
Semi-Automated Design Space Exploration
for Formal Modelling

Gudmund Grov1(B), Andrew Ireland1, Maria Teresa Llano2,
Peter Kovacs1, Simon Colton2, and Jeremy Gow2

1 School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, Scotland, UK

{G.Grov,A.Ireland,PK157}@hw.ac.uk
2 Goldsmiths College, University of London, London, UK

{m.llano,s.colton,j.gow}@gold.ac.uk

Abstract. Refinement based formal methods allow the modelling of sys-
tems through incremental steps via abstraction. Discovering the right
levels of abstraction, formulating correct and meaningful invariants, and
analysing faulty models are some of the challenges faced when using this
technique. We propose Design Space Exploration that aims to assist a
designer by automatically providing high-level modelling guidance.

Keywords: Design · Abstraction · Event-B · Theory formation

1 Introduction

During the development of software intensive systems, the mathematical rigour
of formal methods brings unique benefits. Specifically, the precision of a formal
notation enables design decisions to be clearly communicated and formally ver-
ified. However, the use of a formal notation alone is not sufficient to achieve
these benefits. Developing design models at the “right” level of abstraction is
a creative process, requiring significant skill and experience on the part of the
designers. Typically within industrial-scale projects, a design will be modelled at
too concrete a level, with the details obscuring the clarity of key design decisions,
making it harder to determine if the customer’s requirements have been satis-
fied. In addition, starting with too concrete a design may prematurely “lock” the
design team into a particular solution and increase the complexity of the asso-
ciated formal verification task, i.e. proving properties of the design. Addressing
these problems would significantly leverage the creativity of a designer.

We aim at developing a tool that analyses the work of a designer behind the
scenes, and automatically suggests design alternatives for Event-B models [1] –
alternatives which improve the clarity and correctness of a design. Moreover, a

This work has been supported by EPSRC platform grants EP/J001058/1 and
EP/N014758/1, and FP7 WHIM project 611560. We are grateful for feedback on
our approach by Jean-Raymond Abrial.

c© Springer International Publishing Switzerland 2016
M. Butler et al. (Eds.): ABZ 2016, LNCS 9675, pp. 282–289, 2016.
DOI: 10.1007/978-3-319-33600-8 22

Semi-Automated Design Space Exploration for Formal Modelling 283

tool that explains for each alternative what issue it is addressing and how it will
effect the design as a whole. The tool will be semi-automatic in that while the
analysis and synthesis outlined above will be automatic, the designer will remain
in full control of the design process. We believe that we can achieve this goal
by combining common patterns of modelling with techniques from automated
reasoning, in particular automated theory formation. This paper takes the first
steps towards such tool. As a working example, consider the requirements given
below of a simplified protocol for transferring money between bank accounts:

R1: the sum of money across all accounts should remain constant;
R2: transactions can only be completed if the source account has enough funds;
R3: if an amount m is debited from a source account, the target account should

be credited by m;
R4: progress should always be possible (no deadlocks).

A designer might choose to represent the protocol as follows in Event-B:

start(a1, a2, m)
def
= when a1 /∈ active

then pend := pend ∪ {((a1, a2), m)} || active := active ∪ {a1}
debit(a1, a2, m)

def
= when ((a1, a2), m) ∈ pend ∧ bal(a1) ≥ m

then bal(a1) := bal(a1) − m || pend := pend \ {((a1, a2), m)} ||
trans := trans ∪ {((a1, a2), m)}

credit(a1, a2, m)
def
= when ((a1, a2), m) ∈ trans

then bal(a2) := bal(a2) + m || trans := trans \ {((a1, a2), m)} ||
active := active \ {a1}

The chosen approach involves three steps, each of which is represented
through an event that is parametrised by the names of the source (a1) and
target (a2) accounts, along with the value of money (m) associated with the
transfer. Step one (event start) initiates a transfer by adding the transaction
to a pending set (pend), and uses a set (active) to ensure that an account can
only be the source of one transfer at a time. Note that || denotes parallel execu-
tion. The second step (event debit) removes the funds from the source account
if sufficient funds exist – bal denotes a function that maps an account to its
balance. If successful, the transaction is removed from the pending set and is
added to the transfer set. The final step (event credit) completes the transac-
tion by adding the funds to the target account, as well as updating the trans
and active sets accordingly. Finally, requirement R1 is formalised as an invari-
ant, I1: Σa∈dom(bal)bal(a) = C where C is a constant that represents the sum of
money across all accounts.

