
How to Select the Suitable Formal Method
for an Industrial Application: A Survey

Felix Kossak and Atif Mashkoor(B)

Software Competence Center Hagenberg GmbH,
Hagenberg, Austria

{felix.kossak,atif.mashkoor}@scch.at

Abstract. The share of formal methods is still marginal in contempo-
rary systems and software engineering. One of the reasons is the absence
of systematic guidelines and evaluation criteria that help software prac-
titioners choose the right formal method for the problem at hand. In
this paper, we present a comprehensive set of criteria, based on a sys-
tematic literature review and decade-long personal experience in indus-
trial projects, for evaluating and comparing different formal methods.
We argue that besides technical grounds (e.g., modeling capabilities and
supported development phases), formal methods should also be evalu-
ated from social and industrial perspectives. At the end of the paper, we
present an evaluation of “ABZ” methods based on the stipulated criteria.

1 Introduction

Despite many years of advocacy, numerous success stories in safety-critical sys-
tems and the availability of various easy to use methods and tools, the application
of formal techniques is still sparse in mainstream software development. Several
factors can be held accountable for this result. One of them is that no proper
guidelines are available at the disposal of software practitioners to enable them
to navigate through the intricate process of choosing the formal method suitable
for their problem domain.

Different formal methods are generally suitable for different kinds of soft-
ware projects, domains, and social and economic settings. For instance, the devel-
opment of safety-critical systems will require elaborate evidence for compliance
with safety requirements and standards, while in other projects, budget and time
restrictions will not allow for expansive verification efforts. As another example,
it makes a difference whether mostly mathematicians or specially trained engi-
neers are involved in a project, and will also be available for maintenance later on,

The research presented in this paper is supported by the Austrian Ministry for
Transport, Innovation and Technology, the Federal Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of the COMET
center SCCH. The writing of the paper is partially supported by the Austrian Science
Fund project: Behavioral Theory and Logics for Distributed Adaptive Systems (FWF-
P26452-N15).

c© Springer International Publishing Switzerland 2016
M. Butler et al. (Eds.): ABZ 2016, LNCS 9675, pp. 213–228, 2016.
DOI: 10.1007/978-3-319-33600-8 13



214 F. Kossak and A. Mashkoor

or whether the methods used must be suitable for ordinary software developers.
Several studies have already been published where individual formal methods
are compared. However, as we will detail in Sect. 2, many of these studies are
either outdated or concentrate on limited aspects (e.g., technical criteria of pre-
dominantly academic interest or a particular domain of application). None has
presented general guidelines/evaluation criteria which may help software practi-
tioners in choosing the right formal method for their problem at hand.

In this paper, we present a comprehensive list of criteria for the compari-
son of formal methods with respect to general industrial interest, drawn from
a structured literature review as well as personal experience in industrial and
academic projects, for example, hemodialysis machines [42], an aircraft landing
gear system [34], machine control systems [43], transportation systems [45], pla-
tooning systems [44], and business process modeling [35]. In contrast to many
other publications, we include a wide range of criteria which we deem crucial for
a wider adoption of formal methods in the industry.

The main goal of this study is to provide guidelines to software practitioners
to help them choose a particular formal method, or maybe a small set of meth-
ods, for a particular software (or software-hardware co-development) project.
Thereby the focus is laid on industrial projects, including large-scale projects.
The motivation behind this goal is to provide necessary means to help propagate
the use of formal methods in day-to-day systems and software engineering.

The prime research question of our work is: What criteria are useful in order
to select a particular formal method for a particular setting? Additionally, we
demonstrate the use of the criteria with several selected formal methods in tab-
ular form. A much more detailed description of the criteria and our evaluation
of different methods is available in [36].

This paper is structured as follows: First we present our research approach
and the list of literature reviewed (Sect. 2). Then in Sect. 3, we present a struc-
tured list of criteria for selecting a suitable formal method for an industrial
application. In Sect. 4, we compare particular methods by means of the previ-
ously described criteria. The paper is concluded in Sect. 5.

2 Approach and Literature Reviewed

2.1 The Research Approach

In this paper, we answer the following research questions:

1. What criteria are useful in order to select a particular formal method for a
particular setting?

2. Why are the criteria important for the evaluation of a particular method?
3. How do various state-based methods fare with respect to these criteria?

Our research approach is based on a structured literature review comple-
mented by our own experiences with several formal methods. We limited the
literature research to an Internet search with the following search strings:



How to Select the Suitable Formal Method for an Industrial Application 215

– “formal methods” AND “evaluation criteria”
– “formal methods” AND “comparison”
– “formal methods” AND “state of the art”
– “formal methods” AND “literature review”

We stopped after seven pages of search results, after which relevance dropped
markedly. We further included literature which we were already aware of.

