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Abstract. In this paper, we propose a formal framework enhancing
the termination detection property of distributed algorithms and reusing
their specifications as well as their proofs. By relying on refinement and
composition, we show that an algorithm specified with local termination
detection, can be reused in order to compute the same algorithm with
global termination detection. The main idea relies upon the develop-
ment of distributed algorithms following a top/down approach and the
integration of additional computation steps developed in a pre-defined
module. This module is specified in a generic and scalable way in order
to be composed with particular developments. Once the composition link
is proven, the global termination emerges automatically.
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1 Introduction

1.1 Overview

It is widely agreed that implementing distributed systems poses major problems
and remains a real challenge. Distributed termination detection is one of the
most important problems in distributed computing [11]. It is closely related to
many other problems such as determining a causally consistent global state [10],
detecting deadlocks [12], etc. Contrary to sequential algorithms, the termina-
tion of distributed computing is neither simple nor clear: what does termination
mean in distributed algorithms? Can processors be aware of global termination?
Is it essential for a processor to distinguish between its termination and the ter-
mination of the entire computation? Different termination detection modes have
been defined [8] to relate the local state of processors with the global state of
the network. The two modes we are interested in are the following: Local Ter-
mination Detection (LTD), i.e., each processor is able to determine only its own
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termination condition; and Global Termination Detection (GTD), i.e., at least
one processor knows when the entire computation has finished on the network.
P. Castéran et al. [7] have proved that it is quite interesting for a processor to
detect that the algorithm has globally terminated. However, if we don’t have a
global perspective and we are only interested in local interactions, it will not be
evident to know if the distributed algorithm has finished.

In this paper, we propose a general framework, based on Event-B, for trans-
forming correct algorithms with LTD into algorithms with GTD. We rely on
the high level abstraction of local computations [20], and we focus on formal
proofs of termination, using a refinement-based composition. The prime objec-
tive is to provide a proof-based development which can be reused for building
and ensuring global termination. Another objective is to show the effectiveness
of combining a correct-by-construction [19] approach with a compositional rea-
soning for preserving properties and reusing proofs.

1.2 Related Works

Formal specifications are often beneficial, and provide a real help for expressing
correctness with respect to safety properties in the study of distributed comput-
ing. This paper is not an exception in this respect. Formal approaches have been
proposed to deal with the correctness of such algorithms in different contexts:
solving gathered problems [13], revisiting snapshot algorithms [3], etc. Numerous
studies related to the termination detection problem have been done. However,
no clear idea, about the way which would be better for transforming distributed
algorithms from LTD to GTD mode and reusing their proofs, has been come out
from these works. To the best of our knowledge, no reusable formal approach
has been published yet, clarifying how far it can save efforts of designers and
how far it can be reused in particular developments.

Related works have been proposed to suggest solutions for algorithms detect-
ing only the LTD mode. Two major algorithms are used to cope with this prob-
lem and build the GTD mode: the Dijkstra-Scholten algorithm [14] and the
algorithm by Szymanski, Shi and Prywes (the SSP algorithm for short) [22]. E.
Godard et al. [16] proposed to compose two graph relabelling systems, one encod-
ing a given algorithm and another encoding a termination detection algorithm
such as the Dijkstra-Scholten algorithm or the SSP algorithm. They proved that
the resulting relabelling system transforms the first algorithm from LTD mode
to GTD mode. However, this transformation modifies the algorithm and makes
the computation steps of the nodes more complex.

V. Filou et al. [15] proposed to compose formal specifications of distributed
algorithms with formal specifications of the Dijkstra-Scholten algorithm: let A be
a distributed algorithm specified with LTD mode. Based on the Event-B method,
authors proved that a node being in a terminal state of A can execute the Dijkstra
algorithm in order to detect the instant where every other node has computed its
final value. The specification as well as the proofs of the first algorithm (algorithm
A) are reused when detecting the global termination. However, a composition
of the Dijkstra algorithm cannot be proposed as a general approach for dealing



200 M. Boussabbeh et al.

with algorithms encoded with LTD mode: this algorithm is based on the election
process. Several conditions were found to allow election algorithms: P. Castéran
et al. [7] and J. Chalopin et al. [9] characterized families of graphs that admit
this algorithm.

