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Preface

These are the proceedings of the eleventh edition of the Traffic and Granular Flow
conference, held from 28 to 30 October 2015 in the Netherlands. This edition of this
worldwide biannual conference is organised by the Delft University of Technology,
where it returns after 12 years. What started as a one-time event in 1995 has grown
in 20 years to a conference series with a very good scientific reputation.

The conference is known for facilitating links between various disciplines. In
this edition, we had among other things contributions on pedestrian flow, vehicular
flow, granular flow, and biological flow. The proceedings provide a concise
overview of the most important developments in this field over the past two years.
It consists of 79 high-quality papers; contributions come from over 30 countries,
spread over all continents. We believe this book presents recent innovative insights
and provides a long-term reference for scientific work.

We are grateful for the financial support given by the Transport Institute of the
Delft University of Technology. Moreover, organising this conference would not
have been possible without the help of many colleagues. For help in preparing the
conference, we would like to mention Nicole Fontein, Priscilla Hanselaar, Jeanette
van Leeuwen, Julia Barelds, Ilse Galama and Fieke Beemster. In the preparation
of the proceedings, we value the help of Tjeerd Oudkerk. Also, the help of the
international scientific committee in assessing the abstracts is highly acknowledged,
as well as the assistance of the previous organisers.

Shortly before the conference, Matthias Craesmeyer has deceased. This is a great
loss for the field, which has lost a talented young scholar.

We are happy to contribute to the tradition of Springer proceedings of the Traffic
and Granular Flow conference, and are looking forward to the next edition,
organised in 2017 by Samer Hamdar in Washington DC.

Delft Victor L. Knoop
February 2016 Winnie Daamen
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Methodology for Generating Individualised
Trajectories from Experiments

Wolfgang Mehner, Maik Boltes and Armin Seyfried

Abstract Traffic research has reached a point where trajectories are available for
microscopic analysis. The next stepwill be trajectorieswhich are connected to human
factors, i.e. information about the agent. Thefirst step in pedestrian dynamics has been
done using video recordings to generate precise trajectories. We go one step further
and present two experiments for which IDmarkers are used to produce individualised
trajectories: a large-scale experiment on pedestrian dynamics and an experiment on
single-file bicycle traffic. The camera set-up has to be carefully chosen when using
ID markers. It has to facilitate reading out the markers, while at the same time being
able to capture thewhole experiment.We propose two set-ups to address this problem
and report on experiments conducted with these set-ups.

1 Introduction

Laboratory experiments are a valuable tool when conducting research into traffic or
pedestrian dynamics. The data can be analysed to uncover effectswhich are important
for modelling, and it can be used to validate simulations.

When conducting such experiments, one always has at least two conflicting
requirements. On the one hand, the observed subjects have to be detected reliably,
which requires a large focal length, i.e. a larger zoom factor, of the used camera. On
the other hand, one wants to observe as much of the experiment as possible, which
requires a small focal length.When using IDmarkers, this situation gets worse, since
the required resolution is most likely higher than with other markers, e.g. coloured

W. Mehner (B)
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e-mail: mehner@vision.rwth-aachen.de
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4 W. Mehner et al.

caps. Employing multiple cameras may be the only viable solution when using ID
markers, which will make it more difficult to calibrate the cameras. As a result,
camera set-ups for such experiments have to be carefully engineered.

In the following, we present two experiments using ID markers and the solutions
we have chosen in order to address the above mentioned problems. In detail, those
consist of: (1) A large-scale experiment with pedestrians, where the markers are read
out everywhere, which however requires a complex camera system (Sect. 3). (2) An
experiment on single-file bicycle traffic, where the markers are only read out in one
camera view. Using overlapping fields of view, the IDs can still be transferred to
trajectories generated from detections in other views (Sect. 4).

2 Related Work

Characteristics of pedestrians have been the subject of experiments before. Amotion
capture system was used by Jelić et al. [5], while otherwise video recordings seem to
be a common choice for data acquisition. Boltes et al. [1] use colour-coded markers
to associate detected trajectories to the pedestrians’ heights, which is important for a
precise localisation on the ground plane. Daamen et al. [3] investigate the influence of
different classes of pedestrians (children, elderly, disabled) on the capacity of a door,
and to that end equipped participants with caps of different colour, indicating their
class. Individualised trajectories are used by Bukáček et al. [2] to link the behaviour
of the participants across different runs of an experiment. Stuart et al. [11] use ID
markers in experiments with individuals with disabilities, to investigate their impact
on pedestrian dynamics. However, the ID markers used in both these experiments
have the undesirable property that they protrude over the participants’ heads, which
makes experimentation at high densities more difficult.

Bicycle traffic has been investigated before by Navin [9], who used video to
analyse single-file bicycle traffic on an oval track. Experiments similar to ours were
performed by Rui et al. [10], who to the best of your knowledge do not produce
individualised trajectories. Zhang et al. [15] used video recordings to obtain funda-
mental diagrams, and also focus on properties of bicycles and electric bicycles. The
dynamics during bicycle races were investigated by Trenchard et al. [13]. Single-lane
experiments for cars, in the same spirit as our bicycle experiments, were performed
by Nakayama et al. [8] and Tadaki et al. [12].

3 Pedestrian Experiments

The pedestrian experiments were performed as part of the project BaSiGo in Düs-
seldorf, Germany, in 2013. The aim was to investigate pedestrian flows in various
geometries, such as corridors and different intersections, especially at very high den-
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Fig. 1 Camera views of the pedestrian experiment with detected markers: overview camera (a);
the view of a grid camera (b)

sities. For example, corridors of 4 and 5m width and a length of over 10m were
set up (see Fig. 1a). Therefore a huge number of participants is required to reach a
steady state at high densities in such large geometries.

This requires a very large number of IDmarkers and powerful detection and track-
ing algorithms, already presented in [7]. However, to guarantee success a carefully
engineered camera set-up and calibration procedure is equally important. The cam-
eras used to record the experiments have to be able to read out the markers, while
at the same time covering the 10 m × 10 m area used for the experiments. The ID
markers also provide information on the head rotation, therefore the markers are read
out in the entry area, to get the full information (position and rotation) everywhere.
While the universal availability of the IDs simplifies the task of linking the trajecto-
ries across the different camera views, this set-upmakes the calibration of the camera
grid more difficult.

3.1 Camera Grid

The experiments were recorded with a grid of 6 × 4 overhead cameras (see Fig. 1a),
mounted 7.5 m above the floor. Each camera covered an area of a little over 2.5 m
(= 10m

4 )× 1.67 m (= 10m
6 )measured at 2 m above the floor, the maximum presumed

height of the participants.With this set-up, the markers can be read out everywhere in
the observed area. A little overlap between the views of neighbouring cameras makes
it possible to “hand over” trajectories without losing them in blind spots. Given the
resulting small opening angles of the cameras, an image resolution of 1280 × 1024
pixels turned out to be sufficient to read out the markers. The markers had a size of
8.5 cm × 8.5 cm and fitted comfortably on a normal hat, making them usable at high
densities of up to 10 persons per square metre.

Since the set-up uses monocular cameras, the height of a person is needed to
compute the location on the ground plane from the marker detected on the head
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(compare the discussion in [1]). The camera grid included an additional camera for
computing the height of the participant. This camera’s field of view overlapped with
other cameras entirely. If a marker is detected in this camera and an overlapping
view, then the height can be computed via triangulation. The computed heights can
be saved in a list and retrieved via the marker ID, and can thus be used everywhere
in the grid to compute the exact locations of the participants.

The intrinsic calibration of the cameras (focal length, lens distortion, …) is done
using a standard technique [16]. Bundle adjustment [4] is used to obtain the external
calibration (positions and rotations of the cameras) of the grid. To estimate these
parameters, a minimisation problem is set up. The positions of identifiable objects
in the scene are projected into the view of each camera which can see the objects.
For each object, this yields the image position of the projection, which is compared
with the known image position for this object, which must be obtained by a differ-
ent method, e.g. manual annotation. The difference in these two positions is called
the reprojection error. The average reprojection error for all objects and cameras is
minimised. This yields the camera calibration parameters, because these parameters
influence the projection process.

One challengewith this approachbasedon reprojection errors is that the estimation
of the parameters is unreliable in some regards. For example, the camera canbemoved
along the optical axis (which in our set-up corresponds to a varying height of the
overhead cameras above ground) without much change to the reprojection error. This
is a bad property, given that measurement errors (imprecise annotations of the image
positions) also figure into the minimisation problem. Other properties of the set-up,
the small opening angles of the cameras and the small overlaps, further complicate
the calibration.

3.2 Discussion

The described set-up is able to deliver detailed and precise individualised trajec-
tories, including the rotation of the heads, provided for the entire area used for
experimentation. While this is ideal with regards to the type of data one would want
for investigating pedestrian dynamics, this set-up requires a lot of effort to design
and use correctly. This effort stems from the amount and the processing of the pro-
duced image data, as well as the calibration and synchronisation of the large number
of cameras. All these problems have to be addressed in the design of the recording
system, which requires expertise in a number of computer vision topics. On the other
hand, given the size of the experiments, over 2000 participants in 4 days of experi-
mentation, this effort seems justified. The only limitation of a design like this is that
it can probably not be extended to cover a larger area at reasonable cost.

In conclusion, this set-up puts its focus on the utility of the produced data with-
out much regard for the resulting effort. For experiments with a lower number of
participants, easier and faster solutions would be preferable.
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4 Bicycle Experiments

The bicycle experiments were performed in Wuppertal, Germany, in 2012. The
single-file set-up allows to compare the behaviour of the cyclists to pedestrians and
cars [14], for which such experiments have been performed before.

One camera (‘top view’, see Fig. 2a) was set up to observe the entire experiment
from above. However a top–down perspective could not be achieved easily given the
surroundings. The bicycles were equipped with markers, which could however not
be read in the top view. Therefore, an additional camera (‘side view’, see Fig. 2b)
was set up to identify the drivers. They additionally wore yellow helmets, which can
be detected in both views, and thus be used to associate the trajectories generated
from both views. Additionally, the drivers are visible in the second row of the side
view, which could be used for further measurements.

4.1 Detection and Tracking

The helmets in the top view are detected by finding local extrema in the Laplacian
scale-space, followed by suppressing low-texture areas (compare [6]), and colour
filtering. The helmets in the front of the side view are found by thresholding the HSV
colour-value of each pixel and then performing connected component labelling. The
marker boxes are found by detecting the red dots using the same technique as for
the helmets in the top view. Three red dots can be associated to yield the position
of the marker grid, which is then binarised and read out. The tracking procedure
uses Kalman filtering to deal with missing detections, but is otherwise very simple
because of the relatively reliable detections.

Fig. 2 Camera views of the bicycle experiment with detected helmets and markers: top view with
trajectories and heights (a); side view for marker read out (b)
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It is not possible to read out the markers in the top view, or in the back of the side
view. Therefore, only the trajectories in the front of the side view have IDs attached
to them, while the others are ‘anonymous’.

4.2 Associating Anonymous Trajectories

In the pedestrian experiment, we could associate trajectories across different views
using their IDs. Here, this is not possible anymore, since only the trajectories in
the front of the side view have IDs attached to them. We need a more advanced
technique for associating the remaining ‘anonymous’ trajectories with the ones in
the front view. This will then allow us to transfer the IDs to them, and thereby other
information, such as the height of the helmets above the ground.

We make use of the fundamental matrix [4]. Given points Pi in world coor-
dinates and their projection into two different camera views, p(1)i = (x (1)i , y(1)i ) =
project (1)(Pi ) and p(2)i = (x (2)i , y(2)i ) = project (2)(Pi ), we can find a fundamental
matrix F , such that:

(x (1)i , y(1)i , 1) · F · (x (2)i , y(2)i , 1)T = 0 , for all i (1)

Given eight pairs of corresponding points, this matrix is unique up to scale. More
points can be used to estimate it in a least-squares fashion. For more details see [4].
Note that we only need corresponding pixel coordinates in both camera views. The
3D geometry of the scene can thus be bypassed.

Given a point in the first camera view, with unknown world coordinates, we are
still able to constrain its position in the second view, given F :

(x (1)i , y(1)i , 1) · F = (a, b, c) and (a, b, c) · (x (2)i , y(2)i , 1)T = 0 (2)

It can be seen that a point in the first view parametrises a line in the second view in
implicit notation, via the fundamental matrix.

The relationship given by the fundamental matrix can be used to associate trajec-
tories tracking the same physical object in two views. Given trajectories in two views
P (v)(t) = (x (v)(t), y(v)(t)) and a number of overlapping frames T, we can compute
an average distance between the lines (a(t), b(t), c(t)) = (x (1)(t), y(1)(t), 1) · F and
the points (x (2)(t), y(2)(t)). In each step, the line parametrisation has to be normalised
in order to compute meaningful distances across different frames:

(ai (t), bi (t), ci (t)) =
(
x(1)i (t), y(1)i (t), 1

)
· F (3)

Di, j = 1
|T |

∑
t∈T

∣∣∣∣∣
(
ai (t)

2 + bi (t)
2
)− 1

2 · (ai (t), bi (t), ci (t)) ·
(
x(2)j (t), y(2)j (t), 1

)T
∣∣∣∣∣ (4)
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This yields a distance Di, j between every pair P
(1)
i (t) and P (2)

j (t) of trajectories.
We only associate them if:

j = argminh Di,h and i = argminh Dh, j (5)

This is preferable to a greedy strategy of simply picking the closest match for one
trajectory and then moving on to the next. Our strategy leads to a unique solution,
and helps to suppress associations with meaningless trajectories resulting from false-
positive detections. More advanced approaches, such as the Hungarian algorithm,
are possible as well.

