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Abstract. Constraint satisfaction and data validation problems can be
expressed very elegantly in state-based formal methods such as B. How-
ever, is B suited for developing larger applications and are there existing
tools that scale for these projects? In this paper, we present our experi-
ences on two real-world data validation projects from different domains
which are based on the B language and use ProB as the central valida-
tion tool. The first project is the validation of university timetables, and
the second project is the validation of railway topologies. Based on these
two projects, we present a general structure of a data validation project
in B and outline common challenges along with various solutions. We
also discuss possible evolutions of the B language to make it (even) more
suitable for such projects.
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1 Introduction

Data validation1 ensures that software operates on correct, clean data and is
typically done by checking validation rules or constraints. We have previously
argued that B [3] is a very expressive language to encode constraint satisfaction
problems [20,24], and many data validation problems can be expressed as such.
Other works have demonstrated that B is useful to express properties about
data and to validate them using ProB [17], particularly in the railway domain
[2,4–6,15,19].

In this paper we report on our experiences using B in combination with ProB
to create tools for data validation. We have used the B language to express parts
of our program’s domain logic and the rules to validate data, and embedded
these B models into running applications by executing the formal models with
ProB without relying on code generation. It would also be possible to express
these kinds of validation problems in other formal languages such as Alloy [13]
and TLA+ [14]. Based on our experiences with these languages and the cor-
responding tools, we believe that the combination of B and ProB best meets
the requirements for the data validation task. Our explicit goal is to explore

1 http://www.data-validation.fr.
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the applicability and scalability of this combination for projects of industrial
strengths.

Based on two projects, described below, we will discuss different aspects of
using B within such an application and discuss the approaches taken as well
as the limitations encountered, i.e. where we had to depart from or extend the
language to suit our needs.

Curriculum Validation is a project [24] in which we are creating an interac-
tive tool to validate timetables and curricula for various faculties and courses
at our university. Curriculum validation is related to timetabling [8–10,22,23].
Timetable validation differs in the sense that we are interested in the feasibility
of studying an entire curriculum, spanning several semesters instead of plan-
ning out time slots for classes within one semester. The central task is to detect
whether it is possible for a student to attend all classes required for a degree in
the manner described by the curriculum, by a suitable choice of alternatives. In
case a course contains feasibility conflicts, the tool provides assistance to detect
one of the potentially many sources of the conflict by computing a unsatisfiable
core of the data with respect to the validation rules; additionally we provide
support in finding alternative time slots which solve such conflicts. The largest
dataset provided by one of the participating faculties currently consists of 31
courses with 1343 classes and 1578 scheduled events in these classes.

Validation of Railway Topologies is the second project discussed in this article
and part of a collaborative research project with Thales Transportation Sys-
tems GmbH on applying formal methods for the software development process
of the Radio Block Centre (RBC). The RBC is a communication unit of the
European Train Control System (ETCS) exchanging messages with trains and
interlockings. One of our challenges in this context is to validate the so-called
engineering rules over concrete track data. The track data is a representation
of the real railway infrastructure and signalling system. Engineering rules are
implementation-related rules which result from the concrete RBC implementa-
tion. This means, that the concrete RBC implementation is guaranteed to work
correctly only if the concrete track data satisfy the engineering rules. For exam-
ple, a simplified engineering rule requires that two signals for the same direction
should not be located at the same position. The modelled engineering rules are
validated on different track topologies. The biggest topology contains 1362 track
segments, 457 points, 1089 balise groups and 445 signals.

Both projects rely on ProB as the tool to evaluate the models. ProB is an
animator and model-checker for the B method with support for validation and
proofs. ProB also is a constraint solver for the B language, which is required in
an animation and model-checking scenario to efficiently find values for constants,
guards and parameters of operations.