1.3 Contribution

In a previous work [5], we proposed a proof based development for transforming
a spanning tree algorithm with LTD mode into the same algorithm with GTD
mode. We relied on Event-B refinement and we specified a combination of the
SSP and the spanning tree algorithm following a top down approach. In this
paper, we generalize our approach and we propose a formal framework enhancing
the termination detection property of distributed algorithms without altering
their specifications. Our framework is based on formal specifications and proofs of
termination, encapsulated in a separate module according to the SSP algorithm.
This module is developed in a generic and scalable way in order to be composed
with particular developments.

Let A be a distributed algorithm where processors do not detect the global
termination of A. Our main goal is to compose A with SSP and produce a
correct algorithm which (i) reuses specifications as well as proofs associated to
the algorithm A and (ii) enables processors to detect the global termination of
the computation. We investigate necessary requirements for such a composition
and give users guidelines for reusing the SSP algorithm in several developments
with correctness.

The refinement of models is the key element, allowing preservation of cor-
rectness proofs. Moreover, using pre-defined modules, developed in a high level
abstraction, makes our approach reusable. Based on the correct-by-construction
approach and on the modularization [18] technique, we achieve our aim and show,
with examples, what users gain with the proposed approach. In this paper, we
illustrate our approach by the 3-colouring of a ring specified with the LC1 syn-
chronisation. The main objective of this simple example is to demonstrate the
use of our work during models development. Our approach is also applied to com-
plex case studies such as the Mazurkiewicz [21] algorithm, specified with the LC2
synchronization. The illustration of this algorithm gives us new results which do
not appear in this paper, but they will be presented in a future publication.

1.4 Organization of the Paper

The paper is organized as follows: Sect. 2 recalls basic concepts of local computa-
tions and Event-B method. Section 3 presents the SSP algorithm and introduces
our approach where we describe the composition process of SSP with Event-B
developments. Section 4 details formal specifications and proofs of this composi-
tion. Section 5 illustrates our approach by an example. Finally, a short discussion,
conclusion and ongoing work round the paper up.
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2 Preliminaries

2.1 Local Computations Model

In this section, we illustrate, in an intuitive way, the notions of local computa-
tions, and particularly those of graph relabelling systems by showing how some
algorithms on networks of processors may be encoded within this framework [20].
As usual, such a network is represented by a graph whose vertices (nodes) stand
for processors and edges for (bidirectional) links between processors. Each vertex
represents an entity that is capable of performing computation steps, sending
and receiving messages. We consider anonymous networks with asynchronous
message passing, i.e., each computation may take an unpredictable, but finite,
amount of time. At every time, each vertex and each edge are in some partic-
ular state which will be encoded by a vertex or an edge label. According to its
own state and to the states of its neighbours, each vertex may decide to do an
elementary computation step. After this step, the state of this vertex, its neigh-
bours and the corresponding edges may be changed according to some specific
computation rules. Moreover, it is supposed that once a node reaches a final
state it remains in such a state until the end of the algorithm.

The graph relabelling systems meet the following requirements: (i): they do
not change the underlying graph, but they change only the labelling of their
components (edges and/or vertices). The final labelling is the result. (ii) they
are local, that is, each rewriting changes only a connected subgraph of a fixed
size in the underlying graph. A sub-graph contains a subset of the vertices and
edges in a graph G. (iii) they are locally generated, that is, the applicability
condition of the rewriting depends only on the local context of the relabelled
sub-graph.

The distributed aspect comes from the fact that several rewriting steps can
be performed simultaneously on “far enough” subgraphs, giving the same result
as a sequential realization of them, in any order. A large family of classical
distributed algorithms encoded by graph rewriting systems is given in [20].

