
A Beam-Search Approach to the Set
Covering Problem

Victor Reyes, Ignacio Araya, Broderick Crawford, Ricardo Soto
and Eduardo Olguín

Abstract In this work we present a beam-search approach applied to the Set Cover-

ing Problem. The goal of this problem is to choose a subset of columns of minimal

cost covering every row. Beam Search constructs a search tree by using a breadth-

first search strategy, however only a fixed number of nodes are kept and the rest are

discarded. Even though original beam search has a deterministic nature, our pro-

posal has some elements that makes it stochastic. This approach has been tested

with a well-known set of 45 SCP benchmark instances from OR-Library showing

promising results.

Keywords SCP ⋅ Beam search ⋅ Branch-and-Bound ⋅ Greedy

V. Reyes (✉) ⋅ I. Araya ⋅ B. Crawford ⋅ R. Soto

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

e-mail: vareyesrod@gmail.com

I. Araya

e-mail: ignacio.araya@ucv.cl

B. Crawford

e-mail: broderick.crawford@ucv.cl

R. Soto

e-mail: ricardo.soto@ucv.cl

B. Crawford ⋅ E. Olguín

Universidad San Sebastián, Santiago Metropolitan Region, Chile

B. Crawford

Universidad Central de Chile, Santiago Metropolitan Region, Chile

R. Soto

Universidad Autónoma de Chile, Temuco, Chile

R. Soto

Universidad Cientifica Del Sur, Lima, Peru

© Springer International Publishing Switzerland 2016

R. Silhavy et al. (eds.), Artificial Intelligence Perspectives in Intelligent Systems,
Advances in Intelligent Systems and Computing 464,

DOI 10.1007/978-3-319-33625-1_35

395



396 V. Reyes et al.

1 Introduction

The Set Covering Problem (SCP) is a combinatorial problem that can be described as

the problem of finding a subset of columns from a m-row, n-column zero-one matrix

aij such that they can cover all the rows at minimal cost. The SCP can be formulated

as follows:

Minimize Z =
n∑

j=1
cjxj j ∈ {1, 2, 3, ..., n} (1)

Subject to:
n∑

j=1
aijxj ≥ 1 i ∈ {1, 2, 3, ...,m} (2)

xj ∈ {0, 1}, (3)

where cj represents the vector cost. The SCP is a NP-hard problem [9] that has

been used to model many problems as scheduling, manufacturing, services planning,

information retrieval, etc. [1, 7]. Several algorithms have been developed for solving

SCP instances. Exact algorithms [6], even though they can reach the global optima,

they require substantial time for solving large instances. Greedy algorithms [8] are

a good approach for large instances, but rarely generates good solutions because

of its myopic and deterministic nature. Another approach are Probabilistic greedy
algorithms [10, 13], which often generates better quality solutions than the deter-

ministic counterparts. Metaheuristics are commonly the best way to solve large SCP

instances, some of them are: Genetic algorithms [3, 18], Neural Network algorithms

[16], Simulated Annealing [11], Ant Colony Optimization [14], and many more.

In this work, we propose an algorithm for solving the SCP that is based in the

well known beam-search algorithm. It has been used in many optimization problems

[4, 5, 12, 19]. Beam-search is a fast and approximate branch and bound method,

which operates in a limited search space to find good solutions for optimization prob-

lems. It constructs a search tree by using a breadth-first search, but selecting only the

most promising nodes by using some rule. Our implementation selects these nodes

using a simple greedy algorithm that can be seen as a Depth-first search. The greedy

will find a solution and returns its fitness, which will be used to select and discard

nodes from the search tree.

This paper is organized as follows: Sect. 2 describes our Beam-Search implemen-

tation for the SCP, Sect. 3 shows the result that we obtained by using a well known

set of SCP benchmarks instances, finally conclusions and future work can be found

in Sect. 4.



