
Chapter 4
Robust H1 Switching Control of Polytopic
Parameter-Varying Systems via Dynamic
Output Feedback

Chengzhi Yuan, Chang Duan, and Fen Wu

Abstract The problem of designing a globally optimal robust output-feedback
controller for time-varying polytopic uncertain systems is a well-known non-convex
optimization problem. In this paper, new sufficient conditions for robust H1 output-
feedback control synthesis are proposed in terms of a special type of bilinear matrix
inequalities (BMIs), which can be solved effectively using linear matrix inequality
(LMI) optimization plus a line search. In order to reduce the conservatism of robust
output-feedback control methods based on single quadratic Lyapunov function,
we utilize multiple Lyapunov functions. The associated robust output-feedback
controller is constructed as a switching-type full-order dynamic output-feedback
controller, consisting of a family of linear subcontrollers and a min-switching
logic. The proposed approach features the important property of computational
efficiency with stringent performance. Its effectiveness and advantages have been
demonstrated through numerical studies.

Keywords Parameter-varying system • Switched control • Robust control

4.1 Introduction

During the past decades, a great deal of attention was devoted to the study of systems
with time-varying parametric uncertainties, due to their theoretical importance in
control theory and widespread applications in practical engineering problems. Both
issues of stability and control design for these types of systems have been examined
extensively in the literature (see, e.g., [1–5] and the references therein). A typical
robust control strategy is to construct a single linear time-invariant (LTI) controller
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for norm-bounded uncertain systems using a single quadratic Lyapunov function
[4, 6]. Some classical works along this line are worth to be mentioned. Different
tools for both robustness analysis and controller design for systems subject to
structured uncertainties can be found in [4, 7–9], while [2, 10–12] considered similar
problems for systems with unstructured uncertainties. One potential drawback of
these classical methods lies in the conservatism due to the use of a single quadratic
Lyapunov function. In recent years, more advanced robust control approaches were
proposed to achieve better controlled performance. In particular, originated from
the pioneering works [13, 14], different switching-type robust controllers have been
proposed for various systems with different types of uncertainties, such as [15, 16]
on linear fractional transformation (LFT) systems and [7, 17] for polytopic uncertain
systems, both of which utilized the multiple Lyapunov function technique from the
switching control context [18]. A comprehensive review of the literature on robust
control of uncertain systems, including some recent results from either deterministic
or probabilistic perspective, can be found in [5].

Different from the state-feedback control case, the problem of designing a
robust output-feedback controller for linear uncertain systems is known to be
difficult. The main source of difficulty stems from the non-convex nature of the
problem itself. Specifically, the associated robust control synthesis problem is
typically represented as a bilinear matrix inequality (BMI) optimization problem
for most design objectives. This type of non-convex optimization problems is NP-
hard, even under the single quadratic Lyapunov function framework (see, e.g.,
[4, 6, 19–21]). Various approaches have been reported to tackle the non-convexity
issue. Some rely on heuristic optimization algorithms to attain a locally optimal
solution [19, 22], which could be very involved and time-consuming; some resort
to certain mathematical relaxations to arrive at a convex synthesis condition but of
more conservatism [20]. As such, developing an effective robust output-feedback
control synthesis framework that simultaneously renders stringent performance and
computational efficacy is urgently desirable but still remains as an open problem.

In this paper, we propose a new robust switching output-feedback (RSOF) control
scheme for a class of polytopic parameter-varying uncertain systems. Different
from the classical robust output-feedback control techniques, the proposed RSOF
controller consists of a family of full-order dynamic LTI subcontrollers and a min-
switching logic that governs the switching among them, which therefore results
in a switched closed-loop system with time-varying polytopic uncertainties. The
basic idea applied here for switching stability analysis and controller design is
borrowed from the switching control literature (see, for instance, [17, 18, 23–28]).
In particular, motivated by the methodologies from [17] on switched state-feedback
control of polytopic uncertain systems, [29] on asynchronous switching output-
feedback controller synthesis, and [30] on stabilization of switched linear systems
via min-switching control, we will first derive the analysis conditions for robust
H1 stability of the resulting switched closed loop by using piecewise switched
Lyapunov functions. Then, based on the analysis conditions, the associated robust
switching control synthesis problem is formulated as a special type of BMIs,
which can be solved effectively in terms of LMIs plus a line search. The proposed
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switching control design scheme advances existing methods for robust output-
feedback control synthesis in two important ways: better achievable controlled
performance in terms of H1 criterion due to the adoption of piecewise switched
Lyapunov functions; reduced computational complexity by solving a convex LMI-
based optimization coupled with a single line search. Numerical examples are given
to illustrate the effectiveness and advantages of the proposed design approach.

