
An Event-Based Approach to Runtime
Adaptation in Communication-Centric Systems

Cinzia Di Giusto1 and Jorge A. Pérez2(B)

1 I3S, UMR 7271, University of Nice Sophia Antipolis,
Sophia Antipolis, Nice, France

2 Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, Groningen, The Netherlands

j.a.perez@rug.nl

Abstract. This paper presents a model of session-based concurrency
with mechanisms for runtime adaptation. Thus, our model allows to
specify communication-centric systems whose session behavior can be
dynamically updated at runtime. We propose an event-based approach:
adaptation requests, issued by the system itself or by its environment,
are assimilated to events which may trigger runtime adaptation routines.
Based on type-directed checks, these routines naturally enable the recon-
figuration of processes with active sessions. We develop a type system
that ensures communication safety and consistency properties: while the
former guarantees absence of runtime communication errors, the latter
ensures that update actions do not disrupt already established sessions.

1 Introduction

Context. Modern software systems are built as assemblies of heterogeneous arti-
facts which must interact following predefined protocols. Correctness in these
communication-centric systems largely depends on ensuring that dialogues are
consistent. Session-based concurrency is a type-based approach to ensure con-
formance of dialogues to prescribed protocols: dialogues are organized into units
called sessions; interaction patterns are abstracted as session types [9], against
which specifications may be checked.

As communication-centric systems operate on open infrastructures, runtime
adaptation appears as a crucial feature to ensure continued system operation.
Here we understand runtime adaptation as the dynamic modification of (the
behavior of) the system in response to an exceptional event, such as, e.g., a vary-
ing requirement or a local failure. These events are not necessarily catastrophic
but are hard to predict. As such, protocol conformance and dynamic reconfigura-
tion are intertwined concerns: although the specification of runtime adaptation is
not strictly tied to that of structured protocols, steps of dynamic reconfiguration
have a direct influence in a system’s interactive behavior.

We are interested in integrating forms of runtime adaptation into models
of session-based concurrency. As a first answer to this challenge, in previous
work [8] we extended a typed process framework for binary sessions with basic
c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 67–85, 2016.
DOI: 10.1007/978-3-319-33612-1 5

68 C. Di Giusto and J.A. Pérez

constructs from the model of adaptable processes [2]. In this work, with the aim
of extending the applicability and expressiveness of the approach in [8], we pro-
pose adaptation mechanisms which depend on the state of the session protocols
active in a given location. As a distinctive feature, we advocate an event-based
approach: by combining constructs for dynamic type inspection and non-blocking
event detection (as put forward by Kouzapas et al. [11,13]), adaptation requests,
both internal or external to the location, can be naturally assimilated to events.

A Motivating Example. Here we consider a standard syntax for binary session
types [9]:

α, β ::= ?(T).β input a value of typeT, continue as β
| !(T).β output a value of typeT, continue as β
| &{n1:α1 . . . nm:αm} branching (external choice)
| ⊕{n1:α1 . . . nm:αm} selection (internal choice)
| ε | μt.α | t terminated and recursive session

where T stands for both basic types (e.g., booleans, integers) and session types
α. Also, n1, . . . , nm denote labels. To illustrate session types, consider a buyer
B and a seller S which interact as follows. First, B sends to S the name of
an item and S replies back with its price. Then, depending on the amount,
B either adds the item to its shopping cart or closes the transaction. In the lat-
ter case the protocol ends. In the former case B must further choose a paying
method. From B’s perspective, this protocol may be described by the session type
α = !item. ?amnt. αpay, where item and amnt are base types and

αpay = ⊕{addItem : ⊕{ccard : αcc , payp : αpp} , cancel : ε}.

Thus, session type α says that protocol αpay may only be enabled after sending
a value of type item and receiving a value of type amnt. Also, addItem, ccard,
cc, and payp denote labels in the internal choice. Types αcc and αpp denote the
behavior of each payment method. Following the protocol abstracted by α, code
for B may be specified as a π-calculus process. Processes P and R below give
two specifications for B:

P = x(book).x(a).if a < 50 then x � addItem;x � ccard;P c else x � cancel;0
R = x(game).x(b).if b < 80 then x � addItem;x � payp;Rp else x � cancel;0

Thus, although both P and R implement α, their behavior is rather different,
for they purchase different items using different payment methods (which are
abstracted by processes P c and Rp). Let us now analyze the situation for the
seller S. To ensure protocol compatibility and absence of communication errors,
the session type for S, denoted β, should be dual to α. This is written α ⊥C β.
Intuitively, duality decrees that every action from B must be matched by a com-
plementary action from S, e.g., every output of a string in α is matched by an
input of a string in β. In our example, we let β = ?item. !amnt. βpay, where βpay

and a process implementation for S are as follows:

βpay = &{addItem : &{ccard : βcc , payp : βpp} , cancel : ε}
Q = y(i).y(price(i)).y � {addItem : y � {ccard : Qc [] ppal : Qp} [] cancel : 0}

Event-Based Adaptation in Communication-Centric Systems 69

where price stands for an auxiliary function. Also, βcc and βpp are the duals of
αcc and αpp; they are realized by processes Qc

y and Qp
y. The interaction of P and

Q is defined using session initialization constructs: process u(x:α).P denotes the
request of a session of type α; dually, u(x:α).P denotes the acceptance of a session
of type α. In both cases, u denotes a (shared) name used for synchronization. In
our example, we may have

Sys = u(x:α).P | u(y:β).Q −→ (νκ)(P [κ+
/x] | Q[κ−

/y]) = S′

Thus, upon synchronization on u, a new session κ is established. Intuitively, in
process S′ session κ is “split” into two session channels (or endpoints) κ+ and
κ−: we write + and − to denote their opposing polarities, which make their
complementarity manifest. The use of restriction (νκ) covers both channels,
thus ensuring an interference-free medium for executing the session protocols
described by α and β.