The literature research showed that several comparisons between different
classical formal methods were conducted in the 1990s and around 2000. Recently,
more comparisons were made in special settings, typically in the context of uni-
versity courses. We noted a recent surge in formal method-related tools which
can be integrated in traditional development platforms. These are typically sta-
tic checkers or model checking tools that only partially cover specification and
model-based verification against custom safety properties. Most existing studies
compare only a few methods, often only two or three. Evaluation criteria vary
widely, revealing different possible viewpoints.

Evaluations of formal methods from the 1990s must certainly be considered
outdated, for much has changed since, in particular with respect to tool support,
the amount of practical experience, and how widespread a method is used. This
does not leave much material for a concrete evaluation of particular methods.
Still, older publications can yield interesting contributions to the criteria by
which formal methods should be evaluated (sometimes presented as wishes).
Often the focus is on a purely academic viewpoint in this respect, but not always.

2.2 Literature Reviewed

We now present the literature (in order of relevance) which we found relevant
for the current study (excluding sources on a single method).

Information on concrete evaluations within the industry appears to be scarce,
though we assume that such evaluations happen. A notable exception is a recent
paper by Chris Newcombe, “Why Amazon Chose TLA+” [50], though it largely
only describes experience with TLA+ [38] and, to a lesser extent, Alloy [29] and
Microsoft VCC [17]. The criteria are drawn from the very demanding domain of
cloud infrastructure services, where key demands include a high level of distrib-
ution, high performance, and high availability.

A position paper by Sifakis [54] also discusses industry-centric evaluation
criteria and provided useful input for us. Sifakis discusses, amongst others, the
crucial point of usability and human factors in general.

The papers from Ardis et al. [4] and Knight et al. [33] also provide frame-
works for the evaluation of formal specification languages. They first present
criteria and then evaluate several formal languages. The latter also present the
perspectives of developers, engineers, and computer scientists on these languages.

Woodcock et al. [58] contribute an overview of historical experiences with
formal methods, in particular from industrial projects. We could extract several
important criteria from this paper, in particular with regard to tool support.



216 F. Kossak and A. Mashkoor

McGibbon [46] discusses different evaluation criteria from a government view-
point, including more detailed requirements for tools.

Several evaluation criteria can be extracted from the seminal papers by
Clarke and Wing [15] and Bowen and Hinchey [13]. The former present the
state of the art and future directions of formal methods and the latter present
some guidelines to help propagate the use of formal methods in industry.

Liu et al. [40] list a number of evaluation criteria and compare a great num-
ber of methods. Amongst others, the authors bring in the additional criterion of
applicability in re-engineering, in particular in reverse engineering and restruc-
turing. Although they are primarily concerned with support for re-engineering,
this paper is also of general interest; it includes interesting characterizations of
many different methods and their state at the time, though unfortunately much
of this information is now (potentially) outdated.

Banach, in “Model Based Refinement and the Tools of Tomorrow” [5], com-
pares B [2], Event-B [3], Z [55], and the ASM method [10] from a mathemati-
cal/technical point of view.

Also a book by Gannon, Zelkowitz, and Purtilo, entitled Software Specifi-
cation: A Comparison of Formal Methods [23], focuses on mathematical issues;
it discusses only VDM [30] as a formal method in a closer sense, together with
temporal logic in general as well as “risk assessment.”

Also Kaur et al. in “Analysis of Three Formal Methods - Z, B and VDM”
[32], stress mathematical and modeling issues, but they also mention, e.g., tool
support, code generation, and testing.

In Software Specification Methods (ed. by Frappier and Habrias) [21], many
different methods are introduced through a case study. In the last chapter, some
of the methods are qualitatively compared. The criteria include some which we
chose not to adopt here, including graphical representation (lack of relevance
for state-based methods), object-orientated concepts (design-centric, see further
below), use of variables (too detailed), and event inhibition (too detailed).

In “A practical comparison of Alloy and Spin,” Zave [59] compares Alloy and
Spin/Promela [28], two methods of general interest. However, we did not find
any new criteria there.

In a master’s thesis, Rainer-Harbach [53] compares several different proving
tools for software verification, but not any comprehensive method which could
support other project phases and aspects.

ter Beek et al. [9] wrote a paper on “Formal Methods for Service Com-
position,” dealing with a very narrow field of application. They compare only
automata as a basis for model checking, Petri Nets, and process algebras.

A paper by Dondossola [18] specializes on the application domain of safety-
critical knowledge-based components and on the method TRIO [25]. Towards
the end, it also offers a comparison of different formal methods, including VDM
and Z; however, the criteria used there are only very coarsely described, so we
could not extract much extra information useful for our purposes.



How to Select the Suitable Formal Method for an Industrial Application 217

A technical report by Barjaktarovic [8] names in particular industrial require-
ments for formal methods throughout the text; most of those requirements are
also found in other sources, but this paper provides a good confirmation.

From an article by Pandey and Batra [52], we obtained useful assessments of
Z and VDM, in particular.