2.2 Event-B

The Event-B [1] modelling language defines mathematical structures as contexts
and formal model of the system as machines. The context is defined by abstract
sets, constants, and axioms which describe properties of constants. An Event-B
machine describes a reactive system, using a set of invariant properties and a
finite list of events modifying state variables. Recently the Event B language and
its tool support Rodin [2] have been extended with the possibility to define a
module interface i.e., logical unit containing callable operations. The important
characteristic of these modules is that they can be developed separately and,
when needed, incorporated and instantiated in the main system development.
According to A. Iliasov et al. [18], a module interface is a separate Event-B
component specifying a set of services. It encapsulates external variables, con-
stants, invariants, and a collection of operations characterised by their pre-/post-
conditions.
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When a module interface M is imported into an Event-B machine (via the
clause USES ), an instance is created. Several instances can be created for the
same module. To avoid name clashes, each instance is added with a prefix pre
chosen by the user. Consequently, all the names imported from the module
appear with the corresponding prefix. The importing machine can invoke the
operations by means of events and read the external variables of M. As pre-
sented below, an interface operation Op is characterized by its pre- and post-
conditions [18]. The pre-conditions contain a list of predicates applied on para-
meters par and on external variables v to define the states when an operation
may be invoked. The primed variables v′ and res′, defined in the operation
post-condition (post), stand for the final variable values after the operation exe-
cution. If some primed variables are not mentioned, the corresponding variables
are unchanged by the operation.

The execution of a called operation is abstractly modelled by an Event-B
event, named calling Op. Internal parameters (in par) are evaluated and passed
to the operation Op. In addition to calculating a result (result), an operation call
can also update the external variables (v). A set of proof obligations are gener-
ated to guarantee that the state of the module is protected by the operations.

OPERATION Op =̂
any par
pre pre(par, v)
return result
post post(par, v′, res′)
end

�
Event calling Op =̂
any in par
where guard(in par, pre v)
then resultOp := pre Op(in par)
end

3 SSP Composition with Correct-by-Construction
Developments

3.1 The SSP Algorithm

We consider a distributed algorithm which terminates when all nodes reach their
local termination conditions. The SSP algorithm [22] detects an instant in which
the entire computation is achieved in the network. Let G be a graph. Each node
n0 is associated with a predicate P (n0) and an integer a(n0). P (n0) depends on
the local termination of n0. Once a node n0 detects its local termination, the
value of P (n0) can be transformed from FALSE to TRUE. a(n0) is introduced
to specify the fact that all nodes being in a distance equal to a(n0) have locally
terminated. Initially P (n0) is FALSE and a(n0) is equal to −1. Transformations
of the value of a(n0) are defined by the following rules.

– if P (n0) = FALSE Then a(n0) = − 1,
– if P (n0) = TRUE Then a(n0) = 1 + min{a(nk)|k ≥ 0 and k ≤ d}.

Let n0 be a node and let {n1, ..., nd} be the set of nodes adjacent to n0; d stands
for the number of edges the node n0 has to other nodes, called the degree of n0.
The new value of a(n0) depends on values associated with n0 and its neighbours.
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Fig. 1. SSP composition with Event-B development

3.2 Proposed Approach

We summarize in this section the idea of the SSP composition with a distrib-
uted algorithm expressed in Event-B. Our aim is to prove that for any algorithm
satisfying LTD, expressed in event-B and proved independently, the algorithm
obtained by the composition with SSP satisfies the same specification with GTD.
Note that an Event-B development is based on a correct-by-construction app-
roach [19] which supports an incremental process controlled by the refinement
of models. In previous works [15,23], authors proposed Event-B patterns con-
taining proof-based guidelines and describing how a distributed algorithm can
be correctly designed: the development can start with a very abstract model,
then, by successive refinements, we obtain a concrete one that expresses the
local behaviour (state) of processors in the network. As presented in Fig. 1, we
consider a problem, which can be formalized through a distributed algorithm
with LTD, developed by a chain of Event-B machines. We suppose that the size
of the graph is known by all the nodes. Let A be the distributed algorithm. The
formalization process is based on the refinement of models, using the RODIN [2]
platform.

