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Preface

Large software systems are becoming more and more distributed, collaborative, and
communication-centered systems. Services in terms of functional and autonomous
building blocks and the interactions between them have been established as funda-
mental concepts to design, implement, and deploy complex systems. Yet, independent
of platforms and programming languages, formal methods play a key role in research
on complex, service-based systems. They can help us to define unambiguous semantics
for the languages that underpin existing infrastructures, facilitate consistency checking
of interactions, empower dynamic discovery, and drive the analysis of security and
performance properties of applications.

This volume contains the joint proceedings of two initiatives that have been devoted
to the formal foundations of complex systems: the WS-FM:FASOCC 2014 and
WS-FM/BEAT 2015 workshops.

The 11th International Workshop on Web Services and Formal Methods: Formal
Aspects of Service-Oriented and Cloud Computing (WS-FM:FASOCC 2014) brought
together researchers working on service-oriented computing, cloud computing, and
formal methods in order to catalyze fruitful collaboration. It was part of the WS-FM
workshop series that has a strong tradition of attracting submissions on formal
approaches to enterprise systems modelling in general, and business process modelling
in particular. Previous editions of the WS-FM workshop series took place in Pisa
(2004), Versailles (2005), Vienna (2006), Brisbane (2007), Milan (2008), Bologna
(2009), Hoboken (2010), Clermont-Ferrand (2011), Tallinn (2012), and Beijing (2013).
WS-FM:FASOCC 2014 was planned to be held in Haifa, Israel, co-located with the
12th International Conference on Business Process Management (BPM 2014). How-
ever, the continuous uncertainty regarding the situation in southern Israel and Gaza led
to a relocation of BPM 2014 and WS-FM:FASOCC 2014, so that the workshop took
place September 11–12, 2014, in Eindhoven, The Netherlands.

In 2015, the WS-FM workshop and the International Workshop on Behavioural
Types (BEAT) joined forces, resulting in the International Symposium on Web Ser-
vices, Formal Methods and Behavioural Types (WS-FM/BEAT 2015). Both, WS-FM
and BEAT, target the same research setting, i.e., large-scale behavioral software sys-
tems. The aim of this joint workshop event was to bring together researchers and
practitioners in all aspects of behavioral software systems and their applications, in
order to share results, consolidate the community, and discover opportunities for new
collaborations and future directions. Previous editions of the BEAT workshop series
took place in Lisbon (2011), Rome (2012 and 2014), and Madrid (2013). The first joint
edition of the WS-FM and BEAT workshop series, WS-FM/BEAT 2015, took place
September 4–5, 2015, in Madrid, Spain. It was part of the “MADRID MEET 2015
Meeting”, which comprised a one-week scientific event with conferences and work-
shops in the areas of formal and quantitative analysis of systems, performance engi-
neering, computer safety, and industrial critical applications. The program of the



second day of the symposium was shared with that of the 14th International Workshop
on Foundations of Coordination Languages and Self-Adaptive Systems (FOCLASA).

The WS-FM:FASOCC 2014 program included keynotes by Giuseppe De Giacomo
from the Sapienza Università di Roma, Italy, and Fabrizio Montesi from the University
of Southern Denmark, and two sessions with research paper presentations. The WS-
FM:FASOCC 2014 workshop attracted a total of 10 submissions, which were each
reviewed by at least three members of the Program Committee. Eventually, the com-
mittee decided to accept four papers. Further, two of the best papers of the closely
related 6th Central European Workshop on Services and Their Composition (ZEUS
2015) were invited to submit extended and revised versions for inclusion in the pro-
ceedings. After a review process with the WS-FM:FASOCC 2014 Program Committee,
one of these papers was accepted.

The WS-FM/BEAT 2015 program featured keynotes by Cosimo Laneve from the
Università di Bologna, Italy, and Javier Esparza from the Technische Universität
München, Germany, and four sessions with research paper presentations (including
four presentations selected from the submissions to WS-FM/BEAT). The WS-FM/
BEAT 2015 workshop attracted a total of six submissions, which were each reviewed
by at least three members of the Program Committee. Eventually, the committee
decided to accept three papers to include in this volume.

We wish to thank the WS-FM:FASOCC 2014 and WS-FM/BEAT 2015 Program
Committees and the external reviewers for their accurate and timely reviewing and
acknowledge the support of EasyChair for managing the review process. Finally, we
are grateful to the local organization teams of WS-FM:FASOCC 2014 in Haifa (Pnina
Soffer, Nilly Schnapp, and others) and Eindhoven (Wil van der Aalst, Ine van der Ligt,
and others) and of WS-FM/BEAT 2015 in Madrid (David de Frutos and others). They
all did an excellent job in the preparation of the workshops — thanks a lot!

December 2015 Thomas Hildebrandt
Matthias Weidlich

António Ravara
Jan Martijn van der Werf
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Verification of Data-Aware Processes

Giuseppe De Giacomo

Sapienza Università di Roma, Rome, Italy
degiacomo@dis.uniroma1.it

Keynote Abstract

Information systems are based on two pillars: data, which constitute the information
asset of the organization, and business processes, which constitute its modus operandi.
Traditionally these two aspects are considered, conceptualized, and formalized more or
less in isolation. Such form of separation of concerns has been considered quite fruitful
and it led to significant advances in both data and process management fields. However
it has recently been questioned by the so called artifact-centric approach that advocates
a holistic view of data and processes as a unity. In this talk, we will look at recent
progresses in the analysis of processes that live side-by-side with data, both as first-
class citizens. These systems are inherently infinite state and pose serious challenges to
traditional verification techniques such as model checking.



Kickstarting Choreographic Programming

Fabrizio Montesi&

University of Southern Denmark, Odense, Denmark
fmontesi@imada.sdu.dk

Abstract. We present an overview of some recent efforts aimed at the devel-
opment of Choreographic Programming, a programming paradigm for the
production of concurrent software that is guaranteed to be correct by con-
struction from global descriptions of communication behaviour.



Static Analysis of Unbounded Networks
with Behavioral Types

Cosimo Laneve

Department of Computer Science and Engineering,
University of Bologna – INRIA Focus, Bologna, Italy

cosimo.laneve@unibo.it

Keynote Abstract

The analysis of concurrent programs with infinite state models is extremely difficult
due to the inability of statically reasoning about unbounded structures. As an example,
consider those adaptive systems that, in order to reply to peaks of requests, create
networks with arbitrary numbers of servers. In such systems, server interaction
becomes complex and is hard to predict or to detect during testing. Additionally, even
when possible, it can be tricky to reproduce bugs and find their causes. It turns out that,
in these cases, the current analysers either return imprecise answers or do not scale.

This invited talk presents an analysis technique that have been used to verify
properties such as deadlock freedom [5, 6], upper bounds of resource usages [3], and
upper bounds of the computational cost [4] of programs that do not have a finite model.
The proof technique is modular and consists of two parts: a type (inference) system that
associates a behavioural type to a program and an algorithm for analysing the beha-
vioural types.

Behavioural types are simple terms that feature recursion and resource creation –

therefore their underlying model is infinite state – and express features of the programs
that are relevant to the property one wants to analyze. For example, in case of deadlock
analysis, behavioural types highlight resource dependencies; in case of resource
analysis, they highlight resource usages; in case of computational cost analysis, they
highlight the cost in time of instructions.

The behavioural type system typically performs standard abstractions, such as
computing aliases and effects of updates, and its correctness is expressed in a standard
way by means of a subject reduction theorem. In this setting, the subject-reduction
states that: if (i) a program P is typable in an environment Γ with behavioural type b

and (ii) P reduces to P′ then there exists an environment Γ ′ that types P′ with beha-
vioural type b0. It is worth to notice that the types b and b0 are different because, in
contrast to standard types, they change during the computation. Nevertheless, these
changes are regulated by a relation, called later-stage relation, which specifies the
correctness of the behavioural type analyzer (see below).

The analysis of behavioural types is performed either by ad-hoc algorithms – this is
the case of deadlock analysis [5, 6] – or by automatic off-the-shelf solvers, whenever
they are available – this is the case of resource and computational analysis [3, 4].



No matter what property is, analyzer’s correctness is demonstrated by verifying that the
analysis of behavioural types in the later stage relation, which include those types
related by the subject-reduction theorem, always return identical values. That is, if one
type has a deadlock (respectively, consumes at most n resources) then the other one in
later-stage relation has a deadlock as well (respectively, consumes at most n resources
as well).

Our techniques have been prototyped by taking a concurrent object-oriented lan-
guage as reference language. The prototypes for deadlock analysis and resource
analysis are available at [1, 2], respectively, while the prototype for computational cost
analysis is under development.

A relevant advantage of the analysis technique presented in the talk derives from
modularity. Because of modularity, the technique may be applied to several languages
by simply changing the type system and support several behavioural type analysis
algorithms.

References

1. Garcia, A., Giachino, E., Laneve, C., Lienhardt, M.: The deadlock framework for ABS
(2014). df4abs.nws.cs.unibo.it

2. Garcia, A., Laneve, C.: Static analyzer of resource usage upper bounds (2015). sra.cs.unibo.it
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PPDP 2015, pp. 125–136. ACM (2015)
4. Giachino, E., Johnsen, E. B., Laneve, C., Pun, K. I.: Time complexity of concurrent programs.

In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS, vol. 9539, pp. 199–216. Springer,
Berlin (2016)

5. Giachino, E., Kobayashi, N., Laneve, C.: Deadlock analysis of unbounded process networks.
In: Baldan,. P., Gorla, D. (eds.) CONCUR 2014, vol. 8704, pp. 63–77. Springer, Berlin
(2014)

6. Giachino, E., Laneve, C., Lienhardt, M.: A framework for deadlock detection in core ABS.
Software and Systems Modeling, pp. 1–36 (2015)
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A Petri-Net-like Model for Multiplayer
Distributed Negotiations

Javier Esparza

Fakultät für Informatik, Technische Universität München, Germany
esparza@tum.de

Keynote Abstract

Many modern distributed systems consist of components whose behavior is only
partially known. Typical examples include multi-agent systems, business processes, or
protocols for conducting elections and auctions. An interaction between these com-
ponents can be abstractly described as a negotiation in which several parties (the
components involved in the negotiation) nondeterministically agree on an outcome,
which results in a transformation of the internal states of the parties. In this talk we
introduce negotiations, a formal model of concurrency close to Petri nets, with mul-
tiparty negotiation as primitive.

Negotiations can be ill designed: the parties can reach a deadlock or a livelock (a
state from which the termination cannot successfully terminate anymore). In a sound
negotiation this is not possible: from every reachable marking the final marking of the
distributed negotiation can always be reached. A sound distributed negotiation has an
equivalent one-step negotiation, called a summary. Loosely speaking, an external
observer that only sees the initial and final states of the parties cannot distinguish a
negotiation from its summary.

In the first part of the talk we study two problems: deciding whether a given
negotiation is sound, and computing the summary of a given sound negotiation. We
introduce deterministic negotiations, in which each participant can always be engaged
in at most one next atomic negotiation. We show that, while both problems are
untractable for arbitrary negotiations, there are efficient algorithms for the deterministic
case. More precisely, we provide a complete set of reduction rules for deterministic
negotiations. The rules reduce the negotiation to its summary iff the negotiation is
sound. Further, the summary is computed after a polynomial number of rule
applications.

In the second part of the talk we introduce negotiation programs, a global struc-
tured modelling language for negotiations, and show that it has the same expressive
power as sound and deterministic negotiations: every program can be implemented by
an equivalent sound and deterministic negotiation, and every sound and deterministic
negotiation is modelled by an equivalent program. Here, a program and a negotiation
are equivalent if they have the same Mazurkiewicz traces and thus the same concurrent
runs.

The talk is based on joint work with Jörg Desel, published in [1–4].
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Kickstarting Choreographic Programming

Fabrizio Montesi(B)

University of Southern Denmark, Odense, Denmark
fmontesi@imada.sdu.dk

Abstract. We present an overview of some recent efforts aimed at the
development of Choreographic Programming, a programming paradigm
for the production of concurrent software that is guaranteed to be correct
by construction from global descriptions of communication behaviour.

1 Introduction

Programming communications among the endpoints in a concurrent system is
challenging, because it is notoriously difficult to predict how nontrivial programs
executed simultaneously may interact [19]. To mitigate this issue, choreographies
can be used to give precise specifications of communication behaviour [1,28].

A choreography specifies the expected communications among endpoints
from a global viewpoint, in contrast with the standard methodology of giving
a separate specification for each endpoint that defines its Input/Output (I/O)
actions. As an example, consider the following choreographic specification (whose
syntax is derived from the “Alice and Bob” notation from [23]):

Alice -> Bob : book; Bob -> Alice : money

The choreography above describes the behaviour of two endpoints, Alice and
Bob. First, Alice sends to Bob a book; then, Bob replies to Alice with some
money as payment. The motivation for using a choreography as specification is
that it is always “correct by design”, since it explicitly describes the intended
communications in a system. In other words, a choreography can be seen as a
formalisation of the communication flow intended by the system designer.

A choreography can be compiled to the local specifications of the I/O actions
that each endpoint should perform [10,18,27], as depicted below:

Choreography Spec.
EPP−−−−−→ Endpoint Spec.

(correct by design) (correct by construction)

In the methodology above, an Endpoint Projection (EPP) procedure is used to
generate the specifications for each endpoint starting from a global choreographic
specification. The endpoint specifications are therefore correct by construction,
because they are computed from a correct-by-design choreography. A major
consequent benefit is that such endpoint specifications are also deadlock-free,
c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 3–10, 2016.
DOI: 10.1007/978-3-319-33612-1 1



4 F. Montesi

because I/O actions cannot be defined separately in choreographies and are there-
fore always paired correctly in the result of EPP.

In this paper, we give an overview of some recent results by the author
and collaborators aimed at applying the choreography-based methodology as a
fully-fledged programming paradigm, rather than as a specification method. In
this paradigm, called Choreographic Programming, choreographies are concrete
programs and EPP is a compiler targeting executable distributed code:

Choreography Program
EPP (compiler)−−−−−−−−−−−−−→ Executable

Endpoint Programs

(correct by design) (correct by construction)

Ideally, this methodology will allow developers to program systems from a global
viewpoint, which is less error-prone than writing endpoint programs directly, and
then to obtain executable code that is correct by construction.

To kickstart the development of choreographic programming, we are inter-
ested in finding suitable language models (Sect. 2) and their implementation
(Sect. 3). We discuss them in the remainder of the paper, following the syntax
from [20].

2 Language Models

In [11] we present the Choreography Calculus (CC), a language model for chore-
ographic programming that follows the correct-by-construction methodology
discussed in Sect. 1 and provides an interpretation of concurrent behaviour in
choreographies. The key first-class elements of CC are processes and sessions,
respectively representing endpoints that execute concurrently and the conversa-
tions among them. The basic statement of choreographic programs, ranged over
by C, is a communication:

p.e -> q.x : k;C

which reads “process p sends the value of expression e to process q, which receives
it on variable x, over session k; then, the system executes the continuation chore-
ography C”. We comment the model by giving the following toy example on a
replicated journaling file system.

Example 1 (Replicated Journaling File System, write operation). We define a
choreography, denoted Cjfs, in which a client c uses a session k to send some
data to be written in a journaling file system replicated on two storage nodes.

Cjfs
def=

1. c.data -> j1.data1 : k;
2. c.data -> j2.data2 : k;
3. j1.blocks(data1) -> s1.blocks1 : k′;
4. j2.blocks(data2) -> s2.blocks2 : k′;
5. j1 -> c : k;
6. j2 -> c : k
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In the choreography Cjfs, the client c uses session k to send the data to be
written to two processes, j1 and j2, which we assume log the operation in their
respective journals upon reception (Lines 1–2). The two journal processes then
use another session, k′, to forward the data to be written to their respective
processes handling the actual data storage, s1 and s2 (Lines 3–4). Finally, at the
same time, processes j1 and j2 send an empty message on session k to the client,
in order to inform it that the operation has been completed (Lines 5–6).

Concurrency. Process identifiers (c, j1, j2, s1 and s2 in our example) are key to
formalising concurrent behaviour in CC. Observe Lines 3–4: since processes run
in parallel, the communication between j2 and s2 in Line 4 could be completed
before the communication between j1 and s1 in Line 3. In CC, the semantics
of the sequential operator is thus relaxed by a syntactic swapping congruence
relation �C , which allows two statements to be swapped if they do not share
any processes. For example, the choreography Cjfs would be equivalent to a
choreography C ′

jfs, denoted Cjfs �C C ′
jfs, where in C ′

jfs Lines 3 and 4 are exchanged.
In [20], the relation �C is validated by showing that it corresponds to the typical
interleaving semantics of the parallel operator found in process calculi.

Sessions and Typing. The communications in Lines 1–2, 5–6 and the commu-
nications in Lines 3–4 are included in different sessions, respectively k and k′.
Each session represents a logically-separate conversation, as in other session-
based calculi (e.g., [4,15]), and is strongly typed in CC with a typing discipline
that checks for adherence to protocols expressed as multiparty session types [16].
We give an example of how protocols are mapped to choreographies in Sect. 3.

Endpoint Projection. CC comes with an EPP that compiles choreographies to
distributed implementations in terms of the π-calculus [11]. The generated code
follows that of the originating choreography, according to a small-step opera-
tional semantics. As a corollary, the produced code is also deadlock-free: senders
and receivers are always ready to communicate when they have to, as I/O actions
cannot be mismatched in choreographies.

Modularity. In [22], we extend CC to support the implementation and reuse
of external libraries/services (modular development), using a notion of external
participants in sessions. For example, we can split the choreography Cjfs in two
modules, a client choreography Ccli and a server choreography Csrv:

Ccli
def=

1. c.data -> J1 : k;
2. c.data -> J2 : k;
3. J1 -> c : k;
4. J1 -> c : k

Csrv
def=

1. C -> j1.data1 : k;
2. C -> j2.data2 : k;
3. j1.blocks(data1) -> s1.blocks1 : k′;
4. j2.blocks(data2) -> s2.blocks2 : k′;
5. j1 -> C : k;
6. j2 -> C : k

The choreographies above refer to each other using references to external processes,
e.g., J1 in Ccli is a reference to process j1 in Csrv. Separate choreography modules
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can be compiled and deployed separately, with the guarantee that their generated
implementations will interact with each other as expected.

Extraction. In [12], we present a proofs-as-programs Curry-Howard correspon-
dence between Internal Compositional Choreographies (ICC, a simplification of
CC) and a generalisation of Linear Logic [14], inspired by [8]. ICC is a first step
in defining a canonical model for choreographies and formalising logical rea-
soning on choreographic programs. In such correspondence, EPP is formalised
as a transformation between logically-equivalent proofs, one corresponding to a
choreography program and the other corresponding to a π-calculus term. The
transformation is invertible, yielding a procedure for automatically extracting
the choreography that a π-calculus term typed with linear logic is following.

3 Implementation

The Choreography Calculus (CC), along with related work on models for chore-
ography languages [10,18,27], offers insight on how choreographic programming
can be formally understood as a self-standing paradigm. To practically evaluate
choreographic programming, we developed the Chor programming language1, an
open source prototype implementation of CC [20].

In Chor, the correct-by-construction methodology of choreographic pro-
gramming is proposed as a concrete software development process, depicted
in Fig. 1. Choreographies are written using an Integrated Development Envi-
ronment (IDE), which visualises on-the-fly errors regarding syntax and protocol
verification, as in the screenshot in Fig. 2. Then, a choreography can be projected
to executable code via an implementation of EPP that follows the ideas of CC.
In this case, the target language is Jolie2 [21]. Once the compiler has generated
the Jolie programs for the endpoints described in the choreography, the devel-
oper can customise their deployments. This is done using the Jolie primitives
for integrating with standard communication protocols and technologies, which
do not alter the behaviour of the code generated by the Chor compiler. The
resulting code can finally be executed using the Jolie interpreter.

In Chor, the syntax from CC is extended with operation names for com-
munications (as in Web Services [2]) and data manipulation primitives. As an
example, we show an extended implementation of the scenario from Example 1.

Chor IDE

Code 
Editing/

... ... ...

Jolie 
Endpoint

Jolie 
Endpoint

Jolie EPP
(automatic)

Execution

Execution
Deployment Programming 

(Optional)

Deployment Programming 
(Optional)

Fig. 1. Chor, development methodology (from [11]).

1 http://www.chor-lang.org/.
2 http://www.jolie-lang.org/.

http://www.chor-lang.org/
http://www.jolie-lang.org/
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Fig. 2. Chor, example of error reporting (from [20]).

1 protocol Write {

2 C -> J1: { write(string);

3 C -> J2: write(string);

4 J1 -> C: ok(void);

5 J2 -> C: ok(void),

6 writeAsync(string);

7 C -> J2: writeAsync(string)

8 }

9 }

10
11 protocol Store { J1 -> S1: write(string);

12 J2 -> S2: write(string) }

13
14 define computeBlocks(j1, j2) { /∗ . . . ∗/ }

15
16 define write(c, j1 , j2, s1 , s2)

17 (k[ Write:c[C], j1[J1], j2[J2] ],

18 k2[ Store:j1[J1], j2[J2], s1[S1], s2[S2] ]) {

19 if (sync)@c {

20 c.data -> j1.data : write(k);

21 c.data -> j2.data : write(k);

22 computeBlocks( j1 , j2 );

23 j1.blocks -> s1.blocks : write( k2 );

24 j2.blocks -> s2.blocks : write( k2 );

25 j1 -> c : ok( k );

26 j2 -> c : ok( k )

27 } else {

28 c.data -> j1.data : writeAsync( k );

29 c.data -> j2.data : writeAsync( k );

30 computeBlocks( j1 , j2 );

31 j1.data -> s1.data : write( k2 );

32 j2.data -> s2.data : write( k2 )

33 }

34 }
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We briefly comment the program above, referring the reader to [20] for a more
complete description of Chor. Procedure write implements the behaviour of the
processes from Example 2. The sessions k and k2 (k and k′ in Example 2) are
typed by the protocols Write and Store respectively. In Line 19, the client c

checks its internal variable sync to determine whether the write operation should
be synchronous or not. In the first case we proceed as in Example 2. Otherwise,
process c uses a different operation writeAsync to notify the others that it does
not expect a confirmation message at the end.

4 Related Work

The idea of using choreography-like descriptions for communication behaviour has
been used for a long time, for example in software engineering [17], security [5,7,9],
and specification languages for business processes [1,28].

The development of the formal models that we described in Sect. 2 was made
possible by many other previous works on languages for expressing communica-
tion behaviour. The notion of session in CC is a variation of that presented in [4]
for a process calculus. The theory of modular choreographies was inspired by the
article [3], where types for I/O actions are mixed with types for global commu-
nications, and by Multiparty Session Types [16], from which we took the type
language to interface compatible choreographies. Interestingly, combining multi-
party session types with choreographies yields a type inference technique and a
deadlock-freedom analysis that do not require additional machinery as in other
works in the context of processes [4]. The criteria for a correct Endpoint Projec-
tion (EPP) procedure was investigated in many settings, e.g., in [6,10,18,27].

The Chor language and its compiler have already been used as basis for imple-
menting other projects. For example, AIOCJ [26] is a choreographic language
supporting the update of executable code at runtime, equipped with a formal cal-
culus that ensure deadlock-freedom [25]. Choreographies have also been applied
for the design of communication protocols. In particular, Scribble is a specifica-
tion language for protocols written from a global viewpoint [29], which can be
used to generate correct-by-construction runtime monitors (see, e.g., [24]).

5 Conclusions and Future Work

We presented some recent efforts aimed at kickstarting the development of chore-
ographic programming as a fully-fledged programming paradigm. While the par-
adigm holds potential, there is still a lot of work to be done before reaching a
productive real-world programming framework. We describe below some possi-
ble research directions, some of which are planned for in the current research
project behind Chor, the CRC project3.

Integration. A key factor for the adoption of choreographic programming will be
interoperability with existing software. Chor can be extended with local compu-
tation primitives that would interact with libraries written in other programming
languages, e.g., Java or Scala, similarly to how it is done in Jolie [21].
3 http://www.chor-lang.org/.

http://www.chor-lang.org/


Kickstarting Choreographic Programming 9

Classification. Just like there are many different language models for different
aspects of concurrent programming, e.g., code mobility and multicast, it should
be possible to similarly extend choreography models. This suggests a potential
benefit in having systematic classifications of choreography languages, to observe
the effect that such extensions have on expressiveness and see how far the correct-
by-construction methodology can be applied.

Exceptions. Introducing exception handling in choreography program raises the
issue of coordinating many participants in a global escape (as in [13]), and
whether a suitable strategy can always be found, statically or at runtime.

Formal Implementation. The EPP procedure in CC is based on π-calculus chan-
nels, but its implementation in Chor uses data (protocol headers) to route mes-
sages instead, as in many other enterprise frameworks [2]. To the best of the
author’s knowledge, realising π-calculus channels using data-based message rout-
ing has still to be formally investigated, and the implementation of Chor could
provide an initial stepping stone in such a study.

Acknowledgements. The author was supported by the Danish Council for Inde-
pendent Research project Choreographies for Reliable and efficient Communication
software (CRC), grant No. DFF–4005-00304, and by the EU COST Action IC1201
Behavioural Types for Reliable Large-Scale Software Systems (BETTY).
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Abstract. Given two process models, the problem of behavioral
comparison is that of determining if these models are behaviorally equiv-
alent (e.g., by trace equivalence) and, if not, identifying how can the
differences be presented in a compact manner? Behavioral profiles have
been proposed as a convenient abstraction for this problem. A behav-
ioral profile is a matrix, where each cell encodes a behavioral relation
between a pair of tasks (e.g., causality or conflict). Thus, the problem of
behavioral comparison can be reduced to matrix comparison. It has been
observed that while behavioral profiles can be efficiently computed, they
are not accurate insofar as behaviorally different process models may
map to the same behavioral profile. This paper investigates the question
of how accurate existing behavioral profiles are. The paper shows that
behavioral profiles are fully behavior preserving for the class of acyclic
unlabeled nets with respect to configuration equivalence. However, for
the general class of acyclic nets, existing behavioral profiles are exponen-
tially inaccurate, meaning that two acyclic nets with the same behavioral
profile may differ in an exponential number of configurations.

1 Introduction

Pairwise process model comparison is a basic primitive in the context of manage-
ment of process model collections. Such comparison can be made from a lexical,
syntactical and/or behavioral perspective. This paper deals with the latter. In
this context, behavioral profiles [1] have been proposed as an abstract represen-
tation of process models for the purpose of comparison. A behavioral profile of
a process model can be seen as a complete graph over the set of tasks of the
model, where edges are annotated by types of behavioral relations. Alternatively,
a behavioral profile is a matrix where rows and columns represent tasks and each
cell is labeled by a behavioral relation between a pair of tasks.

Thus, the problem of behavioral comparison of process models can be mapped
to that of comparing two matrices. This provides a convenient basis for comput-
ing behavioral similarity between pairs of process models [2].

c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 13–28, 2016.
DOI: 10.1007/978-3-319-33612-1 2
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Fig. 1. Net system and its behavioral profile

Figure 1 depicts a process model
represented as a Petri net sys-
tem and alongside its behavioral
profile.1 In the matrix representa-
tion, the strict order relation (↦)
denotes causal precedence between
a pair of tasks in all the computa-
tions of the model. Exclusive order
relation (+) denotes that a pair of
tasks never occurs in the same com-
putation. Finally, interleaving (�) represents the absence of order in the execu-
tion of a pair of tasks.

In the context of behavioral comparison of process models, the adoption
of a notion of behavioral equivalence is crucial since it establishes the ground
rules for the comparison. Unfortunately, since the introduction of the concept of
behavioral profiles [1], the authors pointed out that this representation does not
correspond to any of the well-known notions of behavioral equivalence, i.e., two
behaviorally different models (e.g., by trace equivalence), may have the same
matrix representation. Interestingly, different families of binary relations have
been proposed as extensions of [1]; causal behavioral profile [3] and the relations
of the 4C spectrum [4] are cases in point. However, none of them has been shown
to preserve any well-known notion of equivalence.

In this paper, we analyze three different behavioral profiles and study their
suitability for the representation of the behavior of a process model. All the
considered behavioral profiles use O(∣Λ∣2) space to capture behavior.2 In the
light of the above, the contributions we make in this paper are as follows:

(i) we give an execution semantics to the behavioral profiles proposed in [1],
(ii) we show that, for a restricted family of (unlabeled) Petri net systems, behav-

ioral profiles can ensure configuration equivalence [5], and
(iii) we show that, even for the family of acyclic labeled Petri net systems, the

three considered behavioral profiles cannot provide an accurate representa-
tion of behavior.

The rest of the paper is structured as follows. Section 2 introduces basic con-
cepts of Petri nets, workflow nets, flow nets and flow event structures. Section 3
develops the contributions (i) and (ii) listed above, whereas the contribution (iii)
is presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background

This section introduces the necessary concepts used in further sections. Firstly, we
recall basic definitions of Petri nets and present two families of nets: workflow and
1 The behavioral profile in Fig. 1 is computed using the relations in [1].
2 In the rest of the paper, we will say that the size of the behavioral profile of a process

model is O(∣Λ∣2), where Λ is the set of tasks of the model.
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flow nets. Then, we review basic definitions of flow event structures and introduce
the adopted notion of behavioral equivalence, configuration equivalence.

2.1 Petri Nets

Definition 1 ((Labeled) Petri Net, Net System). A Petri net, or a net, is
a tuple (P,T,F ), where P is a set of places, T is a set of transitions, such that
P ∩T = ⊘ and P ∪T ≠ ⊘, and F ⊆ (P ×T )∪(T ×P ) is the flow relation. A labeled
net is a tuple (P,T,F,Λ,λ), where (P,T,F ) is a net, Λ is a set of labels, and
λ ∶ T → Λ∪{τ} is a function that maps transitions to labels, where τ is a special
label, τ /∈ Λ. If λ(t) = τ , where t ∈ T , then t is said to be silent; otherwise t is
observable. A marking of a net (P,T,F ) is a function M ∶ P → N0 that maps
places to natural numbers (viz., tokens). A Petri net system, or a net system, is
a pair (N,M), where N = (P,T,F ) is a Petri net and M is a marking of N . ⌟

Places and transitions are conjointly referred to as nodes. We write ●y = {x ∈
P ∪ T ∣ (x, y) ∈ F} and y● = {z ∈ P ∪ T ∣ (y, z) ∈ F} to denote the preset and
postset of the node y ∈ P ∪T , respectively. Similarly, for a set of nodes X ⊆ P ∪T ,
●X = ⋃{●x ∣ x ∈X} and X● = ⋃{x● ∣ x ∈X}.

One approach to define the execution semantics of a net system is in terms
of markings. A marking M of a net N = (P,T,F ) enables a transition t ∈ T ,
denoted as M[t⟩, iff ∀p ∈ ●t ∶ M(p) > 0. Moreover, an occurrence of t, such
that M[t⟩, leads to a fresh marking M ′ of N , denoted as M

t
�→ M ′, where

M ′
(p) =M(p)−1 if p ∈ ●t∖t●, M ′

(p) =M(p)+1 if p ∈ t●∖●t, and M ′
(p) =M(p)

otherwise.

Definition 2 (Firing Sequence, Execution). Let S = (N,M0), N =

(P,T,F ), be a Petri net system.

● A sequence of transitions σ = t1 . . . tn in N , where n ∈ N0, is a firing sequence
in S iff σ is empty or it holds that M0

t1
�→M1

t2
�→M2 . . .

tn
�→Mn. In the latter

case, we say that σ leads from M0 to Mn.
● A marking M is reachable in S iff M = M0 or there exist a firing sequence

σ that leads from M0 to M . The notation M ′
∈ [N,M⟩ represents that M ′ is

reachable in (N,M).
● A marking M of N is terminal iff there exist no transition enabled at M .
● A firing sequence σ that leads from M0 to M , where M is terminal, is called

an execution. By Θ(S), we denote the set of all executions of S. ⌟

A marking M of a net N = (P,T,F ) is n-safe iff for every place p ∈ P it
holds that M(p) ≤ n, n ∈ N0. A net system S is said to be n-safe if all its
reachable markings are n-safe. We restrict the subsequent discussions to 1-safe
net systems. Note that one can identify a 1-safe marking M of a net (P,T,F )
as the set of places {p ∈ P ∣ M(p) = 1}.

Workflow nets [6] are a class of nets with a dedicated source and sink place,
such that every transition is on a path from the source to the sink place.
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Definition 3 (WF-Net, WF-System). A Petri net N = (P,T,F ) is a work-
flow net, or a WF-net, iff N has a dedicated source place i ∈ P , with ●i = ⊘,
N has a dedicated sink place o ∈ P , with o● = ⊘, and the short-circuit net
N∗ = (P,T ∪ {t∗}, F ∪ {(o, t∗), (t∗, i)}) of N is strongly connected, t∗ ∉ T . A
WF-net system is a net system (N,M), where N is a WF-net with the source
place i and M = {i}. ⌟

Soundness [7] is the commonly adopted criterion of correctness for WF-net
systems. For example, a sound WF-net system guarantees that every execution
ends with one token in the sink place and no tokens elsewhere.

Definition 4 (Liveness, Boundedness, Soundness). Let S = (N,M), N =
(P,T,F ), be a Petri net system.

● S is live iff for every reachable marking M ′
∈ [N,M⟩ and for every transition

t ∈ T there exist a marking M ′′
∈ [N,M ′

⟩ such that M ′′
[t⟩.

● S is bounded iff there exist a number n ∈ N0 such that S is n-safe.

A WF-net system (N,M) is sound iff the net system (N∗,M), where N∗ is the
short-circuit net of N , is live and bounded. ⌟

Flow nets form another family of Petri nets [8]. This type of nets is seman-
tically acyclic, meaning that in any firing sequence, a place cannot be marked
more than once. Thus, all the transitions in a firing sequence are distinct. In
the context of flow nets, the notion of causal dependency between transitions
is defined w.r.t. places. A transition tj causally depends on a transition ti iff
∃p ∈ ti ● ∩ ● tj , such that whenever both transitions occur in a firing sequence,
then ti is the only transition that puts a token in p; p is said to be a strong
postcondition of ti. Finally, a flow net is defined as follows.

Definition 5 (Flow Net, Flow Net System). A net system S = (N,M),
N = (P,T,F ), is a flow net system and N is a flow net iff for every firing
sequence σ = t1 t2 . . . tn in S and for every i, j ∈ N, s.t. 1 ≤ i < j ≤ n, it holds that:

● a place p ∈ P is in a preset of at most one transition of σ,i.e., ●ti ∩ ●tj=⊘,and
● if ti ● ∩ ● tj ≠ ⊘ then ∃p ∈ ti ● ∩ ● tj, s.t., p is a strong postcondition of ti. ⌟

An alternative way to define the execution semantics of a net system is using
the notion of a configuration. The main difference between firing sequences and
configurations is that the former capture the interleaving semantics, whereas the
latter describe the partial order semantics (aka true concurrency). In the case of
flow nets, firing sequences and configurations are in the close relation, which is
due to the next definition.

Definition 6 (Flow Net Configuration). A configuration of a flow net sys-
tem S = (N,M), N = (P,T,F ), is a subset C ⊆ T of transitions of N such that
there exist a firing sequence σ in S that consists of the transitions in C, i.e.,

σ = t1 t2 . . . tn and C = {t1, t2, . . . , tn}

The set of all configurations of S is denoted by Conf (S). ⌟
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Fig. 2. WF-flow nets

Set inclusion (⊆) defines an order over configura-
tions. We say that a configuration C evolves into a
configuration C′ if C ⊆ C′.

The discussions throughout the paper consider
Petri nets in the intersection of two families: sound
WF-nets and flow nets (shorthanded as WF-flow nets,
see Fig. 2). More specifically, the focus of this work
is on WF-nets that are acyclic, sound and have the
properties of flow nets (Definition 5).

2.2 Flow Event Structures

Flow Event Structures [8] (FES) is a well-known model of concurrency. It
describes the behavior of a net system by means of events (occurrences of actions)
and two binary behavioral relations, namely flow and conflict.

Definition 7 ((Labeled) Flow Event Structure). A flow event structure
(FES) is a tuple F = (E,#,≺), where

● E is a set of events,
● # ⊆ E ×E is the conflict relation, which is symmetric, and
● ≺ ⊆ E ×E is the flow relation, which is irreflexive.

A labeled FES is a tuple F = (E,#,≺, Λ, λ), where (E,#,≺) is a FES, Λ is a
set of labels, and λ ∶ E → Λ∪{τ} is a function that maps events to labels. Again,
if λ(e) = τ , where e ∈ E, then e is said to be silent; otherwise e is observable. ⌟

Intuitively, the flow relation represents possible immediate precedence, mean-
ing that if two events e and e′ are in the flow relation, i.e., e ≺ e′, then event e
can potentially occur before e′. The conflict relation represents mutual exclusion.
Two events e and e′ in the conflict relation, i.e., e#e′, cannot occur together in
the same execution. The conflict relation is reflexive and then self-conflicting
events are allowed. Even though self-conflicting events never occur in any con-
figuration, in general, they cannot be removed from a FES without affecting the
set of configurations [8].

Similar to flow nets, the behavior of FESs can be given in terms of configu-
rations, and it is defined as follows.

Definition 8 (FES Configuration). A configuration of a FES F = (E,#,≺)
is a subset C ⊆ E of events of F s.t.:

● C is conflict free, i.e., ∀ e, e′ ∈ C ∶ ¬(e#e′),
● C has no flow cycles, i.e., the transitive closure of ≺ between the events in C

(≺∗C) is a partial order, and
● for all events e′ ∈ C and e /∈ C such that e ≺ e′ it holds that there exist an event

e′′ ∈ C such that e#e′′ and e′′ ≺ e′.

The set of all configurations of F is denoted by Conf (F). ⌟

An alternative formulation of configurations is done using proving sequences.
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Definition 9 (Proving Sequence). A proving sequence in a FES F = (E,#,≺
) is a (finite or infinite) sequence σ = e1 . . . en . . . of distinct non-conflicting
events, s.t. ∀i∀e ∈ E ∶ e ≺ ei ⇒ (∃ j < i ∶ e#ej ∧ ej≺ ei). ⌟

A subset of events C ⊆ E is a configuration of a FES F = (E,#,≺), s.t.
C = {e1, . . . , en}, if and only C is conflict free and for every event ek ∈ C, k ≤ n
it holds that e1 . . . ek is a proving sequence in F, cf. [8].

In [8], Boudol shows that FES corresponds to the family of flow nets, i.e., it is
always possible to compute a FES for a given flow net system, where configura-
tions of FES are derived from firing sequences in the system. Interestingly, for a
sound WF-flow net, it is possible to establish a bijection between its transitions
and events in the corresponding FES representation.3

The next definition suggests how to construct a FES from a flow net system.
Different from [8], we do not consider self-conflicting events, thus there is a
bijection between the transitions in the net and the events in the FES. Hence,
we use T to represent both, events and transitions, indistinctively.

Definition 10 (FES of a Flow Net). Let S = (N,M), N = (P,T,F ), be a
flow net system. The FES of S is the tuple F = (T,#,≺), where for every two
transitions t ∈ T and t′ ∈ T it holds that:

● t#t′⇔def ∀C ∈ Conf (S) ∶ {t, t′} /⊆ C, and
● t ≺ t′⇔def ¬(t#t′) ∧ t ● ∩ ● t′ ≠ ⊘. ⌟

2.3 Configuration Equivalence

The equivalence notion adopted in this work is configuration equivalence, a well-
known notion of equivalence in the spectrum of true concurrency [5].4 Note that
this notion is stronger than trace equivalence. As showed before, the behavior
of a flow net system or a FES can be described, in partial order semantics, by
means of configurations. Intuitively, a pair of structures (in our context, either
flow event structures or flow net systems) are configuration equivalent if (1)
there is a bijection between elements (events or transitions), and (2) the struc-
tures represent, essentially, the same set of configurations. Below, we provide a
definition of the configuration equivalence for flow net systems, but it can be
straightforwardly adapted to FESs.

Definition 11 (Configuration Equivalence ≈conf). Let S = (N,M0) and
S′ = (N ′,M ′

0) be two flow net systems, where N = (P,T,F ) and N ′ = (P ′, T ′, F ′),
and let γ ∶ T → T ′ be a bijective function between the transitions of the nets. Let
S ∶ ∶ ∼conf S′ denote that for any configuration C in S there is a corresponding
configuration C′ in S′ consisting of the images of C. I.e., ∀C ∈ Conf (S)∃C′ ∈
Conf (S′) ∶ C′ = {γ(t) ∣ t ∈ C}.

The pair of net systems S,S′ are configuration equivalent, denoted S ≈conf

S′, iff S ∶ ∶ ∼conf S′ and S′ ∶ ∶ ∼conf S. ⌟

3 Additional self-conflicting events can be required in a FES when, in the context of
WF-nets, a net system does not meet the property of liveness. We refer the reader
to [8] for more details about the introduction of self-conflicting events.

4 The authors of [5] use pomset-trace equivalence. A pomset is basically a set of con-
figurations augmented with the order induced by set inclusion. Since we are not
interested in such order, we keep the equivalence at the level of configurations.
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3 Behavioral Profiles of Acyclic Unlabeled WF-flow Nets

This section proposes an execution semantics for the behavioral profiles defined
in [1], hereinafter referred to as classic behavioral profiles and denoted as BP ∣w.
We show that, for the case of acyclic unlabeled WF-flow nets, classic behavioral
profiles are behavior preserving under configuration equivalence. The section
is organized as follows, Subsect. 3.1 presents a generalized notion of behavioral
profiles. Subsection 3.2 presents a behavioral profile BP ∣fes derived from flow
event structures. Then, in Subsect. 3.3, a transformation from BP ∣w into BP ∣fes

is proposed and it is shown that BP ∣w is behaviorally preserving for acyclic
unlabeled WF-flow nets. Finally, Subsect. 3.4 discusses about the suitability of
the BP ∣w for the behavioral comparison of processes.