4.3 Evaluation

We provide some numbers to give an impression of the performance of the auto-
mated trajectory generation for the bicycle experiments. We manually cleaned up
the trajectories in the top view for one of the experiments and compared them to the
trajectories reported by the detection and tracking algorithm. There were 33 partici-
pants in the experiment. In 9400 frames, 228888 positions needed to be reported. The
algorithm only failed to report 254 (false negatives), but missed no trajectory com-
pletely. There were 2082 additional detections reported, belonging to 19 trajectories
made up of false-positive detections.While these numbers show that the system does
not produce perfect results, the performance is high enough that a manual clean up
of the results can be done with very little effort.

4.4 Discussion

The linking of the cameras is much easier to do with this approach, since the esti-
mation of the fundamental matrix takes less effort than the full 3D calibration in the
pedestrian experiments. Additionally, the required precision is easier to achieve. The
external calibration of the camera which actually reports the measurements is still
required, of course.Overall, this set-up,with one camera to view the entire experiment
and one camera to read the ID markers, seems better suited for smaller experiments.
A few prerequisites have to be met, however. For example all participants have to
pass in front of the camera reading out the IDs at least once per experimental run.
The density in the field of view of this camera should also not be too high, or the
association of the trajectories will get more difficult.

5 Conclusion

We have presented two experiments we conducted, and discussed the requirements
and the resulting solutions for the data capturing. Both experiments included infor-
mation that was obtained from one camera in the grid and then transferred to the
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trajectories of the entire experiment. We showed two techniques to accomplish this,
once using the marker IDs themselves, once by exploiting the interaction of trajec-
tories and the camera geometry.

Acknowledgements This study was performed within the project BaSiGo (Bausteine für die
Sicherheit von Großveranstaltungen, Safety and Security Modules for Large Public Events) funded
by the Federal Ministry of Education and Research (BMBF) Program on ‘Research for Civil
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Advances in Measuring Pedestrians
at Dutch Train Stations Using Bluetooth,
WiFi and Infrared Technology

Jeroen van den Heuvel, Danique Ton and Kim Hermansen

Abstract As of 2014, three Dutch train stations have been equipped with automated
pedestrian traffic sensors, as part of the SMART Station initiative of NS Stations.
These stations are Utrecht Central station, Amsterdam Airport Schiphol train sta-
tion and Leiden Central station. SMART Station consists of hybrid Bluetooth/WiFi
sensors for tracking and infrared sensors for counting. Combining data from both
sensor types results in useful insights into the pedestrian dynamics. In this paper, four
SMART Station cases are presented. Firstly, an estimation of escalator capacity will
be presented. Secondly, we will show the temporal and spatial flow characteristics
of a very large bike parking facility. Thirdly, the use of train stations by non-train
passengers will be explored. Fourthly and finally, the occupancy of a station hall will
be explored.

1 Introduction

In recent history, train ridership in The Netherlands has increased significantly. A
relatively limited number of large train stations has ‘absorbed’ a relatively large share
of the total growth. The concentration of rail passenger traffic at specific train stations
poses significant challenges on the pedestrian infrastructure of these stations. To get a
better insight into the crowd challenges at its train stations, NS Stations—the stations
and real estate division of Netherlands Railways (NS)—has initiated a program to
measure pedestrian behaviour in a systematic and automated way.
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In 2013, we have presented our first paper on measurements of pedestrian flows
at train stations using Bluetooth in The Netherlands [1]. The paper contains the main
findings of our study into the route choice behaviour of passengers regarding vertical
infrastructure at Utrecht Central station. Data of an experimental set-up of eight
Bluetooth-only sensors at Utrecht Central station has been used.

In this paper, four cases are presented using data from permanent sensor set-ups
with combined Bluetooth, WiFi and infrared sensors, which have been installed at
three large train stations in The Netherlands. This paper is structured as follows.
Section2 describes SMART Station and—briefly—the logic behind it. Sections3–6
cover the cases, with one case in each section. Section7 concludes this paper.

2 SMART Station

The main objective of SMART Station is to measure pedestrian flows, route choice,
activity choice, dwell times and occupancy of pedestrian infrastructure at Dutch train
stations with an automated data collection system. The solution has to be competitive
with traditional data collectionmethods on themore complex stations regarding costs
and benefits. Moreover, data collection has to be performed in a way that the privacy
of all station users is respected. Therefore, SMART Station has been following the
guidelines for privacy-by-design [2]. Since the successful pilot in 2012, three of the
largest train stations in the Netherlands have been equipped with sensors: Utrecht
Central station, AmsterdamAirport Schiphol station and Leiden Central station, with
respectively 250,000, 83,000 and 85,000 train passengers per average workday.

The basic concept of SMART Station is to combine multiple sensor and data
processing technologies to measure pedestrian flows. Several experiments in 2011
and2012with various state-of-the-art technologies have shown that combiningglobal
and local measurements by different types of sensors delivers the best results regard-
ing cost effectiveness and data quality [3]. This strategy enabled us to prevent com-
promises regardingmeasurement capabilities of individual technologies, but allowed
to deploy the best of all available technology.

In the current configuration, Bluetooth/WiFi sensors from BLIP Systems are
used for tracking, and infrared sensors from Irisys are used for counting. The Blue-
tooth/WiFi sensors track global movements and dwell times of mobile devices (i.e.,
smartphones, tablets and laptops). The infrared sensors count local passenger traffic
at strategic points inside the station. Combining global and local data results in a
detailed picture of pedestrian dynamics [3].

For many reasons, not all pedestrians are detected by the tracking sensors. To
overcome this limitation, a penetration ratio is calculated by combining tracking and
counting data. This ratio describes the ratio between the number of counts and the
number of tracks at a specific site at the station. Similar to other studies, we have
found a Bluetooth ratio of 5–10%. For the WiFi penetration rate, we have found a
ratio of 20–25% [3].
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3 Case 1: Upward Escalator Capacity at Utrecht
Central Station

The first case consists of the estimation of the practical escalator capacity at Utrecht
Central station. At this station, each platform is connected to the station hall by two
pairs of escalators and one fixed stairway. Counting sensors have been installed at the
escalators of platform 11/12. This platform is used by various train types—intercity
and regional trains—, and therefore is found to have a representative passenger
population for the whole station [4]. The sensors have been installed at the inflow
and outflow section of the downward and upward escalator respectively (red line
in photo in Fig. 1). This location is chosen to avoid incorrect measurements due to
congestion in front of the escalator. Congestion or congested flow frequently occurs
at the platform after the arrival of a train, and measurements at these sites should be
avoided due to a known limitation of Irisys infrared sensors.

The counting sensor data is available from a 1-min aggregation level for both
the upward and the downward direction. For the capacity estimation, a data set with
measurements from 7.00 to 19.00 h from 1 January to 17 September 2014 has been
created. Only the flow in upward direction from platform to station hall has been
included as congestion only tends to occur in this direction. Arriving passengers
(upward direction) are brought to the station in bulk due to train arrivals, while the
arrival time of departing passengers (downward direction) is distributed over time
between train departures. Filtering out incomplete measurements due to off-line
sensors resulted in a data set with 74,700 min with counts in the upward direction.

All observations in the data set have been ordered to find the time frames in which
the escalator was potentially used at capacity. In 1-min aggregated data, capacity
traffic conditions have been found by selecting the pairs of subsequent minutes in

(a) (b)

Fig. 1 From platform 11/12 to station hall (upward) escalator flows at Utrecht Central station:
flows (a); situation (b)



14 J. van den Heuvel et al.

which a number of pedestrians (>5) have been counted during the first (m) and
second minute (m + 1). These pairs represent the traffic dynamic that an escalator
gets congested shortly after the arrival of a crowded train. The queue at the platform
starts to work as a buffer of pedestrians, which allows the flow at the escalator to
reach capacity. The higher the counts during both minutes, the more likely it has
been that the escalator has been used at capacity.

The data set consisted of 3,389 pairs of minutes (9.1% of the total data set)
which both—m and m + 1—had counts larger than five. Figure1 is a graphical
representation of the data. In the graph, the pairs have been classified into off-peak
and peak hours (7.00–9.00 h and 17.00–19.00 h). An estimation of the capacity of an
escalator can be found by looking at the observations with the highest flow at minute
m + 1s. Based on the data, a capacity estimation of 75 persons per minute (+/−5)
seems reasonable for peak hours, and 70 persons per minute (+/−5) for off-peak
hours.

4 Case 2: The Use of a Large Bike Parking Facility
at Utrecht Central Station

The second case covers the in- and outflow of a very large bike parking facility at
Utrecht Central station, which has been in operation since July 2014. The facility is
located right under the main station entrance at the non-city centre side (Jaarbeurs
Square, at Jaarbeurs Convention Centre) and has a capacity for 4,200 bikes. For this
analysis, a combined data set with tracking and counting data has been used.

For relating the flows to and from the bike parking facility to the train station, a
tracking sensor has been installed at the entrance of the bike parking facility where
people arrive and leave while wheeling their bikes. The pedestrian-only entry/exit
on the other side of the bike parking facility is closely situated to the main entrance
of the train station. This is one of the two main entrances which has been equipped
with both a tracking and counting sensors. Therefore, the hourly penetration ratio of
this entrance could be used to calculate the total flows from the tracking data.

The data set covered 15 days, from 2 to 16 September 2014. In this time frame, a
total number of 165,927 complete routes has been generated based on the tracking
data, which were related to this entrance of the station hall. During the same time
frame, the counting sensors recorded a flow of 691,006 pedestrians, which is an
average of slightly over 46,000 pedestrians per day. The busiest daywas 9 September,
with a total, bi-directional flow of 50,235. The average penetration ratio was 24%,
varying between 20 and 27%, depending on the day of the week.

A total of 15,951 routes (9%) has been identified to fit the condition of a detection
at both the Jaarbeurs entrance of the station hall and the bike parking facility. Using
the penetration ratio, the total flow is estimated at approximately 66,500, or a daily
average of about 4,400. On the busiest day, the total flow reached over 5,700. As a
typical passenger arrives with his bike at the station in the morning and leaves again
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(a) (b)

Fig. 2 Hourly inflow (a) and outflow (b) of the Jaarbeurs Square Bike Parking facility at Utrecht
Central station

in the evening, this number is equivalent to approximately 2,850 bikes that have been
parked in the facility during the day. So the occupancy ratio is estimated on 67%,
assuming that no one other than train passengers use this facility. Figure2 shows the
hourly inflows and outflows of the facility.

5 Case 3: Intra-city (Non-passenger) Flows in Utrecht
Central Station and Leiden Central Station

Historically, many train stations have been built at the outer perimeter of cities. In
the subsequent decades or even centuries after the establishment of the central train
stations, many cities have grown towards the train station, as these provided main
transportation links to other cities. Because the land on the city centre side of the
train stations became scarce, cities started to grow at the other side of the station.
Because railway tracks, particularly the railway yards, became a barrier between
both city sides, many train stations also started to function as links between both city
sides. This has resulted in intra-city, non-passenger, pedestrian flows of significant
volumes. Because these pedestrians do not use trains, their movements are hardly
captured in any data set that describes the primary function of the train station.
The automated measurements at Utrecht Central station and Leiden Central station
created the possibility to analyse these intra-city pedestrian flows over a longer time
frame. For this case, two data sets have been used.

The first consists of combined tracking and counting data of Utrecht Central
station, from11 January until 24April 2014.After removing the dayswith incomplete
data, a total 84 days have been included in the data set, covering 753,859 complete
routes (average of 8,975 per day). These routes represented pedestrian movements
that fitted the condition that the pedestrian has been detected at both entrances at the
train stationwith 30minwithout being detected at any platform, but has been detected
inside the station hall (non-passenger). From the counting data, the penetration rate
has been derived. For this segment, the penetration rate varies between 17 and 25%,
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(a) (b)

Fig. 3 Flows at the station. Total flows at Utrecht Central station per day and day type (a). Temporal
distribution of intra-city flows at Utrecht Central station and Leiden Central station (b)

averaging at 21%. The second data set consists of tracking data of Utrecht Central
station and Leiden Central station of 1 to 29 April 2015. For Utrecht Central station
and Leiden Central station, a total number of 219,223 and 39,604 routes has been
included respectively, covering the intra-city flows during 24 h per day.

Figure3 shows the results of the analysis. It shows that the station hall of Utrecht
Central station is used by approximately 50,000 non-passengers on an average week-
day. On weekend days, the intra-city flow is significantly lower, particularly on Sun-
days (20,000). Comparing the temporal distribution of the intra-city flows at Utrecht
Central station and Leiden Central station, it becomes clear that the daily patterns are
similar, both for week days and for weekend days. The evening peak of both week
and weekend days occurs between 17.00 and 18.00 h and has a share of 9% of the
total daily flow.

6 Case 4: Occupancy at Utrecht Central Station

For estimation of the size of station halls, which usually combine the function of
walking and waiting, both the number of pedestrians (flow) and the duration of their
stay (dwell) are important factors. Therefore, station occupancy will be explored in
this fourth and final case. The data is from tracking sensors in the station hall of
Utrecht Central station.

Before the morning peak hour at Monday 2 March 2015, an overhead wire at one
of the station tracks got damaged and caused total shut down of all train traffic to
and from Utrecht during peak hour, due to the extremely inconvenient location of
the incident [5]. This situation prevented departing passengers to leave the station
by train. As most sources of train traffic information are situated in the central hall,
many passengers decided to wait there. This caused an overload of the station hall.