A Beam-Search Approach to the Set Covering Problem 397

2 Beam Search

Beam Search [15] is a deterministic heuristic algorithm that constructs a search-

tree. It begins with an empty solution at the root node and gradually construct solu-

tion candidates, level by level. At each level of the tree, two procedures are applied:

PromisingChildren and SelectBest. While the first one expand each node by the np
most promising children using some criteria, the second one choose the ns most

promising nodes from the current level. Given this, at the level 0 the tree will have

one node; at the level 1 ns nodes; from the level 2 the algorithm will select ns nodes

from a pool of at most ns ∗ np nodes. Beam Search lacks of completeness, because

the optimal solution could be pruned during the search process. The Algorithm 1

corresponds to the classic beam-search described before.

Algorithm 1 Original Beam-Search(np, ns, P); out: Solution
S ← {emptySolution}
Solution ← NULL
while S ≠ ∅ do

S′ ← {}
for all s ∈ S do

S′ ← S′ ∪ 𝙿𝚛𝚘𝚖𝚒𝚜𝚒𝚗𝚐𝙲𝚑𝚒𝚕𝚍𝚛𝚎𝚗(s, ns,P)
end for
if 𝚒𝚜 − 𝚜𝚘𝚕𝚞𝚝𝚒𝚘𝚗(S′) then

𝚁𝚎𝚝𝚞𝚛𝚗(Solution)
end if
S ← 𝚂𝚎𝚕𝚎𝚌𝚝𝙱𝚎𝚜𝚝(S′, ns)

end while

2.1 Our Implementation

For adapting this algorithm to the SCP, we consider the following: PromisingChil-
dren determinates the np most promising children from the current node. This is

achieved by calculating, for each non-instantiated variable, a value using one of

the following functions: cj∕kj, cj∕k2j , cj∕(kj log(1 + kj)), c1∕2j ∕kj, cj∕k
1∕2
j and cj∕

log(kj + 1) [8, 13]. The variable kj represents the number of currently uncovered

rows that could be covered by the column j. The function is selected in a random

way and it is used for all the nodes of the current level. Then, the np variables with

the lowest values are instanciated. After that, we run a greedy algorithm for each

of the new candidates nodes by using the procedure Greedy-SelectBest. This greedy

attempts to construct a branch (one node per level), using the same function selected

in PromisingChildren, until a solution is reached. At the end of this process, each



398 V. Reyes et al.

node will have an associate solution. The procedure will select the ns nodes with the

best objective function value. The best solution founded in the search it is used to

discard nodes with a worst objetive function value.

Unlike the classic algorithm, the search does not stop when a solution is founded

or all nodes are discarded, instead, we set a fixed number of nodes to be generated

(See Algorithm 2).

Algorithm 2 Beam-Search+Greedy(np, ns, P); out: Best − Solution
S ← {emptySolution}
Best − Solution ← NULL
while 𝙵𝚒𝚡𝚎𝚍𝙽𝚞𝚖𝚋𝚎𝚛𝙾𝚏𝙽𝚘𝚍𝚎𝚜𝚁𝚎𝚊𝚌𝚑𝚎𝚍 do

S′ ← {}
for all s ∈ S do

S′ ← S′ ∪ 𝙿𝚛𝚘𝚖𝚒𝚜𝚒𝚗𝚐𝙲𝚑𝚒𝚕𝚍𝚛𝚎𝚗(s, ns,P,BestSolution)
end for
S ← 𝙶𝚛𝚎𝚎𝚍𝚢 − 𝚂𝚎𝚕𝚎𝚌𝚝𝙱𝚎𝚜𝚝(S′, ns,BestSolution)

end while

2.2 Preprocessing

Preprocessing is a popular method to speedup the algorithm. A number of pre-

processing methods have been proposed for the SCP [2]. In our implementation,

we used the most effective ones:

∙ Column domination: Any column jwhose rows Ij can be covered by other columns

for a cost less than cj can be deleted from the problem, however this is an NP

complete problem [9]. Instead, we used the rule described in [17].

∙ Column inclusion: If a row is covered by only one column after the above domi-

nation, this column must be included in the optimal solution.