3 Criteria for Evaluating Formal Methods

Now we will present a structured list of criteria which we deem relevant for
assessing and comparing formal methods for their usefulness in concrete indus-
trial projects, depending on the concrete settings of a project. We first give an
overview of the criteria we found and deemed relevant before describing each
of them in more detail and explaining their significance. Please note that the
classification of certain criteria under a particular category may be cross-cutting
and overlapping to some degree. This is by choice as it makes each category an
independent unit of analysis that can also be taken into consideration in isolation
for concentration on a particular class of criteria. Please see [36] for a detailed
discussion on the criteria.

3.1 Overview

We found five categories of criteria relevant for industrial projects:

1. Modeling Criteria: What possibilities and scope for modeling and refine-
ment does the method offer?

– Support for composition/de-composition
– Support for abstraction/refinement and what notion of refinement is

employed
– Support for parallelism/concurrency/distribution
– Support for non-determinism
– The possibility to express global system properties of correctness
– Support for the modeling of time and performance properties
– Expressibility of various special (domain-specific) concepts (e.g., differen-

tial equations or user interface aspects)
– The possibility to express rich concepts easily

2. Supported Development Phases: Which phases of a software (and/or
hardware) development project can be supported (and how)?

– Specification
– Validation
– Verification
– Bug diagnosis
– Architecture and design
– Coding/code generation
– Testing
– Maintenance
– Reverse engineering



218 F. Kossak and A. Mashkoor

3. Technical Criteria: What tools are available, and how do the method and
the tools interact with other development requirements from a technical point
of view?

– Overall tool support
– Commercial support for tools
– Traceability of requirements and during refinement/code transformation
– Support for change management (how much stability of the initial specifi-

cation is presupposed? What about maintenance of the finished product?)
– Effect of the method on development time (for specification, validation,

verification, etc.)
– Efficiency of generated code (can the generated code be used as it is? how

much manual tweaking is necessary?)
– Efficiency of code generation (how fast does code generation work?

what does a small change in the model mean for subsequent code re-
generation?)

– Interoperability with other methods and/or other tools
– Integration of methodology and tools with the usual development meth-

ods and tools (IDEs)
4. Human/Social Criteria: How easily can people with different backgrounds

and expertise handle the method and its results? How can people collaborate
when using the method?

– Learning curve (how fast can one learn the method from scratch, and
what prior expertise is required?)

– General understandability (is the model understandable for non-experts?
can the model be made accessible via visualization/animation?)

– Available documentation (including case studies)
– Support for collaboration

5. Industrial Applicability: How well can the method be used in potentially
large and complex industrial projects, and what industrial experience is there
so far?

– Support for industrial deployment
– Scalability
– Amount of (industrial) experience so far
– Success rate in industrial application
– Is specialized staff required, and if so, to what extent?
– Standardization
– Availability and licensing of method and tools

3.2 Modeling Criteria

Modeling criteria concern the scope of systems and requirements which can be
modeled. Composition is important for large models, including their verification.
Refinement is even more important for constructing increasingly large models
and can support validation, design, and coding.

Support for modeling parallelism, concurrency, and distribution is essential
for a wide range of real-life applications. Support for non-determinism is very



How to Select the Suitable Formal Method for an Industrial Application 219

useful for keeping models abstract. The possibility to express global properties of
system correctness is necessary to be able to prove respective safety and liveness
requirements such as temporal constraints (termination, deadlock freeness, fair-
ness). Support for modeling time must regard sparse and dense models for time
separately (see [40]). Performance properties refer to the complexity of algo-
rithms, both with respect to time and to memory. Many domains of application
require that special concepts be easily expressed in a modeling language. One
important example is hybrid systems.

We can generally expect a desire in industry to “be able to capture rich con-
cepts without tedious workarounds” [50]. In a related note, [15] demand support
for sufficient data structures and algorithms.

Additionally, [21,32] have suggested support for the object-oriented con-
cept as an evaluation criterion. However, we think that this criterion is too
implementation-centric (or at least design-centric) for specifications.

3.3 Supported Development Phases

[15] state that it should be possible to amortize the cost of a formal method or
tool over many uses; this means it should be possible to use a model throughout
as many development phases as possible.

A special phase which is not regularly considered is that of reverse engineer-
ing – extracting the high-level functionality and a respective specification from
a (typically ill-documented) legacy system. We owe attention to this additional
project phase to [40].

Bug diagnosis is an issue which deserves special mention beside verification,
because finding that some property does not hold does not mean that one can
then easily identify the source of error. [50] points out the importance of this
issue; [8] states even that “Industry is mostly interested in tools that find bugs
rather than tools that prove correctness.”

3.4 Technical Criteria

Technical criteria concern tool support and how the method and the available
tools interact with other aspects of system development. Besides the range of
overall tool support, the availability of professional support for those tools is
important, for which reason companies typically prefer commercial support.

An important issue stressed by many industrial sources is the traceability
of requirements throughout the development process. Support for change man-
agement addresses the fact that the waterfall model is actually unrealistic. The
effect of the method on overall development time is crucial for the industry.