The rest of the paper is organized as follows. The problem statement and the form
of RSOF controller are presented in Sect. 4.2. Sections 4.3 and 4.4 contain the main
results of this paper including the robust analysis and control synthesis conditions,
respectively. Simulation results are provided in Sect. 4.5. Conclusions are finally
drawn in Sect. 4.6.

Notation R stands for the set of real numbers and RC for the positive real
numbers. The set of non-negative integers is denoted by NC. Rm�n is the set of
real m � n matrices, and R

n represents the set of real n � 1 vectors. The transpose
of a real matrix M is denoted by MT . The Hermitian operator Hef�g is defined
as HefMg D M C MT for real matrices. The identity matrix of any dimension
is denoted by I. Sn and S

nC are used to denote the set of real symmetric n � n
matrices and positive definite matrices, respectively. If M 2 S

n, then M > 0

(M � 0) indicates that M is a positive definite (positive semi-definite) matrix
and M < 0 (M � 0) denotes a negative definite (negative semi-definite) matrix.
A block diagonal matrix with matrices X1; X2; : : : ; Xp on its main diagonal is
denoted by diagfX1; X2; : : : ; Xpg. Furthermore, we use the symbol ? in LMIs to
denote entries that follow from symmetry. For x 2 R

n, its norm is defined as
kxk WD .xTx/1=2. The space of square integrable functions is denoted by L2, that

is, for any u 2 L2, kuk2 WD �R 1
0

uT.t/u.t/dt
�1=2

< 1. For two integers k1 < k2,
we denote IŒk1; k2� D fk1; k1 C 1; : : : ; k2g. The set of Metzler matrices M consists
of all matrices ˘ 2 R

N�N with elements �ji, such that �ji � 0 for all i; j 2 IŒ1; N�

with i ¤ j and
PN

jD1 �ji D 0 for all i 2 IŒ1; N�.

4.2 Problem Statement

Consider the following linear system with uncertain time-varying parameters:

2

4
Pxp.t/
e.t/
y.t/

3

5 D
2

4
Ap.�.t// Bp1.�.t// Bp2.�.t//
Cp1.�.t// Dp11.�.t// Dp12.�.t//
Cp2.�.t// Dp21.�.t// Dp22.�.t//

3

5

2

4
xp.t/
d.t/
u.t/

3

5 (4.1)

where the vectors xp 2 R
nx ; u 2 R

nu ; d 2 R
nd ; y 2 R

ny , and e 2 R
ne denote the

plant state, control input, exogenous disturbance, measurement output, and error
(performance) output, respectively. The system matrices are uncertain and time-
varying, they are given by the convex combination
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2

4
Ap.�.t// Bp1.�.t// Bp2.�.t//
Cp1.�.t// Dp11.�.t// Dp12.�.t//
Cp2.�.t// Dp21.�.t// Dp22.�.t//

3

5 D
NpX

iD1

�i.t/

2

4
Ap;i Bp1;i Bp2;i

Cp1;i Dp11;i Dp12;i

Cp2;i Dp21;i Dp22;i

3

5 (4.2)

where the constant matrices at the polytope vertex, i.e., .Ap;i; Bp1;i; Bp2;i; Cp1;i; Dp11;i,
Dp12;i; Cp2;i, Dp21;i; Dp22;i/ for all i 2 IŒ1; Np�, are known for controller design. The
vector �.t/ WD Œ�1.t/ : : : �Np.t/�

T 2 R
Np represents the time-varying parametric

uncertainty which is not measurable in real time, and belongs to the unitary simplex
� defined by

� D
8
<

:
� 2 R

Np W
NpX

iD1

�i D 1; �i � 0; 8i 2 IŒ1; Np�

9
=

;
(4.3)

To ease the notation and whenever the context is clear, the explicit time dependence
of vector �.t/ 2 � will be dropped. Furthermore, for simplicity of presentation, we
have the following assumptions regarding system (4.1):

Assumption 1. .Ap;i; Bp2;i; Cp2;i/ is stabilizable and detectable for any i 2 IŒ1; Np�.

Assumption 2. Matrices .Bp2;i; Cp2;i; Dp12;i/ D .Bp2; Cp2; Dp12/ are constant
matrices, and Dp22;i D 0 for all i 2 IŒ1; Np�.

We stress that these two assumptions are made without losing any generality.
Assumption 1 is necessary to guarantee the existence of an output-feedback sta-
bilizing controller from y to u for each subsystem of (4.1) on the polytope vertices.
In the second assumption, Dp22;i D 0 can be relaxed using the well-known loop
transformation technique [4], while the assumptions on matrices .Bp2;i; Cp2;i; Dp12;i/

can also be satisfied by adding stable pre- and post-filters to the input and output
channels, respectively [31]. An illustrative example will be given in Sect. 4.5
(Example 1) to show how to satisfy this assumption.

