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Abstract. Accurate classification of organisms into taxonomical hierarchies
based on genomic sequences is currently an open challenge, because majority of
the traditional techniques have been found wanting. In this study, we employed
mitochondrial DNA (mtDNA) genomic sequences and Digital Signal Processing
(DSP) for accurate classification of Eukaryotic organisms. The mtDNA
sequences of the selected organisms were first encoded using three popular
genomic numerical representation methods in the literature, which are Atomic
Number (AN), Molecular Mass (MM) and Electron-Ion Interaction Pseudopo-
tential (EIIP). The numerically encoded sequences were further processed with a
DSP based cepstral analysis to obtain three sets of Genomic Cepstral Coeffi-
cients (GCC), which serve as the genomic descriptors in this study. The three
genomic descriptors are named AN-GCC, MM-GCC and EIIP-GCC. The
experimental results using the genomic descriptors, backpropagation and radial
basis function neural networks gave better classification accuracies than a
comparable descriptor in the literature. The results further show that the accu-
racy of the proposed genomic descriptors in this study are not dependent on the
numerical encoding methods.
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1 Introduction

Taxonomy is a hierarchical system that is employed to group organisms up to the
species level. It is the principal method used to estimate organism’s diversity and
makes the study of living organisms highly convenient [1]. DNA based classification of
organisms into groups within taxonomical hierarchies has applications in areas such as
evolutionary characterization, bio-diversity research, forensic studies, food and meat
authentication, detection of relationship within and between organisms as well as
species identification [2]. Some of the traditional methods for nuclear DNA based
classification of organisms include sequence alignment and analysis of compositional
bias. According to [3], sequences that may not seem to have resemblance using
sequence alignment may be found to be similar using compositional bias. This is
because biases within the nuclear DNA genomes of the same organism are smaller than
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that between different organisms. The availability of more genomic data in recent times
has however presented evidences of huge variation in sequences within the same
category of organisms, which has impacted negatively on the efficacy of these two
traditional methods. Thus, a number of other DNA based methods have been developed
to replace traditional methods. One of the most reliable, sensitive and specific of these
modern methods is mitochondrial DNA (mtDNA) sequencing. The mtDNA sequencing
generate mitochondria genomic sequences from the cells of eukaryotic species. The
mtDNA sequences represent a minute fraction of the total DNA sequences in the
eukaryotic cells. mtDNA sequences have a lot of attributes that make them suitable for
taxonomic classification of eukaryotic species. One of these attributes is the ease with
which the sequences can be isolated from organisms even with degraded or low amount
of samples. Another vital attribute is the substantial variation in the mtDNA sequences
of organisms belonging to different species [4].

Given the abovementioned attractive attributes, some studies in the literature have
utilized bioinformatics and Genomic Signal Processing (GSP) techniques to process
mtDNA so as to solve species classification or identification problems. Vijayan et al. [5]
extracted Frequency Chaos Game Representation (FCGR) features from the chaos game
representation images of mtDNA sequences of eight eukaryotic organisms to train
Artificial Neural Networks (ANN) classifier. The authors reported a classification
accuracy of 92.3 % with Probabilistic Neural Network (PNN) using 64 element feature
vector. When the feature vector was reduced to 16 elements by exploiting the fractal
nature of the mtDNA, the authors reported that the network complexity was radically
reduced with no appreciable reduction in classification accuracy since an average
accuracy of 90.1 % was obtained. Rastogi et al. [6] carried out a study on species
identification of various animal samples using mtDNA and nuclear sequences obtained
from their tissues. The bioinformatics tools utilized for the study are BLAST, Molecular
Evolutionary Genetic Analysis (MEGA) v3.1 and ClustalW program. The result of this
study showed that the mtDNA sequences are more efficient for species identification and
authentication than nuclear sequences. According to the authors, the superiority of
mtDNA sequences emanates from their relatively rapid evolution at the sequence level
due to the mitochondrial inability to repair damages in the DNA. Kitpipit et al. [7]
undertook a study on Tiger species identification using mtDNA from two individuals of
four of the five subspecies of Tiger. The authors successfully sequenced and processed a
total of 7891 bp which represent 46.4 % of the total tiger mtDNA using FINCH TV
1.4.0 and ClustalX bioinformatics tools. Based on the result in this study, there was no
sequence variation within the 7891 bp that can be used to reliably differentiate the Tiger
subspecies. This study further validates the low variability in intra-species mtDNA
which make it highly potent for interspecies differentiation.