3.1 Generalized Behavioral Profiles

Behavioral profiles can be seen as a framework that is concretely defined accord-
ing to a set of behavioral relations. Roughly speaking, a behavioral profile BP ∣R
of a process model is a complete graph over the set of tasks’ labels, which uses a
set of relations R as edge labels. This general notion of behavioral profiles results
useful for uniformly analyze the different formalisms considered in this paper.

A behavioral profiles is said behavior preserving, if a pair of net systems
that are behavior-equivalent (under certain notion of quivalence) have isomor-
phic behavioral profiles (denoted as ≡iso); and vice-versa. The intuition above is
captured in the following definition.

Definition 12 (Behavior-Preserving BP ∣R). Let N be a class of nets and ≈
be an equivalence relation on N . A behavioral profile BP ∣R is behavior-preserving
on N , if for any N,N ′ ∈ N with net systems S = (N,M0), S

′
= (N ′,M ′

0) and
behavioral profiles BP ∣R(S) and BP ∣R(S

′
), respectively, the following holds:

S ≈ S′⇔ BP ∣R(S) ≡iso BP ∣R(S
′
).

⌟

3.2 Behavioral Profiles and FES

The correspondence between FESs and flow nets investigated by Boudol [8]
shows that given a flow net, it is possible to construct a FES, such that the
firing sequences in the net are configurations in the FES; and vice-versa.

The following proposition restates the results proved in [8] for flow nets.
Although, we refer concretely to the set of all WF-flow nets and represent by N .

Proposition 1 (Proposition 3.4 in [8]). Let S = (N,M0) be a WF-flow net
system, with a net N = (P,T,F ) ∈ N , and let F be its corresponding FES (see
Definition 10), we have that Conf (S) = Conf (F). More precisely, a sequence
t1 . . . tn is firable in S if and only if it is a proving sequence in F.

Thus, a result from Proposition 1 is that a pair of configuration equivalent
WF-flow nets have, similarly, configuration equivalent FESs.
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Corollary 1. Let N,N ′ be nets in N . Moreover, let F and F
′ be the FESs of S

and S′, respectively. Then, it holds that:

S ≈conf S′⇔ F ≈conf F
′

A type of behavioral profiles for WF-flow nets can be defined using FESs
when there is a bijection between the transitions in the net and the events in
event structure. Thus, let us refer to the behavioral profile of a net system S given
by the FES as BP ∣fes(S). In this case, the tasks in BP ∣fes(S) are the events
in the FES, and the set of binary relations are flow and conflict. Finally, one
can notice that it is possible to define a behavioral profile BP ∣fes that contains
all the behavior of a net system S, such that any conclusion (w.r.t. behavior)
derived from BP ∣fes holds in S.

The following proposition shows that every place in a WF-flow net is, in fact,
a strong postcondition of a transition w.r.t. a firing sequence.

Proposition 2. Let S = (N,M0) be a WF-flow net system, with a net N =

(P,T,F ), and let σ = t1 t2 . . . tn ∈ Θ(S) be an execution of S. Then, a place
p ∈ tj● is a strong postcondition of a transition tj, where 1 ≤ j ≤ n.

Proof. In this case, it is shown that the property holds for an execution σ, but
then it also holds for any firing sequence, which elements are part of σ.

Note that if p is the source place then it cannot be a postcondition of any
transition, since ●p = ⊘. Conversely, consider the case when p is not the source
place, thus ●p ≠ ⊘. Then, let us show that there is a unique tj , where 1 ≤ j ≤ n,
such that p ∈ tj●. Suppose that there is another transition tk, where 1 ≤ k ≤ n,
such that k ≠ j ∧ p ∈ tk●. The place p cannot be the sink place, because if tj and
tk fire, then p would have two tokens, but it contradicts the fact that the net is
1-safe. Thus, it means that p was marked in two different occasions and, since
the net is 1-safe, it was necessary to consume one of the tokens before the other
was set. Hence, p was the preset of two different transitions in σ. Nevertheless,
it violates the condition 1 in Definition 5. Therefore, if p ∈ tj● then p is a strong
postcondition of tj . ⊓⊔

Theproposition above, however, implies that everyplace between apair of tran-
sitions in a WF-flow net defines a flow relation. As a result, the behavioral pro-
files BP ∣fes, w.r.t. Definition 10, are not behavior preserving (see Definition 12).
For instance, a net system can have implicit places that would define unnecessary
flow relations between the events in the FES. Nevertheless, we believe that by pro-
viding a more elaborated definition for constructing a FES of a net system, one can
find a behavior preserving BP ∣fes. Although, the last is left for future work, since
Definition 10 is enough for the scope of this paper.

3.3 An Execution Semantics for the Classic Behavioral Profiles

In this subsection, we focus on the classic behavioral profiles (BP ∣w). This type
of behavioral profiles uses three behavior relations, namely strict order (↦),
exclusive order (+) and interleaving (�). The following definition formalizes the
behavior relations comprising any BP ∣w, along with its computation.
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Definition 13 (BP ∣w, see [1]). Let S = (N,M) be a net system, with N =

(P,T,F ). A pair of transitions t, t′ ∈ T is in one of the following relations:

● Strict order relation, denoted by t ↦ t′, if for every firing sequence σ ∈ Θ(S),
with σ = t1 t2 . . . tn such that ti = t and tj = t′, it holds 1 ≤ i < j ≤ n.
● Exclusive order relation, denoted by t+t′, if for every firing sequence σ ∈ Θ(S) ∶

σ = t1 t2 . . . tn there are no ti, tj, where 1 ≤ i, j ≤ n, s.t. i ≠ j, ti = t and tj = t′.
● Interleaving relation, denoted by t � t′, if ¬(t↦ t′), ¬(t′ ↦ t) and ¬(t + t′).

For technical reasons, we also define the direct strict order. Transitions t and t′

are in direct strict order, denoted by t↠ t′, iff

ti ↦ tj ∧ ti ● ∩ ● tj ≠ ⊘

The set BP ∣w(S) = {↦,+,�} is the classic behavioral profile of S. ⌟

The following definition formalizes the transformation from BP ∣w to BP ∣fes.

Definition 14 (BP ∣fes
w ). Let BP ∣w(S) = {↦,+,�} be a classic behavioral

profile of a WF-flow net system S = (N,M), with N = (P,T,F ). Let +′

be the exclusive order relation without the self-exclusive order relations, i.e.,
+
′
= +/{(t, t) ∣ t ∈ T}. Then BP ∣fes of BP ∣w(S) is defined as BP ∣fes

w (S) =
{↠,+′}. ⌟

The definition presented above gives BP ∣w an execution semantics on FES
through BP ∣fes

w . Thus, given a BP ∣w and the ↠ relation, one can derive the
configurations of the corresponding net by reusing the notion of configuration of
FES over BP ∣fes

w . The following proposition shows that the BP ∣fes
w (S) computed

from BP ∣w(S) is isomorphic to BP ∣fes(S), i.e., BP ∣fes
w (S) captures the same

relations as BP ∣fes(S) and so BP ∣fes
w (S) captures all the behavior of S. Note

that for the reminder of this section, we focus on unlabeled WF-flow nets, which
will be denoted as Nλ.

Proposition 3. Let S = (N,M) be a net system, where N = (P,T,F ) ∈ Nλ is
an unlabeled WF-flow net, and BP ∣w(S) = {↦,+,�} be the classic behavioral
profile of S. Thus, BP ∣fes

w (S) = {↠,+} is isomorphic to BP ∣fes(S) = {≺,#}, in
specific, for any two transitions x, y ∈ T 1. x+y ⇔ x#y, and 2. x↠ y ⇔ x ≺ y.

Proof. Given that the nets are unlabeled, then for any transition in T there is a
task in BP ∣fes and in BP ∣w (and so in BP ∣fes

w ). Therefore, let us consider the
same set of elements T throughout the different structures.

1. x + y ⇔ x#y. It is easy to check that the definition of exclusive ordering
relation (+) in BP ∣w and conflict (#) in BP ∣fes is the same. So, the conflict
in the FES coincides with the exclusive order relation in BP ∣w.
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2. x ↠ y ⇔ x ≺ y. (⇒) Consider a pair of transitions x, y ∈ T ∶ x ↠ y. By
Definition 13, ∃σ = t1 t2 . . . , tn ∶ x = ti, y = tj ∧ i < j. Additionally, since the
causal relation is direct, then there is at least a place p ∈ x ● ∩ ● y. Thus, by
Definition 10, x ≺ y in BP ∣fes(S).

(⇐) Suppose x ≺ y in BP ∣fes(S), and ¬(x ↠ y) in BP ∣fes
w (S). By

Definition 10, sincex ≺ y thenx●∩●y ≠ ⊘ and¬(x#y). Let p ∈ x●∩●y be a strong
postcondition of x. The first thing to notice is that ¬(x+y), since ¬(x#y) – see
previous case. Thus, there exist a firing sequence σ = t1 t2 . . . , tn ∶ x = ti, y = tj ,
where 1 ≤ i < j ≤ n. Hence, the only case where¬(x↦ y) can hold is if there exist
an execution σ′ ∈ Θ(S), s.t., σ′ = t′1, t

′

2, . . . , t
′

n and ∃t′i = x, t′j = y ∶ 1 ≤ j < i ≤ n,
in which case it would hold x � y. Given that y occurred in σ′ and p ∈ ●y, then
p had a token prior the firing of y, and as p is a strong postcondition of x, then
x occurred before y (by Proposition 2), but then σ′ has two occurrences of x
because t′i = x, t′j = y ∶ 1 ≤ j < i ≤ n. The last contradicts the fact that N is
a flow net because, by Definition 5(1), the places in the present of x cannot be
marked more than once by the transitions in σ′. Thus, if x ≺ y then x↠ y. ⊓⊔

In what follows, BP ∣w is shown to be behavior preserving for the Nλ.

Proposition 4. Consider a pair of nets N = (P,T,F ) and N ′ = (P ′, T ′, F ′) in
Nλ, such that there is a bijection between the transitions γ ∶ T → T ′, and let
S = (N,M0) and S′ = (N ′,M ′

0) be net systems with initial markings M0 and
M ′

0. Thus, the following holds:

BP ∣w(S) ≡iso BP ∣w(S
′
) ⇔ S ≈conf S′.

Proof. (⇒) Firstly, let us show that if BP ∣w(S) ≡iso BP ∣w(S
′
) then S ≈conf S′.

Suppose that BP ∣w(S) ≡iso BP ∣w(S
′
), but ¬(S ≈conf S′). By Corollary 1,

we have ¬(BP ∣fes
w (S) ≈conf BP ∣fes

w (S
′
)) since ¬(S ≈conf S′).

Assume a configuration C ⊆ T in BP ∣fes
w (S) and its mapping C′ = {γ(t′) ∣ t′ ∈

C} in S′, such that C′ is not a configuration in BP ∣fes
w (S

′
). By Definition 8, the

configuration C (i) is conflict free, (ii) for all e′ ∈ C and e ∉ C, s.t., e ≺ e′ there
exist an e′′ ∈ C s.t. e#e′′ ≺ e′, and (iii) has no flow cycles. Therefore, we must
consider the following cases:

(i) Conflict freeness. Since C is a configuration in BP ∣fes
w (S), then for any

e, e′ ∈ C it holds ¬(e#e′) and, in consequence, ¬(e + e′) in BP ∣w(S) by
Proposition 3(1). Then, by the assumption on the isomorphism of the
BP ∣w’s, ∃e1, e′1 ∈ C′ ∶ γ(e) = e1 ∧ γ(e′) = e′1, such that ¬(e1 + e′1) and
thus ¬(e1#e′1). So, C′ is also conflict free iff C is conflict free, and every
pair of e1, e

′

1 ∈ C′ is either in � or ↦ ordering relations.
(ii) For any e′′1 ∈ C′ and e1 ∉ C′, s.t., e1 ≺ e′′1 , there exist an e′1 ∈ C′ ∶

e1#e′1 ≺ e′′1 . Suppose that there is an event e1 ∉ C′, such that ∃e′′1 ∈
C′ ∶ e1 ≺ e′′1 and ∀e′1 ∈ C′ ∶ ¬(e1#e′1). Given that e1 ≺ e′′1 , then e1 ↦ e′′1
(more specifically, e1 ↠ e′′1 ), and since ¬(e1#e′1) then ¬(e1 + e′1) for
any e′1 ∈ C′, by Proposition 3. Hence, by the isomorphism of BPw’s,
then ∃e ∉ C, e′′ ∈ C ∶ γ(e) = e1 ∧ γ(e′′) = e′′1 ∧ e ↦ e′′ and for any e′ ∈ C
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it holds ¬(e + e′). However, the last contradicts the fact that C is a con-
figuration in BP ∣fes

w (S), because e would necessarily be in C. Henceforth,
condition 2 also holds for C′.

(iii) Free of flow cycles. The only case remaining, so that C′ is not a configuration
in BP ∣fes

w (S
′
), is when C′ contains cycles, i.e., ≺∗C′ is not a partial order.

This case simply cannot happen because WF-flow nets are acyclic and any
firing sequence contains at most one occurrence of each activity.

Therefore, if C is a configuration in BP ∣fes
w (S), then C′ must also be a configu-

ration in BP ∣fes
w (S

′
) .

(⇐) The opposite case, S ≈conf S′ ⇒ BP ∣w(S) ≡iso BP ∣w(S
′
), follows directly

from the construction of the BP ∣w, see Definition 13. ⊓⊔

Armed with the above, one can easily see that BP ∣w is behavior-preserving
for the class of Nλ. This fact is captured in the following Corollary.

Corollary 2. The behavioral profiles BP ∣w is behavior-preserving for the class
Nλ, w.r.t. configurations equivalence ≈conf .

The above results also holds for the different extensions of the classic behav-
ioral profiles that have strict and exclusive order relations, e.g., causal behavioral
profile [3] and behavioral profiles based on the relations of the 4C spectrum [4].

3.4 On the Interpretation of Behavioral Differences Using BP ∣w

Fig. 3. Net system S2 and its BP ∣w

The process model compari-
son aims not just at deter-
mining if a pair of process
models are (behaviorally)
equivalent, but also at
explaining the existing dif-
ferences between the process
models. This section analyzes
the suitability of the classic
behavioral profiles when used
to interpret encountered dif-
ferences between a pair of
behavioral profiles.

Figure 3 presents an example showing that BP ∣w does not necessarily provide
a detailed representation of the behavior of a WF-flow net. In this example, there
is a WF-flow net system5 and its behavioral profile BP ∣w aside. Let us draw you
attention to transitions a and c, for which BP ∣w asserts an interleaving relation.
However, in all the configurations where e occurs it is always the case that a
precedes c. It is only in the set of configurations where e does not occur where
a and c occur in any order. The fact is that these subtle kind of differences

5 This net corresponds to the FES N presented in [8].



24 A. Armas-Cervantes et al.

requires a diagnostic with contextual information in addition to the local infor-
mation provided by a binary relation. It should be clear that it is possible to
derive such sets of configurations from the BP ∣fes

w .

Fig. 4. Branching process of net
system S2 (Fig. 3(a))

A solution to disambiguate the situation pre-
sented in Fig. 3 is to reason not in terms of
actions, but in terms of instances of actions
(events), where it is possible to set a single rela-
tion between a pair of transitions (causality, con-
flict or concurrency). In this regard, alternative
representations of the behavior of a WF-flow net,
e.g., by means of a branching process [9], can
result useful. For instance, the branching process of the net system in S2 (Fig. 3)
is displayed in Fig. 4. Although, the price to pay is that a branching process
can contain several instances of a single activity, and the O(∣Λ∣2) size of the
representation is no longer guaranteed.

Another approach to tackle the ambiguity of the BP ∣w is to use a larger set
of behavioral relations. For instance, the 4C spectrum [4] defines a repertoire
of eighteen basic behavioral relations that capture such behavioral phenomena
as co-occurrence, conflict, causality, and concurrency. One can employ the rela-
tions of the 4C spectrum to construct an abstract representation of behavior
of a process model, i.e., its behavioral profile. Note that due to the nature of
the 4C spectrum, a pair of tasks can be associated with several behavioral rela-
tions. Nevertheless, behavioral profiles that are based on the relations of the 4C
spectrum are guaranteed to be captured using O(∣Λ∣2) space. Even though this
approach solves the problem of the ambiguity for the family of unlabeled net
systems, it falls short when trying to generalize the solution to the case of net
systems with silent transitions (as discussed in the next section).

4 Behavioral Profiles and Acyclic Labeled WF-flow Nets

This section extends the analysis of the behavioral profiles to labeled WF-flow
nets. It is shown that for this family of nets neither the notion of classic behav-
ioral profile nor its extensions, including that based on the relations of the 4C
spectrum, provide behavior-preserving representations of process models.

Proponents of classic behavioral profiles search for providing a representa-
tion that only considers the observable behavior. When it comes to representing
labeled net systems, the common approach is to omit the columns and rows in
the matrix that would be associated with silent transitions. This decision, how-
ever, comes with a loss of accuracy of the representation. For example, consider
the net system S3 in Fig. 5. Its classic behavioral profile is isomorphic with the
one of S1, cf. Fig. 1. However, S3 differs from S1 in that it has two additional
configurations: {a, b, d} and {a, e, d}.

In order to preserve behavior, as for the case of unlabeled WF-flow nets, one
possibility is to explicitly represent silent transitions in the matrix, as illustrated
in Fig. 6. It is easy to see that, using this approach, the behavior of S1 and S3
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would be represented with two non-isomorphic matrices. However, this approach
does not provide a complete solution since multiple net systems may exist with
different numbers of silent transitions exhibiting the same observable behavior.

Fig. 5. Net system S3

The use of a larger number of behavior relations
can be seen as a way to tackle the above problem. For
instance, both causal behavioral profiles and behav-
ioral profiles that are based on the relations of the
4C spectrum provide non-isomorphic representations
for S1 and S3. However, none of them provides rep-
resentations that distinguish the WF-flow net sys-
tems S4 and S5 in Fig. 7 w.r.t. configuration equiv-
alence. Interestingly, there is only one configuration that distinguishes S4 from
S5, namely {i, o}. It turns out that the set of configurations that is common to
both systems, namely {{i, a, o},{i, b, o},{i, a, b, o}}, gives rise to the same repre-
sentation based on the relations of the 4C spectrum.

Fig. 6. BP ∣fes(S3)

Figure 8 shows two constructions that generalize the
net systems in Fig. 7 with a variable amount of transi-
tions n. It turns out that, for any fixed value of n ∈ N,
the system S6 would comprise the set of configurations
{{i, a1, a2, . . . , an, o}}∪{{i, am, o} ∣ m ∈ [1 .. n]}, however,
it would have the same representation as the system S7

over the relations of the 4C spectrum. Note that sys-
tem S6 encodes n + 1 configurations, whereas system S7

describes 2n configurations. Therefore, there exist two
net systems for which there is an exponential number of
configurations that are indistinguishable when using the representation based on
the relations of the 4C spectrum; in specific, 2n

− n − 1 indistinguishable config-
urations for systems in Fig. 8. This fact is captured in the next proposition.

Proposition 5. There exist two labeled WF-flow net systems that have the same
4C relations over labels and the numbers of distinct configurations that the net
systems describe differ in the value which is in the order of O(2n

), where n is
the number of distinct labels assigned to transitions of the net systems.

Fig. 7. Two net systems that have the same 4C relations over labels
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Fig. 8. Generalization of the net systems in Fig. 7

Observe that there also exist two net systems with no concurrent behavior
on observable transitions that have the same 4C relations over labels but induce
different configurations, cf. Fig. 9. Indeed, net systems S8 and S9 have the same
4C relations over labels, although net system S9 describes configuration {i, o}
which is not captured by net system S8.

Fig. 9. Two net systems that have
the same 4C relations over labels

The above observations confirm that exist-
ing behavioral profiles are lossy behavioral rep-
resentations of labeled net systems. So, if one
relies on existing behavioral profiles in the con-
text of process model comparison, then one
must tolerate inaccurate diagnosis. To address
this problem, one must either look for new
and more accurate behavioral profiles or, alter-
natively, explore behavior representations in
terms of occurrences of actions; however, the
size of such latter representations can be con-
siderably larger than O(∣Λ∣2).

5 Conclusion

This paper studies the idea of using behavioral profiles for the purpose of behav-
ioral comparison of process models, i.e., deciding if two given models are behav-
iorally equivalent and, whenever required, providing a convenient representation
of their differences. The use of behavioral profiles allows reducing the problem
of behavioral comparison to that of matrix comparison, which provides a for-
mal basis for tracing differences between process models that are grounded in
behavior. Moreover, the feasibility of the overall idea is validated by showing
that behavioral profiles can be used to decide configuration equivalence for a
restricted class of acyclic and unlabeled net systems. However, this result ceases
to hold (for any currently known notion of behavioral profile) once transitions of
net systems are allowed to ‘wear’ labels. Future works are called to contribute to
a better understanding of which behavioral profiles can be employed for the pur-
pose of behavioral comparison of which families of process models under which
notions of behavioral equivalence.

The results of this paper have implications in the context of process min-
ing algorithms that rely on matrix-based representations of behavior. A case in
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point are alpha relations [10], which abstract an event log as an O(∣Λ∣2) matrix
where each cell is annotated by a behavioral relation (direct causality, conflict
or concurrency). Our results hint at the fact that such matrices may miss to
encode an exponential number of computations. Thus, designers of process min-
ing algorithms should consider using more faithful intermediate representations.

Alternatively, rather than relying on behavioral relations on tasks, one can
consider behavioral comparison that is founded on binary behavioral relations
on events, i.e., task occurrences. When viewing the set of binary relations as a
matrix, this means that the matrix may be considerably larger than O(∣Λ∣2),
since a task may occur in an exponential number of computations. In a separate
work, we have explored the use of event structures as alternative representations
for process model comparison [11]. It turns out that the most basic form of event
structures requires maintaining a large number of events representing different
occurrences of the same task. To tackle this problem, we apply reduction rules to
obtain a canonical matrix representation of behavior [12,13]. However, achiev-
ing a quadratic or even a polynomial matrix-based representation of behavior
appears to be elusive in the general case.
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Abstract. Petri nets with name creation and management have been
recently introduced so as to make Petri nets able to model the dynamics
of (distributed) systems equipped with channels, cyphering keys, or com-
puting boundaries. While traditional formal properties such as bound-
edness, coverability, and reachability, have been thoroughly studied for
this class of Petri nets, formal verification against rich temporal prop-
erties has not been investigated so far. In this paper, we attack this
verification problem. We introduce sophisticated variants of first-order
μ-calculus to specify rich properties that simultaneously account for the
system dynamics and the names present in its states. We then analyse
the (un)decidability boundaries for the verification of such logics, by
considering different notions of boundedness. Notably, our decidability
results are obtained via a translation to data-centric dynamic systems, a
recently devised framework for the formal specification and verification of
business processes working over relational database with constraints. In
this light, our results contribute to the cross-fertilization between areas
that have not been extensively related so far.

1 Introduction

Verifying the correctness of distributed systems, such as interacting web ser-
vices, requires not only to check whether distributed components interoperate
with each other in terms of their control- and message-flow, but also to consider
the information they exchange. In the Petri net literature, several variants of
colored nets have been thoroughly studied in the last decade so as to enrich
classical P/T nets with information that go beyond the control-flow dimension.
A notable class of colored Petri nets is constituted by ν-PNs [9,10], which are
Petri nets with name creation and management. ν-PNs have been recently intro-
duced so as to make Petri nets able to model the dynamics of (distributed)
systems equipped with channels, cyphering keys, or computing boundaries [10].
Interestingly, variants of ν-PNs have been also investigated to express and verify
message correlation for interacting web services [5].

At the same time, the field of database theory has produced a flourishing lit-
erature on the verification of database-driven dynamic systems and data-aware
business processes [4]. In particular, the framework of data-centric dynamic sys-
tems (DCDSs for short) has been recently devised as a rich framework for the for-
mal specification and verification of business processes working over full-fledged
relational database with constraints [2].
c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 29–47, 2016.
DOI: 10.1007/978-3-319-33612-1 3
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While traditional formal properties such as boundedness, coverability, and
reachability, have been extensively studied for ν-PNs, formal verification against
rich temporal properties has instead not been investigated so far. The aim of this
paper is to attack this verification problem, taking advantage from the interest-
ing decidability results obtained for DCDSs [2]. Specifically we introduce two
sophisticated variants of first-order μ-calculus to specify rich temporal proper-
ties that simultaneously account for the dynamics of ν-PNs and relate the names
present in their states. We then characterise the (un)decidability boundaries for
the verification of such logics over ν-PNs, by considering different notions of
boundedness on the used names, on the amount of repetitions of the same name,
and combinations of these two dimensions. Notably, the key decidability results
obtained in this paper are obtained via a translation from ν-PNs to DCDSs
that can provide the basis for the systematic transfer of (un)decidability and
complexity results between variants of colored Petri nets and DCDSs.

2 ν-Petri Nets

ν-Petri nets (ν-PNs for short) are an extension of P/T nets [8] with pure name
creation and management [9,10]. In a ν-PN, each token carries a name. Fresh
names can be dynamically created, and transitions may impose matching restric-
tions on token names to fire. We briefly introduce ν-PNs, following the formula-
tion in [10].

In the remainder of the paper, we consider the standard notion of multiset.
Given a set A, the set of finite multisets over A, written A⊕, is the set of
mappings of the form m : A → N. Given a multiset S ∈ A⊕ and an element
a ∈ A, S(a) ∈ N denotes the number of times a appears in S. Given a ∈ A and
n ∈ N, we write an ∈ S if S(a) = n. The support of S is the set of elements
that appear in S at least once: supp(S) = {a ∈ A | S(a) > 0}. We also consider
the usual operations on multisets: given S1, S2 ∈ A⊕, we have: (i) S1 ⊆ S2

(resp., S1 ⊂ S2) if, for each a ∈ A, S1(a) ≤ S2(a) (resp., S1(a) < S2(a)); (ii)
S1 + S2 = {an | a ∈ A and n = S1(a) + S2(a)}; (iii) if S1 ⊆ S2, S2 − S1 = {an |
a ∈ A and n = S2(a) − S2(a)}.

Name management in ν-PNs is formalized by adding to ordinary tokens also a
special form of colored tokens, each one carrying a name taken from a countably,
unordered infinite set Id of names. In order to define behaviors that are affected
not only by the presence of tokens in certain places, but also by the names
they carry, all arcs in the net are labelled with matching variables, taken from a
countably infinite set Var . Furthermore, to model the ability of an arc to create
fresh names upon firing, a special subset Υ ⊂ Var of variables is introduced, with
the constraint that a variable ν ∈ Υ can only match with a fresh name, that
is, a name not currently present in the net. To preserve usual P/T net notation
in ν − PNs, black, uncolored tokens are considered, by simply assuming that a
special name • ∈ Id is used for them. We correspondingly introduce a special
variable ε ∈ V ar, which only matches with black tokens. We have now all the
ingredients to formally introduce ν-PNs and their execution semantics.
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Definition 1. A ν-PN is a tuple N = 〈P, T, F 〉, where: (i) P is a finite set of
places; (ii) T is a finite set of transitions, disjoint from P ; (iii) F : (P × T ) ∪
(T × P ) → V ar⊕ is a flow relation, s.t., for every t ∈ T , we have Υ ∩ pre(t) = ∅
and post(t) \ Υ ⊆ pre(t), where pre(t) =

⋃
p∈P supp(F (p, t)) and post(t) =⋃

p∈P supp(F (t, p)). �

The first condition for the flow relation indicates that new name variables cannot
be associated to arcs that go from a place to a transition; in fact, by definition,
a variable in Υ cannot match with any name present in the net. The second
condition expresses instead that arcs that go from a transition t to a place can
be decorated with fresh name variables and/or variables that appear in one of the
incoming arcs pointing to t; the former case denotes the ability of t of generating
new names upon firing, whereas the latter case models the matching between
names of tokens consumed by t with names of tokens produced by t upon firing.

The usual notion of marking in Petri nets is suitably extended for ν-PNs so
as to assign a name to each of the tokens present in the net.

Definition 2. Given a ν-PN N = 〈P, T, F 〉, a marking m over N is a function
m : P → Id⊕. A marked ν-PN N is a tuple 〈P, T, F,m〉, where N = 〈P, T, F 〉 is
a ν-PN, and m is a marking over N . �

Given a place p ∈ P , m(p) denotes the multiset of names assigned by m to p, and
Id(m) denotes the overall set of names present in m: Id(m) =

⋃
p∈P supp(m(p)).

Furthermore, given a place p ∈ P and a name a ∈ Id, m(p)(a) denotes the
number if times a is assigned by m to p. Let us now discuss how the standard
notion of firing in P/T nets is suitably extended to deal with names in ν-PN.
Similarly to any class of colored Petri nets, the firing of a transition t ∈ T
is defined w.r.t. a mode σ : V ar(t) → Id, where V ar(t) = pre(t) ∪ post(t).
Intuitively, σ assigns a specific name to each of the variables that annotate the
input or output arcs of t. However, to properly fire t, the mode σ must satisfy the
different matching conditions expressed by new name variables and by variables
that are repeated in the input and output transitions of t.

Definition 3. Consider a ν-PN N = 〈P, T, F 〉, a transition t ∈ T , a marking m
over N , and a mode σ for t. We say that t is enabled in m with mode σ, written
m[t, σ〉, if: (i) the mode agrees with the distribution of named tokens in m, i.e.,
σ(F (p, t)) ⊆ m(p) for every p ∈ P ; (ii) the mode assigns fresh names to the new
name variables attached to the output arcs of t, i.e., σ(ν) �∈ Id(M) for every
ν ∈ Υ ∩ V ar(t).

An enabled transition can fire. In particular, given two markings m and m′

over N , a transition t ∈ T , and a mode σ for t, we say that t fires with mode σ in
m producing m′, written m[t, σ〉m′ if: (i) t is enabled in m with mode σ; (ii) m′ is
such that for every p ∈ P , we have m′(p) = (m(p) − σ(F (p, t))) + σ(F (t, p)). �

Execution Semantics. Starting from an initial marking, we define the execu-
tion semantics of a ν-PN N in terms of a possibly infinite-state transition system,
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whose states are labeled by reachable markings, and where each transition cor-
responds to the firing of a transition in N . Notice that the definition is different
from the definition of reachability graph given in [10], in which a sort of name
abstraction procedure (called α-equivalence in [10]) is applied while computing
the reachable markings. As we will see in Sect. 3, applying α-equivalence when
constructing the execution semantics of a ν-PN leads to a transition system that,
in general, does not faithfully reproduce the behaviors of the net when it comes
to verification of temporal properties that relate names over time.

Formally, the execution semantics of a marked ν-PN N = 〈P, T, F,m0〉 is
defined in terms of a transition system ΓN = 〈M,m0,→〉, where:

– M is a (possibly infinite) set of markings over N .
– →⊆ M ×T ×M is a T -labelled transition relation between pairs of markings.
– M and → are defined by simultaneous induction as the smallest sets satisfying

the following conditions: (i) m0 ∈ M ; (ii) if m ∈ M , then for every transition
t ∈ T , mode σ and marking m′ over N s.t. m[t, σ〉m′, we have m′ ∈ M and
m

t→ m′.

A run τ over ΓN is a possibly infinite sequence of markings m0,m1, · · · where,
for every mi,mi+1 in τ , there exists t ∈ T s.t. mi

t→ mi+1.

tap

x

ν

Fig. 1. A ν-PN that is width- and depth-bounded but not run-bounded.

Forms of Boundedness. Given a marked ν-PN N,ΓN could be infinite-
state for different reasons: (i) width-unboundedness [10], i.e., accumulation of
an unbounded number of different names in a state; (ii) depth-unboundedness
[10], i.e., accumulation of an unbounded amount of tokens with the same name;
(iii) run-unboundedness, i.e., presence of unboundedly many names along a run
of ΓN ; (iv) a combination of these conditions. We formally introduce the three
corresponding notions of boundedness, and then relate them with the previous
literature on ν-PNs.

Definition 4. A marked ν-PN N = 〈P, T, F,m0〉 with transition system ΓN =
〈M,m0,→〉 is:

– width-bounded if there is n ∈ N s.t., for each m ∈ M , we have |Id(m)| ≤ n;
– depth-bounded if there is n ∈ N s.t., for each m ∈ M , place p ∈ P , and name

a ∈ Id, we have m(p)(a) ≤ n;
– run-bounded if there is n ∈ N s.t., for every (possibly infinite) run τ over ΓN ,

we have |⋃m in τ Id(m)| ≤ n. �
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Lemma 1. If marked ν-PN is run-bounded, then it is width-bounded and depth-
bounded.

Proof. Immediate from Definition 4. �
The converse implication does not hold: as witnessed by the following exam-

ple, there are ν-PN that are width-bounded and depth-bounded, but not run-
bounded. In this light, it is important to observe that in the original formulation
of ν-PN reachability graph [10], run-unboundedness does not appear as a source
of unboundedness, due to α-equivalence. However, what the authors call bound-
edness in [10] does not imply that ΓN is finite-state, because it could still be
run-unbounded.

Example 1. Consider the marked ν-PN in Fig. 1. The net is width- and depth-
bounded: each marking in its transition system contains exactly one token. How-
ever, it is not run-bounded: there is an infinite run in which no name is repeated
twice. �

With the refined execution semantics we consider here, what is called bound-
edness in [10] corresponds in fact to the following notion of boundedness, which
intuitively states that the amount of tokens present in each marking (and thus
the corresponding set of names) is bounded.

Definition 5. A marked ν-PN N = 〈P, T, F,m0〉 with transition system ΓN =
〈M,m0,→〉 is state-bounded if there is n ∈ N s.t., for each m ∈ M , we have∑

p∈P,a∈Id m(p)(a) ≤ n; �

The following results reconstruct those in [10] by considering the notion of
state boundedness as defined here.

Lemma 2. A marked ν-PN is state-bounded if and only if it is width-bounded
and depth-bounded.

Proof. Immediate from Definitions 4 and 5. �
Lemma 3. A marked ν-PN is state-bounded if and only if its reachability graph,
as defined in [10], is bounded.

Proof. Immediate from Lemma 2 and Proposition 6 in [10]. �
Theorem 6. Checking whether a marked ν-PN is state-bounded is decidable.

Proof. Immediate from Lemma 3 and Proposition 3 in [10]. �
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3 Verification of ν-PNs

We now consider formal verification of ν-PNs. To specify temporal properties
of interest, the logic of choice must provide support for: (i) temporal modalities
to predicate over the dynamics of the net; (ii) first-order (FO) local queries
to predicate over the local states of the system, i.e., over markings; (iii) FO
quantification across states, so as to allow one to relate names and places in
different moments of the system evolution.

To support such fundamental requirements, we resort to a Petri net-variant
of the μLA logic defined in [2]. We call this logic μLN

A . Intuitively, μLN
A allows for

complex temporal formulae based on the μ-calculus, virtually the most expressive
temporal logic used in verification, and for local queries inspecting the number
of names present in the different places.

Definition 7. Given a marked ν-PN N = 〈P, T, F,m0〉, a μLN
A formula Φ over

N is defined as:

Φ :: = true| Z | [#p ≤ c] | [#p(x) ≤ c] | x = y | Φ1 ∧ Φ2 | ¬Ψ | ∃x.live(x) ∧ Ψ | 〈−〉Ψ | μZ.Ψ

where p ∈ P , c ∈ N, x is either a variable or a constant name from Id(m0) ∪
{•}, and Z is a second order predicate variable of arity 0. We make use of
the following abbreviations: [#p � c] and [#p(x) � c], where � ∈ {>,≥,=, <};
∀x.live(x) → Ψ = ¬(∃x.live(x)∧¬Ψ); Φ2∨Φ2 = ¬(¬Φ1∧¬Φ2); [−]Ψ = ¬〈−〉¬Ψ ;
νZ.Ψ = ¬μ.¬Ψ [Z/¬Z]. �

The intuitive meaning of such formulae is: (i) [#p ≤ c] is true if the overall
amount of tokens in p does not exceed c; (ii) [#p(x) ≤ c] is true if the overall
amount of tokens in p that match name x does not exceed c; (iii) live(x) is true
if name x is present in the current marking; (iv) 〈−〉Ψ is true if there exists a
successor marking in which Ψ holds; (v) [−]Ψ is true if in all successor markings,
Ψ holds; (vi) μZ.Ψ and νZ.Ψ respectively represent the least and greatest fix-
point operator. As usual in the μ-calculus, for fixpoints we require the syntactic
monotonicity of Ψ w.r.t. Z, that is, every occurrence of the variable Z in Ψ must
be within the scope of an even number of negation signs. This guarantees that
the least and greatest fixpoints always exist.

Formally, a μLN
A formula Φ over N = 〈P, T, F,m0〉 is interpreted over the

transition system ΓN = 〈Σ,m0,→〉. Since Φ can contain both individual and
predicate free variables, we introduce an individual variable valuation v mapping
individual variables x to names in Id, and a predicate variable valuation V
mapping predicate variables Z to subsets of Σ. The semantics of μLN

A formulae
is then defined through an extension function || · ||ΓN

v,V that maps formulae to
subsets of Σ. The extension function is inductively defined as shown in Fig. 2.

When Φ is a closed formula, its valuation does not depend neither on V nor
on v. Hence, we denote the extension of Φ by simply using ||Φ||ΓN . Given a closed
μLN

A property Φ and a marked ν-PN N = 〈P, T, F,m0〉, we say that N verifies Φ,
written N |= Φ, if m0 ∈ ||Φ||ΓN .
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||�||ΓN
V,v = Σ

||Z||ΓN
V,v = V(Z)

||[#p ≤ c]||ΓN
V,v = {m ∈ Σ | m(p) ≤ c}

||[#p(x) ≤ c]||ΓN
V,v = {m ∈ Σ | m(p)(xv) ≤ c}

||LIVE(x)||ΓN
V,v = {m ∈ Σ | x/d ∈ v implies d ∈ Id(m)}

||x = y||ΓN
V,v = {m ∈ Σ | x/d ∈ v if and only if y/d ∈ v}

||Φ1 ∧ Φ2||ΓN
V,v = ||Φ1||ΓN

V,v ∩ ||Φ2||ΓN
V,v

||¬F ||ΓN
V,v = X \ ||F ||ΓN

V,v

||∃x.Φ||ΓN
V,v = {m ∈ Σ | ∃a ∈ Id s.t. m ∈ ||Φ||ΓN

V,v[x/a]}
||〈−〉Φ||ΓN

V,v = {m ∈ Σ | ∃m′ ∈ Σ s.t. m → m′ and m′ ∈ ||Φ||ΓN
V,v}

||μZ.Φ||ΓN
V,v =

⋂{Y ⊆ Σ | ||Φ||ΓN
V[Z/Y ],v ⊆ Y }

Fig. 2. Semantics of μLN
A

Example 2. Formula Φd = νZ.(∀x.[#p(x) = 1] → νY.[#p(x) = 0] ∧ 〈−〉Y ) ∧ [−]Z
holds in the ν-PN of Fig. 1. Φd expresses that it is always the case that, whenever
place p contains exactly one token named x, then there exists an ongoing run in
which x never reappears. Notice that, Φd is a μLN

A formula, because [#p(x) = 1]
implies live(x). �

We observe that there cannot be any finite-state representation of the transition
system for the ν-PN in Fig. 1 in which the μLN

A property in Example 2 holds.
In fact, the net always has a successor, and if the transition system is finite-
state, infinite runs should sooner or later go back visiting a marking that was
visited before, violating the fact that there must exist a run in which names never
reappear. Since the ν-PN of Fig. 1 is bounded in the sense of [10], its reachability
graph is finite-state, hence it does not properly represent the execution semantics
of the ν-PN when it comes to verification of μLN

A properties. The intuitive reason
is that μLN

A properties can “store” visited names inside a FO quantifier, and
check the presence or absence of such names in markings that are arbitrarily far
away from the state in which the quantifier was bound. Consequently, the name
renaming allowed by α-equivalence in [10] does not preserve μLN

A properties.

4 Undecidability Results

We prove here two key undecidability results related to the verification of μLN
A

properties over ν-PNs. This motivates the fine-grained study presented in Sect. 5.

Theorem 8. Verification of μLN
A properties over ν-PNs is undecidable even

when formulae do not make use of FO quantification, and only employ a single,
constant name.
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Proof. Consider marked ν-PNs that only use the special name • and the special
variable ε. This class of ν-PNs coincides with classical P/T nets. Now consider
μLN

A properties that do not make use of FO quantification, and whose local
predicates only employ the special name •. This class of formulae resembles
the propositional μ-calculus whose verification over P/T nets is shown to be
undecidable in [7]. �

One could wonder what happens when the considered ν-PN obeys to some
boundedness criterion among those discussed in Sect. 2. The following negative
result, however, holds for the important class of state-bounded ν-PNs.

Theorem 9. Verification of μLN
A properties over state-bounded ν-PNs is unde-

cidable.

Proof. The proof resembles the proof of Theorem 5.1 in [1], and is based on
a reduction from satisfiability of LTL with freeze quantifier over infinite data
words, shown to be undecidable in [6], to verification of (linear-time) μLN

A prop-
erties over state-bounded ν-PNs. An infinite data word is an infinite sequence of
pairs (σi, di), where σi is a label taken from a finite set L, and di is a datum taken
from a countably infinite set D (which, without loss of generality, we consider
here to coincide with Id)1.

