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Abstract. Efficient reuse is a goal of many software engineering strate-
gies and is useful in the safety-critical domain where formal development
is required. Event-B can be used to develop safety-critical systems, but
could be improved by a component-based reuse strategy. In this paper, we
outline a component-based reuse methodology for Event-B. It provides a
means for bottom-up scalability, and can also be used with the existing
top-down approach. We describe the process of creating library com-
ponents, their composition, and specification of new properties (involv-
ing the composed elements). We introduce Event-B component inter-
faces and propose to use a diagrammatic representation of component
instances (based on iUML-B) which can be used to describe the relation-
ships between the composed elements. We also discuss the specification
of communication flow across component boundaries and describe the
additional proof obligations that are required.

1 Introduction

Formal methods can play a useful role in the development of safety-critical sys-
tems. Having flexibility in the formal approaches will make them more useful in
the development process. Event-B [3] is a formal method, with tool support [11],
which has been used in industry. We are seeking to improve the re-use of Event-B
artefacts, with the aim of increasing agility. The creation of a library of compo-
nents and a way to assemble them would facilitate this. Our proposal is based
on shared-event composition [23], since we believe that it provides an intuitive
abstraction for the encapsulation that is often seen in object-oriented software
components.

In its current form, the existing composition approach, and tools, give little
guidance as to how machines and their elements should be combined. Compo-
nents based on shared-event composition provide a useful encapsulation abstrac-
tion. The shared-event approach models the interactions between machines using
event synchronization, we can view this as an abstraction of method calling in
object-oriented components [6]. Since we are focussed on the potential for reuse,
we need a way for developers to interpret the intended use of a component.
Typically, this is achieved through the use of interfaces, in conventional software
engineering practice. In our approach, we introduce interface events to make
events ‘available for use’ by potential users of a machine. When considering the
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design and reuse of components, we consider how a developer understands what
a component does. The state updates are described by events, in the normal
way, but to understand the flow of information across the interface boundary we
need to introduce additional annotations to represent parameter directions.

Decomposition is a technique for simplifying complex developments or intro-
ducing structural partitions. A single machine is split into multiple sub-units,
and the equivalence is maintained using a composition technique [22–24]. In this
paper, we introduce Event-B components, interfaces, and composite components
which builds on the existing composition techniques. To visualize developments,
and assist with their specification, iUML-B [26] provides a graphical interface,
with state-machines and class diagrams [21,25]. We propose an extension to
iUML-B class diagrams to assist with the use of components. We introduce a
composed machine diagram showing which machines and components to include
in a composition; and we introduce a new component instance diagram to spec-
ify how machines and component instances are related. In addition to this, it
may be desirable to specify properties involving the elements of newly composed
components. We describe how we could extend the existing composition app-
roach, by adding guards to a composed machine, to ensure that these properties
are satisfiable.

In Sect. 2, we provide an overview of Event-B, and Sect. 3 describes Event-B
composition. Section 4 introduces ideas for component composition and inter-
faces. Section 5 discusses use of composition invariants, and Sect. 6 introduces
proof obligations showing that communication between assembled components is
feasible. Section 7 shows an example of a Component. Section 8 discusses related
work, and concluding remarks appear in Sect. 9. The work presented here was
done as part of the ADVICeS1 project [28].

2 Event-B

Event-B is a specification language and methodology [1,3] with tool support
provided by the Rodin tool [11]. Event-B has received interest from industry, for
the development of railway, automotive, and other safety-critical systems [20].
In Event-B, the system, and its properties, are specified using set-theory and
predicate logic. It uses proof and refinement [19] to show that the properties
hold as the development proceeds. Refinement iterations add detail to the devel-
opment. Event-B tools are designed to reduce the amount of interactive proof
required during specification and refinement steps [8]. Proof obligations in the
form of sequents are automatically generated by the Rodin tool. The automatic
prover can discharge many of the P.O.s, and the remainder can be tackled using
the interactive prover. The basic Event-B elements are contexts, machines and
composed-machines. Contexts define the static parts of the system using sets,
constants and axioms which we denote by s, c, and a. Machines describe the
dynamic parts of a system using variables and events: v and e, and use invariant