Keeping in mind that the time-varying uncertainty � 2 � is not available for
feedback control use, the objective of this work is to design an RSOF control
law such that the overall closed-loop system is asymptotically stable and achieves
certain performance level from the disturbance d to the error output e for all
uncertain parameter � 2 �.

To fulfill this objective, we will construct the following dynamic RSOF
controller:

�Pxc.t/
u.t/

�
D

�
Ac;�.xc.t// Bc;�.xc.t//

Cc;�.xc.t// Dc;�.xc.t//

� �
xc.t/
y.t/

�
(4.4)

where xc 2 R
nc is the controller state with its dimension nc to be determined.

�.xc.t// is a switching rule of controller that selects a particular sequence of
LTI subcontrollers among Np available ones defined by .Ac;j; Bc;j; Cc;j; Dc;j/ with
j 2 IŒ1; Np�. Its value is determined by the min-switching strategy as shown in
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Fig. 4.1, where jq is the current active controller index, and xcl WD ŒxT
p xT

c �T .

Matrices Pjq 2 S
nxCncC are positive definite. The matrices Pj together with matrices

.Ac;j; Bc;j; Cc;j; Dc;j/ (8j 2 IŒ1; Np�) of compatible dimensions are subject to design.
The closed-loop system formed by interconnecting the controlled plant (4.1) and

the RSOF controller (4.4) can be written in the following switched polytopic form:

�Pxcl.t/
e.t/

�
D

�
Acl;�� Bcl;��

Ccl;�� Dcl;��

� �
xcl.t/
d.t/

�
(4.5)

where xcl D ŒxT
p xT

c �T and

Acl;�� D
�

Ap.�/ C Bp2Dc;� Cp2 Bp2Cc;�

Bc;� Cp2 Ac;�

�
;

Bcl;�� D
�

Bp1.�/ C Bp2Dc;� Dp21.�/

Bc;� Dp21.�/

�
;

Ccl;�� D �
Cp1.�/ C Dp12Dc;� Cp2 Dp12Cc;�

�
;

Dcl;�� D Dp11.�/ C Dp12Dc;� Dp21.�/:

Moreover, we define for all i; j 2 IŒ1; Np�,

Acl;ij D
�

Ap;i C Bp2Dc;jCp2 Bp2Cc;j

Bc;jCp2 Ac;j

�
; Bcl;ij D

�
Bp1;i C Bp2Dc;jDp21;i

Bc;jDp21;i

�

Ccl;ij D �
Cp1;i C Dp12Dc;jCp2 Dp12Cc;j

�
; Dcl;ij D Dp11;i C Dp12Dc;jDp21;i:

Then, we have

Acl;�j D
NpX

iD1

�iAcl;ij; Bcl;�j D
NpX

iD1

�iBcl;ij;

Ccl;�j D
NpX

iD1

�iCcl;ij; Dcl;�j D
NpX

iD1

�iDcl;ij:

for all j 2 IŒ1; Np�.
In this paper, the robust H1 control problem will be considered. More precise

descriptions about this problem is given as follows:

Problem 4.1. Given the uncertain system (4.1). The robust H1 control design
objective is to determine matrices .Ac;j; Bc;j; Cc;j; Dc;j; Pj/ subject to (4.4) and the
switching strategy in Fig. 4.1, such that the switched closed-loop system in (4.5)
is robustly asymptotically stable and achieves a minimal worst-case H1 norm �1
defined by
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Stay at current active controller jq 

Is

No

Yes

Switch to controller

?

Set  jq = jq+1  

xT
cl Pjq xcl ≤ mini  I [1,Np]   xT

cl Pi xcl

jq+1 = arg mini  I[1,Np] x
T
cl Pi  xcl

Fig. 4.1 Min-switching strategy

max
�2�

sup
kdk2¤0

kek2

kdk2

< �1: (4.6)

With respect to the H1 control problem, the following sections will be devoted
to studying the robust stability property of the switched closed-loop system (4.5)
under the min-switching logic in Fig. 4.1, and subsequently deriving computation-
ally tractable conditions for the RSOF controller synthesis.

4.3 Robust Analysis via Min-Switching

In this section, we will first present the analysis conditions for robust H1
performance of the time-varying switched polytopic system (4.5) by using multi-
ple quadratic Lyapunov functions and parameter-dependent Metzler matrix [23].
Specifically, we will utilize the parameter-dependent Metzler matrix ˘.�/ W � !
R

Np�Np with elements given by

�ij.�/ WD
�

	j�i; i ¤ j
	j.�j � 1/; i D j

(4.7)

where 	j � 0 for all j 2 IŒ1; Np�. It can be easily verified through the same arguments
as in [23] that ˘.�/ 2 M for all � 2 �.