Regarding code generation, we can consider the efficiency of the generated
code as well as the efficiency of code generation. The efficiency of the generated
code is the quality of the code that has been generated by an automatic tool
from a more abstract model: runtime behavior, use of memory, or the amount



220 F. Kossak and A. Mashkoor

of manual fixing which is required after generation. The efficiency of code gen-
eration concerns the speed (and use of resources) with which code is generated.
This is important for “playing” with the model and testing different designs.

The demand for interoperability with other methods and/or other tools arises
from the insight that different methods and tools are differently suitable for
different tasks and project phases. Moreover, such a possibility will greatly
enhance reuse. A related criterion is Integration of methodology and tools with
the usual development methods and tools to facilitate the transition between
different project phases and requirements tracking, amongst others.

3.5 Human/Social Criteria

In industrial settings, specially trained people will not be available for every
development task. The easier a method is applicable for normal engineers and
developers, the easier it can be adopted by the industry. Moreover, certain prod-
ucts of the method should be accessible to people outside the development team,
including domain experts, managers, or even lawyers (cf. [37]).

The learning curve of a method concerns the speed with which an average
modeler (specifier, designer or developer) can learn the method from scratch
and obtain useful results in practice. General understandability is important
because formal models often need to be understood by various stakeholders.
The importance of documentation, including reference handbooks or tutorials, is
self-evident. Support for collaboration is easily forgotten when academics develop
a new method, but it is an important issue in larger real-life projects.

3.6 Industrial Applicability

There are still further criteria particularly concerning the capability of employ-
ing a formal method in a typical industrial setting. Industrial application very
often means large and complex systems, as well as certain economic and legal
constraints.

The criterion of support for industrial deployment is designed to capture
the availability of outside help. Scalability is the ability of the method to be
well applicable to arbitrarily large and complex projects. Certainly the actual
amount of industrial experience which has been gathered with a method is very
interesting for decision makers who ponder newly introducing formal methods.
Also the success rate would be interesting, but would be extremely difficult to
assess objectively. A cliché that formal methods would require specially trained,
“expensive” personnel is actually well-founded. There are considerable differ-
ences between particular methods in this respect.

Standardization can be very helpful for the industry: it enhances the prob-
ability of long-term availability of commercial tools and facilitates training as
well as exchangeability of results.

Related is the availability and licensing of the method and related tools. Most
of the widely used methods and their tools are open source, but open-source



How to Select the Suitable Formal Method for an Industrial Application 221

software requires a large and stable community to maintain and further develop.
Moreover, the availability of commercial support and training is essential for
more widespread uptake in the industry.

4 Comparison of Methods

4.1 Comparison

We now compare the different “ABZ” methods through simplified tables, see
Tables 1, 2, 3, 4 and 5.

Table 1. Modeling criteria

Alloy ASMs B Event-B TLA+ VDM Z

(De-)Compos. Y Med. Med. Med. Y Y Med.

Refinement Med. Good Med. Med. Good Good Med.

Parall./concur. Med. Good Part. N Good Y N

Nondeterminism Impl. Y Y Y Y (VDM++) Y?

Global propert. Y Med. Med. Y Y N? (N)

Time/perform. (N) N N N Y Y N

Spec. concepts - (Hybr.) N (Hybr.) - Few -

Rich conc. easy (N) Y Med. Med. Y (N) ?

Table 2. Supported development phases

Alloy ASMs B Event-B TLA+ VDM Z

Verification (Good) Med V.Good V.Good Good Y Y

Bug diagnosis Med. Y Y Y Med. Y -

Archit./design Med. Med. (Y) - (Y) (Y) Good

Coding Poor Man. Y Poor (N) Y N?

Testing Med. Y Y Poor Y Y Good

Maintenance - Poor - - N - -

Reverse engin. (Y) Y Y - - N Good

In the tables,“Y” means “yes/supported” (quality unknown), “N” means
“not supported.” A dash “-” means that we could not find (sufficient) infor-
mation. A “?” means that we have inconsistent or even contradicting infor-
mation. “(Y)” means restricted support, “(N)” means little support, “(Good)”
means “Good” with some proviso, etc.; parentheses may also indicate that spe-
cial versions or prototypes support this feature, but not the standard version.



222 F. Kossak and A. Mashkoor

Table 3. Technical criteria

Alloy ASMs B Event-B TLA+ VDM Z

Tool support Y Med. Good Good (Good) Med. Y

Comm. support N N Y Part. N Y Part.

Time effort - Adapt. (Long) (Long) (Short) - (Long)

Efficient code - n/a Med. n/a n/a - n/a

Efficient code gen. - n/a Y n/a n/a - n/a

Traceability Poor Good (Y) Good - - Med.