The idea of using formal method languages and tools to perform data val-
idation has been explored in the past, e.g. by Abo and Voisin [2] or Lecomte
et al. [15] among others. Our intention here is to outline the common structure
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and challenging aspects of data validation projects based on what we have iden-
tified in the aforementioned projects. The domains and requirements of these
two projects are quite different, and all work has been done independently (i.e.
by different people). Still, similar challenges were faced during the modelling
process.

In the following sections we will name these challenges, discuss different lan-
guage constructs of B and argue how they can be applied in modelling data
validation problems. Moreover, we will outline areas where we have extended
the B language to overcome some limitations we faced evaluating the models
with ProB.

2 The Big Picture

Before describing the details of the data validation process we will discuss the big
picture, outlining the design and architecture that emerged from both projects
mentioned in the previous section.

!signal1, signal2.(
signal1 : Signals & signal2 : Signals & signal1 /= signal2
& Signal_Direction(signal1) = Signal_Direction(signal2)
=> not(Signal_TrackSegment(signal1) = Signal_TrackSegment(signal2)

& Signal_Position(signal1) = Signal_Position(signal2)))

Fig. 1. Modelling of an engineering rule as a validation predicate

The general idea is to create B models that define validation predicates which
are evaluated against the state of the model. The variables and constants are
derived from external data we want to validate. Figure 1 shows the formalisation
of the validation rule mentioned in the introduction Section where two signals
should not be located at same position if they are valid for the same direction.

The projects discussed in this paper follow the general architecture shown
in Fig. 2. By building data validations tools based on the B language we have
identified the following concerns: The first is getting the external data from a
given source into a B model which is discussed in Sect. 3. Choosing a way to
represent the data is a further concern, where it is important to choose a repre-
sentation and B data types suited for the validation process while keeping the
import process as simple as possible; this is discussed in Sect. 4. Some validation
rules rely on derived data (e.g., signals reachable from a point) which has to
be computed from the imported data. In Sect. 5 we present different approaches
to structure derived data in B. One purpose of the B method is to model algo-
rithms and prove their correctness. However, are these models suitable for use
by ProB to calculate results? Section 6 describes different approaches to model
an algorithm in B such that it can be efficiently evaluated by ProB. Another
concern is how to control the validation process from an external application.



170 D. Hansen et al.

B Model

Validation Rules 
in Natural 
Language

Validation 
Rules Interactive

Validation Tool 

Raw Input Data

Generated Data

Application
UI, Reports

Results

Instructions

Transformation to B  

Formalisation of rules  

Fig. 2. Generalised architecture of ProB based data validation project

In Sect. 7 we discuss different ways to interact with the model. Finally, in Sect. 8
we briefly discuss how to reuse an existing validation model in similar projects.

3 Preparing Data for Use with a B Model

When used for data validation, our tools obviously depend on externally provided
data [2,16], which has to be converted to B format, in order to be validated with
ProB. Raw input data is provided in a variety of formats as used in the different
domains such as Excel, CSV or XML documents.

In both projects we have opted to create tools that read and parse the exter-
nally provided data and generate a text file containing a B model of the data.
The data will be accessible as a series of constants in the model.

Having an external tool keeps any knowledge about the raw data format out
of the B models; but of course it raises a series of concerns. One is having to
maintain an additional tool which has to generate valid B. Also the chosen data
representation has to be kept in sync between the import and the validation tools.

Another concern is that, in a safety critical environment, the import tool itself
has to be validated. The topology validation project takes a direct approach by
avoiding putting too much knowledge into the transformation step, keeping it as
simple as possible. In this approach the transformation maps the input structure
of the data (XML) to B data structures and copies the values of attributes
as uninterpreted strings. To ensure that all data from the input document is
represented in the B model we use a back-translation (from the B model to
XML) and compare the generated XML document with the source document.
The back-translation is done in order to certify the translation tool and ensure
that no data has been left out.
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In the case of the curriculum validation tool the data is not only used for
validation purposes but also to populate the application’s user interface, hence
we have chosen a two step approach that does not directly generate a B machine,
but rather import the data into a database. The information in the database is
later used to generate the actual B representation of the model at runtime.
Additionally, the database is used in the application to persist changes and as
the data source for the UI. Since the data is used in multiple places we map the
values in the raw data to the most adequate types in the database and later to
the corresponding B types.

