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Abstract The global behaviour of mathematical models for traffic flow is important
in order to understand their characteristics because of the bistable property observed
in real traffic. This bi-stability can be discussed in a bifurcation analysis. In fact,
bifurcation analysis of optimal velocity models in several studies has revealed the
global bifurcation structure of the model, which shows a loss of stability due to the
Hopf bifurcation and bistable property. Shamoto et al. proposed a novel car-following
model with relative velocity effect (STNNmodel), which was not introduced into the
optimal velocity model, but is important in real traffic scenarios. They discussed the
linear stability of homogeneous traffic flow; however, they did not reveal the global
bifurcation structure of the STNN model. In this paper, we numerically investigated
the global bifurcation structure of the STNNmodel and observed that the strength of
the relative velocity effect drastically changes the bifurcation structure. This result
provides a possibility of implementing (semi-)automatic driving systems to alleviate
traffic jams.

1 Introduction

Various types of self-driven particle systems, such as vehicular traffic and pedestrian
dynamics, have attracted a great deal of attention during the last few decades in a
wide range of fields, such as natural sciences, applied sciences, and engineering,
for the potential practical use of investigation results [2, 5, 9]. Especially, a better
understanding of traffic flow has been achieved by developing sophisticated math-
ematical models. One of the common goals among these modelling approaches is
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to understand the spontaneous occurrence of traffic jams when the average density
of vehicles exceeds a certain critical value. This transition in flow behaviour is con-
sidered as a dynamical phase transition and can be discussed in terms of instability
of homogeneous flow. That is, jamming flow occurs as a result of the instability of
homogeneous traffic flow due to fluctuations of the driving behaviour over the critical
density; the instability leads to the transition of the homogeneous traffic flow to a
jamming flow due to enhancement of fluctuations.

Linear stability analysis is very useful for detecting critical density. As the loss of
stability is often accompanied by a bifurcation, one may expect a jamming flow to
exist. The linear stability analysis, however, does not provide any information regard-
ing a bifurcating solution. It is important to understand the global bifurcation structure
of periodic solutions bifurcating from the critical density because bi-stability, which
is regarded as one of the characteristics of transition to a jamming flow, is not a local
property. Moreover, the features of a global bifurcation structure provide us with
hints for controlling traffic flow by changing the parameters of a model. Thus, global
bifurcation analysis is important from both theoretical and practical viewpoints. Sev-
eral researchers have investigated the global bifurcation structure of a car-following
type model by describing the dynamics of N vehicles on a circular road via special
continuation codes [4, 6–8].

Gasser et al. [4] focused on an optimal velocity (OV)model, which is described as

d2

dt2
x j (t) = a

{
V (h j (t)) − d

dt
x j (t)

}
, (1)

where x j ( j ∈ N ) and h j = x j+1 − x j are the position of the j th vehicle, and the
headway distance between the j th vehicle and the vehicle in front, respectively. The
function V (h j ) is called the OV function, which provides an ideal velocity decided
by the headway. This model (Eq.1) was originally proposed by Bando et al. [1],
and they considered the OV function as V (h) = tanh(h − 2) + tanh(2). In [4], they
proved that the loss of stability is generally due to a Hopf bifurcation, and they
analytically showed a quantity related to the first Lyapunov coefficient of the bifur-
cation, which determine if Hopf bifurcation is supercritical or subcritical for general
OV function satisfying a few basic properties. This result mentioned that the type of
Hopf bifurcation depends on the OV function, length of the circuit, and the number
of vehicles. Moreover, they numerically investigated the global bifurcation structure
for periodic solutions and revealed a complete picture of OV model dynamics. From
these numerical results, the behaviour of a Hopf bifurcation is locally supercritical,
but macroscopically subcritical under some situations, i.e., the OV model shows bi-
stability. One of their conclusions was that the Hopf bifurcation is not necessarily
subcritical, which depends on the optimal velocity function. Moreover, they con-
cluded that a stable periodic solution may (co-)exist even in the stable region; in
particular, this coexistence does not depend on the type of Hopf bifurcation, but on
the global bifurcation structure.
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Orosz et al. [6–8] proposed a novel OV model with driver reaction time delay,
which is described as

d2

dt2
x j (t) = a

{
V (h j (t − τ)) − d

dt
x j (t)

}
, (2)

where τ is the reaction time of the drivers in perception, which is different from the
relaxation time T = 1

α
in action to adjust the vehicle’s velocity. They also showed

the loss of stability due to Hopf bifurcation and the global behaviour of the system
(Eq.2) numerically, although their computational technique was different from the
one in [4] because of the delay effect. As a result, they also observed branches
of oscillating solutions connecting Hopf bifurcation points, where the OV function
determines whether the Hopf bifurcation is supercritical or subcritical, and then they
revealed the existence of the regions of bi-stability.