The orange graph of Fig. 4 shows the occupancy of the station hall after the inci-
dent. Themaximumoccupancywas reached around 8.00 h,with approximately 3,000
mobile devices detected. This number was derived from determining the number of
non-finished routes for each minute of the day. A non-finished route indicates that a
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(a) (b)

Fig. 4 Occupancy pattern at Utrecht Central station: major service disruption (Monday, 2 March
2015) (a); normal day (Tuesday, 3 March 2015) (b)

passenger did not finish his/her route (i.e. from entrance to platform) at that particular
minute yet, but will do so at a later moment in time. Note that applying a penetration
ratio of 20–25% on this number of mobile devices results in an estimated occu-
pancy of 12,000–15,000 passengers in the station hall. In contrast, the green graph of
Fig. 4 shows the occupancy distribution during the next day (3 March 2015), when
no service disruptions occurred. During that day, a peak of 1,800 mobile devices
(7,000–9,200 pedestrians) is detected in the station hall.

A critical remark about this comparison has to be made. It is based on the assump-
tion that pedestrians have not enabled or disabled Bluetooth or WiFi on their mobile
device when they are in the station hall. The service disruption of 2 March could
have triggered passengers who were waiting in the station to enable WiFi in their
search for additional information. However, no counting sensors have been installed
in this area, since they were located at the station entrance and at some escalators to
the platforms. Therefore, we have no data to assess the validity of this assumption.

7 Conclusions and Future Developments

This paper has presented a broad selection of our recent insights frommeasurements
of pedestrians at three large train stations in The Netherlands using Bluetooth, WiFi
and infrared technology. These insights are extremely valuable for the design and
operation of train stations.

The first case has shown that the escalator capacity is estimated to be 70–75
(+/−5) persons per minute for peak and off-peak hours respectively. The second
case has shown the inflow and outflow of a very large bike parking facility with
4,200 places. The intra-city, non-passenger flows through train stations have been
the central topic of the third example. It has shown that these flows through train
stations consist of tens of thousands movements per day. The fourth case consisted
of an example of station occupancy, which is the product of flow and dwell times.
It has been shown that a major service disruption can cause a two thirds increase in
the peak load of the pedestrian space of a train station.
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Currently, NS Stations is working on the expansion of SMART Station at Amster-
dam Airport Schiphol by installing counting sensors at stairs and escalators. These
sensors will generate the data which is required to calculate the penetration ratio.
This will proof to which extent Schiphol train station is different from other large
train stations in city centres, due to the location at the airport. Moreover, SMART
Station sensors are being installed at Amsterdam Central station in January 2016.
This station is mainly used for very large intra-city flows. Therefore, measurements
at this station will reveal whether the observed pattern of Utrecht Central station
and Leiden Central station can be considered as generalised. And finally, a current
discussion with stakeholders might result in a SMART Station at Amsterdam South
station, which is located at the Central Business District of Amsterdam. This station
is amongst the fastest growing stations in the country and is expected to be faced
with pedestrian congestion within a couple of years.
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Avoiding Walls: What Distance Do
Pedestrians Keep from Walls and Obstacles?

Ernst Bosina, Mark Meeder, Beda Büchel and Ulrich Weidmann

Abstract To avoid colliding with walls and obstacles, pedestrians keep a certain
distance to them. This so-called separation distance or wall clearance distance was
documented in early literature on pedestrian transport. For modelling purposes, it can
be subtracted from a walkway’s width to obtain an effective width. Literature on this
topic is scarce and the values that can be found are often contradictory, largely due to
a lack of data. This work aims at contributing to the knowledge about the pedestrian
wall distance by applying several high-resolutionmeasurement techniques.Measure-
ments were carried out using ultrasonic transducers and laser scanners at locations
where high numbers of pedestriansmove in a unidirectional flow. The results confirm
that pedestrians keep a minimum distance to walls and that the effect of obstacles
is noticeable several metres downstream of the cross section in which they occur.
Furthermore, it was found that the kept distance depends on the pedestrian density.
Lastly, this paper suggests a method for determining the effective width of walkways
that can be used in pedestrian facility design.

1 Introduction

An important aspect of pedestrian movement is the avoidance of obstacles. When
moving around, pedestrians actively avoid colliding with walls and obstacles, and
aim to keep a certain distance to them. In pedestrian facilities, like an underpass in a
railway station, the spaces adjacent towalls and obstacles are therefore not utilised by
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pedestrians, thus reducing the flow rate. That reduction is expressed as a separation
distance that determines the effective width of walkways.

In pedestrian simulations [1] as well as in analytical approaches to pedestrian flow
characteristics [2] this behaviour needs to be taken into account. However, accurate
literature on these distances is scarce. Only few attempts to quantify the separation
distance can be found in literature [3–10].

2 Theory

Models of pedestrian flows can either describe the behaviour of individual pedes-
trians, or the characteristics of the flow as a whole. The latter type are so-called
aggregated flow models that are usually analytical (as opposed to the numerical
nature of simulations) and can be used to calculate pedestrian flow rates and densi-
ties. In doing so, the quality of pedestrian facilities can be assessed by determining
the pedestrian level-of-service [4].

In practice, onemight have pedestrian counting data, for example in a certain cross
section of a corridor or underpass and is interested in the level-of-service. Dividing
the counting data over suited time intervals, one can calculate the specific flow using
the width of the corridor:

Fs = N

T · We
(1)

where N is the number of counted pedestrians in time interval T and We is the
effective width. Using the pedestrian fundamental diagram [10], the density and by
extension the level-of-service can be determined.

To calculate the effective width, a separation distance is usually subtracted from
the actual width of the walkway to reflect the influence of walls and obstacles. For
example, for a corridor with straight walls and no further obstacles in the vicinity,
the effective width we becomes:

We = W − 2 · dw (2)

where dw is the separation distance or wall distance.
Similarly, certain values are subtracted for objects like pillars, vending machines,

and so forth. The exact amount to be subtracted depends on the characteristics of the
object in question. Furthermore, objects in the middle of the stream can impact the
flow beyond their actual position. The aforementioned principles are illustrated in
Fig. 1.

Knowledge about the precise mechanisms of the separation distance does not
exist. Usually, it is considered as a constant distance next to the wall or obstacle,
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Fig. 1 Example of a straight
corridor where areas around
walls, a vending point and a
pillar are not used by
pedestrians, illustrating the
principle of separation
distance [11]

KIOSK

where pedestrians do not walk. In literature, only few values for these distances were
found, as mentioned in Sect. 1. This is corroborated by the lack of data in the field.
Furthermore, in some cases the values found are contradictory [6, 7].

3 Measurement Method

This work aims to further knowledge about the pedestrian wall distance by apply-
ing observations techniques with high spatial resolutions. The measurements were
done in real-life situations and therefore the measurement device had to suit the
corresponding requirements. For the determination of the distances kept from walls,
small ultrasonic sensors were used which were attached to the wall. They measure
the distance to the nearest object in front of the sensor, for example the nearest
point of a passing pedestrian. Compared to video recordings and similar observa-
tion techniques this approach enables a more accurate and direct measurement of
the separation distance. The small size of the sensors allows attaching them a wall
without strongly influencing the behaviour of passing pedestrians. The sensors were
mounted at 95cm above floor level which was determined to be the approximate
height of the nearest point of an average pedestrian. The sensors recorded distance
values every 0.05 s. Based on these values, automated data extraction was used to
retrieve the nearest point of pedestrians passing the sensor. The data obtained are
used to determine the distribution of wall clearance distances and to find a suitable
method for calculating the minimum separation distance.

For researching the influence of obstacles in pedestrian flows, a laser scanner was
used. The device measures the distance to all nearest objects in a 180◦ field of view
with a resolution of 0.5◦ and a frequency of 20 Hz. Using this method the trajectories
of pedestrians in a horizontal plane can be obtained.
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4 Results

Measurements ofwall clearance distanceswere done along a smooth granitewall on a
ramp (Fig. 3) as well as at a 1.33mwide bottleneck (Fig. 2). The nearest point of each
pedestrian was recorded and subsequently used to evaluate the distance pedestrians
keep from the wall. Figure4 shows the number of pedestrians passing the wall in
fixed distance intervals. It has to be noted that due to occlusion by others, pedestrians
further away from the wall are not always recorded by the sensor.

Based on the data, three zones can be distinguished. Closest to the wall, at dis-
tances under 10 cm, almost no pedestrians were recorded. This could be considered
the absolute wall clearance distance, closer than which pedestrians do not pass under

Fig. 2 Location of wall clearance measurements at a bottleneck: view of the bottleneck (a) and the
sensor (b)

Fig. 3 Location of wall
clearance measurements at a
smooth granite wall next to a
ramp
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Fig. 4 Frequency of pedestrians observed at different wall distances for the ramp location, divided
in 5cm intervals

normal circumstances. At distances over 40 cm, no influence of the wall can be per-
ceived: pedestrians are equally distributed across this part of the ramp. In the distance
range between 10 and 40 cm, a constant increase in the amount of pedestrians walk-
ing at a certain distance from the wall was observed. Within this zone the pedestrian
flow is reduced compared to the flow unaffected by the wall. This indicates that the
wall clearance distance is not a single value expressing an absolute distance, but
rather a value describing the reduction of the pedestrian flow in the proximity of
walls. Assuming a linear increase of the flow in the aforementioned transition range,
this principle can be expressed by

dw = d1 + (d2 − d1) ·
(
1 − a

2

)
(3)

where d1 and d2 are the lower and higher boundary of the transition range and a
is the ratio between the flows at the lower and upper boundary of the transition
range. Inserting the values mentioned above, a wall clearance distance of 18cm was
calculated. This value corresponds to 10cm in the first zone and 8cm representing
the reduction in flow in the second zone.

The same measurements were done for a bottleneck serving as an access to a big
lecture hall in a university building at ETH Zürich (Fig. 5). In contrast to the previous
measurement no wall clearance distance is observed. Pedestrians pass at very short
distances, even right at the edge of the bottleneck, and therefore the effective width
equals the physical width of the bottleneck. In addition to the ultrasonic sensor
measurements amanual pedestrian count was conducted, allowing the comparison of
the measured wall distances with the pedestrian flow rates (Fig. 6). The wall distance
clearly decreaseswith increasing pedestrian flow, indicating that the distance not only
depends on the characteristics of the wall itself but also on the pedestrian density.
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Fig. 5 Frequency of pedestrians observed at different wall distances for the bottleneck location,
divided in 5cm intervals

Fig. 6 Wall distances measured at different pedestrian flow rates for the bottleneck location

Todetermine the influenceof obstacles onpedestrianflows, laser scannermeasure-
ments were done by placing an artificial obstacle in a corridor (Fig. 7). Trajectories
of the nearest point of pedestrians were extracted from the data (Fig. 8). As expected,
the influence of an obstacle can be observed both up- and downstream of the object
as pedestrians start to change their walking direction a few metres in advance. Com-
pared to values from literature, indicating an effective width reduction of 0.31m
measured 3m upstream from a 0.60m wide obstacle [5], the influence measured
is slightly lower. For the situation with the obstacle in the middle of the corridor,
the influence length of the obstacle can be estimated at 2–2.5 m. The difference
could be explained by the fact that the obstacle in the experiment is not sufficiently
high to obstruct the view of pedestrians, which might cause different behaviour than
around ceiling-high obstacles. The observed shape of the pedestrian flow around the
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Fig. 7 Location of the laser scanner measurements for the obstacle on the side (a) and in the middle
of the corridor (b, c)

Fig. 8 Pedestrian trajectories around an obstacle on the side (a) and in the middle (b) of a hallway.
Trajectories describe the movement of the nearest point of each person. The light blue lines are
upstream of the obstacle, the dark blue lines downstream

obstacles (Fig. 8) corresponds with the literature (Fig. 1). The flow width reduction
is noticeable a certain distance in front of the obstacle to nearly its full extent.

5 Conclusion

The conducted measurements show that the pedestrian wall clearance distance can
be reliably measured. Furthermore, ultrasonic transducers present a cheap and quick
method to count pedestrians and measure key characteristics of pedestrian flows.

The results confirm existing knowledge that pedestrians keep a certain minimum
distance from walls and obstacles. However, this distance should not be considered
an absolute value, as the distance kept to walls varies between pedestrians. Rather,
the flow in the proximity of walls can be divided in three sections: a section where the
flow is zero closest to the wall, a section with undisturbed conditions furthest from
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the wall, and a section with reduced pedestrian flow in between. In addition, it was
found that the distance kept to obstacles is dependent on the pedestrian density. To
study this effect, more data linking distance measurements to flow rates is needed.

In situations where the pedestrian flow utilises the entire flow capacity, which
typically occurs in bottlenecks like entrances to train platforms, the measurement
results indicate that a wall distance of zero should be assumed. To clarify what
causes this phenomenon, and whether it only occurs at narrow bottlenecks like the
one researched, further measurements at wider bottlenecks should be carried out.

As expected, the effect of obstacles on pedestrian flows is not limited to the cross
section in which the obstacle occurs and can also be observed upstream. However,
the data indicates that the influences of walls and obstacles are slightly overestimated
in literature, especially at higher pedestrians flows and narrower flow cross sections.
It is therefore suggested to focus on these aspects in future research.

Acknowledgements The authors thank Martin Huber for his technical support and expertise.
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Estimation of Density Levels in the Holy
Mosque from a Network of Cameras

Yasir S. Ali, Basim Zafar and Mohammed Simsim

Abstract In this work we developed a system for estimating the density levels in
the holy mosque ofMakkah using video cameras installed in the mosque. This set-up
relies on dividing the image into smaller segments and counting the number of people
in each segment to infer the density. This algorithm used texture and SIFT interest
point features to get an accurate count of the number of people at each segment using
support vector regression. Having segments at different sizes helped to account for
objects with different size in the image. In addition, the use of overlapping segment
smooth the estimated densitymaps as each pixel receive a contribution from different
patches. Our methodology has been tested extensively with different cameras during
the Fasting season of 2015 with images from very crowded areas in the mosque.