Are There Any Alternatives? There are many alternative approaches that could
be pursued to import data into a B model. E.g. instead of generating a B model
with the data as constants, it would be possible to have B operations which
incrementally add values to variables containing the data. These operations could
be executed in various ways, e.g., using the Java API for ProB. Finally, ProB
exposes external functions to B that make it possible to, e.g., load data from CSV
files; these features could be extended for additional data sources (see Sect. 6.3).

4 Data Representation

Hand in hand with the decision on how to import data into a B model goes the
choice of proper B data-structures to represent the data. This representation
should ideally follow the structure of the source data, and additionally lend
itself to be used and manipulated in B. Choosing a good representation for the
problem is crucial for the complexity and readability of the model. In [11] Hayes
et al. discuss some of these issues on the examples of a simple database in VDM
and Z. In B, one could encode database records as nested pairs. A quaternary
relation over course identifiers, semester, weekday, and starting hour could thus
be represented as:

db = { (((course1 |-> sem2) |-> monday) |-> 14),

(((course2 |-> sem1) |-> friday) |-> 9) }

In order to access the first and second element of a pair, B provides the prj1
and prj2 operators. However, in B accessing a certain field of a nested pair is
very cumbersome, as we have to unfold the nested pair until we reach the desired
field.2 Another alternative is to use records with named fields:

db = { rec(course_id: course1, semester: sem2, weekday: monday,

starting_hour: 14), rec(course_id: course2, semester: sem1,

weekday: friday, starting_hour: 9) }

We can easily access a field of a record r by using the quote operator:
r′course id. Compared to the encoding as nested pairs, records are more read-
able, especially if there are a large number of fields. Otherwise, constructing a
2 In addition, the types of the arguments have to be provided for prj1 and prj2; e.g.,

prj2((COURSE × SEMESTER) × WEEKDAY, Z)(v).
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record is more verbose than constructing nested pairs. Since, this part of the
model is automatically generated, the verbose encoding is not an issue.

A third alternative is to create B functions for each attribute of the data
record mapping a unique identifier to the corresponding attribute value. An
identifier of a data record could be a unique number generated by the translator
or a certain attribute of the data record. In case of our example, we could choose
the attribute course id as the unique identifier:

course_id__semester = {course1 |-> sem2, course2 |-> sem1}

course_id__weekday = {course1 |-> monday, course2 |-> friday}

course_id__start_hour = {course1 |-> 14, course2 |-> 9}

While this approach works well for simple tables such as in Excel or CSV
documents, it would become inconvenient for nested data structures, e.g. if a
value of a field is itself a set of data records such as a sub-tag of a XML document.
In this case, the translation tool first has to transform the nested data structure
to a relational database schema. Subsequently, the translator has to create a B
function for each attribute of each table of the relational database.

One advantage of the last alternative is the handling of optional fields. Indeed,
when no field value is present for a data record, we just omit the corresponding
identifier from the domain of the field accessor function (i.e., we use partial
functions rather than total functions). For the other two approaches, optional
fields pose more of a challenge. Due to the strong and strict typing of B it is not
possible to create partial records or to omit a field of a nested pair. One solution
is to introduce a special NULL value for each B datatype, e.g. the empty string
(" ") for the STRING type. However, we have to ensure that the NULL value is
not a regular value in the source data. For other data types such as INTEGER it
is more intricate (which integer to use?) and for the BOOL type impossible.

This directly leads to a further aspect of the translation. How to represent
the values of the data records? They could be represented either as uninterpreted
strings of data copied verbatim from the raw data input in the transformation
step. Alternatively the data values could be represented using the most appro-
priate B data types, e.g. INTEGER for numbers, and enumerated sets for values
from a set of known values. The first approach has the advantage of a very
simple translation process and all the relevant knowledge is encoded in the B
model. The drawback is now, however, that the data has to be translated in
the B model, which typically requires extensions to the B language which are
available in ProB (e.g. transforming a STRING value to an INTEGER value).

