
Tailoring Agile in the Large: Experience and Reflections
from a Large-Scale Agile Software Development Project

Knut H. Rolland1,3(✉), Vidar Mikkelsen2, and Alexander Næss1

1 Westerdals Oslo School of Arts, Communication and Technology, Oslo, Norway
rolknu@westerdals.no, nesale14@student.westerdals.no

2 Sopra Steria, Oslo, Norway
vim@soprasteria.com

3 SINTEF, Trondheim, Norway

Abstract. It is not surprising that agile methods are tailored or customized in
various contexts and projects. However, there is little advice for practitioners for
how to go about tailoring agile methods in large-scale projects. Henceforth, the
aim of this experience report is to highlight some of the challenges with large-
scale agile software development and especially how to deal with these challenges
involves continuous tailoring of the agile method in use. In so doing, we report
from a large-scale agile software development effort involving more than 120
participants in a Governmental organization and running for 3,5 years. The project
consisted of three deliverables, partly developed in parallel after a delivery model
based on Scrum. After a much troubled start related to scaling challenges and
architecture complexity during the first deliverable, the project was turnaround
and the second and third deliverables were portrayed fairly successful by both
supplier and customer. From a practitioner’s perspective, we found that novel
practices emerged through out the project that improved the way of working –
especially across teams and stakeholders. Based on this, we describe some guide‐
lines for tailoring agile in the large.

Keywords: Large-scale agile software development · Method tailoring ·
Software development practices

1 Introduction

In this experience report we draw from a recent large-scale agile software develop‐
ment project in a Norwegian Governmental organization. The project involved over
120 participants and was delivered through three distinct deliverables over 3,5 years.
The project was highly prestigious and critical, as the Governmental organization had
failed in two previous projects in replacing their core IT-systems. The specific
context and complexity of the project with numerous external stakeholders, integra‐
tion with existing portfolio of IT-systems, public contracting legislation, and replacing
core legacy IT-systems made tailoring of a Scrum-based delivery model necessary.
Existing literature on agile methods has for long underscored the need for tailoring
to fit specific contexts and different types of projects [1–3]. However, the empirical
literature on tailoring is not substantial, and there is little concrete advice for

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 244–251, 2016.
DOI: 10.1007/978-3-319-33515-5_22



practitioners for how to go about doing tailoring and what to tailor in practice. Argu‐
ably, especially when agile methods and practices are scaled to larger projects in terms
of involving multiple teams, heterogeneous users needs, complex software architec‐
tures, and numerous integration efforts with existing IT-systems, there is a pressing
need to tailor and blend different agile methods [4]. Henceforth, the aim of this report
is to contribute to a richer understanding of tailoring agile methods in the context of
large-scale projects – and based on this, to carve out some guidelines that would be
useful for others. We believe our experience and reflections from this project would
be of interests to both project managers and developers as experience and guidelines
for tailoring agile methods are hard to come by.

The remainder of this experience report is structured in the following way. The next
section explains the case context. Then, we describe and analyse some of the experiences
through out the project. Next, based on our experiences and some literature we try to
give advice for tailoring agile in the large.

2 The Case: The Brownfield Project

Context. A case study of a major software development project was conducted from
September 2014 to December 2015. The project, referred to as the Brownfield project,
was a large-scale agile development effort involving over 120 participants over 3 years
from 2011 to late 2014. The project was organized as four development – or ‘Scrum’
teams and one team loosely related to the project developing a business intelligence
solution. Experience from this project is especially interesting in many respects. Firstly,
the supplier, the Consulting company had just recently before starting on the Brownfield
project been part of a prestigious large-scale agile software development project that
was especially known nationally for being a success – and often used as a template for
other large-scale agile projects in Norway. Secondly, the customer had tried two times
before earlier in the 2000s to implement the Brownfield project and failed considerably
in both cases.

This report is written based on 20 in depth-interviews of project participants, 2
workshops, project documents as well as numerous meetings with different participants.
Additionally, one of the authors was the project manager for the Consulting company
on the project during the third deliverable.