– The chain of refinement Machine0...Machinen expresses the Problem in an
incremental development.

– The Machinen defines local interactions between nodes according to the com-
putation process of the algorithm A.

– The refinement of Machinen by Machinen+1 produces a set of events corre-
sponding to some additional computation steps to detect the global termina-
tion of the algorithm A. These computations are specified according to the
SSP rules.

– The SSP Interface is a predefined logical entity that we have developed and
proved independently. More precisely, it is an Event-B Interface containing
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callable operations, corresponding to the execution process of the SSP rules.
Moreover, it contains general proofs of termination detection for local com-
putations.

– The Machinen+1 uses the SSP Interface, means that it can have access to all
the proofs discharged in the SSP Interfce and execute its operations.

– The Graph is an Event-B context that we have developed to specify basic
properties of a network which represents the application field of distributed
algorithms. Basically, a network is defined as a connected, simple and undi-
rected graph. The Graph’ context extends Graph, means that it can use all
the specifications defined in the Graph context and introduce other static
properties, describing the particularity of the algorithm A.

– A translation of Event-B specifications into a java code can be generated
by relying on B2Visidia tool [24]. Thus, a solution can be mapped from the
Machinen+1 into ViSiDiA [4], i.e., ViSiDiA is a platform for simulating, visu-
alizing and testing local computations. Note that this item is not studied in
this paper.

4 Formal Descriptions

4.1 Network Specification: The Graph Context

The Graph context describes basic properties of the network on which distributed
algorithms are running. Formally, a network can be straightforwardly modelled
as a connected, undirected and simple graph where nodes denote processors and
edges denote point-to-point communication links. An undirected graph means
that there is no distinction between the two nodes associated with each edge
(see axm4). A graph is simple if it has at most one edge between any two nodes
(see axm2 and axm3) and no edge starts and ends at the same node (see axm5).
A graph (directed or not) is connected if, for each pair of nodes, a path joining
these two nodes exists(see axm6). According to D. Cansell et al. [6], a connected
graph g over a set of finite nodes ND (see axm1) can be presented as follows:

axm1 : finite(ND)
axm2 : g ⊆ ND × ND
axm3 : dom(g) = ND

axm4 : g = g−1

axm5 : ND � id ∩ g = ∅

axm6 : ∀s · s ⊆ ND ∧ s �= ∅ ∧ g[s] ⊆ s ⇒ ND ⊆ s

4.2 The SSP Interface

The SSP Interface is an Event-B component, specifying a set of additional com-
putation steps that can be associated to the nodes in order to build a global
termination detection. We assume that the local termination of the algorithm
that we want to compose is stable, i.e., a terminated processor will not again
be woken up in the course of further computation. We mean by termination,
the termination of the algorithm that we want to compose. This component
encapsulates formal specifications of the SSP algorithm into callable operations,
modifying a set of external variables. These variables are defined as follows:
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Interface SSP Interface
SEES Graph
Variables
Local TD
counter
Global TD
...
OPERATION Update Termination(...)
...
OPERATION To Global Termination(...)
...
OPERATION Global Termination(...)
...
OPERATION Diffusion(...)

– Local TD characterizes the local termination detection of a node:
Local TD ∈ ND → BOOL. Let n be a node. Local TD(n) = True means that n
has computed its final value. Initially, there is no node detecting the local
termination.

– counter leads a node to detect the global termination:
counter ∈ ND → P(N × Z). If n is a node, (i �→ j) ∈ counter(n) means that at the
computation step i, all the nodes, being in a j distance from n, detected locally
the termination. Initially counter(n) = {0 �→ −1}. After i computation steps,
counter(n) = {0 �→ −1, 1 �→ 0, ..., i �→ j}. We store the entire history of counters
in order to investigate invariants of the model and simplify proofs during
the development. In this paper, the last counter of n means the value of j

calculated at the last computation step i. Formally, it can be specified as
follows: last counter(n)= max(ran(counter(n))).