1 The ADVICeS project is funded by Academy of Finland, grant No. 266373.
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predicates I to describe the properties that should hold. We specify an event in
the following way,

e � ANY p WHERE G(p, s, c, v) THEN A(p, s, c, v) END,

where e has parameter names p; a guarding predicate G; and actions A. State
updates (described in the action) can take place only when the guard is true.
Guards and actions can refer to the parameters, sets, constants and variables
of the machine and seen contexts. For events to occur, the environment non-
deterministically chooses an event from the set of enabled events. For clarity,
in the remainder of the paper, we omit sets and constants from the description
where possible; the discussion largely focusses on parameters and machine vari-
ables. As development proceeds, the models can become very detailed, these can
be broken down into more tractable sub-units using decomposition [24].

iUML-B [26] is a graphical modelling approach, for Event-B, for specifying
state-machines, and class diagrams [21,25]. The diagrams are linked to a parent
machine and contribute to its content using automatic translation tools. State-
machine diagrams impose an ordering on the machine’s events, and the behaviour
can be illustrated using a diagram animator. Class diagrams are used to define
data entities and their relationships. We propose to extend class diagrams to
expose component interfaces. An example of the extension is shown in Fig. 1,
and described in more detail in Sect. 4.

3 Composition of Decomposed Machines

Previous work [23] describes the composition of events arising from the decom-
position of one machine into multiple sub-units. We make use of the shared-
event approach for decomposition, where variables are partitioned into different
machines, and events can be combined. The multiple, decomposed sub-units and
the composed-machine construct form a refinement of the abstract machine. The
combined-events clause of the composed-machine refines an abstract event e. We
write ea ‖ eb to combine events ea and eb, where subscripts a and b also identify
distinct sub-units (machines). These combined-events are said to synchronize
(i.e., both of the events are enabled) when the conjunction of the guards are
true. The combined actions are composed in parallel. The semantics of synchro-
nizing events is inspired by the CSP semantics of synchronization [10], however
(unlike CSP) matching event names are not required in the shared-event app-
roach. This is due to one of the features of the composed-machine specification,
which allows a developer to select which events to synchronize.

ea � ANY p?a, p!a, xa WHERE Ga(pa, xa, va) THEN Aa(pa, xa, va) END

eb � ANY p?b, p!b, xb WHERE Gb(pb, xb, vb) THEN Ab(pb, xb, vb) END

ea ‖ eb � ANY p, xa, xb WHERE Ga(p, xa, va) ∧ Gb(p, xb, vb) (1)
THEN Aa(p, xa, va) ‖ Ab(p, xx, vb) END

Events ea and eb may have a set of parameters p in common, with parameters
matched by name. Parameter sets are annotated with “!” and “?” to describe
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output sets and input sets respectively. The annotations are not part of the
parameter name, but simply inform us about the direction of data flow into,
and out of, events. The annotation might alternatively be written using the Ada
parameter mode style ‘p : in’ for input, and ‘p : out’ for output. To account for
multiple machines we use a machine name subscript; the set of output parameter
names of an event in machine a is written p!a. This is paired with a set of input
parameter names in machine b written p?b. Using syntactic sugar, we can write
ea(p!a) for ea � ANY p!a . . . END. Events can have sets of uniquely named,
non-shared parameters xa and xb, which consist of the local variables of the
combined-event. The guards Ga and Gb, and actions Aa and Ab, range over the
parameters of the event and the machine variables va and vb.

The decomposed sub-units, together with the composed-machine construct,
form a refinement of the abstract machine. The composed-machine and sub-units
can be merged into a single, unifying machine without changing the composi-
tion’s semantics. This can result in duplication of the events guards, and some
simplification may be necessary. The set of communicating parameters of an
event (p!a ‖ p?b) ∪ (p!b ‖ p?a) reduces to p when combined. This can be seen in
the combined-events of Eq. 1. In an event, to pass a machine variable w as an
output parameter q!, we add a guard q = w. To use an input parameter q?, we
can assign it to a machine variable w in an action, using the assignment w := q.