Three authors have written this report: one practitioner, one student, and one
academic. One of us was the project manager for the project during the last of three
deliverables. He has more than 10 years of experience as a project manager on large
software development projects and agile projects in particular. The other author is
currently a researcher working on a scientific case study of the project. Previously, he
has also been a practitioner for many years participating in large-scale agile software
development projects. The third author is a student of information systems management
and innovation, who also has a background in industry. Obviously, our differences in
experiences and background made the writing process especially interesting, as we were
able to challenge each other’s biases.

Tailoring Agile in the Large: Experience and Reflections 245



The scrum-based delivery model. The project followed a Scrum-based model that
interestingly had been used by a recent large-scale project where the Consulting
company was involved. This previous project was perceived as highly successful, and
is generally regarded as ‘best practice’ for doing large scale agile in the Norwegian IT
industry.

The Scrum-based delivery model is characterized by splitting up a large project in
different deliverables as shown in Fig. 1 below. For each deliverable then, a semi-agile
process is followed by first defining user stories, then architectural design, overall UX
design, and refinement of user stories – but with a minimum of effort not to plan things
in too much detail.

Fig. 1. Scrum-based delivery model of the project.

Project description and goals. The Brownfield project was established in order to
replace The Client’s outdated legacy IT systems with a new integrated system for case
management. The new system was to be based on a Service Oriented Architecture, with
support for integration with a large number of external and internal systems. In addition,
the new system would include a web-based self-service solution aimed at the general
public, as well as a rule-based application processing engine reducing the need for
manual processing.

The project thus set out with four main goals:

• To replace fragmented case management systems with one integrated system.
• To replace manual processing with automated, rule-based processing.
• To establish a self-service web interface for the general public.
• To decommission legacy systems.

These goals were further elaborated in the form of a “dual goal matrix”, specifying main
business goals and main IT goals for each deliverable. The business goals were divided
by functional areas, reflecting the existing organizational and system structure. The IT
goals were more focused on architectural requirements, cutting across the functional
areas in order to establish what was seen as a desirable “future state” of architecture in

246 K.H. Rolland et al.



the organization. The background for the two subsets of goals was somewhat divided:
The business requirements were related to limitations of the existing system portfolio
in supporting new government regulations, interfacing with external parties, and effi‐
ciency in case management and processing. The technical requirements were driven by
the strong internal technical organization’s vision of a future-proof, platform inde‐
pendent architecture which would allow the organization to “pick and choose” technical
components in a vendor independent manner. These technical requirements were
communicated in the form of architectural standards and policies. In addition, the
Customer had already purchased a number of technical components as part of existing
vendor purchasing agreements for related database systems. The Consulting company
was asked to consider the use of these components in developing the new architectural
platform. At the outset of the project, it quickly became clear that the Customer was
overwhelmed by the amount of work required in order to determine and specify require‐
ments. The technical and architectural requirements seemed especially unclear, and
resulted in a lot of time being spent by both parties in order to better understand what
was actually required to be developed by the Consulting company. As a result, the first
deliverable was delayed, and ultimately merged with the second planned deliverable in
an effort to save time by skipping one of the planned production migrations.

3 Agile Method Tailoring in the Project

After a much troubled start related to scaling challenges and architecture complexity
during the first deliverable, the project was turnaround and the second and third deliv‐
erables were portrayed fairly successful by both supplier and customer – including their
end users. Noteworthy, we came across the following new practices as the project had
been ‘turned around’:

(1) ‘Task forces’ were established across teams to deal with common challenges such
as performance issues;

(2) ‘Champion roles’ were implemented working across teams on specific technology
issues for example databases or java scripting;

(3) ‘Specifying up front’ in terms of close collaboration between customer and supplier
in preparing user stories, uncovering dependencies and prototyping prior to sprints;

(4) ‘Re-distributing development tasks’ within the current sprint in order to utilize
competence across teams and scale the project.

(5) ‘Mini demos’ were improvised in the middle of sprints to get users’ feedback as
soon as possible, and to do smaller adjustments to features and/or interaction design;

We will briefly describe these practices in more detail in the following sub-sections
below.

Task forces. In traditional agile development, participants in projects are supposed
to work within teams. In this project, however, an informal role of temporarily ‘task
forces’ was formed. Task forces were formed on developers’ own initiative for tack‐
ling specific pressing problems relevant across the four development teams. These
were typically problems related to non-functional requirements. For example,

Tailoring Agile in the Large: Experience and Reflections 247



security issues, performance problems and ways of integrating with external systems
and standardized components.