In this work, we are interested in ways of expressing and reasoning about the
dynamic modification of session-typed processes such as P and Q above. Such
modifications may be desirable to react to exceptional runtime conditions (say,
an error) or to implement new requirements. For instance, the type below defines
a new payment method for S:

βgift = &{addItem : &{giftc : βgc , ccard : βcc , payp : βpp} , cancel : ε}

Intuitively, βgift extends βpay with a new alternative on label giftc. As such,
it is safe to use a process implementing βgift wherever a process implementing
βpay is required. The safe substitution principle that connects βgift and βpay

is formalized by a subtyping relation on session types [7], denoted ≤C. In our
example, we have βpay ≤C βgift.

In previous work [8] we studied how to update processes when sessions have
not yet been established; this suffices to analyze runtime adaptation for processes
such as Sys above. In this paper, we go further and address the runtime adap-
tation of processes such as S′ above, which contain already established session
protocols. As we would like to guarantee that adaptation preserves overall sys-
tem correctness, a key challenge is ensuring that adaptation does not jeopardize
such protocols. Continuing our example, let S′′ be the process resulting from S′

above, after the first step stipulated by α and β (i.e., an exchange of a value of
type item). Intuitively, at that point, the buyer part of S′ will have session type
?amnt. αpay, whereas the seller part of S′ will have session type !amnt. βpay. Sup-
pose we wish to modify at runtime the part of S′′ realizing the buyer behavior.
To preserve protocol correctness, a candidate new implementation must conform,
up to ≤C, to the type ?amnt. αpay; a process realizing any other type will fail to
safely interact with the part of S′′ implementing the seller. In [8] we defined the
notion of consistency to formalize the correspondence between declared session
protocols and the processes installed by steps of runtime adaptation. As we will
see, consistency is still appropriate for reasoning about runtime adaptation of
processes with active sessions.

70 C. Di Giusto and J.A. Pérez

Our Approach. Having motivated the context of our contributions, we move on
to describe some technical details. We rely on a process language which extends
session π-calculi with locations, located processes, and update processes [2]. We
use locations as explicit delimiters for process behavior: these are transparent,
possibly nested computation sites. Given a location loc and a process P , the
located process loc[P] denotes the fact that P resides in loc (or, alternatively,
that P has scope loc). This way, e.g., process

W = sys
[
buyer

[
u(x:α).P

] | seller
[
u(y:β).Q

]]

represents an explicitly distributed variant of Sys above: the partners now reside
in locations buyer and seller; location sys encloses the whole system. An update
process, denoted loc{U}, intuitively says that the behavior currently enclosed by
loc should be replaced according to the adaptation routine U . Since a location
may enclose one or more session channels, update processes allow for flexible
specifications of adaptation routines. This way, e.g., one may specify an update
on buyer that does not involve seller (and vice versa); also, a system-level adap-
tation could be defined by adding a process sys{Us} in parallel to W , given an
Us that accounts for both buyer and seller behaviors.

The integration of runtime adaptation into sessions is delicate, and involves
defining not only what should be the state of the system after adaptation but
also when an adaptation step should be triggered. To rule out careless adapta-
tion steps which jeopardize established protocols, communication and adaptation
actions should be harmonized. As hinted at above, in previous work [8] we pro-
posed admitting adaptation actions only when locations do not enclose running
sessions. This is a simple solution that privileges communication over adapta-
tion, in the sense that adaptation is enabled only when sessions are not yet
active. Still, in realistic applications it may be desirable to give communication
and adaptation a similar status. To this end, in this paper we admit the adapta-
tion of locations with running sessions. We propose update processes loc{U} in
which U is able to dynamically check the current state of the session protocols
running in loc. In their simplest form, our update processes concern only one
session channel and are of the shape

loc
{
casex of {(x:βi) : Ui}i∈I

}

where I is a finite index set, x denotes a channel variable, each βi and Ui denotes
a session type and an alternative (process) Ui, respectively. (We assume x occurs
free in Ui.) The informal semantics for this construct is better understood by
considering its interaction with a located process loc

[
Q

]
in which Q implements

a session of type α along channel κp. The two processes may interact as follows.
If there is a j ∈ I such that types α and βj “match” (up to ≤C), then there is a
reduction to process loc

[
Uj [κ

p
/x]

]
. Otherwise, if no βj validates a match, then

there is a reduction to process loc
[
Q

]
, keeping the behavior of loc unchanged

and consuming the update.
In general, update processes may define adaptation for locations enclosing

more than one session channel. In the distributed buyer-seller example, the

Event-Based Adaptation in Communication-Centric Systems 71

process below defines a runtime update which depends on the current state
of the two channels at location sys:

Uxy = sys

{

casex, y of

{
(x:α ; y:β) : buyer[R] | seller[Q]

(x:αpay ; y:βpay) : buyer[P ∗] | seller[Q∗]

}}

(1)

Uxy defines two possibilities for runtime adaptation. If the protocol has just been
established (i.e., current types are α and β) then only the buyer is updated—its
new behavior will be given by R above. If both item and price information have
been already exchanged then implementations P ∗ and Q∗, compliant with types
αpay and βpay, are installed.