Parameter names are not duplicated when merging input-output pairs. For
each input parameter q? that is paired with its output parameter q!, after merg-
ing we have only a single parameter q, so, q = q! ‖ q?.

4 Composition with Components

An important feature of a library component is its interface. It defines how
the component reveals itself to the outside world. Since we intend to use the
components in shared-event style composition, we need to reveal a set of events
that can synchronize with some other machine. We mark the events on the class
diagram with an annotation; interface events have the letter i next to the event
name, see Fig. 1. The interface event may involve communication across the
component boundary. This will involve parameter passing, so the interface event
needs to reveal information about the names and ranges of the communicating
parameters. Combined-events that communicate via parameters are required
to do so through parameters that have the same name. Events that are not

Fig. 1. The FIFO buffer component
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marked with the interface annotation may not synchronize: they are ‘hidden’
from other components. However, they may be non-deterministically selected by
the environment, as usual.

4.1 Using Components in a Development

The composition diagram, shown in Fig. 2, is used to import components into
a development. It is a new graphical representation of the existing composed
machine, but, additionally, it makes use of pre-existing components, which is a
new concept. The composed-machine Cm includes library machine components
L and machines under construction M . In addition, the machines M and L may
be associated with an existing refinement chain, or be used to specify a new
one. In the diagram, combined-events are represented by dashed lines between
the machines. The diagram would be similar to an iUML-B diagram, in that
diagrammatic elements are added to the canvas, and the underlying Event-B
can be generated, or existing elements linked to it. One shortcoming of the com-
position diagram is that it gives no information about the number of instances
of each component. A user should be able to select a component and drop an
instance onto a canvas. The diagram would be linked to a composed machine,
in the style of iUML-B [26]. In this diagram, the number of instances and their
relationships with other components and machines can be specified. A compo-
nent instance diagram, showing this, is depicted in Fig. 4. However, the concepts
are best explained using an example, which we defer until Sect. 7.2.

Fig. 2. Using components in a composition diagram

There are two scenarios for instance creation, one is where the library machine
links to a machine that initially has no corresponding events. In that case, new
events will be added to the machine under construction. The second case is where
two existing events are to be synchronized, where a check for compatible parame-
ter names and directions would be done. When no corresponding synchronizing
event exists, event stubs can be added. An event stub is a concept taken from
programming, where a partial implementation (usually of a method, operation,
procedure or function) is generated automatically. This is illustrated in Eq. 2,
ea is an event in the library machine (annotated with interface) and eb is the
automatically generated stub. For each output parameter in p!a, we generate an
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input parameter in p?b and vice versa. Order of declaration is not important
since parameters are simply matched by name, regardless of the order in which
they appear. Typing guards for parameters may be suggested at the time of
instantiation, but no other event guards and actions are created automatically.
The developer will complete the necessary details during further development.

interface ea � ANY p?a, p!a, xa WHERE Ga(pa, xa, va)
THEN Aa(pa, xa, va) END

eb � ANY p?b, p!b WHERE Gb(pb) END (2)

ea ‖ eb � ANY p, xa WHERE Ga(p, xa, va) ∧ Gb(p)
THEN Aa(p, xa, va) END

4.2 Composite Components

When a composed-machine is defined, it can be added as a library component.
The system boundary is then represented by the outer, dashed box, see Fig. 2.
We need to decide which of the events of the new component are revealed in
the interface. We assume that, by default, all events of a composed-machine are
hidden, in which case we would need to promote some new, or existing, events to
the new interface. The parameters of the exposed events can be marked with the
input/output annotations, ? or !. The composed event of Eq. 2 could be promoted
to the composite component interface using the interface annotation, as follows,

interface ea ‖ eb � ANY p, xa WHERE Ga(p, xa, va) ∧ Gb(p)
THEN Aa(p, xa, va) END (3)

This would make the combined-event available for synchronization with some
event outside of the component.