Interoperability N (N) Part. Part. Part. N N

Integration/IDE - (N) N (N) - - (N)

Table 4. Human/social criteria

Alloy ASMs B Event-B TLA+ VDM Z

Learning curve Med. Good Med. Med. Good (Good) Bad

Understandability Med. Good Med. Med. Good Bad? Bad

Documentation Good (Good) Good Good Good Good Good

Collaboration - N - Y - - -

Table 5. Industrial applicability

Alloy ASMs B Event-B TLA+ VDM Z

Deployment sup. N (N) Y Y N Y Y

Scalability Bad Med. (Good) Med. - Y (Good)

Experience (Much) Med Much (Much) Much Much Much

Special staff Y (N) Y Y N (N) Y

Standardization N N N N N Y Y

Licensing OS OS Cm OS OS Cm/OS OS

“Med.” abbreviates medium quality, “Part.” partial support, “Man.” manual,
i.e., no tool support, “Impl.” abbreviates only implicit support, and “Adapt.”
adaptable. “Cm.” abbreviates “commercial” (licensing), “OS” open source.
“n/a” means “not applicable.” The entry “Hybr.” denotes the possibility to
model hybrid (discrete-continuous) systems.

A couple of criteria have been omitted due to either uniform support or lack
of information: in Table 2, specification, validation and performance checking;
and in Table 3, change management.



How to Select the Suitable Formal Method for an Industrial Application 223

4.2 Justification

A detailed justification of the entries in the above tables is given in [36]. Here we
only give an extract of the potentially contentious points regarding the modeling
criteria.

Alloy features an explicit composition operation [22]. Temporal composi-
tion of functions is possible with operators merge and override. According to
[50], refinement is not very flexible. Regarding concurrency, according to [50],
the method is not suitable for large complex systems. Non-determinism can
only be implicitly modeled [59]. For examples of the modeling of global system
properties, see e.g., [14,16,31]. Alloy has no direct notion of time [24]; however,
[1,19,57] have shown how to express timing properties. [41] selected Alloy for
its “expressive power,” amongst others, but according to [50], the expression of
rich concepts is not easy.

For ASMs, (de-)composition is judged as medium by [5]; however, from a
practical point of view, we consider it to be quite flexible. Refinement is good,
according to [5] as well as by our own experience. The ASM method supports
n-to-m refinement and both data refinement and procedural refinement [10].
ASMs are well suited for modeling parallel and concurrent systems [20]. Non-
determinism is supported by the “choose” operator and via abstract rules and
derived functions. Global properties can be expressed via the state space, but
there is no explicit support. There is no explicit notion of time. Regarding special
concepts, Banach and others have used ASMs for modeling continuous systems
[7]. Regarding easy expression of rich concepts, the simple notation can be easily
adapted and expanded, but tool support may always be limited.

In B, (de-)composition is possible by including other machines. According
to Banach [5], “The [...] INCLUDES, USES, SEES mechanisms are certainly
composition mechanisms, but they just act at the top level.” B supports only
1-to-1 refinement (cf. [5]), and also as per our own experience, the support for
refinement in B can be rated as ‘medium.” B supports parallelism, except for code
generation, but not concurrency [32,40]. B supports non-determinism through
non-deterministic choice of values as well as by operators “ANY” and “CHOICE”.
Regarding system properties, it is possible to express typical safety properties
through invariants, but B has no explicit means for modeling time or temporal
properties (see also [40]). Reliability properties can be expressed via invariants.
Regarding the easy expression of rich concepts, B provides a rich language for
set theory and relational theory. However, expressing certain concepts such as
data structures can often be awkward and unintuitive.

For Event-B, [5] assesses (de-)composition as “good”; however, we find the
decomposition/recomposition facilities not straightforward. Event-B only sup-
ports 1-to-1 refinement. Event-B does not explicitly support parallelism and
concurrency; however, both parallel (cf. [27]) and concurrent (cf. [11]) programs
can be defined using decomposition and refinement. Event-B supports non-
determinism by allowing for non-deterministic choice of values for variables and
through event parameters. Global system properties can effectively be specified
using invariants. Event-B has no explicit means for modeling time or temporal



224 F. Kossak and A. Mashkoor

properties. Regarding special concepts, there exist proposals regarding hybrid and
continuous systems, e.g., in [6]. Regarding the easy expression of rich concepts,
our comments on B apply here as well.

TLA+ supports composition through different mechanisms such as logical
connectives of implication, conjunction, and quantification [38,47]. Refinement is
assessed as “good” by [50, p. 28]; according to [47, p. 445], “A distinctive feature
of TLA is its attention to refinement and composition.” Support for modeling
parallel, concurrent, and distributed systems is good, as confirmed by [50, p. 36].
Non-determinism is also supported [38, Section 6.6]. TLA+ does not formally
distinguish between specifications and system properties: both are written as
logical formulas and concepts such as refinement and composition [47]. It uses
set theocratic constructs to define safety properties and temporal logic to define
liveness properties. Modeling of time is explicitly supported [51, p. 69], enabling
modeling and checking of performance properties. According to [50, pp. 27, 36],
rich concepts can be easily expressed in TLA+.