Update processes rely on the protocol state at a given location to assess the
suitability of adaptation routines. Our semantics for update relies on (a) mon-
itors which store the current type for each running session; and (b) a type-
directed test on the monitors enclosed in a given location. This test generalizes
the typecase construct in [11].

While expressive, our typeful update processes by themselves do not specify
when adaptation should be available. Even though update processes could be
embedded within session communication prefixes (thus creating causal depen-
dencies between communication and adaptation), such a specification style would
only allow to handle exceptional conditions which can be fully characterized
in advance. Other kinds of exceptional conditions, in particular contextual
and/or unsolicited runtime conditions, are much harder to express by inter-
leaving update processes within structured protocols.

To offer a uniform solution to this issue, we propose a event-based approach
to trigger updates. We endow each location with a queue of adaptation requests;
such requests may be internal or external to the location. In our example, an
external request could be, e.g., a warning message from the buyer’s bank indi-
cating that an exchange with the bank is required before committing to the
purchase with the seller.

Location queues are independent from session behavior. Their identity is vis-
ible to processes; they are intended as interfaces with other processes and the
environment. To issue an adaptation request r for location loc, our process syntax
includes adaptation signals, written loc(r). Similar to ordinary communication
prefixes, these signals are orthogonal to sessions. Then, we may detect the pres-
ence of request r in the queue of loc using the arrival predicate arrive(loc, r) [11].
As an example, let updE denote an external adaptation request. To continuously
check if an external request has been queued for sys, the process below combines
process Uxy in (1) with arrival predicates, conditionals, and recursion:

U∗
xy = μX .if arrive(sys, updE) then Uxy else X (2)

We couple our process model for session-based concurrency and runtime
adaptation with a type system that ensures the following key properties:

– Safety : well-typed programs do not exhibit communication errors (e.g., mis-
matched messages).

72 C. Di Giusto and J.A. Pérez

– Consistency : well-typed programs do not allow adaptation actions that disrupt
already established sessions.

Safety is the typical guarantee expected from any session type discipline, here
considered in a richer setting that combines session communication with run-
time adaptation. In contrast, consistency is a guarantee unique to our setting:
it connects the behavior of the adaptation mechanisms with the preservation of
prescribed typed interfaces. We show that well-typed programs are safe and con-
sistent (Theorem 3.6): this ensures that specified session protocols are respected,
while forbidding incautious adaptation steps that could accidentally remove or
disrupt the session behavior of interacting partners.

Organization. The rest of the paper is organized as follows. Next we present
our event-based process model of session communication with typeful constructs
for runtime adaptation (Sect. 2). Then, we present our session type system,
which ensures safety and consistency for processes with adaptation mechanisms
(Sect. 3). In Sect. 4 we discuss a process model of communication and adaptation
with explicit compartments; it distills the main features of the model in Sect. 2.
At the end, we discuss related works and draw some concluding remarks (Sect. 5).
The appendix gives full sets of reduction and typing rules. Additional technical
details and omitted definitions can be found in an online technical report [5].

2 The Process Model: Syntax and Semantics

Syntax. We rely on base sets for names, ranged over by u, a, b . . .; (session)
channels, ranged over by k, κp, . . ., with polarity p ∈ {+,−}; labels, ranged over
by n, n′, . . .; and variables, ranged over by x, y, Values, ranged over v, v′, . . .,
may include booleans (written false and true), integers, names, and channels.
We use r to range over adaptation messages: two instances are updI and updE ,
for internal and external requests. We use ·̃ to denote finite sequences. Thus, e.g.,
x̃ is a sequence of variables x1, . . . , xn. We use ε to denote the empty sequence.

Table 1 reports the syntax of expressions and processes. Processes include
usual constructs for input, output, and labeled choice. Common forms of recur-
sion, parallel composition, conditionals, and restriction are also included. As
illustrated in Sect. 1, constructs for session establishment are annotated with a
session type α, which is useful in derived static analyses. A prefix for closing a
session, inherited from [8], is convenient to structure specifications. Variable x
is bound in processes u(x:α).P , u(x:α).P , and k(x).P . Binding for name and
channel restriction is as usual. Also, recursion variable X is bound in process
μX .P . Given a process P , its sets of free/bound channels, names, variables, and
recursion variables—noted fc(P), fn(P), fv(P), fpv(P), bc(P), bn(P), bv(P),
and bpv(P), respectively—are as expected. We always rely on usual notions of
α-conversion and (capture-avoiding) substitution, denoted [k/x] (for channels)
and [P/X] (for processes). We write [k1, . . . , kn/x1, . . . , xn] to stand for an n-ary
simultaneous substitution. Processes without free variables or free channels are
called programs.