5 The Composition Invariant

5.1 Adding a Guard to Satisfy the Composition Invariant

The existing composed-machine CM is made up of the included machines M0 ..
Mm, a list of combined-events, and a composition invariant CI. Any of the
machines M0 .. Mm may be library machines. The CI can be used to specify
properties relating the elements of separate components of a composition. These
properties cannot be specified in machine invariants since the elements they
refer to reside in separate machines. In the case where a top-down development
introduces components in a refinement, and one finds that a particular invariant
in the abstraction involves elements that reside in separate components, then,
in the refinement, the CI in the composition will reproduce the invariant from
the abstraction.

The composition invariant, CI(s, c, v), has visibility of all of the sets and
constants of the included contexts, and variables of the composed-machines s, c,
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and v respectively. To identify the sets, constants and variables of the individual
machines, in a composition of machines M0 ..Mm, we write s = s0 .. sm for sets,
c = c0 .. cm for constants and v = v0 .. vm for variables. The composed-machine
invariant CMI is a conjunction of the individual machine invariants MI0 ..MIm
and CI, where each machine invariant has visibility of its own variables and sets,
and also the constants of its seen contexts as follows,

CMI(CM,M0 ..Mm) = CI(s, c, v)∧MI0(s0, c0, v0)∧ ..∧MIm(sm, cm, vm) (4)

To ensure that the composition invariant CI is preserved, we need to add guards
GCI , but currently there is no mechanism in the existing tool that does this
automatically, so this remains as future work. We would like GCI to range over
the whole of v, c and s. That is, the guard requires component-wide visibility
of variables, and of the sets and constants of the seen contexts of the included
machines. The intuitive place to do this is in the composed-machine, where we
propose to add an additional guard clause to the combined-event clause. We
extend the combined-event of Eq. 1 with GCI , as follows,

ea ‖ eb � ANY p, xa, xb WHERE GCI(v) ∧ Ga(p, xa, va) ∧ Gb(p, xb, vb)
THEN Aa(p, xa, va) ‖ Ab(p, xb, vb) END

(5)

In the composed-machine, we should demonstrate that the invariants (including
the CI) are preserved for all events of the included machines. The invariant
preservation proof obligation INVea‖eb follows, for each invariant i in I, where
local variables x are omitted, and the remainder of the parameters refer to those
in events before composition,

INVea : Ia(va) ∧ Ga(pa, va) ∧ Aa(pa, va, v′
a) � ia(v′

a) (6)

INVeb : Ib(vb) ∧ Gb(pb, vb) ∧ Ab(pb, vb, v′
b) � ib(v′

b) (7)

INVea‖eb : CI(v) ∧ Ia(va) ∧ Ib(vb)
∧ Ga(pa, va) ∧ Gb(pb, vb) ∧ GCI(v)

∧ Aa(pa, va, v′
a) ∧ Ab(pb, vb, v′

b)
� ia(v′

a) ∧ ib(v′
b) ∧ CI(v′)

(8)

As seen above, we are required to choose an appropriate guard GCI to show
that the invariant holds. It appears in the antecedent of the combined-event’s
invariant proof obligation.

5.2 Component Development

One of the benefits of the existing decomposition approach is that once decom-
position has taken place, the individual machines can be refined independently.
This is possible for the components that are used in compositions, too, and
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allows components/machines to be further refined, by a number of teams, inde-
pendently. To see how this is possible we comment on the two scopes of visibility
in a composition. The top-level scope is defined by the composed machine, which
has visibility of all of the sets, constants and variables of the machines that it
includes, and of the contexts that those machines see. The CI resides at the top-
level in the composed machine, and can refer to variables of multiple machines.
The composed machines can have guards added to combined-events, these also
have visibility of the variables of the included machines. An important point here,
is that the CI should only describe the properties relating to the composition
(i.e. properties that cannot be described in a machine/component in isolation).
Otherwise, those properties should reside in the normal machine invariants. Each
included machine, and its refinement chain, in a composed machine, forms a
lower-level scope of visibility. At the lower level scope, the included machines
and refinements can be worked on independently since it contains no informa-
tion about the composition.