Task forces were initially not initiated by management, but grew out of a need
recognized by some developers at one of the development teams. The developers recog‐
nized that they had common problems across teams and started informally to sit together
with fellow developers belonging to a different team. This practice was later sanctioned
and even facilitated by team leaders and project management for better solving problems
across teams.

Our analysis is that task forces not only solved common problems, but also greatly
helped coordinating work across teams and helped building a more common under‐
standing across teams both regarding software architecture and business domain. In this
respect, task forces became a necessary addition to scrum-of-scrums in that they had a
much more detailed focus on solving specific problems.

Champion roles. While the task forces explained above were of a more temporary
nature, the champion roles were more permanent. Champion roles also started bottom-
up from a perceived need in the teams to coordinate and standardize certain ways of
doing things in the project. For example, it was established champion roles for java
scripting and databases ensuring a common way of working with and implementing
these technologies across teams.

Champion roles rotated among competent individuals, and over time this also
became more sanctioned and facilitated by management.

Similar to task forces, but more stable – champion roles implied better inter-team
coordination and standardization of working. Additionally, it also increased learning
among teams and members from different teams.

Specifying up front. In collaboration with the customer, the project started to have a
more formal process before a new sprint was initiated and sprint planning started. This
process where referred to as the ‘ready-to-sprint’ processes, and engaged all the relevant
actors for coordinating and planning of the work to be conducted in the upcoming sprint
in more detail. Depending on the specific challenges and type of work to be conducted
the process ensured that all involved actors had contributed and were coordinated. This
process could include further specification of user stores, flow diagrams, description of
technical as well as functional dependencies, and more overall architectural issues.

A crucial skill in agile development is to conduct the Product owner role and the
ability to create Epics and user stories upfront the sprints. The project organization
addressed these issues by including two persons from the customer in each scrum team
with the role “functional responsible”. The role was part of the customers Product owner
team, and participated both in specification work and to cope with functional clarifica‐
tions throughout the sprints.

Already from the first sprints conducted, it proved major challenges to establish
effective ways of handling the product backlog, agile collaboration that supported both
common understanding of specifications, ensure consistent architecture implementation

248 K.H. Rolland et al.



across teams and handling clarifications of upcoming issues. Corrective actions were
issued by training the Product owner in necessary skills and adding trained functional
architects to the scrum teams. The actions, which were taken, did help to some extent,
but it was necessary to make some fundamental adaptations to ensure a more robust
process.

Our analysis is that this made the initiation of the sprints more effective and ensured
that key participants were coordinated irrespective of team and role in the project.
Although this practice inevitably implies more planning up-front seemingly in conflict
with the agile principles and practices, we will argue that this practice is more aligned
to the characteristics of large-scale agile where there is an increased need for more
standardization and coordination across teams and roles.

Re-distribution of work tasks. Partly as a consequence of the previous practice, the
project got increased flexibility to re-distribute work tasks across teams within a sprint.
This practice was a part of striking a balance between the need for competence and
efficiency at the one hand, and the evenly distribution of work among teams on the other.
The practice was especially useful in the last sprints of a deliverable when user stories
belonging to different domains did not imply equal distribution of work effort between
teams.

Again, this practice may seem odd, and even unproductive, from the perspective of
‘textbook agile’. However, this gave the project as a whole better utilization of the teams
and also helped spread competence across teams. On the other hand, we also see that
this practice should be used with care and only for smaller tasks when necessary typically
late in the project.

Mini demos. The project had some especially competent project members who had
long experience from other large-scale agile projects. Some of the practices they adopted
from a previous project were the practice of ‘mini demos’. The crucial point in doing
mini demos in the middle of sprints was to demo features as soon as they were developed
irrespective of when. Typically, this was practiced as a way of negotiating and getting
feedback on details regarding functionality and interaction design. In that way, devel‐
opers and designers could easily do the last finishing touches right away, without going
through a more formal demo and going back to those details in the following sprint.

Thus, these mini demos both made the ongoing communication and collaboration
with the customer smooth and at the same time reduced the administrative cost for both
parties.

