
A Super Industrial Application of PSGraph

Yuhui Lin1(B), Gudmund Grov1, Colin O’Halloran2, and Priiya G.2

1 Heriot-Watt University, Edinburgh, UK
{Y.Lin,G.Grov}@hw.ac.uk

2 D-RisQ Software Systems, Malvern, UK
{coh,priiya.g}@drisq.com

Abstract. The ClawZ toolset has been successful in verifying that Ada
code is correctly generated from Simulink models in an industrial setting,
using the Z notation. D-RisQ is now extending this technique to new
domains of the C programming language, which requires changes to their
highly complex proof technique. In this paper, we present initial results
in the technology transfer of the graphical PSGraph language to support
this extension, and show feasibility of PSGraph for industrial use with
strong maintainability requirements.

1 Introduction

The ClawZ toolset is used to verify that automatically generated code from (a sub-
set of) Simulink1 into (a verifiable subset of) Ada is correct [7]. This is achieved
by encoding the semantics of the two representations in the Z notation. Correct-
ness of the generation is then ensured by a formal proof of a refinement conjecture
from the Z representation of Simulink into the Z representation of Ada. This proof
is supported by a very powerful proof tactic for the ProofPower theorem prover
called Supertac [7]. This tactic has been developed over a number of years and has
a very high degree of automation as it is tailor-made for these types of conjectures.

Whilst Ada is used extensively for avionics software, other sectors, such as
automotive, normally use the C programming language. The TargetLink code
generator from dSPACE2 is able to generate C code from a Simulink model.
However, Supertac is configured for Ada and will, as will be shown in the next
section, not be able to verify correctness of C generation.

A side-effect of the automation achieved by Supertac is that the code base
has become highly complex and large. In fact, it consists of almost 50 K lines of
dense ML code3. Adapting it from Ada to C is therefore a non-trivial problem.

Tactic languages, such as the one used to encode Supertac, are often difficult
to analyse and debug as the error may manifest itself a different place from

This work has been supported by EPSRC grants EP/J001058, EP/K503915,
EP/M018407 and EP/N014758. The second author is supported by a SICSA Indus-
trial Fellowship.

1 See www.mathworks.com.
2 See www.dspace.com.
3 As far as we know, this is the largest proof tactic ever made in terms of code size.

c© Springer International Publishing Switzerland 2016
M. Butler et al. (Eds.): ABZ 2016, LNCS 9675, pp. 319–325, 2016.
DOI: 10.1007/978-3-319-33600-8 28

www.mathworks.com
www.dspace.com

320 Y. Lin et al.

is_qcz_crucial_conv()

C_rewrite_crucial
C_rewrite_Int_BooleanC_rewrite_patterns

any any
any

any

any

is_qcz_int_boolean()
is_qcz_crucial_conv()

is_qcz_patterns()
i

j

C_rewrite_crucial
C_rewrite_Int_BooleanC_rewrite_patterns

any any

any

any

any

is_qcz_int_boolean()
is_qcz_crucial_conv()

is_qcz_patterns()

any

interactive operations

a tactic node

a goal node

Fig. 1. The GUI of tinker (left) & an illustrative evaluation step (right)

where the problem actually lies. This is further complicated by: (1) the non-
deterministic nature of tactics, meaning multiple branches can be generated;
and (2) that they tend to be untyped in the sense that subgoals cannot be
differentiated. This non-deterministic nature makes it more difficult to debug
than most software, and often the only method to find the mistakes is to insert
“writeln” statements in the code to print information. Needless to say, this can
be a hard task for 50 K LoC. As proofs are getting larger and more commonplace,
proof maintenance is going to be a problem. Improved debugging features for
ML would be beneficial and a step in the right direction, but this alone will not
be sufficient: the non-deterministic nature of tactics and the non-trivial flow of
sub-goals will require their own solutions.