The need to recompose components is a natural consequence of placing con-
straints on elements residing in different machines of a composition. For each
of the included machines and their refinement chains, further refinements can
be added independently by adding new variables, strengthening guards, and
data refinement. If a composition is complex, it will be possible to add fur-
ther composed-machines to the refinement chain (which may or may not include
existing components), thereby allowing specification of emerging composition
properties as development proceeds.

6 Proof Obligations

6.1 Feasibility of Inputs and Outputs

The use of components and their interfaces can be described using a contract
with pre- and post-conditions. However, pre-condition semantics are missing in
Event-B. So, how do we expect component users to understand what the inter-
face provides? Since we propose using typed, directed event parameters, we can
use this information. The parameter’s typing guards define the input and output
state-spaces. In Event-B, guards play the dual role of typing and event-enabling.
So, we need to be very clear about the semantics of synchronization, and about
when we expect synchronization and communication to take place. In the exist-
ing Event-B approach, there is no requirement (in the form of proof obligations)
to show that an event is ever enabled. However, we believe that when compo-
nents are assembled (especially pre-existing components) we require assurance
that the data flow across component boundaries is compatible. There should be
some common set of input and output states that will allow the events to syn-
chronize. A similar concept was explored in work on feature composition [18].
Our solution is related to the idea of feasibility in Event-B; feasibility proof
obligations for non-deterministic assignment, for instance, ensure that there is
some initial value in the pre-state that allows a transition to a given post-state.
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We believe that, in our approach, we should provide some proof of the feasi-
bility of synchronization/communication. To do this we introduce pre-condition
semantics for communication of data across the interface boundary where we
show that, for each parameter, the range A of output parameter values is a sub-
set of the range B of input parameter values, A ⊆ B. This is determined by the
parameter’s range as defined in the event guard.

6.2 Preconditions for Communicating Event Parameters

Design-By-Contract (DBC) [14] is an approach for composing modules using con-
tracts. In DBC, pre-conditions and post-conditions are defined in a specification,
pre-conditions should be satisfied by users of the contract and post-conditions
should be satisfied by implementers of the contract. It can be seen that contracts
define an interface specification for a module, and part of their use deals with
ensuring that the communicating parameter values are always within acceptable
bounds. In our work, the input and output parameters, and their range (a (non-
strict) subset of their type) and direction information, form part of the interface
specification. We wish to ensure that, for any input/output pair, the output
parameter’s value falls within the range of the allowable inputs. To do this, we
introduce two functions, to differentiate between the ranges of the inputs p? and
the outputs p!. Given an event e and input parameter q?, function rangeOfIn
returns the range T of q? as defined in the guard.

rangeOfIn(e, q?) = T (9)

Also, given an event e and output parameter q!, function rangeOfOut returns
the range T of q!.

rangeOfOut(e, q!) = T (10)

We call the pre-condition style feasibility proof obligation FISpreStyle. For the
combined-event ea ‖ eb, we have,

FISpreStyle(ea(p?a, p!a), eb(p?b, p!b))
= (11)
∀q!, q? · (q! ∈ p! ∧ q? ∈ p?) =⇒ (rangeOfOut(ea, q!) ⊆ rangeOfIn(eb, q?)

where q! represents an individual output parameter from the set of output para-
meters p! of an event, and q? represents an individual input parameter from the
set of input parameters p? of an event. To satisfy this proof obligation, for each
pair of communicating parameters in an event, the output value must fall within
the acceptable range of the input. Consider a concrete example of a combined-
event evt1 ‖ evt2, where evt1 has an output parameter named prm! of range
0 .. 256 and event evt2 has an input parameter prm? of range N1, then,

rangeOfOut(evt1, prm!) ⊆ rangeOfIn(evt2, prm?)
= 0 .. 256 ⊆ N1
= ⊥

(12)
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In this case, the FISpreStyle proof obligation is not satisfied, since 0 does not
belong to N1. If the input range was changed to prm? ∈ N, it would be satisfied.