1 Introduction

Al-Masjid Al-Haram is the prayer direction for all Muslims around the world and
Muslims travel to Al-Harammosque for Hajj andUmrah rituals.With the new expan-
sion completed, the mosque will be a huge complex and thus indoor navigation and
route planning techniques will be highly in need. People tend to stay close to the
gate they entered from, which causes congestion to build near the gates and gives a
false indication of the mosque being fully occupied while some places inside remain
vacant [3]. Density estimation from image has captured good attention in the pub-
lished literature. Xiaohua et al. [11] employed support vector machines with wavelet
descriptors for classifying crowd density into four groups. Their work achieved
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Fig. 1 Snap shots from the holy mosque in Makkah showing different density levels. Even though
the mosque is mostly crowded, it can sometimes be almost empty as in the top left image

classification accuracy of 95% formoderate density crowds.Ma et al. [11] calculated
texture features for small images blocks for computing crowd density. Davies et al.
[4] have used the ratio of foreground pixels/edges to the total image size as indica-
tion of the image density. Velastin et al. [10] employed both background removal
followed by edge detection to estimate the crowd area in the image. Reisman et al.
[7] presented a new method for crowd detection by detecting the inward motion via
Hough transform analysis. Marana et al. [5, 6] used texture analysis to estimate the
crowd density. They have noted high texture frequencies are associated with fine
textures which correspond to high density crowds (Fig. 1).

2 Density Estimation

In this paper, we addressed the problem of measuring the status of crowd distrib-
ution in Al-Haram in a manner that helps authorities to better manage the mosque
occupancy and control the gates based on accurate and real time information. We
developed a system that informs the authorities as well as the public about the crowd
distribution in different sections of the mosque. This helps the authorities decide
when to divert the crowds and which part is fully occupied or vacant. This system
generates a density map for the covered area of the mosque which is then transmitted
to the public via VMS (variable-message sign), smartphone apps as well as websites
that provide regular updates and the crowd status and advice the public when is the
best time to visit the mosque.
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Fig. 2 Process flow for density estimation for small image segments or patches

Figure2 shows the process flow for our methodology to compute the density of
crowds in an image. Firstly, an image is captured from a camera, which has to be
known and calibrated a priori [9]. Thus, it is not advisable to take prerecorded videos
from an unknown camera, because the calibration settings will not be available
for computing the coverage area of the camera which leads to incorrect density
estimation. After that, a set of features are extracted from the image and processed
to get the count and density.

The image is divided into smaller overlapping blocks or patches. The patches
have different sizes to allow a multi-scale processing of the image data [1]. Smaller
patches have consistent densities but they have repeated features and they can easily
be affected with low frequency noise [2]. On the other hands, larger patches contain
more features and thus better relevant to irrelevant frequency ratio. At the features
extraction step, a confidence weight is given to each patch which weight the impor-
tance of features in the given patches with respect to those at upper and lower scales
[2, 8].

Texture and SIFT (Scale-Invariant Features Transform) features have been
employed to estimate the count of people in image patches and thus computing
the density of the patch. Texture features can give good indication of the number of
people inside the block size the crowd head can be viewed as repeated texture pat-
tern.To extract texture, the image gradient is computed and transformed into Fourier
domainwhere high frequency andweak signals and suppressed. The retain frequency
and reconstructed back to spatial domain and peak points are extracted followed with
non-maxima suppression. Finally, statistical moments and entropy are extracted to
represent the patch features [2].

The SIFT algorithm extracts prominent local features in the image by applying
sequence of image transformation and extracting minima and maxima of the trans-
formed image [2]. SIFT features are extracted from the image patch and clustered
into codebook of a defined size. Also, these features are used to impose confidence
weight on the count of the patches at different scales.

At patch level, the previous three features are concatenated together to form one
vector and these feature and individually normalised to be used for support vector
regression [8]. The individual normalisation of each bin is because they represent
different entities. In order to ensure that the counts from different patches are smooth,
they resultant density computed for these patches are normalised for each pixel. The
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Fig. 3 Sample of images using during the training phase with their ground-truth labels

support vector machine engine has been trained using 70 manually labelled images
representing a wide range of crowds for image from Al-Haram. Figure3 shows
sample of the training images using with their manual labels.

3 Results and Discussions

To validate the accuracy of our systemwe firstly installed cameras at known locations
in Al-Masjid Al-Haram where the coverage area of the camera is approximately
computed. The camera set-up parametres has been recorded (camera height and
angle) which can be used later to compute the actual area of image patches. We used
HD camera with overall resolution of 1280× 720 pixels. We have set the smallest
image patch to be 160× 120 pixels and we also extracted patches with large size
(320× 120, 160× 240 and 320× 240). During the processingmore than 200 patches
are extracted from each image and for each patch we computed the texture features
and stored the first four statistical movements and the entropy (5-D vector). For SIFT
features, during the training, a dictionary of 512 words is created. For each new SIFT
point extracted for a new image patch, its descriptor is approximated to the nearest
word in the dictionary be means of k-nearest neighbour search [2].

Patch level features are fed into support vector regression (SVR)whichwas trained
previous using the 50 annotated images described in the previous section. The SVR
will return the count of people within the given patch. Here, we assumed that these
patches represent a coherent regions and thus they should have an equal density
distribution. Therefore, the patch density value is computed as the count of people
divided by the patch area which is obtained from the calibration stage. Since the
count and thus the density estimation is computed for an overlapping and variable
size patches, the overall density level of each pixel is computed using Eq.1 by
weighting the density of the patch dK which contains pixel with the patch weight w
and summing this for all patches that contains pixel i .

d(i) =
∑

k dk(i) ∗ wk(i)∑
k wk(i)

(1)
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Figure4 shows an example for density estimation from one image using the pro-
posed method. Left is an image from Al-Masjid Al-Haram while the right side is the
density map. The blue colour indicates low density, while the red colour indicates
highest density and the green ones are comfortable density levels. The density image
has been smoothed out to eliminate blocking effects. Ideally, the densities should be
computed for very small patches. However, such patches will not contain sufficient
information to infer the count of people or density levels.

The results presented in Fig. 4 lacks a reference scale upon which the density is
defined. In these figure auto scaling on figures is applied which assigns the lowest
density to blue and the largest to dark red in all figures. Instead of this we adopted
Fruin level of services (LoS) to represent the density with 6 standard levels which
represent ameaningful status for the crowd level. However, the density indicated here
is not the standard density defined in Fruin LoS because the density levels in Al-
Haram is much more than they places where these LoS are defined and having more
than 2 person per square meter is very common in Al-Haram, whereas elsewhere
this is considered as dangerous level. Table1 shows the reference levels of service
for the density levels, the actual density for each level and how this can affect the
crowd flow.

Figure5 presents more results for our density estimation method. We have con-
ducted various video recordings during the fasting month at which the mosque will
be fully occupied. Even though we used 6 density levels when generating the density

Fig. 4 Al-Masjid Al-Haram: image (a); computed densities (b)

Table 1 Representation of 6 levels of service and their actual density values

LoS (Level of Service) Danger level Density (P/m2)

LoS A Safe and comfortable Less than 0.5

LoS B Safe 0.5–1.0

LoS C Safe, not comfortable 1.0–2.0

LoS D Not safe 2.0–2.5

LoS E Highly dangerous 2.5–3.0

LoS F Collision Above 3.0
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Fig. 5 Sample images fromAl-MasjidAl-Haram (left) and their corresponding densitymaps (right)
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maps. there are more values in between these levels since this density map has been
smoothed with an averaging filter to remove blocking effects. In the second image,
even though the image shows high density crowds, our algorithm gives the high
density label only to the parts far away from the camera as high density, while the
closer parts are labelled as moderate density even though the density is very high.
This is because the area of the patches are not correctly estimated due to errors in
camera calibration. The third and fourth row show that the density has been correctly
computed and the vacant part in the third row has been labelled as dark blue.

4 Conclusion

In this paper we represented a methodology for computing crowd density in Al-
Masjid Al-Haram. The proposed methodology relies on dividing the image into
smaller patches with known area and counting the number of people in each patch
using texture and interest point features. to account for crowds with different size,
an overlapping patches with different size have been used. This allows computing a
smooth densitymap by averaging the per pixel density across all patches that contains
it. This algorithm relies on good camera extrinsic calibration, so that correct patch
area can be assigned to near and far patches. The computational complexity of this
algorithm is not high and it can further be reduced by parallel implementation since
the patches can be processed independently.
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Is Slowing Down Enough to Model
Movement on Stairs?

Gerta Köster, Daniel Lehmberg and Felix Dietrich

Abstract There are many well validated models of pedestrian movement on a flat
surface. This is not the case for movement on stairs. Experiments show that pedes-
trians slow down when climbing or descending stairs. Hence, it is tempting to model
movement on stairs by simply slowing down by a factor. But this would imply
that, other than being slower, motion on stairs mirrors motion in the plane. Is that
assumption justified? We conduct field observations that reveal similarities but also
significant differences. Thus, we argue thatmodellingmovement on stairs by slowing
down free-flow velocities may be an acceptable first shot. True microscopic behav-
iour, however, like treading from step to step and keeping to a straight line instead
of trying to overtake can only be captured by a dedicated model. We present an
extension to the Optimal Steps Model that achieves this.

1 Introduction

There is a long tradition of modelling pedestrian motion in the plane. For discussions
and overviews see for example [3, 7]. Model development has been complemented
by a range of controlled experiments and field observations that make validation
possible, at least to a certain extent. One focus is on fundamental diagrams that
epitomise the dependency of speed or flow on the density of a crowd (e.g. [2, 19,
24]). Bottlenecks are also intensively studied (e.g. [11, 12, 18]). State-of-the-art
models are able to calibrate model parameters to a scenario using one data set, such
as a fundamental diagram, and to then reproduce other observed effects in the same
scenario, such as the density in front of a bottleneck. We refer to [2, 16, 21] for
more in-depth discussions. Competing models can be checked against each other
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and against empirical observations for at least a minimum of characteristic scenarios
that are compiled by standardisation bodies such as RiMEA or NIST (e.g. [8, 14]).

Models for movement on stairs are far less developed. Experiments show that
pedestrians slow down when climbing or descending stairs [5, 6, 10, 13]. Noren
et al. [13] give a summary of the state of the art on ascending stairs with a focus on
long stairs. But how much do they slow down? And under which conditions? Are
there, perhaps, other fundamental characteristics for movement on stairs? Fujiyama
and Tyler [6] measure a strong correlation between walking speed on a flat surface
and on stairs. Given free-flow velocities it is thus tempting to model movement on
stairs by simply slowing down by a factor. In fact, to our knowledge, this is what
modellers tend to do as a first shot. But this implies that, other than being slower,
motion on stairs mirrors motion in the plane. Can we simply assume this? In the
plane there is a clear linear dependency of the walking speed on the step length in
the range of normal walking [9, 15, 16]. This means that, at least in that range,
the influence of frequency adds variation but does not dominate. On a staircase the
opposite may well be true: the depth of a tread limits the stride length; in addition
pedestrians usually do not take more than one stair at a time [15]. In line with this
argument, [6] claim that the step frequency may be the dominant factor on stairs.
The length of the stairway, too, influences speed [10]. Finally speed and flow seem
to depend on the density with fundamental diagrams similar to those for flat surfaces
[1, 20] but with a difference between upstairs and downstairs flow. This in line with
findings that the speed, too, differs in ascent and descent [17].

All in all, literature on the subject still seems scarce and inconclusive, especially if
one wants to build an all-purpose model. Within the frame of this paper we therefore
focus on one simple but important question: Can we model movement on stairs
by simply slowing down by a factor? To tackle this question, we conducted a field
observation at the Munich University of Applied Sciences. Trajectories of students
on stairs, walking to and from a lecture hall, were captured and analysed. In the
results Sect. 2 we first present the observational data and derive a list of requirements
from the observations. From that we build a model by extending the Optimal Steps
Model. We validate the model by re-enacting the scenario in the field observation.
Finally we discuss our results, open issues and future work in Sect. 3.

2 Results

The experiment was set-up in fall 2014.A camerawas installed to observe the flow on
two identically constructed staircases to and from a lecture hall at the Lothstraße 64
campus of Munich University of Applied Sciences as seen in Fig. 1. The experiment
was not controlled. From the video material and, given the set-up in an engineering
and computer science building, it seems nonetheless safe to assume that the partic-
ipants were between 18 and 25 years old, predominantly male and had a free-flow
speed well above the 1.34m/s used in Weidmann’s benchmark data [23]. The stair-
ways at Lothstraße 64 have 24 stairs in total, where the seventh stair is a small plateau
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Fig. 1 Modelling and
simulation project 2014:
Entrance hall, Lothstrae 64,
Participants are students
aged 18–25. Experiment 1
on 23-10-2014, 15:00, only
downstairs, 56 pedestrians
(a). Experiment 2 on
04-11-2014, 09:45, upstairs
90 pedestrians, downstairs
34 pedestrians (b)

(1.52 m deep). Each normal stair is 0.3m deep. The difference in height between
each stair is 0.165 m, so that the total height difference is 3.96 m. The total horizontal
length is 8.4 m (Fig. 1). Trajectories and pedestrian positions were extracted from the
video using the open source tracker tool ‘Tracker v. 4.86’ under the GPL-3.0 licence
(https://www.cabrillo.edu/dbrown/tracker/) and projected on the plane.

