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Abstract The kinetic theory approaches to vehicular traffic modelling have given
very good results in the understanding of the dynamical phenomena involved [3, 8].
In this work, we deal with the kinetic approach modelling of a traffic situation where
there aremany classes of aggressive drivers [5]. Their aggressiveness is characterised
through their relaxation times. The reduced Paveri-Fontana equation is taken as a
starting point to set the model. It contains the usual drift terms and the interactions
between drivers of the same class, as well as the corresponding one between different
classes. The reference traffic state used in the kinetic treatment is determined by a
dimensionless parameter. The balance equations for the density and average speed for
each class are obtained through the usual methods in the kinetic theory. In this model,
we consider that each class of drivers preserve the corresponding aggressiveness, in
such a way that there will be no adaptation effects [6]. It means that the number of
drivers in a class is conserved. As preliminary results, we have obtained a closure
relation to derive theEuler-like equations for twodrivers classes. Somecharacteristics
of the model are explored with the usual methods.

1 Introduction

In the literature, traffic flow in highways is described through different approaches
going from the microscopic to the macroscopic points of view [1, 3, 8]. All have
advantages as well as problems in their development. Our goal in this work is the
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construction of a macroscopic model starting from a kinetic approach for multiple-
user class of drivers, in particular, we will focus in two classes of drivers which have
certain aggressiveness. We characterise it by means of the response time, which is
shortly called the relaxation time, one for each class τ1, τ2, τ1 �= τ2. Our treatment
starts with the Reduced Paveri-Fontana equation (RPF) for the distribution function
fi (c, x, t) where we have introduced a model for the averaged desired speed, then
the homogeneous steady state (equilibrium) in the system leads to a parameter α

which contains the aggressiveness parameter, the characteristic density and average
speed proper to this state ρe

1, ρe
2, ve1, ve2 [6]. The kinetic model is averaged over the

speed c to obtain the macroscopic equations with the interaction terms. Then, the
distribution function corresponding to equilibrium is written in terms of the local
densities and speeds and they are taken to calculate the passive and active interaction
integrals, leading to a closure relation in the macroscopic description.

2 The Model

The kinetic model we consider to construct our macroscopic description is the
reduced Paveri-Fontana equation (RPF), which comes from an integration over the
desired speed giving place to an average speed called as c0(c, x, t) where c is the
instantaneous speed of vehicles.On the other hand, the interaction terms are separated
according to an active ψi (c) or passive ξi (c) interaction as follows

∂ fi (c)

∂t
+ c

∂ fi (c)

∂x
+ ∂

∂c

(
c0(c) − c

τi
fi (c)

)
= (1 − p)

∑
j

[
ρi f j (c)ξi (c) + ρ j fi (c)ψ j (c)

]
(1)

where p is the probability of overpassing and the interaction terms are defined as

ψi (c) =
∫
w<c

(w − c)
fi (w)

ρi
dw, ξi (c) =

∫
w>c

(w − c)
fi (w)

ρi
dw, (2)

where it should be noted that we have written only the instantaneous speed depen-
dence to shorten the notation. Clearly, the distribution functions and the densities
depend on (x, t). The densities and average speeds are defined as

ρi (x, t) =
∫

fi (c)dc, vi (x, t) =
∫

c
fi (c)

ρi
dc = 〈c〉i . (3)

The average over c taken in Eq.1 leads to the density equations

∂ρi

∂t
+ ∂ρi vi

∂x
= −(1 − p)

∑
j

ρiρ j
[
v j − vi + 〈ψi 〉 j − 〈ξ j 〉i

]
, i = 1, 2 (4)

where 〈...〉i means the average over the fi distribution function, and it should be
noted that 〈ψ j 〉i − 〈ψi 〉 j = v j − vi . As a consequence, we obtain that both densities
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satisfy conservation equations as it is expected due to their lack of adaptation between
classes of drivers. Also, the macroscopic equations for flux are obtained from Eq.1
after the multiplication by c and the corresponding integration