Genomic sequences other than mtDNA have also been employed for taxonomic
classification in the literature. A study was carried out in [8] to classify the genomic
sequences of four pathogenic viruses which include ebolavirus, enterovirus D68, dengue
and hepatitis c viruses. The authors used Genomic Cepstral Coefficients (GCC) and
Gaussian Radial Basis Function (RBF) to achieve classification rate of 97.3 %.

The compact and highly discriminatory GCC utilized in [8] and the strong
inter-species variability of mtDNA as illustrated in [5] provided the motivation for the
study at hand. Firstly, we acquired the genome of eight eukaryotic organisms from the
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National Center for Biotechnology Information (NCBI) organelle database and
numerically encoded them using three Physico-Chemical Property Based Mapping
(PCPBM) schemes, which are Atomic Number (AN), Molecular Mass (MM) and
Electron Ion Interaction Potential (EIIP) [9, 10]. Secondly, we computed Genomic
Cepstral Coefficients (GCC) from the encoded genomes to obtain three different set of
descriptors from the eukaryotic organisms. These descriptors are named in this study as
AN-GCC, MM-GCC and EIIP-GCC. Thirdly, experiments were performed using each
of the three descriptors as well as Back Propagation Neural Network (BPNN) and
Radial Basis Function Neural Network (RBFNN) as utilized in [5]. The classification
results obtained from the experiments were compared with the FCGR descriptor
reported in [5]. Furthermore, we compared the results obtained using the three
descriptors in this study so as to determine the most discriminatory of them.

The rest of this paper is organized as follows. Section 2 contains the materials and
methods, Sect. 3 contains the results and discussion, while the paper is concluded in
Sect. 4.

2 Materials and Methods

2.1 Dataset

We extracted mitochondrial DNA (mtDNA) genomes of Eukaryotic organisms, which
belong to eight different taxonomical categories as the dataset for this study [5]. These
data are from NCBI organelle database (www.ncbi.nlm.nih.gov/genome/browse/?
report=5) and were extracted on the 31st of October, 2015. On this database, a search
by organism query was carried out using the names of the Eukaryotic organisms
(Table 1) to obtain the mtDNA genome accession numbers of the organisms in each
category. The statistics of the dataset in the current study are shown in Table 1. As
shown in the Table, the cumulative size of the dataset is 1,249, with Protostomia and
Vertebrata each having the highest number of organisms (198) while Porifera has the
lowest number of organisms (60). The size ranges of the genome for each of the
Eukaryotic organism is also shown in Table 1. Notably, an organism in Plant category
has the smallest genome size of 288 and another organism in the same category has the
highest genome size of 1,555,935. As earlier established, the huge variation in genome
lengths within the same class of organisms as shown in the Table is bound to impact
negatively on the outcome of traditional organism classification methods such as
sequence alignment and compositional bias analysis.