Event-Based Adaptation in Communication-Centric Systems 73

Table 1. Process syntax. Above, annotation α denotes a session type.

Up to here, the language is a synchronous π-calculus with sessions.
Building upon locations loc, l1, l2, . . ., constructs for adaptation are: located
processes, denoted loc[P]; update processes, denoted loc

{
casex1, . . . ,

xm of {(x1:β
i
1; · · · ;xm:βi

m) : Qi}i∈I

}
; (session) monitors, denoted κp�α�; loca-

tion queues, denoted loc�r̃�; and adaptation signals, denoted loc(r). Moreover,
expressions include the arrival predicate arrive(loc, r).

We now comment on these elements. Located processes and update
processes have been motivated in Sect. 1. Here we just remark that
update processes are assumed to refer to at least one variable xi and to
offer at least one alternative Qi. Also, variables x1, . . . , xm are bound in
loc

{
casex1, . . . , xm of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
; this process is often abbre-

viated as loc
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
. Update processes gener-

alize the typecase introduced in [11], which defines a case-like choice based on
a single channel; in contrast, to specify adaptation for locations with multiple
open sessions, our update processes define type-directed checks over one or more
channels.

Update processes go hand-in-hand with monitors, runtime entities which
keep the current protocol state at a given channel. We write κp�α� to denote
the monitor which stores the protocol state α for channel κp. In [11], a similar
construct is used to store in-transit messages in asynchronous communication.
For simplicity, here we consider synchronous communication; monitors store only
the current protocol state. This choice is aligned with our goal of identifying the
core elements from the eventful session framework that are central in defining
runtime adaptation (cf. Remark 3.7).

Location queues, not present in [11], handle adaptation requests, modeled as
a possibly empty sequence of messages r̃. Location queues enable us to give a
unified treatment to adaptation requests, internal and external. Given loc�r̃�, it is
worth observing that messages r̃ are not related to communication as abstracted

74 C. Di Giusto and J.A. Pérez

Table 2. Reduction semantics: selected rules. Both α and β denote session types.

by session types. This represents the fact that we handle adaptation requests and
structured session exchanges as orthogonal issues. An adaptation signal loc(r)
enqueues request r into the location queue of loc. To this end, as detailed below,
the operational semantics defines synchronizations between adaptation signals
and location queues. To connect runtime adaptation and communication, our
language allows the coupling of update processes with the arrival predicate on
locations, denoted arrive(loc, r). Inspired by the arrive predicate in [11], this
predicate detects if a message r has been placed in the queue of loc.

Our language embodies several concerns related to runtime adaptation: using
adaptation signals and location queues we may formally express how an adap-
tation request is issued; arrival predicates enable us to specify when adaptation
will be handled; using update processes and monitors we may specify what is
the goal of an adaptation event.

Semantics. The semantics of our language is given by a reduction semantics,
the smallest relation generated by the rules in Table 5 (Appendix A). We write
P −→ P ′ for the reduction from P to P ′. Reduction relies on a standard notion
of structural congruence, denoted ≡ (see [8, Def. 1]). It also relies on evaluation
and location contexts:

E ::= − | k(−).P | if − then P else Q C,D ::= − | loc[C | P]

Event-Based Adaptation in Communication-Centric Systems 75

Given C
{−}

(resp. E[−]), we write C
{
P

}
(resp. E[e]) to denote the process (resp.

expression) obtained by filling in occurrences of hole − in C with P (resp. in E
with e).

Table 2 gives a selection of reduction rules; we comment on these rules below.
The first four rules formalize session behavior within hierarchies of nested loca-
tions. Using duality for session types, denoted ⊥C (see [7] and Sect. 3), in
rule 〈r:Open〉 the synchronization on a name u leads to establish a session
on fresh channels κp and κp; also, two monitors with the declared session types
are created. Duality for polarities p is as expected: + = − and − = +. Monitors
are local by construction: they are created in the same contexts in which the
session is established. Rule 〈r:Com〉 represents communication of a value: we
require both complementary prefixes and that the monitors support input and
output actions. After reduction, prefixes in processes and monitors are consumed.
Similarly, rule 〈r:Sel〉 for labeled choice is standard, augmented with monitors.
Rule 〈r:Clo〉 formalizes session termination, discarding involved monitors. The
monitors in these three rules allow us to track the evolution of active session
protocols.

The remaining rules in Table 2 define our event-based approach to runtime
adaptation. Rule 〈r:UReq〉 treats the issue of an adaptation request r as a
synchronization between a location queue and an adaptation signal. The queue
and the signal may be in different contexts; this enables “remote” requests.
Rules 〈r:Arr1〉 and 〈r:Arr2〉 resolve arrival predicates by querying the (pos-
sibly remote) queue r̃. Rule 〈r:Upd〉 defines the typeful update of the current
protocol state at loc, which is given by an indexed set of open sessions with their
associated monitors. The rule attempts to match such protocol state with the
first suitable option offered by an update process for loc. If there is no matching
alternative the current protocol state at loc is kept unchanged. By an abuse of
notation, we write P1 ∈ P to indicate that P1 occurs in P , i.e., if P = C[P1] for
some C. Formally, given an index set I over the update process, suitability with
respect to the behavior at loc is defined by predicate matchI in Definition 2.1
below. Using subtyping ≤C (see [7] and Sect. 3), the predicate holds for an l ∈ I
which defines a new protocol state.