– Global TD characterizes the global termination state of a node:
Global TD ∈ ND → BOOL. Global TD(n) = True means that n is aware of the ter-
mination of the algorithm. Initially, there is no node detecting the global
termination.

UpdateTermination Operation. A node being in a terminal state, updates
its Local TD and acts on its counter. Let counteri(n) be the last counter computed
by a node n. The new value of the counter of n is defined at the computation step
(i+ 1). This computation is specified by the Update Termination operation. The
pre-conditions (Pre) stand for the requirements of the operation execution. The
terminal state of a node depends naturally on the algorithm that we want to
compose. Thus the condition of the updating action is defined while calling this
operation (see the example in Sect. 5). Note that the execution of this operation
should be blocked once a node updates its Local TD from FALSE to TRUE. This
can be achieved by strengthening its pre-conditions by (Local TD(n) = FALSE) and
(counteri(n) = −1). The primed variables Local TD′(n) and counter′(n) defined in the
post-conditions stand for the new values of Local TD(n) and counter(n) after the
operation execution. In our case, we are interested in updating external variables
without returning particular results.
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pre-conditions: Local TD(n) = FALSE and counteri(n) = −1

post-conditions: Local TD′(n) = TRUE and counter′
i+1(n) = 0

OPERATION Update Termination =̂
any n, i
pre pre1 : Local TD(n) = FALSE

pre2 : i = max(dom(counter(n)))
pre3 : max(ran(counter(n))) = −1

return result1
post post1 : Local TD′(n) = TRUE

post2 : counter′(n) = counter(n) ∪ {(i + 1) �→ 0}
post3 : result1′ = TRUE

ToGlobalTermination Operation. Once a node n updates its Local TD state,
it computes a new value of the counter. Let i be the last computation step in
which n has modified its counter. The new value of the counter of n is defined at
the computation step (i + 1), and depends on the last counter computed by the
neighbours of n. Let Ng(n) be the set of nodes adjacent to n. Ng(n) = {ng1, ..., ngd}.
Let {counterj(ng1), ..., counterk(ngd)} be the set of the last counter computed by each
node in Ng(n). Let C be the set of the last counter computed by each node in
(Ng(n)∪{n}). C = {counterj(ng1), ..., counterk(ngd), counteri(n)}. counteri+1(n) = 1+min(C).
This computation step is specified by the operation To Global Termination. The
execution of this operation should be blocked if the counter of the node n reaches
the size of the graph (S ), or if one of the nodes in (Ng(n) ∪n) detects the global
termination.
pre-conditions: Local TD(n) = TRUE and counteri(n) < S

n has no neighbour detecting the global termination
post-conditions: counter′

i+1(n) = 1 + min(C)

OPERATION To Global Termination =̂
any n, i,Ng,C
pre pre1 : Local TD(n) = TRUE

pre2 : max(ran(counter(n))) < card(ND)
pre3 : i = max(dom(counter(n)))
pre4 : Ng = {vi · vi �→ n ∈ g|vi}
pre5 : C = {a1, n1 · n1 ∈ Ng ∪ {n} ∧ a1 = max(ran(counter(n1)))|a1}
pre6 : ∀vi · vi ∈ Ng ∪ {n} ⇒ Global TD(vi) = FALSE