The idea is to construct a “universal” ν-PN whose transition system runs cor-
respond to all possible data words, and then reduce satisfiability to verification
over such transition system. Given a finite set L = {σ1, . . . , σn}, we construct
the marked ν-PN U

L
= 〈P, T, F,m0〉 as follows: (i) P = {p0, pσ1 , . . . , pσn

}, i.e.,
P contains a starting place p0 and one dedicated place for each σi ∈ L; (ii)
T = {t0i | i ∈ {1, . . . , n}} ∪ {t=ij , t

�=
ij | i, j ∈ {1, . . . , n}}; (iii) m0 assigns a single,

black token • to p0; (iv) F is such that:

– for each transition t0i, F (p0, t0i) = ∅ and F (t0i, pσi
) = {ν}; this models an

initial pure nondeterministic choice from p0, in which a fresh name is put in
one of pσi

.
– for each transition t=ij , F (pσi

, t=ij) = F (t=ij , (pσj
) = {x}; this models the situa-

tion where a token currently present in pσi
is moved into pσj

, maintaining its
name.

– for each transition t �=ij , F (pσi
, t �=ij) = ∅ and F (t �=ij , (pσj

) = {ν}; this models the
situation where a token present in pσi

is moved into pσj
, by changing its name.

Figure 4 in the appendix shows the marked ν-PN obtained by following this
procedure when L = {σ1, σ2}. We observe that U

L
is state-bounded: every

marking in Γ
U

L assigns a single token to one of the places, leaving all other
places empty.

Now consider an LTL formula ϕ with freeze quantifier. We first apply the
following transformation rules to obtain a μLN

A formula ϕN :

1 For a detailed description of LTL with freeze quantifier, the interested reader can
refer to [6].
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– Temporal modalities in ϕ are expressed in their corresponding μ-calculus form
(recall that μ-calculus subsumes both CTL and LTL).

– Boolean connectives are maintained unaltered.
– Each freeze-quantifier ↓n in ϕ corresponds to ∃xn.live(xn) in ϕN .
– Each occurrence of ↑n in ϕ corresponds to live(xn) in ϕN .
– Each proposition σi ∈ L appearing in ϕ becomes [#pσi

= 1] in ϕN .

For example, property ↓1 X(F(σ1 →↑1)) becomes

∃x1.live(x1) ∧ μZ.([#pσ1 = 1] → live(x1)) ∨ [−]Z

We now take ϕN and we set ΦN = 〈−〉¬ϕN . Intuitively, 〈−〉 is applied to move one
step away from the initial marking, which does not correspond to a proper data
word element. It is now easy to see that an LTL formula ϕ with freeze quantifier
is unsatisfiable over infinite data words and labels L if and only if Γ

U
L |= ΦN .�

5 Decidability of Verification

In this section, we provide the two key decidability results of this paper. We
start overviewing the salient features of DCDSs, and proposing a translation
mechanism from ν-PNs to DCDSs, that is instrumental towards such decidability
results.

5.1 Data-Centric Dynamic Systems

We recall the main aspects of Data-Centric Dynamic Systems (DCDSs) [2]. A
DCDS is a pair S = 〈D,P〉 where D is a data layer and P is a process layer. Both
layers are interacting as follows: the data layer stores all the data of interest,
while the process layer modifies and evolves such data.

Definition 10. A data layer is a tuple D = 〈C,R, E , I0〉 where:

• C is a countably infinite set of constants/values;
• R = {R1, . . . ,Rn} is a database schema, constituted by a finite set of relation

schemas;
• E is a finite set {E1, . . . , Em} of equality constraints. Each Ei has the form

Qi → ∧
j=1,...,k zij = yij

2, where Qi is a domain independent FOL query over
R using constants from ADOM(I0)3 whose free variables are x, and zij and yij

are either variables in x or constants in ADOM(I0)4;

2 Instead of zij = yij we can also use zij �= yij or ⊥ (forming a full denial constraint).
3 Given a database instance I, its active domain ADOM(I) is the subset of C such that

u ∈ ADOM(I) if and only if u occurs in (I).
4 For convenience, and without loss of generality, we assume that all constants used

inside formulas appear in I0.



38 M. Montali and A. Rivkin

• I0 is a database instance that represents the initial state of the data layer,
which conforms to the schema R and satisfies the constraints E : namely, for
each constraint Qi → ∧

j=1,...,k zij = yij and for each tuple (i.e., substitution
for the free variables) θ ∈ ans(Qi, I0), it holds that zijθ = yijθ. �

The process layer constitutes the progression mechanism for the DCDS. It is
assumed that at every time the current instance of the data layer can be both
arbitrarily queried and updated (through action executions), possibly involving
external service calls to get new values from the environment.

Definition 11. A process layer P over a data layer D = 〈C,R, E , I0〉 is a tuple
P = 〈F ,A, ρ〉. F is a finite set of functions, each representing the interface to
an external service. Such services can be called, and as a result the function is
activated and the answer is produced. How the result is actually computed is
unknown to the DCDS since the services are indeed external.

A is a finite set of actions, whose execution updates the data layer, and
may involve external service calls. Formally, an action α ∈ A is an expression
α(p1, . . . , pn) : {e1, . . . , em} where:

– α(p1, . . . , pn) is the action signature, constituted by a name α and a sequence
p1, . . . , pn of parameters, to be substituted with values when the action is
invoked;

– {e1, . . . , em}, also denoted as EFFECT(α), is a set of specifications of effects,
which are assumed to take place simultaneously. Each ei has the form
q+i ∧ Q−

i � Ei. The formula q+i ∧ Q−
i is a query over R whose terms are vari-

ables, action parameters, and constants from ADOM(I0), where q+i is a union of
conjunctive queries, and Q−

i is an arbitrary FOL formula whose free variables
are among those of q+i . Intuitively, q+i selects the tuples to instantiate the
effect, and Q−

i filters away some of them. Ei is the effect, i.e., a set of facts for
R, which includes as terms the following: terms in ADOM(I0), free variables of
q+i and Q−

i (including action parameters), and Skolem terms formed by apply-
ing a function f ∈ F to one of the previous kinds of terms. Such Skolem terms
involving functions represent external (nondeterministic) service calls and are
interpreted as the returned value chosen by an external user/environment
when executing the action.

Finally, ρ is a finite set of condition-action rules (of the form Q → α, where
α ∈ A and Q is a FOL query5 over R) that form the specification of the overall
process, which tells at any moment which actions can be executed. �

Execution Semantics. The execution semantics of a DCDS S is defined in
terms of a possibly infinite transition system ΛS whose states are labeled by
databases. Such a transition system represents all possible computations that
the process layer can do on the data layer. Formally, ΛS = 〈Δ,R, Σ, s0, db,⇒〉,
5 Its free variables are exactly the parameters of α, and other terms can be quantified

variables or constants in ADOM(I0).
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where: (i) Δ is a countably infinite set of values; (ii) Σ is a set of states; (iii)
s0 ∈ Σ is the initial state; (iv) db is a function such that for each state s ∈ Σ
returns a database D ⊆ Δ conforming to R; (v) ⇒⊆ Σ × Σ is a transition
relation over states.

Given a DCDS S = 〈D,P〉 with D = 〈C,R, E , I0〉 and P = 〈F ,A, ρ〉 one can
construct ΛS following the next steps. Starting from I0, condition-action rules in
ρ are evaluated and the set of all possible executable actions with corresponding
ground parameter assignments is defined. Then, nondeterministically, one such
action with parameter assignments αp (α is partially grounded with the parame-
ter assignment p) is selected and executed over I0 by calculating all the answers
of action’s left-hand side and grounding the right-hand side accordingly. In case
that the right-hand side is containing service calls, the latter are issued nonde-
terministically returning values from C. Then, every service call is substituted
with its actual result (i.e., the values yielded on the previous step). The overall
set of ground facts obtained is constituting the next database instance. Hence,
the transition system construction is determined as process of all possible suc-
cessors extraction, each of which is obtained by selecting one of the executable
actions with corresponding parameters, and one result perch each service call
involved. The construction proceeds recursively over the newly generated states.
For a formal description of the execution semantics, one can check [2].

5.2 From ν-PNs to DCDSs

In this section we discuss how a ν-PN N can be encoded into a DCDS τ(N) =
〈DN ,PN 〉 that faithfully reproduces the execution semantics of N . We discuss
the translation using the marked ν-PN N shown in Fig. 3. The example is simple
but illustrates all the main difficulties of the translation. The general translation
is provided in the appendix. Specifically, there are two fundamental critical issue
in the translation. First, ν-PNs have a bag semantics, whereas DCDSs rely on
set semantics. Hence, the only way for faithfully reconstructing the execution
semantics of N in terms of a DCDS, is to introduce implicit token identifiers
that are in the DCDS to distinguish two distinct tokens that belong to the
same place and carry the same name. The same strategy must be consistently
maintained when, upon firing, two distinct tokens with the same name must be
inserted into the same place.

Second, to inject new data (corresponding, in our case, to token names and
token identifiers) in the system, DCDSs employ the notion of service call. How-
ever, an issued service call may not necessarily return a fresh value, but could
(nondeterministically) return a value that is currently used in the system. To
properly reconstruct the fresh name generation of ν-PNs, temporary relations
and specific database constraints must be employed.

In the remainder of the section, we use the following typographical conven-
tions: v for variables, v for constants.

Data Layer. The data layer is DN = 〈CN ,RN , EN , IN
0 〉. The data domain CN

contains the overall set Id of names, together with additional constants used to
denote the different elements of N : Id ∪ T ∪ P ∪ V ar ⊆ CN .
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Fig. 3. A marked ν-PN, where t is fired with mode σ: σ(x) = a, σ(y) = b, σ(ν1) = d,
σ(ν2) = e, where d and e are fresh names

The relation schema is RN = {pi/2 | i ∈ {1, . . . , 5}} ∪ NewID/5 ∪ FL/0.
Relation pi(id, n) represents that pi currently contains a token with identifier id
and name n;

NewID(t, p, v, d, id) is a temporary relation used to store that transition t is
has produced a token with identifier id and name d, that this token is matched
with variable v, and that the destination of this token in the next step is place p.
Relation FL is a flag distinguishing between the two modes in which the DCDS
τ(N) operates to simulate the firing of a transition t: (i) the first consisting
in the consumption of tokens from the input places of t, and the contemporary
generation of token identifiers and names, to be stored in the temporary relations
NewID of t; (ii) the second consisting in the forwarding of tokens from such
temporary relations to the output places of t, provided that the previous step
has completed correctly, i.e., without violating any constraint in EN .

The relation schema CN is subject to constraints EN = {E1, E2, E3, E4}. Con-
straint E1 and E2 ensures that identifiers present in the temporary relation
NewID are unique, i.e., distinct from all identifiers stored in the place relations
(cf. E1), and from those stored in other tuples of NewID (cf. E2):

E1 = ∀id.NewID( , , , id, ) ∧ ∨
i∈{1,...,5} pi(id, ) → ⊥

E2 = ∀id, t, p, v, n, t′, p′, v′, n′. NewID(t, p, v, id, n) ∧ NewID(t′, p′, v′, id, n′)
→ t = t′ ∧ p = p′ ∧ v = v′ ∧ n = n′

E3 and E4 mirror E1 and E2 by considering names stored in NewID tuples
that refer to new name variables in Υ , i.e., in our case ν1 and ν2 (which are
constants in the DCDS):

E3 = ∀n.
∨

c∈{ν1,ν2} NewID( , , c, , n) ∧ ∨
i∈{1,...,5} pi( , n) → ⊥

E4 = ∀n1, n2.NewID( , , ν1, , n1) ∧ NewID( , , ν2, , n2) → n1 �= n2

Finally, IN
0 encodes m0 by maintaining the name distribution of tokens, as

well as their cardinality. The latter requirement is enforced by picking pair-
wise distinct identifiers from CN . It is worth noting that identifiers and names
are always treated separately by the DCDS, and therefore also identifiers can
be picked from the set Id of names. Consequently, a suitable choice for IN

0 is
{p1(a, a), p1(b, a), p1(c, a), p2(d, b), p2(e, b)}.
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Process Layer. The process layer of τ(N) is defined as PN = 〈FN ,AN , ρN 〉.
FN contains service calls that are used to inject token identifiers and names
into the system. In particular, each time a transition t fires, tokens are gen-
erated according to the arcs that have t as input. The generation of a new
identifier depends on: (i) the considered arc, which is in turn determined by the
input transition and output place; (ii) the variable name; (iii) the occurrence of
the variable name. For this reason, we introduce a service call genID/4, where
genID(t, p, v, i) represents the new id generation for the i-th occurrence of vari-
able v on the arc that connects t to p. Name generation depends instead only on
the considered new name variable in Υ . Therefore, we introduce a service call
genName/1, where genFresh(ν) represents the generation of a name for ν.

The process and action components ρN and AN contain an action gent for
each transition t of N , and an additional action transf . Intuitively, the firing of
t is simulated in the corresponding DCDS by the serial execution of gent and
transf . The first action is executable only when t is enabled, and its execution
leads to consume the named tokens in the input places of t (in accordance with
the variables attached to the arcs), and to generate (and store in the temporary
relation NewID) the named tokens produced by t (again in accordance with the
variables attached to the arcs). Action transf then takes care of transferring
such newly generated tokens into the corresponding output places.

Formally, in our example we have a single transition, hence AN = {gent}.
The process ρN expresses the executability of gent as follows:

p1(id1, x) ∧ p1(id2, x) ∧ p1(id3, y) ∧ p2(id4, y) ∧ ∧
i,j∈{1,4},i �=j idi �= idj ∧ ¬FL

�→ gent(id1id2, id3, id4, x, y)

Observe also the consistent usage of variables x and y w.r.t. the ν-PN in
Fig. 3, and the fact that gent takes in input the pairs identifiers of selected
tokens, as well as the matched names. This allows us to make gent able to con-
sume the selected tokens (without touching the unselected ones), and at the
same time able to transfer the matched names to the output. Specifically, gent

works as follows (notice the difference between constant x and parameter x):
gent(id1id2, id3, id4, x, y) =

{p1(id, n) ∧ ∧

i∈{1,2,3}
id �= idi � {p1(id, n)}

p2(id, n) ∧ id �= id4 � {p2(id, n)}
pi(id, n) � {pi(id, n)} for i ∈ {3, 4, 5}

true � {NewID(t, p3, x, genID(t, p3, x, 1), x),
NewID(t, p3, x, genID(t, p3, x, 2), x)}
NewID(t, p3, ν1, genID(t, p3, ν1, 1), genName(ν1))}

true � {NewID(t, p4, ε, genID(t, p3, ε, 1), •)}
true � {NewID(t, p5, ν1, genID(t, p5, ν1, 1), genName(ν1)),

NewID(t, p5, ν1, genID(t, p5, ν2, 1), genName(ν2))}
true � FL }

The first block of effects is dedicated to maintain those tokens that are not con-
sumed by the transition t. For places that are input of t, this requires to properly
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filter out those tokens that were selected in the precondition of gent (which has
non-empty answers only if t is enabled). The second block of effects is instead
focused on the generation of one distinct token for each of the variables that
decorate the output arcs of t, with the corresponding restrictions over matching
names. The last effect switches the flag from false to true, inhibiting the possi-
bility of reapplying actions of the type gent ; this is imposed in the precondition
of gent , which contains ¬FL among its conjuncts.

Observe that, once gent is applied, the newly obtained database must conform
to all constraints in E . Consequently, only states that correctly assign new identi-
fiers and fresh names in the case of Υ variables are kept as valid successors. This
explains why this two-step approach is needed when formalizing the firing of t.

Let us now turn to the action transf . It is independent of the specific transi-
tion, because what it only needs to do is transfer the tokens generated in a gen-
eration step from the temporary relations NewID to the proper output places.
The only precondition of transf is then just to check whether FL is true (which
attests that a generation action has been applied in the previous computation
step). I.e., ρN contains the following condition-action rule: FL �→ transf (). In
the case illustrated by Fig. 3, we then have:

transf () = { pi(id, n) � {pi(id, n)} for i ∈ {1, . . . , 5}
NewId( , pj, , id, n) � {pj (id, n)} for j ∈ {1, . . . , 5} }

Notice that since FL is not explicitly copied by transf , it is implicitly toggled,
making transf not applicable anymore (it will be again applicable after a gener-
ation step).

From μLN
A to μLA. We now continue the correspondence between verification

problems in ν-PNs and verification problems in DCDSs, by considering the tem-
poral logics used to specify properties. As already mentioned in Sect. 3, μLN

A has
been inspired by the μLA logic for DCDSs. We now establish a precise translation
ξ that takes a μLN

A property Φ and produces a corresponding μLA property ξ(Φ):

ξ(Φ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ if Φ ∈ {true, x = y, Z}
∀i1, . . . , ic, ic+1.

∧

j∈{1,..,c+1}
p(ij , ) → ∨

k,l∈{1,..,c+1},k<l

ik = il if Φ = [#p ≤ c]

∀i1, . . . , ic, ic+1.
∧

j∈{1,..,c+1}
p(ij , x) → ∨

k,l∈{1,..,c+1},k<l

ik = il if Φ = [#p(x) ≤ c]

¬ξ(Psi) if Φ = ¬Ψ
ξ(Φ1) ∨ ξ(Φ2) if Φ = Φ1 ∨ Φ2

∃x.ξ(Ψ) if Φ = ∃x.Ψ
〈−〉〈−〉ξ(Ψ) if Φ = 〈−〉Ψ
μZ.ξ(Ψ) if Φ = μZ.Ψ

The only non-trivial cases are local queries, which are expressed as counting
queries over the current database, and the case of 〈−〉, which is translated by
doubling the 〈−〉 operator since every step in the transition system of a marked
ν-PN corresponds to a sequence of two steps (generation and transfer) in the
transition system of the corresponding DCDS.
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5.3 Decidability Results

We are now in the position of formally assessing the connection between ν-PNs
and DCDSs, leveraging on the translation functions τ and ξ.

Theorem 12. For every marked ν-PN N and every closed μLN
A formula Φ,

N |= Φ if and only if τ(N) |= ξ(Φ).

Proof. Let N = 〈P, T, F,m0〉, and τ(N) = 〈DN ,PN 〉. Recall that for each tran-
sition t ∈ T there are an action gent and a condition-action rule Q(x) �→ gent

in PN . In addition, also transf is an action in PN .
The proof is a variation of the simpler proof given in [3] for the comparison

between P/T nets and (lossy) DCDSs. To compare the states of ΓN with those
of Λτ(N), we define the following name cardinality-equivalence relation: given a
marking m in ΓN and a state s in Λτ(N), we say that m is name cardinality-
equivalent to s, written m ≈ s, if, for each place pi ∈ P and name a ∈ Id,
m(p)(a) = n if and only if db(s) contains n tuples 〈 , a〉 in relation p. By defi-
nition, m0 ≈ s0. It can then be shown, inductively, that, given m in ΓN and s
in Λτ(N) such that m ≈ s, for every transition t ∈ T (and corresponding action
gent in τ(N)): (i) for every t, σ and m′ s.t. m[t, σ〉m′, there exists a sequence
s → s′ → s′′ in Λτ(N), where s′ is produced by the application of gent with
parameter substitution σ′, and where s′′ is produced from s′ by the application
of transf , s.t. m′ ≈ s′′; (ii) for every sequence s → s′ → s′′ produced by the
application of action gent with parameter substitution σ, followed by the appli-
cation of transf , there exists σ′ and m′ s.t. m[t, σ′〉m′ and m′ ≈ s′′. The proof
concludes by making the following two observations. First, the two transition
systems have the same structure, apart from the fact that each transition in ΓN

corresponds to a sequence of two transitions in Λτ(N), a feature that is correctly
mirrored by ξ. Second, name cardinality-equivalence preserves the answers of
local queries, i.e., given m and s s.t. m ≈ s:

– for every number n ∈ N and every boolean μLN
A query of the form [#p ≤ c],

[#p ≤ c] is true in m if and only if ξ([#p ≤ c]) is true in db(s);
– for every number n ∈ N, every open μLN

A query of the form [#p(x) ≤ c],
and every substitution θ = [x/n], [#p(x) ≤ c]θ is true in m if and only if
ξ([#p(x) ≤ c]θ) is true in db(s). �
With Theorem 12 at hand, we can now prove the following key decidability

result.

Theorem 13. Verification of μLN
A properties over run-bounded marked ν-PNs

is decidable, and reducible to finite-state model checking.

Proof. From the proof of Theorem 12, we know that given a marked ν-PN N ,
τ(N) faithfully reconstruct the execution semantics of N . In particular, the states
of ΓN and those of Λτ(N) are connected by the name cardinality-equivalence rela-
tion. This immediately leads to the fact that if N is run-bounded, then τ(N) is
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a run-bounded DCDS (in the sense defined in [2]). The claim is then obtained by
combining Theorem 12 with the fact that verification of μLA properties over run-
bounded DCDSs is decidable, and reducible to finite-state model checking [2]. �

The notion of run-boundedness is quite restrictive, because it does not allow
for infinite runs triggering unboundedly many times an arc decorated with a
new name variable from Υ . In [2] also a decidability result for the verification
of state-bounded DCDSs is given, by limiting the power of μLA when using
FO quantification that spans across system states. In particular, decidability is
proven for the logic μLP , in which FO quantification only applies to those objects
that persist in the current active domain. When quantification is applied to an
object that disappears from the active domain, then it is possible to control
whether the property, applied to that object, trivializes to true or false. By
incorporating this idea in the setting considered here, we obtain the logic μLN

P .

Definition 14. Given a marked ν-PN N = 〈P, T, F,m0〉, a μLN
P formula Φ over

N is defined as:

Φ ::= true|Z | [#p ≤ c] | [#p(x) ≤ c] |x = y |Φ1 ∧ Φ2 | ¬Ψ |
∃x.live(x) ∧ Ψ | live(x) ∧ 〈−〉Ψ | live(x) ∧ [−]Ψ |μZ.Ψ

with the usual assumptions done for μLN
A , and the additional assumption that

in live(x) ∧ 〈−〉Ψ and live(x) ∧ [−]Ψ , variables x are exactly the free variables
of Φ, once we replace each bound predicate variable Z in Φ with its bounding
formula μZ.Φ′. Beside the usual abbreviations, we also make use of live(x) →
〈−〉Ψ = ¬(live(x) ∧ 〈−〉¬Ψ) and live(x) → [−]Ψ = ¬(live(x) ∧ [−]¬Ψ). �

As shown by the following example, μLN
P properties are particularly useful in all

those cases where names maintain an identity only if they persist in the system.

Example 3. The μLN
P formula

νZ.(∃n.[#p1(n) = 1] ∧ μY.([#p2(n) = 1]) ∨ (live(n) ∧ 〈−〉Y )) ∧ [−]Z

expresses that in every state of the system, place p1 must contain a single name
n that persists in the system until it is the unique name present in p2. Instead,
formula

νZ.(∃n.[#p1(n) = 1] ∧ μY.([#p2(n) = 1]) ∨ (live(n) → 〈−〉Y )) ∧ [−]Z

expresses that in every state of the system, place p1 must contain a single name
n that either disappears from the system or becomes eventually the unique name
present in p2. �
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By exploiting again Theorem 12, we finally obtain:

Theorem 15. Verification of μLN
P properties over state-bounded marked ν-PNs

is decidable, and reducible to finite-state model checking.

Proof. Let N be a ν-PN. By adopting the same line of reasoning of the proof for
Theorem 13, we get that if N is state-bounded, then the DCDS τ(N) is state-
bounded (in the sense defined in [2]). It is easy to see that if the translation
function ξ is applied to a μLN

P formula Φ, the resulting formula ξ(Φ) is in μLP .
The claim is then obtained by combining Theorem 12 with the fact that verifi-
cation of μLP properties over state-bounded DCDSs is decidable, and reducible
to finite-state model checking [2]. �

6 Conclusion

We have studied the decidability boundaries related to the verification of
ν-PNs against rich temporal properties specified using first-order variants of
the μ-calculus. The decidability results are obtained via a translation to DCDSs,
showing that interesting, new results can be obtained by cross-fertilizing research
areas that have not been extensively related so far. It is interesting to observe
that checking whether a DCDS is state-bounded is undecidable even when it is
very restricted [3]. Thanks to the decidability of state-boundedness for ν-PNs,
the DCDSs obtained from our translation mechanism represent an interesting
DCDS fragment for which state-boundedness is indeed decidable to check. We
plan to continue the combined investigation of these research areas, and foresee
a systematic transfer of results between classes of colored Petri nets and DCDSs,
leveraging on the connections drawn in this paper.

A From ν-PNs to DCDSs

We define a translation function τ that, given a marked ν-PN N = (P, T, F,m0),
produces a DCDS τ(N) = 〈DN ,PN 〉, whose execution semantics faithfully repro-
duces that of ΓN . The data layer of τ(N) is DN = 〈CN ,RN , EN , IN

0 〉, where:

1. CN = Id ∪ T ∪ P ∪ V ar
2. RN contains:

– pi/2 for each pi ∈ P
– NewID/5 = NewID(t, p, v, d, id)
– FL/0

3. EN is constituted by the following constraints:
– E1 and E2 ensure that the new identifiers from NewID are unique:

E1 = ∀id.NewID( , , , id, ) ∧
∨

pi∈RN

pi(id, ) → ⊥

E2 = ∀id, t, p, v, n, t′, p′, v′, n′. NewID(t, p, v, id, n) ∧ NewID(t′, p′, v′, id, n′)
→ t = t′ ∧ p = p′ ∧ v = v′ ∧ n = n′
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– E3 and E4 ensure the uniqueness of the fresh names stored in NewID (here
ΥN contains all the fresh variables present in N):

E3 = ∀n.
∨

c∈ΥN

NewID( , , c, , n) ∧
∨

i∈{1,...,5}
pi( , n) → ⊥

E4 = ∀n1, n2.
∨

ν1,ν2∈ΥN ,ν1 �=ν2

(
NewID( , , ν1, , n1) ∧ NewID( , , ν2, , n2)

→ n1 �= n2

)

4. for each p ∈ P such that M0(p) �= ∅, IN
0 is containing the following set of

facts:
{
p(idp

k, d) : d ∈ M0(p), idp
k ∈ Xp ⊂ N, ∀i, j, .i �= j we have idp

i �= idp
j ,

and ∀p, p′.Xp ∩ Xp′ = ∅
}

•pi

ti1 pσ1 t=11

t �=
11

ti2 pσ2

t=22

t �=
22

t=12 t �=
12 t �=

21t=12

ν
x
x

ν

ν

x
x

ν

x

x
ν x

x ν

Fig. 4. Marked ν-PN representing all possible infinite data words with labels {σ1, σ2}.

The process layer of τ(N) is PN = 〈FN ,PN , ρN 〉, where:

1. FN includes the following non-deterministic services:
– a new id generator genID(t, p, v, i),
– a fresh data generator genFresh(ν).

2. Sets of process and action components ρN and AN are constructed as follows:
– for each transition t ∈ T we define (i) a process

∧

CA1
G

(pj(id
j
k, v) ∧ idj

k �= idj
m) ∧ ¬FL �→ gent(v, id),
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where CA1
G =

{
pj ∈• t, m, k ∈ {1, . . . , |pre(t, pj)|}, m �= k, v ∈ pre(t, pj)

}
is

the guard condition, and (ii) a corresponding action gent(v, id) =

{pj(id, n) ∧ ∧
i∈Ipj

id �= idj
i � {pj(id, n)} forpj ∈ •t

and Ipj
= {1, . . . , |pre(t, pj)|}

}

pi(id, n) � {pi(id, n)} forpi ∈ P \ •t
true � {NewID(t, pk, x, genID(t, pk, x, numx), v) : A1},

true � {NewID(t, pk, ν, genID(t, pk, ν, 1),
genName(ν)) : A2},

true � FL },

where A1 and A2 are two conditions which are defined as follows:
(a) A1 =

{
pk ∈ t•, x ∈ post(t, pj) \ Υ, numx = {1, . . . , post(t, pj)(var)}

}
,

(b) A2 =
{

pk ∈ t•, ν ∈ post(t, pj) ∩ Υ}
}

;
– define an additional action

transf () = { pi(id, n) � {pi(id, n)} for pi ∈ P
NewId( , pj, , id, n) � {pj (id, n)} for pj ∈ P }

and a condition-action rule corresponding to it:

FL �→ transf ()
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Abstract. In the context of Cloud computing, a service can be invoked
by distinct devices having different HW/SW characteristics; therefore,
the content must be adapted to each device profile. A solution consists
in having a middleware server that receives requests from the clients,
forwards them to the cloud, and adapts the answers coming from the
cloud on the base of device profiles. This paper proposes a formalization
of this framework using Abstract State Machines (ASMs). The modeling
process is based on the ASMs refinement method, and has been guided
and supported by several validation and verification activities to guar-
antee consistency, correctness, and reliability properties.

1 Introduction

Cloud computing is emerging as an important trend in the area of software
architecture and computing. Most of the attention of the research community is
focused on the side of Cloud providers [5], but many problems still remain to be
addressed for the client side of Cloud computing. In particular, we are consid-
ering those arising from device fragmentation and variety of operating systems.
Nowadays, a typical architecture of a cloud system presumes many different end-
devices (desktop computers, laptops, tablets, smartphones, etc.), running differ-
ent operating systems, owning distinct hardware characteristics (e.g., processor
speed, size screen, resolution, etc.), using different browsers, connected with the
Cloud, and asking for the same cloud service. An end-user should be able to
access the same cloud service from any kind of device (s)he is using. Creating
specific applications for each type of device is not a solution.

To tackle this problem, the long term goal of the project presented in [17] –
context in which this work has been done – is to develop a framework where all
the services available inside the Cloud are adapted on-the-fly to the different end-
devices, i.e., Cloud services must be adapted to the different devices contexts.
We here present only aspects related to the adaptation in the presentation layer.

c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 51–66, 2016.
DOI: 10.1007/978-3-319-33612-1 4
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A preliminary solution was presented in [9] in terms of a Web applica-
tion (WA), accessible from everywhere, that should act as middleware between
clients’ devices and the services provided by the Cloud. In this way, a service is
accessible from any device, without the need to install any extra tool for using
it; the middleware is responsible for adapting the content coming from the cloud
to the different devices profiles. However, WAs are related to different standards
and implementation frameworks [11], therefore they do not have a precise defi-
nition or a precise model to follow. Furthermore, reliability properties must be
guaranteed in order to ensure that, e.g., the client will receive the same (or as
similar as possible) output independently of the device (s)he is using. Formal
modeling and verification must be involved to ensure development of correct
and reliable WAs [11,15].

In [9], Abstract State Machines (ASMs) [7] are used for presenting in a rig-
orous way the proposed WA. ASMs permit to design and analyze asynchro-
nous multiple-agent distributed systems, as the cloud framework we deal with;
moreover, thanks to refinement mechanism [7], they allow to create a chain of
coherent system models that can possibly bring to the implementation; finally,
they provide a high level notation that permits to concisely describe complex
systems and that can be easily understood by all the stakeholders (ASMs can be
seen as pseudo-code working over abstract data structures [7]). The method also
supports rigorous model validation and verification.

The work in [9], however, merely presents the preliminary two client/server
models of the proposed framework, without exploiting in deep the potentiality
of the ASM method. In this paper, we fully exploit the capabilities of the ASMs
as formal rigorous system engineering approach to develop correct distributed
applications. Using the ASMs refinement method, we have produced, starting
from a high level model of the framework – originally presented in [9] –, more
detailed models, each one adding further details. Each refinement step has been
proved correct. Indeed, our long term goal is to obtain correct executable code
from specifications through a chain of models correctly refined.

These precise high-level specifications allow model analysis already at early
stages of system design. Validation techniques (simulation, scenario construc-
tion) available for ASMs have been used to check if the application under devel-
opment behaves as expected, and if the models correctly capture the intended
requirements. Model checking of properties has been performed to guarantee
application independent properties, as consistency and minimality, and applica-
tion dependent properties (derived from the system requirements), as correctness
and reliability. As application dependent properties we have checked, for exam-
ple, that all the clients’ requests are eventually satisfied, and that the middleware
correctly identifies a device profile and correctly stores the device characteristics
in a local database for further requests.

Regarding verification of properties, we show how model abstraction is nec-
essary to keep the size and the complexity of specifications under control and
make proof of properties feasible. All models have been improved on the base of
the results of model validation and verification; for example, we discovered some
consistency errors contained in the original models presented in [9].
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Fig. 1. Framework architecture

In Sect. 2 we present the general architecture of the WA solution we propose.
Background on ASMs and tool support for validation and verification is given
in Sect. 3. The ASM formal specifications for the client-server cloud application
are presented in Sect. 4. Sections 5 and 6 describe the validation and verification
activities we have performed on the formal specifications. Some related work is
introduced in Sect. 7. Conclusions are outlined in Sect. 8.

2 Client-Server Cloud Application

The proposed framework, initially presented in [9], is shown in Fig. 1. It is com-
posed of three actors: the client (represented by a device), the middleware, and
the cloud. The middleware software realizes the communication between the
client and the cloud (the connection between the client and the middleware is
realized through a WA). The client starts the interaction by selecting a service
made available by the cloud. The middleware forwards all client requests to the
cloud and waits for the answers. Meanwhile, a device profile is created on the
server, using the modernizr framework1 for detecting device properties. It cre-
ates some JavaScript tests that are afterwards executed on the client-side, and
whose results are sent back to the server using a cookie2. On server-side a profile
for each device is created, based on the properties discovered on client-side; such
profile is used to adapt the content coming from the cloud that finally can be
forwarded to the client (e.g., the problem of missing browser functionalities can
be solved by using replacement code done in JavaScript, the so called “polyfills”;
if the format of images and/or videos is not accepted, then third-party tools can
be used to generate other formats). The device profile is also saved locally on
the server, to be able to reuse the information when the user logs in again from
the same device.

1 http://modernizr.com/.
2 If we need some extra information regarding the device, and we cannot get it using

modernizr, then we use a device detection database tool, as WURFL. However, this
feature is not considered in this work.

http://modernizr.com/
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3 ASM Formal Modeling Framework

Abstract State Machines (ASMs) [7] are a system engineering method that guides
the development of software systems seamlessly from requirements capture to
their implementation [7]. The method is built upon the following three main
concepts: ASMs, ground model, and model refinement.

ASMs are an extension of FSMs: unstructured control states are replaced by
states with arbitrary complex data. The states of an ASM are multi-sorted first-
order structures, i.e., domains of objects with functions and predicates defined
on them. ASM states are modified by transition rules describing the modification
of the function interpretations from one state to the next one. The basic form
of a transition rule is the guarded update: “if Condition then Updates”, where
Updates is a set of function updates of the form f(t1, . . . , tn) := t which are
simultaneously executed when Condition is true. f is an arbitrary n-ary func-
tion and t1, . . . , tn, t are first-order terms. Besides if-then, there is a limited
but powerful set of rule constructors: par for simultaneous parallel actions, seq
for sequential actions, choose for nondeterminism (existential quantification),
forall for unrestricted synchronous parallelism (universal quantification).

ASMs allow to model any kind of computational paradigm, from a single
agent executing simultaneous parallel actions, to distributed multiple agents
interacting in a synchronous or asynchronous way. Functions that never change
during any run of the machine are static. Those updated by agent actions are
dynamic, and distinguished between monitored (only read by the machine and
modified by the environment), and controlled (read and written by the machine).

Fig. 2. Control state ASMs

For our purposes, we here use a particular
class of ASMs, called control state ASMs [7],
useful to explicitly describe different system
modes. Figure 2 shows the graphical represen-
tation and the form of transition rules for a
control state ASM.

Using ASMs, the process of require-
ments capture results in constructing rigor-
ous ground models which are precise but
concise high-level system blueprints (“system
contracts”), formulated in domain-specific
terms, using an application-oriented lan-
guage which can be understood by all stake-
holders. From the ground model, by step-wise refined models [7], further
details can be added to capture the major design decisions. In this way the com-
plexity of the system can be always taken under control, and it is possible to
bridge, in a seamless manner, the gap between specification and code. Along
the chain of refined models, each refined model can be proved correct w.r.t. the
abstract one.

Still from its ground level, an ASM model can be validated and verified in
order to, respectively, ensure that the specification really reflects the statements
about the system, and guarantee the expected properties. Tools allowing different
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forms of model analysis are available for the ASM method: the ASMETA (ASM
mETAmodeling) framework3 [4] provides basic functionalities for ASM models
creation and manipulation (as editing, storage, interchange, access, etc.), as well
as advanced model analysis techniques (as validation, verification, testing, model
review, requirements analysis, runtime monitoring, etc.). The tools are strongly
integrated to permit reusing information about models for different activities.

4 Formal Specification

In this section we describe how the ASM method has been used to model the
client-server framework described in Sect. 2. We have improved the first two
preliminary models presented in [9] by refining them into more detailed models,
for example, explicitly representing the content of the cookie, of the JavaScript
tests, and of the server database. Moreover, we have added the communication
part between the client and the middleware (server), and corrected some mistakes
found in the initial specification. We here show the graphical representation of
the control state ASMs for the client and for a request considered by the server.

Send request

Send request

Waiting for message

Message arrived

Decrypt
message Client tests available

Execute client tests

Yes

Update cookie profile

Message displayable

No

Checking for extra
resources

Extra resources needed

Download extra resources

Yes
Yes

No

Displaying
the message

No

Fig. 3. Client – control state ASM

Figure 3 describes the client’s device activity. There are five states through
which the client goes: the initial state Send request, Waiting for message, Execute
client tests, Checking for extra resources, and the final state Displaying the mes-
sage. The client initiates the communication by sending a request to the server
and then waits for the answer. If a message arrives, then it is automatically
decrypted by the browser (therefore we keep this macro abstract) and the guard
Client tests available checks if JavaScript (modernizr) tests exist in the received
message. If so, they are executed and the result is used to update the cookie
(“key X value” entries); in this way the server, when will receive the cookie, will
be aware of the new values of the device properties.

The messages coming from the server are labeled with a flag saying if a
message should be displayed or it should be sent back to the server for fur-
ther processing (an improvement with respect to the models presented in [9]).
The Message displayable guard checks the flag. A message is sent back to the
server (as additional request) if extra device information was asked by the server
3 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/
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Fig. 4. Request on the server – control state ASM

(the information was not available in the cookie nor in the local database);
otherwise the message is processed to be displayed.

The client reaches state Checking for extra resources if no modernizr test is
available or if the message must be displayed after the test execution. In this
state, if extra resources are needed, they are downloaded by the browser, and
then the client reaches the final state Displaying the message where it can display
the message on the device.

asm ClientGroundModel
signature:

domain Device subsetof Agent
enum domain State = {SEND REQUEST | WAITING FOR MSG |
EXECUTE CLIENT TESTS | CHECKING FOR EXTRA RESOURCES |
DISPLAYING THE MSG}
controlled state: Device −> State
monitored extraResources: Device −> Boolean
monitored messageArrived: Device −> Boolean
monitored clientTestsAvailable: Device −> Boolean
static device1: Device
static device2: Device
static device3: Device

definitions:
rule r DownloadExtraResources = skip //this rule remains abstract
rule r DecryptMessage = skip //this rule remains abstract
rule r updateCookieProfile = skip //this rule remains abstract
rule r ClientAction = //Behaviour of the Client (see Fig.\,3)

main rule r Main =
forall $d in Device do

program($d)

default init initial state:
function state($d in Device) = SEND REQUEST
agent Device: r ClientAction[]

Code 1. Ground model of the client

The server keeps on waiting for requests from the clients and, when a request
arrives, it handles it (actually the server can handle multiple requests in parallel).
In the following we only describe the request states, as reported in Fig. 4: Not
processed, Returned to client, Waiting for answers from cloud. When a request
is available and not yet processed, the server searches for the device information,
first in the cookie and, if not available in the cookie, on the server (the informa-
tion can be stored locally in a database or in a file). In case device information is
not available neither in the cookie nor on the server, modernizr tests are created
in JavaScript, and the state of the request is set to Returned to client (i.e., the
request is sent back to the client for executing the JavaScript code and updating
the device information in the cookie). Otherwise, if the information has been
found, the request is forwarded to the cloud, and the request enters the state
Waiting for answers from cloud. If the device profile has been retrieved from
the cookie, it is updated on the server (if necessary), otherwise, if it has been
retrieved from the server, the cookie is updated.

Code 1 shows the ground model of the client written in AsmetaL [10], the
textual notation for ASM models in ASMETA. The behavior of each client
(described in Fig. 3) is modeled by rule r ClientAction; the mapping from the
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graphical notation to the textual notation is done according to the definition of
control state ASM, as shown in Fig. 2. For example, each action, reported with
a rectangle in Fig. 3, becomes a rule in the AsmetaL code.

Code 2 shows the first refinement for the client model in which we added
the modeling of the cookies and of the modernizr. In the refined model, rule
r updateCookieProfile is no more abstract but it updates the cookie using
the information contained in the modernizr. Another refinement (not reported
here) introduces also the modeling of the content of the web page (e.g., checking
if a web page contains modernizr tests). Refined models have been proved to
be correct w.r.t. the abstract ones, but without any automatic support. For
the lack of space, we do not even report the modeling of the server and of the
communication between the client and the server4. In the following, to describe
the performed validation activities, we mainly focus on the client model, while
for describing the verification activities we also consider the server model.

asm ClientWithCookie
signature:

...
controlled cookie: Prod(Device, String) −> String
controlled modernizr: Device −> Seq(Prod(String, Boolean, Seq(Prod(String, Boolean))))

definitions:
...
rule r updateCookieProfile = r updateCookieWithModernizr[cookie(self,”deviceProfile”), modernizr(self)] //rule for updating the cookies
...

default init initial state:
function modernizr($d in Device) = switch $d

case device2:[(”canvas”, true, undef), (”textshadow”, true, undef), (”opacity”, true, undef),
(”touch”, false, undef), (”audio”, undef, [(”ogg”, false), (”mp3”, true)])]

endswitch
...