4 Implications for Tailoring Agile in the Large

In this section we propose some practical guidelines for tailoring agile in the large. We
do not want to be too bold and generalize too much, as guidelines as these could easily
be misinterpreted and used in contexts that are not comparable to our project. However,

Tailoring Agile in the Large: Experience and Reflections 249



we argue that there is something more general worth mentioning based on our
experience. The suggested guidelines are:

(1) Experiment with new practices. For tailoring agile in the large, projects should
experiment with practices that highlight functional and technical interdependencies
in the software being developed. This would help improve coordinating and
communicating across teams and roles.

(2) Facilitate novel practices to emerge. It should be underscored that project
managers should be wary of trying to enforce predefined tailored practices.
However, although agile methods and principles tend to emphasize bottom-up
initiatives, successful tailoring can be both bottom-up or top-down initiated.

(3) “Record, and move on”. Do not wait for sorting out contractual details. Try to
establish trust to that pragmatic decisions can be made and temporary solutions can
be sought.

(4) Improve inter-team coordination. Establish both long term ‘communities of
practice’ and short term ‘task forces’ across teams.

(5) Scale the project in an evolutionary manner. Plan for a ramp-up phase allowing
customers to get accustomed to the working process. Conduct training activities to
ensure customers are aware of what is required of them.

(6) Adjust content in sprints. Allow time for customers to absorb and process new
information, and coordinate requirement elicitation with stakeholders in their
organization. This can be done by inserting technical sprints where programmers
focus on technical tasks, in order to allow customers a “programmer’s holiday” [5].

5 Concluding Remarks

In this experience report we have emphasized the ways in which a large-scale agile
software development effort has been tailored during the process. Here, tailoring was
not done up-front, but rather emergent during the development over 3,5 years. Especially
in this report we have highlighted and described five different practices and roles: (1)
‘Task forces’, (2) ‘Champion roles’, (3) ‘Specifying up front’, (4) ‘Re-distributing
development tasks’, and (5) ‘Mini demos’.

We argue that these novel practices are good examples of agile method tailoring
reflecting the complexity and large-scale characteristics of the project. We do not argue
that these actual practices denote any ‘ultimate way’ of tailoring agile projects, but more
on an analytic level – that in succeeding with large-scale projects continuous tailoring
throughout the process is necessary.

In reflecting upon the establishment of these practices we discuss how some are
bottom-up initiatives (1, 2 & 4) largely initiated, planned and coordinated among team
members themselves with no or little management involvement. Whereas some practices
can be described as a blend of bottom-up and top-down (3 & 5) where management are
much more involved.

Furthermore, we recognize that all of the practices turn out more emergent. They
were not deliberately planned and adjusted ahead of starting the project – but emerged
over time based on the involved actors’ experiences. Collectively, then, the project

250 K.H. Rolland et al.



seems to preserve a sense of agility in terms of ‘learning from change’. Additionally,
interestingly, some of these practices are seemingly also in conflict with the agile prin‐
ciples – notably (3) focusing on planning.

Acknowledgments. This article was written with support from the project Agile 2.0, which is
supported by the Research council of Norway through grant 236759/O30, and by the companies
Kantega, Kongsberg Defence & Aerospace, Sopra Steria and Sticos.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change.
IEEE Comput. 36, 39–43 (2003)

2. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale Agile development. In: Dingsøyr,
T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP, vol.
199, pp. 1–8. Springer, Heidelberg (2014)

3. Haugset, B., Hanssen, G.K.: Automated acceptance testing: a literature review and an industrial
case study. Presented at the Agile 2008, Proceedings, Toronto (2008)

4. Jones, C.: Software quality in 2012: a survey of state of the art. Presentation by Namcook
Analytics LLC. www.namcook.com

5. Martin, A., Biddle, R., Noble, J.: XP customer practices: a grounded theory. In: Proceedings - 2009
Agile Conference, AGILE 2009, pp. 33–40

Tailoring Agile in the Large: Experience and Reflections 251

http://creativecommons.org/licenses/by-nc/4.0/
http://www.namcook.com

	Tailoring Agile in the Large: Experience and Reflections from a Large-Scale Agile Software Developme ...
	Abstract
	1 Introduction
	2 The Case: The Brownfield Project
	3 Agile Method Tailoring in the Project
	4 Implications for Tailoring Agile in the Large
	5 Concluding Remarks
	Acknowledgments
	References