Table1 shows the horizontal speed component averaged over the whole staircase.
The results are in accordance with our own earlier results from a controlled exper-
iment [15] and former observations [10]. Clearly pedestrians slow down on stairs.
The factor is roughly 1/2. The linear regression in Fig. 5 shows the measured walking
speed downstairs in dependency on the density. The slope is small and, more impor-
tantly, the coefficient of determination is close to zero. Table2 gives more statistical
information. Due to the many data points, the p-values are extremely small. That is,
while there clearly is a statistically significant dependency, it explains very little of
the variation in the data. Thus, we hesitate to accord to the density-speed relationship
on staircases the same importance that we give it in the plane. Instead, we argue that
one must look closer to see what characterises movement on stairs.

Table 1 Average speed on stairs measured at MUAS in November 2014

Horizontala speed upstairs
(m/s)

Horizontala speed downstairs
(m/s)

Experiment 1 – 0.64

Experiment 2 0.59 0.69
aThe horizontal speed is the projection of the velocity vector on the plane

https://www.cabrillo.edu/dbrown/tracker/
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Table 2 Statistical analysis of the speed-density relationship in the downstairs experiment

Experiment 1 down Experiment 2 up Experiment 2 down

Slope −0.0705 −0.1192 −0.1416

Intercept 0.6815 0.6314 0.6959

p-value 1E-22 1E-68 1E-17

Coefficient of
determination r2

0.06678 0.1160 0.08547

Std-error 0.007149 0.006635 0.01618

Data points 1361 2462 821

In an experiment in 2012 single participants in a controlled experiment kept to a
straight line in the middle of the staircase [17]. This preference was observed again
in the new experiment even when the students could have cut a diagonal towards
their target, e.g. toilets positioned to the side of the staircase. More importantly, and
surprisingly, they hardly deviated from the straight line when other pedestrians were
present. Deviation would be necessary for evasion manoeuvres. Also pedestrians
stepped from tread to tread rarely taking two steps at a time. They did not use a tread
twice. With this, the stride length is fixed by the depth of a tread.

We wish to devise a simple model that captures our observations. The outcome
from simulation experiments should be that the

Requirement 1 Agents step from tread to tread.
Requirement 2 There is little deviation from narrow paths perpendicular to the

orientation of the treads.
Requirement 3 Agents decelerate on stairs.
Requirement 4 Measured speed-density relation is reproduced after calibration.

Our locomotion model for stairs is inspired by the Optimal Steps Model in the
plane that was published and validated in [16, 17, 21, 22]. The Optimal Steps Model
advances pedestrians step by step with their natural stride length. At each stepping
event, the position of the next step is found by optimising utility on a disc around
the pedestrian with the pedestrian’s free-flow stride length as the radius. The shorter
the travel time to the target the higher the utility. Pedestrians avoid collisions and
slow down in a dense crowd because other pedestrians locally decrease utility. Then
the local utility optimum is no longer on the circle’s rim but inside the disc. As a
consequence, agents make smaller steps and may even skip steps if the old position
is better than any other position.

For the Optimal Steps Model on stairs we change the area where the utility maxi-
mum is searched. We limit it to the intersection of the disc with a line that represents
a tread, thus restricting free movement just like the real stairs do. Figure2 illustrates
the concept. In addition we demand that, if several locations on that line are of almost
identical utility (difference smaller than 10−4), the one closest to the last position is
chosen. This gives straight paths a little edge over deviations. We believe that this
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Fig. 2 Optimal Step Model for stairs: the reachable next positions are all points along the edge
located on the next tread. We use the point with the shortest distance if utilities do not differ
significantly

is plausible, because straight down is where gravity pulls the pedestrian. It is also
necessary from an algorithmic point of view, because a wide target at the end of the
staircase would lead to equal utility along each tread line. Note that this is a model
of the projection of the true three dimensional motion onto the plane. At the end of
the staircase the agents are one floor up or down.

To test our model we re-enact the scenario in the second observation. This means
that, over a period of about 500 s we create virtual pedestrians at the head and the
foot of the stairs heading down and up respectively just as was observed during the
experiment. In this way we get the same number of pedestrians over time in the
experiment and the simulation. For simplicity in the simulation, we do not treat the
resting place in the middle of the stairs differently from the rest. We find this justified
because it is unclear whether pedestrians on a short landing immediately switch back
to motion in the plane or whether they stick to the rhythm they acquired on the stairs.
Our agents do the latter. Figure3 depicts the speed on the stairs over time both for
the empirical observation and the computer experiment. The average speeds are very
close and exhibit a similar pattern. Note that the average free-flow velocity in the
simulation is 1.52 m/s so that the deceleration is caused by the stepping mechanism
not by reducing preferred speeds. The comparison of the path widths in Fig. 4 again
shows a similar pattern. The agents in the simulation stick even closer to a narrow
path than in reality.We conclude that the Optimal StepModel on stairs meets our first
three requirements. The last requirement remains: reproduction of the fundamental
diagram.

We compare the density-speed relationship of the observed data with the simple
deceleration model where the free-flow velocities in the Optimal Steps Model for
the plane are divided by 2 and the simulation results for the Optimal Steps Model
for stairs. Note that, for the Optimal Steps Model for stairs, the free-flow velocities
are unaltered so that all deceleration is caused by the different stepping mechanism
on stairs. All other parameters are chosen to be identical: The free-flow velocities
are normally distributed about 1.52m/s with a standard deviation of 0.11m/s which
matches preferred speeds for predominantly male and young students taken from
controlled experiments at MUAS in 2012. The personal distance function, a smooth
function on compact support [4, 21], that decreases utility when pedestrians get
too close, and thus keeps the simulation collision free, is calibrated, so that the
Optimal Steps Model on stairs reproduces the fundamental diagram. Figure5 shows
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(a) (b)

Fig. 3 Average speed over time. Experiment 2. The line indicates the overall average speed of 0.61
m/s (a). Re-enactment with the Optimal Steps Model for stairs with overall average speed of 0.60
m/s (b)

(a) (b)

Fig. 4 Pathwidth.Histogramofmaximumpathwidth in experiment (a). Pathwidth in re-enactment
with the Optimal Step Model for stairs (b)
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Fig. 5 Speed density relation. Experiment. Slope −0.0705, r2 = 0.067, p-value p = 0 (a). Sim-
ulations with normally distributed free-flow velocities (μ = 1.52, σ = 0.11). OSM for the plane
(black); OSM for the plane slowed down by factor 0.5 (blue); OSM stair model (red) (b)
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the downstairs case. While the standard Optimal Steps Model yields too fast speeds,
both, the simple deceleration model and the Optimal Steps Model for stairs, show
speed-density relationships that are close to the one in the observation. In that sense,
the deceleration ansatz seems a good first shot. However, when we look at stride
lengths and movement of agents in the diagonal direction, the deceleration model no
longer fits our observations.

3 Discussion

In this contribution we addressed the following research question: Can one model
movement on stairs by reducing the free-flowvelocity in amodel designed formotion
in the plane? To answer this question we presented empirical results from an obser-
vation of students climbing and descending a staircase to a lecture hall. We also
presented simulation results for a deceleration model and for a model that was
designed to match the empirical observations.

We found that both, the dedicated model and the simple deceleration model well
matched the measured speed-density relationship on the stairs. At a first glance
this seems good news. By simply fixing the preferred speeds, which can be done by
changing one input parameter inmost tools,we get acceptable fundamental diagrams.
At a second glance we realise that fundamental diagrams may not play an important
role at all, when looking at movement on stairs. A linear regression of the observed
data revealed a small slope in the dependency and a small coefficient of determination.
That is, other than in the plane, the effect of density on the flow is small. In addition,
pedestrians moved with a quasi-fixed step length set by the depth of the tread, they
hardly overtook each other and they headed up or down with very little deviation
from a straight line perpendicular to the treads. None of this holds in the plane.

In view of these results it seems questionable whether simple deceleration ade-
quately models movement on stairs. The Optimal Steps Model for stairs, also a very
simple model, was able to reproduce all observed behaviours and also the funda-
mental diagram. While questions, like the effect of fatigue, the differences between
upstairs and downstairs movement, the transition phase between plane and stairs,
and many more remain open, we argue that the Optimal Steps Model for stairs is at
least one step closer to a biomechanically correct model. This may open the door for
more detailed investigations of motion, like stumbling.
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Data-Driven Characterisation
of Multidirectional Pedestrian Traffic

Marija Nikolić, Michel Bierlaire and Flurin Hänseler

Abstract We propose the framework for pedestrian traffic characterisation that is
derived by extending Edie’s definitions through a data-driven discretisation. The dis-
cretisation framework is based on three-dimensional Voronoi diagrams in order for
the characterisation to be as independent as possible from an arbitrarily chosen aggre-
gation. It can be designed through the utilisation of pedestrian trajectories described
either analytically or as a sample of points.

1 Introduction and Background

Congestion is a phenomenonwhich negatively affects pedestrian dynamics and repre-
sents an increasing issue in numerous public spaces. In order to provide convenience
and safety for pedestrians, understanding and predicting of pedestrian traffic is essen-
tial. Indicators such as velocity, density and flow have been used for this purpose.
Different approaches to the definitions of these indicators exist in the literature. They
are mostly based on an arbitrarily chosen discretisation (in both, space and time) that
may (i) generate noise in data and lead to unreliable results, (ii) lead to the loss of
heterogeneity across space and pedestrians and (iii) result in undesired outcomes if
the pedestrians do not all walk in the same direction.

We propose a novel approach to pedestrian traffic characterisation by adapting
widely used definitions proposed by [1] through a data-driven discretisation. The
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discretisation framework is based on three-dimensional (3D) Voronoi diagrams [3].
It is designed through the utilisation of pedestrian trajectories described either ana-
lytically or as a sample of points.

2 Related Literature

Edie’s definitions [1] were first introduced to characterise the vehicular traffic,
and later extended to pedestrian traffic by [5]. The definitions are derived based
on pedestrian trajectories in a three-dimensional time-space region V (Fig. 1) of
length dx , with dy and duration dt . The volume of the region V is given as
Vol(V ) = dx × dy × dt , with the unit in squared metres times seconds.

The density (k) is defined as the total time pedestrians spend in V , divided by its
volume

k(V ) =
∑N

n=1 tn
V ol(V )

, (1)

where N corresponds to the number of pedestrians present in V .
The flow (q) is defined as the total distance travelled by pedestrians in x(dx ) and

y(dy) directions in V , divided by its volume

q(V ) =
(
qx (V )

qy(V )

)
=

⎛
⎝

∑N
n=1 d

x
n

V ol(V )∑N
n=1 d

y
n

V ol(V )

⎞
⎠ , (2)

where N corresponds to the number of pedestrians present in V .
The speed is defined as the ratio between flow and density

v(V ) =
(

qx (V )

k(V )
qy(V )

k(V )

)
. (3)

Fig. 1 Pedestrian
trajectories in
three-dimensional
time-space diagram
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In the limit dt → 0 density reduces to the number of pedestrians present in [dx ×
dy] at a specific moment in time. In the limit dx → 0 (dy → 0) flow is interpreted
as the number of pedestrians per unit of time and per unit of length. In order to be as
independent as possible from an arbitrary selection of dx , dy and dt we introduce a
discretisation framework that is established in accordancewith 3DVoronoi diagrams.
Note that two-dimensional Voronoi diagrams have been investigated in the literature
to derive pedestrian flow indicators [4].

3 Space-Time Partitioning

Weconsider space-time representationwhere the triplet (x, y, t) represents a physical
position (x, y) in space at a specific time t (the distance along each of the two spatial
axes is expressed in metres, and the unit for time is seconds). The trajectory of
pedestrian i is a curve in space and time. It is a set of points

Γi : {pi (t)|pi (t) = (xi (t), yi (t), t)}, (4)

indexed by time t , such that a given pedestrian is at position (xi , yi ) at time t . In
practice, the analytical description of a trajectory is seldom available. Instead, the
pedestrian trajectory data is collected through an appropriate tracking technology. In
this case time is discretised and the trajectory is described as a finite collection of
triplets

Γi : {pis |pis = (xis, yis, ts)}, (5)

where s = [1, 2, . . . , T ] and ts = [t1, t2, . . . , tT ] corresponds to the available sample.
We consider 3D Voronoi diagrams associated with pedestrian trajectories for the

assignment rule d∗ that has both spatial and temporal component. A point p =
(x, y, t) is assigned to pedestrian i if it is closer to a given pedestrian than to any
other for the assignment rule d∗. As a result, the discretisation assigns 3D Voronoi
‘tubes’/sequences of 3D Voronoi cells (Vi ) to each pedestrian trajectory/sequence of
points for each pedestrian.

The assignment rulesd∗ considered in this study are theNaive distance (dN ), Time-
Transform distance (dTT ), Mahalanobis distance (dM ) and Distance To Interaction
(dDT I ). dN represents the standard Euclidean distance inR2 when the points have the
same time flag, otherwise it goes to infinity. dTT uses a conversion constant expressed
inmetres per second to convert the temporal difference between points into the spatial
one. dM is employed in order to favour points that are in the movement direction of a
pedestrian. dDT I is used so as to anticipate a possible interaction between the points
when performing the assignment.

We define the set of all points in Vi corresponding to a specific time t , that is

Vi (t) = {(x(t), y(t), t) ∈ Vi }. (6)
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Fig. 2 3D Voronoi-based discretisation. Set in Vi for a specific time t (a) and a specific location
y (b)

It represents the set of dimension 2 or a physical area on the floor (illustrated in
Fig. 2a). The area of this cell is denoted by |Vi (t)|, with the unit in m2.