Code 2. First refinement of the client

5 Validation

We have performed the following validation activities over the ASM model by
using the framework ASMETA.

5.1 Simulation

As first validation activity, we have executed the ASM specification by the
AsmetaS simulator [10]. Simulation has been useful to gain confidence that the
specification actually captured the intended behavior. Moreover, the AsmetaS
simulator permits to check if some invariants are satisfied during simulation.
We added some invariants specifying some safety requirements; for example, the
following invariant of the client model
(forall $d in Device with (state($d) = DISPLAYING THE MESSAGE and modernizr($d) != undef) implies

cookie($d,”deviceProfile”) != undef)

4 All the specifications are available at http://www.cdcc.faw.jku.at/publications/
rchelemen/WS FM FASOCC2014 models.zip.

http://www.cdcc.faw.jku.at/publications/rchelemen/WS_FM_FASOCC2014_models.zip
http://www.cdcc.faw.jku.at/publications/rchelemen/WS_FM_FASOCC2014_models.zip
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<State 1 (controlled)>
state(device1)=WAITING_FOR_MSG
state(device2)=WAITING_FOR_MSG
state(device3)=WAITING_FOR_MSG
</State 1 (controlled)>
Insert a boolean constant for messageArrived(device1):
true
Insert a boolean constant for clientTestsAvailable(device1):
false
Insert a boolean constant for messageArrived(device2):
true
Insert a boolean constant for clientTestsAvailable(device2):
true
Insert a boolean constant for messageArrived(device3):
false
<State 1 (monitored)>
messageArrived(device1)=true
messageArrived(device2)=true
messageArrived(device3)=false
</State 1 (monitored)>
<State 2 (controlled)>
state(device1)=CHECKING_FOR_EXTRA_RESOURCES
state(device2)=EXECUTE_CLIENT_TESTS
state(device3)=WAITING_FOR_MSG
</State 2 (controlled)>
Insert a boolean constant for extraResources(device1):
false
Insert a boolean constant for messageArrived(device3):
false

<State 2 (monitored)>
extraResources(device1)=false
messageArrived(device3)=false
</State 2 (monitored)>
<State 3 (controlled)>
cookie(device2,"deviceProfile")="canvas:true|..."
modernizr(device2)=[("canvas",true,undef),...]
state(device1)=DISPLAYING_THE_MSG
state(device2)=CHECKING_FOR_EXTRA_RESOURCES
state(device3)=WAITING_FOR_MSG
</State 3 (controlled)>
Insert a boolean constant for extraResources(device2):
true
Insert a boolean constant for messageArrived(device3):
false
<State 3 (monitored)>
extraResources(device2)=true
messageArrived(device3)=false
</State 3 (monitored)>
<State 4 (controlled)>
cookie(device2,"deviceProfile")="canvas:true|..."
modernizr(device2)=[("canvas",true,undef),...]
state(device1)=DISPLAYING_THE_MSG
state(device2)=DISPLAYING_THE_MSG
state(device3)=WAITING_FOR_MSG
</State 4 (controlled)>

Fig. 5. Example of simulation of the client model (first refinement in Code 2)

states that if a device is displaying a message and the modernizr is defined, then
its cookie must be defined as well (since it has been updated during the test).

Figure 5 shows a simulation of the client model initialized with three clients.
The simulator, at each step, asks the user for the values of the monitored
functions. In the example, the monitored function messageArrived models the
arrival of a message for a device, clientTestsAvailable the presence of tests
to be executed, and extraResources the need of extra resources.

5.2 Scenario-Based Validation

Although simulation is useful in the first stages of the model development, when
the model becomes particularly big, following a long simulation can be a tedious
task for the developer. Scenario-based validation by the tool AsmetaV [8] per-
mits to specify scenarios describing the interaction between a user (i.e., the
environment) and the machine. The Avalla language provides constructs to set
the values of the monitored functions, to execute a step of simulation of the
ASM, and to check that a given closed first order formula (assertion) holds in
a given state. The validator AsmetaV simulates (using the simulator AsmetaS)
the ASM model according to the commands of the scenario, and checks if all the
assertions are satisfied. As soon as an assertion is not satisfied, the simulation is
interrupted reporting the violation.

We have produced some scenarios of interaction sequences with suitable
checks describing our expectations about the model states (similarly to what
is done with unit testing in code development). Moreover, such scenarios have
been executed every time we modified and/or enhanced our models to check that
no faults were introduced (in a kind of regression testing).
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scenario interactionWithThreeClients
load ClientWithCookie.asm

step
check state(device1)=WAITING FOR MSG and state(device2)=WAITING FOR MSG and state(device3)=WAITING FOR MSG;

set messageArrived(device1) := true; set clientTestsAvailable(device1) := false; set messageArrived(device2) := true;
set clientTestsAvailable(device2) := true; set messageArrived(device3) := false;
step
check state(device1)=CHECKING FOR EXTRA RESOURCES and state(device2)=EXECUTE CLIENT TESTS and state(device3)=WAITING FOR MSG;

set extraResources(device1) := false; set messageArrived(device3) := false;
step
check state(device1)=DISPLAYING THE MSG and state(device2)=CHECKING FOR EXTRA RESOURCES and state(device3)=WAITING FOR MSG;
check cookie(device2,”deviceProfile”)=”canvas:true|textshadow:true|opacity:true|touch:false|audio:/ogg:false/mp3:true”;

set extraResources(device2) := true; set messageArrived(device3) := false;
step
check state(device1)=DISPLAYING THE MSG and state(device2)=DISPLAYING THE MSG and state(device3)=WAITING FOR MSG;

Code 3. Example of scenario

Code 3 shows a scenario in which, after a step of simulation, all the three
devices have sent a request and are waiting for a reply message from the
server. After another step of simulation, device1 does not have any test to
execute and so it can check for extra resources, while device2 must execute
a test. In this state, the monitored location extraResources(device1) is set
to false, in order to say that there are no extra resources for device1. After
another step of simulation, we expect that device1 can display the message,
whereas device2 must check for extra resources; moreover, we expect that the
cookie of device2 has a particular content. In this state, the monitored loca-
tion extraResources(device2) is set to true, in order to say that there are
extra resources for device2. After another step of simulation, we expect that
also device2 can display the message. Along all the scenario, device3 keeps on
waiting for a message that, however, is not provided by the server.

6 Verification

As further analysis activity, we have verified the specifications through model
checking. AsmetaSMV [2] is a tool that translates ASM specifications into models
of the NuSMV model checker, and so it allows the verification of Computation
Tree Logic (CTL) and Linear Temporal Logic (LTL) formulae. As underlined
also in [13], declaring a property for a high level-model of the system is definitely
easier than writing the same property for a low-level model, as the one we would
obtain directly using the syntax provided by model checkers (e.g., Promela, the
input language of SPIN, or the input syntax of NuSMV).

Since model checking requires a finite number of states to verify, we have
slightly modified our models in order to make them suitable for model checking.
For example, we have modified the signature of functions cookie and modernizr
of the client model as follows:

controlled cookie: Prod(Device, Key) −> Boolean
controlled modernizr: Prod(Device, Key) −> Boolean

being Key an enumerative domain representing the possible keys of a cookie.
cookie(d,k) is true if the device d ∈ Device has the key k ∈ Key in its cookie;
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modernizr(d,k) is true if the modernizr associates the key k to the device d.
Two other functions record the sub-keys of the cookie keys.

controlled cookieSub: Prod(Device, Key, SubKey) −> Boolean
controlled modernizrSub: Prod(Device, Key, SubKey) −> Boolean

We have checked two different kinds of properties:

– general properties like completeness, minimality, and consistency, that any
ASM model should guarantee (described in Sect. 6.1);

– properties related to the proposed web application, to guarantee correctness
and reliability (described in Sect. 6.2).

We verified all the properties on a Linux machine, Intel(R) Core(TM) i7 CPU
@ 2.67 GHz, 4 GB RAM.

6.1 Model Review

The aim of model review is to determine if a model is of sufficient quality to
be easy to develop, maintain, and enhance. This technique allows to identify
defects early in the system development, reducing the cost of fixing them, so it
should be applied also on models just sketched. The AsmetaMA tool [3] (based on
AsmetaSMV) allows automatic review of ASMs. Typical vulnerabilities and defects
that can be introduced during the modeling activity using ASMs are checked as
violations of suitable meta-properties (MPs, defined in [3] as CTL formulae).
The violation of a meta-property means that a quality attribute (minimality,
completeness, consistency) is not guaranteed, and it may indicate the presence
of an actual fault (i.e., the ASM is indeed faulty), or only of a stylistic defect
(i.e., the ASM could be written in a better way). An inconsistent update (meta-
property MP1), for example, is a signal of a real fault in the model; the presence
of functions that are never read nor updated (meta-property MP7), instead, may
simply indicate that the model is not minimal, but not that it is faulty.

During the development process, we have executed AsmetaMA on all the
models. The verification of all the meta-properties took around 25 s.

In the first refinement of the client model (ClientWithCookie shown in
Code 2) we have found several violations of meta-property MP4, requiring that
no assignment is always trivial [7]: an update rule l := t is always trivial if, when
the rule is applied, l is always already equal to t. In order to check if an update
is trivial, we verify the temporal property EF(cond) → EF(cond ∧ l �= t), being
cond the condition (possibly the conjunctions of a set of conditions) that guards
the update rule. In our model we always update all the keys of a cookie through
the modernizr, even if they are already up to date, as shown in Code 4. In this
way, the locations of function cookie that refer to keys that never change, will
be always updated to the same value. Although this is not a real error, it gave
us a more deep understanding of the behavior of our specification. In a further
refinement of our model, we could avoid updating keys that are already up to
date; surely this kind of control should be done in the final implementation, in
order to improve the performances.
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forall $k in Key do
par
cookie(self, $k) := modernizr(self, $k)
forall $c in SubKey with keyParentalRel($k, $c) do cookieSub(self, $k, $c) := modernizrSub(self, $k, $c)

endpar

Code 4. Rule r updateCookieProfile

A more serious error that we have discovered in our first specification was
the presence of an inconsistent update (a consistency violation). In an ASM two
updates are inconsistent if they update the same location to two different values
at the same time [7]. In our case, we found that the client specification published
in [9] actually contained an error: indeed, upon some conditions, the machine
could simultaneously update a location of the function state (ctl state in [9])
to two different values. Although sometimes inconsistent updates can be easily
discovered by simulation or by scenario-based validation (see Sect. 5), when the
model becomes particularly complex, they may be more difficult to find and an
automatic approach as that provided by the model reviewer is helpful.

In different models we have found minimality violations, since some functions
were declared but never used (meta-property MP7): we discovered that some of
these functions were indeed unuseful (and so they could be removed), while some
others were useful, but we forgot to use (read or update) them.

6.2 Verification of Case Study Requirements

We have then verified classical temporal properties to guarantee correctness and
reliability of the web application. We present the properties verified for the
client and for the server, distinguishing between reachability, liveness, and safety
properties. In this section, we focus on the verification of the single agents (i.e.,
the client and the server), and not on their communication. The verification of
all the properties took around 6 s.

Client

Reachability. As first property we have verified that each device can reach a
state in which it displays a message5.
(forall $d in Device with ef(state($d) = DISPLAYING THE MSG))

This simple property permits to verify that each device can actually receive some
information.

5 Note that we have actually checked a slightly different property, because in NuSMV
(the model checker used by AsmetaSMV) a CTL formula holds if it holds in all
initial states. More information can be found in the NuSMV FAQ http://nusmv.fbk.
eu/faq.html#007.

http://nusmv.fbk.eu/faq.html#007
http://nusmv.fbk.eu/faq.html#007
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Liveness. Through liveness properties we check that requests are eventually
satisfied. As first liveness property we have checked that, whenever a message
has arrived and it contains a test (and the device is waiting for the message),
then in the next state the device executes the test.
(forall $d in Device with ag((state($d) = WAITING FOR MSG and messageArrived($d) and

clientTestsAvailable($d)) implies ax(state($d) = EXECUTE CLIENT TESTS)) )

As further liveness property, we have verified that, if a device executes a test,
then afterwards it has some information in its cookie (i.e., at least a key of its
cookie is defined).
(forall $d in Device with ag((state($d) = EXECUTE CLIENT TESTS) implies

(exists $k in Key with ax(cookie($d, $k) != undef)) ) )

Such property guarantees that the execution of a test provides the information
requested by the server. However, the property is quite general and does not
check that the information copied in the cookie is indeed correct. The following
property checks that during a test the cookie is updated with the information
contained in the modernizr.
(forall $d in Device with ag(state($d) = EXECUTE CLIENT TESTS implies

(forall $k in Key with ax(cookie($d, $k) = modernizr($d, $k))) ) )

Safety. The following property checks that, once a device has displayed a mes-
sage, it does not change its state (indeed, at this stage of modeling, we only
check one session of communication with the server).
(forall $d in Device with ag((state($d) = DISPLAYING THE MSG) implies

ag(state($d) = DISPLAYING THE MSG) ))

Server

The signature of the server contains functions cookie and cookieSub as declared
for the client; moreover, it contains functions deviceProfileDB and device-
ProfileDBsub6, representing the server database that stores the device profiles.

Liveness. As first liveness property for the server, we have checked that every
request received from the client is eventually considered (it is either sent to the
cloud or returned to the client).
(forall $r in Request with ag(requestState($r) = NOT PROCESSED implies

ef(requestState($r) = WAITING CLOUD ANSWERS or requestState($r) = RETURNED TO CLIENT)) )

The server has a database for memorizing the devices profiles extracted from
the cookies. The following three properties check that the memorization mech-
anism behaves correctly. First of all, we have checked that, if a key is present in
a cookie, it will be eventually present in the database as well.
(forall $d in Device, $k in Key with ag(cookie($d, $k) != undef implies ef(deviceProfileDB($d, $k) != undef)) )

6
controlled deviceProfileDB: Prod(Device, Key) −> Boolean

controlled deviceProfileDBsub: Prod(Device, Key, SubKey) −> Boolean.
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The previous property does not check that the value stored in the database
is correct. So, we have proved that the key value of a cookie (top-level key or
sub-key) is eventually copied in the database.
(forall $d in Device, $k in Key with

ag(cookie($d, $k) != undef implies ef(deviceProfileDB($d, $k) = cookie($d, $k))) )
(forall $d in Device, $k in Key, $c in SubKey with

ag(cookieSub($d, $k, $c) != undef implies ef(deviceProfileDBsub($d, $k, $c) = cookieSub($d, $k, $c))))

The device configurations stored in the database can also be used to update
a cookie if this does not report any information about the device (i.e., the cor-
responding location is undef ). So, the following property checks that a device
information stored in the database (as top-level key or sub-key) is eventually
copied in the undefined cookie location.
(forall $d in Device, $k in Key with ag((deviceProfileDB($d, $k) != undef and cookie($d, $k) = undef) implies

ef(cookie($d, $k) = deviceProfileDB($d, $k)) ) )
(forall $d in Device, $k in Key, $c in SubKey with ag((deviceProfileDBsub($d, $k, $c) != undef and

cookieSub($d, $k, $c) = undef) implies ef(cookieSub($d, $k, $c) = deviceProfileDBsub($d, $k, $c))))

Safety. In the server model, we assume that the information about a device does
not change. So, the following property checks that, once a cookie gets a value
for one of its keys (top-level or sub-key), it cannot change it.
(forall $d in Device, $k in Key, $b in Boolean with ag(cookie($d, $k) = $b implies ag(cookie($d, $k) = $b)) )
(forall $d in Device, $k in Key, $c in SubKey, $b in Boolean with

ag(cookieSub($d, $k, $c) = $b implies ag(cookieSub($d, $k, $c) = $b)) )

Since we abstract from modeling the communication with the cloud, a request
from the client is considered fulfilled when it has been sent to the cloud. The fol-
lowing property checks that, if the server is waiting for an answer for a particular
request, it cannot change the request state.
(forall $r in Request with ag(requestState($r) = WAITING CLOUD ANSWERS implies

ag(requestState($r) = WAITING CLOUD ANSWERS)) )

7 Related Work

In the past years several papers regarding analysis and verification of WAs
appeared, but not many of them are based on formal approaches. The research
literature splits into two groups: on one side there are papers proposing forward
engineering methods (starting by specifying the requirements, then going to the
design phase and from this building the WA), and on the other side there are
papers using reverse engineering methods to extract from an existing WA the
corresponding models, and afterwards to verify the models. There are also sev-
eral analysis methods [1] that are used, like modeling the navigational aspects of
WAs, or modeling the behavior and the features of WAs, or modeling, validation
and verification of the completeness and correctness of web pages. The survey
in [1] presents the desirable properties for WA modeling, and compares and
categorizes some existing modeling methods based on the level of WA modeling.

Several research papers are using reverse engineering methods. In the app-
roach presented in [12], a WA is monitored while it is explored by a user or
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a program and traces are collected: in this way the WA behavior is modeled.
A finite automata model is built in order to validate the WA (the task of prop-
erty verification is delegated to an existing model checker). The system presented
in [6] verifies if (partial) correctness and completeness properties are fulfilled by
a web site. The system uses a rule-based language for the specification and the
verification of syntactic and semantic properties of collections of XML/XHTML
documents. Note that the approach in [6] verifies the WA, whereas we verify a
model of the WA; indeed, we think that the use of validation and verification in
the design phase helps to ensure the WA reliability.

Other works are using forward engineering methods in order to check if the
WA satisfies the requirements. UML is used in [15] to build the navigation model
which would then be verified using NuSMV. Since UML can’t be directly used
for automated verification, the navigation model is manually defined as a Kripke
structure and the properties are defined using CTL in NuSMV syntax (as men-
tioned before, it is more complicated to declare a property directly using the
syntax provided by the model checkers than declaring it for a high-level model).
Another proposal to WA navigation model is presented in [14], where the model
is represented by using two finite-state automata, a page automaton and an
internal state automaton, and then expressed using Promela, the input lan-
guage for SPIN model checker. A drawback would be that they don’t use a
tool to automatically transform the models into Promela. A non-formal model
of the presentation layer of a WA is presented in [16] with the aim of testing
the application; however, the model does not support asynchronous server-client
interactions and concurrency, and it is based on a static technique.

8 Conclusions

We have presented the formalization process, using Abstract State Machines
(ASMs), of a framework for the adaptation, at the presentation layer, of the
content coming from the cloud; the framework consists in a middleware server
that receives requests from the clients, forwards them to the cloud, and adapts
the answers coming from the cloud based on the profiles of the clients’ devices.
A device profile is discovered by means of JavaScript tests created by the mod-
ernizr and executed on the device; the devices profiles are also stored at the
server-side for further communications with the client.

We have modeled the client and the server with two ASMs. Each ASM has
been obtained through a chain of refinements, starting from a high level model
to more detailed ones. Validation activities as simulation and scenario-based
validation have given us the confidence that the produced models actually cap-
ture the informal requirements. Such activities have been particularly useful to
reason about the requirements with the stakeholders of the system. Thanks to
the modular nature of ASMs, we have been able to reason both on the single
components and on their communication. All the validation activities have been
performed along all the model development, using an iterative process between
model specification and model validation.
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More in-depth analyses are permitted by model checking. Apart the verifi-
cation of the application dependent properties that we specified starting from
the requirements, we found particularly useful the verification of the applica-
tion independent properties provided by model review. Indeed, thanks to this
technique, we were able to discover real errors in our models (inconsistencies);
moreover, other meta-properties violations, although were not real faults, allowed
us to find some weaknesses of the models (e.g., locations that were always triv-
ially updated). In order to be model checked, we had to apply some abstractions
to our models, for example by replacing infinite domains with finite ones. Such
kind of transformations do not diminish the expressive power of our models, but
simply rewrite them in a form more suitable for verification purposes. Note that,
however, some models could not be handled at all: for example, models extend-
ing domains. Although some limitations exist on the class of ASMs that can be
model checked, the alternative would be to encode the system under develop-
ment directly in the model checker syntax, arising two problems: (i) the model
checkers syntaxes usually have a low expressive power and it may be difficult to
model complex systems with them, (ii) we could produce a model not equivalent
with the ASM specification.

This paper presents results about the validation and verification of a prelim-
inary design of the proposed framework. The current version of the specification
mainly focuses on the communication between the client and the middleware in
order to retrieve information regarding the client’s device. Future versions will
also consider the communication between the middleware and the Cloud.

The long term goal of the project presented in [17] is to develop, in a con-
trolled and verified way, through a chain of refinements, the implementation of a
prototype. As future work we plan to formally prove the correctness of the refine-
ment in an automatic way. Regarding the verification of properties we intend to
adapt the AsmetaSMV tool to work with an infinite-state model checker.
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Abstract. This paper presents a model of session-based concurrency
with mechanisms for runtime adaptation. Thus, our model allows to
specify communication-centric systems whose session behavior can be
dynamically updated at runtime. We propose an event-based approach:
adaptation requests, issued by the system itself or by its environment,
are assimilated to events which may trigger runtime adaptation routines.
Based on type-directed checks, these routines naturally enable the recon-
figuration of processes with active sessions. We develop a type system
that ensures communication safety and consistency properties: while the
former guarantees absence of runtime communication errors, the latter
ensures that update actions do not disrupt already established sessions.

1 Introduction

Context. Modern software systems are built as assemblies of heterogeneous arti-
facts which must interact following predefined protocols. Correctness in these
communication-centric systems largely depends on ensuring that dialogues are
consistent. Session-based concurrency is a type-based approach to ensure con-
formance of dialogues to prescribed protocols: dialogues are organized into units
called sessions; interaction patterns are abstracted as session types [9], against
which specifications may be checked.

As communication-centric systems operate on open infrastructures, runtime
adaptation appears as a crucial feature to ensure continued system operation.
Here we understand runtime adaptation as the dynamic modification of (the
behavior of) the system in response to an exceptional event, such as, e.g., a vary-
ing requirement or a local failure. These events are not necessarily catastrophic
but are hard to predict. As such, protocol conformance and dynamic reconfigura-
tion are intertwined concerns: although the specification of runtime adaptation is
not strictly tied to that of structured protocols, steps of dynamic reconfiguration
have a direct influence in a system’s interactive behavior.

We are interested in integrating forms of runtime adaptation into models
of session-based concurrency. As a first answer to this challenge, in previous
work [8] we extended a typed process framework for binary sessions with basic
c© Springer International Publishing Switzerland 2016
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constructs from the model of adaptable processes [2]. In this work, with the aim
of extending the applicability and expressiveness of the approach in [8], we pro-
pose adaptation mechanisms which depend on the state of the session protocols
active in a given location. As a distinctive feature, we advocate an event-based
approach: by combining constructs for dynamic type inspection and non-blocking
event detection (as put forward by Kouzapas et al. [11,13]), adaptation requests,
both internal or external to the location, can be naturally assimilated to events.

A Motivating Example. Here we consider a standard syntax for binary session
types [9]:

α, β ::= ?(T ).β input a value of typeT, continue as β
| !(T ).β output a value of typeT, continue as β
| &{n1:α1 . . . nm:αm} branching (external choice)
| ⊕{n1:α1 . . . nm:αm} selection (internal choice)
| ε | μt.α | t terminated and recursive session

where T stands for both basic types (e.g., booleans, integers) and session types
α. Also, n1, . . . , nm denote labels. To illustrate session types, consider a buyer
B and a seller S which interact as follows. First, B sends to S the name of
an item and S replies back with its price. Then, depending on the amount,
B either adds the item to its shopping cart or closes the transaction. In the lat-
ter case the protocol ends. In the former case B must further choose a paying
method. From B’s perspective, this protocol may be described by the session type
α = !item. ?amnt. αpay, where item and amnt are base types and

αpay = ⊕{addItem : ⊕{ccard : αcc , payp : αpp} , cancel : ε}.

Thus, session type α says that protocol αpay may only be enabled after sending
a value of type item and receiving a value of type amnt. Also, addItem, ccard,
cc, and payp denote labels in the internal choice. Types αcc and αpp denote the
behavior of each payment method. Following the protocol abstracted by α, code
for B may be specified as a π-calculus process. Processes P and R below give
two specifications for B:

P = x(book).x(a).if a < 50 then x � addItem;x � ccard;P c else x � cancel;0
R = x(game).x(b).if b < 80 then x � addItem;x � payp;Rp else x � cancel;0

Thus, although both P and R implement α, their behavior is rather different,
for they purchase different items using different payment methods (which are
abstracted by processes P c and Rp). Let us now analyze the situation for the
seller S. To ensure protocol compatibility and absence of communication errors,
the session type for S, denoted β, should be dual to α. This is written α ⊥C β.
Intuitively, duality decrees that every action from B must be matched by a com-
plementary action from S, e.g., every output of a string in α is matched by an
input of a string in β. In our example, we let β = ?item. !amnt. βpay, where βpay

and a process implementation for S are as follows:

βpay = &{addItem : &{ccard : βcc , payp : βpp} , cancel : ε}
Q = y(i).y(price(i)).y � {addItem : y � {ccard : Qc [] ppal : Qp} [] cancel : 0}
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where price stands for an auxiliary function. Also, βcc and βpp are the duals of
αcc and αpp; they are realized by processes Qc

y and Qp
y. The interaction of P and

Q is defined using session initialization constructs: process u(x:α).P denotes the
request of a session of type α; dually, u(x:α).P denotes the acceptance of a session
of type α. In both cases, u denotes a (shared) name used for synchronization. In
our example, we may have

Sys = u(x:α).P | u(y:β).Q −→ (νκ)(P [κ+
/x] | Q[κ−

/y]) = S′

Thus, upon synchronization on u, a new session κ is established. Intuitively, in
process S′ session κ is “split” into two session channels (or endpoints) κ+ and
κ−: we write + and − to denote their opposing polarities, which make their
complementarity manifest. The use of restriction (νκ) covers both channels,
thus ensuring an interference-free medium for executing the session protocols
described by α and β.

In this work, we are interested in ways of expressing and reasoning about the
dynamic modification of session-typed processes such as P and Q above. Such
modifications may be desirable to react to exceptional runtime conditions (say,
an error) or to implement new requirements. For instance, the type below defines
a new payment method for S:

βgift = &{addItem : &{giftc : βgc , ccard : βcc , payp : βpp} , cancel : ε}

Intuitively, βgift extends βpay with a new alternative on label giftc. As such,
it is safe to use a process implementing βgift wherever a process implementing
βpay is required. The safe substitution principle that connects βgift and βpay

is formalized by a subtyping relation on session types [7], denoted ≤C. In our
example, we have βpay ≤C βgift.

In previous work [8] we studied how to update processes when sessions have
not yet been established; this suffices to analyze runtime adaptation for processes
such as Sys above. In this paper, we go further and address the runtime adap-
tation of processes such as S′ above, which contain already established session
protocols. As we would like to guarantee that adaptation preserves overall sys-
tem correctness, a key challenge is ensuring that adaptation does not jeopardize
such protocols. Continuing our example, let S′′ be the process resulting from S′

above, after the first step stipulated by α and β (i.e., an exchange of a value of
type item). Intuitively, at that point, the buyer part of S′ will have session type
?amnt. αpay, whereas the seller part of S′ will have session type !amnt. βpay. Sup-
pose we wish to modify at runtime the part of S′′ realizing the buyer behavior.
To preserve protocol correctness, a candidate new implementation must conform,
up to ≤C, to the type ?amnt. αpay; a process realizing any other type will fail to
safely interact with the part of S′′ implementing the seller. In [8] we defined the
notion of consistency to formalize the correspondence between declared session
protocols and the processes installed by steps of runtime adaptation. As we will
see, consistency is still appropriate for reasoning about runtime adaptation of
processes with active sessions.
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Our Approach. Having motivated the context of our contributions, we move on
to describe some technical details. We rely on a process language which extends
session π-calculi with locations, located processes, and update processes [2]. We
use locations as explicit delimiters for process behavior: these are transparent,
possibly nested computation sites. Given a location loc and a process P , the
located process loc[P ] denotes the fact that P resides in loc (or, alternatively,
that P has scope loc). This way, e.g., process

W = sys
[
buyer

[
u(x:α).P

] | seller
[
u(y:β).Q

] ]

represents an explicitly distributed variant of Sys above: the partners now reside
in locations buyer and seller; location sys encloses the whole system. An update
process, denoted loc{U}, intuitively says that the behavior currently enclosed by
loc should be replaced according to the adaptation routine U . Since a location
may enclose one or more session channels, update processes allow for flexible
specifications of adaptation routines. This way, e.g., one may specify an update
on buyer that does not involve seller (and vice versa); also, a system-level adap-
tation could be defined by adding a process sys{Us} in parallel to W , given an
Us that accounts for both buyer and seller behaviors.

The integration of runtime adaptation into sessions is delicate, and involves
defining not only what should be the state of the system after adaptation but
also when an adaptation step should be triggered. To rule out careless adapta-
tion steps which jeopardize established protocols, communication and adaptation
actions should be harmonized. As hinted at above, in previous work [8] we pro-
posed admitting adaptation actions only when locations do not enclose running
sessions. This is a simple solution that privileges communication over adapta-
tion, in the sense that adaptation is enabled only when sessions are not yet
active. Still, in realistic applications it may be desirable to give communication
and adaptation a similar status. To this end, in this paper we admit the adapta-
tion of locations with running sessions. We propose update processes loc{U} in
which U is able to dynamically check the current state of the session protocols
running in loc. In their simplest form, our update processes concern only one
session channel and are of the shape

loc
{
casex of {(x:βi) : Ui}i∈I

}

where I is a finite index set, x denotes a channel variable, each βi and Ui denotes
a session type and an alternative (process) Ui, respectively. (We assume x occurs
free in Ui.) The informal semantics for this construct is better understood by
considering its interaction with a located process loc

[
Q

]
in which Q implements

a session of type α along channel κp. The two processes may interact as follows.
If there is a j ∈ I such that types α and βj “match” (up to ≤C), then there is a
reduction to process loc

[
Uj [κ

p
/x]

]
. Otherwise, if no βj validates a match, then

there is a reduction to process loc
[
Q

]
, keeping the behavior of loc unchanged

and consuming the update.
In general, update processes may define adaptation for locations enclosing

more than one session channel. In the distributed buyer-seller example, the
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process below defines a runtime update which depends on the current state
of the two channels at location sys:

Uxy = sys

{

casex, y of

{
(x:α ; y:β) : buyer[R] | seller[Q]

(x:αpay ; y:βpay) : buyer[P ∗] | seller[Q∗]

}}

(1)

Uxy defines two possibilities for runtime adaptation. If the protocol has just been
established (i.e., current types are α and β) then only the buyer is updated—its
new behavior will be given by R above. If both item and price information have
been already exchanged then implementations P ∗ and Q∗, compliant with types
αpay and βpay, are installed.

Update processes rely on the protocol state at a given location to assess the
suitability of adaptation routines. Our semantics for update relies on (a) mon-
itors which store the current type for each running session; and (b) a type-
directed test on the monitors enclosed in a given location. This test generalizes
the typecase construct in [11].

While expressive, our typeful update processes by themselves do not specify
when adaptation should be available. Even though update processes could be
embedded within session communication prefixes (thus creating causal depen-
dencies between communication and adaptation), such a specification style would
only allow to handle exceptional conditions which can be fully characterized
in advance. Other kinds of exceptional conditions, in particular contextual
and/or unsolicited runtime conditions, are much harder to express by inter-
leaving update processes within structured protocols.

To offer a uniform solution to this issue, we propose a event-based approach
to trigger updates. We endow each location with a queue of adaptation requests;
such requests may be internal or external to the location. In our example, an
external request could be, e.g., a warning message from the buyer’s bank indi-
cating that an exchange with the bank is required before committing to the
purchase with the seller.

Location queues are independent from session behavior. Their identity is vis-
ible to processes; they are intended as interfaces with other processes and the
environment. To issue an adaptation request r for location loc, our process syntax
includes adaptation signals, written loc(r). Similar to ordinary communication
prefixes, these signals are orthogonal to sessions. Then, we may detect the pres-
ence of request r in the queue of loc using the arrival predicate arrive(loc, r) [11].
As an example, let updE denote an external adaptation request. To continuously
check if an external request has been queued for sys, the process below combines
process Uxy in (1) with arrival predicates, conditionals, and recursion:

U∗
xy = μX .if arrive(sys, updE) then Uxy else X (2)

We couple our process model for session-based concurrency and runtime
adaptation with a type system that ensures the following key properties:

– Safety : well-typed programs do not exhibit communication errors (e.g., mis-
matched messages).
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– Consistency : well-typed programs do not allow adaptation actions that disrupt
already established sessions.

Safety is the typical guarantee expected from any session type discipline, here
considered in a richer setting that combines session communication with run-
time adaptation. In contrast, consistency is a guarantee unique to our setting:
it connects the behavior of the adaptation mechanisms with the preservation of
prescribed typed interfaces. We show that well-typed programs are safe and con-
sistent (Theorem 3.6): this ensures that specified session protocols are respected,
while forbidding incautious adaptation steps that could accidentally remove or
disrupt the session behavior of interacting partners.

Organization. The rest of the paper is organized as follows. Next we present
our event-based process model of session communication with typeful constructs
for runtime adaptation (Sect. 2). Then, we present our session type system,
which ensures safety and consistency for processes with adaptation mechanisms
(Sect. 3). In Sect. 4 we discuss a process model of communication and adaptation
with explicit compartments; it distills the main features of the model in Sect. 2.
At the end, we discuss related works and draw some concluding remarks (Sect. 5).
The appendix gives full sets of reduction and typing rules. Additional technical
details and omitted definitions can be found in an online technical report [5].

2 The Process Model: Syntax and Semantics

Syntax. We rely on base sets for names, ranged over by u, a, b . . .; (session)
channels, ranged over by k, κp, . . ., with polarity p ∈ {+,−}; labels, ranged over
by n, n′, . . .; and variables, ranged over by x, y, . . .. Values, ranged over v, v′, . . .,
may include booleans (written false and true), integers, names, and channels.
We use r to range over adaptation messages: two instances are updI and updE ,
for internal and external requests. We use ·̃ to denote finite sequences. Thus, e.g.,
x̃ is a sequence of variables x1, . . . , xn. We use ε to denote the empty sequence.

Table 1 reports the syntax of expressions and processes. Processes include
usual constructs for input, output, and labeled choice. Common forms of recur-
sion, parallel composition, conditionals, and restriction are also included. As
illustrated in Sect. 1, constructs for session establishment are annotated with a
session type α, which is useful in derived static analyses. A prefix for closing a
session, inherited from [8], is convenient to structure specifications. Variable x
is bound in processes u(x:α).P , u(x:α).P , and k(x).P . Binding for name and
channel restriction is as usual. Also, recursion variable X is bound in process
μX .P . Given a process P , its sets of free/bound channels, names, variables, and
recursion variables—noted fc(P ), fn(P ), fv(P ), fpv(P ), bc(P ), bn(P ), bv(P ),
and bpv(P ), respectively—are as expected. We always rely on usual notions of
α-conversion and (capture-avoiding) substitution, denoted [k/x] (for channels)
and [P/X ] (for processes). We write [k1, . . . , kn/x1, . . . , xn] to stand for an n-ary
simultaneous substitution. Processes without free variables or free channels are
called programs.
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Table 1. Process syntax. Above, annotation α denotes a session type.

Up to here, the language is a synchronous π-calculus with sessions.
Building upon locations loc, l1, l2, . . ., constructs for adaptation are: located
processes, denoted loc[P ]; update processes, denoted loc

{
casex1, . . . ,

xm of {(x1:β
i
1; · · · ;xm:βi

m) : Qi}i∈I

}
; (session) monitors, denoted κp�α�; loca-

tion queues, denoted loc�r̃�; and adaptation signals, denoted loc(r). Moreover,
expressions include the arrival predicate arrive(loc, r).

We now comment on these elements. Located processes and update
processes have been motivated in Sect. 1. Here we just remark that
update processes are assumed to refer to at least one variable xi and to
offer at least one alternative Qi. Also, variables x1, . . . , xm are bound in
loc

{
casex1, . . . , xm of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
; this process is often abbre-

viated as loc
{
case x̃ of {(x1:β

i
1; · · · ;xm:βi

m) : Qi}i∈I

}
. Update processes gener-

alize the typecase introduced in [11], which defines a case-like choice based on
a single channel; in contrast, to specify adaptation for locations with multiple
open sessions, our update processes define type-directed checks over one or more
channels.

Update processes go hand-in-hand with monitors, runtime entities which
keep the current protocol state at a given channel. We write κp�α� to denote
the monitor which stores the protocol state α for channel κp. In [11], a similar
construct is used to store in-transit messages in asynchronous communication.
For simplicity, here we consider synchronous communication; monitors store only
the current protocol state. This choice is aligned with our goal of identifying the
core elements from the eventful session framework that are central in defining
runtime adaptation (cf. Remark 3.7).

Location queues, not present in [11], handle adaptation requests, modeled as
a possibly empty sequence of messages r̃. Location queues enable us to give a
unified treatment to adaptation requests, internal and external. Given loc�r̃�, it is
worth observing that messages r̃ are not related to communication as abstracted
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Table 2. Reduction semantics: selected rules. Both α and β denote session types.

by session types. This represents the fact that we handle adaptation requests and
structured session exchanges as orthogonal issues. An adaptation signal loc(r)
enqueues request r into the location queue of loc. To this end, as detailed below,
the operational semantics defines synchronizations between adaptation signals
and location queues. To connect runtime adaptation and communication, our
language allows the coupling of update processes with the arrival predicate on
locations, denoted arrive(loc, r). Inspired by the arrive predicate in [11], this
predicate detects if a message r has been placed in the queue of loc.

Our language embodies several concerns related to runtime adaptation: using
adaptation signals and location queues we may formally express how an adap-
tation request is issued; arrival predicates enable us to specify when adaptation
will be handled; using update processes and monitors we may specify what is
the goal of an adaptation event.

Semantics. The semantics of our language is given by a reduction semantics,
the smallest relation generated by the rules in Table 5 (Appendix A). We write
P −→ P ′ for the reduction from P to P ′. Reduction relies on a standard notion
of structural congruence, denoted ≡ (see [8, Def. 1]). It also relies on evaluation
and location contexts:

E ::= − | k(−).P | if − then P else Q C,D ::= − | loc[C | P ]
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Given C
{−}

(resp. E[−]), we write C
{
P

}
(resp. E[e]) to denote the process (resp.

expression) obtained by filling in occurrences of hole − in C with P (resp. in E
with e).

Table 2 gives a selection of reduction rules; we comment on these rules below.
The first four rules formalize session behavior within hierarchies of nested loca-
tions. Using duality for session types, denoted ⊥C (see [7] and Sect. 3), in
rule 〈r:Open〉 the synchronization on a name u leads to establish a session
on fresh channels κp and κp; also, two monitors with the declared session types
are created. Duality for polarities p is as expected: + = − and − = +. Monitors
are local by construction: they are created in the same contexts in which the
session is established. Rule 〈r:Com〉 represents communication of a value: we
require both complementary prefixes and that the monitors support input and
output actions. After reduction, prefixes in processes and monitors are consumed.
Similarly, rule 〈r:Sel〉 for labeled choice is standard, augmented with monitors.
Rule 〈r:Clo〉 formalizes session termination, discarding involved monitors. The
monitors in these three rules allow us to track the evolution of active session
protocols.

The remaining rules in Table 2 define our event-based approach to runtime
adaptation. Rule 〈r:UReq〉 treats the issue of an adaptation request r as a
synchronization between a location queue and an adaptation signal. The queue
and the signal may be in different contexts; this enables “remote” requests.
Rules 〈r:Arr1〉 and 〈r:Arr2〉 resolve arrival predicates by querying the (pos-
sibly remote) queue r̃. Rule 〈r:Upd〉 defines the typeful update of the current
protocol state at loc, which is given by an indexed set of open sessions with their
associated monitors. The rule attempts to match such protocol state with the
first suitable option offered by an update process for loc. If there is no matching
alternative the current protocol state at loc is kept unchanged. By an abuse of
notation, we write P1 ∈ P to indicate that P1 occurs in P , i.e., if P = C[P1] for
some C. Formally, given an index set I over the update process, suitability with
respect to the behavior at loc is defined by predicate matchI in Definition 2.1
below. Using subtyping ≤C (see [7] and Sect. 3), the predicate holds for an l ∈ I
which defines a new protocol state.

In addition to the rules in Table 2, our semantics includes standard and/or
self-explanatory treatments for reduction under evaluation contexts, parallel
composition, located context, and restriction. Also, it accounts for applications
of structural congruence, recursion and conditionals. The full set of rules is in
Table 5 (Appendix A).