2.2 Numerical Representation of the mtDNA Genomes

Genome sequences are biologically represented with the collection of the four
nucleotides, which are adenine, thymine, cytosine and guanine. The sequences are
symbolized using character strings that consist of the letters A for Adenine, T for
Thymine, C for Cytosine and G for Guanine. The use of Digital Signal Processing
(DSP) in the literature to solve some critical problems in genomics has been possible
through numerical representation of genome sequences and this has given birth to a
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branch of bioinformatics named Genomic Signal Processing (GSP) [11]. The methods
for numerical representation of sequences in the GSP literature are classified into two,
which are Fixed Mapping (FM) and Physico Chemical Property Based Mapping
(PCPBM). FM methods use binary, real or complex number to transform genome
sequences into a series of arbitrary numerical sequences while the PCPBM methods
numerically transform genome sequences such that the biological principals and
structures in the sequences can be detected [10]. The PCPMB methods is highly
relevant for the study at hand because our goal is to use the inherent biology structures
in the mtDNA sequences to classify unknown organism into the appropriate Eukaryotic
category. Other attributes that are paramount for the numerical representation of the
mtDNA sequences in this study are (i) single and non-redundant representation
(ii) fixed magnitude representation for each nucleotide (iii) non-derivation from other
numerical representation methods and (iv) accessibility to DSP analysis. All these
attributes are essential for low computational overhead, memory conservation and
detection of the inherent periodicity in genome sequences [10]. The three PCPBM
methods in the literature, which fully satisfy the foregoing criteria are Atomic Number
(AN), Molecular Mass (MM) and Electron-Ion Interaction Pseudopotential (EIIP)
[9–11]. Hence, these methods were nominated for numerical representation of the
mtDNA dataset in this study. Table 2 shows the nucleotides and their corresponding
AN, MM and EIIP values. In this study, all the sequences of the organisms shown in
Table 1 were numerically transformed based on the values of each nucleotide in the
respective methods shown in Table 2.

Table 1. Eukaryotic organisms extracted for this study

S/N Eukaryotic organisms Number of organisms Range of genome size

1 Acoelomata (Flatworms) 83 13,387 – 27,133
2 Cnidaria 124 2,811 – 22,015
3 Fungi 196 1,136 – 235,849
4 Plant 271 288 – 1,555,935
5 Porifera 60 5,596 – 28,958
6 Protostomia 198 8,118 – 48,161
7 Pseudocoelomata(Nematodes) 119 12,626 – 26, 194
8 Vertebrata 198 3,427 – 22,184

Table 2. Numerical representation of the four nucleotides using AN, MM and EIIP

Nucleotide Atomic
Number
(AN)

Molecular Mass
(MM)

Electron-Ion Interaction Potential
(EIIP)

A 70 134 0.1260
G 78 150 0.0806
C 58 110 0.1340
T 66 125 0.1335
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2.3 Signal Cepstral Analysis

The application of the principle used in Fourier Transform (FT) for the detection of
periodicity components in a Fourier spectrum is referred to as cepstrum analysis [12].
Given a numerically represented mtDNA sequence, which is a discrete signal denoted
as x̂ nð Þ, with a spectrum denoted as X wð Þ, the cepstrum can be computed as the inverse
FT of the logarithmic spectrum as follows:

x̂ nð Þ ¼ 1
2p

Zp

�p

log X wð Þð Þejwtdw ð1Þ

Since X wð Þ is a complex and even function, x̂ nð Þ is usually referred to as a complex
cepstrum even if the input signal is real. However, a real cepstrum can be computed by
considering the spectrum magnitude X wð Þj j as:

cx nð Þ ¼ 1
2p

Zp

�p

log X wð Þj jð Þejwtdw ð2Þ

As reported in [8], the real cepstrum in Eq. (2) consistently outperformed the
complex cepstrum for all the experiments carried out in the previous study. Further-
more, it is a usual practice to restrict the number of cepstral coefficients that preserves
the spectral envelope while removing the fine spectrum information. Retaining the first
fifteen coefficients to represent the signal envelope gave better performance than the
lower coefficients experimented in the aforementioned previous study [8]. Hence, for
the study at hand, the first fifteen coefficients of the real cepstrum of the numerically
encoded genome sequences form the GCC descriptors for each of the organisms. Based
on the three different PCPBM methods earlier selected, three sets of descriptors, which
are AN-GCC, MM-GCC and EIIP-GCC, were computed for the Eukaryotic organisms
in this study. The algorithms for these descriptors were implemented in MATLAB
R2014a programming environment. Each of the descriptors contains 15 element vector
per organism and culminates in a 15 × 1,249 data matrix for the selected Eukaryotic
organisms. One of the major benefits of utilizing the 15 element GCCs is that the
complexity of the succeeding supervised classifier is drastically reduced.