Then, we have the following theorem summarize the H1 analysis conditions:

Theorem 4.1. Given a scalar �1 2 RC, the RSOF controller (4.4) with the min-
switching strategy as shown in Fig. 4.1 globally asymptotically stabilizes the time-
varying polytopic uncertain system (4.1) and renders an H1 performance level less
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than �1, if there exist matrices Pj 2 S
nxCncC , and scalars 	j � 0 such that

2

4
HefPjAcl;ijg C 	j.Pi � Pj/ ? ?

BT
cl;ijPj ��21I ?

Ccl;ij Dcl;ij �I

3

5 < 0 (4.8)

hold for all i; j 2 IŒ1; Np�.

Proof. Consider the closed-loop system (4.5), we define the following piecewise
Lyapunov function:

V.xcl/ WD xT
clPjq xcl (4.9)

where Pjq 2 S
nxCncC and jq 2 IŒ1; Np� are the current active subcontroller index

determined by the min-switching strategy in Fig. 4.1. Then, multiplying �i to both
sides of inequality (4.8) and summing up from i D 1 to i D Np, it yields

2

6
4

HefPjAcl;�jg C 	j
PNp

iD1 �i.Pi � Pj/ ? ?

BT
cl;�jPj ��21I ?

Ccl;�j Dcl;�j �I

3

7
5 < 0 (4.10)

We first examine the stability property for the closed-loop system (4.5) with
d � 0. In light of the definition in (4.7), the min-switching strategy in Fig. 4.1, and
since 	j; �i � 0 (8i; j 2 IŒ1; Np�), we have

	jq

NpX

iD1

�ix
T
cl.Pi � Pjq/xcl D

NpX

iD1

�ijq.�/xT
clPixcl �

NpX

iD1

�ijq.�/xT
clPjq xcl D 0 (4.11)

Therefore, the .1; 1/ element of condition (4.10) ensures

PV.xcl/ D xT
cl.A

T
cl;�jq Pjq C Pjq Acl;�jq/xcl < 0

for xcl ¤ 0. Let t�q denote the time when the controller switched out from
jqth subcontroller and tCq be the time when the controller switched to the next
subcontroller. Then, at t�q , condition xT

clPjq xcl � mini2IŒ1;Np� xT
clPixcl must be violated,

that is,

min
i2IŒ1;Np�

xT
cl.t

�
q /Pixcl.t

�
q / < xT

cl.t
�
q /Pjq xcl.t

�
q /

Since the min-switching strategy determines jqC1 D arg mini2IŒ1;Np� xT
clPixcl, that is,

xT
cl.t

C
q /PjqC1

xcl.t
C
q / D min

i2IŒ1;Np�
xT

cl.t
�
q /Pixcl.t

�
q /
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Then, we have xT
cl.t

C
q /PjqC1

xcl.tCq / < xT
cl.t

�
q /Pjq xT

cl.t
�
q /, which implies V.xcl.tCq // <

V.xcl.t�q //, and V.xcl/ thus satisfies the monotonically non-increasing condition.
According to the Theorem 2.3 in [32], the switched system (4.5) is globally
asymptotically stable.

Now, we examine the closed-loop H1 performance. Through Schur comple-
ment, condition (4.10) with (4.11) gives

"
HefPjAcl;�jg ?

BT
cl;�jPj ��21I

#

C
"

CT
cl;�j

DT
cl;�j

#
�
Ccl;�j Dcl;�j

�
< 0

Multiplying ŒxT
cl dT � from the left of the above condition and its transpose to the

right, it yields

PV.xcl/ C eTe � �21dTd < 0

Integrating both sides of the above condition from t D 0 to 1 and taking into
account that under zero initial condition V.xcl.0// D 0 and V.xcl.1// � 0, we can
conclude that kek2 < �1kdk2.

Remark 4.1. Compared with classical results on robust stability analysis of linear
parameter-varying (LPV) systems [4], we have adopted a piecewise switched
Lyapunov function instead of using a single quadratic Lyapunov function, which
is motivated from the context of switching control [18, 23]. The resulting conditions
Theorem 4.1 for H1 control improve classical results in the sense that quadratic
stability of each system matrix Acl;ij with i; j 2 IŒ1; Np� and i ¤ j is not necessarily
required to guarantee feasibility.

4.4 RSOF Controller Synthesis

Based on the analysis results in the previous section, we are in the position to
study the H1 control synthesis problem for the RSOF controller (4.4). The RSOF
control synthesis problem requires the determination of the coefficient matrices
.Ac;j; Bc;j; Cc;j; Dc;j/ in the controller dynamics (4.4) and Pj with respect to the min-
switching strategy in Fig. 4.1, for all j 2 IŒ1; Np�. However, since the plant state xp

is not always available for feedback control use, and in order to make the switching
logic in Fig. 4.1 implementable, we will specify the Lyapunov matrices with a
prescribed structure so as to structurally incorporate switching rules that depend
only on available information, i.e.,

Pj D
�

S N
NT Xj

�
; (4.12)
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where S 2 S
nxC; N 2 R

nx�nc , and Xj 2 S
ncC, for all j 2 IŒ1; Np�. We aim to

derive computationally tractable conditions, such that all these controller coefficient
matrices can be jointly synthesized through convex optimization. To this end, we
first introduce the following lemma, which is useful in the subsequent derivation for
our main results.