In both projects, we have chosen the record representation for the data.
As already mentioned in the previous section, the timetabling tool maps the
raw data to the corresponding B data types. In case of the topology valida-
tion project, all data values are represented as uninterpreted strings and the
processing of these strings is part of the B model.
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5 Means of Abstraction – Structuring and Auxiliary
Constructs

Abstractions [1] in programs and also models control complexity, encourage reuse
and make testing easier. Different parts of the B language offer different ways
to abstract and structure models and programs. There are certain concepts that
are applicable at the machine and operation level while others are applicable on
the predicate and expression level.

Machines and Operations. On the machine level sub-problems can be structured
as machines for each sub-aspect which communicate through the execution of
operations. The visibility of machines and their variables and operations can be
controlled using different machine composition mechanisms such as SEES, USES
and INSTANCE.

On the level of a single operation the substitution language provides several
expressions that are useful, either if-then-else for control flow or LET constructs
to introduce scoped variables.

Expressions and Predicates. Within the mathematical language of B, constants
can be used to globally save precomputed values whose computation might be
expensive and should not be evaluated more than once. Figure 3 shows the calcu-
lation of the conflict relations of two different signals placed at the same position
and valid for the same direction. Note, that the calculation corresponds to a SQL
statement making a self join on a signal table. Moreover, constants can be used
to store certain calculations in the form of lambda functions which can be used
in different parts of the model. However, constants are not applicable for inter-
mediate results which can not be precomputed globally because they depend on
additional information or parameter values.

CONSTANTS
ConflictRelation

PROPERTIES
ConflictRealtion =

UNION(r1,r2).(r1 : SignalRecords & r2 : SignalRecords
& r1’elementID /= r2’elementID & r1’trackSegment = r2’trackSegment
& r1’position = r2’position & r1’direction = r2’direction
| {r1’elementID |-> r2’elementID})

Fig. 3. Calculating the conflict relation of two signals placed at the same position.

LET for Predicates and Expressions. In complex expressions or predicates it is
often useful to introduce a shorthand for certain values or expressions, B only
supports LET in the context of substitutions, nonetheless it might be useful for
predicates and expressions. For example, an existential quantification (#x.(x=E
& P)) can be used within predicates to achieve a result similar to a LET. ProB
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tries to identify existential quantifications that only have a single value and treats
them specially. Within set-comprehensions an existential quantification could
also be used ({x| #y.(y=E & P)}), but the following pattern using the domain
of a set of pairs is (generally) more efficient in ProB: dom({x,y| y=E & P}).
For expressions which denote a set of values, one can use UNION(y).(y=E| S).
Ideally, however, rather than using these workarounds, we would argue for adding
explicit LET constructs to the B language for expressions and predicates.

DEFINITIONS. One of the available methods of decomposing larger predicates
or expressions into smaller reusable components are DEFINITIONS (comparable
to macros). The use of DEFINITIONS carries some issues that have to be kept in
mind. Although they are textual replacements, ProB requires every definition
to be syntactically correct on its own, so certain compositions patterns are not
possible. Care is also needed with regard to naming conflicts, quantifications not
captured in the DEFINITION where variables escape the scope (see, e.g., [12]).
Take for example the definition even(x) == (#y.(y:1..x & 2*y=x)). Evalu-
ating the predicate even(4) yields true. However, if we have a machine variable
y whose value is 4 and evaluate even(y) we obtain false; the definition call was
rewritten to #y.(y:1..y & 2*y=y). Another issue is unintended repeated com-
putation of arguments. Indeed, the arguments of a definition may get replaced
multiple times and then also executed multiple times by ProB. Take, e.g., the
definition POW3(x)==x*x*x and the call POW3(f(1)). The latter gets transformed
into f(1)*f(1)*f(1), resulting in repeated computations of f(1). A pattern we
have used to avoid this is to create a variable within each DEFINITION, which is
assigned with the passed argument and used instead of the original parameter
to avoid unintentionally causing repeated computations of the same expression:

DEFINITIONS

EXAMPLE(aa, bb) == #(va, vb).(

va = aa & vb = vb & <predicate over va and vb> );

For the reasons described above, DEFINITIONS, although they are a useful
method to store and structure expressions and predicates, should be used care-
fully, in particular for big expressions with parameters.

