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Abstract The optimal velocity (OV) model was proposed to explain the physical
mechanism of jam formation. The emergence of a traffic jam can be understood as
a kind of dynamical phase transition. We confirmed the physical mechanism by two
experiments. In this study, we investigate the relation between experimental results
and observations of real traffic based on the OV model. In the OV model, the critical
density at which a traffic jam occurs is determined by the OV function. The OV
function is estimated from data of headway and velocity obtained by the experiments.
Then,wepropose a scaling rule of theOVfunction from the experiments to real traffic.
Using this rule, we obtain critical density as a function of a single parameter. The
obtained critical density is consistent with the observed values for highway traffic.
From this result, we conclude that the jam formation in real traffic is explained by
the same mechanism as the circuit experiments.
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1 Introduction

The optimal velocity (OV) model was proposed to explain why a traffic jam occurs
[4]. The occurrence of a traffic jam is considered to be a kind of dynamical phase
transition. If the car density is low, homogeneous flow, which corresponds to free
flow in real traffic, is realised. If the car density exceeds a certain critical value, the
homogeneous flow becomes unstable and transits to jammed flow. In order to confirm
this physical mechanism of traffic jam, we carried out two circuit experiments. In the
first experiment [12], we confirmed that the traffic jam occurs without bottlenecks,
that is, without any causes which can be identified. The second experiment consisted
of many sessions with various car density. From the experiment, we estimated the
critical density [14]. This result shows that the density is the control parameter of jam
formation. As a result of two experiments, the physical mechanism of traffic jam is
confirmed. However, there is a criticism that circuit experiments are unrealistic situ-
ations and the results obtained by those experiments cannot be applied to real traffic.

In this study, we investigate the relation between circuit experiments and real
traffic.Wefirst determine the parameters of theOVmodel in the two experiments. The
experimental values are different from those for real traffic, because the maximum
velocities in the circuit experiments are smaller than those in real traffic. Next, we
find a relation between the parameters in the circuit experiments and real traffic, and
define a scaling rule for the parameters. If the relation is established, we can predict
the critical density in real traffic without additional estimation of parameters. In our
method, the critical density is given by a function of a single parameter. The predicted
critical density is tested against observations of real traffic.

This paper is organised as follows. In Sect. 2, we briefly review the OV model.
The estimation of the model parameters is shown in Sect. 3, and the scaling relation
between the experiments and real traffic is shown in Sect. 4. A summary is given in
Sect. 5.

2 Review of Model

The OV model is expressed by the equations of motion

d2xi
dt2

= a

[
V (xi+1 − xi ) − dxi

dt

]
, (1)

where xi is the position of the i th car. The parameter a is called sensitivity. The OV
function V (h) expresses the optimal velocity as a function of headway h. Typically,
we adopt a hyperbolic tangent function as the OV function

V (h) = α tanh[β(h − h0)] + v0. (2)

Sensitivity a and the OV function V are assumed to be common to all cars.
The OV model predicts that a homogeneous flow becomes unstable and transits

to a jammed flow if
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dV (h)

dh

∣∣∣∣
h=hmean

>
1

2
a , (3)

where hmean is the mean headway. Then, the critical density ρc = 1/hcritical can be
analytically calculated from Eq. (3).

ρc =
[
1

β
cosh−1

√
2αβ

a
+ h0

]−1

. (4)

Therefore, the difference of critical density between the experiments and real traffic
is reduced to the difference in the OV function.

Properties of traffic jams in the OV model are summarised as follows. When the
jammed flow becomes stationary, the trajectories of all cars in the headway-velocity
space are expressed by a hysteresis-like loop shown in Fig. 1 [3]. In other words, the
motion of all cars becomes periodic. In most of the period, however, cars stay in the
states represented by the two cusps of the loop. The lower cusp represents the state
of cars inside jam clusters, and indicates the minimum headway at which cars stop.
The upper cusp represents the state in which cars are running almost freely in the
regions outside the jam clusters. The backward velocity of a jam cluster is given by
the velocity-axis intercept of the line connecting the upper and lower cusps (Fig. 1).
Here, we note that the inflection point of the hyperbolic tangent function also lies on
this line.

Because the motion of all cars is periodic, each car retraces the motion of the
preceding car with a certain time delay. The time delay T is equal to the time interval
at which cars depart from a jam cluster one after another. Therefore, T is given by

T = hmin

vback
, (5)

where hmin is the minimum headway and vback is the backward velocity of jam
clusters.

inflection point

backward velocity

ve
lo

ci
ty

minimum headway

headway

Fig. 1 Typical hysteresis-like loop. The OV function is represented by a thin solid curve. The thick
solid loop represents the periodic motion of the cars. The dashed line connects two cusps. Black
dots on the line represent the inflection point, the minimum headway and the backward velocity,
respectively
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It is known that a relation exists between sensitivity a and the time delay T in the
framework of the OV models [1, 2, 8, 13]. The value of aT is known as 1.6 ∼ 1.8,
and is insensitive to changes in the model parameters. Here, we set

aT = 1.8. (6)

Then, the sensitivity is not a free parameter, and is essentially determined by the OV
function through T .

3 Estimation of OV Function

In this section, we estimate the parameters in the OV functions from the experimen-
tal data. OV functions express the relation between headway and velocity. In the
experiments, three types of flow, free, jammed, and stop-and-go flow are realised.
Figure2 shows relations between headway and velocity for the three types of flow.
Obviously, data points cover only a part of the OV function in the cases of free and
jammed flows. We can estimate the OV function in the case of stop-and-go flows.

In the estimation, we first choose five representative points to determine the OV
function, and next fit a function to these points.