Lemma 4.1. Given a symmetric matrix 
0 and matrices 
1; 
2 with compatible

dimensions, condition 
0 C
�

0 ?


 T
2 
1 0

�
< 0 holds if and only if the following

condition holds for some positive number �.

2

4
0 �
�
�
 T

1 
1 ?

0 1
�

 T

2 
2

�
?

�
�
1 
2

� ��I

3

5 < 0 (4.13)

Proof. Through Schur complement, condition (4.13) is equivalent to

‡0 �
�
�‡T

1 ‡1 ?

0 1
�
‡T

2 ‡2

�
C

�
�‡T

1 ‡1 ?

‡T
2 ‡1

1
�
‡T

2 ‡2

�
D ‡0 C

�
0 ?

‡T
2 ‡1 0

�
< 0:

Then, using this lemma and the analysis results in Theorem 4.1, we have the
following theorem solve the robust H1 control synthesis problem in terms of
matrix inequalities.

Theorem 4.2. Given tunable scalars 	j � 0, if there exist positive definite matrices
Rj; OS 2 S

nxC, symmetric matrices Tij 2 S
nx , rectangular matrices OAc;j 2 R

nx�nx ; OBc;j 2
R

nx�ny ; OCc;j 2 R
nu�nx ; ODc;j 2 R

nu�ny , and positive scalars O�; O�1 2 RC such that for
all i; j 2 IŒ1; Np�, the following conditions hold:

2

6666
6
4

HefAp;iRj C Bp2
OCc;jg C 	jTij � 2Rj C O�I ?

OAc;j C O�AT
p;i C CT

p2
ODT

c;jB
T
p2 Hef OSAp;j C OBc;jCp2g C O�I

O�BT
p1;i C DT

p21;i
ODT

c;jB
T
p2 BT

p1;i
OS C DT

p21;i
OBT

c;j

Cp1;iRj C Dp12
OCc;j O�Cp1;i C Dp12

ODc;jCp2

Rj .Ap;i � Ap;j/
T OS

? ? ?

? ? ?

� O�21I ? ?

O�Dp11;i C Dp12
ODc;jDp21;i �I ?

0 0 �O�I

3

77
777
5

< 0; (4.14)

2

4
Tij C Rj ? ?

Rj Ri ?

O�I O�I OS

3

5 � 0;

�
Rj ?

O�I OS
�

> 0: (4.15)



62 C. Yuan et al.

Then, the time-varying polytopic uncertain system (4.1) is globally asymptotically
stabilized by the RSOF controller (4.4) of order nc D nx, and the closed-loop H1
performance level is less than �1 D O�1

O� under the min-switching strategy with the
condition in Fig. 4.1 replaced by

xT
c Xjxc � min

i2IŒ1;Np�
xT

c Xixc; (4.16)

where Xj D �NTRjM�T
j , MjNT D I�RjS, and S D 1

O�2
OS. Furthermore, the coefficient

matrices of the RSOF controller are given by

�
Ac;j Bc;j

Cc;j Dc;j

�
D

�O�N O�SBp2

0 I

��1 � OAc;j � O�SAp;jRj OBc;j
OCc;j ODc;j

� "
MT

j 0

Cp2Rj O�I

#�1

: (4.17)

for all j 2 IŒ1; Np�.

Proof. According to Theorem 4.1, and using the partitions in (4.12), we define for
all j 2 IŒ1; Np�,

Z1;j D
"

Rj I
MT

j 0

#

; Z2 D
�

I S
0 NT

�
; (4.18)

such that PjZ1;j D Z2 and MjNT D I � RjS, which implies Xj D �NTRjM�T
j .