2.4 Supervised Classification

In supervised classification, the training dataset is represented as xj; cj
� �� �

, with j 2
1; . . .;Nf g where each xj contains n features and the class labels cj 2 1; . . .; lf g where

l is the number of classes in the data. The supervised classification task involves the
development of a model based on the set of N instances (i.e. the training data). The
developed model is thereafter used to assign class labels to unknown instances using
the values of the n features. Adapting the supervised classification paradigm to this
study, symbols N = 1,249, n = 15 and l = 8. One of the most popularly used supervised
classification methods in the bioinformatics and species classification literature is
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Artificial Neural Network (ANN) [2, 10]. Since it is not known a priori which ANN
topologies is more suitable for our dataset in this study, we experimented with the
Backpropagation Neural Network (BPNN) and Radial Basis Function Neural Network
(RBFNN) as was done in a closely related study reported in [5].

BPNN is reputed to be very good at learning various patterns [13]. In this study, the
BPNN was tested for one, two and three number of layers and different number of
neurons in each of the layers respectively [5]. The input layer contains 15 neurons,
which is equal to the number of features in the training dataset and the output layer
contains 8 neurons since there are 8 classes of Eukaryotic organisms in the dataset. The
linear activation functions were selected for both the input and the output layers [10],
the tansigmoid function was selected for the hidden layers while Levenberg-Marquardt
training algorithm with a learning rate of 0.1 and Mean Square Error (MSE) goal of 0,
was used for all the configurations [5].

RBFNN is suitable when there is a large training dataset and its design is very fast.
RBFNN comprises of the input layer, which contains 15 neurons in this study, only one
hidden layer, whose number of neurons are determined and created during training and
the output layer, which is configured with 8 neurons. The two additional parameters
that are supplied to RBFNN are the MSE goal and the spread factor.

The performances of the BPNN and RBFNN supervised classifiers were captured
using accuracy and training time [5]. The implementations of the two classifiers in the
Neural Network Toolbox of MATLAB R2014a were used in this study.

2.5 Experiments

The experiments in this study were performed on a computer system that contains an
Intel Core i5-3210 M CPU, which operates at 2.50 GHz speed, 6.00 GB RAM, and
runs 64-bit Windows 8 operating system. 70 % of the experimental dataset was used
for training, 15 % for testing and the remaining 15 % for validation. The first exper-
iment involved training each of the configurations of the BPNN five times using the
AN-GCC, MM-GCC and EIIP-GCC descriptors one after the other. We needed to
carry out five different trainings and obtained the average accuracy and training time for
each BPNN configuration because the network normally begins with random weights.
These initial random weights often culminate in the same network configuration, with
the same training dataset, generating different accuracies when trained at different
times. In the second experiment, we configured the RBFNN with an MSE goal of 0.0
and a spread factor of 1 and trained the network using AN-GCC, MM-GCC and
EIIP-GCC respectively to obtain the accuracies and training times. All the results we
obtained in the foregoing experiments are hereafter reported and discussed.

3 Results and Discussion

The results of the first experiment are shown in Table 1. As shown in the Table, the
highest average accuracy after the BPNN was trained with AN-GCC is 88.04 % when
the BPNN was configured with two hidden layers of 25 neurons in the first hidden layer
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and 15 neurons in the second hidden layer. The highest average accuracy was 88.70 %
when the BPNN was trained using MM-GCC and configured with three hidden layers
having 30, 20 and 10 neurons in the first, second and third hidden layers respectively.
When the BPNN was trained with EIIP-GCC, the highest average accuracy was
88.66 % with two hidden layers of 50 and 30 neurons respectively. Although, the
MM-GCC gave marginally higher average accuracy (88.70 %) compared to AN-GCC
(88.04 %) and EIIP-GCC (88.66 %) trained classifiers, this little improvement is not
significantly better, given the complexity of the BPNN configuration (three hidden
layers) that generated this level of accuracy.