In VDM, Composition is possible according to [40], but [32,46] deny it.
Classical VDM models can be structured into data types and modules, while
VDM++ models can be structured into classes. Refinement is achieved through
data reification and operation decomposition. According to [40,46], VDM does
not support parallelism, but [39] describes the use of VDM for distributed, embed-
ded, real-time systems. [52] state that “VDM emphasizes on the feature of
concurrency control” (cf. [56]). Support for non-determinism is only given in
VDM++ [32]. [46] states that VDM has no explicit notion of time, but [39]
describes timing analysis for identifying performance bottlenecks. [49,56] also
deal with real-time systems. Regarding special modeling concepts, [46,52] note
that VDM has explicit exception handling. Support for e.g., performance and
reliability modeling has been introduced more recently.

In Z, (De-)Composition is achieved through “schemas” [5,12] or by means of
“promotion” [5]. [5] notes that the schema calculus is not monotonic with respect
to refinement. Also taking [32] into account, we assess composition as medium.
Regarding refinement, [5] notes that “spurious traces, not corresponding to real
world behaviour, can be generated.” Refinement cannot completely go down to
the code level [12]. Z does not directly support concurrency [40,46,52]. Regarding
non-determinism, [12,21] state it is given but [32] denies it. Z does not support
non-determinism explicitly, but e.g., several after-state valuations for a single
pre-state binding are possible (cf. [48]). Expression of global system properties is
not straightforward (cf. [26]). An explicit concept of time is obviously not given
[40,46].

4.3 Project-Specific Assessment

We have furthermore tried to condense the available information into a much
simplified table that can be found in [36] for fast management decisions. Here,
we just sketch the structure of the table as follows:

– Project setting: Is the product safety-critical? How severe is time pressure?
Is the project conducted in an agile setting? Does the method allow to quickly



How to Select the Suitable Formal Method for an Industrial Application 225

start using it without prior experience – at least with initial help by experts?
Or will continued support by experts be required?

– Company: Do we deal with a big company or with a small or medium-sized
company? Can the company afford a transition phase for introducing formal
methods?

– Goal of using formal methods: Do we want to improve product quality,
or process quality? Reduce specification errors? Improve requirements defin-
itions, documentation, understanding of the design? Explore a model before
implementation? Obtain a sound foundation for maintenance and/or testing?
Meet safety requirements?

5 Conclusion

The main contribution of this work is to consolidate and further develop a system
of criteria for assessing particular formal methods especially with respect to their
potential usefulness in industrial projects.

Most of the criteria were assembled from a structured literature review, sup-
plemented by our own experience, whereby we tried to put a special focus on
sources close to industry. We came up with five categories into which to sort the
criteria, which focus on different aspects to enable more focused assessments.
Thereby also a certain amount of redundancy was retained so as to enable assess-
ments based on one or two categories of interest only. We exemplarily evaluated
the “ABZ” methods on the stipulated criteria.

We hope that our work will contribute to better acceptance of formal methods
in industry, as practitioners and managers should now find it easier to assess the
possible impacts of introducing such methods in real-life projects and to select
the best suitable methods for their needs.

References

1. Abdunabi, R., Sun, W., Ray, I.: Enforcing spatio-temporal access control in mobile
applications. Computing 96(4), 313–353 (2014)

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

3. Abrial, J.R.: Modeling in Event-B System and Software Design. Cambridge Uni-
versity Press, Cambridge (2010)

4. Ardis, M.A., Chaves, J.A., Jagadeesan, L.J., Mataga, P., Puchol, C., Staskauskas,
M.G., Von Olnhausen, J.: A framework for evaluating specification methods for
reactive systems. IEEE Trans. Softw. Eng. 22(6), 378–389 (1996)

5. Banach, R.: Model based refinement and the tools of tomorrow. In: Börger, E.,
Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 42–56.
Springer, Heidelberg (2008)

6. Banach, R., Zhu, H., Su, W., Huang, R.: Formalising the continuous/discrete mod-
eling step. In: Proceedings Refine 2011. EPTCS, vol. 55, pp. 121–138 (2011)

7. Banach, R., Zhu, H., Su, W., Wu, X.: A continuous ASM modelling approach to
pacemaker sensing. ACM Trans. Softw. Eng. Methodol. 24(1), 2 (2014)



226 F. Kossak and A. Mashkoor

8. Barjaktarovic, M.: The state-of-the-art in formal methods. Technical report/Wilkes
University and WetStone Technologies (1998). http://www.cs.utexas.edu/users/
csed/formal-methods/docs/StateFM.pdf

9. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal methods for service composi-
tion. Ann. Math. Comput. Teleinformatics 1(5), 1–10 (2007)

10. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Berlin (2003)

11. Boström, P., Degerlund, F., Sere, K., Waldén, M.: Derivation of concurrent pro-
grams by stepwise scheduling of Event-B models. Formal Aspects Comput. 26(2),
281–303 (2014)

12. Bowen, J.P.: Z: a formal specification notation. In: Frappier, M., Habrias, H.
(eds.) Software Specification Methods: An Overview Using a Case Study, pp. 3–19.
Springer, London (2001)

13. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. Computer
28(4), 56–63 (1995)