Moreover, we specify

QZ1;j D
"

Rj O�I
MT

j 0

#

; OZ2 D
�

I O�S
0 O�NT

�
; (4.19)

which gives Pj QZ1;j D QZ2. The definition of O� > 0 will be given later. Based on

condition (4.15), it can be verified that QZT
1;jPj QZ1;j D

�
Rj O�I
O�I OS

�
> 0, in turn, Pj > 0 as

QZ1;j is nonsingular.
Then, by performing congruence transformation with matrix diagf QZ1;j; O�I; Ig on

condition (4.8), we obtain the following results:

QZT
1;jPjAcl;ij QZ1;j D QZT

2 Acl;ij QZ1;j D
�

Ap;iRj C Bp2
OCc;j O�Ap;i C Bp2

ODc;jCp2

OAc;j C O�S.Ap;i � Ap;j/Rj OSAp;i C OBc;jCp2

�
;

O�BT
cl;ijPj QZ1;j D O�BT

cl;ij
QZ2 D

h
O�BT

p1;i C DT
p21;i

ODT
c;jB

T
p2 BT

p1;i
OS C DT

p21;i
OBT

c;j

i
;

Ccl;ij QZ1;j D �
Cp1;iRj C Dp12

OCc;j O�Cp1 C Dp12
ODc;jCp2

�
;

O�2�21 D O�21;

(4.20)
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where

OAc;j D O�SAp;jRj C O�SBp2Dc;jCp2Rj C O�NBc;jCp2Rj C O�SBp2Cc;jM
T
j C O�NAc;jM

T
j ;

OBc;j D OSBp2Dc;j C O�2NBc;j;

OCc;j D Dc;jCp2Rj C Cc;jM
T
j ;

ODc;j D O�Dc;j; OS D O�2S:

(4.21)

On the other hand, we have

QZT
1;j.Pi � Pj/ QZ1;j D QZT

1;j

�
0 0

0 Xi � Xj

�
QZ1;j D

"
Mj.Xi � Xj/MT

j 0

0 0

#

Since MjNT D I � RjS, it can be shown that Xj D NT.S � R�1
j /�1N > 0. Using the

matrix inversion lemma [4], and through algebraic manipulations, we obtain

Mj.Xi � Xj/M
T
j D S�1 � Rj C .Rj � S�1/.Ri � S�1/�1.Rj � S�1/: (4.22)

Moreover, through Schur complement, condition (4.15) implies

Tij � S�1 � Rj C .Rj � S�1/.Ri � S�1/�1.Rj � S�1/

which together with (4.22) concludes that 	j

	
Mj.Xi � Xj/MT

j



� 	jTij. Therefore,

after the congruence transformation, condition (4.15) can be deduced. Moreover,
condition (4.8) becomes

‡0 C
2

4
0 0�O�S.Ap;i � Ap;j/

0

�
Rj 0

3

5 < 0: (4.23)

where

‡0 WD
2

666
4

HefAp;iRj C Bp2
OCc;jg C 	jTij ? ? ?

OAc;j C O�AT
p;i C CT

p2
ODT

c;jB
T
p2 Hef OSAp;i C OBc;jCp2g ? ?

O�BT
p1;i C DT

p21;i
ODT

c;jB
T
p2 BT

p1;i
OS C DT

p21;i
OBT

c;j � O�21I ?

Cp1;iRj C Dp12
OCc;j O�Cp1;i C Dp12

ODc;jCp2 O�Dp11;i C Dp12
ODc;jDp21;i �I

3

777
5

Then, by setting ‡1 D Rj; ‡2 D �O�.Ap;i � Ap;j/
TS 0

�
, invoking Lemma 4.1, to

guarantee the satisfaction of condition (4.23), it is equivalent to have the following
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condition for some positive number � D 1
O� ,

2

6
666666
66
4

�
HefAp;iRj C Bp2

OCc;jg
C	jTij � �RjRj

�
?

OAc;j C O�AT
p;i C CT

p2
ODT

c;jB
T
p2

�
Hef OSAp;i C OBc;jCp2g

�O�3S.Ap;i � Ap;j/.Ap;i � Ap;j/
TS

�

O�BT
p1;i C DT

p21;i
ODT

c;jB
T
p2 BT

p1;i
OS C DT

p21;i
OBT

c;j

Cp1;iRj C Dp12
OCc;j O�Cp1;i C Dp12

ODc;jCp2

�Rj O�.Ap;i � Ap;j/
TS

? ? ?

? ? ?

� O�21I ? ?

O�Dp11;i C Dp12
ODc;jDp21;i �I ?

0 0 ��I

3

7777
7
5

< 0;

Consequently, perform congruence transformation with matrix diagfI; I; I; I; O�Ig on
the above condition, and based on the fact that �ZTW�1Z � �ZT �Z CW holds for
any pair of W > 0 and Z, we have ��RjRj � �2Rj C O�I and �O�3S.Ap;i � Ap;j/.Ap;i �
Ap;j/

TS � �Hef OS.Ap;i � Ap;j/g C O�I. This yields exactly condition (4.14). Moreover,
the controller formula (4.17) can be verified by inverting the relations in (4.21).

Due to the product of scalar variables 	j and matrix variables Tij, condition (4.14)
in Theorem 4.2 is non-convex by nature. For this special type of BMIs, one can
resort to LMI optimization technique coupled with a multi-dimensional search over
the scalar variables. When the number of Np is large, a possible way to reduce
computational cost of the synthesis problem is by enforcing 	j D 	 � 0 for all
j 2 IŒ1; Np�. Although the resulting conditions are more conservative, they can be
solved relatively easier via LMI optimization with a single line search parameter.
The following corollary formally presents this result for the robust H1 control
problem.