It is noteworthy that across all the configurations of the BPNN, the performances of
the three descriptors are very similar. Hence, it is difficult to claim that any of them is
the best. The similarity in the performance accuracies of the three descriptors is also
illustrated in Fig. 1. As shown in the figure, there is a strong overlap in the average
classification accuracies obtained using the three descriptors. Figure 1 also shows the
plot of the average classification accuracies obtained using the FCGR descriptor pro-
posed in [5] to train the same BPNN configurations. It is clearly shown in the figure
that all the three descriptors in this study gave better average classification accuracies
than the FCGR descriptor. As expected, the training times for BPNN configurations
with 20 to 60 neurons in one hidden layer require less than 2 min while the configu-
rations with two or three hidden layers took approximately 3 min for all the three
descriptors (Table 3). Even though the BPNN with the FCGR descriptor took shorter
time for training as shown in Fig. 2, the better performance obtained using our pro-
posed descriptors is a justification for the relatively longer training time.

Table 3. Results of the first experiment

Number
of
hidden
layer

Number of
neurons in
the hidden
layer

Average accuracy (%) Training time (min:sec)
AN-GCC MM-GCC EIIP-GCC AN-GCC MM-GCC EIIP-GCC

1 20 83.49 81.73 85.73 0:32 0:55 0:72
1 40 81.52 86.98 84.23 1:04 0:88 0:81
1 60 83.49 86.44 88.22 1:66 1:98 1:82
1 80 78.50 87.05 81.06 2:72 3:01 2:42
2 [20 10] 84.32 86.61 85.41 2:81 3:02 2:14
2 [25 15] 88.04 86.76 87.81 3:00 2:39 2:74
2 [30 15] 85.24 85.88 85.25 2:56 2:84 2:54
2 [50 25] 86.87 82.83 86.84 3:01 3:00 3:01
2 [50 30] 83.92 84.13 88.66 3:02 3:02 3:01
3 [20 15 10] 86.36 86.10 80.34 3:00 2:83 3:00
3 [25 20 15] 87.05 84.88 85.14 3:00 3:00 3:00
3 [30 15 5] 81.32 84.40 85.08 3:00 3:00 3:00
3 [30 20 10] 83.97 88.70 82.13 3:01 3:00 3:00
3 [30 25 20] 83.99 87.45 83.64 3:00 3:00 3:01
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We carried out the second experiment so as to determine if RBFNN can give better
classification accuracies than the result we obtained in the first experiment [10].
The RBFNN configurations earlier described, was trained with AN-GCC, MM-GCC
and EIIP-GCC descriptors. Higher classification accuracy of 98.8 % and training time
of approximately 3 min were obtained for each of the three descriptors respectively.
This accuracy is better than the results in the first experiment and the results that was
obtained using the FCGR descriptor and RBFNN in [5].
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Fig. 1. Plots of the average classification accuracies for the first experiment
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Fig. 2. Plots of the training time for the first experiment
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The foregoing experimental results clearly show that the AN-GCC, MM-GCC and
EIIP-GCC genomic descriptors have better efficacy than the comparable descriptor in
the literature [5]. The results obtained from the two classifiers (BPNN and RBFNN)
further implies that the three genomic descriptors in this study are not dependent on any
of the three PCPBM method. It can therefore be unequivocally stated that, using any of
the three descriptors in this study with RBFNN for classification of Eukaryotic
organisms in real time will produce acceptable performance.

4 Conclusion

In this paper, we have been able to successfully obtain three highly discriminatory
genomic descriptors for Eukaryotic organism classification based on mtDNA, cepstral
analysis and RBFNN classifier. The descriptors were also shown to be independent of
the numerical encoding methods utilized, since each of them produced 98.8 % accuracy
with RBFNN. These descriptors have high prospect of being applicable for taxonomical
classification of organisms in fields as diverse as bio-diversity study, food authentica-
tion, forensics, clinical diagnosis and host of others. In the future, we hope to utilize
other genomic numerical encoding methods so as to determine their efficacy for the
development of discriminatory genomic descriptors. We also hope to utilize other signal
processing techniques such as power cepstral, linear predictive coding and higher order
spectrum for enhanced genomic based taxonomical classification of organisms.
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