6 Using B to Express Computations

Sometimes data validation relies on complex concepts, which cannot be easily
described as B predicates. In those cases it can be more convenient to describe
these concepts using recursive rules or as fixpoints of iterative algorithms. In
this section we show how this can be achieved in a natural B style, while also
ensuring that the resulting algorithms can be executed efficiently.

We will discuss different approaches to model an algorithm for sorting a
set of numbers into an ordered sequence. Note that the B method does not
provide a built-in operator to sort a set. In the particular applications we used
the techniques for more complicated constructs, such as a search on a rail way
topology with various termination conditions.
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6.1 Machines and Operations

First we will discuss the approach of using machines and operations to express
the required functionality. Using the machine and substitution semantics of B
to express computations has the clear advantage of having all tools and features
of the B method at our disposal. Figure 4 shows a stateless query operation
calculating the sorted sequence for a given input set.

out_sortedSequence <-- Sort_OP(p_set) =
PRE p_set : POW(INTEGER) THEN

out_sortedSequence : (
out_sortedSequence : iseq(p_set)
& ran(out_sortedSequence) = p_set
& !i.(i : 1 .. size(out_sortedSequence) - 1

=> out_sortedSequence(i) < out_sortedSequence(i + 1)))
END

Fig. 4. Query operation

However, ProB is not able to evaluate the operation efficiently, i.e. it does not
scale for large input sets. Indeed, a naive execution of Sort OP would calculate
all possible permutations of the input set to then reject all but one, which is
the sorted sequence. ProB’s constraint solving can overcome this exponential
complexity to some extent,3 but for larger sequences we are a far cry from the
performance of ordinary sorting algorithms. Following the refinement principles
of the B method we can implement the abstract operation by a concrete sorting
algorithm. Figure 5 shows a selection sort (MinSort) implementation in B. The
operation Sort OP exposes the algorithm as a single operation which can be used
several times and embedded in different machines.

ProB provides various optimisations for while loops. First, an interesting
point is that the variant is evaluated upon entry and gives ProB an upper-
bound on the number of iterations.4 If a certain threshold is exceeded, ProB
will pre-compile the body of a while loop, by pre-computing all parts which
do not depend on variables modified in the loop. Furthermore, the state of the
interpreter is projected onto those variables that are modified.

In our approach, we are not interested in proving the concrete algorithm
to be a correct refinement of the abstraction. However, we are interested in
the correctness of the sort implementation. Therefore, we use the predicate of
the abstract operation as an invariant respectively an assertion on the output
of the concrete operation. Note, that in this case ProB is able to check that
the predicate holds for a concrete value even for a large input set. Moreover,
the termination of the sort algorithm is ensured using a loop variant which
3 ProB can compute Sort OP({3,55,22,44,1,100,20,40,55,88,10,90,200,0,5})

in 0.18 s, despite there being 15!=1,307,674,368,000 permutations.
4 In many models, the variant actually corresponds exactly to the number of iterations.
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out_sortedSequence <-- Sort_OP(p_set) =
PRE p_set : POW(INTEGER) THEN

VAR v_set, v_seq
IN

v_set := p_set; v_seq := [];
WHILE v_set /= {}
DO

v_seq := v_seq <- min(v_set);
v_set := v_set \ {min(v_set)}

INVARIANT
v_set : POW(p_set) & v_seq : iseq(p_set)
& !i.(i : 1 .. size(v_seq)-1 => v_seq(i) < v_seq(i + 1))

VARIANT card(v_set)
END;
ASSERT ran(v_seq) = p_set THEN out_sortedSequence := v_seq END

END
END

Fig. 5. Implementation of a sorting algorithm

is observed by ProB. For more complex algorithms such as different search
algorithms on railway topologies we have modelled state machines instead of
stateless query operations. However, the execution of the these state machines
is controlled by a single operation of an additional interface machine.