Definition 2.1 (Matching). Given an index set I, session types α1, . . . , αm,
an indexed sequence of session types {βi

1, . . . , β
i
m}i∈I , and an l ∈ I, we write

matchI(l, {α1, . . . , αm}, {βi
1, . . . , β

i
m}i∈I)

if and only if ∀n < l.(∃j ∈ [1..m]. βn
j �≤C αj) ∧ (

∧
h∈[1..m] β

l
h ≤C αh).
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Example 2.2. Recall process W given in the Introduction. According to our
semantics:

W −→ (νκ)
(
sys

[
buyer

[
P [κp

/x] | κp�α�] | seller
[
Q[κp

/y] | κp�β�] ])

−→2 (νκ)
(
sys

[
buyer

[
P ′ | κp�αpay�

] | seller
[
Q′ | κp�βpay�

] ])

Suppose that following an external request the seller must offer a new payment
method. (a gift card). Precisely, we would like S to act according to the type
βgift given in Sect. 1. Let αgift be the dual of βgift. We then may define the
following update process R1

xy:

sys
{
casex, y of {(x:αpay ; y:βpay) : buyer

[
P ′ | x�αgift�

] | seller
[
Q′′ | y�βgift�

]}}

Thus, R1
xy keeps the expected implementation for the buyer (P ′), but

updates its associated monitor. For the seller, both the implementation
and monitor are updated; above, Q′′ stands for a process offering the
three payment methods. We may then specify the whole system as:
W | μX .if arrive(sys, updE) then R1

xy else X . The type system introduced next
ensures, among other things, that updates such as R1

xy consider both a process
and its associated monitors, ruling out the possibility of discarding the monitors
that enable reduction.

3 Session Types for Eventful Runtime Adaptation

This section introduces a session type system for the process language of Sect. 2.
Our main result (Theorem 3.6) is that well-typed programs enjoy both safety
(absence of runtime communication errors) and consistency properties (update
actions do not disrupt established sessions). Our development follows the lines
of the typed framework in [8].

The syntax of session types (ranged over by α, β, . . .) has been already pre-
sented in the Introduction. We consider basic types (ranged over by τ, σ, . . .) and
write T, S, . . . to range over τ, α. Therefore, although our process language copes
with runtime adaptation, our type syntax is standard and retains the intuitive
meaning of session types [9], which we now briefly recall. Type ?(τ).α (resp.
?(β).α) abstracts the behavior of a channel which receives a value of type τ
(resp. a channel of type β) and then continues as α. Dually, type !(τ).α (resp.
!(β).α) represents the behavior of a channel which sends a value of type τ and
then continues as α. Type &{n1 : α1 . . . nm : αm} describes a branching behav-
ior: it offers m behaviors, and if the j-th alternative is selected then it behaves as
described by type αj (1 ≤ j ≤ m). In turn, type ⊕{n1 : α1 . . . nm : αm} describes
the behavior of a channel which may select a single behavior among α1, . . . , αm

and then continues as αj . We use ε to type a channel with no communication
behavior. Type μt.α describes recursive behavior; as usual, we consider recursive
types under equi-recursive and contractive assumptions.

Along the paper we have informally appealed to duality and subtyping over
session types (denoted ⊥C and ≤C, resp.). For the sake of space, we omit their
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full definitions; we just remark that since our session type structure is standard,
we may rely on the (coinductive) definitions given by Gay and Hole [7], which
are standard and well-understood.

Our typing judgments generalize usual notions with an interface I. Based on
the syntactic occurrences of session establishment prefixes a(x:α), and a(x:α),
the interface of a process describes the services appearing in it. We annotate
services with a qualification q, which may be ‘lin’ (linear) or ‘un’ (unrestricted).
Thus, the interface of a process gives an “upper bound” on the services that it
may execute. The typing system uses interfaces to control the behavior contained
by locations after an update. We have:

Definition 3.1 (Interfaces). We define an interface as the multiset whose
underlying set of elements is I = {qu:α | q ∈ {lin, un}} (i.e., a set of assignments
from names to qualified session types). We use I, I ′, . . . to range over interfaces.
We write dom(I) to denote the set {u | u : αq ∈ I} and #I(a) = h to mean that
a occurs h times in I.

The union of two interfaces is essentially the union of their underlying multisets.
We sometimes write I � a : αlin and I � a : αun to stand for I � {lin a:α} and
I�{un a:α}, respectively. Moreover, we write Ilin (resp. Iun) to denote the subset
of I involving only assignments qualified with lin (resp. un). We now define an
ordering relation over interfaces, relying on subtyping:

Definition 3.2 (Interface Ordering). Given interfaces I and I ′, we write
I � I ′ iff

1. ∀(lin a:α) such that #Ilin
(lin a:α) = h with h > 0, then one of the following

holds:
(a) there exist h distinct elements (lin a:βi) ∈ I ′

lin such that α ≤C βi for
i ∈ [1..h];

(b) there exists (un a:β) ∈ I ′
un such that α ≤C β.

2. ∀(un a:α) ∈ Iun then (un a:β) ∈ I ′
un and α ≤C β, for some β.

We now define our typing environments. We write q to range over qualifiers lin
and un.

Δ ::= ∅ | Δ, k : α | Δ, k : �α� typing with active sessions
Γ ::= ∅ | Γ, e : τ | Γ, u : 〈αq, βq〉 first-order environment (with αq ⊥C βq)
Θ ::= ∅ | Θ,X : Δ; I | Θ, loc : I higher-order environment

We consider typings Δ and environments Γ and Θ. Typing Δ collects assign-
ments from channels to session types; it describes currently active sessions. In our
system, Δ also includes bracketed assignments, denoted κp : �α�, which repre-
sent the type for monitors. Subtyping extends to these assignments (�α� ≤C �β�
if α ≤C β) and thus to typings. We write dom(Δ) to denote the set {kp | kp :
α ∈ Δ ∨ kp : �α� ∈ Δ}. We write Δ, k : α where k �∈ dom(Δ). Furthermore, we
write Δ, k : 〈〈α〉〉 to abbreviate Δ, k : α, k : �α�. That is, k : 〈〈α〉〉 describes both
a session and its associated monitor.
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Table 3. Well-typed processes: selected rules.

Γ is a first-order environment which maps expressions to basic types and
names to pairs of qualified session types. As motivated earlier, a session type is
qualified with ‘un’ if it is associated to a unrestricted/persistent service; other-
wise, it is qualified with ‘lin’. The higher-order environment Θ collects assign-
ments of typings to process variables and interfaces to locations. While the former
concerns recursive processes, the latter concerns located processes. As we explain
next, by relying on the combination of these two pieces of information the type
system ensures that runtime adaptation actions preserve the behavioral inter-
faces of a process. We write vdom(Θ) = {X | X : I ∈ Θ} to denote the variables
in the domain of Θ. Given these environments, a type judgment is of form

Γ ; Θ � P � Δ; I
meaning that, under environments Γ and Θ, process P has active sessions
declared in Δ and interface I. Selected typing rules are shown in Table 3; remain-
ing rules can be found in Table 6 (Appendix B). Below we comment on some
of the rules in Table 3: the rest are standard and/or self explanatory. Rule
〈t:Adapt〉 types update processes. Notice that the typing rule ensures that
each process Qi has exactly the same active sessions that those declared in the
respective case. Also, we require that alternatives contain both processes and
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monitors. With Ij � I we guarantee that the process behavior does not “exceed”
the expected behavior within the location. Rule 〈t:sub〉 takes care of subtyping
both for typings Δ and interfaces. Rule 〈t:CRes〉 types channel restriction that
ensures typing duality among partners of a session and their respective queues.
Typing of queues is given by rule 〈t:Que〉 that simply assigns type k : �α� to
queue k�α�. Finally, rule 〈t:NRes〉 types hiding of service names, by simply
removing their declarations from the interface I of the process. In the rule, Iu

contains only declarations for u, i.e., ∀v �= u, v /∈ dom(Iu).
Our type system enjoys the standard subject reduction property. We rely on

balanced typings: Δ is balanced iff for all κp : α ∈ Δ (resp. κp : �α� ∈ Δ)
then also κp : β ∈ Δ (resp. κp : �β� ∈ Δ), with α ⊥C β. The proof proceeds by
induction on the last rule applied in the reduction; it adapts the one given in [8].

Theorem 3.3 (Subject Reduction). If Γ ; Θ � P �Δ; I with Δ balanced and
P −→ Q then Γ ; Θ � Q � Δ′; I ′, for some I ′ and balanced Δ′.

We now define and state safety and consistency properties. While safety guar-
antees adherence to prescribed session types and absence of runtime errors, con-
sistency ensures that sessions are not jeopardized by careless runtime adaptation
actions. Defining both properties requires the following notions of κ-processes,
κ-redexes, and error process.

Definition 3.4 (κ-processes, κ-redexes, Errors). A process P is a κ-process
if it is a prefixed process with subject κp, i.e., P is one of the following:

κ p(x).P ′ κ p(v).P ′ close (κ p).P ′ κ p � {ni:Pi}i∈I κ p � n.P ′

Process P is a κ-redex if it contains the composition of exactly two κ-processes
with opposing polarities. P is an error if P ≡ (νκ̃)(Q | R) where, for some κ,
Q contains either exactly two κ-processes that do not form a κ-redex or three or
more κ-processes.

Informally, a process P is called consistent if whenever it has a κ-redex then
update actions do not destroy such a redex. Below, we formalize this intuition.
Let us write P −→upd P ′ for any reduction inferred using rule 〈r:Upd〉. We then
define:

Definition 3.5 (Safety, Consistency). Let P be a process. We say P is safe
if it never reduces into an error. We say P is update-consistent if and only if,
for all P ′ and κ such that P −→∗ P ′ and P ′ contains a κ-redex, if P ′ −→upd P ′′

then P ′′ contains a κ-redex.

We now state our main result; it follows as a consequence of Theorem 3.3.

Theorem 3.6 (TypingEnsuresSafetyandConsistency). IfΓ ; Θ � P �Δ; I
with Δ balanced then program P is update consistent and safe.
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Remark 3.7 (Asynchronous Communication). We have focused on synchronous
communication: this allows us to give a compact semantics, relying on a standard
type structure. To account for asynchrony, we would require a runtime syntax
for programs with queues for in-transit messages (values, sessions, labels). The
type system must be extended to accommodate these new runtime processes.
In our case, an extension with asynchrony would rely on the machinery defined
in [11].

4 Discussion: A Compartmentalized Model
of Communication and Adaptation

Given that the process model in Sect. 2 enables the interplay of communica-
tion and adaptation, how can we organize specifications to reflect a desirable
separation of concerns? In ongoing work, with the aim of specifying systems
at a high-level of abstraction, we have developed a model which defines com-
partments to isolate communication behavior and adaptation routines. Here we
briefly describe this model, which is given in Table 4.

In a nutshell, programs of Sect. 2 are now organized into systems. A system
G is the composition of a set of applications A1, . . . , An each comprising three
elements: a behavior R, a state S, and a manager M. As a simple example of a
system, we may consider the operating system of a smartphone, which is meant
to manage a number of applications that may interact among them. Applications
in our model can communicate between each other or exhibit intra-application
communication. The behavior R is specified as a process; we distinguish between
located processes representing service definitions from located processes which
make use of such definitions. A reduction semantics (omitted) ensures that loca-
tions enclosing service definitions do not contain open (active) sessions. This
may be convenient for defining adaptation strategies, since updates to service
definitions may now be performed without concerns of disruption of active ses-
sions. The state S collects session monitors and location queues and it is kept
separate from R. As a simple example, the buyer-seller scenario given in Sect. 1
can be casted in our model as

byr
〈
buyer

[
u@slr(x : α).P

]
; Sb ; Mb

〉 ‖ slr
〈
seller

[∗ u(y:β).Q
]
; Ss ; Ms

〉

That is, buyer and seller are implemented as separate applications, named byr
and slr, respectively. Above, we have Sb = buyer�ε� and Ss = seller�ε�.

While the manager M implements adaptation at the application (local) level,
a handler H defines adaptation at the system (global) level. As we wish to
describe communication behavior separately from adaptation routines, update
processes are confined to handlers and managers. A manager is meant to react
upon the arrival of an internal adaptation message updI . As in Sect. 2, managers
may act upon the issue of an internal update request updI for some location,
whereas handlers may act upon the arrival of an external update request or
an application upgrade request (denoted updE and upg, respectively). A han-
dler may either update or upgrade the behavior at some location loc within
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Table 4. A compartmentalized model of communicating systems: syntax.

application a; this is written loc@a. Upgrades are denoted l1
{{

P
}}

; they are a
particular form of update intended for service definitions only. In Table 4 we
write ∗if e then P and ∗u(x:α).P as shorthands for persistent conditionals and
services, respectively.

Our compartmentalized model induces specifications in which communica-
tion, runtime adaptation, and state (as in, e.g., asynchronous communication)
are jointly expressed, while keeping a desirable separation of concerns. Notice
that the differences between “plain” processes (as given in Sect. 2) and systems
(as defined in Table 4) are mostly conceptual, rather than technical. In fact, the
higher level of abstraction that is enforced by our model does not result in addi-
tional technicalities. We conjecture that a reduction-preserving translation of
application-based specifications into processes does not exist—a main difficulty
being, unsurprisingly, properly representing the separation between behavior and
state. This difference in terms of expressiveness does not appear to affect the
type system. In future work we plan to extend the typing discipline in Sect. 3
(and its associated safety and consistency guarantees) to systems.

5 Related Work and Concluding Remarks

Related Work. The combination of static typing and type-directed tests for
dynamic reconfiguration is not new. For instance, Seco and Caires [14] study
this combination for a calculus for object-oriented component programming. To
the best of our knowledge, ours is the first work to develop this combination
for a session process language. As already discussed, we build upon constructs
proposed in [10–13]. The earliest works on eventful sessions, covering theory
and implementation issues, are [10,12]. Kouzapas’s PhD thesis [11] provides a
unified presentation of the eventful framework, with case studies including event
selectors (a building block in event-driven systems) and transformations between
multithreaded and event-driven programs. At the level of types, the work in [11]
introduces session set types to support the typecase construct. We use dynamic
session type inspection only for runtime adaptation; in [11] typecase is part of
the process syntax. This choice enables us to retain a standard session type
syntax. Runtime adaptation of session typed processes—the main contribution
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of this paper—seems to be an application of eventful session types not previously
identified.

Previous works on runtime adaptation for session types (binary and multi-
party) include [1,3,8]. We have already commented on how our current approach
enhances that in our previous work [8]. Both [1] and [3] study adaptation for mul-
tiparty communications, which already sets a substantial difference with respect
to our work. In [3], a set of monitors which govern the behavior of participants
are derived from a global specification. Self-adaptation for monitored processes
is triggered by an external adaptation function, which is often left unspecified.
As in our work, the operational semantics for adaptation in [3] uses (local) types
and monitors; key differences include the use of type-directed checks for selecting
adaptation routines that preserve consistency, and the use of events and queues
to handle adaptation requests. The work [1] studies dynamic update for message
passing programs; a form of consistency for updates over threads is ensured using
multiparty session types, following an asynchronous communication discipline.

Concluding Remarks. Building upon [11], we have introduced an eventful app-
roach to runtime adaptation of session typed processes. We identified the strictly
necessary eventful process constructs that enhance and refine known mechanisms
for runtime adaptation. Adaptation requests, both internal and external, are
handled via event detectors and queues associated to locations. Our approach
enables us to specify rich forms of updates on locations with running sessions;
this represents a concrete improvement with respect to previous works [8]. We
notice that expressing both internal and external exceptional events is useful in
practice; for instance, both kinds of events coexist in BPMN 2.0 (see, e.g., [6,
Chap. 4]). To rule out update steps that jeopardize running session protocols, we
also introduced a type system that ensures communication safety and update
consistency for session programs. We have also outlined a high-level model of
structured interaction which organizes communication and adaptation compo-
nents into a sensible structure.

Adaptation in our framework is “monotonic” or “incremental” in that
changes always preserve/extend active session protocols, exploiting subtyping
for enhanced flexibility. Interestingly, our framework can be modified so that
arbitrary protocols are installed as a result of an update. One needs to ensure
that the endpoints of a session are present in the same location: arbitrary updates
are safe as long as both endpoints are simultaneously updated with dual proto-
cols. To relax our framework in this way, we would need to modify definitions
for session matching (Definition 2.1) and interface ordering (Definition 3.2).

In future work, we plan to further validate the constructs in our framework
by revisiting the model of supervision trees (a mechanism for fault-tolerance
in Erlang) that we gave in [4]. Other interesting topics for further develop-
ment include accounting for asynchronous communication (cf. Remark 3.7) and
extending our event-based approach to choreographic protocols; the framework
in [3] may provide a good starting point.
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Table 5. Reduction semantics: Full set of rules. Above, α and β denote session types.

Acknowledgments. We are grateful to Ilaria Castellani, Mariangiola Dezani-
Ciancaglini, and the anonymous reviewers for useful remarks. This research was par-
tially supported by COST Action IC1201: Behavioural Types for Reliable Large-Scale
Software Systems.

A Reduction Semantics: Full Set of Rules

Table 5 gives the full set of reduction semantics rules.
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Table 6. Additional typing rules.

B Type System: Additional Typing Rules

Table 6 gives additional typing rules for the system in Sect. 3.
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8. Di Giusto, C., Pérez, J.A.: Disciplined structured communications with disciplined
runtime adaptation. Sci. Comput. Program. 97, 235–265 (2015)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., Honda, K.: Type-safe eventful
sessions in Java. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 329–
353. Springer, Heidelberg (2010)

11. Kouzapas, D.: A Study of Bisimulation Theory for Session Types. Ph.D. thesis,
Imperial College London (2012)

12. Kouzapas, D., Yoshida, N., Honda, K.: On asynchronous session semantics. In:
Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS, vol. 6722,
pp. 228–243. Springer, Heidelberg (2011)

13. Kouzapas, D., Yoshida, N., Hu, R., Honda, K.: On asynchronous eventful session
semantics. Math. Struct. Comput. Sci. 26(2), 303–364 (2016)

14. Costa Seco, J., Caires, L.: Types for dynamic reconfiguration. In: Sestoft, P. (ed.)
ESOP 2006. LNCS, vol. 3924, pp. 214–229. Springer, Heidelberg (2006)



Designing Efficient XACML Policies
for RESTful Services
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Abstract. The popularity of REST grows more and more and so does
the need for fine-grained access control for RESTful services. Attribute
Based Access Control (ABAC) is a very generic concept that generalizes
multiple different access control mechanisms. XACML is an implementa-
tion of ABAC based on XML and is established as a standard solution.
Its flexibility opens the opportunity to specify detailed security policies.
But on the other hand it has some drawbacks regarding maintenance
and performance when the complexity of security policies grows. Long
processing times for authorization requests are the consequence in envi-
ronments that require fine-grained access control. We describe how to
design a security policy in a resource oriented environment so that its
drawbacks are minimized. The results are faster processing times for
access requests and a guideline to structure security policies for REST-
ful services easing their maintenance.

1 Introduction

Many of today’s information systems and applications manage huge amounts of
users and data. Often users share their own content (e.g. photos, documents)
within these applications. A substantial need to control who may access this
content is the consequence. In an environment where a lot of users share a lot
of data and specify multiple access rights, a flexible, high-performance access
control mechanism is required. Because classic access control mechanisms like
Role Based Access Control (RBAC) or Access Control Lists (ACL) have been
developed for a different purpose, they do not fit the need for flexibility. For
example trying to protect the resources of a web application with RBAC may
lead to overengineering of roles, which means that too many roles must be
introduced. ACL is not suitable in dynamic environments, when access rights
depend on changing resource or subject state. Attribute Based Access Control
(ABAC) seems to be a suitable candidate that allows the creation of flexible
access rules [15]. The challenge that comes with ABAC is to create security
policies in a way that high performance can be guaranteed even in complex
environments. This work describes how to utilize the architecture of a RESTful
application to write attribute based access control policies. Also we assume that
the resources of this application require individual access rules.

c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 86–100, 2016.
DOI: 10.1007/978-3-319-33612-1 6
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2 Foundations

In this section we will introduce the eXtensible Access Control Markup Language
[5] and an architectural style to build distributed services called REST [4].

2.1 XACML - eXtensible Access Control Markup Language

Attribute Based Access Control is a solution for flexible access control [15]. The
main idea behind it is that any property of an entity can be used to deter-
mine authorization decisions. The eXtensible Access Control Markup Language
(XACML) is a standard that describes how to implement ABAC. It consists of
three parts: an architecture describes multiple components and their respon-
sibilities in the authorization context, a declaration language can be used
to specify access control policies based on XML and a request language to
formulate access requests and responses.

This work focuses the declaration language. There are three core elements
in the structure of a XACML document: Rules describe if an access request is
permitted or denied. Policies group different rules together and policy sets
group different policies together. Policy sets may also contain other policy sets
enforcing a hierarchical composition. Each of those elements has a target that
defines conditions which describe if the element can be applied to a request.
Besides the condition, also a category is assigned to the target. A category
can be interpreted as a type. Examples for categories are Subject, Action or
Resource. An textual example for a target is The subject must have the name
“marc”. Single access requests may be applicable to multiple policy sets, policies
and rules with different effects (Permit or Deny) and a winning rule must be
found. XACML uses combining algorithms for that purpose. An example for
such an algorithm is PermitOverrides. It states that an applicable rule with the
effect Permit will win against a rule with the effect Deny.

Figure 1 shows a schematic version of a XACML document. The policy con-
tains two rules and is applicable to a HTTP GET request on a resource with

Policy Set
target : Resource (URI = /users/1/photos)
combing algorithm : deny-overrides

Policy
target : Action (method = GET)
combing algorithm : permit-overrides

Rule
target : Subject (name = marc)
effect : permit

Rule
target : Subject (name = ulf)
effect : deny

Fig. 1. A XACML policy regulating HTTP GET access to the photos of an user
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the URI /users/1/photos. The first rule grants access to a user with the name
marc while the second rule prohibits access to a user with the name ulf.

2.2 REST - Representational State Transfer

The concept of Representational State Transfer (REST) describes an architec-
tural style for distributed systems and services. Services that follow the archi-
tectural style are usually called RESTful. A RESTful service must follow four
main principles. For efficient policy design the first two principles (resource
orientation and addressability and an uniform interface) play a key role.
For completeness we give a short overview over the two other principles, too.

The first concept is RESTful services is named resource orientation and
addressability. Each resource is addressed with an URI that identifies the
resource. A good URI design is important and might be a challenge for unex-
perienced software designers. URIs have a fixed composition and are built using
the expression scheme:authority:path:query. An example for an URI is http://
example.org/users/1/photos?date=20150101. The scheme is http, the authority
is example.org, the path is /users/1/photos and the query is date=20150101.
While scheme and authority are usually unchanged in one application, the
path has a big impact on the application structure and requires a good design.
A proper design has a hierarchical nature forming a graph of resources and sub-
resources. A query can be interpreted as a filter that selects a subset of resources.
In the example only the photos of a specific date are requested.

Another important concept of RESTful services is a uniform interface to
perform actions on resources. For each resource the same finite set of actions
may be executed. Usually RESTful services are associated with the Hypertext
Transfer Protocol HTTP [8]. Therefore the HTTP methods specify the methods
of the interface. That means for each resource GET, POST, PUT, DELETE and
other HTTP methods like OPTIONS or HEAD can be applied. That offers the
opportunity to use standardized clients (e.g. browsers) to perform operations on
a resource. The only required client capability is the support for the uniform
interface.

The differentiation between resources and representations is the third
concept of a RESTful service. A client requests a resource and a server returns
a representation of that resource. For example the client may request a single
user and the server responds with an identity card of that user which represents
him. The client usually has the option to specify preferred representations of a
resource.

The fourth concept is that communication is stateless in RESTful ser-
vices. The client must hold any information about the state of the application
because the server does not hold these information. The server only stores the
state of the resource expressed as hypermedia and sends possible next states as
part of the metadata of a resource to the client. Therefore the concept is often
called Hypermedia as the engine of application state (HATEOAS).

http://example.org/users/1/photos?date=20150101
http://example.org/users/1/photos?date=20150101
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3 Efficient XACML for RESTful Services

An efficient security policy design should enable fast request processing and
should be easy to maintain. The security policy described in XACML is a uni-
directional graph without cycles. The nodes of that graph describe access con-
ditions in terms of targets. Edges of the graph represent conjunctions of these
targets.

Figure 2 introduces a graphical notation for targets of XACML policies that
should help to understand the mathematical foundations of XACML. The graph
is the target representation of the XACML document shown in Fig. 1. Each box
illustrates a target in which categories (e.g. Resource) and corresponding access
conditions (e.g. URI = /users/1/photos) are listed.

Resource (URI =
/users/1/photos)

Action
(method = GET)

Subject
(name = marc)

Subject
(name = ulf)

Fig. 2. A graphical notation for XACML policies targets

To enable fast request processing we need to consider the costs of processing
an access request in a single node of that graph. We define the cost function as:

c : T × Q → Q (1)

with T being the set of targets of the XACML document, Q being the set of
possible access requests and Q being the set of rational numbers.

To derive the cost function, we define p as the path between two targets.
The path between two targets describes the conjunction of all access conditions
between those two targets:

p : T × T → P(T ) (2)

with P(T ) being the power set of T . For example if we select the targets of the
policy set and the first rule from Fig. 1 as arguments, then the path p is defined
as the conjunction of all targets between the policy set and the first rule. This
conjunction can be expressed as: Resource (URI = /users/1/photos) ∧ Action
(method = GET) ∧ Subject (name = marc).

Additionally we define the length of a path between two targets as the number
of targets that are conjuncted. We note the length of a path as:

|p(t1, t2)| (3)
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The path mentioned in the previous example has a length of 3 because 3 targets
are conjuncted. The set of child targets of a target t can be expressed as:

T ′
t := {t′ ∈ T | |p(t, t′)| = 2} (4)

Let αt be the combining algorithm of a policy set or policy with the target
t and let A be the set of combining algorithms. Let ε be an effect within the set
of effects E. Then one has the following proposition for XACML:

∀αt ∈ A ∃ε ∈ E : evaluate(ti, q) = ε ⇒ αt stops; ti ∈ T ′
t , q ∈ Q (5)

That means that for any given combining algorithm there are one or more effects
that cause the algorithm to stop if one of the child targets computes to one of
these effects. If none of these effects occurs, the algorithm stops after processing
the last child target. For example the policy shown in Fig. 1 contains two rules
and has the combining algorithm PermitOverrides. If the first rule computes to
Permit, the result of the evaluation of the policy will also be Permit no matter
what the result of the second rule may be. Therefore the combining algorithm
might stop and should not process the second rule. We define a function γ for
target t that describes this behavior:

γt(ti, q) =

{
1 if ∀t′ ∈ {t1, ..., ti−1} : αt does not stop

0 if ∃t′ ∈ {t1, ..., ti−1} : αt does stop
(6)

With ti ∈ T ′
t and q ∈ Q. For the example mentioned above, the γ function of

the target associated with the policy is equal to 1 for the target associated with
the first rule and equal to 0 for the target associated with the second rule. The
cost function c then can be expressed as:

c(t, q) = τ(t, q) +
|T ′

t |∑

i=1

γt(ti, q) ∗ c(ti, q) (7)

The function τ(t, q) describes the cost for matching the attribute conditions of
a target t against a request q. Therefore it is mainly dependent on how many
attribute conditions are specified in the target. Hence, the costs for processing
a target depends on the number of attribute conditions in the target, the sum
of child targets and the combining algorithm resp. the order of the child tar-
gets. The following sections describe how to minimize the costs of processing
access requests and decrease maintenance efforts for each of the listed factors.
Maintenance of policies is important as for any software component due to error
correction or adapting to new requirements.

3.1 Target Design (Minimize τ (t, q))

As one can see in formula (7) attributes should be added carefully to targets,
to keep the target small and thus reduce the number of comparisons needed to
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be executed in the worst case. For example a security policy might address two
pairs of conditions. Each pair specifies a subject condition (name = userid) and
a resource condition (URI = /users/userid/photos). An intuitive way would be
handling each pair of conditions in one target as indicated in Fig. 3(a). Both
access conditions are combined in a single target of a rule.

Processing a request with a subject condition (name = Ulf) and a resource
condition (URI = /users/3/photos) requires four attribute comparisons in the
worst case because XACML does not specify an order in which attributes must
be checked within a target. But if one splits a pair of conditions into multiple
targets of rules, policies and policy sets as indicated in Fig. 3(b), a maximum of
three comparisons is required. This optimization reduces the worst-case cost of
processing targets that are not applicable to a request while the cost for process-
ing a target that is applicable to a request remains unchanged. The optimization
reduces variations of processing times down to a minimum but leaves the average
processing time unchanged.

Parent target

Subject
(name = marc)

Resource (URI =
/users/1/photos)

Subject
(name = ulf)

Resource (URI =
/users/2/photos)

(a) Max. of 4 comparisons

Parent target

Subject
(name = marc)

Subject
(name = ulf)

Resource (URI =
/users/1/photos)

Resource (URI =
/users/2/photos)

(b) Max. of 3 comparisons

Fig. 3. Target design

In addition, there is a maintenance benefit, since it becomes easier to add
new conditions that affect a resource with the attribute name and the value
marc but not a resource with the attribute URI and the value /users/1/photos.
For example if one wants to add a target that is applicable to a subject condition
(name = marc) and an action condition (method = GET), in Fig. 3(a) either a
new target with both conditions must be added or the target on the left side
must be divided into two parts. For the structure in Fig. 3(b) only a new branch
below the top left condition is required.

3.2 Number of Child Targets (Minimize
∑|T ′

t |
i=1 cti)

From the sum in (7) one can derive that it is required to have as less targets
as possible to optimize the processing time. Hence, wherever possible targets
should be grouped together. That means an efficient policy design must have its
branching points at the lowest possible position.
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Parent node

Subject
(name = marc)

Action
(method = GET)

Resource (URI =
/users/1/photos)

Resource (URI =
/users/1/photos)

(a) Upper branching point

Parent node

Resource (URI =
/users/1/photos)

Subject
(name = marc)

Action
(method = GET)

(b) Lower branching point

Fig. 4. Number of child targets

Besides the performance gain this optimization also has a maintenance ben-
efit. Maintenance efforts for the resource with the attribute condition (URI =
/users/1/photos) can be reduced because the target that handles the resource
does not occur twice in the security policy. Figure 4 indicates how redundancy
is prevented if targets are grouped together.

3.3 Combining Algorithm and Child Order (Minimize γk)

The selection of the combining algorithm and the child node order also has an
effect on performance. Processing those rules first that override the effects of
other rules, leads to shorter average processing times for access request. The
reason for that is that no other rule needs to be evaluated if an overriding rule
matches. And if there is no overriding rule that matches, the combining algorithm
might stop after the first match of the non-overriding rules because those rules
cannot be overridden anymore. This is the basic idea of so called normalization
described in [10].

Figure 5 shows the effect of normalization. A given policy with the combining
algorithm DenyOverrides and two rules as indicated in Fig. 4(a) is transformed
so that it has a combing algorithm of FirstApplicable and a node order that
gives performance improvements. In Fig. 4(a) both Rule A and Rule B must be
processed to find a decision. But for the policy indicated in Fig. 4(b) it might be
enough to process Rule B.

DenyOverrides

Rule A: Permit Rule B: Deny

(a) Not normalized

FirstApplicable

Rule B: Deny Rule A: Permit

(b) Normalized

Fig. 5. Normalization
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3.4 Guidelines for Policy Design

As described in the previous sections, one core concept of REST is resource ori-
entation. Therefore in our approach the security policy is also based on resources.
This is a reasonable technique in a resource oriented architecture and offers the
benefit of very fast identification of authorization rules that must be applied dur-
ing the evaluation process. That means for efficient security policies, the targets
of policy sets must only contain exactly one resource attribute: the URI. With
this constraint it is not necessary to consider combining algorithms since multiple
matches of different policy sets or policies are not possible because a dedicated
URI is unique. That means that the combining algorithm FirstApplicable can be
used in every policy set to improve performance as described in Sect. 3.3. In con-
sequence, the processing time for access requests can be kept small even if new
resource paths are added or the security policy is extended.

We also mentioned that RESTful service always have an uniform interface.
Therefore we consider that the set of allowed methods is limited to the methods
of that interface (the HTTP methods). In our approach these methods are used
as possible actions in the security policy. For each action a dedicated policy
should be used and this policy should be included as a child node of the policy
set for the resource. Within these policies rules may be specified that describe
under which circumstances the resource may be accessed. That means that all
attributes except the URI and the HTTP method are handled in rules.

Resource (URI =
/users)

Resource (URI =
/users/1)

Resource (URI =
/users/1/photos)

Action
(method = GET)

Action
(method = GET)

Action
(method = PUT)

Subject
(name = marc)

Subject
(name = marc)

Policy Set

Policy

Rule

Fig. 6. An example of efficient XACML for RESTful services

Figure 6 shows an efficient security policy for a RESTful application that
follows the optimizations described in the previous sections. The white boxes
represent policy sets whose targets only address URIs of corresponding resources.
The lighter gray boxes represent policies whose targets address the methods of
the uniform interface of the RESTful service. Finally, the darker gray boxes
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indicate rules that may contain multiple access conditions within their targets.
Our example in Fig. 6 has only one condition about the subject name, but this
could be extended with other predicates on any category. Hence, an access control
designer applying these guideline has still flexibility to write her own rules.

Architects, developers and consumers of the RESTful service can easily navi-
gate through the security policy because it has the same structure as the service
itself. This is a great maintenance benefit because the identification of possible
failures becomes very easy and changes to the security policy can be implemented
very fast.

3.5 Grouping of Child Targets

Extensibility is an important characteristic for RESTful services. With a growing
number of resources also the number of entries in the security policy increases.
If resources are of the same type, their corresponding entries in the security
policy are on the same level and share the same parent target. Imagine a new
user resource is created in the security policy shown in Fig. 6. The policy set for
this user will be placed under the /users resource and on the same level like the
other user resources. If the number of users grows, also the average processing
time for a request grows.

To keep the gain of processing time in an acceptable range, it is a good advice
to utilize tree structures because they enable faster search algorithms than flat
structures. Let O(f) be the order of a function f in terms of complexity. As it is
well known (see for instance [2]) a search operation on a binary tree with n nodes
runs in O(log2n) worst-case time. While on the other side the same operation runs
in O(n) worst-case time for a linear chain of nodes. We can adapt this idea to
increase the performance of processing security policies described in the previous
sections by transforming the structure of policy sets into a more efficient form.

With XACML in general the utilization of additional tree structures is not a
simple task because the security policy may be built on various types of access
conditions. But in our approach the main part of the security policy is built on
just one type of attribute condition (the condition if the URI matches). That
means we can easily utilize additional tree-like structures for this condition to
increase the performance. While XACML does not support data structures and
has only simple control logic that remembers nested if-statements in a program-
ming language (but with additional control by policy combination algorithms),
it is possible to simulate a tree structure by nesting policies with target condi-
tions. Figure 7 shows how a binary tree can be included into the security policy
to increase the performance during the evaluation of an access request. The tar-
get tree for a security policy of a RESTful service shown in Fig. 7 might handle 8
users (resp. user accounts/profiles addressed by a corresponding URI). The first
step to create a tree of policy sets is splitting the total amount of users into two
intervals. For each interval a policy set must be created that handles access to
the user resources. This step is then repeated multiple times until the intervals
only contains one user resource. We use brackets in our target tree figures to
indicate intervals.
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/users)

Resource (URI
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Resource (URI
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∈

Fig. 7. Using tree structure to increase performance

While the utilization of trees allows faster processing times, the security pol-
icy becomes far more complex because more policy sets are added. This is a
drawback for maintenance. Therefore a tradeoff between performance and main-
tenance efforts is required. The tradeoff could be eliminated if the tree structure
could be utilized internally in an implementation of the access control model. In
this case well-known algorithms [2] for trees with dynamic size could be used.
But that is not possible with XACML implementations due to the generic design
of XACML.

Depending on the computation capabilities of the device that handles the
access request and the amount of resources of the same type, the structure of
the tree can be varied. A binary tree might cause larger maintenance efforts than
a tree based on more intervals (more child nodes) for each node. As one can see
in Fig. 9 of the Validation section, processing times still are acceptable for about
100 nodes arranged in a chain. That means instead of using binary trees one
could think about using trees with 100 child nodes per node. That decreases
maintenance efforts because a smaller tree depth is required to handle the same
amount of resources.

4 Validation

We performed multiple tests on different security policies designed to protect a
RESTful service. In a first set of tests we analyzed the effect of the optimizations
described in Sects. 3.1 to 3.4. In a second set of tests we analyzed the impact of
additional tree structures as described in Sect. 3.5. We created synthetic policies
to perform the validation. Real world policies should show similar results because
the architectural foundations of a RESTful application remain the same. The
only variable that differs is the amount of resources at a dedicated level. To be
able to handle different amounts we introduced grouping of child targets.

All sets of tests have been executed using Balana1 which is an open source
implementation of XACML. The measurement was executed on a dual core
1 https://github.com/wso2/balana.

https://github.com/wso2/balana
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system (Intel i7-3250M, 2,90GHz) with 8GB working memory reserved for the
tests. Each set of tests has been executed at least 20 times.

4.1 Effect of Optimizations

To measure the effect of the optimizations described in Sects. 3.1 to 3.4, we
created three test suites with four complete security policies in each suite. Gen-
erally, the test policies are on the lines of the examples in the previous sections.
The security policies of the first suite contain 10 access conditions on the URI
attribute of 10 resources (one condition for each resource). A single condition for
each of the main HTTP methods (GET, POST, PUT and DELETE) is assigned
to the resources. Finally, for each of those conditions a single rule is assigned
again with an additional condition about a subject, resulting in 40 rules per secu-
rity policy. In the second suite we added 10 subresources to each resource having
a total number of 110 resources), resulting in 440 rules. In the third suite we
added again 10 subresources to each resource having 1110 resources and 4440
rules. Each test suite contains four security policies: a non-optimized security
policy (flat condition structure and all conditions in the rules following the pat-
tern of Fig. 3(a)), a normalized security policy with the optimizations described
in Sect. 3.3 (pattern of Fig. 5(b)), a structure-optimized security policy moving
conditions from rules to policy/policy set targets containing the optimizations
described in Sects. 3.1 and 3.2 (pattern of Figs. 3(b) and 4(b)) and finally a
security policy with all of the optimizations described in Sects. 3.1 to 3.3 which

102 103 104
0

100

200

300

number of rules

t(
m

s)

Optimized Structure-Optimized
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Fig. 8. Average processing time
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follows the guidelines described in Sect. 3.4. All security policies within a test
suite are functionally equal and produce the same access decisions.

Figure 8 shows the average processing time for an access request. As one
can see the processing times for the set with the smallest policies only differ
insignificantly. But with growing policy complexity the difference becomes con-
siderably. While the average processing time for the optimized policy remains
approximately constant at about 15 ms, the average processing time for the non-
optimized policies increases up to 304 ms.

The main contribution to the performance benefit of the optimized security
policy is delivered by the structure changes indicated in Fig. 4. Normalization
only has a significant impact for larger policies with many rules and without
an optimized structure. Also normalization causes great variations in process-
ing time of up to nearly 200 % of the average processing time, while the non-
optimized policies has a variation in processing time of about 50 % and the
optimized policies resp. structure-optimized policies show a variation of about
25 %. The normalized policy has a worst-case processing time of 316 ms.

4.2 Impact of Grouping Child Targets

As described is the previous sections the average processing time grows with
an increasing number of resources of the same type. If the number of resources
becomes too large, also the optimizations described in Sects. 3.1 to 3.4 cannot pre-
vent that the processing time increases up to a not suitable value. This is because
resources of the same type form a flat structure which can only be scanned for
matching targets with larger efforts. For large numbers of resources of the same
type, it is important to group child targets together to keep the average processing
time small.

To test the impact of grouping child targets together, we created different
security policies with 10, 100, 1.000 and 10.000 resources. We then compared
the average processing time for an access request of a security policy without
grouping with the processing time of a security policy with grouping based on
URIs. We selected a group size of 10 for each policy set which means each policy
set has again 10 policy sets as children. That means the additional trees that
are included in the security policies due to grouping of targets, have a depth of
1 (100 resources), 2 (1.000 resources) and 3 (10.000 resources).

Figure 9 shows the average processing time for different amounts of resources.
Without grouping the processing time grows linear with the number of resources.
If grouping is used, the processing time grows in a logarithmic order. For the
policies that do not utilize grouping of targets, the processing time increases
from 14 ms for 10 resources to 689 ms for 10.000 resources. On the other hand
the growth for the policies that do utilize grouping of targets is less than 2 ms
and therefore not mentionable due to the fact that an initialization overhead of
about 14 ms related to the XACML implementation is the most significant effort
for the calculation of an access decision. The processing time only increases from
14.1 ms for 10 resources to 15.7 ms for 10.000 resources.
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Fig. 9. Growing number of resources

5 Related Work

XACML computes access decisions at runtime and must evaluate multiple
attributes of different categories to find a decision. Therefore the average com-
putation time for an access request increases with growing policy complexity. The
problem of computation at runtime is related to the architecture resp. the gen-
eral concept of XACML. A graph based approach described in [14] tries to address
performance issues by changing the processing algorithms. Two different trees are
used to evaluate an access request. The first tree identifies applicable rules. The
second tree holds the original structure of the security policy and identifies the
winning rule. Another approach uses numericalization and normalization to opti-
mize performance [9,10]. Numericalization converts every attribute to an integer
value. Normalization converts every combining algorithm into FirstApplicable. In
[12] processing time is optimized by reordering policy sets and policies based on
statistics of past results. A similar approach to ours also reorders policies based
on cost functions but focuses on categories rather than attributes [13]. Also they
assume that a rule always is a 4-tuple of a subject, an action, a resource and an
effect. Other categories and combinations are not allowed.