7 An Example Illustrating the Required Tool Support

7.1 Specifying a FIFO Buffer Component

We now describe how components might be defined in a version of iUML-
B [26] adapted to component (or interface) specification. Figure 1 on Page 4
shows the FIFO class diagram. The FIFO class diagram contains the attributes:
buffer, head and tail, and three interface events, annotated with the letter i. In
the model, but not shown in the diagram, the FIFO instance is represented
by the parameter this FIFO. It is automatically generated by the iUML-B
tool. We now provide details of inToBuffOK and retrvFromBuffOK, two
of the events shown in the diagram. The inToBuffOK event models success-
ful receipt of a value and the return of TRUE as an acknowledgement. The
retrvFromBuffOK models retrieval of a value (by a consumer) from a buffer.
We do not show the inToBuffFail event, it handles the case of failure to receive
a value, due to a full buffer, and returns a FALSE acknowledgement.

inToBuffOK �
ANY x?, ack!, this FIFO

WHERE ack ∈ BOOL ∧ x ∈ BY TE 16 ∧ ack = TRUE ∧
tail(this FIFO) − head(this FIFO) < buffSize ∧ . . .

THEN buffer(this FIFO) := buffer(this FIFO) �− {tail(this FIFO) �→ x} ‖
tail(this FIFO) := tail(this FIFO) + 1 ‖ . . .

END

The inToBuffOK event shows the input parameter x? of range BY TE 16: the
value to put in the buffer. It also has an acknowledgement, an output parameter
ack! of range BOOL, restricted to ack = TRUE. This is returned to the sender
on success. The action shows the value x being written to the tail of the buffer
in a statement that overrides an existing value or adds a new value. The value
of tail is incremented in parallel.

retrvFromBuffOK �
ANY y, this FIFO

WHERE y ∈ BY TE 16 ∧ y = buffer(this FIFO)(head(this FIFO)) ∧ . . .

THEN head(this FIFO) := head(this FIFO) + 1

END

In the retrvFromBuffOK event, we have an output parameter y!. The output
is modelled in the guard y = buffer(this FIFO)(head(this FIFO)) where y
gets the value of the head of the buffer. The head value is incremented in the
action.
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7.2 Using the FIFO Component

We now introduce a Producer class, shown in Fig. 3, that uses two instances of
the FIFO library component f1 and f2. Figure 4 shows how the diagram might
look, with two FIFO instances connected to a Producer, and two Consumers.
The combined-events, labelled a .. e, specify synchronizations between the FIFO
interface, and the Producer/Consumers. Event f does not synchronize with any
other event. It should be noted that there is only one machine modelling all
instances of the FIFO, and another modelling all instances of the Consumer.
Tool support, for the component instance diagram, can provide stubs for the
synchronizing events in the Producer and Consumer machines, when the con-
nections between an interface event and another machine are defined. The stub
event for the Producer, called Producer.inToBuffOK1, would be provided with
the appropriate parameters as follows,

Producer.inToBuffOK1 �
ANY x!, ack?, this Producer, this FIFO

WHERE ack ∈ BOOL ∧ x ∈ BY TE 16 ∧
this Producer ∈ Producer ∧ this FIFO = f1(this Producer)

END

The x and ack parameters modelling the communication,are shown, along
with two additional parameters that are introduced by the iUML-B transla-
tors, these are used to model the component instances. Namely, the parameters

Fig. 3. The producer class

Fig. 4. A component instance diagram
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this Producer and this FIFO. The developer of Producer should decide which
value to output, and where to assign the input. A possible solution would be to
model the output using the variable value ∈ BY TE 8 for output (it is possible
that this would be driven by other design concerns) and use success ∈ BOOL
for modelling the acknowledgement. We could then refine the stub with these
additions, note the use of the strengthened typing guard,

Producer.inToBuffOK1 �
ANY x!, ack?, this Producer, this FIFO

WHERE ack ∈ BOOL ∧ x ∈ BY TE 8 ∧ x = generatedA(this P roducer) ∧
this Producer ∈ Producer ∧ this FIFO = f1(this Producer)

THEN success(this P roducer) := ack END

We can see here, that we model the output assignment, of the variable
generatedA to the parameter x, in the guard, and we model assignment of the
return value ack to the success variable in the action. This is a typical pattern
in shared-event synchronization.