A small disadvantage of using operations is that the output value of the
operation can only be assigned to a variable and the operation can not be used
as part of a set comprehension or quantification.

6.2 Recursive Functions

Recursive functions, which are supported by ProB [18], are a very effective way
to compactly express certain kinds of algorithms. Figure 6 shows the selection
sort algorithm modelled as a recursive function in B. By defining Recursive Sort
as an abstract constant we indicate that ProB should handle the function sym-
bolically, i.e. ProB will not try to enumerate all elements of the function. The
recursive function itself is composed of two single functions: a function defining
the base case and a function defining the recursive case. Note, that the intersec-
tion of the domains of these function is empty, and hence, the union is still a
function.

However, there are certain constructs that are harder to write (and read)
using only the expression language of B, as it has no explicit support for let
expressions and if-then-else. Nonetheless it is often easier to express a construct
as a recursive function than it is to decompose the steps in order to express
it as a machine. In general, the performance of a recursive function is slower
compared to the operation/while approach.

Rather than using an explicit recursive call as in Fig. 6, we can also use B’s
transitive closure operator to compute the fixpoint of a relation. For our example,
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ABSTRACT_CONSTANTS Recursive_Sort
PROPERTIES

Recursive_Sort : POW(INTEGER) <-> POW(INTEGER*INTEGER)
& Recursive_Sort =

%in.(in : POW(INTEGER) & in = {} | [])
\/ %in.(in : POW(INTEGER) & in /= {}

| min(in) -> Recursive_Sort(in\{min(in)}))

Fig. 6. Recursive sort function

let us define the relation step = %(s,o).(s/={} | (s\{min(s)},o<-min(s)))
which encodes one recursive step of selection sort (s is the set to sort, o is the
output sequence so far). For a start set in = {4, 5, 2} we can now compute
closure1(step)[{(in,[])}] resulting in {({4, 5} �→ [2]), ({5} �→ [2, 4]), (∅ �→
[2, 4, 5])}. As we can see, the result of sorting a set in can be obtained by calling
closure1(step)[{(in,[])}]({}).

6.3 External Functions

There are certain concepts that are not part of the B language, e.g. mathematical
functions such as sin, cos, etc. Other computations are difficult or impossible to
express using only predicates and expressions, while others might be too slow to
evaluate purely in B. ProB offers a mechanism named external functions to
add and expose new constructs to B. In our sorting example this might look as
follows:

DEFINITIONS

SORT(X) == [];

EXTERNAL_FUNCTION_SORT == (POW(INTEGER)-->seq(INTEGER))

The function SORT is implemented in Prolog as part of the ProB core and
exposed in B as a definition. In order to define a syntactically correct DEFINITION
we use the empty sequence as a dummy value ensuring type correctness. The
second definition tells ProB the type of the external function.

External functions provide the best performance for specific computations,
by removing the interpretation overhead but at the same time are opaque to the
user and at this point in time need to be integrated explicitly into the ProB
Prolog kernel to be available in the language.