return result2
post post1 : counter′(n) = counter(n) ∪ {(i + 1) �→ (1 + min(C)}

post2 : result2′ = TRUE

GlobalTermination Operation. Within a finite number of steps, the counter
of a node n can reach the size of the graph S, i.e., all the nodes being in a
distance ≤ S from n have locally terminated. Thus, the node n can detect the
fact that the entire computation is achieved in the network. Hence, it can update
its Global TD state and diffuse this information to its neighbours to make them
aware of this global termination. The updating action of Global TD state is
specified by the operation Global Termination. The execution of this operation
is blocked once the node updates its Global TD from FALSE to TRUE. This
can be achieved by strengthening its pre-condition by (Global TD(n) = FALSE).
pre-conditions: counteri(n) = S and Global TD(n) = FALSE

post-conditions: Global TD′(n) = TRUE
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OPERATION Global Termination =̂
any n
pre pre1 : max(ran(counter(n))) = card(ND)

pre2 : Global TD(n) = FALSE
return result3
post post1 : Global TD′(n) = TRUE

post2 : result3′ = TRUE

Diffusion Operation. Once a node n is aware of the termination of the entire
computation in the network, it can transmit this information to its neighbours by
updating the value of their Global TD states. Each neighbour can in turn trans-
mit the same information. This computation step is specified by the operation
Diffusion. The execution of this operation is blocked when all the neighbours of
the node n detect the global termination. This can be achieved by strengthening
its pre-condition via a predicate, showing that n has at least one neighbour that
is not detecting the global termination.
pre-conditions: Global TD(n) = TRUE

n has at least one neighbour v where Global TD(v) = FALSE

post-conditions: n updates the Global TD′ values of its neighbours.

OPERATION Diffusion =̂
any n,Ng
pre pre1 : Global TD(n) = TRUE

pre2 : Ng = {v · v ∈ g[{n}]|v}
pre3 : ∃v · v ∈ Ng ∧ Global TD(v) = FALSE

return result4
post post1 : Global TD′ = Global TD �− {v · v ∈ g[{n}]|v �→ TRUE}

post2 : result4′ = TRUE

4.3 Formal Proofs

The intention behind our approach is to compose distributed algorithms with
the SSP specifications in order to build the global termination detection. Such
a composition is achieved via calling the previous operations. In this section,
we prove that the execution of these operations ensures the correctness of the
resulting algorithm. More precisely, we investigate the invariants of the model
and prove the following properties.

(P1): the resulting algorithm preserves the LTD property of the initial algo-
rithm (Theorem 1). This property can be easily proved. In fact, we can prove
that the counter computed by a node n increases during the different compu-
tation steps (Invariant 1). Thus, once a node computes a positive counter, the
new value of this counter remains positive.

Invariant 1. ∀n, i, a, i′, a′ · i′ < i ∧ (i �→ a) ∈ counter(n) ∧ i′ �→ a′ ∈
counter(n) ⇒ a′ < a

Invariant 2. ∀n · Global TD(n) = TRUE ⇒ (max(ran(counter(n))) ≥ 0)
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Moreover, we can prove that the last counter ((max(ran(counter(n)))), computed
by a node n detecting the global termination, is a positive value (Invariant 2).
Furthermore, once a node detects locally the termination, it sets the new value of
its counter, through the execution of the Update Termination operation, to zero.
Thus, we can prove that a node n detects the local termination (Local TD(n) =

TRUE) if and only if the value of the last counter calculated by this node is
positive (Invariant 3).

Invariant 3. ∀n · Local TD(n) = TRUE ⇔ (max(ran(counter(n))) ≥ 0)

Theorem 1. ∀n · Global TD(n) = TRUE ⇒ Local TD(n) = TRUE

(P2): If a node n updates its global termination state (Global TD(n) = True),
every node v on the network has locally terminated (Theorem 2): once a node
updates its Local TD state, it increments the value of its counter by executing
the operation To Global Termination. The new value of the counter depends
on the values associated to the neighbours. We can prove that the difference
between the maximum and the minimum of the last counter computed by two
neighbours does not exceed 1 (Invariant 4).

