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Abstract This paper addresses a novel framework that employs a decentralized
strategy for collective behaviours of multi-agent systems. The framework proposes
a new aggregation behaviour that focusses on letting agents on the swarm agree on
attending a group and allocating a leader for each group. As the leader starts
moving towards a specific goal in a particularly cluttered environment, other
members are enabled to move while keeping themselves coordinated with the
leader and the centre of gravity of the group.
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1 Introduction

Swarm robotics is a scientific discipline to collective robotics, inspired from the
behaviours of social animals. Multi-agent systems, considered to be aggregations of
autonomous agents, resembles swarm robotics concept in a certain way (Brambilla
et al. 2013). Accordingly, both concepts will be considered together in this study.
Collective behaviours of multi-agent systems can be classified into three main
groups namely, collective decision making, navigation behaviours and spatially
organizing behaviours (Brambilla et al. 2013). Aggregation is one of the funda-
mental and critical spatial organization that allows a group of robots to get close one
other, providing interaction and collective movements (Camazine et al. 2001).

Aggregation behaviour can be observed in nature frequently, such as bacteria,
bees, fish and etc. (Camazine et al. 2001; Jeanson et al. 2005). Probabilistic finite
state machines (PFSMs) are the main methodology used in aggregation ensuring
that finally only a sole aggregate is formed. Each robot starts exploring the envi-
ronment so as to find other robots. Once other robots are found, it decides whether
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to join or leave the aggregate in a stochastic manner (Garnier et al. 2005; Soysal and
Şahin 2005, 2007). Alternatively, artificial evolution approach has been employed
to automatically select aggregation behaviour (Soysal et al. 2007). Coordinated
motion, flocking, is a navigation behaviour inspired from fish or flock of birds
(Kaminka et al. 2008). In multi-agent system, coordinated motion approach pro-
vides safer navigation for a group of robots while keeping a constant distance from
one another based on virtual physic-based design. One of the popular studies in this
area proposes a virtual heading sensor allowing each robot to be able to sense the
heading direction of the other robots without requiring a goal direction. Within this
sensor, the swarm could provide coordinated motion while avoiding obstacles
(Turgut et al. 2008). This study was extended and revealed that it is possible to
insert some “informed” robots, knowing the goal direction, in the swarm so as to
lead the other “non-informed” robots towards the goal direction (Ferrante et al.
2010). A novel and recent study in coordinated motion field allows robots to change
both angular and forward speed according to the computed vector without requiring
an explicit alignment rule (Ferrante et al. 2012).

This paper proposes a novel approach based on PFSMs and Virtual
physics-based design to assign each robot into a group and allocate a leader for each
group in a decentralized manner. This is different from the conventional aggrega-
tion behaviour of social animals that instead of forming a single aggregate, robots
are grouped according to their distance to each other and a leader is selected in a
complete decentralized manner. Besides, each group relies on a centre of gravity
(COG) based algorithm and navigates in a coordinated motion towards a specific
goal while avoiding obstacles placed on their paths.

This paper is organized as follows. In Sect. 2, the proposed framework and
corresponding algorithms for multi-agent systems are presented, whereas Sect. 3
focuses on implementation and evaluation of the system. The study is concluded in
Sect. 4.

2 Collective Behavior Framework

This section details the features of the proposed framework used for collective
behaviour of multi-agent systems in a decentralized manner that comprises a
generic grouping algorithms and a leader assignment procedure, followed by a
coordinated navigation strategy. Flowchart of the proposed collective behaviour
framework is illustrated in Fig. 1. As it can be seen from the corresponding figure,
the framework consists of three main modules and two sub-modules, which will be
detailed in the following sections. Essentially each robot possesses a map based
navigation strategy that each robot has the 2-D map of the environment and can
navigate individually towards a specific goal using a local navigation strategy.
Nevertheless, robots are not allowed to communicate each other while performing
grouping, leader selection and coordinated motion behaviors. Accordingly, all these
tasks are achieved in a decentralized manner.
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2.1 Forces Applied to Robots

It is assumed that all robots in the swarm are randomly located and there is no direct
communication between robots during the execution of the algorithm. Each robot is
equipped with a standard range finder, which has 360° field of view. Newton’s law
of universal gravitation (1) is calculated for all robots in the swarm so as to estimate
attractive force applied to each of them. According to the law, it is stated that there
occurs a force between two agents that is proportional to the product of their masses
and inversely proportional to the square of the distance between them as illustrated
in (1).