This design abstraction only represents a starting point for the modelling
process. A designer will next refine their design ideas through a series of pro-
gressively more concrete design abstractions. This gives leverage over the inher-
ent complexity of the design process, enabling the designer to incrementally
achieve a customer’s requirements. Crucially each refinement step must be for-
mally proved correct. This process is called correctness-by-construction. A longer
version of this paper is available on ArXiV [5].

284 G. Grov et al.

2 Towards Design Space Exploration

Key to the style of modelling outlined above is abstraction – the ability to create
a design at the right level of detail; and to “glue” it to any abstract model
through a set of gluing invariants. Trial-and-error is very much part of the expert
methodology, where low-level proof failures are examined, and design alternatives
in terms of abstractions are experimented with manually (see [2]). Within Design
Space Exploration, our goal is to automate much of the low-level grind associated
with the trial-and-error nature of formal modelling, and provide a designer with
high-level modelling advice in real-time.

In particular, we aim to generate alternative models at a higher level of
abstraction than the original model to deal with a flaw. The intuition is that
the flaw is a result of being too concrete. Moreover, within a correct abstraction,
the designer has the additional burden of correctly defining the system behaviour
and supplying numerous auxiliary invariants that are required for the formal
verification process. To support this, we will suggest adaptations of the initial
model at the same level of abstraction. This could be for instance in terms of
additional invariants, or even changes to the behaviour of the system. As can
be seen in the next section, unconstrained generation of new models will result
in an enormous search space which will be infeasible in practice. Instead, the
approach we are proposing has two phases, analysis and generation, which
will iterate until a satisfactory solution is found, possibly including user input.

Analysis Phase. Automated Theory Formation (ATF) is a technique that
invents concepts to describe and categorise examples from the input domain,
makes conjectures which relate the concepts, and seeks proofs and counterex-
amples to determine the truth of the conjectures. The HR ATF system [3] will
be used in the analysis phase to explore given Event-B models and highlight
problematic areas. A major challenge will be to find heuristic techniques that
effectively prune the design space so that a designer is presented with a use-
ful set of modelling alternatives. This analysis will aim to pin-point both where
and what the problem may be in order to guide the generation phase, and to
identify the most interesting solutions. Our approach will be a significant evolu-
tion of our previous work on using HR for Event-B [4,9], where we will explore
unrestricted theories and include event information in order to explore hypothe-
ses related to the events. We explore simulation traces derived from simulating
models, to identify conjectures that are associated with failed steps from the
simulation trace. This strategy has proven successful as evidenced in [4], and is
extended here by including event information. This will indicate that a variable
or an event are associated with failures in the model and therefore should be
the focus for the generation phase, as will be illustrated in Sect. 3. This section
also illustrates how HR can be used to exploit erroneous user given invariants
in order to suggest adaptations of them. We will also search for invariants that
are required in order to prove the consistency between the abstract and concrete
models; i.e. gluing invariants, which we have already explored in [9]. Finally, we
will exploit HR’s support for the generation of near conjectures, i.e. conjectures

Semi-Automated Design Space Exploration for Formal Modelling 285

that are true for a percentage threshold of the examples they have. Building
upon this functionality, we will explore how this can be tailored to the needs
of formal modelling. That is, although formal methods are typically based on
definite answers, e.g. a property is either true or false, we believe that a weaker
notion of truth is called for when exploring design alternatives, what we call
near-properties; i.e. properties that are true for most, but not all, behaviours,
e.g. “event X always violates invariant I, but it is always re-established by event
Y ”. Paying attention to such properties can lead to insights and in particular
suggest solutions which lie just beyond the fringe of what is currently true about
a design.

Generation Phase. The results of the analysis phase are then used in the
model generation phase, where alternative abstractions and adaptations of the
model are generated. The system must be able to ‘explore’ design alternatives
also for new and previously unseen scenarios. The component that performs
the actual generation of new abstractions and adaptations can therefore not be
too prescriptive, as was the case with our reasoned modelling critics [6]. For
his (unpublished) honours dissertation, one of the authors (Kovacs) has made
the first step towards such a component by implementing a generic framework
for model generation as a plug-in to the Rodin tool-set [7]. The key feature of
this plug-in is that it has a layered design: at the bottom is a set of low-level
but generic ‘atomic operators’ that make small changes to a model, e.g. ‘delete
variable’ and ‘merge events’. These atomic operators can then be combined in
order to generate new models, and constrained to reduce the number of possible
models generated. It is up to the system to find the right combination of oper-
ators and to constrain them in the best possible manner. Thus, a “complete”
set of atomic operators would allow the generation of all possible alternative
models. This gives flexibility to our proposed approach to Design Space Explo-
ration, enabling us to handle new and unforeseen circumstances. Due to space
constraints, the details of this tool has been omitted and we refer the interested
reader to [5,7]. In Sect. 3 we give examples of how this framework is used.