6.4 Further Language Extensions

In the topology validation project we have introduced further language con-
structs that provide a uniform schema to write validation rules. Wherein, the
validation predicates are embedded in special RULE operations. Figure 7 shows
a simplified schema of a RULES MACHINE which contains several RULE opera-
tions and will be translated to an ordinary B machine. The result of a RULE
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operation can be stored by using the new RULE SUCCESS or RULE FAIL(.) key-
words. The argument of the RULE FAIL(.) keyword is the message reported in
case of a rule violation. For each rule operation an ordinary variable is gen-
erated in the translated B machine containing the result of the rule evalu-
ation (i.e. ‘‘FAIL’’,‘‘NOT CHECKED’’ or ‘‘SUCCESS’’). By using additional
guards we are able to define dependencies between rules (using the new key-
word DEPENDS ON RULES) or disable a rule if necessary. The model itself is non-
deterministic in the sense that different rules can be executed at the same time if
their guards are satisfied. Thus, we are not forced to define an explicit execution
order of all rule operations and can use ProB’s animation feature to conve-
niently execute a certain operation. To ease the writing of a rule we developed a
new FORALL substitution which can be used to define an error message of a rule
by conveniently accessing the variables of a universal quantification.

7 Interaction with the Model

There are several ways the main software can interact with the B validation
model. Depending on the kind of application, one could animate or model check
the B model, execute a B operation or evaluate B expressions or B predicates
(assertions) on a certain state of the model.

The ProB Java API (aka. ProB 2.05) provides facilities to use ProB in
applications running on the JVM. Through this API it is possible to access
the functionalities mentioned above and to translate B data types to and from
appropriate Java types.

In case of the curriculum validation project, the tool itself is a Java applica-
tion that embeds the model and ProB. We expose all features provided by the
model as B operations that represent the public API of the model. These opera-
tions are evaluated, using ProB’s animation facilities, with externally provided
parameters to validate the different curricula. The validation operations return
a list of variables that represent one possible choice of subjects to successfully
finish a degree. Furthermore, we use the result computed for a feasible curricula
to generate a PDF timetable for students with a recommend choice of subjects
for their studies.

In the topology validation project the model is used as an independent val-
idation tool with the goal to generate validation reports about the input data.
Each engineering rule is modelled as one or more RULE operations containing
the validation predicates (see Sect. 6.4). By using more than one RULE operation
for an engineering rule the complexity of a natural language requirement can be
decomposed into several simple and readable validation predicates. The advan-
tage of a RULE operations, compared to a listing of all validation predicates as
part of the ASSERTIONS section, is that a B operation defines a clean interface
to perform the evaluation of the individual rules and to access result values and
counterexamples. In order to generate a complete validation report and to vali-
date all possible rules, we construct a trace of the model using ProB’s execute
5 https://www3.hhu.de/stups/prob/index.php/ProB Java API.

https://www3.hhu.de/stups/prob/index.php/ProB_Java_API
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RULES_MACHINE Rules
SEES Features
OPERATIONS
RULE rule1 = ...;
RULE rule2 = ...;
RULE rule3 =
SELECT
DEPENDS_ON_RULES(rule1, rule2)
& Enabled(feature1) = TRUE

THEN
FORALL
p1, p2

WHERE
P(p1,p2)

EXPECT
Q(p1,p2)

THEN
RULE_SUCCESS

ELSE
VAR errorMsg
IN
errorMsg := Exp(p1,p2);
RULE_FAIL(errorMsg)

END
END

END
END

MACHINE Rules
SEES Features
VARIABLES rule1, rule2, rule3
INVARIANT
rule1 : {"NOT_CHECKED",

"FAIL", "SUCCESS"}
& rule2 : {"NOT_CHECKED",

"FAIL", "SUCCESS"}
& rule3 : {"NOT_CHECKED",

"FAIL", "SUCCESS"}
INITIALISATION
rule1 := "NOT_CHECKED"
|| rule2 := "NOT_CHECKED"
|| rule3 := "NOT_CHECKED"

OPERATIONS
res,ce <-- rule1 = ...;
res,ce <-- rule2 = ...;
res,ce <-- rule3 =
SELECT
rule3 = "NOT_CHECKED"
& rule1 = "SUCCESS"
& rule2 = "SUCCESS"
& Enabled(feature1) = TRUE

THEN
IF
!(p1,p2).(P(p1,p2)