To ease maintenance, debugging and general understanding of tactics, we
have previously developed the PSGraph language [1] and the supporting Tinker
tool [2,5], as can be seen in Fig. 1 (left). Here, proof tactics are encoded as
directed hierarchical graphs, where the boxes contain tactics or nested graphs,
and are composed by labelled wires. The labels are called goal types and are
predicates that describe the expected properties of sub-goals. Each sub-goal
becomes a special goal node in the graph, which “lives” on a wire. Evaluation
is handled by applying a tactic to a goal node that is placed on one of its
input wires. The resulting sub-goals are sent to the out wires of the tactic node.
To add a goal node to a wire, the goal type must be satisfied. Figure 1 (top
right) illustrates a single evaluation step where tactic C rewrite crucial, which is
discussed in Sect. 3, is applied to a goal labelled i:

... (∗ ?� ∗)�Z(true ∧ σ ∈ STOREC ∧ true)

∧ IntValC (IntOf C (IntValC (mk signed intC (IntOf C fav + 1)))

==CZ mk signed intC (IntOf C fav + 1)) �= IntValC 0�

The tactic produces a goal labelled j on its output wire (bottom right of Fig. 1)

A Super Industrial Application of PSGraph 321

... (∗ ?� ∗)�Z(true ∧ σ ∈ STOREC ∧ true)

∧ IntValC (mk signed intC (IntOf C fav + 1)

==CZ mk signed intC (IntOf C fav + 1)) �= IntValC 0�

The goal types introduce a notion of ‘types’ to the tactic language, which
improves upon the static properties for composition and evaluation found in the
tactic language currently used to encode Supertac4. As can be seen in Fig. 1 (left),
Tinker provides support for tactic developers to step through the proofs using
‘interactive operations’ to e.g. ‘step over’ or ‘step into’ a tactic. A novel break-
point feature has recently been introduced [5], where sub-goals are evaluated
automatically until a sub-goal reaches the breakpoint. At this point evaluation
will stop, and the user can guide the evaluation step-by-step from this point
onwards. This is particularly useful for large and complex tactics such as Super-
tac. We will return to how we have exploited these special Tinker features for
this work in Sect. 3. We believe that this support for inspection and adaptations
through simple graph visualization is novel.

We will show our initial encoding of Supertac in PSGraph in Sect. 2. We will
then show how this is used to analyse Supertac using PSGraph and adapt this
to support C code in Sect. 3. We conclude and detail our next steps in Sect. 4.

2 PSGraph Encoding of Supertac for Ada

end_proof_tac1

any

any

any

structure_tac

end_proof_tac2

end_proof_tac3

any

any

Fig. 2. Supertac

PSGraph handles modularity and complexity through hierar-
chies, represented by boxes in the graph that contains sub-
graphs. The architecture of Supertac consists of four sub-
tactics executed in sequence, where the first of these has been
decomposed in a hierarchical node. This is done by unfold-
ing and breaking it, and its sub-tactics, down, and then re-
compositing the sub-tactics in PSGraph with proper goal-
types. In the future we plan to decompose the remaining three.
Figure 2 shows the top-level of our Supertac encoding:

structure tac is used to classify the conjectures and enhanc-
ing them with meta-information. In addition, it unpacks
structure surrounding conjectures, such as quantifiers.

end proof tac1 gets rid of Simulink and Ada vocabulary, to
make it easier to reason about.

end proof tac2 deals with mathematical statements, and gets
rid of high-level concepts (e.g. functions) to reduce it to set
theoretical primitives that are easier to reason about.

end proof tac3 handles case statements and is mainly used as
a brute-force strategy if end proof tac2 has not been able
to discharge the conjecture.

4 Recently, several typed tactic language, e.g. Mtac [9], have been developed. They will
have comparable static properties to PSGraph, albeit they do not have the dynamic
inspection features Tinker provides.