Common Patterns of Modelling. As will be illustrated in Sect. 3, common
modelling patterns will play a central role in finding the right combination of
operators. These will be at a very high-level to enable flexibility in terms of their
application and therefore enable us to provide assistance in situations where
there are no applicable design patterns. The analysis will be used to suggest
suitable patterns and guidance as to how they can be implemented. To support
this, we have already identified several refinement patterns [4] in previous work;
however as we cannot refine away flaws, this will be applied in inverse, essentially
turning them into abstraction patterns. Some abstraction patterns have also been
identified and represented using the operator framework in [7]. The experiments
in the next section are utilising two patterns: (1) “undoing” bad behaviour by
introducing a special error (or exception) case; and (2) abstracting away the
problem when it can be pinpointed between certain events. This amounts to
“atomising” sequential events into a single event.

286 G. Grov et al.

3 Illustrative Examples and Initial Experiments

In terms of realising our vision we have undertaken experiments at the level of
analysing design models as well as mechanising generation. We present these
experiments next. The selection of operators and the integration of the two
phases is currently manual; our ultimate goal is to automate the full development
chain.

Fig. 1. A diagrammatic summary of a small design space exploration.

Consider again the user provided model of a money transfer protocol given in
Sect. 1. As it stands, the model is flawed since R4 is violated when all accounts
have started a transaction but none of the source accounts have sufficient funds.
Moreover, event debit violates invariant I1 since the amount removed from the
source account is not accounted for in the invariant, which breaks requirement
R2. Our aim in such situations will be to offer the designer modelling alternatives
that address the flaws. Figure 1 summarises the alternatives generated through
our approach, and below we outline how this was achieved. More details can be
found in the long version of the paper [5].

Abstraction A1. The first step of the analysis is to generate simulation traces
by running the ProB simulator [8], which will also check if the invariants hold.
This is input for HR which will use the concept good for states in which ProB
did not find any invariant violations. HR is then used to search for properties
that involve the concept ¬good, and this analysis suggest that the generation of
bad states are associated to event debit and variable active.

We can apply the “abstract away” pattern to this violation. One implemen-
tation of this pattern is to remove the variable that two (sequential) events use
to communicate an intermediate result, and then combine this sequence into
an atomic event. A naive application of this pattern in our operator framework
will generate 12 alternatives, however by constraining the generation to always

Semi-Automated Design Space Exploration for Formal Modelling 287

include the event debit and variable active, this is reduced to 2 alternatives (thus
pruning the search space by 83%), one of them being the desired abstraction:

debitabs(a1, a2,m)
def
= when a1 /∈ active ∧ bal(a1) ≥ m

then active := active ∪ {a1} || bal(a1) := bal(a1) − m

|| trans := trans ∪ {((a1, a2),m)}

Adaptation A2. An alternative analysis is to apply the error-case pattern.
Intuitively, this means introducing a new “error-handling” event that will “undo”
some previous state changes when the desired path is not applicable. This can be
implemented so that it reverses a previous action in cases when an event of the
desired path stays disabled. This require transformations to negate an event’s
guard, reverse an action of an event and combine the guards of one event with the
actions of another. Here a naive implementation will generate 10 alternatives,
while if we apply the same constraints as in (A1) then this is reduced to 7,
including the generation of the error-handling event:

debiterr(a1, a2,m)
def
= when ((a1, a2),m) ∈ pend ∧ bal(a1) < m

then pend := pend \ {((a1, a2),m)} ||
active := active \ {a1}

debiterr handles the case when the source account does not have enough funds.