∂ρi vi
∂t

+ ∂

∂x
(ρi v

2
i + Pi ) = ρi

τi
(V 0

i − vi ) + (1 − p)
∑
j

ρiρ j
[〈cξi 〉 j + 〈cψ j 〉i

]
,

(5)

where V 0
i (x, t) comes from the average of the desired speed now taken over the

instantaneous speed c, Θ(x, t) = ∫
(c − vi )2 fi (c)dc is the i−class speed variance

and Pi is the traffic pressure. In this case, we do not have conservation equations.
Instead, we obtained a kind of relaxation equation from the average flux ρi vi to
ρi v∗

i (x, t) = ρi [V 0
i + τi

∑
j ρ j (〈cξi 〉 j + 〈cψ j 〉i )], which depends explicitly on the

interaction of both within (i − i) and between (i �= j) classes.
Let us call the interaction integrals as

Ii j = 〈cξi 〉 j + 〈cψ j 〉i , (6)

and we must calculate them with a distribution function fi (c) which is a solution of
the kinetic Eq.1. Here, we will use the local distribution function obtained for one
class of drivers, which is given as

fi (c, x, t) = ρi
α

Γ (α)vi

(αc

vi

)α−1
exp

(
−αc

vi

)
, (7)

where the (x, t) dependence is understood in the local variables (ρi , vi ) and Γ (α)

is the gamma function [9].
Then, when considering the interaction between vehicles in the same class it is

immediately obtained that Ii i = −ρiΘi . On the other hand, the case where i �= j
can be calculated in a closed way in terms of hypergeometric functions. In fact, we
have found that they can be approximated by a simpler expression with the step
function H (vi − v j )

Ii j = vi v j
{
2 −

(α + 1

α

)(v j
vi

+ vi
v j

)
H (vi − v j )

}
. (8)

3 Two Classes of Drivers

In order to analyse the macroscopic model we consider just two classes of drivers,
though it is clear that the treatment can be done in a more general case. Besides,
one class goes faster than the other v2 > v1 in such a way that there is only one
nonvanishing interaction integral between them I12 = 0, I21 �= 0.
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Also, the traffic pressure chosen corresponds to the usual model for one class
of drivers, it contains the speed variance Θi = v2i /α and an anticipation term pro-
portional to the average speed gradient and a coefficient similar to the viscosity,
then

Pi = ρi
v2i
α

− μi
∂vi
∂x

. (9)

Here, the first term comes from our equilibrium state solution in which 1/α can
be identified with the variance prefactor obtained from the empirical records in the
literature [7]. In a general case, the variance prefactor is a function of the density and
within a good approximation, it becomes a constant at low densities. In fact, it can
be seen that the dimensionless parameter α ∼ 100, a value which allows us to make
some approximations.

3.1 The Equilibrium State

Now, we write the set of macroscopic Eqs. 4 and 5 for this particular case

∂ρ1

∂t
+ ∂ρ1v1

∂x
= 0, (10)

∂ρ2

∂t
+ ∂ρ2v2

∂x
= 0, (11)

∂v1
∂t

+ v1
∂v1
∂x

= − 1

ρ1

∂P1

∂x
+ v∗

1 − v1
τ1

, (12)

∂v2
∂t

+ v2
∂v2
∂x

= − 1

ρ2

∂P2

∂x
+ v∗

2 − v2
τ2

, (13)

where the interaction integrals are given as

I11 = − v21
α

, I12 = 0, I21 � −(v2 − v1)
2, I22 = − v22

α
, (14)

v∗
1 = wv1 − τ1(1 − p1)

ρ1v21
α

, v∗
2 = wv2 − τ2(1 − p2)

ρ2v22
α

− τ2(1 − p2)ρ1(v2 − v1)
2, (15)

with the traffic pressure written as in Eq.9.
The solution for the equilibrium state is obtained in a direct way in terms of the

equilibrium densities. First, we find that v∗
1 = ve1(ρ

e
1) which will be written in terms

of a chosen fundamental diagram here simply called ve1, specified at the end of the
calculation. From Eq.13, the equilibrium speed for the second class is written as
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(ve2
ve1