Similarly, we define the set of all points in Vi corresponding to a specific locations
x and y, that is

Vi (x) = {(x, y, t) ∈ Vi }, Vi (y) = {(x, y, t) ∈ Vi }. (7)

They represents the set of dimension 2 or a segment perpendicular to x , respectively
y, that is occupied by pedestrian i and a time interval that pedestrian i occupies that
segment (illustrated in Fig. 2b). The areas of these cells are denoted by |Vi (x)| and
|Vi (y)|, with the unit in ms.

4 Definitions of Pedestrian Traffic Indicators

The definitions proposed by [1] are revised according to the discretisation framework
described in Sect. 3. The density of the cell Vi (t) is defined as

kti = 1

|Vi (t)| , (8)

where |Vi (t)| is the area of the set given by Eq.6. The flow through the segments
perpendicular to x and y for pedestrian i is defined as

qi =
(
qx
i

q y
i

)
=

(
1

|Vi (x)|
1

|Vi (y)|

)
, (9)

where |Vi (x)| and |Vi (y)| are the areas of the sets given by Eq.7. The velocity is
defined as the ratio between the flow and density



Data-Driven Characterisation of Multidirectional Pedestrian Traffic 47

vi =
( qx

i

kti
q y
i

kti

)
. (10)

Here, we consider qi and vi in x and y directions only. The framework, however,
allows for the specification and measurement of the indicators in any other direction
of interest.

5 Conclusion and Future Work

We propose the approach to data-driven pedestrian traffic characterisation. It can
be applied to pedestrian trajectory data available either in a form of an analytical
description or as a finite collection of points. The approach is expected to (i) reflect
the heterogeneity across pedestrians and space; (ii) lead to smooth transitions inmea-
sured traffic characteristics and (iii) reproduce the settings with different movement
conditions.

In our future researchwewill consider trajectories that are generated in a simulated
environment to evaluate the performance of the approach for different assignment
rules. In particular, the focus will be on the ability of the approach to produce real-
istic indicators and its robustness with respect to the sampling rate. Additionally,
the framework will be applied on the data from the real-world scenes. The future
research will also aim to examine the effectiveness of additional assignment rules
(e.g. probabilistic assignment based on behavioural rules). We plan to further extend
the approach through a stream-based framework [2] for the cases when more aggre-
gated measures are of interest.
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Asymmetric Pedestrian Dynamics
on a Staircase Landing from Continuous
Measurements

Alessandro Corbetta, Chung-Min Lee, Adrian Muntean
and Federico Toschi

Abstract We investigate via extensive experimental data the dynamics of pedestri-
ans walking in a corridor-shaped landing in a building at Eindhoven University
of Technology. With year-long automatic measurements employing a Microsoft
Kinect™ 3D-range sensor and ad hoc tracking techniques, we acquired few hun-
dreds of thousands pedestrian trajectories in real-life conditions. Here, we discuss
the asymmetric features of the dynamics in the two walking directions with respect
to the flights of stairs (i.e. ascending or descending). We provide a detailed analysis
of position and speed fields for the cases of pedestrians walking alone undisturbed
and for couple of pedestrians in counter-flow. Then, we show average walking veloc-
ities exploring all the observed combinations in terms of numbers of pedestrians and
walking directions.

1 Introduction

During the last two decades experimental investigations of pedestrians dynamics
flourished, fostering a transition from qualitative to quantitative analyses. Sev-
eral geometric configurations and flow scenarios have been studied in controlled
laboratory conditions, such as corridors, bottlenecks, intersections and T-junctions
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[1, 15, 16]. More recently, 3D-range cameras and wireless sensors enabled reliable
measurements in real-life conditions [3, 4, 9, 11], allowing for data collection with
reduced (potential) influences of laboratory environments. Notably, these technolo-
gies are privacy-safe, as recorded pedestrians are not identifiable, thus, unlimited
data collections, e.g., via long term measurement campaigns [4] are possible.

In this paper, we analyse the dynamics of pedestrians on a landing (intermedi-
ate planar area between flights of stairs) which has a corridor-like geometry. Few
experimental data have been collected in these scenarios, typically in the context of
evacuation [7, 10]. Driven by fundamental curiosity, we recorded the landing on a
24/7 basis and acquired trajectories of walking pedestrians in a year-long experi-
mental campaign. Our data include multiple natural traffic scenarios, such as uni- or
bi-directional flows with one or several pedestrians. After categorising the measure-
ments based on walking directions and number of pedestrians involved, we compare
pedestrian positions and velocities among different flow conditions. We note that
individuals walking on a landing are either ascending or descending the neighbour-
ing stair flights. This aspect induces asymmetries in the dynamics, likely related to
the different physical fatigue of pedestrians. These asymmetries, that we observe
here and discuss, appear on side of cultural preferences, for instance for walking
side [8].

This paper is organised as follows: in Sect. 2 we provide a description of our
measurement set-up and a primer of the recording technique. In Sect. 3 we give a
detailed overview of the dynamics of pedestrians walking alone and in avoidance
of one other individual via position and velocity fields. Moreover, we comment on
the average velocities considering all possible flow conditions and addressing all
direction combinations. A concluding discussion is reported in Sect. 4.

2 Measurement Site

We measured the pedestrian traffic on a landing within the Metaforum building at
Eindhoven University of Technology. The landing connects the two staircases in
the configuration presented in Fig. 1a, c, where individuals ascend in a clockwise
direction from the ground to the first floor of the building. The landing is 5.2 m long
and 1.2 m wide, and the steps have the same width. Individuals at the ground floor
reach the landing after 18 steps, then they climb 4 further steps arriving at the first
floor. Pedestrian traffic mainly comes from students walking between the canteen of
the building (ground floor) to the dining area (first floor) and vice versa. Considering
the reference system in Fig. 1c, we indicate the walking direction that leads to the first
floor as left to right (2R, for brevity) and as right to left (2L) the opposite case. On
average, 2,200 pedestrians cross the facility every working day, and occupancy peaks
at around 12PM (lunch time) and at around 3PM (afternoon break). At peak hours,
typically there are multiple pedestrians walking in the facility (up to six pedestrians
have been recorded in our observation window at once) in co-flow (uni-directional
dynamics) or counter-flow (bi-directional dynamics). Conversely, off-peak traffic is
mostly due to individuals walking alone, undisturbed by other pedestrians. We refer
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(a) (b)

(c)

Fig. 1 Sketch of the landing including the view cone of the Kinect™ sensor (marked with a letter
‘K’) (a). A frame taken in the landing by the Kinect™ sensor; two pedestrians walking in opposite
directions are present. The depth field (z) is represented via the grey scale. Brighter pixels are farther
from the camera plane (b). Planar view of the landing with dimensions and the xy reference system
considered. The walking direction from the ground to the first floor (from left to right) is depicted
(c). Examples of trajectories collected are reported

to our previous work [4] for time histories and statistics about daily traffic. In this
work, we discuss pedestrian dynamics data acquired during 108 working days in
the period October 2013–October 2014. In this campaign we collected ca. 230,000
time-resolved high-resolution trajectories.

Wemeasured trajectories of pedestrians via an automatic head tracking procedure
that allows non-intrusive and privacy respecting data acquisition in real-life condi-
tion. Such procedure is based on the 3D-depth data delivered by an overhead and
downward looking Microsoft Kinect™ 3D-range sensor. 3D-depth frames represent
a filmed scene as a three dimensional (x, y, z) pixel cloud (cf. Fig. 1b). Pedestrian
identification (segmentation) can be operated by identifying and isolating pixel clus-
ters within such a cloud. Heads, that we track as particles, are the topmost portions
of each cluster (cf. [2, 11]).

We filmed at 15 frames per second in the central, 1.8 m long (cf. Fig. 1c), section
of the landing, by placing a Kinect™ sensor at a height of ca. 4 m (cf. Fig. 1a).
Technical aspects of our detection approach, inspired by [11], are discussed in the
appendix of [6]. Furthermore, we employed the OpenPTV library [12], developed
by the Particle Tracking Velocimetry [13] community in fluid mechanics, to perform
heads tracking and to retrieve trajectories (cf. Fig. 1c).

3 Pedestrian Dynamics

TheU-shape of the landing influences the dynamics of pedestrians that follow curved
trajectories to reach the staircase at the opposite end of thewalkway.Hence, contrarily
from what is expected in a rectilinear corridor of similar size, pedestrian positions
and velocities are asymmetric in space. These aspects depend on the flow conditions
(undisturbed pedestrian vs. multiple pedestrians) as well as on the walking directions
(ascending vs. descending).
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Fig. 2 Positions and
velocities of pedestrians
walking undisturbed.
Positions concentrate mostly
in thin curved layers
following the U-shaped
geometry (a). To evaluate
these layers we address
separately pedestrians going
from left to right (2R, for
brevity) and from right to left
(2L). For each ‘horizontal’
location x in the observation
window (x ∈ (−1, 0.8) m),
we consider the distribution
yx of pedestrian positions in
‘vertical’ direction. We
report the 15th and the 85th
percentiles of yx as a
function of x (thus the
vertical interval
(yx,15, yx,85)). Layers for
pedestrians going to the left
and to the right are identical
but a roughly 20cm vertical
offset. Fields of average
walking speed in space (b,
c). Respectively for
pedestrians going to the left
(b) and to the right (c). In
both cases the maximum
velocity (higher for
pedestrians going to the left,
that have already descended
a ramp of stairs) are reached
after the central part of the
corridor. Thus, pedestrians
decelerate to approach the
next ramp
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Direction-dependent differences can be observed for pedestrians walking undis-
turbed. Pedestrian trajectories concentrate within thin curved layers that are located
at the relative right hand side of the facility (cf. Fig. 2a, the relative right hand side is
at the absolute top for people going to the left and at the absolute bottom for people
going to the right. See the caption and cf. [4] for the layer estimation idea). These
layers reflect a preferred walking path, ideally located along their axes, that acts as
‘guiding centre’ of trajectories fluctuations (cf. [5] for analysis and modelling of
such stochastic fluctuations). Although the relative position of the layers conforms
with the cultural habit of keeping the driving side (cf. e.g., [8]), an influence of the
landing geometry cannot be excluded. In fact, the shape of the landing limits the
sight on the staircases, hence, right hand side positions may be kept to ease potential
collisions (cf. Fig. 3). Walking speed is affected by the walking direction too: pedes-
trians descending from the stairs walk faster (cf. Fig. 4). The walking speed varies
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Fig. 3 Positions and
velocities of pedestrians
walking in presence of a peer
having an opposite velocity
(counter-flowing).
Examples of trajectories in
counter-flow (a).
Simultaneous detections are
connected via grey segments.
The pedestrian going to the
right enters first (a). When
the pedestrian going to the
left appears, he or she
modifies the trajectories
moving to the relative right
to avoid collision. In
avoidance regime,
pedestrians positions
concentrate on the relative
right (b). The layer of
preferred positions is
calculated as in Fig. 2a.
Notably, the symmetry with
respect to the corridor
‘vertical’ axis (x ≈ −0.1 m.
Cf. Dotted grey line) is lost.
Average speed fields for
pedestrians going from right
to left (c) and from left to
right (d) in presence of a
second pedestrians going in
opposite direction. The
preferred positions layer is
reported and compared with
the preferred positions layer
in case of undisturbed
pedestrians (cf. Fig. 2).
Pedestrians going to the left
and to the right have smaller
walking speed than in the
undisturbed case. Notably,
pedestrians going to the right
walk significantly more
slowly
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in space and its contours are roughly transversal with respect to the position layers.
The speed peaks around the central section of the corridor, and remains high in the
second half of the walkway. Individuals walk slower near the staircases to adapt their
velocity to the ascent/descent of the stairs (a speed drop of about 30% is measured
in our observation window, cf. Fig. 2b, c).
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(a) (b)

(d)(c)

Fig. 4 Fundamental diagrams of different system state variable pairs (cf. Eq. (1)). We report on the
vertical axis average walking speeds for pedestrians going to the left (descending) in (a, c) and for
pedestrians going to the right (ascending) in (b, d). Average speeds are considered in dependence
on the number of pedestrians in co-flow and counter-flow: in (a, b), the number of co-flowing
pedestrians is on the horizontal axis, while the number of counter-flowing pedestrians is accounted
via the different curves (for example, in (a) ‘+2 ped. 2R’ means that there are two pedestrians going
to the right in addition to a number of pedestrians going left). Diagrams (c, d) contain a ‘transposed’
information, as the number of counter-flowing pedestrians is on the horizontal axis while the number
of co-flowing pedestrians changes across the curves. We consider just system states for which there
are at least 100 frames. The size of the error bars (possibly underestimated) is max(s) − min(s),
where s = {s1, s2, s3, s4}, and the si are average values computed on a random even partition in
four sets of the speed data at a given (# ped. 2L, # ped. 2R) state

Direction-dependent differences increase when the presence of other pedestrians
triggers avoidance mechanisms. The simplest avoidance scenario involves exactly
two pedestrians walking in opposite direction (i.e., counter-flowing, cf. Fig. 3a). In
this condition, the path layers are shifted to the relative right to avoid collision. Con-
trary to the single pedestrian case, these layers have no overlap (cf. Fig. 2a vs. Fig. 3b).
Furthermore, they are not symmetric with respect to the central corridor vertical axis
(x ≈ −0.1 m). In both 2L and 2R cases, layers are wider near the entrance side with
similar distribution to the undisturbed pedestrian case. Moving across the landing,
the layers constrict and shift toward the relative right hand side. We observe a drop in
the walking speed in comparison with the undisturbed pedestrians, especially around
the central horizontal axis (y ≈ 0 m) where collisions may potentially occur. Higher
walking speeds are reached at the relative right hand side of the pedestrians, where
collisions are mostly avoided. Comparing the counter-flow dynamics in pedestrian
pairs with the undisturbed dynamics, we observe further direction-related asymme-
tries: (i) position shift to the relative right from the undisturbed case is larger for
pedestrians ascending (2R); (ii) the speed drop in counter-flow is larger for pedestri-
ans ascending (2R).
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When more than two pedestrians are present, different walking configurations
are possible. Moreover, pedestrians may have social interactions (e.g. conversations)
and move in groups (cf., e.g., [14]), that may influence the walking behaviour (we
ignore here such possible influences). We address the walking dynamics considering
averagewalking speeds in all possible uni- and bi-directional flow configurations.We
refrain from spatial analyses and we take here velocity averages over the observation
window (cf. Figs. 2b, c and 3c, d).We identify configurations considering the number
of pedestrians going to the left (# ped. 2L) and the number of pedestrians going to
the right (# ped. 2R). After grouping pedestrians that in each frame walk in the same
direction, we evaluate their average speed (respectively, avg. speed 2L and avg. speed
2R). In other words, we give a simplified description of the system state through a
tuple:

(# ped. 2L, # ped. 2R, avg. speed 2L, avg. speed 2R). (1)

Considering average speed versus the number of pedestrians yields fundamental
diagram plots, that we report in Fig. 4. We observe a twofold monotonic behaviour
(within error bar) with directional dependence. First, the average speed of pedestrians
decreases as the number of pedestrians increases either in co-flow or in counter-flow
situations. Second, average speeds of ascending pedestrians are lower than those of
descending pedestrians for any given combination of co-flowing and counter-flowing
pedestrians. However, while an increase of co-flowing pedestrians (for fixed number
of counter-flowing individuals) yields nearly linear reductions of the average speed
(cf. Fig. 4a, b), the trend for increasing the number of pedestrians in counter-flow is
not linear (cf. Fig. 4c, d). We observe the following features: (i) the velocity response
to the number of counter-flowing pedestrians is different in the cases of individuals
going to the left and going to the right, and (ii) specifically for the population going
to the right, significant speed drops occur as soon as one counter-flowing pedestrian
is present; the exact number of counter-flowing individuals seems to play a minor
role.