14. Brunel, J., Rioux, L., Paul, S., Faucogney, A., Vallée, F.: Formal safety and security
assessment of an avionic architecture with Alloy. In: Third International Workshop
on Engineering Safety and Security Systems (ESSS 2014), pp. 8–19 (2014)

15. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

16. Cochran, D., Kiniry, J.R.: Formal model-based validation for tally systems. In:
Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp.
41–60. Springer, Heidelberg (2013)

17. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

18. Dondossola, G.: Formal methods in the development of safety critical knowledge-
based components. In: Proceedings of the KR 1998 European Workshop on Vali-
dation and Verification of Knowledge-Based Systems, pp. 232–237 (1998)

19. Dwivedi, A.K., Rath, S.K.: Model to specify real time system using Z and Alloy
languages: a comparative approach. In: International Conference on Software Engi-
neering and Mobile Application Modelling and Development (ICSEMA 2012), pp.
1–6 (2012)

20. Ferrarotti, F., Schewe, K., Tec, L., Wang, Q.: A new thesis concerning synchronised
parallel computing - simplified parallel ASM thesis. CoRR abs/1504.06203 (2015)

21. Frappier, M., Habrias, H. (eds.): Software Specification Methods. ISTE, London
(2006)

22. Frias, M.F., Pombo, C.G.L., Aguirre, N.M.: An equational calculus for alloy. In:
Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp.
162–175. Springer, Heidelberg (2004)

23. Gannon, J.D., Zelkowitz, M.V., Purtilo, J.M.: Software Specification: A Compari-
son of Formal Methods. Greenwood Publishing, Westpoint (1994)

24. Georg, G., Bieman, J., France, R.B.: Using Alloy and UML/OCL to specify run-
time configuration management: a case study. In: Workshop of the pUML-Group
Held Together with the UML 2001 on Practical UML-Based Rigorous Development
Methods - Countering or Integrating the eXtremists, pp. 128–141, GI (2001)

25. Ghezzi, C., Mandrioli, D., Morzenti, A.: TRIO: a logic language for executable
specifications of real-time systems. J. Syst. Softw. 12(2), 107–123 (1990)

26. Haughton, H.P.: Using Z to model and analyse safety and liveness properties of
communication protocols. Inf. Softw. Technol. 33(8), 575–580 (1991)

http://www.cs.utexas.edu/users/csed/formal-methods/docs/StateFM.pdf
http://www.cs.utexas.edu/users/csed/formal-methods/docs/StateFM.pdf


How to Select the Suitable Formal Method for an Industrial Application 227

27. Hoang, T.S., Abrial, J.-R.: Event-B decomposition for parallel programs. In: Frap-
pier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS,
vol. 5977, pp. 319–333. Springer, Heidelberg (2010)

28. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2004)

29. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

30. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
Inc., Upper Saddle River (1990)

31. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol.
5238, pp. 294–308. Springer, Heidelberg (2008)

32. Kaur, A., Gulati, S., Singh, S.: Analysis of three formal methods - Z, B and VDM.
Int. J. Eng. Res. Technol. (IJERT) 1(4), 1–4 (2012)

33. Knight, J.C., DeJong, C.L., Gibble, M.S., Nakano, L.G.: Why are formal methods
not used more widely? In: The Fourth NASA Langley Formal Methods Workshop
(LFM 1997) (1997)

34. Kossak, F.: Landing gear system: an ASM-based solution for the ABZ case study.
In: Boniol, F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS,
vol. 433, pp. 142–147. Springer, Heidelberg (2014)

35. Kossak, F., Illibauer, C., Geist, V., Kubovy, J., Natschläger, C., Ziebermayr, T.,
Kopetzky, T., Freudenthaler, B., Schewe, K.D.: A Rigorous Semantics for BPMN
2.0 Process Diagrams. Springer, Heidelberg (2015)

36. Kossak, F., Mashkoor, A.: How to Evaluate the Suitability of a Formal Method
for Industrial Deployment? A Survey. Technical report SCCH-TR-1603, Software
Competence Center Hagenberg GmbH, Hagenberg, Austria (2016). http://www.
scch.at/en/rse-news/fm comparison

37. Kossak, F., Mashkoor, A., Geist, V., Illibauer, C.: Improving the understandability
of formal specifications: an experience report. In: Salinesi, C., van de Weerd, I.
(eds.) REFSQ 2014. LNCS, vol. 8396, pp. 184–199. Springer, Heidelberg (2014)

38. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

39. Larsen, P.G., Wolff, S.: Development process of distributed embedded systems
using VDM, Overture – Open-source Tools for Formal Modelling TR-2010-02
(2010)

40. Liu, X., Yand, H., Zedan, H.: Formal methods for the re-engineering of computing
systems. In: Proceedings of the 21st Computer Software and Applications Confer-
ence (COMPSAC 1997), pp. 409–414 (1997)