In addition to the rules in Table 2, our semantics includes standard and/or
self-explanatory treatments for reduction under evaluation contexts, parallel
composition, located context, and restriction. Also, it accounts for applications
of structural congruence, recursion and conditionals. The full set of rules is in
Table 5 (Appendix A).

Definition 2.1 (Matching). Given an index set I, session types α1, . . . , αm,
an indexed sequence of session types {βi

1, . . . , β
i
m}i∈I , and an l ∈ I, we write

matchI(l, {α1, . . . , αm}, {βi
1, . . . , β

i
m}i∈I)

if and only if ∀n < l.(∃j ∈ [1..m]. βn
j �≤C αj) ∧ (

∧
h∈[1..m] β

l
h ≤C αh).

76 C. Di Giusto and J.A. Pérez

Example 2.2. Recall process W given in the Introduction. According to our
semantics:

W −→ (νκ)
(
sys

[
buyer

[
P [κp

/x] | κp�α�] | seller
[
Q[κp

/y] | κp�β�]])

−→2 (νκ)
(
sys

[
buyer

[
P ′ | κp�αpay�

] | seller
[
Q′ | κp�βpay�

]])

Suppose that following an external request the seller must offer a new payment
method. (a gift card). Precisely, we would like S to act according to the type
βgift given in Sect. 1. Let αgift be the dual of βgift. We then may define the
following update process R1

xy:

sys
{
casex, y of {(x:αpay ; y:βpay) : buyer

[
P ′ | x�αgift�

] | seller
[
Q′′ | y�βgift�

]}}

Thus, R1
xy keeps the expected implementation for the buyer (P ′), but

updates its associated monitor. For the seller, both the implementation
and monitor are updated; above, Q′′ stands for a process offering the
three payment methods. We may then specify the whole system as:
W | μX .if arrive(sys, updE) then R1

xy else X . The type system introduced next
ensures, among other things, that updates such as R1

xy consider both a process
and its associated monitors, ruling out the possibility of discarding the monitors
that enable reduction.

3 Session Types for Eventful Runtime Adaptation

This section introduces a session type system for the process language of Sect. 2.
Our main result (Theorem 3.6) is that well-typed programs enjoy both safety
(absence of runtime communication errors) and consistency properties (update
actions do not disrupt established sessions). Our development follows the lines
of the typed framework in [8].

The syntax of session types (ranged over by α, β, . . .) has been already pre-
sented in the Introduction. We consider basic types (ranged over by τ, σ, . . .) and
write T, S, . . . to range over τ, α. Therefore, although our process language copes
with runtime adaptation, our type syntax is standard and retains the intuitive
meaning of session types [9], which we now briefly recall. Type ?(τ).α (resp.
?(β).α) abstracts the behavior of a channel which receives a value of type τ
(resp. a channel of type β) and then continues as α. Dually, type !(τ).α (resp.
!(β).α) represents the behavior of a channel which sends a value of type τ and
then continues as α. Type &{n1 : α1 . . . nm : αm} describes a branching behav-
ior: it offers m behaviors, and if the j-th alternative is selected then it behaves as
described by type αj (1 ≤ j ≤ m). In turn, type ⊕{n1 : α1 . . . nm : αm} describes
the behavior of a channel which may select a single behavior among α1, . . . , αm

and then continues as αj . We use ε to type a channel with no communication
behavior. Type μt.α describes recursive behavior; as usual, we consider recursive
types under equi-recursive and contractive assumptions.

Along the paper we have informally appealed to duality and subtyping over
session types (denoted ⊥C and ≤C, resp.). For the sake of space, we omit their

Event-Based Adaptation in Communication-Centric Systems 77

full definitions; we just remark that since our session type structure is standard,
we may rely on the (coinductive) definitions given by Gay and Hole [7], which
are standard and well-understood.

Our typing judgments generalize usual notions with an interface I. Based on
the syntactic occurrences of session establishment prefixes a(x:α), and a(x:α),
the interface of a process describes the services appearing in it. We annotate
services with a qualification q, which may be ‘lin’ (linear) or ‘un’ (unrestricted).
Thus, the interface of a process gives an “upper bound” on the services that it
may execute. The typing system uses interfaces to control the behavior contained
by locations after an update. We have:

Definition 3.1 (Interfaces). We define an interface as the multiset whose
underlying set of elements is I = {qu:α | q ∈ {lin, un}} (i.e., a set of assignments
from names to qualified session types). We use I, I ′, . . . to range over interfaces.
We write dom(I) to denote the set {u | u : αq ∈ I} and #I(a) = h to mean that
a occurs h times in I.

The union of two interfaces is essentially the union of their underlying multisets.
We sometimes write I � a : αlin and I � a : αun to stand for I � {lin a:α} and
I�{un a:α}, respectively. Moreover, we write Ilin (resp. Iun) to denote the subset
of I involving only assignments qualified with lin (resp. un). We now define an
ordering relation over interfaces, relying on subtyping:

Definition 3.2 (Interface Ordering). Given interfaces I and I ′, we write
I � I ′ iff

1. ∀(lin a:α) such that #Ilin
(lin a:α) = h with h > 0, then one of the following

holds:
(a) there exist h distinct elements (lin a:βi) ∈ I ′

lin such that α ≤C βi for
i ∈ [1..h];

(b) there exists (un a:β) ∈ I ′
un such that α ≤C β.