Another aim of our transformation rules for XACML is the readability of
policy definitions by introducing a lucid hierarchical structure of policy sets.
Changes should be possible in an easy way. XACML does not define how to
handle changes to a security policy. The most common way is manually inserting
new policy sets, policies and rules supported by a graphical user interface like
in [11]. But manually modifying complex policies is very error prone because
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multiple changes in different branches of the structure may be required. A lot
of works exists that addresses the manipulation of XML documents [3,18]. The
key aspect is on fast detection of differences, not on impact analysis of policy
changes.

Declarative authorization for RESTful services is handled in [6]. Attributes
are not considered in this approach. Another approach that targets authorization
for RESTful Services is described in [1]. But this work is focused on RBAC.
In [19] an architecture is described to secure web services (SOAP) based on
attributes. Another approach that targets authorization for RESTful Services is
described in [1]. But this work is focused on RBAC which is way simpler than
ABAC. In [19] an architecture is described to secure web services (SOAP) based
on attributes. Another approach that is focused on SOAP is described in [16].
The detection of access control vulnerabilities in web applications is discussed
in [17]. This work covers web applications that use RBAC as access mechanism.

6 Conclusions

We have shown two major steps to write efficient XACML policies for RESTful
services. The first step uses transformation rules that are derived from a cost
function for an access request. We have developed a guideline how attribute based
access control policies should be built for RESTful services leading to a clearly
laid out structure that opens the opportunity to reduce maintenance efforts. We
restrict the design of policy sets and single policies in XACML by aligning it
to principles of RESTful service design, but keep flexibility at rule level. In a
second step, we simulate a tree data structure inside of XACML without actually
extending the language that allows faster access of rules, but with drawbacks on
policy maintenance. We have validated our work in multiple rounds of tests that
showed improved performance for larger amounts of resources.

A problem that we have not addressed is XACML’s restrictiveness. With
every target on a path to a rule, access conditions become more restrictive. This
can be a problem for RESTful services. A service might have a resource user list
/users and access to this resource is granted only to some administrators but
not to single users. But a resource /users/1 might be accessed by administrators
and user 1. Since user 1 is a subresource of the user list, the policy set that
handles access to this subresource should be placed below the policy set that
handles access to the user list. In XACML you cannot extend a condition at
sub policy level. In consequence the same condition must be repeated multiple
times which causes the policy complexity to grow unnecessarily and increases
the maintenance efforts.

To handle the performance and maintenance problems described in the previ-
ous sections and the restriction problems mentioned above, we are developing an
alternative language which is inspired by XACML. The language targets REST-
ful services and should guarantee that the optimizations described in Sect. 3 are
respected. We introduce a first language version in [7]. A draft version already
exists and a prototype is implemented. First results show slightly improved per-
formance even to optimized XACML policies.
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Abstract. In this paper we present a direct algorithm for session type
inference for the π-calculus. Type inference for session types has previ-
ously been achieved by either imposing limitations and restriction on the
π-calculus, or by reducing the type inference problem to that for linear
types. Our approach is based on constraint generation and solving. We
generate constraints for a process based on its syntactical components,
and afterwards solve the generated constraints in a predetermined order.
We prove the soundness, completeness, and termination of this approach.

1 Introduction

From small concurrent applications, to web applications and services, to large
distributed systems, communication between processes is a central aspect of con-
current systems and networking protocols. Properties of such concurrent compu-
tations can be formally modelled and analysed with process calculi such as the
π-calculus, in which interprocess communication is described as message passing
along named channels.

To further formalise and structure interactions between communicating
processes, behavioural type systems can be applied. One such approach is binary
session types [6] using a dialect of the π-calculus with types. Session types
describe the protocol used on a communication channel, but do not restrict the
channel to a single type of message. Instead, a session type describes a sequence
of message types, and may even include choices between a number of messages;
a channel’s session type is thus the communication protocol of the channel.

In this paper we consider a type system based on that of [4], though without
subtyping and describe a type inference algorithm for binary session types that
allow us to automatically deduce the types of the session channels. We show
that the procedure will deduce a typing for a process P if and only if P can be
well-typed.

Linear types is a seemingly simple type discipline; in a linear type system
for the π-calculus, each channel type is associated with a multiplicity and a
polarity which indicate how many times, and for what purpose, a channel may

c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 103–121, 2016.
DOI: 10.1007/978-3-319-33612-1 7
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be used [8]. In [7] Kobayashi outlines how binary session types can be encoded
as linear types, and this encoding is investigated and proved correct by Dardha
et al. [3].

The existence of this encoding has two consequences; Firstly that session
types are no more expressive than linear types, and secondly that many of the
results from linear types can also be applied to session types. Thus a possible
indirect approach to type inference for session types is to first convert the input
to linear types, and then use a type inference algorithm for linear types. Such
an algorithm is presented by Padovani in [11].

However, it is not generally the case that one can use this translational app-
roach, as it depends on the existence of a correspondence. In this paper we
provide a direct approach to session type inference for a full session-based ver-
sion of the π-calculus by means of constraint solving. The constraints that are
to be solved are ones that will appear in other systems for binary session types,
so the methodology developed will have a wider applicability to other language
settings.

A direct approach to type inference for session types is outlined by Tasistro
et al. in [12], but this work imposes severe restrictions to the π-calculus in terms
of syntax; in particular the notions of branching and selection are not dealt with.
In another paper, Mezzina [10] describes type inference for a binary session type
system for a finitary process calculus for service-oriented computations; there
are notions of branching and selection presented but they do not involve named
sessions, and neither does the notion of communication involve named session
channels. Moreover, the type rules for branching and selection due to Mezzina
are nondeterministic, so it becomes necessary to first establish an equivalent and
algorithmically tractable set of rules.

In our presentation we are able to avoid these complications. The account of
type inference is inspired by the approach by Lhoussaine in [9] which describes
constraint generation and solution by means of a set of small-step reduction
rules. This facilitates the proof of the correctness of our algorithm.

Our paper is organised as follows: In Sect. 2 we formally introduce the π-
calculus and session types. In Sect. 3 we introduce rules for constructing and
solving constraints, and, by doing so, inferring the type of a process (assuming
the process can be typed).

2 Preliminaries

In this section we introduce the π-calculus and session types in Sects. 2.1 and 2.2
respectively. We do this in order to eliminate any confusion as to which version
of the π-calculus and session type system we consider.
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2.1 The π-calculus

The π-calculus that we consider is similar to the ones introduced in [2,3,13]. Its
syntax of the π-calculus can be seen in Table 1. We assume a countably infinite
set of names Names and a countably infinite set of labels Labels.

The subject of an action is given by subj(x!y) = {x}, subj(x?y) = {x} and
subj(τ) = ∅. The set of free names in a process P is denoted fn(P ).

In what follows, we write (νx1 . . . xm)P for (νx1) . . . (νxm)P and omit trailing
0 processes where appropriate.

The reduction semantics is given in Table 3. It assumes a standard notion of
structural congruence, defined in Table 2.

Table 1. Syntax of the π-calculus

Table 2. Structural congruence of the π-calculus

Table 3. Semantics of the π-calculus
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2.2 Binary Session Types

Our type system for binary session types is close to that of [3]. The syntax of
types is described in Table 4.

We let Type denote the set of types. As usual, a binary session type describes
the protocol followed by a channel in the form of the sequence of types sent
along the channel A channel outputting a datum of type T is written !T and a
channel receiving something of type T is written ?T .

Table 4. Syntax of session types

Duality is formally defined as seen in Definition 1. The definition is as
expected and is similar to the definition from [2,13].

Definition 1. If S is a session type, then the dual of S, denoted S, is defined by

?T.S =!T.S !T.S =?T.S

&{�i : Si}i∈I = ⊕{�i : Si}i∈I ⊕{�i : Si}i∈I = &{�i : Si}i∈I

end = end

In addition we will make use of the concept of polarity to the describe the
ends of a channel as introduced by [4]. The two ends of a channel named x can
are denoted x+ and x−, respectively. The set of polarized names is denoted by
PNames and we let p range over the polarities {+,−}.

A type environment is now a function with finite support that assigns types
to polarized names.

Definition 2. A type environment Γ is a function Γ : PNames ⇀ Type.

We use Environment to denote the set of environments.

Definition 3 (Balanced and complete environments [4]). Let Γ be a type
environment. We say that Γ is completed, written Γ comp, if every session type
in Γ is end. Γ is balanced if for every x+, x− ∈ dom(Γ ) we have Γ (x+) = T ⇐⇒
Γ (x−) = T .

Definition 4 (Type environment extension [4]). Addition of a typed name
to an environment is defined by

Γ + x+ : S = Γ, x+ : S if x+ /∈ dom(Γ ) and x /∈ dom(Γ )
Γ + x− : S = Γ, x− : S if x− /∈ dom(Γ ) and x /∈ dom(Γ )
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This definition extends in an iterative fashion to environments as follows:
if Γ2 = x1 : T1 + · · · + xk : Tk (for k ≥ 0) we have Γ1 + Γ2 = ((Γ1 + x1 :
T1) + · · · + xk : Tk).

The typing rules for the session types are presented in Table 5 and correspond
to the typing rules introduced by [4].

Table 5. Typing rules for session types

Let us say that a process P is well-balanced if Γ � P where Γ is balanced.
The type system guarantees that a well-balanced process will always stay well-
balanced after a reduction. This property is proved in [4].

Theorem 5. If Γ � P and Γ is balanced and P
τ−→ P ′ then Γ ′ � P ′ where Γ ′ is

balanced.

3 Type Inference

In this section we describe an algorithm that performs type inference by means of
constraint generation and solving. We will modify the typing rules from Table 5
to generate constraints in Sect. 3.1 and present an algorithm to solve this con-
straint satisfaction problem by creating a substitution solution in Sect. 3.2.

3.1 Constraint Generation for Type Inference

The constraints that will be generated belong to the constraint language seen in
Table 6.

In our constraints we use type and environment variables, for which we use
τ and γ respectively. We use TVar and EVar to denote the sets of type variables
and environment variables.

The constraints are of the following three main kinds; most of them corre-
spond directly to the conditions encountered in the rules of the type system.
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– Constraints that describe properties for types:

CT :: = τ1 = τ2 | τ1
!τ2−−→ τ3 | τ1

?τ2−−→ τ3 | τ1
��−→ τ2 | τ1

��−→ τ2 | τ1 ⊥ τ2

The meaning of the constraints are as follows: τ1
!τ2−−→ τ3 means τ1 =!τ2.τ3,

τ1
?τ2−−→ τ3 means τ1 =?τ2.τ3, τ1

��−→ τ2 means τ1 = ⊕{. . . , � : τ2, . . . }, τ1
��−→ τ2

means τ1 = &{. . . , � : τ2, . . . }, τ1 ⊥ τ2 means τ1 = τ2
– Constraints for relationships/properties of environments:

CE :: = γ1 = γ2 + x : τ | γ1 ⊇ γ2 + γ3 | γ1 ⊆ γ2 + γ3 | γ comp

Here γ comp means that γ is completed as described in Definition 3, and
addition of environments is done according to Definition 4.

– Constraints for other requirements:

CO :: = L (τ) = L | x /∈ dom(γ)

The labelling constraint L (τ) = L denotes that the labels for branch-
ing/section are those of L. This constraint makes use of the function L defined
in Definition 6.

The formation rules are found in Table 6.

Table 6. Constraint language

Definition 6 (Label function L ). L : Type → 2Label is a function such that

L (&{�i : Ti}i∈I) = {�i | i ∈ I}
L (⊕{�i : Ti}i∈I) = {�i | i ∈ I}

We present constraint generation in the form of a reduction relation, inspired
by Lhoussaine [9]. The reductions are all of the form

P � γ,C

where P is a process, γ is an environment variable, and C is a set of constraints.
A reduction of this form should be read as stating that for process P to be well-
typed the constraints in C must be satisfied and the type environment γ must
be used.
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The reduction rules defining constraint generation rules are found in Table 7.
The rules are syntax-directed and thus correspond to the typing rules presented
in Table 5. In addition we assume that each new variable introduced in each rule
is fresh i.e. the variable is not used in any of the previous constraints. The idea
behind each rule is to collect constraints that describe the side conditions that
must be satisfied in order for the corresponding type rule to be applicable.

As an example, consider the constraint generation rule [C − IN]. The typing
rule [T − IN] describes for an input process x?y.P to be typable in environment Γ ,
the name x must be a channel of type ?U.S on which an input of a name of type U
can be performed. The continuation P must then be typable in an environment
where x now has type U and an assumption about the type of y is added. This is
an example of a rule that mentions multiple environment variables in one rule;
here we get the environment constraints {γ = γ1 + x : τ1, γ2 = γ1 + x : τ2, γ2 =
γ3 + y : τ3} where γ corresponds to the environment Γ of [T − IN] and the two
other constraints together denote the modified environment of the premise in
the typing rule.

As another example, consider the rule [C − BRA]. This rule corresponds to
the typing rule [T − BRA] and again the environment constraints describe how
the type environments are updated in the premises of [T − BRA] and that the
selections must be possible. In the last constraint mentioned we use the label
function defined in Definition 6 to collect the labels available in the branching.

Note also that in the rule [C − PAR] we create two constraints, γ ⊇ γ1 + γ2
and γ ⊆ γ1 + γ2, instead of one γ3 = γ1 + γ2. Both of these choices were made
since this makes the constraints easier to solve in (see Sect. 3.2).

It is important that constraint generation is correct in the sense that a solu-
tion to the generated constraints for a process P must provide us with a type
environment Γ such that P becomes well-typed under the assumptions in Γ .
If on the other hand the process P cannot be well typed for any choice of Γ ,
the constraints generated must not be solvable. That this is actually the case is
captured by Theorem 7.

Theorem 7 (Correctness of constraint generation). There exists a Γ such
that Γ � P if and only if P � γ;C and there exists a substitution σ : TVar ∪
EVar → Type ∪ Environment such that every constraint in σ(C ) is satisfied and
σ(γ) = Γ .

3.2 Constraint Solving

Now that we have generated the constraints required for the type inference, we
want to solve the constraints by finding a substitution which assigns a type to
each type variable and assigns an environment to each environment variable.
From now on we assume an extended version of the language of types in which
type variables can appear.

In our treatment of branching and selection we introduce a new kind of
variable, called a pair variable, denoted by λ. Pair variables are used to represent
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a set of pairs of labels and types in branching and selection types. We will refer
to the set of pair variables as PVar.

Constraints must be solved in a particular order; we describe this by first
defining a stratification of our constraints. This ordering can be seen in Table 8.
The strategy employed is that for any 1 ≤ i < 8. Constraints in stratum i must
be solved before constraints in stratum i + 1 are solved.

In the rest of this paper, we will only discuss solutions found by solving
constraints in the correct order given by the stratification.

Again we follow Lhoussaine [9] by presenting constraint solution in the form
of a reduction relation. Reductions of the form

〈Cu,Cs, σ〉 � 〈C ′
u,C ′

s, σ
′〉

Table 7. Constraint generation rules
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Table 8. Constraint ordering

where Cu and C ′
u are sets of unsolved constraints, Cs and C ′

s are sets of solved
constraints, and σ and σ′ are substitutions on environment-, pair-, and type
variables.

The rules defining the reduction relation for solving constraints are presented
in Table 9.

We use the identity function as the initial substitution, and refer to it as
σstart. We also define the notation σ∗ in Definition 8 as the function that keeps
substituting type- and environment variables in a type or type variable expres-
sion α, until the point where σ(α) = α, i.e. until the application of the substi-
tution has no further effect.

Definition 8 (σ∗). Let σ : EVar ∪ Tvar ∪ PVar → Environment ∪ Type ∪ {� : τ |
� ∈ Label and τ ∈ TVar} be a substitution function. Then

σ1 = σ

σk+1 = σ ◦ σk

σ∗ = σn where n ∈ N is the smallest value such that σn = σn+1

The rules for substitution are rather intuitive and do not require an extensive
explanation. We define Γ1 \Γ2 to mean {x : T | Γ1(x) = T and x /∈ dom(Γ2)}. In
addition we use ∅ to denote the empty environment. When all type constraints
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have been solved, we can set any unassigned λ to ∅ and any unassigned type to

end. When discussing satisfiability, we use σ(C ) to denote σ

(
∧

c∈C

c

)

.

In order to show that our rules for substitution do indeed provide a solution
to the constraints we put forth Theorems 9, 10 and 13. In the proof of Theorem13
we make use of Lemmas 11 and 12.

Our first theorem states that a terminating reduction will indeed provide us
with a solution.

Theorem 9 (Soundness of constraint solving). Let C be a set of con-
straints. If 〈C , ∅, σstart〉 �∗ 〈∅,C ′, σ〉 then σ∗(C ′) is satisfied

Proof. (Sketch) We prove Theorem 9, by proving the contraposition i.e. “If σ(C ′)
is not satisfied, then 〈C , ∅, σstart〉 ��∗ 〈, ∅C ′, σ〉”. We prove the contraposition
by contradiction, assuming that σ(C ′) is not satisfied and that 〈C , ∅, σstart〉 �∗

〈∅,C ′, σ〉.
Note that in the above we have C ⊆ C ′, so the σ∗ found will also solve the

original constraints in C .

Theorem 10 (Termination of the constraint solving). For any set of con-
straints Cu, there exists some finite reduction sequence such that 〈Cu, ∅, σstart〉
�∗ 〈C ′

u,Cs, σ〉 and no 〈C ′′
u ,C ′

s, σ
′〉 exists such that 〈C ′

u,Cs, σ〉 � 〈C ′′
u ,C ′

s, σ
′〉.

Proof. (Sketch) We prove termination by a case analysis of the reduction
rules. By assigning a tuple, (n1, n2, n3, n4), to each step, 〈Cu,Cs, σ〉, in the
reduction and showing that the tuples assigned to each step are in a strict
decreasing lexicographical order i.e. if 〈Cu,Cs, σ〉 � 〈C ′

u,C ′
s, σ

′〉 � . . . then
(n1, n2, n3, n4) > (n′

1, n
′
2, n

′
3, n

′
4) > . . . . We define the tuples (n1, n2, n3, n4) for

each 〈Cu,Cs, σ〉 such that

– n1 is the number of environment constraints in Cu,
– n2 is the number of constraints that are not environment constraints and not

of the form τ1 = τ2 or τ1 ⊥ τ2 in Cu,
– n3 is the number of remaining necessary unifications for the minimal solution,

and
– n4 is the cardinality of the range of σ∗.

In the proof of completeness, the following two results are crucial. Firstly, it
is crucial that if the constraint set is satisfiable, then the new constraint set that
results from applying a reduction will also be satisfiable.

Lemma 11 (Preservation of constraint satisfiability). If P � γ,Cu, Cu

is satisfiable, and 〈Cu, ∅, σstart〉 �∗ 〈C ′
u,Cs, σ〉 then σ∗(C ′

u) is satisfiable.

Secondly, we need a lemma that expresses that constraints can be solved in
accordance with the stratification. We say that a rule is applicable for stratum
x on 〈Cu,Cs, σ〉 if there exists a constraint in Cu belonging to stratum x and the
reduction step involves this particular constraint.
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Lemma 12 (Step order). For any 1 ≤ x ≤ 8 and Cu, if no rules for strata
less than x are applicable on 〈Cu,Cs, σ〉 and 〈Cu,Cs, σ〉 � 〈C ′

u,C ′
s, σ

′〉, then no
rules for strata less than x are applicable on 〈C ′

u,C ′
s, σ

′〉.
Theorem 13 (Completeness of the constraint solving). For any set of
constraints Cu, generated by using the rules from Table 7, if there exists a sub-
stitution σ such that ∀c ∈ Cu : σ(c) = true then 〈Cu, ∅, σstart〉 �∗ 〈∅,Cs, σ〉.
Proof. (Sketch) We prove Theorem 13 by showing that if Cu was generated
from the constraint generation rules and 〈Cu, ∅, σstart〉 �∗ 〈C ′

u,Cs, σ〉, then
〈C ′

u,Cs, σ〉 � 〈C ′′
u ,C ′

s, σ
′〉, or Cu is unsatisfiable. By Lemma 11 we have that

if 〈Cu, ∅, σstart〉 �∗ 〈C ′
u,Cs, σ〉 and there exists a c′ ∈ C ′

u such that σ∗(c′) is
unsatisfiable then Cu is unsatisfiable, and therefore, to prove that Cu is unsat-
isfiable, we only need to prove the existence of such a c′. We do this by a case
analysis of the composition of C ′

u.
In the case analysis we make use of two observations: firstly, by Lemma 11,

we know that all generated constraints are satisfiable if the original constraint
is satisfiable, and it is thus enough to consider the parent constraint; secondly
we know, by Lemma 12, that we never encounter a situation where we have to
consider constraints of an order already solved.

4 Conclusion

In this paper we have defined a method for direct session type inference by
creating a constraint language, converting the typing rules for session types [4]
into constraint generation rules for session types, and created rules for solving
the resulting constraint satisfaction problem. We have also proven the soundness,
completeness, and termination of the constraint solving process.

While the approach described in this paper handles standard binary session
types, a desired extension would be to include session types with recursion and
subtyping. We believe that one can extend our approach to include type inference
for both recursive types and subtyping. In the case of recursion one could consider
the type system due to Giunti and Vasconcelos [5] and adopt its notion of linear
and unlimited types. The constraint generation and solving will then have to
be adapted to including new kinds of constraints. In particular, one will need
constraints of the forms un τ and lin τ for describing that a type τ is respectively
unrestricted or linear.

A more subtle modification would be one of efficiency, namely to investigate
how the definition of the reduction rules for constraint solution can be simplied
without affecting the soundness, completeness, and termination of our approach.
A particular cause for concern is the rules for constraint generation for parallel
composition, since this involves the splitting of a type environment. A possi-
ble simplification would involve the notion of simultaneous restriction (ν xy)P
introduced by Vasconcelos in which the two endpoints of a session channel are
distinct co-variables x and y [13].
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Subtyping is discussed in [4], on which we have based our type system, and
the addition of subtypes seems quite feasible, although the constraint language
together with both the generation and solution rules will now have to be modi-
fied to include constraints for subtyping and reduction rules for solving subtype
constraints that make use of the coinductive definition of subtyping given in [4].
Another interesting direction to consider is that of studying type inference in the
presence of the various definitions of type duality studied by Bernardi et al. [1].
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Abstract. In this paper we propose a formal framework for studying
privacy preserving policies based on the notion of purpose. Our frame-
work employs the π-calculus with groups accompanied by a type system
for capturing privacy requirements. It also incorporates a privacy policy
language which captures how different entities within a system, which
are distinguished by their roles, may access sensitive information and
the purposes for which they are allowed to process the data. We show
that a system respects a policy if the typing of the system is compatible
with the policy. We illustrate our methodology via analysis of privacy-
aware services of a health-care system.

1 Introduction

Privacy is considered to be a key issue in information technology and, as a result,
a great deal of multi-disciplinary work is concentrating on understanding the
types of practices and policies which are appropriate for preserving the privacy
rights of individuals in the context of technological advancements, e.g. [28,31].
One strand of such works concentrates on the development of formal privacy
policy languages, models and enforcement technologies [5,16,25]. In these works,
the notion of a purpose appears as a central concept which considers the data
user’s intended use as a key factor in making access control decisions. In particu-
lar, policy languages have been developed that allow to specify the purposes for
which private information may be used by a data holder while laws and customer
demand motivate organizations towards this practice.

The motivation of this paper is derived from the need of developing method-
ologies for reasoning and enforcing purpose-based privacy requirements. More
precisely, in this work we have isolated the objective of developing a static
method for ensuring that a purpose-based, role-involved privacy policy is satis-
fied by an information system. The computational framework which we employ
is the well-established theory of the π-calculus. In particular, we extend [23]
with the notion of a purpose in order to check purposed-based privacy policies
via type checking. While the proposed methodology may in fact be embedded
in the framework of [23], the extension allows us to reason directly about the
notion of a purpose both at the level of privacy policies as well as the level of
systems, as common in standard privacy policy frameworks.

c© Springer International Publishing Switzerland 2016
T. Hildebrandt et al. (Eds.): WS-FM 2014/WS-FM 2015, LNCS 9421, pp. 122–142, 2016.
DOI: 10.1007/978-3-319-33612-1 8
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1.1 Motivating Example

As an example consider a medical system obligated to protect patient data.
Inside the system a nurse may disseminate medical files to doctors for the pur-
pose of treatment and to the accounting department for the purpose of billing.
Doctors are able to process the data and disseminate it to specialized doctors if
a specialist opinion is required for the diagnosis of the patient’s condition. Thus,
we distinguish three purposes for handling patient data, namely, treat , diagnosis
and bill . We may capture this hierarchy of entities as the tree illustrated in Fig. 1
with the allowed purposes for each entity associated with the respective nodes
of the tree.

Fig. 1. The hospital group hierarchy and purposes assignment

In our framework we formalize the policy as follows:

t � Hospital : [ Nurse : {treat, bill},

Doctor : {treat, diagnosis},

Accounting : {bill}]

where t is the type of the patient’s data. The policy describes the existence of
the Hospital entity at the higher level of the hierarchy and, within this structure,
there exist nurses who may handle patient files for the purposes of treat and bill ,
doctors who may handle files for the purposes of treat and diagnosis and the
accounting office, members of which may handle the data for billing .

At this stage we observe that different entities of the system working towards
a common purpose may have different permission rights to the same data. For
instance, while a doctor will be allowed to write medical files while performing
treatment, a nurse might not be allowed to do so. We capture this role-dependant
assignment of permissions to purposes via a function as follows:

π(u, G) =

⎧
⎪⎪⎨

⎪⎪⎩

{disclose Hospital} if G = Nurse and u ∈ {treat , bill}
{read,write, access, disclose Doctor} if G = Doctor and u = treat
{read, access} if G = Doctor and u = diagnosis
{read, access} if G = Accounting and u = bill

According to this, a nurse may disseminate patient files within the hospital (but
is not allowed to read or write these files) for both the purposes of billing and
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treatment. Similarly a doctor may be given access to a patient file and read it
(permissions access and read) for the purposes of treatment and diagnosis and
may additionally write and disseminate patient files to other doctors for the
purpose of treatment (permissions write and disclose Doctor). Finally, members
of the accounting office may gain access and read patient files for the purpose of
billing.

Moving on to the framework underlying our study, we employ the π-calculus
with groups [11] as adapted in [23]. This calculus extends the π-calculus with the
notion of groups and an associated type system in a way that controls how data
is being disseminated inside a system. It turns out that groups give a natural
abstraction for the representation of entities in a system. Thus, in [23] the group
memberships of processes are used to distinguish their roles within systems.
Information processing issues can be analysed through the use of names of the
calculus in input, output and object position to identify when a channel is reading
or writing private data or when links to private data are being communicated
between groups. Additionally, in the present work, we include the notion of
a purpose. At the process level, entities state the intended purpose of their
execution. Then satisfaction of a policy is carried out at two levels. Firstly, it
is necessary to ensure that an entity is allowed to work towards the intended
purpose specified and, secondly, it is ensured that the data handling performed
by the entity conforms to the permissions allowed to the entity while working
towards the specified purpose.

An implementation of a segment of the hospital scenario in the π-calculus
with groups would be

System = (ν Hospital)[ (ν Nurse) N〈treat〉
| (ν Doctor) D1〈treat〉
| (ν Doctor) D2〈diagnosis〉 ]

N = a〈l〉.0
D1 = a(x).x(y).b〈x〉.c(z).x〈d〉.0
D2 = b(x).c〈z〉.0

In this system, one nurse and two doctors are nested within the hospital envi-
ronment, where the nurse and one of the doctors are working towards treating
a patient and a second doctor is called to aid with the diagnosis. The group
memberships of the three processes and their associated purposes characterize
their nature while reflecting the entity and purpose hierarchy expressed in the
privacy policy defined above.

The types of the names in the above process are defined as y : t, d : t, that is y
and d are values of sensitive data, while l : Hospital[t] signifies that l is a channel
that can be used only by processes which belong to group Hospital to carry data
of type t. Further, a : Hospital[Hospital[t]] states that a is a channel that can
be used by members of group Hospital, to carry objects of type Hospital[t], and,
similarly, b : Doctor[Hospital[t]]. Let us assume that z : T and c : Doctor[T ], for
some T other than t, are names used for communication between the specialist
doctor D2 and the responsible doctor D1.
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Intuitively, we may see that this system conforms to the defined policy, both
in terms of the group structure as well as the purposes and the permissions
exercised by the processes to achieve their goal. Instead, if doctor D2 were able
to engage in a l〈d〉 action then the defined policy would be violated since doctor
D2 is operating for the purpose of diagnosis and is not permitted to write any
medical files. This would also be the case if the type of b was defined as b :
Hospital[Hospital[t]] since a doctor is only allowed to disclose information to other
doctors.

Using these building blocks, our methodology is applied as follows: Given
a system and a typing, we perform type checking to confirm that the system
is well-typed while we infer a permission interface. To check that the system
complies with a privacy policy we provide a correspondence between policies and
permission interfaces the intention being that: a permission interface satisfies a
policy if and only if all the components engage in allowed purposes and for each
purpose they exercise no more than the permissions associated with the purpose.
With this machinery at hand, we state and prove a safety theorem according to
which, if a system S type-checks and produces an interface Θ, and Θ satisfies a
privacy policy P, then S respects P.

1.2 Related Work

There exists a large body of literature concerned with reasoning about privacy.
To begin with, a number of languages have been proposed to express privacy
policies [4,12,15,19,25–27]. Some of these languages are associated with formal
semantics and can be used to verify the consistency of policies or to check whether
a system complies with a certain policy. These verifications may be performed
a priori via static techniques such as model checking [2,22,25], on-the-fly using
monitoring, e.g. [6,29], or a posteriori, e.g. through audit procedures [5,16,17].

The notion of a purpose has been recognized as a central concept for pri-
vacy and it has been studied in a number of privacy protecting access control
models [3,9,13,30,32]. In these works it is advocated that privacy protection can-
not be easily achieved by traditional access control models due to the fact that
privacy policies concentrate mostly on which data object is used for which pur-
pose(s). Furthermore, works such as [9,13,32] consider how to enforce purpose-
based privacy policies in database management systems at run-time. Finally, we
mention the work of [30] which considers the semantics of purpose restrictions
and proposes a methodology based on planning to determine whether an action
is for a purpose or not. Our work is inspired by these papers, our aim being to
propose a formal framework for reasoning about purpose-based privacy policies
and an enforcement technique based on type checking.

Also related to our work is the research line on typed-based security in
process calculi. Among these works, numerous studies have focused on access
control. For instance the work on the Dπ calculus has introduced sophisticated
type systems for controlling the access to distributed resources [20,21]. Further-
more, discretionary access control has been considered in [8] which similarly to
our work employs the π-calculus with groups, while role-based access control
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(RBAC) has been considered in [7,14,18]. In addition, multiparty session type
systems enriched with security levels for access control and secure information
flow have been considered in e.g. [10,24]. While adopting a similar approach,
our work departs from these works in the following respects: To begin with we
note that role-based access control is insufficient for reasoning about certain pri-
vacy violations. While in RBAC it is possible to express that a doctor may read
patient’s data and send emails, it is not possible to detect the privacy viola-
tion breach executed when the doctor sends an email with the sensitive patient
data. In our framework, we may control such information dissemination by dis-
tinguishing between different types of data and how these can be manipulated.
Furthermore, our work considers checking policy compliance of privacy policies
by systems. Thus we propose a policy language which allows to express hierar-
chical arrangements of systems into disclosure zones while allowing the inheri-
tance of permissions and purposes between groups within a hierarchy. Finally,
our work considers the notion of a purpose which has not been studied in the
above-mentioned frameworks.

2 The Calculus

Our calculus is based on the calculus of [23], where the π-calculus with groups by
Cardelli et al. [11] is adopted to reason about privacy requirements. Specifically,
we extend the calculus of [23] to allow reasoning about the notion of a purpose.

We assume the existence of three basic entities: G , ranged over by G,G1, . . .
is the set of groups, N , ranged over by a, b, x, y, . . ., is the set of names and U ,
ranged over by u, u1, . . ., is the set of purposes. Furthermore, we assume a set
of basic types D, ranged over by t, which refer to the basic data of our calculus
on which privacy requirements should be enforced. Specifically, we assign each
name in N a type such that a name may either be of some base type t or of
type G[T ], where G is the group of the name and T the type of value that can be
carried on the name. The intuition behind the notion of group G in G[T ] is that
a name x : G[T ] may only be communicated between processes that “belong” to
group G. Given the above, a type is constructed via the following BNF.

T ::= t | G[T ]

Then the syntax of the calculus is defined at two levels. At the process level,
P , we have the standard π-calculus syntax. At the system level, S, we include
the purpose construct P 〈u〉 which assigns a purpose to a process P and the
group construct, (ν G), applied both at the level of purpose-bearing processes
(ν G)P 〈u〉, and at the level of systems, (ν G)S. Associating a process P with
a purpose u is intended to capture the goal towards which the process is being
executed, whereas associating a process/system with a group captures the groups
memberships of the process/system. At the system level we also include the name
restriction construct as well as parallel composition.

P ::= x(y:T ).P | x〈z〉.P | (ν a:T )P | P1 | P2 | !P | 0

S ::= (ν G)P 〈u〉 | (ν G)S | (ν a:T )S | S1 | S2 | 0
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In (ν a:T )P and (ν a:T )S, name a is bound in P and S, respectively, and in
process x(y:T ).P , name y is bound in P . In (ν G)P 〈u〉 and (ν G)S, the group
G is bound in P and S. We write fn(P ) and fn(S) for the sets of names free
in a process P and a system S, and fg(S) and fg(T ), for the free groups in a
system S and a type T , respectively. Note that free occurrences of groups occur
within the types T of a process/system.

We now turn to defining a labelled transition semantics for the calculus. We
first define a set of labels:

� ::= τ | x(y) | x〈y〉 | (ν y)x〈y〉

Label τ is the internal action whereas labels x(y) and x〈y〉 are the input and
output actions, respectively. Label (ν y)x〈y〉 is the restricted output where the
object y of the action is restricted. Functions fn(�) and bn(�) return the set of
the free and bound names of �, respectively. We also define the relation dual(�, �′)
which relates dual actions as

dual(�, �′) if and only if {�, �′} = {x(y), x〈y〉} or {�, �′} = {x(y), (ν y)x〈y〉}.

We use the meta-notation (F ::= P | S) to define the labelled transition
semantics (Fig. 2).

x(y : T ).P
x(z)−→ P{z/y} (In) x z .P

x z−→ P (Out)

F1 −→ F1 bn( )∩fn(F2) = /

F1 | F2 −→ F1 | F2
(ParL)

F2 −→ F2 bn( )∩fn(F1) = /

F1 | F2 −→ F1 | F2
(ParR)

F −→ F x /∈ fn( )

(ν x : T )F −→ (ν x : T )F
(ResN)

F
x y−→ F

(ν y : T )F
(ν y)x y−→ F

(Scope)

S −→ S

(ν G)S −→ (ν G)S
(ResGS)

P −→ P

(ν G)P u −→ (ν G)P u
(ResGP)

P −→ P

!P −→ P | !P
(Repl)

F1
1−→ F1 F2

2−→ F2 dual( 1 2)

F1 | F2 τ−→ (ν bn( 1)∪bn( 2))(F1 | F2)
(Com)

F ≡α F F −→ F

F −→ F
(Alpha)

0 0

Fig. 2. The labelled transition system

The labelled transition semantics follows along the lines of standard π-calculus
semantics where ≡α denotes α-equivalence.
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3 Policies

A privacy policy is a set of statements with legal status which set rules and require-
ments for the collection, processing and disclosure of sensitive data. A system that
handles personal information defines requirements for the protection of this data
through its privacy policy and it is responsible to ensure that these requirements
are satisfied through all operations performed within the system.

A typical privacy policy restricts the use of sensitive information to an explicit
list of purposes. These restrictions enunciate that certain information may not be
used for certain purposes or that it may used only for certain purposes. In both
cases, restrictions refer to access on data attributes which are types of sensitive
data within a system such as medical records and, in particular, how the various
agents, who are referred to by their roles, may/may not handle this data.

The notions of an attribute and a role are reflected in our framework via
the notions of base types and groups, respectively. Thus, our policy language is
defined in such a way as to specify the purposes for which an entity/role is allowed
to process different types of sensitive data. Policies express restrictions of the
“only for” kind, as discussed above, thus, the absence of a purpose assignment
for a data type to a role signifies that entities of the role are not allowed to
process the data for the specific purpose. While in [9] the model of purposes
is organized according to the hierarchical relationships between purposes, for
simplicity we opt to work with a flat purpose structure. Nonetheless, our results
can be easily extended to more complex purpose hierarchies.

In order to express policies as explained above we employ the following entities:

(Permissions) Perm ::= read | write | access | discloseG

(Hierarchies) H ::= ε | G : ũ[Hj ]j∈J

(Policies) P ::= t 	 〈H,π〉 | P;P

A policy is based on the set of policy permissions Perm: they express that
data may be read (read) and written (write) and that links to data may be
accessed (access) or disclosed within some group G (discloseG).

In turn, the components Hi, which we refer to as permission hierarchies,
specify the group-purpose associations for each base type. Specifically, a permis-
sion hierarchy captures the hierarchy in place between the different roles in a
system and assigns a set of purposes at each level of the hierarchy. The intention
is that roles at a lower level within a hierarchy inherit permissions from higher
levels of the hierarchy. More precisely, a permission hierarchy H has the form
G:ũ [H1, . . . , Hm], and expresses that an entity belonging to group G may use
the data in question for purposes ũ and, if additionally it is a member of some
group Gi where Hi = Gi:ũi [. . .], then it is also entitled to work towards pur-
poses ũi, and so on. Note that the precise permissions an entity is allowed to
perform is determined by the function π as we discuss below.

Finally, a policy has the form t1 	 〈H1, π1〉; . . . ; tn 	 〈Hn, πn〉 associating
each type of sensitive data ti with a permission hierarchy Hi and a function πi.
The πi components are functions of type π : U ×G −→ 2Perm that associate each
pair (u,G), where u is a purpose and G a group, with the set of permissions p̃
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allowed to members of group G for manipulating the sensitive data in question
while acting towards purpose u. Note that, π records a set of permissions as
opposed to a specific sequence of actions/permissions, the intuition being that
a policy does not dictate a fixed sequence of actions for achieving a purpose
but simply the type of actions that can be performed towards this goal. For
example, in a medical system a doctor may be given access to medical data for
both reading and writing for the purpose of treating the patient (where the two
operations may take place freely and in any order) but only for reading if the
data is to be used in the context of a research study.

We define the auxiliary function groups(H) so as to gather the set of groups
inside a hierarchy structure:

groups(H) =
{{G} ∪ (

⋃
j∈J groups(Hj)) if H = G : ũ[Hj ]j∈J

∅ if H = ε

We say that a policy P = t1 	 〈H1, π1〉; . . . ; tn 	 〈Hn, πn〉 is well formed,
written P : �, if it satisfies the following:

1. The ti are distinct.
2. If H = G : ũ[Hj ]j∈J occurs within some Hi then G �∈ groups(Hj) for all

j ∈ J , that is, the group hierarchy is acyclic.

Hereafter, we assume that policies are well-formed policies. As a shorthand, we
write G : ũ for G : ũ[ε] and we abbreviate G for G : ∅.

Example 1. We will now present an example adopted from [9]. Suppose that a
company has established the following privacy policy pertaining to the practices
associated with the use of sensitive client information:

1. Personal information of customers is used for purchasing purposes (purposes
purchase and shipping below) and to inform customers of services that may
better meet their needs (purpose direct below).

2. Personal information of customers may be disclosed to co-operating compa-
nies (third parties) if the customer gives their consent (purpose thirdparty
below).

3. Personal information of customers under the age of thirteen is only used for
purchasing purposes (purposes purchase and shipping below).

To implement the above policy we note that personal data is subdivided into
three different types: personal data of persons under the age of 13, personal data
of persons who have given consent for third-party marketing and personal data
of persons who have not given consent for third-party marketing. We assign to
these data the base types pd13, pd+ and pd−, respectively. (For simplicity we do
not distinguish between the subcategories of personal information.)

Assuming a role hierarchy within the company consisting of an administration
department, a marketing department and an order-processing department, fur-
ther subdivided into a purchase-management department and a shipping depart-
ment, a graphical view of the policy hierarchies, can be viewed in Fig. 3 where
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Fig. 3. The company purpose hierarchy and purposes assignment

we have condensed the role-purpose associations of all three base types and we
write pd when an association is present for both the pd+ and the pd− base types.
So, in this figure we may observe the hierarchical structure of the roles within the
company as well as the purposes that can be used by entities at each level of the
role hierarchy and for each data type. For instance, employees at the Marketing
Department may access personal data of all persons over the age of 13 for the pur-
pose of direct marketing (pd : direct), but only data of persons who have given
their consent for the purpose of third-party marketing (pd : thirdparty). However,
they may not access personal data of persons under 13 as there is no stated pur-
pose allowing such an access. Formally, the policy can be written as

P = pd13 	 〈H1, π1〉 ; pd+ 	 〈H2, π2〉 ; pd− 	 〈H3, π3〉
where

H1 = Company:[OrderDept[PurchaseDept : {purchase},
ShippingDept : {shipping}]

H2 = Company:[AdminDept : {analysis},
OrderDept[PurchaseDept : {purchase},

ShippingDept : {shipping}],
MarketingDept : {direct , thirdparty}]

H3 = Company:[AdminDept : {analysis},
OrderDept[PurchaseDept : {purchase},

ShippingDept : {shipping}],
MarketingDept : {direct}]

We encode the permissions assigned to each role-purpose pair by the functions
that follow. In the case of type pd13 only the purchase and shipping depart-
ment may access information, where the purchase department may disclose the
shipping department information relevant to the shipping purpose.