4 Discussion

We acquired experimentally and in real-life conditions a large set of trajectories of
pedestrians walking on a landing. The trajectories span over multiple flow conditions
involving a variable number of pedestrians walking in different direction configu-
rations; in particular, both co-flows and counter-flows occur and are recorded. The
U-shape of the landing as well as the previous ascent/descent of the stairs induce
asymmetries in the dynamics that add up with cultural walking side preferences.
Pedestrians walking undisturbed keep the relative right side, even if no avoidance is
necessary. This cultural preference is likely enhanced because of the limited vision
near the staircases, which yields a choice of positions preventing possible inbound
collisions. We considered average walking speed for all possible combinations of
occupancy andwalking directions. Pedestrians that have climbed the stair case (going
to the right) appear to move slower than those who just descended for all flow config-
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urations. Interestingly, the increment of co-flowing pedestrians yields nearly linear
speed reductions, while this is not true when the number of counter-flowing pedes-
trians increases.
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Experimental Study of High-Density
Pedestrian Flow Field Characteristics
at a Crossing

Liping Lian, Weiguo Song, Yuen Kwok Kit Richard and Chunlin Wu

Abstract This paper presents an experimental study on four-directional intersecting
pedestrian flows to give insight into collective movement characteristics of pedes-
trians at a crossing. The experiments were performed in a university and up to 364
students took part in. Pedestrian trajectories are extracted by means of automatic
image processing. From trajectories, we get positions of each person in each frame
and find pedestrian gap at high densities. Velocity field and its corresponding stream-
lines and contour lines are constructed and analysed. An efficient rotary traffic pattern
occurs when people walk on their right hand side along the corridors. Moreover, tur-
bulence intensities in different scenarios are compared and the results imply that
putting an obstacle in the centre of cross area and pedestrians walking on the right
hand side along the corridors will improve traffic stability in the cross area. These
findings can be used to calibrate pedestrian simulationmodels and help us understand
the mechanism of collective movement better.

1 Introduction

In recent years, crowd disasters have attracted worldwide attention. High density
and the meeting of two or more directional flows are the main causes of serious
casualties. The study of pedestrian dynamics is urgent and of great importance.
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By now, the experimental studies of high-density pedestrian flows focus on crowd
disaster investigation. Helbing et al. [3] analysed Mina Stampede happened in 2006,
and defined local density and local velocity measurement to describe microscopic
characteristics. Wang et al. [10] also investigated Mina Stampede and used proper
orthogonal decomposition method and parameters in fluid mechanic to describe
pedestrianmovement characteristics.Other crowddisasters, for exampleLoveParade
Disaster [4, 5] happened in 2010, Duisburg, are also widely investigated. However,
the resource of empirical data is limited and often not well recorded. Helbing et al.
[2] simulated different pedestrian traffic designs at a crossing by using social force
model. They found when pedestrians walk in one-way regulation and an obstacle
was put in the centre of cross area, stripes can form in the cross area. If the four
pedestrian streams met in right order, rotary traffic can be formed. Zhang et al. [11]
investigated fundamental diagrams in T-junctions and found pedestrians velocities
aftermerging are bigger than those beforemerging at the same density. The collective
behaviours of two ant streams at a crossing under high-density and panic conditions
were studied [1]; researchers found alternate moving and clogging states in each ant
stream. However, controlled experimental study for entering pedestrian flows is still
rare, especially under high-density conditions.

In this paper, we design controlled experiments for four-directional intersect-
ing pedestrian flows at a crossing and aim to investigate high-density pedestrian
movement characteristics. The experiment will be introduced in Sect. 2. Results and
discussion are given in Sect. 3. The last section is summary and perspectives.

2 Experiment

The sketch of the experimental set-up is shown in Fig. 1.
The experimental scene was composed by two perpendicular corridors and the

corridors were made by some partitions. Each corridor had a length of 8 m and a
width of 3.2 m. Besides, in some experimental scenes, there was an obstacle putting
in the centre of cross area. The obstacle was a desk whose length is 1.0 m and width
is 0.8 m. The participants were 364 male students with average age of 20 years old
and average height 1.70 m. They were asked to wear red and yellow hats and divided
into four-directional pedestrian flows standing orderly in the waiting area. There
were four high-density experimental scenarios and they were separately named OO-
WS, OO-WR, WOH-WR and WOV-WR according to whether putting an obstacle
or not and the walking instruction. OOmeans without an obstacle, WOHmeans with
an obstacle putting in horizontal direction, WOV means with an obstacle putting in
vertical direction,WSmeans pedestrians were asked to walk straight in the corridors,
WR means pedestrians were asked to walk on their right hand side in the corridors.

The whole experimental process was recorded by a camera located on the top
floor of a 15-m-high building. By using mean-shift algorithm [7], each pedestrians
coordinates in each frame of video recordings can be automatically detected. Then,
we adopted direct linear transformation method to transform image coordinates to
real space coordinates [9].
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Fig. 1 Sketch of the
experimental set-up [6]

3 Result and Discussion

Figure2a shows a snapshot of instantaneous velocity filed in experiment OO-WR.
The red arrows represent the velocities of pedestrians walking from west to east. The
magenta arrows represent the velocities of pedestrians walking from east to west.
The green arrows represent the velocities of pedestrians walking from north to south.
The blue arrows represent the velocities of pedestrians walking from south to north.
An approximate rotary traffic in the cross area can be seen in Fig. 2a. Moreover,
we can observe some pedestrians change their expected walking paths in the cross
area, which indicate the complex movement in the cross area. For the convenience
to represent the flow direction, we constructed the local velocity field based on
each pedestrians velocity and its corresponding stream lines, as shown in Fig. 2b.
The method of local velocity we adopt is proposed by Helbing et al. [3], here we
give a simple introduction. The local velocity at position r and at time t is defined
asV(r, t) =

∑
i vi f (ri (t)−r)∑
i f (ri (t)−r) . In which f (ri (t) − r) = 1

πR2 exp(− ‖ ri (t) − r ‖2 /R2),
ri (t) represents the instantaneous velocity of pedestrian i at time t , ri (t) represents
the position of pedestrian i at time t , R is a measurement parameter, here R = 0.6. To
avoid boundary effect, we study central area 4 m× 4 m, so the scopes of coordinates
in Fig. 2a, b are different. Figure2b shows a rotary traffic in the intersecting area and
the overall flow direction agrees with Fig. 2a.

Furthermore, the contour lines of local velocity field are also constructed in order
to investigate velocity distribution at a crossing, as shown in Fig. 3. Note the scopes
of the coordinates are also different in left and right figures. Figure3a shows when
pedestrians walk straight in the corridors, the velocity in the cross area will quickly
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Fig. 2 Scenario OO-WR: velocity field (a); stream lines (b)

Fig. 3 Scenario OO-WS at the time of 6.4 s and the density in the cross area is 8.1 ped/m2

top; scenario OO-WS at the time of 20 s and the density in the cross area is 9.5 ped/m2 bottom.
Instantaneous velocity field (a, c); contour lines (b, d)
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Fig. 4 Scenario OO-WSwhen the density in the cross area is 9.08 ped/m2: snapshot (a); sketch (b)

become small, while pedestrians in the corridors still keep going. At this moment, the
cross area is jamming. As the density in the cross area becomes larger, pedestrians in
the cross area will have strong interaction with each other, the velocity in the cross
area increases and pedestrians in the corridor will stop or slow down, as shown in
Fig. 3b.

To get insight into high-density period in scenario OO-WS, we find pedestrian
gaps as marked in a magenta ellipse in Fig. 4a. When we use circles to represent
pedestrians, it is unexpected that pedestrian gaps can be seen more clearly, as shown
in Fig. 4b, which calibrates the simulation results of Majian [8]. Moreover, in Fig. 4b
different colours represent different pedestrian flows and it shows pedestrians in the
same direction cooperate together and move on as a whole at this moment.

In the experiment, themovement in the cross area is chaotic, the local density in the
centre of cross area can exceed 10 ped/m2 [6]. We further investigate the movement
characteristics in the cross area. Figure5 shows the average local velocity field over
time and its corresponding stream lines in each scenario. We choose time interval
when the motion state in the cross area is relatively stable and the density is not very
low, in this paper we take time interval that satisfies the average velocity over space
is less than 1 m/s and the density in the cross area is greater than 2 ped/m2. Figure5
shows the average local velocity field is like rotary traffic. It is no doubt that when
asking pedestrian to walk on their right hand side along the corridors, rotary traffic
will occur in the cross area, which agrees with the simulation results [2]. However, it
is unexpected that the average velocity field is like rotary traffic in scenario OO-WS,
where pedestrians are instructed to walk straight, which may be because pedestrians
in China have right hand side preference.

Moreover, turbulence intensity I , a parameter in fluid mechanics, is used to quan-
titative characterise movement in the cross area. Figure6 shows time evolution of
space-averaged turbulence intensity I . Turbulence intensity I in scenario OO-WS is
biggest and fluctuates strongly, which indicates chaotic movement when pedestrian
walked straight in the corridors. The red dashed line, where pedestrians walk on
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Fig. 5 Time-averaged local velocity field; scenario OO-WS (a); scenario OO-WR (b); scenario
WOH-WR (c); scenario WOV-WR (d)

Fig. 6 Time evolution of
space-averaged turbulence
intensity I
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their right hand side in the corridors, at first is not stable and then become relatively
stable. That may be due to at the beginning of the experiment one of the pedestrian
streams walked fast to avoid possible conflicts in the cross area. When putting an
obstacle in the centre of the cross area and pedestrians walk on the right hand side in
the corridor, namely in scenarios WOH-WR andWOV-WR, the turbulence intensity
will be smaller and become relatively stable.

4 Summary and Perspectives

Experiments of high-density pedestrian flows at a crossing are conducted. When
pedestrians walk straight in the corridors, the cross area soon become crowded and
pedestrians have strong interactionwith each other. During the interaction, pedestrian
gap forms. By using local velocity measurement, local velocity streamlines and
contour at a crossing are obtained. An appropriate rotary traffic is formed when
pedestrians walk on their right hand side along the corridors. When pedestrians walk
straight, the cross area will soon become jammed. After significant interaction, the
velocity in the cross area increases. In addition, we find turbulence intensity in the
cross area is smaller and the traffic in the cross area is relatively stable if putting
an obstacle in the centre of cross area and pedestrians walk on their right hand side
along the corridors. It is hoped that more experiments in complex configurations will
be conducted and analysed in future work.
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Empirical Study of the Influence of Social
Groups in Evacuation Scenarios

Cornelia von Krüchten, Frank Müller, Anton Svachiy, Oliver Wohak
and Andreas Schadschneider

Abstract The effects of social groups on pedestrian dynamics, especially in
evacuation scenarios, have attracted some interest recently. However, due to the lack
of reliable empirical data, most of the studies focussed on modelling aspects. It was
shown that social groups can have a considerable effect, e.g. on evacuation times.
In order to test the model predictions we have performed laboratory experiments of
evacuations with different types and sizes of the social groups. The experiments have
been performed with pupils of different ages. Parameters that have been considered
are (1) group size, (2) strength of intra-group interactions, and (3) composition of the
groups (young adults, children, and mixtures). For all the experiments high-quality
trajectories for all participants have been obtained using the PeTrack software.
This allows for a detailed analysis of the group effects. One surprising observation
is a decrease of the evacuation time with increasing group size.

1 Introduction

The influence of social groups in pedestrian dynamics, especially in evacuation sce-
narios, is an area of recent interest, see e.g. [3, 4] and other contributions in these
proceedings. The situations that are considered are widespread and well-known
in everyday life. For example, many people visit concerts or soccer matches not
alone, but together with family and friends in so-called social groups. In case of
emergency, these groups will try to stay together during an evacuation. The strength
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of this cohesion depends on the composition of the social group. Several adult friends
would form a loose group that is mainly connected via eye contact, whereas a mother
would take her child’s hand and form a strong or even fixed bond. In addition, even
the size of the social groups could have an effect on the evacuation behaviour.