Corollary 4.1. Given a tunable scalar 	 � 0, the result of Theorem 4.2 remains
valid whenever inequalities (4.14) are replaced by

2

66666
4

HefAp;iRj C Bp2
OCc;jg C 	Tij � 2Rj C O�I ?

OAc;j C O�AT
p;i C CT

p2
ODT

c;jB
T
p2 Hef OSAp;j C OBc;jCp2g C O�I

O�BT
p1;i C DT

p21;i
ODT

c;jB
T
p2 BT

p1;i
OS C DT

p21;i
OBT

c;j

Cp1;iRj C Dp12
OCc;j O�Cp1;i C Dp12

ODc;jCp2

Rj .Ap;i � Ap;j/
T OS
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? ? ?

? ? ?

� O�21I ? ?

O�Dp11;i C Dp12
ODc;jDp21;i �I ?

0 0 �O�I

3

777
77
5

< 0:

(4.24)

for all i; j 2 IŒ1; Np�.

The results of Theorem 4.2 and Corollary 4.1 then can be used to pose the
following optimization problem for the robust H1 control problem, such that the
RSOF controller that renders the closed loop a suboptimal H1 performance level
can be designed. As mentioned above, this type of optimization problem can be
solved through a line search over 	 with LMIs.

min
Rj; OS;Tij; OAc;j; OBc;j; OCc;j; ODc;j;O�;	; 8i;j2IŒ1;Np�

O�21

s.t. (4.15) and (4.24):
(4.25)

4.5 Numerical Examples

In this section, two examples will be used to illustrate the design procedure and
effectiveness of the proposed RSOF control scheme. The first example aims to
design a robust output-feedback H1 controller for a system with sensor outages.
Moreover, it will be demonstrated via the second example that the proposed design
scheme based on using a piecewise switched Lyapunov function is indeed capable
of rendering a better L2-gain performance for the closed-loop system than that
obtained under the single quadratic Lyapunov function framework.

Example 1. Consider a fourth order two-input two-output system subject to sensor
outages, which is borrowed from [33] and also considered in [20]. The system can
be described as the following polytopic uncertain system:

G W

8
ˆ̂<

ˆ̂:

Px.t/ D Ax.t/ C B1d.t/ C B2u.t/

e.t/ D C1x.t/ C D11d.t/ C D12u.t/

y.t/ D C2.�.t//x.t/ C D21d.t/

(4.26)

where
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2

4
A B1 B2

C1 D11 D12

C2.�/ D21 0

3

5 D

2

666
666666
4

�2 1 1 1 1 0 0

3 0 0 2 0 1 0

�1 0 �2 �3 1 0 0

�2 �1 2 �1 0 0 1

1 0 �1 0 0 0 0

c1 0 0 0 0 0 0

0 0 c2 0 0 0 0

3

777
777777
5

where two unknown parameters c1 and c2 both take values from f0; 1g. Specifically,
ci D 0 with i D 1; 2 indicates the ith measurement experiences an outage. We
assume as in [33] and [20] that there always exists at least one measurement working
for feedback control use, i.e., c1 and c2 will not be simultaneously equal to zero. This
will results in a polytope of Np D 3 vertices with

C2;1 D
�
0 0 0 0

0 0 1 0

�
; C2;2 D

�
1 0 0 0

0 0 0 0

�
; C2;3 D

�
1 0 0 0

0 0 1 0

�
: (4.27)

To apply the proposed RSOF control scheme to solve the H1 control problem,
we observe that the output matrix C2.�/ does not satisfy Assumption 2. Neverthe-
less, following the methodology from [31], the original plant can be transformed
to a new system that fits into the proposed design framework by concatenating a
stable LTI filter to the measurement channel (as depicted in Fig. 4.2). The state-
space model of the LTI filter is chosen as

Gy W
�Pxy

Qy
�

D
�

Ay By

Cy 0

� �
xy

y

�
;

where xy 2 R
na is the filter state, and Qy 2 R

ny is the filtered output that will serve
as the controller input. Then, the resulting augmented system can be written in the
form of (4.1) with

Fig. 4.2 Augmented system
structure (Example 1) Gaug

Gy
G

u

e

RSOF

d

y
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Gaug W

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Ap;i D
�

A 0

ByC2;i Ay

�
; Bp1 D

�
B1

ByD21

�
; Bp2 D

�
B2

0

�
;

Cp1 D �
C1 0

�
; Dp11 D D11; Dp12 D D12;

Cp2 D �
0 Cy

�
; Dp21 D 0; Dp22 D 0:

(4.28)

For controller synthesis, we specify the filter with

�
Ay By

Cy 0

�
D

��100I2 I2

100I2 0

�

Therefore, based on the augmented system data, we solve the optimization prob-
lem (4.25) to yield a suboptimal value of �1 D 1:7415, which significantly
improves those obtained by using the methods in [33] and [20] for all scenarios
discussed therein (see Tables 1 and 2 in [20]). Furthermore, the corresponding
RSOF controller in the form of (4.4) contains three subcontrollers with the order
nc D 4 C 2 D 6.