2. ∀(un a:α) ∈ Iun then (un a:β) ∈ I ′
un and α ≤C β, for some β.

We now define our typing environments. We write q to range over qualifiers lin
and un.

Δ ::= ∅ | Δ, k : α | Δ, k : �α� typing with active sessions
Γ ::= ∅ | Γ, e : τ | Γ, u : 〈αq, βq〉 first-order environment (with αq ⊥C βq)
Θ ::= ∅ | Θ,X : Δ; I | Θ, loc : I higher-order environment

We consider typings Δ and environments Γ and Θ. Typing Δ collects assign-
ments from channels to session types; it describes currently active sessions. In our
system, Δ also includes bracketed assignments, denoted κp : �α�, which repre-
sent the type for monitors. Subtyping extends to these assignments (�α� ≤C �β�
if α ≤C β) and thus to typings. We write dom(Δ) to denote the set {kp | kp :
α ∈ Δ ∨ kp : �α� ∈ Δ}. We write Δ, k : α where k �∈ dom(Δ). Furthermore, we
write Δ, k : 〈〈α〉〉 to abbreviate Δ, k : α, k : �α�. That is, k : 〈〈α〉〉 describes both
a session and its associated monitor.

78 C. Di Giusto and J.A. Pérez

Table 3. Well-typed processes: selected rules.

Γ is a first-order environment which maps expressions to basic types and
names to pairs of qualified session types. As motivated earlier, a session type is
qualified with ‘un’ if it is associated to a unrestricted/persistent service; other-
wise, it is qualified with ‘lin’. The higher-order environment Θ collects assign-
ments of typings to process variables and interfaces to locations. While the former
concerns recursive processes, the latter concerns located processes. As we explain
next, by relying on the combination of these two pieces of information the type
system ensures that runtime adaptation actions preserve the behavioral inter-
faces of a process. We write vdom(Θ) = {X | X : I ∈ Θ} to denote the variables
in the domain of Θ. Given these environments, a type judgment is of form

Γ ; Θ � P � Δ; I
meaning that, under environments Γ and Θ, process P has active sessions
declared in Δ and interface I. Selected typing rules are shown in Table 3; remain-
ing rules can be found in Table 6 (Appendix B). Below we comment on some
of the rules in Table 3: the rest are standard and/or self explanatory. Rule
〈t:Adapt〉 types update processes. Notice that the typing rule ensures that
each process Qi has exactly the same active sessions that those declared in the
respective case. Also, we require that alternatives contain both processes and

Event-Based Adaptation in Communication-Centric Systems 79

monitors. With Ij � I we guarantee that the process behavior does not “exceed”
the expected behavior within the location. Rule 〈t:sub〉 takes care of subtyping
both for typings Δ and interfaces. Rule 〈t:CRes〉 types channel restriction that
ensures typing duality among partners of a session and their respective queues.
Typing of queues is given by rule 〈t:Que〉 that simply assigns type k : �α� to
queue k�α�. Finally, rule 〈t:NRes〉 types hiding of service names, by simply
removing their declarations from the interface I of the process. In the rule, Iu

contains only declarations for u, i.e., ∀v �= u, v /∈ dom(Iu).
Our type system enjoys the standard subject reduction property. We rely on

balanced typings: Δ is balanced iff for all κp : α ∈ Δ (resp. κp : �α� ∈ Δ)
then also κp : β ∈ Δ (resp. κp : �β� ∈ Δ), with α ⊥C β. The proof proceeds by
induction on the last rule applied in the reduction; it adapts the one given in [8].

Theorem 3.3 (Subject Reduction). If Γ ; Θ � P �Δ; I with Δ balanced and
P −→ Q then Γ ; Θ � Q � Δ′; I ′, for some I ′ and balanced Δ′.

We now define and state safety and consistency properties. While safety guar-
antees adherence to prescribed session types and absence of runtime errors, con-
sistency ensures that sessions are not jeopardized by careless runtime adaptation
actions. Defining both properties requires the following notions of κ-processes,
κ-redexes, and error process.

Definition 3.4 (κ-processes, κ-redexes, Errors). A process P is a κ-process
if it is a prefixed process with subject κp, i.e., P is one of the following:

κ p(x).P ′ κ p(v).P ′ close (κ p).P ′ κ p � {ni:Pi}i∈I κ p � n.P ′

Process P is a κ-redex if it contains the composition of exactly two κ-processes
with opposing polarities. P is an error if P ≡ (νκ̃)(Q | R) where, for some κ,
Q contains either exactly two κ-processes that do not form a κ-redex or three or
more κ-processes.

Informally, a process P is called consistent if whenever it has a κ-redex then
update actions do not destroy such a redex. Below, we formalize this intuition.
Let us write P −→upd P ′ for any reduction inferred using rule 〈r:Upd〉. We then
define:

Definition 3.5 (Safety, Consistency). Let P be a process. We say P is safe
if it never reduces into an error. We say P is update-consistent if and only if,
for all P ′ and κ such that P −→∗ P ′ and P ′ contains a κ-redex, if P ′ −→upd P ′′

then P ′′ contains a κ-redex.