322 Y. Lin et al.

CDFG_tac CDFG_tacCDFG_tacCDFG_tac E_tac

B_tac

D_pseduo_tac

z_strip_tac

any any

any

any any

any

any

top_concl(ZTrue)

is_B()

is_D() is_F() is_G()

is_C()

is_D_pesduo()

is_E()

Fig. 3. The structure tac sub-tactic of Supertac

Figure 3 shows the tactic nested by the structure tac node in PSGraph. As a
proof of concept, this encoding has been successfully applied to discharge VCs
generated from a Nose-Gear Velocity case study [8] in ClawZ.

3 Adapting Supertac to C-Code

The main difference between conjectures generated for Ada and C is that Ada
specific semantics in the refinement conjecture has now been replaced by C
constructs5. The remaining parts, e.g. the encoding of Simulink using Z Notation,
are unchanged. The key challenge is thus to replace the parts of Supertac that
reduce the Ada vocabulary with pure set theory into parts that reduce the
C vocabulary into set theory (and develop these). This is non-trivial, because
semantically variables in Ada can be treated simply when aliasing restrictions
are in place, however the semantics of a variable in C come with a side condition
stating that it is disjoint from other C objects. PSGraph enables users to step
through evaluation and see how the goals evolve. This is a very useful when
adapting a tactic in this way. To illustrate, the following VC has been generated
from a simple C program:

(∗ ?� ∗)�Z∀ [fav : VALUEC ; σ : STOREC | 〈(fav , fa l)〉 AllocatedIn σ] •
(Test01 v ! =̂ IntValC (mk signed intC (IntOf C fav + 1)), fav =̂

fav , σ =̂ σ) ∈ Test01 post�

With the debugging support of Tinker to interactively step through our
PSGraph version of Supertac, we were able to pinpoint where in end proof
tac1 it was assumed that the target programming language constructs need to
be eliminated. First we split this sub-tactic into end proof tac1 1 and end proof

5 A subset of C called C� is used. It has been designed with safety critical applications
in mind. C�’s formalisation in ProofPower is based on work by Norrish for the HOL
system [6]. The formalisation is comparable to Frama-C, however it has not been
designed to act as a framework for other analysis tools.

A Super Industrial Application of PSGraph 323

tac1 2. The C specific parts will need to be eliminated between these two sub-
tactics. To illustrate, after end proof tac1 1 our VC looks as follows:

(∗ 3 ∗)�Zσ ∈ STOREC�
(∗ 2 ∗)�Z〈(fav , fa l)〉 AllocatedIn σ�
(∗ 1 ∗)�Zclawz hint1"Supertac:VC Origin:Empty Block List"�

(∗ ?� ∗)�Z(true ∧ σ ∈ STOREC ∧ true)

∧ IntValC (IntOf C (IntValC (mk signed intC (IntOf C fav + 1)))

==CZ mk signed intC (IntOf C fav + 1)) �= IntValC 0�

where assumption (* 1 *) has been inserted by structure tac to guide the rest
of the proof. The intuition behind this VC is that the C value of compar-
ing IntOfC(IntV alC(mk signed intC(IntOfCfav + 1))) with mk signed int

C(IntOfCfav + 1), using the C version of integer comparison operator == CZ ,
is not equal to the C value of 0. When the VC contains C specific parts, then
these have to be reduced to set theory before end proof tac1 2 executes. As can
be seen in Fig. 4 (left), we introduce a new nested tactic called qcz conversion,
and insert it between the two tactics discussed above. VCs containing C vocab-
ulary are identified by the is qcz conv predicate, found on the wire leading to
the qcz conversion tactic.

end_proof_tac1_1

qcz_conversion

is_qcz_conv()

end_proof_tac1_2

any

any

is_qcz_conv()

is_not_qcz_conv() C_rewrite_crucialC_rewrite_Int_BooleanC_rewrite_patterns

any any any

any

any

is_qcz_int_boolean() is_qcz_crucial_conv() is_qcz_patterns()

Fig. 4. New end proof tac1 (left) & code conversion types (right)

The nested graph of this tactic is shown in Fig. 4 (right). Depending on
certain properties of the goal, identified by the wire labels of the PSGraph, one
of three tactics may be applied.