F ¼ G� m1 � m2

r2
ð1Þ

where F is the attractive force, m1 and m2 are the masses of each agent, G is the
constant and r is the distance between centres of two masses. Total attractive force
applied on the ith robot (RiA) in the swarm is defined as follows:

RiA ¼
Xn

j¼1

~Fj ð2Þ
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Fig. 1 Flowchart of the
collective behaviour
framework
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2.2 Generic Grouping Algorithm

Randomly located robots in the swarm apply force and attract each other based on
(2), as illustrated in Fig. 2. Afterwards, robots start moving in the direction of
resultant force in order to approach each other that each robot continues moving
until the applied attractive force exceeds a certain limit, as shown in Figs. 2 and 3.
Stationary robots wait other robots to approach them until the predefined grouping
number, ‘3’ for this example, is reached. This, in essence, provides a decentralized
aggregation and grouping behaviour for robots without requiring any direct com-
munication. Once the robots get close each other as request, the proposed algorithm
achieves leader assignment in a decentralized manner. According to which, first,
each robot calculates the relative position of each of the surrounding robots using
range finder sensor. Next, each robot considers itself as the origin of its local

Fig. 2 Resultant force
vectors of robots

Fig. 3 Robots approach to
each other using force vectors
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coordinate system and observes other robots’ location to estimate at which quad-
rants they are placed in the coordinated system. Consequently, a robot is accepted
as the leader of its group once other members are located in the same quadrants. An
example scenario is shown in Figs. 4 and 5a, illustrating the leader assignment
procedure. According to scenario shown in Fig. 4, each robot applies the given
algorithm to select a leader for the group without performing any direct commu-
nication or employing a central decision mechanism. The decision mechanism of
the algorithm for the given scenario works as follows:

• For the first robot (shown in Fig. 5a), the second robot is at 1st quadrant but the
third one is placed at the 4th quadrant.

• For the second robot (shown in Fig. 5a), the first robot is at the 3rd quadrant but
the third one is placed at the 4th quadrant.

• For the third robot (shown in Fig. 5a), the first and the second robots are shown
at the 2nd quadrant.

The results of the algorithm indicate that the third robot is the only one to be able
to detect other robots at the same quadrant (shown in Fig. 5a), which makes it the
leader of the group according to the aforementioned algorithm; whereas the first and
the second robots realise that they cannot be the leader. In addition, the algorithm
also enables members (other robots in the swarm) to directly detect the location of
the leader. Accordingly, once the leader assignment algorithm is executed, each

(a)

(b)

Fig. 4 Example scenario for
grouping algorithm: a initial
scenario illustrating applied
forces, b generic grouping
algorithm

A Collective Behaviour Framework for Multi-agent Systems 65



robot realises other robots’ role and location in a decentralized approach. The only
exception to this algorithm occurs when all robots lie on the same line. In order to
prevent this, an assumption is made that robots cannot be located initially on the
same line.

2.3 Coordinated Motion of Swarm

A centre of gravity based navigation approach is addressed to execute the coor-
dinated motion of the robots, from an initial position to the goal position. Once the
leader assignment task is completed, the leader robot moves towards a specific goal
while avoiding obstacles based on the potential field method (Khatib 1985). The
method proposes an elegant solution to the challenging path finding problem. The
attractive potential is assigned for the goal, whereas a repulsive potential is assigned
for each of the obstacles in the environment. In general the scalar potential field
P can be defined as:

(a)

COG

Goal

Obstacle 1

Obstacle 2

Leader

(b)

Fig. 5 Example scenario for
COG based navigation:
a leader is calculated for the
group, b coordinated motion
of swarm based on COG
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P ¼ Patt þPrep ð3Þ

where Patt and Prep represent attractive and repulsive forces correspondingly. The
vector field of forces F(q) is given by the gradient of U:

Fq ¼ �rPatt þrPrep ð4Þ

The details of the potential filed method used in this study can be seen in Koren
and Borenstein (1991) and Tang et al. (2010). As it is expected, one of the most
critical issues in this framework is to be able to move robots in a coordinated
manner.

As soon as the leader is selected, it is steered towards a specific goal according to
the potential field method as aforementioned. Member robots, on the other hand,
tend to stay in the group while the leader moves to a goal. Consequently, a simple
but efficient method was proposed. According to which, the point referring the
centre of gravity of the group is calculated by member robots, allowing them to
both stay in the group and navigate along the direction of the leader.