We now state our main result; it follows as a consequence of Theorem 3.3.

Theorem 3.6 (TypingEnsuresSafetyandConsistency). IfΓ ; Θ � P �Δ; I
with Δ balanced then program P is update consistent and safe.

80 C. Di Giusto and J.A. Pérez

Remark 3.7 (Asynchronous Communication). We have focused on synchronous
communication: this allows us to give a compact semantics, relying on a standard
type structure. To account for asynchrony, we would require a runtime syntax
for programs with queues for in-transit messages (values, sessions, labels). The
type system must be extended to accommodate these new runtime processes.
In our case, an extension with asynchrony would rely on the machinery defined
in [11].

4 Discussion: A Compartmentalized Model
of Communication and Adaptation

Given that the process model in Sect. 2 enables the interplay of communica-
tion and adaptation, how can we organize specifications to reflect a desirable
separation of concerns? In ongoing work, with the aim of specifying systems
at a high-level of abstraction, we have developed a model which defines com-
partments to isolate communication behavior and adaptation routines. Here we
briefly describe this model, which is given in Table 4.

In a nutshell, programs of Sect. 2 are now organized into systems. A system
G is the composition of a set of applications A1, . . . , An each comprising three
elements: a behavior R, a state S, and a manager M. As a simple example of a
system, we may consider the operating system of a smartphone, which is meant
to manage a number of applications that may interact among them. Applications
in our model can communicate between each other or exhibit intra-application
communication. The behavior R is specified as a process; we distinguish between
located processes representing service definitions from located processes which
make use of such definitions. A reduction semantics (omitted) ensures that loca-
tions enclosing service definitions do not contain open (active) sessions. This
may be convenient for defining adaptation strategies, since updates to service
definitions may now be performed without concerns of disruption of active ses-
sions. The state S collects session monitors and location queues and it is kept
separate from R. As a simple example, the buyer-seller scenario given in Sect. 1
can be casted in our model as

byr
〈
buyer

[
u@slr(x : α).P

]
; Sb ; Mb

〉 ‖ slr
〈
seller

[∗ u(y:β).Q
]
; Ss ; Ms

〉

That is, buyer and seller are implemented as separate applications, named byr
and slr, respectively. Above, we have Sb = buyer�ε� and Ss = seller�ε�.

While the manager M implements adaptation at the application (local) level,
a handler H defines adaptation at the system (global) level. As we wish to
describe communication behavior separately from adaptation routines, update
processes are confined to handlers and managers. A manager is meant to react
upon the arrival of an internal adaptation message updI . As in Sect. 2, managers
may act upon the issue of an internal update request updI for some location,
whereas handlers may act upon the arrival of an external update request or
an application upgrade request (denoted updE and upg, respectively). A han-
dler may either update or upgrade the behavior at some location loc within

Event-Based Adaptation in Communication-Centric Systems 81

Table 4. A compartmentalized model of communicating systems: syntax.

application a; this is written loc@a. Upgrades are denoted l1
{{

P
}}

; they are a
particular form of update intended for service definitions only. In Table 4 we
write ∗if e then P and ∗u(x:α).P as shorthands for persistent conditionals and
services, respectively.

Our compartmentalized model induces specifications in which communica-
tion, runtime adaptation, and state (as in, e.g., asynchronous communication)
are jointly expressed, while keeping a desirable separation of concerns. Notice
that the differences between “plain” processes (as given in Sect. 2) and systems
(as defined in Table 4) are mostly conceptual, rather than technical. In fact, the
higher level of abstraction that is enforced by our model does not result in addi-
tional technicalities. We conjecture that a reduction-preserving translation of
application-based specifications into processes does not exist—a main difficulty
being, unsurprisingly, properly representing the separation between behavior and
state. This difference in terms of expressiveness does not appear to affect the
type system. In future work we plan to extend the typing discipline in Sect. 3
(and its associated safety and consistency guarantees) to systems.

5 Related Work and Concluding Remarks

Related Work. The combination of static typing and type-directed tests for
dynamic reconfiguration is not new. For instance, Seco and Caires [14] study
this combination for a calculus for object-oriented component programming. To
the best of our knowledge, ours is the first work to develop this combination
for a session process language. As already discussed, we build upon constructs
proposed in [10–13]. The earliest works on eventful sessions, covering theory
and implementation issues, are [10,12]. Kouzapas’s PhD thesis [11] provides a
unified presentation of the eventful framework, with case studies including event
selectors (a building block in event-driven systems) and transformations between
multithreaded and event-driven programs. At the level of types, the work in [11]
introduces session set types to support the typecase construct. We use dynamic
session type inspection only for runtime adaptation; in [11] typecase is part of
the process syntax. This choice enables us to retain a standard session type
syntax. Runtime adaptation of session typed processes—the main contribution

82 C. Di Giusto and J.A. Pérez

of this paper—seems to be an application of eventful session types not previously
identified.