Let us now consider the combined-event, where we look at the underlying
Event-B showing the instance parameter. From Fig. 3, we see that the Producer
has two FIFO instances, f1 and f2. To synchronize with a library component,
the user of the interface requires a separate event for each instance of the com-
ponent. This is why we have two events in the Producer related to the event
FIFO.inToBuffOK. In the event, Producer.inToBuffOK1, below, we can see
f1(this Producer) being used to identify which FIFO it is related to. The para-
meter this FIFO and the guard could be generated automatically in the Pro-
ducer, with additional tool support. This relates to the this FIFO parameter
in the FIFO, which can be generated by iUML-B tools, from the FIFO class
diagram. Also, since the shared parameter x has two different ranges in the indi-
vidual machines, we take the view that the stronger guard should appear in the
clause since it makes the weaker guard redundant. The combined event follows,

Producer.inToBuffOK1 ‖ FIFO.inToBuffOK �
ANY x, ack, this Producer, this FIFO

WHERE ack ∈ BOOL ∧ x ∈ BY TE 8 ∧ x = generatedA(this Producer) ∧
this Producer ∈ Producer ∧ this FIFO = f1(this Producer) ∧
ack = TRUE ∧ tail(this FIFO) − head(this FIFO) < buffSize ∧ . . .

THEN success(this Producer) := ack ‖
buffer(this FIFO) := buffer(this FIFO) �− {tail(this FIFO) �→ x} ‖
tail(this FIFO) := tail(this FIFO) + 1 ‖ . . .

END

Now we consider the pre-style proof obligation of Eq. 11. In our example
Byte 16 = 0 .. 65535 and Byte 8 = 0 .. 255, and we can discharge the proof
obligation.
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rangeOfOut(Producer.inToBuffOK1, x!)
⊆ rangeOfIn(FIFO.inToBuffOK, x?)

= Byte 8 ⊆ Byte 16
= 0 .. 255 ⊆ 0 .. 65535
= 

(13)

7.3 A Composition Invariant

In our example, we may want the FIFO buffer f1 to hold odd numbers, and
f2 to hold even numbers. This is a property of the composition, and should be
specified in the composition invariant clause. To do this, we add an invariant
stating that values in the producer’s f1 buffers must have mod 2 = 1 and those
in f2 buffers must have mod 2 = 0. The invariant that constrains f1 follows,

∀p · p ∈ dom(f1) =⇒ (∀v · v ∈ ran(buffer(f1(p))) =⇒ v mod 2 = 1)

It states that for each producer p in the domain of the variable f1, and for each
value v in its buffer, v ∈ ran(buffer(f1(p))), v mod 2 = 1 must hold. There is a
similar guard stating that f2’s values must be even. It would not be possible to
specify this in the Producer machine since it does not have visibility of FIFO’s
buffer variable.

8 Related Work

A concept that is closely related to our approach is that of Modularisation. It
is an approach for describing components and interfaces in Event-B, by Iliasov
et al. [2]. It is based on the shared-variable composition approach. The authors
use a pre- and post-condition syntax to specify the component interfaces and
behaviour, and they introduce proof obligations to prove refinement. In contrast,
shared-event composition provides an appropriate abstraction for the encapsu-
lation that is often seen in object-oriented software components, sharing of vari-
ables is usually prohibited here. We also keep the introduction of new syntactic
elements to a minimum by extending the existing class diagram techniques. In
this way, an implementation of an interface is simply a refinement of that inter-
face. A more detailed discussion of the issues can be found in [7].