Invariant 4. ∀n, v, a, b · v ∈ g[{n}] ∧ a = max(ran(counter(n))) ∧ b =
max(ran(counter(v))) ⇒ (max({a, b}) − min({a, b}) ≤ 1)

Let chains be the set of possible chains in the graph, i.e., connected edges, and
Nodes(ch) be the set of the nodes concerned in a chain ch.

axm7 : chains = {x1, x2, t, nodes · x1 ∈ ND ∧ x2 ∈ ND ∧ x1 �= x2 ∧ nodes ⊆ ND
∧{x1, x2} ⊆ nodes ∧ t ∈ nodes \ {x2} �� nodes \ {x1} ∧ t ⊆ g ∧ (t �= t−1)|t}

axm8 : Nodes ∈ chains → P(ND)
axm9 : ∀ch · ch ∈ chains ⇒ Nodes(ch) = ran(ch) ∪ dom(ch)

Let E = {n · n ∈ Nodes(ch)|max(ran(counter(n)))} be the set of the last counter
computed by Nodes(ch), and card(ch) be the size of the chain ch. Note (Max −
Min) is the difference between the maximum and the minimum of E. We prove,
by induction on the size of ch, that (Max − Min ≤ card(ch) − 1) (Invariant 5).
Furthermore, the last counter, computed by the first node detecting the global
termination, reaches the size of the graph S (S = card(ND)). Thus, the maximum
of E is equal to S. Moreover, card(ch) ≤ S. Hence, Max − Min ≤ S. Therefore,
Min ≥ 0. Consequently, we prove that if a node detects the global termination,
all the other nodes have locally terminated (Theorem 2).

Invariant 5. ∀ch,N · ch ∈ chains ∧ N = Nodes(ch) ⇒ max({n · n ∈
N |max(ran(counter(n)))}) − min({n · n ∈ N |max(ran(counter(n)))}) ≤
card(N) − 1

Theorem 2. (∀n · Global TD(n) = TRUE) ⇒ (∀v · v ∈ ND⇒Local TD(v) =
TRUE)
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Fig. 2. 3-Colouring of a ring

5 Example: 3-Colouring of a Ring

Consider a ring with at least 3 nodes. The 3-colouring problem consists in assign-
ing a color to each node from a set of three ones. Two neighbours have different
colors. Let {x, y, z} be the set of colors. The corresponding relabelling system
is defined by considering the rule R (Fig. 2). A new context should be added to
extend the Graph context in order to specify formal properties of a ring. Building
a correct model may start with a very abstract machine and then, by successive
refinements, we obtain a concrete one in which we specify the relabelling rule.
We refine the last level by introducing a new machine in which we clarify the
local termination of the nodes, and we use the SSP Interface in order to build
a global termination. According to the computation steps of this algorithm, we
affirm that a node n reaches its final state when n and its neighbours get differ-
ent colors. Hence, the following invariant should be added: assume that Col is a
function introduced to characterize the color of the nodes.

Invariant 6. ∀s · s ∈ ND ⇒ (Col(s) /∈ {Col(g(s))} ⇔ SSP Terminaison(s) =
TRUE)

The calling of the previous operations is similar to the previous example, except
the execution of the Update Terminaton operation which should be strengthened
by a new guard (grd4), specifying when a node can update its termination state.

EVENT Calling Op1
anyn, i
where
grd1 : SSP Local TD(n) = FALSE
grd2 : i = max(dom(SSP counter(n)))
grd3 : max(ran(SSP counter(n))) = −1
grd4 : (Col(n) /∈ {Col(g(n))}
then act1 : res OP1 := SSP Update Termination(n �→ i)

5.1 What We Gain

It seems that we have to do more work in order to compose an algorithm with
the proposed specifications: we have to develop the algorithm in a progressive
way controlled by the refinement of models. Then we add a new machine to
specify a suitable implementation of the predefined operations. But we do have
the following advantages:

– We don’t need to prove the computation steps of the SSP algorithm. This
is because we have already done this, when developing the SSP Interface.
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Table 1. Proof Statistics