Two of the five points are two cusps of the loop shown in Fig. 1. The lower cusp is
given by the minimum headway, which is the headway in jam clusters. To determine
the minimum headway, we select data of stopped cars and average their headway.
The upper cusp is found in the data sequence at the moment that stopped cars exist.

Three of the five points are determined by the distribution of data points of head-
way and velocity. We first obtain smooth distribution by Parzen window density
estimation. In this method, we assign a Gaussian distribution for each data point
and sum them over all data points. Two peaks and one saddle point of the smoothed
distribution are found. Then, we can determine five representative points. Figure3a
shows the smoothed distribution and the five points. The OV function fitted to these
points is obtained by the standard least square method. The estimated OV function
is also shown in Fig. 3a. We observed the stop-and-go flow in four cases in the two
experiments. Then, four OV functions are obtained for these cases. Figure3b shows
the OV functions for four cases.
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Fig. 2 Headway-velocity relations for the three types of flow: free flow (a); jammed flow (b);
stop-and-go flow (c) Dots represent headways and velocities for all cars
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Fig. 3 OV functions. Smoothed distribution of headway and velocity. Colours represent the loga-
rithm of the summation of Gaussian distributions. Black dots represent two peaks and a saddle point
of the distribution. Two cusps are also shown by black dots. Solid curve represents the fitted OV
function (a), OV functions are determined for four cases of stop-and-go flow. Two legends 2030
and 2934 represent session IDs in the second experiment, and run (I) and (II) represent two sessions
in the first experiment (b)

4 Scaling Relation

In this section, we propose a scaling rule for the OV function. The OV function
(Eq.2) has four parameters, α, β, h0, and v0. The scaling rule should be defined by
a single scaling parameter, and therefore three relations are necessary to reduce free
parameters. For this purpose, we use two observational facts.

One is a relation among inflection points for experiments and real traffic. The
inflection points for real traffic can be easily identified from car following experi-
ments on real highways [11, 16]. Figure4 shows examples observed onChuo, Tomei,
and Tokyo metropolitan highways [11]. The inflection point is considered to be the
most unstable point in the OV model, and therefore is expected to exist at the place
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Fig. 4 An example of the car following experiment: Chuo (a); Tomei (b); Tokyo (c) Red dots
represent the position of data points of headway and velocity. The black cross represents guessed
inflection points
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Fig. 5 Black squares
represent inflection points
from our experiments.White
and black circles represent
inflection points from
Japanese highways reported
in [11] and [16], respectively.
Solid line represents the line
fitted to the data
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Fig. 6 Illustration of the
scaling rule. Solid curves
represent two OV functions
related by the scaling rule.
Each dashed line connects
the inflection point and the
point corresponding to the
backward velocity
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where there are no data points. The position of the inflection point for each case is
estimated by eye.

Figure5 shows inflection points observed in the experiments and on real highways.
We suppose that there is a linear relation

v = 0.7(h − 2), (7)

among inflection points.
The other observational fact is that the backward velocity of jam clusters is com-

mon for the experiments and real traffic. Observations on real highways show that
the backward velocity is roughly 20km/h [12, 15]. On the other hand, the backward
velocity is roughly 6m/s in our circuit experiment [14]. Obviously, both jam clusters
have almost the same backward velocity.

Now, we can define a scaling rule by use of the above two facts and the property of
jam in the OV model. The scaling rule is summarised as follows: (1) Inflection point
lies on the line (Eq.7), (2) Backward velocity is 6 m/s, (3) The OV function passes
the point corresponding to minimum headway determined by the infection point and
the backward velocity. Figure6 shows an illustration which explains the scaling rule.

From this scaling rule, we can find relations among parameters of OV functions.
Suppose two OV functions for experiments and for real traffic as
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Fig. 7 Critical densities for sessions 2030, 2934, run (I), and run (II) shown in Fig. 3b. Black solid
bar represents the range of critical density estimated in [14]. White square, black square, white
circle, black circle, and black triangle represent the critical densities for real highways reported in
[7], [5], [9], [6], and [10], respectively

V (h) = α tanh[β(h − h0)] − v0, (8)

V ′(h) = α′ tanh[β ′(h − h′
0)] − v′

0, (9)

respectively. Then, the relations among parameters are given by

α′ = v′
0

v0
α, (10)

β ′ = h0 − hmin

h′
0 − h′

min

β, (11)

h′
min = vback

v′
0 + vback

h′
0 . (12)

and Eqs. (6) and (7). Any of parameters, α′, β ′, etc., can be used as scaling parameter.
For convenience, we adopt the maximum velocity α′ + v′

0 as the scaling parameter,
because it corresponds to the speed limit of a road.

Then, the critical density (Eq.4) can be expressed by a function of the maximum
velocity. Because we found four OV functions as shown in Fig. 3b, we obtain four
expressions for the critical density. Figure7 shows the profiles of critical density in
the four cases and observed values on real highways [5–7, 9, 10] and the experiments
[14]. The estimated critical density roughly agrees with the observed values.

5 Summary

In this study, we investigated the relation between critical densities for the circuit
experiments and real traffic based on the OV model. In the OV model, the difference
of critical densities is essentially determined by the difference of OV functions.
For the purpose, we first estimated the OV function from the data obtained by the
circuit experiments. In order to find the relation between OV functions, we used two
observational facts. One is the relation among inflection points of OV functions, and
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the other is the common backward velocity of jam clusters. These facts determined
the scaling relations among the parameters of OV functions. As a result, we can
express the critical density as a function of a scaling parameter. The agreement of
estimated critical density with observed values is fair. Then, we can conclude that
the jam formation in real traffic is explained by the same mechanism as in the circuit
experiments.
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