=> Q(p1,p2))
THEN
rule3 := "SUCCESS"
|| res := "SUCCESS"
|| ce := ""

ELSE
ANY p1,p2
WHERE
P(p1,p2) & not(Q(p1,p2))

THEN
VAR errorMsg
IN
errorMsg := Exp(p1,p2);
rule3 := "FAIL"
|| res := "FAIL"
|| ce := errorMsg

END
END

END
END

END

Fig. 7. Translation of a RULES MACHINE to an ordinary B machine
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command until all operations are covered. By doing this, we eliminate the over-
head which would be introduced by performing a complete model checking run
on the non-deterministic model (i.e. evaluating an operation several times).

8 Configuration Management

Configuration management, i.e. how to reuse rules and infrastructure for similar
or related projects which differ in very specific aspects, is very important in
the context of data validation. For example, in the case of curricula validation,
there are subtle differences amongst faculties in the overall structure or how the
students choose classes. We have explored two different approaches, to tackle
this issue.

One approach is that of a Software Product Line (SPL) [7], where the system
would create, from a selection of predicates and evaluation rules a machine that
composes them according to a provided configuration. A further approach would
be to search for and find a data representation and formulation of the validation
rules that is general enough to be applied to more than one particular instance.
Such a generic model can contain variation points to control specific aspects of
the validation process that differ from project to project. For example, the rule
in Fig. 7 is only tested when two particular features are selected.

In both projects we have settled for a combination of both approaches, auto-
matically generating certain parts of our models and additionally configuring
the generic parts.

9 Conclusion and Future Work

In this paper we have presented two data validation projects where we have
expressed the validation rules in B. Based on the experiences gathered and the
similarities between the projects, we have discussed different relevant areas and
presented our architecture and design decisions as well as possible alternatives.

We have identified the aspects of data validation that can be easily and ele-
gantly expressed in B such as deriving intermediate data structures from the
raw data, modelling complex algorithms while ensuring their correctness, and
formalising validation predicates which are close to natural language counter-
parts. Otherwise, we presented the points were we had to diverge from B by
either using language extensions supported by ProB or by moving certain fea-
tures outside of the B models, e.g. the data import. Moreover, we described a
way to interact with the formal model and to build various applications on top
on ProB.

In both projects ProB satisfies the respective requirements on performance
and execution time. For the curriculum validation, ProB is able to detect con-
flicts among courses in an appropriate time, making interactive use on top of
ProB possible. In the topology validation project there are no strict timing
constraints. However, our B and ProB based approach is able to compete with
a pre-existing validation tool written in an imperative language.
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The work on both projects has helped to push the development of ProB
forward by highlighting performance bottlenecks that have since been resolved.
Moreover, we added support for language constructs such as tree operators.

Due to the availability of higher-order data types, B can be used almost like
a functional programming language. We have used this in particular to compute
derived data. In the paper we have also shown various limitations of B, and have
presented some ways to overcome them (e.g., how to encode let constructs). In
the future, we would like to be able to use parts of B as a proper functional
programming language. In that sense, we are considering adding polymorphic
operators, as present in TLA+, to provide a simpler way to structure predicates
and allow the user to define new recursive operators. Moreover, we are pursuing
an approach to embed parts of the mathematical B language into the Clojure
programming language using native syntax and evaluating it with ProB, an
approach comparable to aRby for Alloy [21].
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sive functions in B. In: Abrial, J.-R., Glässer, U. (eds.) Rigorous Methods for Soft-
ware Construction and Analysis. LNCS, vol. 5115, pp. 78–92. Springer, Heidelberg
(2009)

19. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 708–723. Springer, Heidelberg (2009)

20. Leuschel, M., Schneider, D.: Towards B as a high-level constraint modelling lan-
guage. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp.
101–116. Springer, Heidelberg (2014)

21. Milicevic, A., Efrati, I., Jackson, D.: αRby—An embedding of Alloy in Ruby. In: Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 56–71. Springer,
Heidelberg (2014)
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