Model Total Automatic Interactive

SSP Interface 91 39 43 % 52 57 %

SpTree M3 (with the SSP interface) 44 31 70 % 13 30 %

SpTree M3 (without the SSP interface) 112 36 32 % 76 68 %

3-colouring M3 (with the SSP interface) 45 36 80 % 9 20 %

3-colouring M3 (without the SSP interface) 117 41 35 % 76 65 %

Thus, we have saved efforts of users on discharging proofs (see Table 1). The
additional proof obligations, generated while introducing a new machine using
the SSP Interface, are not very complex to discharge: 70% and 80% of them
are respectively proved automatically for the two examples (the spanning
tree as well as the 3-colouring of a ring). Note that we have tested building
and proving the global termination of the two algorithms without using the
proposed SSP Interface. The new generated machines for the spanning tree
and the 3-colouring algorithm produce respectively only 32% and 35% of
proof obligations discharged automatically.

– We reuse all the proofs associated to the first algorithm (the Spanning tree and
the 3-colouring of a ring in our cases). The incremental proof-based process
of refinement provides a way to preserve the correctness of the algorithm and
to validate the integration of new requirements.

– We can reuse the proposed specifications in other case studies. The
SSP Interface is defined in a high level abstraction in order to build the global
termination detection of distributed algorithms.

6 Discussion, Conclusion and Future Work

In this paper, we have proposed a proof-based framework for composing distrib-
uted computing with the SSP algorithm in order to build a global termination
detection. The main characteristic of our approach is that it transforms algo-
rithms from LTD to GTD mode, enables reuse in development, and saves efforts
on proving distributed computing: by relying on the SSP algorithm, we speci-
fied a generic module containing formal specifications and proofs for the global
termination detection. This module can be composed with simple and complex
cases studies with different synchronizations. During the development, a list of
proof obligations is generated by the Rodin [2] platform to ensure the safety
of the development. We believe that this work has a number of benefits. In a
nutshell, we say that composing a correct-by-construction development with the
SSP algorithm enhances the termination detection property of distributed com-
puting. Moreover, specifying SSP in a pre-defined module greatly simplifies the
reuse of specifications and proofs.
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It is worth noticing that if we look carefully at what the global termination
means in distributed algorithms, we have to distinguish between the termina-
tion of the computing and the transmitting messages between processors. In this
work, the global termination, we are interested in, is to detect the instant when
all processors have computed their final values, i.e., no processor can modify its
state. We don’t detect the instant when there is no message in transit in the net-
work. Moreover, our approach might be improved if we used the diameter of the
graph instead of its size. But we made this choice for the sake of simplicity. As
a future work, it would be interesting to take into account these limitations and
study the case that local termination of processors is not stable. Moreover, added
to safety properties, we think that it would be more relevant to ensure liveness
properties [17]: when all nodes have locally terminated, the algorithm will even-
tually detect global termination. Furthermore, we aim to study and detail the
last item presented in Sect. 3.2. Thus, we can implement Java codes of the pro-
posed framework and simulate algorithms into the Visidia [4] platform. Starting
with previous studies [24], we can translate our formal specifications into Java
codes and propose a certified tool for transforming automatically distributed
algorithms from LTD to GTD.
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3. Andriamiarina, M.B., Méry, D., Singh, N.K.: Revisiting snapshot algorithms by
refinement-based techniques. Comput. Sci. Inf. Syst. 11(1), 251–270 (2014)

4. Bauderon, M., Mosbah, M.: A unified framework for designing, implementing and
visualizing distributed algorithms. Electr. Notes Theor. Comput. Sci. 72(3), 13–24
(2003). http://dx.doi.org/10.1016/S1571-0661(04)80608-X

5. Boussabbeh, M., Tounsi, M., Hadjkacem, A., Mosbah, M.: Towards a general
framework for ensuring and reusing proofs of termination detection in distributed
computing. In: 24rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2016, Heraklion Crete, Greece, 17th-19th
February 2016 (2016)
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