These investigations are very significant in order to understand the complete pic-
ture of each trafficmodel in detail; however, thesemodels did not consider the relative
velocity effect, and the parameters in these models were difficult to be estimated by
real experiments, i.e., difficult to be controlled in practical use. Thus, in this paper,
we investigate the global bifurcation structure of a model proposed by Shamoto
et al. (STNN model) [10], in which the relative velocity effect is introduced, and
the parameters are estimated by real experiments. Moreover, we show the changing
the global bifurcation structure based on variation in the relative velocity effect as a
possibility of the strategy to alleviate traffic jams, as the strength of relative velocity
effect is varied.

This paper is organised as follows. In Sect. 2, we briefly review the STNN model
proposed by Shamoto et al. [10] and modify the model to a suitable form for use with
numerical bifurcation algorithm in AUTO [3]. The computational results are shown
in Sect. 3. Finally, Sect. 4 is devoted to the concluding discussions.

2 STNN Model and Its Rewritten Form

Recently, Shamoto et al. proposed a novel car-following model (STNN model) in
[10], which takes into account the relative velocity effect. Their model is described
in the following form :

d

dt
v j = a − b

v j
(h j − d)2

exp
(
−cΔv j

)
− γ v j , (3)

where a, b, c, d and γ are positive parameters. The parameter a represents the max-
imum acceleration. The initial acceleration of the vehicles, when they start to move
forward, is determined by a. The parameter d indicates the headway when vehicles
stop completely. The other parameters b, c, and γ denote the strength of interaction
with the vehicle in front, the weight of the relative velocity effect, and the strength



390 A. Tomoeda et al.

Fig. 1 The definition of the
variables y j to suppress
translation symmetry in the
periodic condition

of friction, respectively. The advantages of the STNN model are that it is experi-
mentally accessible, and it is easy to understand the physical meaning, although the
model has only five parameters. Actually, the parameter values were estimated by
circuit experiments in [10]. They mentioned that their model showed a metastable
homogeneous flow around the critical density from the linear stability analysis. That
is, if the traffic density exceeded the critical density, the homogeneous flow became
unstable because of a small perturbation that changes into another branch (a jamming
flow). However, their results are local and do not give us any insight into the stability
of the other branch and the changes in the global bifurcation structure, as a parameter
is varied. We thus use the software AUTO [3] to numerically obtain and investigate
the global behaviour of their model (Eq. 3).

The STNN model in the periodic system has a continuous family of solutions
corresponding to the homogeneous traffic flow due to the translation symmetry. This
feature is unsuitable for analysis by using AUTO, as AUTO can follow only a one-
parameter family of solutions.

Let N ∈ N and L > 0. N is the number of vehicles, and L is the length of the
circuit. We regard xN+1 = x1 + L . Obviously, we have

N∑
j=1

h j = L . (4)

That is, the sum of headways is equal to the length of the entire circuit.
We suppress the translation symmetry by introducing variables y = (y1, · · · , yN )

(see Fig. 1), which satisfy

y = (y1, . . . , yN ) = (h1, . . . , hN−1, x1). (5)
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Note that this transformation of variables is regular. Indeed, the inverse is given by

x j = yN +
j−1∑
k=1

yk, j = 1, 2, . . . , N , (6)

where the sum is taken only when j − 1 > 1.
The STNN model can be written in the following form:

ẍ j = a − ẋ jW (h j , ḣ j ), j = 1, 2, . . . , N , (7)

where a is a positive parameter, which is the same as the original model. W is, for
example,

W (h j , ḣ j ) = b

(h j − d)2
e−cḣ j + γ. (8)

Here, we consider the case of N vehicles. In general, y is governed by

ÿ j = −(ẏN +
j∑

k=1

ẏk)W (y j+1, ẏ j+1) + (ẏN +
j−1∑
k=1

ẏk)W (y j , ẏ j ), (9)

ÿN−1 = −
(

N∑
k=1

ẏk

)
W (L −

N−1∑
k=1

yk,−
N−1∑
k=1

ẏk) + (ẏN +
N−2∑
k=1

ẏk)W (yN−1, ẏN−1),

(10)

and

ÿN = a − ẏNW (y1, ẏ1), (11)

where j = 1, 2, . . . , N − 2. yN is just an integral of ẏN . Note that the problem is
reduced to a system on R

2N−1.