π1(u,G) =

⎧
⎨

⎩

{read, discloseOrderDept} if u = purchase, G = PurchaseDept
{read, access} if u = shipping , G = ShippingDept
∅ otherwise
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Additionally, for type pd+, the administration department may both read, and
write personal information for analysis purposes and the marketing department
may read and write personal information for direct marketing purposes and addi-
tionally it may access and disseminate such information to associated companies
(group ThirdParty).

π2(u, G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{read,write, access} if u = analysis, G = AdminDept

{read,write, discloseOrderDept} if u = purchase, G = PurchaseDept

{read, access} if u = shipping , G = ShippingDept

{read,write} if u = direct , G = MarketingDept

{access, disclose ThirdParty} if u = thirdparty , G = MarketingDept

For type pd− the permission assignment is similar to the one for pd+ with the
exception of the thirdparty purpose.

π3(u,G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{read,write, access} if u = analysis, G = AdminDept
{read,write, discloseOrderDept} if u = purchase, G = PurchaseDept
{read, access} if u = shipping , G = ShippingDept
{read,write} if u = direct , G = MarketingDept
∅ otherwise

4 The Type System

In this section we present a typing system for the calculus which is essentially the
type system of [23] with small extensions to reason about purposes. As with [23],
the aim of the type system is on the one hand to verify that the system conforms
to its typing and on the other hand to produce an interface which captures the
permissions exercised by the different components of a system, in the name of
which purposes and under which roles for each of the base types.

Typing Judgements. The environment on which type checking is carried out
consists of the component Γ . During type checking we infer the two additional
structures of Δ-environments and Θ-interfaces as follows

Γ ::= ∅ | Γ · x : T | Γ · G

Δ ::= ∅ | t : p̃ · Δ

Θ ::= ∅ | t 	 〈H↓, p̃〉;Θ

with H↓ ::= G[H↓] | G[ũ]. Note that H↓ captures hierarchies where
the nesting of groups is linear. We refer to H↓ as interface hierarchies. The
domain of environment Γ , dom(Γ ), contains all groups and names recorded in
Γ . Environment Δ has the form t1 : p̃1 · . . . · tn : p̃n and it assigns permis-
sions p̃i ⊆ Perm to sensitive data types t. When associated with a base type
t, permissions read and write express that it is possible to read/write data of
type t along channels of type G[t] for any group G. Permission access, when
associated with a type t, expresses that it is possible to receive a channel of
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type G[t] for any G and, finally, if permission discloseG is associated with t then
it is possible to send channels of type G[t]. Thus, while permissions read and
write are related to manipulating sensitive data directly, permissions access and
disclose are related to manipulating links to sensitive data. Finally, interface Θ
associates base types with a set of permissions and a linear hierarchy of groups
referring to a set of purposes, namely, an entity of the form G1[G2[. . . Gn[ũ] . . .]].
Intuitively, t 	 〈G1[G2[. . . Gn[ũ] . . .]], p̃〉 captures that there exists an entity in
our system that belongs to groups G1, . . . , Gn, works towards purposes ũ and
exercises permissions p̃ on data of type t.

We define three typing judgements: Γ � x � T , Γ � P � Δ and Γ � S � Θ.
Judgement Γ � x � T says that under typing environment Γ , name x has type T .
Judgement Γ � P � Δ stipulates that process P is well typed under the environ-
ment Γ and produces a permission environment Δ. In this judgement, Γ records
the types of the names of P and Δ records the permissions exercised by the names
in P for each base type. Finally, judgement Γ � S � Θ defines that system S is well
typed under the environment Γ and produces interface Θ which records the group
memberships of all components of S as well as the permissions exercised by each
component and the purposes in which the components were engaged.

Typing System. We now move on to our typing system. We begin with some
useful notation. We write:

Δr
T =

⎧
⎨

⎩

t : read if T = t
t : access if T = G[t]
∅ otherwise

Δw
T =

⎧
⎨

⎩

t : write if T = t
t : discloseG if T = G[t]
∅ otherwise

Furthermore, we define the ⊕ operator as:

G[u] ⊕ (t1 : p̃1, . . . , tm : p̃m) = t1 � 〈G[u], p̃1〉; . . . ; tm � 〈G[u], p̃m〉
G ⊕ (t1 � 〈H↓

1 , p̃1〉; . . . ; tm � 〈H↓
m, p̃m〉) = t1 � 〈G[H↓

1 ], p̃1〉; . . . ; tm � 〈G[H↓
m], p̃m〉

Thus, operator ⊕ when applied to a group G, a purpose u and an interface Δ
produces a Θ interface, whereas, when applied to a group G and an interface Θ,
it attaches group G to all interface hierarchies of Θ. Finally, we define Δ1 � Δ2 =
{t : p̃1∪ p̃2 | t : p̃1 ∈ Δ1, t : p̃2 ∈ Δ2}, where we assume that t : ∅ ∈ Δ if t : p̃ �∈ Δ.

The typing system is defined in Fig. 4. Rule (Name) is used to type names:
in name typing we require that all group names of the type are present in Γ .
Process 0 can be typed under any typing environment (axiom (Nil)) to infer the
empty Δ-interface.

Rule (In) types the input-prefixed process. If environment Γ extended with
the type of y produces Δ as an interface of P , we conclude that the process x(y).P
produces an interface where the type of T is extended with the permissions Δr

T ,
where (i) if T is base type t then Δ is extended by t : read since the process is
reading an object of type t, (ii) if T = T ′[t] then Δ is extended by t : access,
since the process has obtained access to a link for base type t and (iii) Δ remains
unaffected otherwise.
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(Name)
fg(T ) ⊆ Γ

Γ · x : T x T
(Nil) Γ 0 /

(In)
Γ · y : T P Δ Γ x G[T ]

Γ x(y : T ).P Δ Δ r
T

(Out)
Γ P Δ Γ x G[T ] Γ y T

Γ x y .P Δ Δw
T

(ParP)
Γ P1 Δ1 Γ P2 Δ2

Γ P1 | P2 Δ1 Δ2
(ParS)

Γ S1 Θ1 Γ S2 Θ2

Γ S1 | S2 Θ1;Θ2

(ResNP)
Γ · x : T P Δ

Γ (ν x : T )P Δ
(ResNS)

Γ · x : T S Θ
Γ (ν x : T )S Θ

(ResGP)
Γ ·G P Δ

Γ (ν G)P u G[u]⊕Δ
(ResGS)

Γ ·G S Θ
Γ (ν G)S G⊕Θ

(Rep)
Γ P Δ
Γ !P Δ !

0

Fig. 4. The Typing System

Rule (Out) is similar: If y is of type T , x of type G[T ] and Δ is the permis-
sion interface for P , then, x〈y〉.P produces an interface which extends Δ with
permissions Δw

T . These permissions are (i) {t : write} if T = t since the process
is writing data of type t, (ii) {t : discloseG} if T = G[t], since the process is
disclosing a link to private data via a channel of group G, and (iii) the empty
set of permissions otherwise.

Rule (ParP) uses the � operator to compose the process interfaces of P1 and P2.
Parallel composition of systems, rule (ParS), concatenates the system interfaces of
S1 and S2. For name restriction, (ResNP) specifies that if P type checks within an
environment Γ ·x : T , then (νx)P type checks in environment Γ . (ResNS) is defined
similarly. Moving on to group creation, for rule (ResGP) we have that, if P produces
a typing Δ, then system (ν G)P 〈u〉 produces the Θ-interface G[u]⊕Δ whereas for
rule (ResGS), we have that if S produces a typing interface Θ then process (ν G)S
produces interface G ⊕ Θ. Finally, for replication, axiom (Rep) states that if P
produces an interface Δ then !P also produces the interface Δ.

Example 2. As an example consider a possible component of the company in
Example 1, where an entity of the marketing department reads private data of a
customer and emails the customer with service suggestions, while another entity
of the same department receives a link to customer data for forwarding to a
co-operating company:

S = (ν Company)((ν MarketingDept)DM〈direct〉
| (ν MarketingDept)TP 〈thirdparty〉)

DM = read(x : pd+).email〈y〉.0
TP = dissem(link : Tdata).send〈link〉.0
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Weconsider the following typing environment:LetuswriteTdata = Company[pd+],
Tlink = Company[Tdata ] and Tout = ThirdParty[Tdata ]. Then for Γ = read : Tdata ·
y : pd+ · email : Tdata · dissem : Tlink · send : Tout we obtain:

Γ � 0 � ∅ by (Nil)

Γ � email〈y〉.0 � pd+ : {write} by (Out)

Γ � read(x).email〈y〉.0 � pd+ : {read,write} by (In)
Γ � (ν MarketingDept)DM〈direct〉�

pd+ � 〈MarketingDept[direct ], {read,write}〉 by (ResGP)

Γ � send〈link〉.0 � pd+ : {discloseThirdParty} by (Out)

Γ � dissem(link).send〈link〉.0 � pd+ : {access, disclose ThirdParty} by (In)
Γ � (ν MarketingDept)TP 〈thirdparty〉�

pd+ � 〈MarketingDept[thirdparty ], {access, disclose ThirdParty}〉 by (ResGP)
Γ � (ν MarketingDept)DM〈direct〉 | (ν MarketingDept)TP 〈thirdparty〉�

pd+ � 〈MarketingDept[direct ], {read,write}〉;
pd+ � 〈MarketingDept[thirdparty ], {access, disclose ThirdParty}〉 by (ParS)

Γ � S � pd+ � 〈Company[MarketingDept[direct ]], {read,write}〉;
pd+ � 〈Company[MarketingDept[thirdparty ]], {access, disclose ThirdParty}〉

by (ResGS)

We observe that the process of type checking has yielded an interface of the
system capturing the permissions exercised by the two components of the system
and the purposes towards which each entity was engaged in.

5 Soundness and Safety

Our framework enjoys soundness and safety results inherited by [23]. We begin
with a definition that captures an order on permission interfaces. Relation �,
defined in [23], captures the changes on the interface environment when a process
executes an action. Intuitively, during action execution names maintain or lose
their interface capabilities that are expressed through their typing.

Definition 1 (Θ1 � Θ2)

1. p̃1 � p̃2 if p̃1 ⊆ p̃2.
2. Δ1 � Δ2 if for all t such that t : p̃1 ∈ Δ1 we have that t : p̃2 ∈ Δ2 and

p̃1 � p̃2.
3. Θ1 � Θ2 if (i) dom(Θ1) = dom(Θ2), and (ii) for all t, such that t 	 〈H, p̃1〉 ∈

Θ1 we have that t 	 〈H, p̃2〉 ∈ Θ2 and p̃1 � p̃2.

Theorem 1 (Type Preservation)

1. Let Γ � P � Δ and P
�−→ P ′ then Γ � P ′ � Δ′ and Δ′ � Δ.

2. Let Γ � S � Θ and S
�−→ S′ then Γ � S′ � Θ′ and Θ′ � Θ.

According to the theorem when a well-typed process/system executes an action
it reduces to a well-type process/system. The associated Δ or Θ interface is
reduced according to relation �.

We are now ready to define the notion of satisfaction of a policy P by a
permission interface Θ thus connecting our type system with policy compliance.



Type Checking Purpose-Based Privacy Policies in the π-Calculus 135

Definition 2

1. Consider a policy hierarchy H, a purpose-to-permission assignment π, an
interface hierarchy H↓ = G1[G2[· · · Gn[u] · · · ]] and a set of permissions p̃. We
write 〈H,π〉 � 〈H↓, p̃〉, if p̃ ⊆ permsπ(H, 〈G1, . . . , Gn〉, u), where

permsπ(H, G̃, u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π(u, G) ∪ (
⋃

j∈J permsπ(Hj , G̃ − G, u))

if H = G : ũ[Hj ]j∈J , u ∈ ũ, G ∈ G̃
⋃

j∈J permsπ(Hj , G̃ − G) if H = G : ũ[Hj ]j∈J , u 
∈ ũ, G ∈ G̃

∅ if G̃ = ε

⊥ if H = G : ũ[Hj ]j∈J , G 
∈ G̃, G̃ 
= ε

2. Consider a policy P and an interface Θ. Θ satisfies P, written P � Θ, if:

〈H,π〉 � 〈H↓, p̃〉 P � Θ

t 	 〈H,π〉;P � t 	 〈H↓, p̃〉;Θ P � ∅

According to the definition, 〈H,π〉 � 〈H↓, p̃〉, for H↓ = G1[G2[. . . Gn[u] . . .]],
if the permissions p̃ are a subset of the permissions endowed to groups
G1, . . . , Gn, for purpose u by 〈H,π〉. This set of permissions is defined inductively
via function permsu where we point out that while computing the permissions
allowed by the policy, we simultaneously check that the groups G1, . . . , Gn, of
the H↓-hierarchy are compatible with the policy hierarchy; the function becomes
undefined if at any point the root of the policy hierarchy is absent from the groups
of the H↓-interface. In clause (2) of the definition, we specify that a Θ-interface
satisfies a policy P, P � Θ, if for each component t 	 〈H↓, p̃〉 of Θ, there
exists a component t 	 〈H,π〉 of P such that 〈H,π〉 � 〈H↓, p̃〉.

We may now define the notion of the error process which clarifies the satis-
fiability relation between the policies and processes.

Definition 3 (Error Process). Consider a policy P, an environment Γ and
a system

S ≡ (ν G1)(ν x̃1 : T̃1)(. . . ((ν Gn)(ν x̃n : T̃n)P 〈u〉 | Q〈u′〉 | Sn) . . . | S1)

System S is an error process with respect to P and Γ , if there exists t such
that P = t 	 〈H,π〉;P ′ and at least one of the following holds, where G̃ =
〈G1, . . . , Gn〉:
1. read /∈ ⋃

G∈ ˜G π(u,G) and ∃x such that Γ � x � G[t] and P = x(y).P ′.
2. write /∈ ⋃

G∈ ˜G π(u,G) and ∃x such that Γ � x � G[t] and P = x〈y〉.P ′.
3. access /∈ ⋃

G∈ ˜G π(u,G) and ∃x such that Γ � x � G[t] and P = y(x).P ′.
4. discloseG′ /∈ ⋃

G∈ ˜G π(u,G) and ∃x, y such that Γ � x � G[t], Γ � y � G′[G[t]]
and P = y〈x〉.P ′.

The first two error processes expect that a process with no read or write
permissions on a certain level of the hierarchy should not have, respectively,
a prefix receiving or sending an object typed with the private data. Similarly
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an error process with no access permission on a certain level of the hierarchy
should not have an input-prefixed subject with object a link to private data.
An output-prefixed process that send links through a channel of sort G′ is
an error process if it is found in a specific group hierarchy with no discloseG′

permission.
As expected, if a process is an error with respect to a policy P and an

environment Γ its Θ-interface does not satisfy P:

Lemma 1. Let system S be an error process with respect to well formed policy
P and sort Γ . If Γ � S � Θ then P �� Θ.

By Lemma 1 we conclude with our safety theorem which verifies that the
satisfiability of a policy by a typed process is preserved by the semantics.

Theorem 2 (Safety). If Γ � S � Θ, P � Θ and S
�−→

∗
S′ then S′ is not an

error with respect to policy P.

The above results may be proved by noting that our framework may be
embedded into the one of [23] by associating every group-purpose pair in a
system of the present framework to a new group of the framework of [23]. Thus
by appropriate translations of systems and policies, the proofs of the results can
be obtained. The details are omitted.

Example 3. Let us consider the policy of Example 1 and the system of
Example 2. To confirm that system S of Example 2 satisfies policy P of
Example 1, by Theorem 2 above, we should establish that P � Θ, where Θ
is the interface obtained by type checking in Example 2. We have that for
G̃ = 〈Company,MarketingDept〉

permsπ2
(H2, G̃, direct) = {read,write}

permsπ2
(H2, G̃, thirdparty) = {access, disclose ThirdParty}

Since Γ � S � Θ where

Θ = pd+ 	 〈Company[MarketingDept[direct ]], {read,write}〉
pd+ 	 〈Company[MarketingDept[thirdparty ]], {access, disclose ThirdParty}〉

the exercised permissions for each purpose for type pd+ coincide with the allowed
permissions and, we obtain P � Θ. Thus the system satisfies the policy.

However, if we consider Example 2 but with type pd+ substituted by pd−,
type checking would yield Γ � S′ � Θ′ where:

Θ′ = pd− 	 〈Company[MarketingDept[direct ]], {read,write}〉
pd− 	 〈Company[MarketingDept[thirdparty ]], {access, discloseThirdParty}〉

Since

permsπ3
(H3, 〈Company,MarketingDept〉, direct) = {read,write}

permsπ3
(H3, 〈Company,MarketingDept〉, thirdparty) = ∅
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we conclude that P �� Θ′, and clearly the system violates the policy as it
attempts to market private data of non-consenting customers to third-party
entities.

6 Example

In this section, we illustrate our methodology to reason about privacy require-
ments as these might arise in a healthcare patient system. Our example is
inspired from the MyHealth@Vanderbilt patient portal [1], a secure electronic
health record system developed by Vanderbilt University Medical Center to pro-
vide patients the possibility to interact with their doctors and other healthcare
professionals through a web-based messaging system. In the first example we
show how the process of a patient sending a question to a doctor using the sec-
retary as a proxy can be modelled in our framework and how we might verify
that the defined procedure satisfies an associated privacy policy. In the second
example we consider a process where a patient’s medical records are forwarded
by a healthcare provider to an external associate for specialized diagnosis. The
process is constructed so as to satisfy the HIPAA privacy rule.

6.1 Submission of a Question

We consider the process whereby a patient submits a question to the system
which is received by the secretary who is then responsible to forward it to the
doctor. To preserve the privacy of the patient we must ensure that the secretary
will be able to forward a link of the question to the doctor but unable to read
the actual question.

In the Gπ-calculus we may model the system with the aid of four groups:
HCS corresponds to the entirety of the healthcare system, Patient refers to the
patient, HCP refers to the health care providers which are the Secretary and the
Doctor subgroups.

Moreover, we assume the existence of three base types: hQuestion refers to
a patient’s question, hAnswer refers to a doctor’s answer and medData refers
to protected health records. We write Tq = HCS[hQuestion], Tq∗ = HCS[Tq],
Ta = HCS[hAnswer], Ta∗ = HCS[Ta], TmD = HCP[medData].

P = !(ν query : Tq)query〈q〉.tosec〈query〉.
fromsec(answer : Ta).answer(a : hAnswer).0

S = !tosec(q : Tq).todoc〈q〉.fromdoc(x : Ta).fromsec〈x〉.0
D = !todoc(question : Tq).question(q : hQuestion).readD(d : medData).

(ν answer : Ta)(ν a : hAnswer)answer〈a〉.fromdoc〈answer〉.0
System = (ν HCS)(ν tosec : Tq∗)(ν fromsec : Ta∗)(ν todoc : Tq∗)(ν fromdoc : Ta∗)

[ (ν HCP)((ν Doctor) D〈question〉 | (ν Secretary) S〈question〉)
| (ν Patient) P 〈question〉 ]

In the above model, we have three components representing the three partici-
pants of the procedure. The patient P , of group Patient, may communicate with
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the secretary S, of group Secretary, via names tosec and fromsec. The name tosec
has type Tq∗ which can be used within the HCS system in order to communicate
links (names of type Tq) to questions of type hQuestion. On receiving such a
link, the secretary forwards it to the doctor D, of group Doctor, which uses the
received link in order to read the contents of the question and, once obtaining
the medical data of the patient, through channel readD , it produces an answer
(of type hAnswer) and sends a link to the answer (of type Ta) to the secretary
who continues to forward it to the patient.

A possible privacy policy for this system might be one that assigns the pur-
pose question to every group defined in the system, and associates specific per-
missions to each group for every base type as follows:

Pq = medData 	 〈H,πmD〉; hQuestion 	 〈H,πq〉; hAnswer 	 〈H,πa〉
where H = HCS : {question}[Patient,HCP[Doctor,Secretary]] and

πq(question, G) =

⎧
⎨

⎩

{read,write, discloseHCS} if G = Patient
{access, discloseHCP} if G = Secretary
{access, read} if G = Doctor

πa(question, G) =

⎧
⎨

⎩

{read, access} if G = Patient
{access, discloseHCS} if G = Secretary
{read,write, disclose HCS} if G = Doctor

πmD(question, G) =
{{read} if G = Doctor

∅ otherwise

By applying the rules of the type system we may show that Γ � System � Θ
where Γ = ∅ and

Θ = hQuestion 	 〈HCS[Patient[question]], {write, discloseHCS}〉;
hQuestion 	 〈HCS[HCP[Secretary[question]]], {access, discloseHCS}〉;
hQuestion 	 〈HCS[HCP[Doctor[question]]], {access, read}〉;
hAnswer 	 〈HCS[Patient[question]], {access, read}〉;
hAnswer 	 〈HCS[HCP[Secretary[question]]], {access, discloseHCS}〉;
hAnswer 	 〈HCS[HCP[Doctor[question]]], {write, discloseHCP}〉;
medData 	 〈HCS[HCP[Doctor[question]]], {read}〉;

We may see that P � Θ which implies that P � S, that is, the system S
satisfies the policy as required.

6.2 Referral to External Associate

Consider the process where a doctor sends medical data of a patient to a medical
lab for analysis relevant to the patient’s treatment, and the lab responds with
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the results of the analysis as well as the payment details, according to the health
care services provided to the patient, which are then forwarded to the patient
by the doctor. This is an external process to the main healthcare provider as
it involves the communication between a patient, a hospital and a medical lab,
and, in particular, it involves the dissemination of the patient’s data outside the
hospital environment. In this case, the medical lab is considered to be a business
associate of the healthcare provider and, as such, the workflow should follow the
policies enunciated by the HIPAA Privacy Rule.

In the Gπ-calculus we may model the system with the aid of 6 groups:
MedicalWorld corresponds to the complete environment of the system. The
MedicalWorld is divided into group HCS for the healthcare system, and to the
group MedicalLab for the medical lab. HCS is divided into three groups: Patient
for patients, HCP for the health care providers within the system and its sub-
group Doctor for doctors.

We assume the existence of two base types: medData referring to the protected
health records of the patient and bill referring to the payment details. We write
Tb = MedicalWorld[bill], Tb∗ = MedicalWorld[Tb], TmD = MedicalWorld[medData],
TmD∗ = MedicalWorld[TmD]. We may model the system as follows:

P = fromD(medBill : Tb).medBill(b : bill).0
Dt = toLab〈mData〉.0
Db = fromLab(bill : Tb).fromD〈bill〉.0

Labt = toLab(d : TmD).d(data : medData).0
Labb = (ν medicalBill : Tb)(ν b : bill)medicalBill〈b〉.fromLab〈medicalBill〉.0

System = (ν MedicalWorld)[ (ν fromLab : Tb∗)(ν toLab : TmD∗)(ν fromD : Tb∗)
(ν HCS)((ν HCP )((ν Doctor)Dt〈treat〉 | (ν Doctor)Db〈bill〉)

| (ν Patient)P 〈bill〉)
| (ν MedicalLab)Labt〈treat〉 | (ν MedicalLab)Labb〈bill〉]

In the above model we have five entities working towards the purposes of treat
and bill . In particular, the doctor may engage in process Dt via which it forwards
the medical lab (process Labt) medical records of the patient in order for the lab
to perform some special tests to aid the diagnosis and treatment of the patient.
At the same time, processes Labb, Db and P may communicate in order for a bill
to be delivered to the patient for the purpose of billing. A possible privacy policy
for this system is Pq = medData 	 〈H,πmD〉; bill 	 〈H,πb〉 where

H = MedicalWorld: {bill}[HCS[Patient,HCP[Doctor : {treat}]],MedicalLab:{treat}]

and

πmD(treat , G) =

⎧
⎨

⎩

{access, read} if G = MedicalLab
{read,write, discloseMedicalWorld} if G = Doctor
∅ otherwise
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πb(bill , G) =

⎧
⎨

⎩

{read,write, discloseMedicalWorld} if G = MedicalLab
{access, discloseMedicalWorld} if G = Doctor
{access, read} if G = Patient

By applying the rules of the type system we may show that Γ � System � Θ
where P � Θ which implies that P � S, that is, the system S satisfies the
policy as required.

Note that if the medical lab attempted to write the analysis results in the
medical files of the patient (e.g. by executing an action d〈data ′〉), this would
result in a privacy violation: the type system would yield an interface where
medData 	 〈MedicalWorld[MedicalLab[treat ]]{access, read,write}〉, which is not
compatible with the defined policy. This would lead the analyst to adopt mea-
sures by either reconsidering the defined privacy restriction or by introducing
a new data type for lab results where the medical laboratory would possess
write-permissions.

7 Conclusions

In this paper we have presented a formal framework based on the π-calculus with
groups for studying purpose-based, role-aware privacy policies. The framework
has been implemented in a prototype tool for checking policy satisfaction by
π-calculus processes.

Our framework, similarly to related literature on purpose-based access con-
trol, makes a distinction between intended purposes, which are the purposes for
which sensitive data is intended to be used, as specified by a policy, and access
purposes, which are the actual purposes for which data is requested in a system.
Enforcement of a policy should ensure that access purposes are compliant with
intended purposes. Simultaneously, it is crucial to ensure that when an entity
claims access to sensitive data for a certain purpose, then the processing carried
out on the data is consistent with the claimed purpose. In our framework we cap-
ture intended purposes via a policy language and we extract access purposes via
type checking. Furthermore, to control the data processing carried in the name
of a purpose, we introduce the concept of intended and access permissions: At
the level of a policy, for each type of sensitive data, we assign to each role within
the system a set of permissions (e.g. reading, writing, or disclosing the data) that
may be exercised when engaging in a purpose. At the system level, we use type
checking to deduce the actual usage exercised by a system. As before, the actual
permissions exercised every time sensitive data is accessed or processed should
be compliant with the intended permissions as enunciated by the policy. Thus,
we may establish sufficient conditions for a system to satisfy a policy statically
via type checking and by checking the compatibility between the policy and the
output of the type inference.

Our methodology is based on [23] where the main concepts and machinery
applied in this paper were developed in order to provide a semantical frame-
work for reasoning about privacy and privacy violations relating to information
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collection, information processing and information dissemination. The contribu-
tion of this paper in comparison to [23] is that it fine-tunes the methodology
of [23] to reason about purpose-based requirements. In this way, our policy lan-
guage allows us to directly express privacy requirements that involve the notion
of a purpose as is common in standard privacy policy languages. Furthermore,
it opens the path for a fundamental study of the notion of a purpose and its
relation to privacy violations.

As future work we intend to explore more complex policy languages relating
to purpose-based privacy enforcement such as conditional roles as e.g. considered
in [9], and the concept of obligation as employed in P-RBAC. Furthermore, it
would be interesting to explore more dynamic settings where the roles evolve over
time. As a long-term goal we would like to work towards providing foundations
for the notion of privacy in the general context. Possible extensions of our work in
this direction could involve adding semantics both at the level of our metatheory
as well as our policy language to capture identification-related privacy violations
such as distortion and insecurity violations or providing foundations to formally
define aggregation of data and to distinguish when an adversary has achieved
data aggregation over a data subject.
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Abstract. We address the problem of designing distributed applications
which require the interaction of loosely-coupled and mutually distrusting
services. In this setting, services can use contracts to protect themselves
from unsafe interactions with the environment: when their partner in an
interaction does not respect its contract, it can be blamed (and punished)
by the service infrastructure. We extend a core calculus for services, by
using a semantic model of contracts which subsumes various kinds of
behavioural types. In this formal framework, we study some notions of
honesty for services, which measure their ability to respect contracts,
under different assumptions about the environment. In particular, we
find conditions under which these notions are (un)decidable.

1 Introduction

Service-Oriented Computing (SOC) fosters a programming paradigm where dis-
tributed applications can be constructed by discovering, integrating and using
basic services [18]. These services may be provided by different organisations,
possibly in competition (when not in conflict) among each other. Further, ser-
vices can appear and disappear from the network, and they can dynamically
discover and invoke other services in order to exploit their functionality, or to
adapt to changing needs and conditions. Therefore, programmers of distributed
applications have to cope with such security, dynamicity and openness issues in
order to make their applications trustworthy.

A possible way to address these issues is to use contracts. When a service
needs to use some external (possibly untrusted) service, it advertises to a SOC
middleware a contract which specifies the offered/required interaction protocol.
The middleware establishes sessions between services with compliant contracts,
and it monitors the communication along these sessions to detect contract vio-
lations. These violations may happen either unintentionally, because of errors in
the service specification, or because of malicious behaviour.

When the SOC middleware detects contract violations, it sanctions the
responsible services. For instance, the middleware in [3] decreases the reputa-
tion of the culprit, in order to marginalise services with low reputation during
the selection phase. Therefore, a new form of attacks arises: malicious users can
c© Springer International Publishing Switzerland 2016
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try to make some service sanctioned by exploiting possible discrepancies between
the promised and the actual behaviour of that service. A crucial problem is then
how to avoid such attacks when deploying a service.

However, designing an honest service which always respects its contracts
requires one to fulfil its obligations also in adversarial contexts which play
against. We illustrate below that, even for a fairly simple application composed
by only three services, this is not an easy task.

An Example. Consider an online store taking orders from buyers. The store sells
two items: item A, which is always available and costs e1, and item B, which
costs e1 when in stock, and e3 otherwise. In the latter case, the store orders
item B from an external distributor, which makes the store pay e2 per item.

The store advertises the following contract to potential buyers:

1. let the buyer choose between item A and item B;
2. if the buyer chooses item A, then receive e1, and then ship the item to him;
3. if the buyer chooses item B, offer a quotation to the buyer (e1 or e3);
4. if the quotation is e1, then receive the payment and ship;
5. if the quotation is e3, ask the buyer to pay or cancel the order;
6. if the buyer pays e3, then either ship the item to him, or refund e3.

We can formalise such contract in several process algebras. For instance, we
can use the following session type [20] (without channel passing):

TB = buyA.pay1E.shipA &
buyB.(quote1E.pay1E.shipB ⊕ quote3E.T ′

B ⊕ abort)
T ′

B = pay3E.(shipB⊕ refund) & quit

where e.g., buyA represents a label in a branching construct (i.e., receiving an
order for item A from the buyer), while quote1E represents a label in a selection
construct (i.e., sending an e1 quotation to the buyer). The operator ⊕ separates
branches in an internal choice, while & separates branches in an external choice.

The protocol between the store and the distributor is the following:

TD = buyB.(pay2E.shipB ⊕ quit)

Note that the contracts above do not specify the actual behaviour of the store,
but only the behaviour it promises towards the buyer and the distributor. A pos-
sible informal description of the actual behaviour of the store is the following:

1. advertise the contract TB ;
2. when TB is stipulated, let the buyer choose item A (buyA) or B (buyB);
3. if the buyer chooses A, get the payment (pay1E), and ship the item (shipA);
4. otherwise, if the buyer chooses B, check if the item is in stock;
5. if item B is in stock, provide the buyer the quotation of e1 (quote1E), receive

the payment (pay1E), and ship the item (shipB);
6. otherwise, if item B is not in stock, advertise the contract TD ;
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7. when TD is stipulated, pre-order item B from the distributor (buyB);
8. send a e3 quotation to the buyer (quote3E) and wait for the buyer’s reply;
9. if the buyer pays e3 (pay3E), then pay the distributor (pay2E), receive the

item from the distributor (shipB), and ship it to the buyer (shipB).

The store service terminates correctly whenever two conditions hold: the
buyer is honest, and at step 7 the middleware selects an honest distributor.
Such assumptions are necessary. For instance, in their absence we have that:

(a) if the buyer is dishonest, and he does not send e3 at step 9, then the store
does not fulfil its obligation with the distributor, who is expecting a payment
or a cancellation;

(b) if the middleware finds no distributor with a contract compliant with TD ,
then the store is stuck at line 7, so it does not fulfil its obligation with the
buyer, who is expecting a quotation or an abort;

(c) if the distributor is dishonest, and it does not ship the item at line 9, then
the store does not fulfil its obligation with the buyer, who is expecting to
receive the item or a refund;

(d) if the buyer chooses quit at line 8, the store forgets to handle it; so, it will
not fulfil the contract with the distributor, who is expecting pay2E or quit.

Therefore, we would classify the store process above as dishonest. In practice,
this implies that a concrete implementation of such store could be easily attacked.
For instance, an attacker could simply order item B (when not in stock), but
always cancel the transaction. The middleware will detect that the store is vio-
lating the contract with the distributor, and consequently it will sanction the
store. Concretely, in the middleware of [3] the attacker will manage to never be
sanctioned, and to arbitrarily decrease the store reputation, so preventing the
store from being able to establish new sessions with buyers.

The example above shows that writing honest processes is an error-prone
task: this is because one has to foresee all the possible points of failure of each
partner. We handle all such points in Example 6, where we show a provably
honest store process.

Specifying Contract-Oriented Services. To formalise and study honesty, we first
fix the formal setting, which consists of two basic ingredients:

– a model of contracts, which specify the promised behaviour of a service.
– a model of processes, which specify the actual behaviour. Such behaviour

involves e.g. checking compliance between contracts, making a contract evolve
upon actions, etc., and so it also depends on the contract model.

Ideally, a general theory of honesty should abstract as much as possible from
the actual choices for the two models. However, different instances of the models
may give rise to different notions of honesty — in the same way as different
process calculi may require different notions of observational equivalences. Con-
tinuing the parallel with process calculi, where a process calculus may have sev-
eral different behavioural equivalences/preorders, it is also reasonable that, even
in a specific contract/process model, many relevant notions of honesty exist.
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In this paper we focus on a quite general model of contracts: arbitrary LTSs.
In particular, states denote contracts, and labels represent internal actions and
synchronisations between two services at the endpoints of a session (Sect. 2).
We interpret compliance between two contracts as the absence of deadlock in
their parallel execution, similarly to [1,2,13]. This model allows for a syntax-
independent treatment of contracts (like e.g. session types, see Sect. 2.2).

To formalise processes, we build upon CO2 [10]: this is a minimalistic calculus
with primitives for advertising contracts, opening sessions, and doing contractual
actions. In Sect. 3 we extend the calculus of [10] by modifying the synchronisation
primitive to use arbitrary LTSs as contracts, and the advertisement primitive to
increase its expressiveness.

Contributions. The main contribution of the paper is the study of some notions
of honesty, their properties, and their decidability. In particular:

1. We show that two different notions of honesty coincide (Theorem 1). The
first one (originally introduced in [8]) says that a process is honest when, in
all possible contexts, whenever it has some contractual obligations, it can
interact with the context and eventually fulfil said obligations. The second
notion is a variant (introduced here), which requires a process to be able (in all
possible contexts) to fulfil its obligations on its own, without interacting with
the context. This result simplifies the design of static analyses for honesty,
since it allows for abstracting the moves of the context when one has to decide
whether a process is fulfilling its obligations.

2. We prove that systems of honest processes are deadlock-free (Theorem 6).
3. We introduce a weaker notion of honesty, where a process is required to behave

honestly only when its partners are honest (Definition 15). For instance, weak
honesty ensures the absence of attacks such as items b and d in the store
example, but it does not rule out attacks such as items a and c. Unlike systems
of honest processes, systems of weakly honest processes may get stuck, because
of circular dependencies between sessions (see Example 8).

4. We show that if a process using session types as contracts is honest in all
contexts which use session types as contracts, then it is honest in all arbitrary
contexts (Theorem 5). This property has a practical impact: if some static
analyses tailored on session types (like e.g., that in [7]) determines that a
process is honest, then we can safely use such process in any context — also
in those which use a different contract model.

5. We study decidability of honesty and weak honesty. First, for any given Turing
Machine, we show in Theorem 7 how to craft a CO2 process which simulates
it. We then prove that this process is honest (according to any of the notions
presented above) if and only if said Turing Machine is not halting. From this
we establish the undecidability of all the above-mentioned notions of honesty,
in all possible models of contracts which include session types. Overall, this
generalises a result in [10], which establishes the undecidability of (strong)
honesty in an instance of CO2 using τ -less CCS contracts [13].

6. We find a syntactic restriction of CO2 and a constraint on contracts under
which honesty is decidable (Theorem 8).
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7. We find a class of contracts for which dishonesty of (unrestricted) CO2

processes is recursively enumerable (Theorem 9).

2 Contracts

We now provide a semantic setting for contracts. In Sect. 2.1 we model contracts
as states of a Labelled Transition System (LTS) with two kinds of labels: internal
actions, which represent actions performed by one participant, and synchronisa-
tion actions, which model interactions between participants. As an example, in
Sect. 2.2 we show that session types can be interpreted in this setting. In Sect. 2.3
we provide contracts with a notion of compliance, which formalises correct inter-
actions between services which respect their contracts.

2.1 A Model of Contracts

Assume a set of participants (ranged over by A,B, . . .), a recursive set L (ranged
over by a, b, . . .) with an involution · , and a recursive set Λτ (ranged over
by τ , τa, τ i, . . .). We call Λa = L ∪ L the set of synchronisation actions, and
Λτ the set of internal actions. We then define the set Λ of actions as the disjoint
union of Λa and Λτ , and we let α, β, . . . range over Λ.

We develop our theory within the LTS (U, Λ, −→), where:

– U is a set (ranged over by c, d, . . .), called the universe of contracts;
– −→ ⊆ U × Λ × U is a transition relation between contracts, with labels in Λ.

We denote with Ufin the set of finite-state contracts, i.e. for all c ∈ Ufin , the
contracts reachable from c with any finite sequence of transitions is finite. We
denote with 0 a contract with no outgoing transitions, and we interpret it as a
success state. We write: R∗ for the reflexive and transitive closure of a relation
R, and c

α−→ c′ when (c, α, c′) ∈ −→. Furthermore, sometimes we express contracts
through the usual CCS operators [24]: for instance, we can write the contract c1
in Fig. 1 as the term τ a. a + τ b. b.

While a contract describes the intended behaviour of one of the two partici-
pants involved in a session, the behaviour of two interacting participants A and
B is modelled by the composition of two contracts, denoted by A : c ‖B : d. We
specify in Definition 1 an operational semantics of these contract configurations:
internal actions can always be fired, while synchronisation actions require both
participants to enable two complementary actions. Note that the label of a syn-
chronisation is not an internal action (unlike e.g., in CCS [24]); this is because
in the semantics of CO2 we need to inspect such label in order to make two
processes synchronise (see rule [DoCom] in Fig. 3).

Definition 1 (Semantics of contract configurations). We define the tran-
sition relation −→→ between contract configurations (ranged over by γ, γ ′, . . .) as
the least relation closed under the following rules:
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c
τ−→ c′

A : c ‖ B : d
{A}:τ−−−−→→ A : c′ ‖ B : d

d
τ−→ d′

A : c ‖ B : d
{B}:τ−−−−→→ A : c ‖ B : d′

c
a−→ c′ d

a−→ d′

A : c ‖ B : d
{A,B}:a−−−−−→→ A : c′ ‖ B : d′

c1

τ a
a

τ b b

(1)

c2

a

b

(2)

c3

a

τ
b

(3)

c4
b a

(4)

c5

a b

b a

(5)

Fig. 1. Some simple contracts.

2.2 Session Types as Contracts

Session types [19,20] are formal specifications of communication protocols
between the participants at the endpoints of a session. We give in Definition
2 a version of session types without channel passing, similarly to [1].

Definition 2 (Session types). Session types are terms of the grammar:

T ::=
˘

i∈Iai .Ti

∣
∣ ⊕

i∈Iai .Ti

∣
∣ recX T

∣
∣ X

where (i) the set I is finite, (ii) all the actions in external (resp. internal) choices
are pairwise distinct and in L (resp. in L), and (iii) recursion is prefix-guarded.

A session type is a term of a process algebra featuring a selection construct
(i.e., an internal choice among a set of branches, each one performing some
output), and a branching construct (i.e., an external choice among a set of inputs
offered to the environment). We write 0 for the empty (internal/external) choice,
and we omit trailing occurrences of 0. We adopt the equi-recursive approach, by
considering terms up-to unfolding of recursion.

We can interpret session types as contracts, by giving them a semantics in
terms of the LTS defined in Sect. 2.1.

Definition 3. We denote with ST the set of contracts of the form T or [a] T ,
with T closed, and transitions relation given by the following rules:

˘
i∈I ai .Ti

ak−→Tk (k ∈ I)
⊕

i∈I ai .Ti
τi−→[ak] Tk (k ∈ I) [a] T a−→T

An external choice can always fire one of its prefixes. An internal choice⊕
i∈Iai .Ti must first commit to one of the branches ak .T k, and this produces

a committed choice [ak] T k, which can only fire ak. As a consequence, a session
type may have several outgoing transitions, but internal transitions cannot be
mixed with synchronisation ones. There cannot be two internal transitions in
a row, and after an internal transition, the target state will have exactly one
reduct. Note that ST � Ufin .
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Example 1. The contract c1 in Fig. 1 represents the session type a ⊕ b: since it
is an internal choice, according to Definition 3 there is a commit on the chosen
branch before actually firing the synchronisation action. The contract c2 is in
ST as well, as it represents an external choice a & b. Instead, the last three
contracts do not belong to ST: indeed, in c3 an internal transition is mixed with
an input one; in c4 there is no internal transition before b; finally, in c5 input and
output transitions are mixed (note that c5 represents an asynchronous output
of a followed by an input of b, as in the asynchronous session types of [9]). �	

2.3 Compliance

Among the various notions of compliance appeared in the literature [4], here we
adopt progress (i.e. the absence of deadlock). In Definition 4 we say that c and
d are compliant (in symbols, c �� d) iff, when a reduct of A : c ‖ B : d cannot
take transitions, then both participants have reached success. A similar notion
has been used in [13] (for τ -less CCS contracts) and in [1,2] (for session types).