41. Maoz, S., Ringert, J.O., Rumpe, B.: Semantically configurable consistency analysis
for class and object diagrams. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS
2011. LNCS, vol. 6981, pp. 153–167. Springer, Heidelberg (2011)

42. Mashkoor, A., Biro, M.: Towards the trustworthy development of active medical
devices: a hemodialysis case study. IEEE Embed. Syst. Lett. 8(1), 14–17 (2016)

43. Mashkoor, A., Hasan, O., Beer, W.: Using probabilistic analysis for the certification
of machine control systems. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.,
Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 305–320. Springer,
Heidelberg (2013)

44. Mashkoor, A., Jacquot, J.P.: Stepwise validation of formal specifications. In: 18th
Asia-Pacific Software Engineering Conference (APSEC 2011), pp. 57–64. IEEE,
Ho Chi Minh City, Vietnam (2011)

http://www.scch.at/en/rse-news/fm_comparison
http://www.scch.at/en/rse-news/fm_comparison


228 F. Kossak and A. Mashkoor

45. Mashkoor, A., Jacquot, J.P.: Utilizing Event-B for domain engineering: a critical
analysis. Requirements Eng. 16(3), 191–207 (2011)

46. McGibbon, T.: An analysis of two formal methods: VDM and Z. Technical report,
DoD Data and Analysis Center for Software (DACS) (1997). https://www.csiac.
org/sites/default/files/An%20Analysis%20of%20Two%20Formal%20Methods%
20-%20VDM%20and%20Z%20-%20SOAR.pdf

47. Merz, S.: The specification language TLA+. In: Bjørner, D., Henson, M. (eds.)
Logics of Specification Languages. Monographs in Theoretical Computer Science,
pp. 401–451. Springer, Heidelberg (2008)

48. Mirian-HosseinAbadi, S.H., Mousavi, M.R.: Making nondeterminism explicit in
Z. In: Proceedings of the Iranian Computer Society Annual Conference (CSICC
2002), Tehran, Iran (2002)

49. Mukherjee, P., Bousquet, F., Delabre, J., Paynter, S., Larsen, P.G.: Exploring
timing properties using VDM++ on an industrial application. In: Proceedings of
the Second VDM Workshop (2000)

50. Newcombe, C.: Why Amazon chose TLA+. In: Ait Ameur, Y., Schewe, K.-D. (eds.)
ABZ 2014. LNCS, vol. 8477, pp. 25–39. Springer, Heidelberg (2014)

51. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

52. Pandey, S., Batra, M.: Formal methods in requirements phase of SDLC. Int. J.
Comput. Appl. 70(13), 7–14 (2013)

53. Rainer-Harbach, M.: Methods and tools for the formal verification of soft-
ware. An analysis and comparison. Diplomarbeit, Fakultät für Informatik,
Technische Universität Wien. https://www.ads.tuwien.ac.at/publications/bib/
pdf/rainer-harbach 11.pdf

54. Sifakis, J.: Formal methods and their evaluation. Position Paper Presented at FEM-
SYS in Munich (1997). http://www-verimag.imag.fr/∼sifakis/RECH/FEMSYS/
paper.ps

55. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall Inc., Upper Sad-
dle River (1989)

56. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and validating distributed embed-
ded real-time systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)

57. Wang, T., Ji, D.: Active attacking multicast key management protocol using Alloy.
In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 164–177. Springer, Heidelberg
(2012)

58. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. 41(4), 19 (2009)

59. Zave, P.: A practical comparison of Alloy and Spin. Formal Aspects Comput.
2015(2), 239–253 (2015)

https://www.csiac.org/sites/default/files/An%20Analysis%20of%20Two%20Formal%20Methods%20-%20VDM%20and%20Z%20-%20SOAR.pdf
https://www.csiac.org/sites/default/files/An%20Analysis%20of%20Two%20Formal%20Methods%20-%20VDM%20and%20Z%20-%20SOAR.pdf
https://www.csiac.org/sites/default/files/An%20Analysis%20of%20Two%20Formal%20Methods%20-%20VDM%20and%20Z%20-%20SOAR.pdf
https://www.ads.tuwien.ac.at/publications/bib/pdf/rainer-harbach_11.pdf
https://www.ads.tuwien.ac.at/publications/bib/pdf/rainer-harbach_11.pdf
http://www-verimag.imag.fr/~sifakis/RECH/FEMSYS/paper.ps
http://www-verimag.imag.fr/~sifakis/RECH/FEMSYS/paper.ps

	How to Select the Suitable Formal Method for an Industrial Application: A Survey
	1 Introduction
	2 Approach and Literature Reviewed
	2.1 The Research Approach
	2.2 Literature Reviewed

	3 Criteria for Evaluating Formal Methods
	3.1 Overview
	3.2 Modeling Criteria
	3.3 Supported Development Phases
	3.4 Technical Criteria
	3.5 Human/Social Criteria
	3.6 Industrial Applicability

	4 Comparison of Methods
	4.1 Comparison
	4.2 Justification
	4.3 Project-Specific Assessment

	5 Conclusion
	References