3 Numerical Bifurcation Analysis

In this section, we show bifurcation diagrams of Eq.3. In particular, we focus on the
effect of relative velocity. First, we consider the case when c = 0. Next, we consider
the case when c �= 0 by computing a two-parameter bifurcation diagram. We regard
L and c as the primary and the secondary parameters, respectively. The remain-
ing parameters are assigned the same values estimated in [10], that is, a = 0.73,
b = 3.25, d = 5.25, and γ = 0.0517. Moreover, now we assign the number of vehi-
cles N = 30.
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(a) (b)

Fig. 2 Bifurcation diagram. Abbreviations: Stable Equilibrium (SE), Unstable Equilibrium (UE),
Stable Cycle (SC), and Unstable Cycle (UC). Global bifurcation diagram of STNN model for the
parameters a = 0.73, b = 3.25, c = 0, d = 5.25, and γ = 0.0517 (a); close-up picture of the right
Hopf bifurcation point (b)

3.1 Without Relative Velocity Effect (c = 0)

First, we investigate a global bifurcation structure in the case of c = 0, where the
model has no relative velocity effect. Under this condition, the model should reflect
the characteristics that are in common with the OV model.

Figure2 illustrates a bifurcation diagram, which has L on the horizontal axis and
the relative velocity of the first vehicle on the vertical axis. The left image shows
the entirety of the bifurcation diagram and the right image is the close-up picture
at L = 1333.43. The solid line (curve) and the dashed line (curve) indicate a stable
solution and an unstable solution, respectively. From these figures, we reveal the
birth of a supercritical Hopf bifurcation as the parameter L becomes small (density
becomes large). That is, if one moves along the horizontal line ( dh1dt = 0) from right
to left, one can find at first a stable equilibrium point (L = 1333.43) that eventu-
ally loses its stability in favour of a periodic solution branch. Subsequent to that, two
saddle-node bifurcations (L = 1333.41 and L = 2619.25) take place on this periodic
solution branch. In the region 1333.43 < L < 2619.25, both the homogeneous solu-
tion and the periodic solution are stable, that is the traffic flow shows bi-stability. This
global bifurcation structure is qualitatively similar to the structure of the OV model
shown in [4], that is, the behaviour of a Hopf bifurcation is locally supercritical, but
macroscopically subcritical.

3.2 With Relative Velocity Effect (c �= 0)

Next, we consider the case when c �= 0. A Hopf bifurcation point and a saddle-node
bifurcation point draw a curve in two-parameter plane when an additional parameter
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(a) (b)

Fig. 3 Two-parameter bifurcation diagram: behaviours of Hopf Bifurcation points (HB) and
Saddle-Node points (SN) on (L, c)-plane for the parameters a = 0.73, b = 3.25, c = 5.25,
γ = 0.0517 (a); close-up picture at the cusp point (b)

is varied. We vary c as well as L to numerically compute the curves starting at two
Hopf bifurcation points ((L , c) = (205.612, 0), (1333.41, 0)) and two saddle-node
bifurcation for Eq.3 with c = 0.

Figure3 shows the two-parameter bifurcation diagram and its close-up view. The
curve of Hopf bifurcation points turns down at (L , c) = (395.55, 1.955), and no
Hopf bifurcation is found for c > 1.995. From phenomenological point of view,
this implies that the enhancement of relative velocity effect leads drivers to a good
response and eventually makes the homogeneous flow stable for a fluctuation. Thus,
we have found that homogeneous flow becomes stable in all densities in a parameter
region c > 1.955. On the other hand, the curve of saddle-node bifurcation points
meets at a cusp point (L , c) = (1019.23, 0.6664). This implies that the bi-stability
as shown in Fig. 2 does not appear when c > 0.6664. Thus, we have three intervals
0 < c < 0.6664, 0.6664 < c < 1.955, and 1.955 < c in which bifurcation diagrams
are qualitatively different. It should be noted that here we discuss only two Hopf
bifurcation points. Other Hopf bifurcation points exist at the region 205.612 < L <

1333.41 and may show another stable periodic solution branch, which implies multi-
stability. These features will be also investigated in the near future.

4 Conclusion and Discussion

In this paper, we investigated the global bifurcation structure of the periodic solu-
tions bifurcating from the critical density for STNN model, wherein the relative
velocity effect is introduced. In the case when c = 0, which corresponds to the
model without the relative velocity effect, the global bifurcation structure shows fea-
tures that are similar to the OV model; the model shows that the loss of stability in
homogeneous flow is due to a Hopf bifurcation, and the behaviour of a Hopf bifur-
cation is locally supercritical, but macroscopically subcritical. Moreover, we have
found that two Hopf bifurcation points turn down at a point on (L , c)-plane, and two
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saddle-node pointsmerge andmake a cusp point in the case of c �= 0,where themodel
takes into account the relative velocity effect. In particular, this result shows that the
instability of the homogeneous flow disappears, and the homogeneous flow becomes
stable in a parameter region c > 1.955. This situation might not be realistic in non-
automatic driving, but could provide a solution in the near future for implementing
(semi-)autonomous driving systems, such as the adaptive cruise control system, to
alleviate traffic jams.
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