With the synthesized RSOF controller, we run the time-domain simulation by
applying a pulse disturbance input of magnitude 1 starting from t D 0 and ending
at t D 1 sec The closed-loop responses, including four plant states (Fig. 4.3a), the
uncertain time-varying vector �.t/ (Fig. 4.3b), two control inputs (Fig. 4.3c), and
the controller switching signals (Fig. 4.3d), are presented. According to (4.27), in
Fig. 4.3b, �.t/ D Œ1 0 0�T corresponds to the case of sensor failure on y1, while
�.t/ D Œ0 1 0�T is with respect to the case when the second output y2 fails. As
can be seen, for this simulation study, only one output measurement is available
at each time instant. Nevertheless, from Fig. 4.3a, c, it is observed that in spite of
the sensor outages, the designed RSOF controller is still capable of stabilizing the
overall closed-loop system with reasonable control input efforts.

Example 2. This example aims to further demonstrate the effectiveness and advan-
tages of the proposed switching control scheme based on piecewise switched
Lyapunov functions. We consider a two-disk H1 control problem as discussed in
[34]. The uncertain dynamics of the two-disk model is given in the following form:

T� W

2

6666
6
4
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Fig. 4.3 H1 RSOF control (Example 1). (a) Plant states, (b) uncertain parameter �.t/, (c) control
input, (d) switching signal
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Fig. 4.4 Weighted open-loop plant interconnection of the two-disk problem [34] (Example 2)

with M1 D 1; M2 D 0:5; b D 1; k D 200 and two uncertain parameters �1.t/ 2
Œ0; 9�, �2.t/ 2 Œ0; 25� yielding a polytope of Np D 4 vertices. For robust H1 control
synthesis, we adopt the same performance weighting functions as in [34] to form a
weighted open-loop plant as depicted in Fig. 4.4, where the weighting functions are
specified as
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We.s/ D 0:3s C 1:2

s C 0:04
; Wu.s/ D s C 0:1

0:01s C 125
;

Wa.s/ D 0:00001; Wn.s/ D s C 0:4

0:01s C 400
:

The actuator dynamics is assumed to be Act.s/ D 1
0:01sC1

.

Based on such a system setup, we solve the optimization problem (4.25) with
	 D 1. The RSOF control synthesis yields a suboptimal L2 gain �1 D 1:1139. To
demonstrate the effectiveness of the proposed RSOF control approach, this result is
compared with that obtained by using 
-type synthesis method [4, 6]. Specifically, a
robust controller consisting of a single LTI output-feedback control law is designed
by using a single quadratic Lyapunov function. It should be pointed out that the
robust output-feedback control synthesis problem is known to be non-convex. For
fairness of comparison, we utilize a global optimization technique, namely the
Branch and Bound algorithm [22], to yield a globally optimal solution. After
extensive search over the solution space, we are able to obtain the corresponding
global optima as �1 D 1:55, which is larger than our result by 28:14%. The gain
of performance can be attributed to the adoption of piecewise switched Lyapunov
functions in the proposed design framework. Further comparisons are conducted
through time-domain simulations. The closed-loop system responses with a step
reference input by using, respectively, the single LTI controller and the proposed
RSOF controller are plotted in Fig. 4.5. As can be seen from Fig. 4.5a, consistent
with the calculated H1 norm, the RSOF controller indeed outperforms the LTI
controller with less overshoot, faster settling time, less steady-state error, as well as
less control efforts (see Fig. 4.5b) during the transient period.

4.6 Conclusions

A new RSOF control scheme has been proposed for a class of linear systems with
time-varying polytopic uncertainties. The proposed RSOF controller is constructed
in a switching fashion, which consists of a set of linear dynamic output-feedback
controllers and a switching rule (namely the min-switching strategy) that governs
the switching among them. The novelty of the proposed control design scheme lies
in that: (1) no online measurements of the uncertain time-varying parameters are
required for controller implementation; (2) the robust control synthesis conditions
are cast as a special type of BMIs, which can be solved via LMI optimization
plus a line search; (3) owing to the use of piecewise switched Lyapunov functions,
better controlled performance can be achieved comparing with those obtained by
using a single quadratic Lyapunov function. The effectiveness and advantages of the
proposed control design scheme have been demonstrated through numerical studies.
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