)± = δ

{
β + 2α ± √

(β + 2α)2 − 4(1 + αδ)α/δ

2(1 + αβ)

}
, (16)

where δ = ρe
1

ρe
2
, β = τ1

τ2
are dimensionless quantities written in terms of the model

parameters and the equilibrium densities for both classes. It should be noted that
both values for the quotient ve2/v

e
1 are positive and their values depend on both the

model parameters and the densities in the equilibrium state.
Now, according to Eq.16 we have two equilibrium states and we have to decide

which one has a physical meaning. First of all, the average speeds must be positive
which means that the speed goes in the direction of the flow, both solutions satisfy
such criteria. Second, we will ask that a free flow regime must be stable at least in a
certain set of parameters values, otherwise, the model would be not able to reproduce
the free flow stage. Then, our next step will be the linear stability calculation.

4 Stability Analysis

As a first step in the model analysis, we will take a small perturbation around the
equilibrium state and calculate the conditions for the stability of the corresponding
equilibrium solution. Hence

ρi = ρe
i + ρ̂i exp(ikx − σ t), vi = vei + v̂i exp(ikx − σ t), (17)

where the perturbation has been expanded in modes with a wave vector k and a com-
plex frequency called σ in such a way that the stability condition for the equilibrium
state is determined by the condition Re (σ ) > 0.

In order to linearise the dynamical equations, it is necessary to make a comment
about the density dependence in the probability of overpassing. In fact, we have taken
the usual modelling and express it in terms of an effective density, then 1 − p = ρe f f ,
where ρe f f = ρ/ρmax . Besides, in the two classes model it has been argued [2,
10] that the effective density for the slow class (class-1 in our case) is given as
(ρ1)e f f = ρ1/ρmax . On the other hand, for the fast class (ρ2)e f f = (ρ1 + ρ2)/ρmax .

The direct substitution of Eq.17 in the set of Eqs. 10–13 and the corresponding
linearisation can be written in terms of a matrix in which its determinant must vanish
to obtain the dispersion relation,

⎛
⎜⎜⎜⎜⎝

−σ + ikve1 0 ikρe
1 0

(ve1)
2ik

αρe
1

− γ e
11
τ1

0 −σ + α+2
α

ikve1 + μ1
ρe
1
k2 + 1

τ1
0

0 −σ + ikve2 0 ikρe
2

− a1
τ2

ik(ve2)
2

αρe
2

− a2
τ2

− a3
τ2

−σ + α+2
α

ikve2 + μ2k2

ρe
2

+ 1−a4
τ2

⎞
⎟⎟⎟⎟⎠
(18)
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The quantities a are given as

a1 = −τ2ρ
e
2(v

e
2)

2

αρmax
− τ2

ρmax

[
2ρe

1(ρ
e
1 + ρe

2)(v
e
2 − ve1)γ

e
11 + (2ρe

1 + ρe
2)(v

e
2 − ve1)

2
]
(19)

a2 = − τ2

αρmax
(ρe

1 + 2ρe
2)(v

e
2)

2 − τ2ρ
e
1

ρmax
(ve2 − ve1)

2 (20)

a3 = 2τ2
ρmax

ρe
1(ρ

e
1 + ρe

2)(v
e
2 − ve1) (21)

a4 = ω − 2τ2ρe
2

αρmax
(ρe

1 + ρe
2)v

e
2 − 2τ2ρe

1

ρmax
(ρe

1 + ρe
2)(v

e
2 − ve1), (22)

all of them can be written in terms of the dimensionless parameters.
Due to the fact that the macroscopic equations are valid in a kind of hydrodynam-

ical limit (k → 0), we will expand the roots in the dispersion relation around k = 0
and take terms up to order k2,

σ = σ0 + kσ1 + k2σ2 + O(k3), (23)

and there will be four different roots, which will be called as Σi . The results being
given as follows

Σ1 = ikc1 + k2τ1
αρe1

[
c21 − (α + 1)(γ e

11ρ
e
1)

2] (24)