The main idea lying behind the proposed navigation strategy is to assign an
artificial mass to the COG point that applies a gravitational force to member robots.
The COG point is updated continuously during the navigation behaviour of the
leader robot, as illustrated in Fig. 5. The COG point is updated in each iteration of
leader’s search procedure, resulting in instant change in applied gravitational force
on member robots. Member robots are eager to move the direction of the COG
point so as to keep the force applied on them at the limit value. This COG based
navigation strategy allows member robots to stay in the group and prevent them
colliding with obstacle. Coordination motion strategy is also designed in a
decentralized manner. However it is assumed that robots’ known each other’s mass,
which is the only limitation of the algorithm. Results of preliminary experiments
revealed that assigning smaller mass to member robots than the leader provides
more accurate coordinated motion behavior.

3 Evaluation of the System

In order to estimate the capability of the proposed work, the system has been
evaluated using a simulator. The simulator was implemented by authors based on
the Matlab toolbox. A series of simulations has been conducted to verify that the
robots are able to navigate towards a goal in a coordinated and safe manner. The
interface of the simulator allows users to add robots, obstacles and goals deliber-
ately or randomly into the working environment. Algorithms of the proposed
system can be visualized as a whole or individually. Table 1 summarizes the
parameters employed for experiments that include initial parameters assigned for
grouping and coordinated motion behaviors respectively. For instance, ‘Gl’ refers
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attraction force, applied between robots whereas ‘Gbg’, ‘Omass’ and ‘Rmass
’ refer

mass values employed during the grouping behavior. On the other hand, ‘Amass’ is
considered as the most critical parameter for coordinated motion behavior, which
denotes repulsive force applied between robots. This is in essence responsible from
preventing collision between robots in the same group and allows those robots to
move in a coordinated manner. Initial mass value, assigned to calculate COG is also
given in the corresponding table that the mass of the leader and member robots are
adjusted for the coordinated motion behavior.

A comprehensive example is shown and detailed in this section. Figures 6, 7 and
8 illustrate this example where there exists 9 robots, 5 obstacles and 3 goals in the
corresponding scenario, as shown in Fig. 7, which also illustrates the critical
grouping and leader selection behaviours for this example. Once the leader is
assigned to each group, COG point is calculated (see Fig. 7) based on the
parameters, shown in Table 1. Afterwards, the leader starts moving towards the

Table 1 Parameter table for experiments

Parameters for experiments

Parameter Value Explanation

Parameters before grouping
Gl 0.78 Maximum gravitational limit between robots while grouping

Rmass 2.0 Robots ‘initial mass

Omass −0.24 Obstacle mass

Gbg −1.5 Target mass before grouping

Gc 3.0 Number of robots belong to each group

Parameters after grouping
Amass −0.85 Attraction mass between robots after grouping

Gag 3.0 Target mass after grouping

Clmass 3.0 Leader mass for COG calculation

MCOG 1.0 Member mass for COG calculation

Cmass 2.0 COG initial mass

Fig. 6 Grouping and leader
assignment task
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goal with the potential field method. Shortly after the leader starts navigation,
member robots are enabled and starts following the COG point which is modified
continuously within the maneuver of the leader as illustrated in Fig. 8. This figure
also demonstrates the paths followed by each robot that all robots achieve to reach
the goal while avoiding collision with obstacles.

4 Conclusions

Decentralized control of multi-agent systems is a critical engineering field and has
recently gained a lot of attention from researchers. In this manner, this paper
proposes a new framework for aggregation and coordinated motion of swarm
robots in a decentralized manner. The framework presents a generic grouping
approach that groups robots in a hierarchical manner and allocates a leader for the
group. The approach does not require any direct communication between robots
and is designed using virtual physic-based algorithms. The leader robot of each
group, possessing a map based navigation strategy, tends to move towards a

Fig. 7 COG are calculated
for each group

Fig. 8 Groups achieve to
reach the goal while
preventing collision
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specific goal while avoiding obstacles placed on its path. On the other hand,
member robots, utilizing a COG based algorithm, move the direction of the leader
while keeping themselves in the group with a safe and coordinated motion.

Simulation experiments reveal that the proposed framework achieves high
degree of accuracy in complex scenarios. These results encouraged authors to
conduct real word experiments with the proposed framework in order to assess the
overall performance of the framework. Besides, an intelligent patter recognition
module will be integrated into the proposed framework to separate obstacles from
robots during the grouping and leader selection tasks. This will allow robots to
ignore obstacles at the initial state and enhance the overall performance of the
grouping algorithm.
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