Definition 4 (Compliance). We write c �� d iff:

A : c ‖ B : d −→→∗ A : c′ ‖ B : d′ 
−→→ implies c′ = 0 and d′ = 0

Example 2. Consider contracts in Fig. 1. We have that c1 �� c2 and c4 �� c5,
while all the other pairs of contracts are not compliant. �	

3 Contract-Oriented Services

We now extend the process calculus CO2 of [10], by parameterising it over an
arbitrary set C of contracts. As a further extension, while in [10] one can advertise
a single contract at a time, here we allow processes to advertise sets of contracts,
which will be stipulated atomically (see Definition 6). This will allow us to
enlarge the set of honest processes, with respect to those considered in [10].

3.1 Syntax

Let V and N be disjoint sets of, respectively, session variables (ranged over
by x, y, . . .) and session names (ranged over by s, t, . . .); let u, v, . . . range over
V ∪ N , and u, v, . . . over 2V∪N . A latent contract {↓x c} represents a contract
c which has not been stipulated yet; the variable x will be instantiated to a
fresh session name upon stipulation. We also allow for sets of latent contracts
{↓u1 c1, . . . , ↓uk

ck}, to be stipulated atomically. We let C,C ′, . . . range over sets
of latent contracts, and we write CA when the contracts are signed by A.

Definition 5 (CO2 syntax). The syntax of CO2 is defined as follows:

π :: = τ
∣
∣ tellC

∣
∣ dou α (Prefixes)

P :: =
∑

i πi.P i

∣
∣ P | P ∣

∣ (u)P
∣
∣ X(u) (Processes)

S :: = 0
∣
∣ A[P ]

∣
∣ CA

∣
∣ s[γ ]

∣
∣ S | S ∣

∣ (u)S (Systems)
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We also assume the following syntactic constraints on processes and systems:

1. each occurrence of X(u) within a process is prefix-guarded;
2. each X has a unique defining equation X(u) � P , with fv(P ) ⊆ {u} ⊆ V;
3. in (u)(A[P ] | B[Q] | · · · ), it must be A 
= B;
4. in (u)(s[γ ] | t[γ ′] | · · · ), it must be s 
= t;

We denote with PC the set of all processes with contracts in C.

(u)A[P ] ≡ A[(u)P ] Z | 0 ≡ Z Z | Z′ ≡ Z′ | Z (Z | Z′) | Z′′ ≡ Z | (Z′ | Z′′)

Z | (u)Z′ ≡ (u)(Z | Z′) if u �∈ fv(Z) ∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u �∈ fv(Z) ∪ fn(Z)

Fig. 2. Structural congruence (Z ranges over processes, systems, latent contracts)

Processes specify the actual behaviour of participants. A process can be a
prefix-guarded finite sum

∑
i πi.P i, a parallel composition P | Q, a delimited

process (u)P , or a constant X(u). We write 0 for
∑

∅ P , and π1.Q1 + P for∑
i∈I∪{1} πi.Qi, provided that P =

∑
i∈I πi.Qi and 1 
∈ I. If u = {u1, . . . , uk},

we write (u)P for (u1) · · · (uk)P . We omit trailing occurrences of 0.
Prefixes include the silent action τ , contract advertisement tellC , and

action execution dou α, where the identifier u refers to the target session.
A system is composed of agents (i.e., named processes) A[P ], sessions s[γ ],

signed sets of latent contracts CA , and delimited systems (u)S . Delimitation (u)
binds session variables and names, both in processes and systems. Free variables
and names are defined as usual, and their union is denoted by fnv( ). A sys-
tem/process is closed when it has no free variables. We denote with K a special
participant name (playing the role of broker) not occurring in any system.

3.2 Semantics

We define the semantics of CO2 as a reduction relation on systems (Fig. 3).
This uses a structural congruence, which is the smallest relation satisfying the
equations in Fig. 2. Such equations are mostly standard — we just note that
(u)A[(v)P ] ≡ (u)(v)A[P ] allows to move delimitations between CO2 systems
and processes. In order to define honesty in Sect. 4, we decorate transitions with
labels, by writing A : π−−−→ for a reduction where participants A fire π .

Rule [Tau] fires a τ prefix. Rule [Tell] advertises a set of latent contracts C .
Rule [Fuse] inspects latent contracts, which are stipulated when compliant pairs
are found through the � relation (see Definition 6 below). Upon stipulation,
one or more new sessions among the stipulating parties are created. Rule [DoTau]

allows a participant A to perform an internal action in the session s with con-
tract configuration γ (which, accordingly, evolves to γ ′). Rule [DoCom] allows two
participants to synchronise in a session s. The last three rules are standard.
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Definition 6. The relation C1
A1 | · · · | Ck

Ak
�σ s1[γ1] | · · · | sn[γn] holds iff:

1. for all i ∈ 1..k, Ci = {↓xi,1 ci,1, . . . , ↓xi,mi
ci,mi

}, and the variables xi,j are
pairwise distinct;

2. for all i ∈ 1..k, let Di = {(Ai, xi,h, ci,h) |h ∈ 1..mi}. The set
⋃

i Di is parti-
tioned into a set of n subsets Mj = {(Aj , xj , cj), (Bj , yj , dj)} such that, for
all j ∈ 1..n, Aj 
= Bj, cj �� dj, and γj = Aj : cj ‖ Bj : dj;

3. σ = {s1/x1,y1 , · · · , sn/xn,yn} maps session variables to pairwise distinct ses-
sion names s1, . . . , sn.

A[τ . P + P ′ | Q]
{A} : τ−−−−→ A[P | Q] [Tau]

A[tellC . P + P ′ | Q]
{A} : τ−−−−→ A[P | Q] | CA

[Tell]

C1
A1 | · · · | Ck

Ak �σ S ′ ran σ ∩ fn(S) = ∅
(dom σ)(C1

A1 | · · · | Ck
Ak | S)

{K} : τ−−−−→ (ran σ)(S ′ | Sσ)
[Fuse]

γ
{A}:τa−−−−→→ γ ′

A[dos τa . P + P ′ | Q] | s[γ ]
{A} : dos τa−−−−−−−→ A[P | Q] | s[γ ′]

[DoTau]

γ
{A,B}:a−−−−−→→ γ ′

A[dos a. P + P ′ | P ′′] | B[dos a. Q + Q′ | Q′′] | s[γ ]
{A,B} : dos a−−−−−−−−→

A[P | P ′′] | B[Q | Q′′] | s[γ ′]

[DoCom]

X(u) � P A[P {v/u} | Q] | S
A : π−−−→ S ′

A[X(v) | Q] | S
A : π−−−→ S ′ [Def]

S
A : π−−−→ S ′

(u)S
A : delu(π)−−−−−−−→ (u)S ′ [Del] where delu(π) =

{
τ if u ∈ fnv(π)

π otherwise

S
A : π−−−→ S ′

S | S ′′ A : π−−−→ S ′ | S ′′ [Par]

Fig. 3. Reduction semantics of CO2.

Example 3. Let S = (x, y, z, w) (CA | C ′
B | C ′′

C | S0), with S0 immaterial, and:

C = {↓x a, ↓y b} C ′ = {↓z a} C ′′ = {↓w b}
Further, let σ = {s/x,z , t/y,w}, γAB = A : a | B : a and γAC = A : b | C : b.
According to Definition 6 we have that CA | C ′

B | C ′′
C �σ s[γAB ] | t[γAC ]. In fact:

1. C , C ′ and C ′′ contain pairwise distinct variables;
2. letting DA = {(A, x, a) ,

(
A, y, b

)}, DB = {(B, z, a)} and DC = {(C, w, b)},
we can partition DA ∪DB ∪DC into the subsets MAB = {(A, x, a) , (B, z, a)}
and MAC = {(A, y, b

)
, (C, w, b)}, where a �� a and b �� b.

3. σ maps session variables x, z, y, w to pairwise distinct session names s, t.
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Therefore, by rule [Fuse], we have: S
{K} : τ−−−−→ (s, t)

(
s[γAB ] | t[γAC ] | S0σ

)
. �	

Example 4. Let S = A[(x)X(x)] | B[(y)Y(y)], where:

X(x) � tell {↓x a}. dox a Y(y) � tell {↓y a}. doy a

A maximal computation of S is the following:

S
{B} : τ−−−−→ A[(x)X(x)] | (y) (B[doy a] | {↓y a}B) [Tell]

{A} : τ−−−−→ (x, y) (A[dox a] | B[doy a] | {↓x a}A | {↓y a}B) [Tell]

{K} : τ−−−−→ (s)
(
A[dos a] | B[dos a] | s[A : a ‖ B : a]

)
[Fuse]

{A,B} : dos a−−−−−−−−→ (s) (A[0] | B[0] | s[A : 0 ‖ B : 0]) [DoCom]

4 Honesty: Properties and Variants

CO2 allows for writing dishonest processes which do not fulfil their contracts, in
some contexts. Below we formalise some notions of honesty, which vary accord-
ing to the assumptions on the context. We start by introducing some auxiliary
notions. The obligations OA

s (S) of a participant A at a session s in S are those
actions of A enabled in the contract configuration within s in S .

Definition 7 (Obligations). We define the set of actions OA
s (S) as:

OA
s (S) =

{
OA(γ) if ∃S ′ . S ≡ s[γ ] | S ′

∅ otherwise
where OA(γ) = {α | ∃A .γ

{A}∪A:α−−−−−−→→}

The set S ↓Au (called ready-do set) collects all the actions α such that the
process of A in S has some unguarded prefixes dou α.

Definition 8 (Ready-do). We define the set of actions S ↓Au as:

S ↓Au =
{
α | ∃v, P , P ′, Q, S ′ . S ≡ (v)

(
A[dou α. P + P ′ | Q] | S ′) ∧ u 
∈ v

}

4.1 Honesty

A participant is ready in a system if she can fulfil some of her obligations there
(Definition 10). To check if A is ready in S , we consider all the sessions s in
S involving A. For each of them, we check that some obligations of A at s are
exposed after some steps (of A or of the context), not preceded by other dos of
A. These actions are collected in the set S ⇓A

s .

Definition 9 (Weak ready-do). We define the set of actions S ⇓A
u as:

S ⇓A
u =

{
α | ∃S ′ : S

�=(A : dou)−−−−−−→∗ S ′ and α ∈ S ′ ↓Au
}

where S
�=(A : dou)−−−−−−→ S ′ iff ∃A, π . S

A : π−−−→ S ′ ∧ (A /∈ A ∨ ∀α . π 
= dou α).
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The set RdyA
s collects all the systems where A is ready at session s. This hap-

pens in three cases: either A has no obligations, or A may perform some internal
action which is also an obligation, or A may perform all the synchronisation
actions which are obligations.

Definition 10 (Readiness). RdyA
s is the set of systems S such that:

OA
s (S) = ∅ ∨ OA

s (S) ∩ Λτ ∩ S ⇓A
s 
= ∅ ∨ ∅ 
= (OA

s (S) ∩ Λa) ⊆ S ⇓A
s

We say that A is ready in S iff ∀S ′,u, s . S ≡ (u)S ′ implies S ′ ∈ RdyA
s .

We can now formalise when a participant is honest. Roughly, A[P ] is honest
in a fixed system S when A is ready in all reducts of A[P ] |S . Then, we say that
A[P ] is honest when she is honest in all systems S .

Definition 11 (Honesty). Given a set of contracts C ⊆ U and a set of
processes P ⊆ PC , we say that:

1. S is A-free iff it has no latent/stipulated contracts of A, nor processes of A
2. P is honest in P iff, for all S made of agents with processes in P :

∀A :
(
S is A-free ∧ A[P ] | S −→∗ S ′) =⇒ A is ready in S ′

3. P is honest iff P ∈ HC , where:

HC = {P ∈ PU | P is honest in PC}
Note that in item 2 we quantify over all A: this is needed to associate P to a

participant name, with the only constraint that such name must not be present
in the context S used to test P . In the absence of the A-freeness constraint,
honesty would be impractically strict: indeed, were S already carrying stipulated
or latent contracts of A, e.g. with S = s[A : pay100Keu ‖ B : pay100Keu], it
would be unreasonable to ask participant A to fulfil them. Note however that S
can contain latent contracts and sessions involving any other participant different
from A: in a sense, the honesty of A[P ] ensures a good behaviour even in the
(quite realistic) case where A[P ] is inserted in a system which has already started.

Example 5. Consider the following processes:

1. P 1 = (x) tell {↓x a + τ .b}. dox τ . dox b

2. P 2 = (x) tell {↓x a}. (τ .dox a + τ .dox b)
3. P 3 = (x) tell {↓x a + b}. dox a
4. P 4 = (x) tell {↓x a}. X(x) X(x) � τ . dox a + τ . X(x)
5. P 5 = (x y) tell {↓x a}. tell {↓y b}. dox a. doy b

Processes P 1 and P 4 are honest, while the others are not. In P 2, if the rightmost
τ is fired, then the process cannot do the promised a. In P 3, if the contract of
other participant at x is b, then P 3 cannot do the corresponding b. There are
two different reasons for which P 5 is not honest. First, in contexts where y is
fused and x is not, the doy b can not be reached (and so the contract at y is not
respected). Second, also in those contexts where both sessions are fused, if the
other participant at x never does a, then doy b cannot be reached. �	
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Example 6. We now model in CO2 the store process outlined in Sect. 1. Rather
than giving a faithful formalisation of the pseudo-code in Sect. 1, which we
observed to be dishonest, we present an alternative version. The process P below
is honest, and it can be proved such by the honesty model checker in [7]. Within
this example, we use doτ

x a as an abbreviation for dox τ a . dox a.

P = (x) tell {↓x TB}A . (dox buyA. PA(x) + dox buyB. PB(x))

PA(x) � dox pay1E. doτ
x shipA

PB(x) � (y)
(
τ . doτ

x quote1E.dox pay1E. doτ
x shipB +

τ . tell {↓x TD}A .doτ
y buyB.do

τ
x quote3E. PB2(x, y) +

τ . P abort(x, y)
)

P abort(x, y) � doτ
x abort | doτ

y buyB | doτ
y quit

PB2(x, y) � dox pay3E. PB3(x, y) + dox quit. doτ
y quit + τ . P abort2(x, y)

P abort2(x, y) � (dox pay3E. doτ
x refund + dox quit) | doτ

y quit

PB3(x, y) � doτ
y pay2E. PB4(x, y) + τ . P abort3(x, y)

P abort3(x, y) � doτ
x refund | doτ

y quit

PB4(x, y) � doy shipB. doτ
x shipB + τ . P abort4(x, y)

P abort4(x, y) � doτ
x refund | doy shipB

4.2 Solo-Honesty

The notion of honesty studied so far requires that, in all contexts, whenever A
has some obligations, the system must be able to evolve to a state in which A
exposes some do (the ready-do) to fulfil her obligations. In other words, A is
allowed to interact with the context, from which she can receive some help.

A natural variant of honesty would require A to be able to fulfil her oblig-
ations without any help from the context. To define this (intuitively stricter)
variant of honesty, we modify the definition of weak ready-do to forbid the rest
of the system to move. The actions reachable in such way are then named solo
weak ready-do, and form a smaller set than the previous notion. The definitions
of solo-ready and solo-honest consequently follow — mutatis mutandis.

Definition 12 (Solo weak ready-do). S ⇓A-solo
u is the sets of actions:

S ⇓A-solo
u =

{
α | ∃S ′ . S

(A : �=dou)−−−−−−→∗ S ′ and α ∈ S ′ ↓Au
}

where S
(A : �=dou)−−−−−−→ S ′ iff ∃π . S

{A} : π−−−−→ S ′ ∧ (∀α. π 
= dou α).

Definition 13 (Solo readiness). RdyA-solo
s is the set of systems S such that:

OA
s (S) = ∅ ∨ OA

s (S) ∩ Λτ ∩ S ⇓A-solo
s 
= ∅ ∨ ∅ 
= (OA

s (S) ∩ Λa) ⊆ S ⇓A-solo
s

We say that A is solo-ready in S iff ∀S ′,u, s .S ≡ (u)S ′ implies S ′ ∈ RdyA-solo
s .
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Definition 14 (Solo honesty). We say that P is solo-honest in S iff

∀A :
(
S is A-free ∧ A[P ] | S −→∗ S ′) =⇒ A is solo-ready in S ′

We now relate solo honesty with the notion of honesty in Definition 11. As
expected, when considering a fixed context S , solo honesty implies honesty, and
is in general a stricter notion. However, being honest in all contexts is equivalent
to being solo-honest in all contexts, as established by the following theorem.

Theorem 1. For all processes P and systems S :

1. if P is solo-honest in S , then P is honest in S ;
2. the converse of item 1 does not hold, in general;
3. P is solo-honest iff P is honest.

Proof. Item 1 follows from definition of solo-readiness and S ⇓A-solo
s ⊆ S ⇓A

s .

For item 2, let:

P = A[(x, y) tell {↓x a}. tell {↓y b}. dox a. doy b]

S = B[(z) tell {↓z a}. doz a] | C[(w) tell {↓w b}. dow b]

We have that P is honest in S , but not solo-honest in S . Indeed, after both
contracts of A get stipulated, A needs to perform b in session y, but she can
only do that if B cooperates, allowing A to first perform a in session x.

For item 3, the “only if” direction immediately follows from item 1. For the “if”
direction, assume by contradiction that P is honest but not solo-honest, i.e.:

A[P ] | S →∗ (v) (A[P ′] | S ′)

where A[P ′] has some obligations to perform for which she can not reach any
related ready do on her own, but needs to interact with the context S ′ to do
that. In such case, it is possible to craft another A-free initial system S ′′, which
behaves exactly as S in the computation shown above, yet stops interacting at
the end of such computation. Basically, given the computation above, we can
construct S ′′ as the parallel composition of agents of the form B[(x)π1. . . . .πn].
Each prefix πi performs a tell or a do in the same order as in the computation
above. This makes it possible to obtain an analogous computation

A[P ] | S ′′ →∗ (v) (A[P ′] | S ′′′)

where S ′′′ does no longer interact with A. However, since A is honest, she must
be able to fulfil her obligations with the help of her context in A[P ′] | S ′′′. Since
the context does not cooperate, she must actually be able to do that with solo
transitions — contradiction. �	
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4.3 Weak Honesty

The honesty property requires a process to be ready even in those (dishonest)
contexts where the other participants avoid to do the required actions. A weaker
variant of honesty may require a process P to behave correctly provided that
also the others behave correctly, i.e. that P is ready in honest contexts, only.

Definition 15. (Weak honesty). Given a set of contracts C, we define the
set of weakly honest processes as:

WC = {P ∈ PU | P is honest in HC}
Example 7. The process P 5 from Example 5 is not weakly honest. Let, e.g.:

Q5 = (w) (tell {↓w b}. dow b)

which is clearly honest. However, by reducing A[P 5] | C[Q5] we reach the state:

S = (s, x)
(
A[dox a. dos b] | C[dos b] | s[A : b ‖ C : b]

)

where A is not ready. The problem here is that there is no guarantee that the
contract on x is always stipulated. We can fix this by making A advertise both
contracts atomically. This is done as follows:

P 5
′ = (x, y) tell {↓x a , ↓y b}. dox a. doy b

The process P 5
′ is weakly honest, but it is not honest: in fact, in a context where

the other participant in session x does not fire a, A is not ready at y. �	
The following theorem states that the set of weakly honest processes is larger

(for certain classes of contracts, strictly) than the set of honest ones.

Theorem 2. For all C, HC ⊆ WC . Furthermore, HST 
= WST.

Proof. The inclusion follows from Definition 15; the inequality from the process
P 5

′ in Example 7, which belongs to WST but not to HST. �	
The definition of HC requires honesty in all contexts, i.e. in all systems

composed of processes in PC . Instead, WC requires honesty in all HC contexts.
This step can be iterated further: what if we require honesty in all WC contexts?
As we establish below, we get back to HC .

Theorem 3. For all C: HC = {P |P is honest in WC} .

Proof (Sketch). The ⊆ inclusion trivially holds. For the ⊇ inclusion, it is possible
to craft a context of weakly honest processes which open sessions with P , possibly
interact with P in such sessions for a while, and then stop to perform any action.
This can be achieved as follows:

B[(x, y, z) tell {↓z c}. tell {↓x a , ↓y b}. dox a . doy b. Q] |
C[(v, w) tell {↓v a , ↓w b}. dow b. dov a]
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where c is a contract compliant with some of the contracts P advertises, and Q
is a honest implementation of c. Note that B above can also start two sessions
with contracts {↓x a , ↓y b} with C, which however will deadlock because B
and C perform the actions in a different order. This will cause Q to never be
reached. Yet, both B and C are weakly honest: each of them would work fine in
a honest context, since no deadlock would be possible there. The context above
can also be adapted to postpone the deadlock so to effectively stop in the middle
of executing Q, i.e. in the middle of session z. Because P must be honest in this
weakly honest context, P must, at any time, be able to perform its obligations
without relying on the context. Hence, P ∈ HC . �	

4.4 Some Properties

The function λX.HX is anti-monotonic, as formalised by the following theorem
(which follows directly from Definition 11).

Theorem 4. If C ⊆ D, then HC ⊇ HD.

The following theorem states a peculiar property of processes which use ses-
sion types as contracts. If some of such processes is honest in all contexts where
contracts are session types, then it is honest in all possible contexts.

Theorem 5. PST ∩HST = PST ∩HU .

Proof. The inclusion ⊇ follows by Theorem 4. For the inclusion ⊆, assume by
contradiction that P ∈ HST \ HU , i.e. P is honest in PST, but not honest in
PU . Then, there exists some S made of agents with processes in PU such that:

A[P ] | S →∗ (v) (A[P ′] | S ′ | s[A : c ‖ B : d]) (1)

where A[P ′] has some obligations at s, such that either:

1. c is an internal choice, and no internal transition of A is included in the weak
ready-do set of A at s, or

2. c is an external (or committed) choice, and the weak ready-do set does not
include all the labels enabled by A : c ‖ B : d.

We can craft an A-free system S ′′ (with processes in PST) which interacts with
A as S in (1), after which it does nothing (except possibly firing dos τ ). We can
construct S ′′ as the parallel composition of agents of the form B[(x)π1 . . . .. πn].
Each prefix πi performs a tell or a do in the same order as in (1), after
removing from it the steps not involving A: e.g., a tell of a contract which is
not stipulated with A is omitted. Instead, a tell of a contract di 
∈ ST which will
be fused with some ci of A is replaced by tell ci, where ci is the syntactic dual
of ci (which always exists and belongs to ST). We then obtain a computation:

A[P ] | S ′′ →∗ (v) (A[P ′] | S ′′′ | s[A : c ‖ B : c])

where S ′′′ does no longer interact with A, except possibly firing dos τ , if enabled.
In the resulting system, A is not ready: therefore, P is not honest in S ′. �	
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The following theorem establishes a crucial property of honest processes, i.e.
that deadlock-freedom at the level of contracts is preserved when passing to the
level of (honest) processes. This means that all open sessions can be carried
forward until their successful termination.

Theorem 6 (Deadlock freedom). Let S be a system of honest agents. If
S −→∗ (u)

(
S ′ | s[γ ]) with OA(γ) 
= ∅, then there exist S ′′, A, and α ∈ OA(γ)

such that S ′ | s[γ ] −→∗ S ′′ {A}∪A : dos α−−−−−−−−−→.

Proof. Assume first that OA(γ) only contains synchronisation actions, and let:

γ
{A,B}:a−−−−−→→ S = A[P ] | B[Q] | · · · S0 = S ′ | s[γ ]

with P and Q honest by hypothesis. By item 3 of Theorem 1, P and Q are also
solo-honest. By Definition 7 it must be a ∈ OA

s (S0) and a ∈ OB
s (S0), and so by

Definition 14 it must be a ∈ S0⇓A-solo
s and a ∈ S0⇓B-solo

s . Since P is solo-honest,

by Definition 13 we have that ∃S ′
0 . S0

(A : �=dos)−−−−−−→∗ S ′
0 and a ∈ S ′

0 ↓As . Since B
has taken no transitions in this computation, and the contract configuration at
s is still γ , it must be a ∈ OB

s (S ′
0), and a ∈ S ′

0⇓B-solo
s . Since Q is solo-honest, by

Definition 13 we have that ∃S ′′ . S ′
0

(B : �=dos)−−−−−−→∗ S ′′ and a ∈ S ′′ ↓Bs . Since A has
taken no transitions in this computation, and the contract configuration at s is
still γ , at this point we have a ∈ S ′′ ↓As and a ∈ S ′′ ↓Bs . Then, by rule [DoCom], we

obtain the thesis S0 = S ′ | s[γ ] −→∗ S ′′ {A,B} : dos α−−−−−−−−→. The case where OA(γ) may
contain internal actions is similar. �	
Example 8. Note that Theorem 6 would not hold if we required weak honesty
instead of honesty. For instance, consider the process P 5

′ in Example 7, and let:

Q5
′ = (x, y) tell {↓x a , ↓y b}. doy b. dox a

Both P 5
′ and Q5

′ are weakly honest, but their composition A[P 5
′] | B[Q5

′] gets
stuck on the first do, since neither dox a nor doy b can be fired. �	

5 Decidability Results

In this section we prove that both honesty and weak honesty are undecidable.

5.1 Honesty Is Undecidable

The following theorem states that honesty is undecidable, when using contracts
which are at least as expressive as session types. To prove it, we show that the
complement problem, i.e. deciding if a participant is dishonest, is not recursive.

Theorem 7. HC is not recursive if C ⊇ ST.
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Proof. We reduce the halting problem on Turing machines to the problem of
checking dishonesty of P 0 ∈ PC . This immediately gives the thesis. Given an
arbitrary Turing machine M , we represent its configurations as finite sequences
(λ0, �) (λ1, �) · · · (λn, q) · · · (λk, �), where:

1. λi represents the symbol written at the i-th cell of the tape,
2. � is not a state of M (just used to represent the absence of the head);
3. the single occurrence of the pair (λn, q) denotes that the head of M is over

the n-th cell, and M is in state q,
4. the tape implicitly contains “blank” symbols at cells after position k,
5. λi and q range over finite sets.

Without loss of generality, assume that M halts only when its head is over λ0

and M is in the halting state qstop.
We now devise an effective procedure to construct a process P 0 which is

dishonest if and only if M halts on the empty tape. This P 0 has the form:

(x) tell {↓x c}. dox τ a . dox a. P (2)

where c = recX.a.X, and P will be defined below. Intuitively, P 0 will interact
with the context in order to simulate M ; concretely, this will require P 0 to create
new sessions. Note that some contexts may hinder P 0 in this simulation, e.g. by
not advertising contracts or by refusing to interact properly in these sessions.
Roughly, we will have that:

– in all contexts, P 0 will behave honestly in all sessions, except possibly in x;
– if the context does not cooperate, then P 0 will stop simulating M , but will

still behave honestly in all sessions (including x);
– if the context cooperates, then P 0 will simulate M while being honest; only

when M halts, P 0 will become dishonest, by stopping to do the required
actions in session x.

The above intuition suffices for our purposes. Formally, we guarantee that:

1. if M does not halt, then P 0 is honest in all contexts (and therefore honest);
2. if M halts, then P 0 is not honest in at least one (cooperating) context (and

therefore dishonest).

We represent each cell of the tape as a contract dλ,ρ in which λ is a symbol of
the alphabet of M , and ρ is either a state of M or �. More precisely, we specify
dλ,ρ by mutual recursion as:

dλ,ρ = readλ,ρ.dλ,ρ ⊕ ⊕
λ′ writeλ′ .dλ′,ρ ⊕ ⊕

ρ′ writeρ′ .dλ,ρ′

where readλ,ρ, writeλ, writeρ are output actions. Note in passing that mutual
recursion can be reduced to single recursion via the rec construct (up to some
unfolding, as by Bekić’s Theorem): therefore, dλ,ρ ∈ ST.
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We now sketch the construction of process P in (2). Intuitively, P uses the
above contracts in separate sessions (one for each tape cell), and it evolves into
processes of the form:

Begin(s0, s1) | X(s0, s1, s2) | X(s1, s2, s3) | · · · | End(sn−1, sn)

where s0, . . . , sn are distinct session names, and the contract of P at session si

is dλi,ρi
. The intuition underlying processes Begin, X, and End is the following:

– a process X( , si, ) is responsible for handling the i-th cell. It starts by reading
the cell, which is obtained by performing:

∑
λ,ρ dosi

τ readλ,ρ
. dosi

readλ,ρ . Handleλ,ρ

Note that only one branch of the above summation is enabled, i.e. the one
carrying the same λ, ρ as in the contract at session si. We now have the
following two cases:
• if the head of M is not on the i-th cell (i.e., ρ = �), we have that Handleλ,ρ

recursively calls X. This makes the process repeatedly act on si, so making
P behave honestly at that session.

• if the head is on the i-th cell, Handleλ,ρ updates the cell according to the
transition rules of M , and then it moves the head as needed. Assume that
q′ is the new state of M , λ′ is the symbol written at the i-th cell, and that
j ∈ {i − 1, i + 1} is the new head position. In the process, the cell update
is obtained by performing writeλ′ in si, and the head update is obtained
by performing write� in si and writeq′ in sj .

– the process Begin(s0, s1) handles the leftmost cell of the tape. Intuitively,
it behaves as X( , s0, s1), but it also keeps on performing dox τ a and dox a.
In this way, Begin(s0, s1) respects the contract c in (2). When Begin(s0, s1)
reads from s0 that ρ = qstop, it stops performing the required actions at
session x. This happens when M halts (which, by the assumptions above, can
only happen when the head of M is on the leftmost cell). In this way, P 0

behaves dishonestly at session x.
– the process End(sn−1, sn) handles the rightmost cell of the tape. Intuitively,

it behaves as X(sn−1, sn, ), but it also waits to read ρ 
= �, meaning that the
head has reached the (rightmost) n-th cell. When this happens, the process
End(sn−1, sn) creates a new session sn+1, by advertising a contract d#,�,
where # is the blank tape symbol. Until the new session sn+1 is established,
it keeps on acting on sn, in order to behave honestly on that session. Once sn+1

is established, it spawns a new process X(sn−1, sn, sn+1), and then recurse as
End(sn, sn+1).

A crucial property is that it is possible to craft the above processes so that in
no circumstances (including hostile contexts) they make P 0 dishonest at si. For
example, X( , si, ) is built so that it never stops performing reads at si. This
property is achieved by encoding each potentially blocking operation dosk

α. P ′

as Q = dosk
α. P ′ +

∑
λ,ρ dosi

readλ,ρ . Q. Indeed, in this way, reads on si are
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continuously ready, preserving honesty. A similar technique is used to handle
those τα which need to be performed without blocking the other activities.

To conclude, given a Turing Machine M we have constructed a process P 0 such
that (i) if M does not halt, then P 0 is honest, while (ii) if M halts, then P 0 is not
honest in some (cooperating) context. Note that a context which cooperates with
P 0 always exists: since all the advertised contracts are session types, a context can
simply advertise the duals of all the contracts possibly advertised by A (a finite
number), and then (recursively) perform all the promised actions. �	

5.2 Decidability of Honesty in Fragments of CO2

While honesty of general CO2 processes is undecidable, we can recover decidabil-
ity in fragments of CO2. In particular, by using the model-checking technique
of [7], we can verify the honesty of processes which are essentially finite state,
i.e. they have no delimitation/parallel under process definitions. This technique
uses an abstract semantics of CO2 which preserves the transitions of an agent
A[P ], while abstracting from the context wherein A[P ] is run. This is established
by the following theorem.

Theorem 8. P ∈ HC is decidable if (i) P has no delimitation/parallel under
process definitions, and (ii) C ⊆ Ufin .

Proof (Sketch). Building upon this abstract semantics of [7], we obtain an
abstract notion of honesty which simulates the moves of unknown contexts,
and it is sound and complete w.r.t. honesty. (i.e., P is abstractly honest iff it
is honest, see [7] for further details). Since the abstract semantics is finite-state
whenever P is such, then we can decide honesty of P by model-checking its state
space under the abstract semantics. �	

5.3 Dishonesty Is Recursively Enumerable

We show in Theorem 9 that dishonesty is recursively enumerable, under certain
assumptions on the set of contracts. Together with Theorem 7, it follows that
honesty is neither recursive nor recursively enumerable.

Theorem 9. HC is recursively enumerable if (i) for all c ∈ C, {α | c
α−→} is a

finite set, and it is computable from c, and (ii) C ⊆ Ufin .

Proof. We prove that “A[P ] dishonest” is a r.e. property. By item 3 of Theorem
1, it suffices to prove that “A[P ] solo-dishonest” is a r.e. property. By Definition
14, A[P ] is not solo-honest iff there exists some A-free context S such that A is
not solo-honest in A[P ] |S . This holds when A is not solo-ready in some residual
of A[P ] | S , i.e. when the following conditions hold for some S, S ′, s,u: (1) S is
A-free; (2) A[P ] | S −→∗ (u) S ′; (3) S ′ /∈ RdyA-solo

s .
Recall that p(x, y) r.e. implies that q(y) = ∃x.p(x, y) is r.e., provided that x

ranges over an effectively enumerable set (e.g., systems S , or sessions s). Thus,
to prove the above existentially-quantified property r.e. it suffices to prove that
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(1), (2), (3) are r.e.. Property 1 is trivially recursive. Property 2 is r.e. since
one can enumerate all the possible finite traces. Property 3 is shown below to
be recursive, by reducing the problem to a submarking reachability problem in
Petri Nets, which is decidable [17]. We recall the definition of S ′ ∈ RdyA-solo

s :

OA
s (S ′) = ∅ ∨ OA

s (S ′) ∩ Λτ ∩ S ′⇓A-solo
s 
= ∅ ∨ ∅ 
= (OA

s (S ′) ∩ Λa) ⊆ S ′⇓A-solo
s

To prove the above property recursive, we start by noting that, by hypothesis,
OA

s (S ′) is a finite set, and it can be effectively enumerated from A, s, S ′. We
shall shortly prove that α ∈ S ′ ⇓A-solo

s is a recursive property. Exploiting this,
the above formula can be simply decided by enumerating all the elements of
OA

s (S ′), and testing whether they belong to S ′⇓A-solo
s .

We now show how to decide α ∈ S ′⇓A-solo
s . This is a reachability problem in

CO2, once restricted to solo transitions. This restriction allows us to neglect all
the other participants but A in S ′. Further, in the solo computations of S ′, A
can open only as much fresh sessions as the number of latent contracts already
in S ′, which is trivial to compute given S ′. More in general, starting from S ′, A
can only interact with a bounded number of sessions: those already open, and
those which will be created later.

We now focus on the process P in S ′ = (u)(A[P ] | · · · ). W.l.o.g., we can
assume P is a (delimited) parallel composition of Xi(u), where each Xi is defined
as

∑
j πj . P j , where (again) P j is a delimited parallel composition of Xi(u). Note

that we only need a finite number of such Xi. Further, in the computations of S ′,
the process of A can only be a parallel composition of (copies of) Xi(u), where
the components of u range over the finitely many session names discussed earlier,
and (delimited) variables. Since only a finite number of variables can actually
be instantiated with a session name, we focus on these and neglect the others
in a non-deterministic way (roughly, we can follow the technique used in [5] to
non-deterministically choose which variables to neglect).

Overall, the process of A is a multiset of finitely many copies of Xi(u): hence,
it can be represented by a Petri Net whose places correspond to each Xi(u),
and tokens account for their multiplicity. Further, when considering solo com-
putations, the context of A[P ] in S ′ is finite-state: it has finitely many sessions,
each of with finitely many states, by hypothesis. Hence, the whole system can
be represented by a Petri Net, whose transitions simulate the CO2 semantics.

Concluding, to decide α ∈ S ′⇓A-solo
s it suffices to build the above Petri Net,

and check whether a marking is reachable with at least one token in at least one
of the places corresponding to Xi(. . .) = dos α. P ′ + Q. This is a submarking
reachability problem, which is decidable [17]. �	

5.4 Weak Honesty Is Undecidable

Theorem 10. WC is not recursive if C ⊇ ST.

Proof. Easy adaptation of the proof of Theorem 7. Indeed, the process P 0 defined
in that proof is honest when the Turing Machine does not halt (hence it is also
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weakly honest by Theorem 2), and it is dishonest when it halts. The dishonesty
is caused by P 0 stopping to interact in session x, which instead requires infinitely
many actions to be performed. Even in honest contexts, P 0 would still violate
its contract, hence it is not weakly honest. �	

6 Related Work and Conclusions

We have presented a theory of honesty in session-based systems. This theory
builds upon two basic notions, i.e. the classes H (Definition 11) and W (Def-
inition 15) which represent two extremes in a hypothetical taxonomy of “good
service behaviour”. At the first extreme, there is the class H of honest processes,
which always manage to respect their contracts, in any possible context. Sys-
tems of honest agents guarantee some nice properties, e.g. deadlock-freedom
(Theorem 6). However, this comes at a cost, as honest processes must either
realize their contracts by operating independently on the respective sessions, or
by exploiting “escape options” in contracts to overcome the dependence from
the context. At the other extreme, we have a larger class W of weakly honest
processes, which make stronger assumptions about the context, but they do not
enjoy deadlock-freedom, e.g. a system of weakly honest agents might get stuck.

Our investigation about honesty started in [10], where we first formalised
this property, but in a less general setting than the one used in this paper. In
particular, the contracts used in [10] are prefix-guarded τ -less CCS terms [13],
provided with a semantics which forces the participants at the endpoints of
a session to interact in turns. This is needed because the notion of honesty
introduced in [10] is based on culpability : roughly, a participant is culpable in
γ whenever she has enabled actions there. To be honest, one must be able to
exculpate himself in each reachable state. The turn-based semantics of τ -less CCS
contracts ensures that at each execution step only one participant is culpable,
and that one can exculpate himself by doing the required actions. The turn-based
semantics of contracts has a consequence on the process level: actions must be
performed asynchronously. This means that a participant can fire dos α whenever
α is enabled by the contract configuration at s. However, the requirement of
having turn-based semantics of contracts has a downside: since many semantics
of session types and other formalisms for contracts are synchronous, one has to
establish the equivalence between the synchronous and the turn-based semantics.
We did this in [7] for untimed session types, and in [2] for timed session types.
The version of CO2 defined in this paper overcomes these issues, by allowing for
synchronous actions in contracts and in processes. This extension of CO2 also
makes it possible to use arbitrary LTSs as contracts. The other extension of CO2

we have introduced in this paper is to allow processes to atomically advertise a set
of contracts, so to have a session established only when all of them are matched
with a compliant one. This enlarges the class of honest processes, making the
calculus more expressive (see e.g. process P 5

′ in Example 7).
The undecidability result presented in this paper (Theorem 7) subsumes the

one in [10], where honesty was proved undecidable for processes using τ -less CCS
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contracts. The new result is more general, because it applies to any instance of
CO2 with a contract model as least as expressive as session types.

Safe computable approximations of honesty (with session types as contracts)
were proposed in [7,8], either in the form of type systems or model checking
algorithms. Since the new version of CO2 can deal with a more general model
of contracts, it would be interesting to investigate computable approximation
of honesty in this extended setting. We believe that most of the techniques
introduced in [7] can be reused to this purpose: indeed, their correctness only
relies on the fact that contracts admit a transition relation which abstracts from
the context while preserving the concrete executions (as in Theorem 4.5 in [7]).

In the top-down approach to design a distributed application, one specifies
its overall communication behaviour through a choreography, which validates
some global properties of the application (e.g. safety, deadlock-freedom, etc.). To
ensure that the application enjoys such properties, all the components forming
the application have to be verified; this can be done e.g. by projecting the chore-
ography to end-point views, against which these components are verified [21,26].
This approach assumes that designers control the whole application, e.g., they
develop all the needed components. However, in many real-world scenarios sev-
eral components are developed independently, without knowing at design time
which other components they will be integrated with. In these scenarios, the
compositional verification pursued by the top-down approach is not immedi-
ately applicable, because the choreography is usually unknown, and even if it
were known, only a subset of the needed components is available for verification.
The ideas pursued in this paper depart from the top-down approach, because
designers can advertise contracts to discover the needed components (and so
ours can be considered a bottom-up approach). Coherently, the main property
we are interested in is honesty, which is a property of components, and not of
global applications. Some works mixing top-down and bottom-up composition
have been proposed [6,15,23,25] in the past few years.

The problem of ensuring safe interactions in session-based systems has been
addressed to a wide extent in the literature [20–22]. In many of these approaches,
deadlock-freedom in the presence of interleaved sessions is not directly implied by
typeability. For instance, the two (dishonest) processes P 5

′ and Q5
′ in Examples

7 and 8. Would typically be well-typed. However, the composition A[P 5
′] |B[Q5

′]
reaches a deadlock after fusing the sessions: in fact, A remains waiting on x (while
not being ready at y), and B remains waiting on y (while not being ready at x).
Multiple interleaved sessions has been tackled e.g. in [11,12,14,16]. To guarantee
deadlock freedom, these approaches usually require that all the interactions on
a session must end before another session can be used. For instance, the system
A[P 5

′]|B[Q5
′] would not be typeable in [12], coherently with the fact that it is not

deadlock-free. The resulting notions seem however quite different from honesty,
because we do not necessarily classify as dishonest processes with interleaved
sessions. For instance, the process:

(x, y) tell {↓x a}. tell {↓y b}.
(
dox a. doy b + doy b. dox a

)

would not be typeable according to [12], but it is honest in our theory.
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