3 Experiments

Our approach has been implemented in C++, on an 2.4GHz CPU Intel Core i7-

4700MQ with 8gb RAM computer using Ubuntu 14.04 LTS x86_64. In order to

test it, we used 45 SCP instances from OR-Library
1

which are described in Table 1.

Optimal solutions are known for all of these instances.

1
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html


A Beam-Search Approach to the Set Covering Problem 399

Table 1 Detail of the test instances

Instance set No. of instances Rows Columns Cost range

4 10 200 1000 [1, 100]
5 10 200 2000 [1, 100]
6 5 200 1000 [1, 100]
A 5 300 3000 [1, 100]
B 5 300 3000 [1, 100]
C 5 400 4000 [1, 100]
D 5 400 4000 [1, 100]

Table 2 Experiments using np = 20 and ns = 10
Instance Optima Min-

value

Max-

value

Avg RPD Instance Optima Min-

value

Max-

value

Avg RPD

scp41 429 430 434 432.0 0.23 scpA1 253 256 259 257.3 1.19
scp42 512 517 527 524.8 0.98 scpA2 252 257 263 262.1 1.98
scp43 516 520 530 525.9 0.78 scpA3 232 238 240 238.6 2.59
scp44 494 501 510 504.9 1.42 scpA4 234 236 241 238.7 0.85
scp45 512 515 525 521.6 0.59 scpA5 236 236 239 237.6 0.00
scp46 560 570 576 572.4 1.79 scpB1 69 69 78 75.1 0.00
scp47 430 432 435 433.6 0.47 scpB2 76 76 81 78.0 0.00
scp48 492 493 498 495.2 0.20 scpB3 80 80 82 80.5 0.00
scp49 641 658 667 662.7 2.65 scpB4 79 79 82 81.0 0.00
scp410 514 514 519 517.3 0.00 scpB5 72 72 73 72.1 0.00
scp51 253 256 262 259.9 1.19 scpC1 227 234 237 235.8 3.08
scp52 302 308 313 309.8 1.99 scpC2 219 222 230 227.0 1.37
scp53 226 230 234 233.4 1.77 scpC3 243 244 251 248.5 0.41
scp54 242 243 244 243.6 0.41 scpC4 219 223 235 234.0 1.83
scp55 211 215 219 217.8 1.90 scpC5 215 215 217 215.5 0.00
scp56 213 213 219 216.9 0.00 scpD1 60 60 61 60.2 0.00
scp57 293 298 303 301.1 1.71 scpD2 66 68 70 68.6 3.03
scp58 288 291 298 294.7 1.04 scpD3 72 74 75 74.3 2.78
scp59 279 282 287 285.0 1.08 scpD4 62 62 63 62.3 0.00
scp510 265 265 271 268.4 0.00 scpD5 61 61 64 62.9 0.00
scp61 138 140 143 141.9 1.45
scp62 146 148 150 149.1 1.37
scp63 145 149 151 149.7 2.76
scp64 131 132 133 132.5 0.76
scp65 161 165 170 167.1 2.48



400 V. Reyes et al.

(a)

(b)

(c)

Fig. 1 Convergence plots for the a scp41, b scp42 and c scp43 instances

Our algorithm was configured before perform the search. Each of these instances

were executed 20 times, with several values of np and ns. The best results (related to

the avg. value) were obtained by using np = 20 and ns = 10. We set as stop criteria a

maximum of 1000 nodes in the search tree. After reaching this value, the algorithm

did not show a big improvement in the solutions. Table 2 shows the results by using

this configuration.



A Beam-Search Approach to the Set Covering Problem 401

The column Optima represents the lowest objective function value for a particular

instance. Min-value and Max-value represent the lowest and the maximum objective

function value, respectively, obtained for our proposal in 20 executions. The mean

value of these 20 executions are shown in the column Avg. The column RPD repre-

sents the Relative Percent Difference. This measure can be defined as follows:

RPD =
(Min-value − Optima)

Optima
× 100. (4)

Convergence plots can be seen in Fig. 1.

