−1, an, q)

}
.

Proof of the assertion: We will use an induction on cardinality of the multiset 𝛼.

(1) If card (𝛼) = 1 then 𝛼 = ⟨a⟩ for some a ∈ 𝛴. By definition of 𝛿, we

have 𝛿(q̄0, a, S̄) = 1 iff S̄(q) = 𝛿(q0, a, q) for all q ∈ Q. Since 𝛿(q̄0, a, S̄) =
𝛿∗(q̄0, 𝛼, S̄), the assertion holds true for n = 1.

(2) Let the assertion hold true for any multiset of cardinality from the set

{1,… , n} where n ≥ 1. We will verify its validity for an multiset 𝛼 of car-

dinality n + 1.

Assume 𝛼 ∈ 𝛴
⊕

, S̄ ∈ Q̃ such that card (𝛼) = n + 1 and 𝛿∗(q̄0, 𝛼, S̄) = 1.

Since

1 = 𝛿∗(q̄0, 𝛼, S̄) = max
T̄ ∈ Q̃

a∈𝛴, ⟨a⟩⊑𝛼

{𝛿∗(q̄0, 𝛼 ⊖ ⟨a⟩, T̄) ∧ 𝛿(T̄ , a, S̄)},

there are T̄ ∈ Q̃, a ∈ 𝛴, ⟨a⟩ ⊑ 𝛼 such that

𝛿(T̄ , a, S̄) = 1 and 𝛿∗(q̄0, 𝛼 ⊖ ⟨a⟩, T̄) = 1.

The first equality implies by definition of 𝛿 that

S̄(q) = max
s∈Q

{T̄(s) ∧ 𝛿(s, a, q)} ∀q ∈ Q
and the second equality implies by inductive hypothesis that

∃
(
ai
)n

i=1 , 𝛼 ⊖ ⟨a⟩ = ⟨a1⟩⊕…⊕ ⟨an⟩, ∀q ∈ Q ∶
T̄(q) = max

ri∈Q

{
𝛿(q0, a1, r1) ∧ … ∧ 𝛿(rn−1, an, q)

}
.

If we denote an+1 = a then we obtain that

∃
(
ai
)n+1

i=1 , 𝛼 = ⟨a1⟩⊕…⊕ ⟨an+1⟩, ∀q ∈ Q ∶
S̄(q) = max

s∈Q
{max

ri∈Q

{
𝛿(q0, a1, r1) ∧ … ∧ 𝛿(rn−1, an, s)

}
∧ 𝛿(s, an+1, q)} =

= max
s∈Q

{max
ri∈Q

{
𝛿(q0, a1, r1) ∧ … ∧ 𝛿(rn−1, an, s) ∧ 𝛿(s, an+1, q)}

}
.

If we denote rn = s then we get

S̄(q) = max
ri∈Q

{
𝛿(q0, a1, r1) ∧ … ∧ 𝛿(rn−1, an, rn) ∧ 𝛿(rn, an+1, q)

}

and the assertion is proved.
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Now we prove L(Ã) ⊆ L(A):

Consider an arbitrary 𝛼 ∈ 𝛴
⊕
, 𝛼 ≠ 𝟎

𝛴
. Then, with help of the previous assertion

(used in fourth equality) we get

L(Ã)(𝛼) = max
Q̄∈Q̃

{
𝛿∗(q̄0, 𝛼, Q̄) ∧ F̃(Q̄)

}
=

= max
Q̄∈ Q̃

𝛿∗(q̄0, 𝛼, Q̄) = 1

F̃(Q̄) =

= max
Q̄∈ Q̃

𝛿∗(q̄0, 𝛼, Q̄) = 1

{

max
q∈Q

{
Q̄(q) ∧ F(q)

}
}

=

= max
Q̄∈Q̃

{

max
q∈Q

{

max
ri∈Q

{
𝛿(q0, a1, r1) ∧… ∧ 𝛿(rn−1, an, q)

}
∧F(q)

}}

≤

≤ max
Q̄∈Q̃

{

max
q∈Q

{
𝛿
∗(q0, 𝛼, q) ∧ F(q)

}
}

=

= L(A)(𝛼).
For the proof of the opposite inclusion (i.e. L(A) ⊆ L(Ã)), we use the following

implication (which is easy to verify):

Let 𝛼 ∈ 𝛴
⊕

and let S̄ ∈ Q̃ be defined by S̄(q) = 𝛿
∗(q0, 𝛼, q) for all q ∈ Q. Then

𝛿∗(q̄0, 𝛼, S̄) = 1.

By the definition,

L(A)(𝛼) = max
q∈Q

{
𝛿
∗(q0, 𝛼, q) ∧ F(q)

}
.

If we denote 𝛿
∗(q0, 𝛼, q) = S̄(q) then we have

L(A)(𝛼) = max
q∈Q

{
S̄(q) ∧ F(q)

}
= F̃(S̄) = F̃(S̄) ∧ 1 =

= F̃(S̄) ∧ 𝛿∗(q̄0, 𝛼, S̄) ≤ max
Q̄∈Q̃

{
𝛿∗(q̄0, 𝛼, Q̄) ∧ F̃(Q̄)

}
=

= L(Ã)(𝛼).

□

The following corollary is obvious.

Corollary 1 The family of FMFA languages is equal to the family of languages
accepted by FMFA in simplified form.

4 Conclusion

In this paper, a simpler form of fuzzy multiset finite automata was introduced and

computational power of these automata was proved to be equal to the computational

power of standard fuzzy multiset finite automata. The proof is constructive and pro-

vides an algorithm for transformation of any fuzzy multiset finite automaton to its

version in simpler form.
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The simpler form can prove its usefulness in further development of fuzzy mul-

tiset finite automata theory. As an immediate tasks we can mention solving equiva-

lence and minimization problems.
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