Eiffel [14] is another modular approach, based on Design-by-Contract; this
too, makes use of pre- and post-condition specifications. We prefer not to use
pre- and post-conditions, and present a more integrated method that does not
diverge so greatly from the existing iUML-B approach [26]. The CODA compo-
nent model, of Butler et al. [5], describes how components can be represented
on a UML-B style diagram [27]. The underlying model is used to simulate com-
munication between components which are joined using ports and connectors.
This makes use of the ProB model checker [13] and uses an oracle to compare
various simulation runs. In CODA, the focus is not on reuse. Rather, it is a way
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of modelling message queuing over time, and it embodies the communication
style found in VHDL [17] which makes it very domain specific.

Hallerstede and Hoang describe interface refinement in [9]. This makes use of
the shared-variable composition approach, where external variables, and a corre-
sponding external invariant are specified in the interface. We believe that by using
the shared-event approach, we avoid having to consider the effects of sharing vari-
ables. By using interface events, as the means for interacting with components,
this simplifies reasoning and proof: the encapsulation of traditional software com-
ponents is closely represented by the shared-event abstraction. Banach extends
the interface refinement concepts in [4], by using a CONNECTS construct to make
use of interface events: continuing with the shared-variable style.

In other work on components, Kessel and Atkinson discuss reuse of software
components [12] focussing on partial matches for suitability in situations where
a component’s intended use differs from its ultimate use. For Event-B, in the
development of high-integrity systems, it will be very important to fully under-
stand the behaviour of a component and underspecification must be judiciously
applied to accommodate unforeseen variability. Other notions include location
aware components, such as the distributed computation notion of components
in CommUnity, which is presented by Oliveira and Wermelinger in [15]; and
another concept is the component approach used in the formal modelling of
agent interactions with Event-B, from [16]. Both of the latter use quite different
notions of components; our components’ main purpose is reuse.

9 Conclusions

In the domain of software engineering, the concept of a component has many
different meanings. Our use of the term component is comparable with its use in
the object-oriented software world [29], where a component is an element that
is intended for reuse and the flow of data across the component boundary is
described by its interface. In the work presented here, we propose an extension
to the existing composition approach by introducing Event-B components. The
existing composition approach was primarily designed to work as a top-down
decomposition method. We wish to have bottom-up composition for re-use. That
is not to say that we intend to dispose of the top-down approach, rather, we
should have the flexibility to include, and work with, existing artefacts as and
when required.

Using our diagrammatic extension we can describe a collection of communi-
cating components. We introduce interface events as a concept to describe which
events can be synchronized with other events. Non-interface events cannot be
synchronized, but they can be non-deterministically chosen by the environment,
as usual. We add input, and output specifiers, “?” and “!” to annotate the event
parameters, in order to clarify the flow of information across the interface bound-
ary. We introduce some new features to a class diagram, to create an interface
class, which is annotated to show the interface events. In all other ways, class
diagrams are unchanged. We introduce a new composition diagram to describe
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machines that are included in the composition. It is a diagrammatic represen-
tation of the composed machine construct, and is used to aid visualization of
the composed machines and library components. We can describe which events
synchronize and show which events are promoted to the interface of a composite
machine, but we do not provide information about specific instances. To do this,
we introduce a new component instance diagram describing the composition of
components as class instances showing the links that describe their synchro-
nizations. We model multiple components using the existing concept of instance
parameters where there may be several instances of a particular component in
the composition. All instances of a particular component are modelled in a single
machine, and there may be multiple components.

Properties involving a number of components may be described in the compo-
sition invariant (CI) of the composed machine. These properties extend beyond
component boundaries and should be used to describe properties that cannot be
described in a single component. The guards related to the CI should go in the
combined event. The feasibility of communication across the interface bound-
aries, for composed events, can be checked by generating additional proof oblig-
ations which ensure that, for each parameter, the output values fall completely
within the range of values accepted by the corresponding input parameter. This
style of feasibility proof will be particularly useful when composing pre-existing
components since it is necessary to ensure that the data flow across component
boundaries is compatible.

As future work, we plan to do more investigation into the use of components
and compositions for team-working, and to provide the additional diagrammatic
tool support. In addition, new translators will be required for generating Event-
B from the diagrams. Additional tool changes are also required, to add guards
to the composed machine’s combined event, in order to satisfy the composition
invariant.
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