4 Conclusion and Future Work

In this work we have presented a beam-search approach with a greedy algorithm to

solve the SCP. Our approach applies a greedy algorithm in each node to find solutions

by using a set of simple functions that choose promising variables. Experiments show

very promising results, considering that the technique in not yet fully exploited. In

a future work we plan to do a more guided search by using a nogood-like learning

strategy,
2

that should reduce the size of the search tree. Also, we plan to adapt this

technique for the bi-objective SCP formulation.

Acknowledgments Victor Reyes is supported by grant INF-PUCV 2015, Ricardo Soto is sup-

ported by grant CONICYT/FONDECYT/INICIACION/11130459, Broderick Crawford is sup-

ported by grant CONICYT/FONDECYT/REGULAR/1140897, and Ignacio Araya is supported by

grant CONICYT/FONDECYT/INICIACION/11121366.

References

1. Balas, E., et al.: A class of location, distribution and scheduling problems: modeling and solu-

tion methods (1982)

2. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1), 85–93 (1987)

3. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res.

94(2), 392–404 (1996)

4. Bennell, J.A., Song, X.: A beam search implementation for the irregular shape packing prob-

lem. J. Heuristics 16(2), 167–188 (2010)

5. Blum, C.: Beam-acohybridizing ant colony optimization with beam search: an application to

open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

6. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann. Oper. Res.

98(1–4), 353–371 (2000)

7. Ceria, S., Nobili, P., Sassano, A.: A lagrangian-based heuristic for large-scale set covering

problems. Math. Program. 81(2), 215–228 (1998)

8. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235

(1979)

2
also known as cutting planes.



402 V. Reyes et al.

9. Michael, R.G., David, S.J.: Computers and intractability: a guide to the theory of np-

completeness. San Francisco, p. 1979. Freeman, LA (1979)

10. Haouari, M, Chaouachi, J.S.: A probabilistic greedy search algorithm for combinatorial opti-

misation with application to the set covering problem. J. Oper. Res. Soc. 792–799 (2002)

11. Jacobs, L.W., Brusco, M.J.: Note: a local-search heuristic for large set-covering problems. Nav.

Res. Logist. (NRL) 42(7), 1129–1140 (1995)

12. Kim, K.H., Kang, J.S., Ryu, K.R.: A beam search algorithm for the load sequencing of out-

bound containers in port container terminals. OR Spectr. 26(1), 93–116 (2004)

13. Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering

problem. Eur. J. Oper. Res. 176(3), 1387–1403 (2007)

14. Lessing, L., Dumitrescu, I., Stützle, T.: A comparison between aco algorithms for the set cov-

ering problem. Ant Colony Optimization and Swarm Intelligence, pp. 1–12. Springer, Berlin

(2004)

15. Norvig, P.: Paradigms of Artificial Intelligence Programming: Case Studies in Common LISP.

Morgan Kaufmann (1992)

16. Ohlsson, M., Peterson, C., Söderberg, B.: An efficient mean field approach to the set covering

problem. Eur. J. Oper. Res. 133(3), 583–595 (2001)

17. Ren, Z.-G., Feng, Z.-R., Ke, L.-J., Zhang, Z.-J.: New ideas for applying ant colony optimization

to the set covering problem. Comput. Ind. Eng. 58(4), 774–784 (2010)

18. Solar, M., Parada, V., Urrutia, R.: A parallel genetic algorithm to solve the set-covering prob-

lem. Comput. Oper. Res. 29(9), 1221–1235 (2002)

19. Wang, F., Lim, A.: A stochastic beam search for the berth allocation problem. Decis. Support

Syst. 42(4), 2186–2196 (2007)


	A Beam-Search Approach to the Set Covering Problem
	1 Introduction
	2 Beam Search
	2.1 Our Implementation
	2.2 Preprocessing

	3 Experiments
	4 Conclusion and Future Work
	References