Adaptation A3. Let’s assume the user selects A1. Through analysis of this
alternative, invariant (I1) is still violated and HR is re-applied. Through manual
inspection of the result of HR, we can see that we are in a “bad state” when trans
and active are not empty, i.e. when there are transactions currently in progress.
As a results HR is re-applied to search for conjectures that involve the concepts
trans and active as well as the invariant itself; i.e. C = Σa∈dom(bal)bal(a). HR is
then able to generate an adaptation of the invariant I1 that addresses the viola-
tion by debitabs. Note that this adaptation is achieved by including the “internal
state” trans within the invariant. The Event-B representation of the invariant,
which replaces I1, is:

I2: Σa∈dom(bal)bal(a) + Σ(a1,a2)∈dom(trans)trans(a1, a2) = C

Abstraction A4. Although correct, invariant I2 is not a natural representation
of R1, as compared with near-invariant I1. The designer may wish to explore
an alternative abstraction in which I1 is an invariant. Our final alternative A4
represents such an abstraction. Based on the output given by HR for alterna-
tive A1, we can re-apply our “abstract away” pattern, albeit with a slightly

288 G. Grov et al.

modified implementation that deletes two variables. Unconstrained, this opera-
tor will generate 6 possible alternatives, while a constrained application, which
takes into account the analysis, only generates 2 alternatives, one of them being
the desired transfer event1:

transfer(a1, a2,m)
def
= when abal(a1) ≥ m ∧ a1 �= a2

then abal(a1) := abal(a1) − m ||
abal(a2) := abal(a2) + m

Finally, in order to prove the consistency between the abstract and concrete
models, a gluing invariant is required. Therefore, we enter again in an analysis
phase where HR is used to form a theory of the refinement step and search for
the invariant. HR is able to figure out the relation between the abstract variable
abal and the concrete representation; i.e. variables bal and trans. Part of our
future work will be focused on tailoring HR for the formal methods context so
that invariants such as the gluing invariant required in this refinement step can
be formed.

4 Conclusion and Future Work

Focusing on Event-B, we have introduced our approach to Design Space Explo-
ration for formal modelling, supported by an initial implementation with partly
automated experiments. Currently, the sub-components of our approach are
partly automated, while their integration is manual. HR has to be manually
guided and we have to manually inspect its output as well as select and combine
the relevant operators to perform the generations. Our goal is to fully auto-
mate all parts, and provide users with a list of new (and ideally ordered by
perceived relevance) modelling alternatives. The approach is semi-automatic in
that the user will decide on how to use the alternatives. In this paper we have
provided the first step towards realizing our goal and have shown the feasibility
of the overall approach. However, there is still a long way to go: we have already
discussed the desirable features for the analysis phase; in addition, we need to
identify a sufficiently small, yet complete, set of atomic operators, constraints
and combinators, in order to be able to generate all necessary alternatives in
the generation phase. It is crucial that these are controlled to avoid generating
duplicates. The phases must then be integrated to be able to automate the selec-
tion and combination of operators based upon the analysis. The level of support
we aim to provide is very ambitious. If successful, our approach will increase the
productivity and accessibility of Event-B, but more importantly, it will provide
valuable insights into how formal methods can be deployed more widely.

1 Technically, the Event-B syntax of the action should be: abal := abal �−{a1 �→ abal
(a1) − m, a2 �→ abal(a2) + m}.

Semi-Automated Design Space Exploration for Formal Modelling 289

References

1. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Butler, M., Yadav, D.: An incremental development of the mondex system in Event-
B. Formal Aspects Comput. 20(1), 61–77 (2008)

3. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer,
Heidelberg (2002)

4. Grov, G., Ireland, A., Llano, M.T.: Refinement plans for informed formal design.
In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 208–222. Springer, Heidelberg
(2012)

5. Grov, G., Ireland, A., Llano, M.T., Kovacs, P., Colton, S., Gow, J.: Semi-Automated
Design Space Exploration for Formal Modelling. arXiv:1603.00636

6. Ireland, A., Grov, G., Llano, M., Butler, M.: Reasoned modelling critics: turning
failed proofs into modelling guidance. SCP 78(3), 293–309 (2013)

7. Kovacs, P.: Automating abstractions in formal modelling, Heriot-Watt University,
Undergraduate Honors Thesis (2015). http://bit.ly/1JnL0Ts

8. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

9. Llano, M.T., Ireland, A., Pease, A.: Discovery of invariants through automated
theory formation. Formal Aspects Comput. 26(2), 203–249 (2012)

http://arxiv.org/abs/1603.00636
http://arXiv.org/abs/1603.00636
http://arXiv.org/abs/1603.00636
http://bit.ly/1JnL0Ts

	Semi-Automated Design Space Exploration for Formal Modelling
	1 Introduction
	2 Towards Design Space Exploration
	3 Illustrative Examples and Initial Experiments
	4 Conclusion and Future Work
	References