Previous works on runtime adaptation for session types (binary and multi-
party) include [1,3,8]. We have already commented on how our current approach
enhances that in our previous work [8]. Both [1] and [3] study adaptation for mul-
tiparty communications, which already sets a substantial difference with respect
to our work. In [3], a set of monitors which govern the behavior of participants
are derived from a global specification. Self-adaptation for monitored processes
is triggered by an external adaptation function, which is often left unspecified.
As in our work, the operational semantics for adaptation in [3] uses (local) types
and monitors; key differences include the use of type-directed checks for selecting
adaptation routines that preserve consistency, and the use of events and queues
to handle adaptation requests. The work [1] studies dynamic update for message
passing programs; a form of consistency for updates over threads is ensured using
multiparty session types, following an asynchronous communication discipline.

Concluding Remarks. Building upon [11], we have introduced an eventful app-
roach to runtime adaptation of session typed processes. We identified the strictly
necessary eventful process constructs that enhance and refine known mechanisms
for runtime adaptation. Adaptation requests, both internal and external, are
handled via event detectors and queues associated to locations. Our approach
enables us to specify rich forms of updates on locations with running sessions;
this represents a concrete improvement with respect to previous works [8]. We
notice that expressing both internal and external exceptional events is useful in
practice; for instance, both kinds of events coexist in BPMN 2.0 (see, e.g., [6,
Chap. 4]). To rule out update steps that jeopardize running session protocols, we
also introduced a type system that ensures communication safety and update
consistency for session programs. We have also outlined a high-level model of
structured interaction which organizes communication and adaptation compo-
nents into a sensible structure.

Adaptation in our framework is “monotonic” or “incremental” in that
changes always preserve/extend active session protocols, exploiting subtyping
for enhanced flexibility. Interestingly, our framework can be modified so that
arbitrary protocols are installed as a result of an update. One needs to ensure
that the endpoints of a session are present in the same location: arbitrary updates
are safe as long as both endpoints are simultaneously updated with dual proto-
cols. To relax our framework in this way, we would need to modify definitions
for session matching (Definition 2.1) and interface ordering (Definition 3.2).

In future work, we plan to further validate the constructs in our framework
by revisiting the model of supervision trees (a mechanism for fault-tolerance
in Erlang) that we gave in [4]. Other interesting topics for further develop-
ment include accounting for asynchronous communication (cf. Remark 3.7) and
extending our event-based approach to choreographic protocols; the framework
in [3] may provide a good starting point.

Event-Based Adaptation in Communication-Centric Systems 83

Table 5. Reduction semantics: Full set of rules. Above, α and β denote session types.

Acknowledgments. We are grateful to Ilaria Castellani, Mariangiola Dezani-
Ciancaglini, and the anonymous reviewers for useful remarks. This research was par-
tially supported by COST Action IC1201: Behavioural Types for Reliable Large-Scale
Software Systems.

A Reduction Semantics: Full Set of Rules

Table 5 gives the full set of reduction semantics rules.

84 C. Di Giusto and J.A. Pérez

Table 6. Additional typing rules.

B Type System: Additional Typing Rules

Table 6 gives additional typing rules for the system in Sect. 3.

References

1. Anderson, G., Rathke, J.: Dynamic software update for message passing programs.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 207–222.
Springer, Heidelberg (2012)

2. Bravetti, M., Di Giusto, C., Pérez, J.A., Zavattaro, G.: Adaptable processes. Log-
ical Methods Comput. Sci. 8(4:13), 1–71 (2012)

3. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multi-
party sessions. In: PDP 2014, pp. 688–696. IEEE (2014)

4. Di Giusto, C., Pérez, J.A.: Session types with runtime adaptation: Overview and
examples. In: PLACES. EPTCS, vol. 137, pp. 21–32 (2013)

5. Di Giusto, C., Perez, J.A.: An Event-Based Approach to Runtime Adaptation in
Communication-Centric Systems. Research report, December 2014. https://hal.
archives-ouvertes.fr/hal-01093090

6. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Berlin (2013)

https://hal.archives-ouvertes.fr/hal-01093090
https://hal.archives-ouvertes.fr/hal-01093090

Event-Based Adaptation in Communication-Centric Systems 85

7. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

8. Di Giusto, C., Pérez, J.A.: Disciplined structured communications with disciplined
runtime adaptation. Sci. Comput. Program. 97, 235–265 (2015)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

11. Kouzapas, D.: A Study of Bisimulation Theory for Session Types. Ph.D. thesis,
Imperial College London (2012)

12. Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics. In:
Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 228–243. Springer, Heidelberg (2011)

13. Kouzapas, D., Yoshida, N., Hu, R., Honda, K.: On asynchronous eventful session
semantics. Math. Struct. Comput. Sci. 26(2), 303–364 (2016)

14. Costa Seco, J., Caires, L.: Types for dynamic reconfiguration. In: Sestoft, P. (ed.)
ESOP 2006. LNCS, vol. 3924, pp. 214–229. Springer, Heidelberg (2006)

	An Event-Based Approach to Runtime Adaptation in Communication-Centric Systems
	1 Introduction
	2 The Process Model: Syntax and Semantics
	3 Session Types for Eventful Runtime Adaptation
	4 Discussion: A Compartmentalized Model of Communication and Adaptation
	5 Related Work and Concluding Remarks
	A Reduction Semantics: Full Set of Rules
	B Type System: Additional Typing Rules
	References