Σ2 = 1

τ1
+ ik

α
(2ve1 + αve1 − αγ e

11ρ
e
1) + k2

αρe1

[
αμ1 − τ1ρ

e
1
(
(ve1)

2 + 2ρe1v
e
1γ

e
11 − α(ρe1γ

e
11)

2)],
(25)

Σ3 = ik

a4 − 1

[
(a4 − 1)ve2 − a2ρ

e
2
] + k2Σ32 (26)

Σ32 = − τ2

α(a4 − 1)3

[
(a4 − 1)2(ve2)

2 − a2ρ
e
2

(
2ve2(a4 − 1) + αa2ρ

e
2

)]
,

Σ4 = 1 − a4
τ2

+ ik

α(a4 − 1)

[
(a4 − 1)ve2(2 + α) + αa2ρ

e
2

]
+ k2Σ42 (27)

Σ42 = 1

(a4 − 1)3αρe2

[
(a4 − 1)ρe2v

e
2τ2

(
(a4 − 1)ve2 − 2a2ρ

e
2

)
+ α

[
(a4 − 1)3μ2 − ρe2τ2(a2ρ

e
2)

2
)]

,

where γ e
11 = (dve1/dρ1)

e and can be calculated once the fundamental diagram for the
slow class is chosen.

The mode determined by Σ1 associated with the slow class density (ρ1) propa-
gates with a speed c1 = ve1 + γ e

11ρ
e
1 and the real part of it determines a time scale

which tends to zero as k2. However, this real part must be positive to have stabil-
ity, it means that the quantity c21 − (α + 1)(γ e

11ρ
e
1)

2 > 0 and it depends on the slow
class fundamental diagram. Note that this condition corresponds to the usual one for
Payne-like models, it is known that in this case there exists stability regions [4].
The root Σ2 has a leading term independent of the wave vector magnitude given by
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Fig. 1 Real part of rootΣ32 for α = 100.We recall that δ and β correspond to the quotient between
the equilibrium densities and the relaxation times τ1, τ2

Fig. 2 The effective relaxation time determined by the leading term in root Σ4

the relaxation time in the slow class (τ1), obviously positive. This root is associated
with mode v1, which also propagates with a speed determined by the fundamental
diagram.

The modes in the fast class (ρ2, v2) also propagate and both of them determine
the stability condition. First, the real part in root Σ3 is given through Σ32 and it can
be written as

Σ32

τ2(ve2)
2

= 1

α(a4 − 1)3

[
(α + 1)

(a2ρe
2

ve2

)2 −
(c2
ve2

)2]
, (28)

where c2 = 1
1−a4

[(a4 − 1)ve2 − a2ρe
2] is the propagation speed for mode ρ2.
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Lastly, the leading term in root Σ4 determines an effective relaxation time given
as (1 − a4)/τ2, which must be positive to have the interpretation given as time of
response in the fast class. Figure1 shows this characteristic for a region of the para-
meters δ, β with α = 100. It should be mentioned that this characteristic is valid
only for the equilibrium state (ve2/v

e
1)

− meaning that this equilibrium state represents
a physical point of interest. Its behaviour is shown in Fig. 2, where we can see that
the region of stability coincides with the stability situation for Σ32.

5 Concluding Remarks

The kinetic model based on the reduced Paveri-Fontana equation when applied to
two classes of drivers leads to a macroscopic model where the interaction between
user classes plays an important role. In fact, even in the simplest case studied in this
paper we have found that the free flow is stable only for a region of densities and
relaxation times. The analysis and figures shown tell us that the stability occurs for
certain regions in the δ and β. First, δ > 1 which means that the density of the slow
vehicles must be greater than the density of fast vehicles. Besides the fact that β > 1
shows that the relaxation time for the slow class is bigger than the corresponding
relaxation time for the fast class. Both conditions together lead to the stability of
just one equilibrium state for which it is possible to obtain free flow, at least in a
small region. It should be mentioned that this result represents a step in the complete
analysis of the model and some simulations must be performed in the unstable region
to possibly find other traffic phases.
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