Each of them applies some conversions, which are rewrite rules proven from
the semantics of the language formalisation, to simplify the goal: C rewrite pat-
terns does general simplifications of C constructs; C rewrite Int Boolean deals
with special simplifications related to C booleans (represented as integer in C);
while C rewrite crucial does the crucial steps in eliminating C vocabulary. To
illustrate, the following are some of the crucial conversions of C rewrite crucial:

324 Y. Lin et al.

∀ x : U • IntOf C (IntValC x) = x

∀ x : U; y : U • IntValC x = IntValC y ⇔ x = y

These changes were sufficient to complete the running example, and has been
successfully applied to fully automate six handcrafted VCs.

4 Conclusion and Future Work

In this paper we have reported on a successful technology transfer project, where
the PSGraph language has been used to start the adaptation of an industrial
proof strategy to a new domain – using the state-based Z notation. Through an
example, we have illustrated how it has been used to pinpoint and support the
development of this adapted proof strategy.

Proofs are becoming more commonplace and increasingly complex. Like with
software maintenance, proof maintainence is going to be a problem, as people
who did the proof originally will have moved on or retired. For example, the
substantial proof effort on the sel4 kernel [4] will be around for decades, and
even small changes to the underlying kernel is likely to break many proofs. We
have shown the advantages of PSGraph for the maintainence of Supertac; this
experience has given us confidence that it has potential to play a supporting role
in proof engineering [3] other large proof-based developments.

So far we have only decomposed structure tac. In the medium term we aim
to complete this work by decomposing the remaining tactics and we are hoping
that PSGraph can be used to remove some of the “clutter” that has been the
result of updating Supertac to new applications. Particular challenges will be to
discover new goal types and find suitable graphical representions of some domain
specific and non-trivial combinators used in Supertac.

In the long term we would like to re-implement the overall structure of Super-
tac from scratch, using the existing Supertac components as building blocks.
Ideally, we will support both Ada and C. This will enable us to reflect on the
intuition and develop a more conscious strategy, where the overall proof plan is
clear. For example, we should separate reasoning about the denotational seman-
tics given to expressions from the operational semantics of statements, as these
will be tackled in different ways. We believe that this will give a much cleaner
proof strategy that would be easier to analyse and adapt for future applications
and changes to the modelling language or the target programming language.

References

1. Grov, G., Kissinger, A., Lin, Y.: A graphical language for proof strategies. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312,
pp. 324–339. Springer, Heidelberg (2013)

2. Grov, G., Kissinger, A., Lin, Y.: Tinker, tailor, solver, proof. In: UITP 2014, vol.
167 of ENTCS, pp. 23–34. Open Publishing Association (2014)

3. Klein, G.: Proof engineering considered essential. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 16–21. Springer, Heidelberg (2014)

A Super Industrial Application of PSGraph 325

4. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe,
D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: formal verification of an
OS kernel. In: SOSP, pp. 207–220. ACM (2009)

5. Lin, Y., Bras, P.L., Grov, G.: Developing & debugging proof strategies by tinkering.
In: TACAS (2016). to appear

6. Norrish, M.: C formalised in HOL. Ph.D. thesis, University of Cambridge (1999)
7. O’Halloran, C.: Automated verification of code automatically generated from

Simulink. ASE 20(2), 237–264 (2013)
8. O’Halloran, C.: Nose-gear velocity-a challenge problem for software safety. In: Aus-

tralian System Safety Conference (ASSC 2014), Held in Melbourne 28–30, May 2014
(2014)

9. Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac:
a monad for typed tactic programming in Coq. J. Funct. Program. 25, e12 (2015)

	A Super Industrial Application of PSGraph
	1 Introduction
	2 PSGraph Encoding of Supertac for Ada
	3 Adapting Supertac to C-Code
	4 Conclusion and Future Work
	References