In order to consider these phenomena in a more detailed way, a cooperation of
researchers of the universities of Cologne andWuppertal and the Forschungszentrum
Jülich has performed several experiments aiming at the determination of the general
influence of inhomogeneities on pedestrian dynamics. They contained two series
of experiments with pupils of different ages in two schools in Wuppertal. The first
series focussed on the determination of the fundamental diagram of inhomogeneous
groups, i.e. pedestrians of different size. The second series of experiments consid-
ered evacuation scenarios. In several runs the parameters of the crowd of evacuating
pupils were varied, i.e. the size of the social group and its structure and the interac-
tion between the group members. Here, we present first results for these evacuation
experiments.

2 Teaching Units

The experiments were accompanied by teaching units for all involved students pro-
viding an introduction into the topic of traffic and pedestrian dynamics.

In classes of fifth and sixth grade, the focus of the classes was on the important
quantities of pedestrian dynamics, especially density, time and bottleneck situations.
This introduction to crowd effects and pedestrian behaviour was intended to raise
awareness for their relevance for their everyday lives and safety issues. Therefore
we arranged little experiments the students could perform themselves, e.g. the panic
experiment according to Mintz [2] (see Fig. 1). In small groups the pupils had to
pull several wooden wedges out of a bottle with a narrow neck as fast as possible
and observe the blocking of the wedges when every students pulls at the same time.
This experiment was supposed to indicate that coordination can lead to better results
compared to selfish behaviour.

The older pupils of classes 10 and 11 participated in an introduction to cellular
automata and the physics of traffic. They received several worksheets on the Game of
Life and other cellular automata, especially the Nagel-Schreckenberg model [5]. The
aim of these lessons was to obtain a first qualitative and quantitative understanding of
the collective effects in traffic systems. This should help to increase the identification
with the experiments they later participated in and raise awareness about the relevance
of this kind of research for everyday life.
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Fig. 1 Panic experiment according toMintz. Every pupil is assigned a cord with a wedge on its end
lying in a bottle with a narrow neck. If every student pulls at the same time and as fast as possible,
the wedges block at the bottleneck. On the other hand, behaving in a coordinate way leads to a
smooth process that is significantly faster (Photo V. Ziemer, U. Wuppertal)

3 Experimental Set-Up and Procedure

The experiments were performed in two schools in Wuppertal. Students of four
classes participated as part of project work. The experimental room was built in the
school’s assembly hall.

3.1 Experimental Set-Up

The experimental area was a square room of 5× 5 m2 bounded by several small
buckets. In the centre of this area there was a square starting area of 3× 3m2 denoted
by the white marks. The students stepped into the room through the entrance that
is shown below in Fig. 2 and assembled in the starting area. During the evacuation
they had to leave the room using the exit on the left side. The exit door was built by
two upstanding platforms and had a variable width changing between 0.8 and 1.2 m.
The area behind the door was connected to the waiting area before the entrance, so
the students could walk on a closed path. For the collection of data all experiments
were recorded by a camera system. This system was mounted on the hall’s ceiling
and contained customary digital cameras and GoPros.

All students wore caps of different colour. Each colour represented a certain
interval of body heights. The body height of each pupil was measured before the
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Fig. 2 The experimental
area consists of a square
room of 5× 5 m2, with a
starting area in the middle.
The pupils had to leave this
room through the exit at the
left. They wore colourful
caps to distinguish the
different body heights

experiments started. This information is needed to determine the position accurately,
but the different colours can also be used to draw conclusions about the composition
of the group of evacuating pupils later in the video. All caps showed also a black
point at the middle of the head. That allows to recognise and track each person in
the video.

3.2 Experimental Procedure

In general, the pupils had to perform several evacuation runs. For each run, a group
of 32–46 persons assembled in the starting area, distributed nearly uniformly. During
the evacuation, the students were allowed to use the whole experimental area.

After a starting signal, the participants had to leave the room using the exit door.
They should walk briskly and evacuate the room as fast as possible. The pupils were
told to imagine there would be a kind of danger, like fire or smoke. However, they
were not allowed to run, scramble or push each other. After leaving the room they
had to assemble again in the waiting area in front of the entrance and to wait for the
next run.

The group of pupils thatwas placed into the experimentwas compound in different
ways to consider different parameters.

The first parameter that was varied in the experiment was the composition of the
entire group. At all, there were two different age classes allowing for three different
group compositions. The crowd could consist only of children aged 10–12 years,
only of young adults aged 15–17, or a mixture of both groups whereby children and
youths were equally represented.
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The second parameter concerned the social group size. In several runs, the students
had either to evacuate on their own without regarding the others around them, or to
form pairs, or larger social groups. These groups could contain four, six or eight
persons. Within one pair or social group the students had to try to stay together
during the evacuation run.

As a third parameter we considered the interaction within the social group. The
nature of the interaction can be specified by (i) its strength and (ii) the hierarchy
of group members. Regarding the interaction strength, the group members could
either be connected loosely, by just trying to stay together via eye contact, or they
could have a fixed bond. A fixed bond was realised by holding each other’s hand
or some other physical contact. Furthermore, hierarchy of the group members could
be different. In the first case, all partners were treated equally. Each group member
had to leave the room and to stay together with their partners. In the other case, one
student was declared as the ‘leader’, the other one as the ‘follower’. The leader had
to leave the room without regarding its partner or the other students, whereas the
follower just had to follow the leader through the room.

This leads to four different ways to form pairs during the evacuation run. In the
case of age-matched partners, the leader was chosen randomly. For the runs with the
mixed crowd, the pairs were composed of one child and one teenager that took the
part of the leader in the runs they were needed. All runs with larger social groups
were done with loose bonds. In social groups of same age, there was no leader, but
in mixed social groups one of the youths was declared as the leader.

To analyse the experiments the videos of the camera system that was mounted
on the hall’s ceiling was available. For each run of the experiment there is a video
sequence. Using the PeTrack software [1], it is possible to extract the trajectories
for each person and each run. The students were recognised via the black point in the
middle of their coloured caps. The position of this point was tracked in each frame,
generating the trajectory of each participant.

4 Analysis

First, we focus on the analysis of the data regarding the influence of group size on
the evacuation scenario. Therefore, we use the data of one school and of the runs
with larger groups. Most of these experiments were performed only with the older
pupils with loose bonds and no leader-follower relationship, to which we restrict our
analysis for now.

In different runs, the students formed groups of four, six and eight persons. In
addition, one run with groups of six students and with an explicitly cooperative
behaviour within the group was performed. They should concentrate a bit more on
their group members and try to leave the room together. For comparison, we also
consider the run with pairs and a loose bond that can be seen as a smaller group of
two persons.



70 C. von Krüchten et al.

Fig. 3 Evacuation times for larger groups of one of the schools. The splitting of the curves into
two groups is obvious. The shorter evacuation times belong to the runs with larger groups of four,
six and eight persons, the longer ones to those with pairs and cooperative behaviour

4.1 Evacuation Times for Large Groups

First, we consider the evacuation time. In Fig. 3, we plot the number of evacuated
persons against the time needed to leave the room. The results can be compared
between the different runs.

The evacuation time for each person is defined as the time difference between the
beginning of the evacuation and themoment when the person passes the door, exactly
when he/she leaves the aisle that is formed by the two platforms. The beginning of the
evacuation can be determined only approximately because the starting signal is not
audible in the videos that are used for the extraction of the trajectories. For extracting
the evacuation times we set the beginning on the moment of the first movement
towards the door.However, for the analysis the influences of this inaccurate definition,
the pre-movement time or other delays should be minimised. In doing so, we take
the evacuation time of the very first person that left the room and subtract it from all
the other times. Thereby, all plots start at zero for the first person and it is easier to
compare different runs.

For the analysis of the runs with larger groups the evacuation times are shown
in Fig. 3. All graphs show a nearly linear behaviour that could be expected. At the
beginning of the evacuation all evacuation times are roughly the same. Between three
and six evacuated persons the curves start to split into two groups. After increasing
slightly, the difference between the two progresses remains nearly constant until the
end of the evacuation. The main insight is that there are several runs that are clearly
faster than other ones.

The upper two curves represent the evacuation in pairs and in groups of six with
very cooperative behaviour. The lower graphs show the runs with larger groups of
four, six and eight persons. Within the two groups of curves the differences are not
large enough to separate the runs from each other. However, in the lower group,
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Fig. 4 Voronoi cells for each person in the room at time 4 s for the runs with pairs (a) and social
groups of four persons (b). The colour of each cell depends on its size as a measure of density

the run with eight participants per group seems to be a bit faster at the end of the
evacuation. The run with six participants per group and cooperative behaviour is
clearly slower than the run with same group size but without this instruction. These
results indicate that forming groups is advantageous for the evacuation, whereas
behaving cooperatively inhibits this effect.

While looking for reasons for the differences in evacuation times, one first
approach could be to determine the density distribution. Therefore, we determined
the Voronoi cells [6, 7] within the experimental room for each person at different
times. As a measure of density we coloured all cells dependent on their size: smaller
cells are coloured in shades of red, larger ones in blue.

In Fig. 4 the density distributions for the run with pairs and with groups of four
persons are shown. It is clearly seen that the distribution for the run in (b) is a bit
narrower than the other one at the same time step. That means when forming groups,
the children order rather behind each other than next to each other in front of the
door. This behaviour seems to be advantageous for evacuating the room as it leads
to a shorter evacuation time.

4.2 First Attempts to Interpretation

The results obtained so far suggest certain interpretations which, however, need to be
substantiated by further experiments with better statistics. It is obvious from the plot
of the evacuation times that increasing the group size leads to a decrease in evacuation
times. The density distributions show the pupils ordered in different ways for forming
groups than for pairs. A possible explanation is that the persons subordinate within
the group and just follow the other group members. Because of that, there may be
less conflicts between persons that meet at the door in competing for space. A person
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is just in competition with persons of other groups, not with own group members.
Increasing the group size reduces the number of possible competitors. This reduction
of conflicts may have a positive influence on the evacuation time.

When the children have to show cooperative behaviour, the evacuation is slower
than without this instruction. It is a possible explanation that here the effort to stay
together is larger and reduces the effort to leave the room.

5 Summary and Outlook

We performed experiments under laboratory conditions to determine the influence of
social groups on evacuations. A comparison of evacuation times between runs with
different group sizes shows that increasing the group sizes lowers the evacuation
time. The participants order in a different way for larger groups.

These first preliminary results have to be analysed in more detail. The statistics
need to be improved by further experiments. However, with the help of the density
distributions, photographs of the finish and the data of the second school we hope
to get more information from the present experiments, e.g. about the microscopic
mechanisms especially close to the exit. In addition, there are some few parameters
that should also be analysed, e.g. the effect of body size and age.
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Detection of Steady State in Pedestrian
Experiments

Weichen Liao, Antoine Tordeux, Armin Seyfried, Mohcine Chraibi,
Xiaoping Zheng and Ying Zhao

Abstract Initial conditions could have strong influences on the dynamics of
pedestrian experiments. Thus, a careful differentiation between transient state and
steady state is important and necessary for a thorough study. In this contribution a
modified CUSUM algorithm is proposed to automatically detect steady state from
time series of pedestrian experiments. Major modifications on the statistics include
introducing a step function to enhance the sensitivity, adding a boundary to limit the
increase, and simplifying the calculation to improve the computational efficiency.
Furthermore, the threshold of the detection parameter is calibrated using an autore-
gressive process. By testing the robustness, the modified CUSUM algorithm is able
to reproduce identical steady state with different references. Its application well
contributes to accurate analysis and reliable comparison of experimental results.
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1 Introduction

In the past decadeswell-controlled laboratory experimentswith pedestrianswere per-
formed all around the world. Most of them were conducted in Europe, for instance
the recent works in Netherlands [5], France [11], Italy [20], Spain [8], Czech Repub-
lic [1], United Kingdom [6] and Germany [18]. Others were carried out mainly in
Japan [7], India [3], United States [4] and China [12]. During the analysis and com-
parison of these experiments, researchers focused on collective phenomena [9, 17]
and transport characteristics of pedestrian dynamics [13, 19]. However, few works
paid attention to how the quantities depend on the initial conditions and how the
characteristics change in time.

During a run of an experiment, the quantities to describe pedestrian dynamics
changes with time and space. Even in the same spatial area the quantities do not
remain constant. This variation is called transient state, which is caused by initial
conditions. Correspondingly, the state where the mean value, standard deviation
and autocorrelation are constant is called steady state, which is a good indicator to
show the independency of the system from the initial conditions. Thus, a careful
differentiation between transient state and steady state is a key point to the analysis
and comparison of pedestrian experiments. Nevertheless, few studies considered
the influence of the initial conditions by scrutinising the states. Rupprecht et al.
[16] investigated pedestrian flow with different segments of the time series. The
comparison shows these flows have different trends, which proves the change of state
has an influence on pedestrian dynamics. However, the difference between transient
state and steady state was not analysed. Cepolina [2] investigated the time series of
pedestrian flow. The flow changes obviously in transient state while keeps constant
in steady state. However, the method to detect steady state was not studied. Liao et
al. [13] proposed to select steady state manually from the time series of density and
speed. But this manual selection process is not uniquely reproducible. Krausz et al.
[10] proposed to use Cumulative Sum Control Chart (CUSUM) algorithm to detect
steady state automatically from the optical flow computations. However, the usage
of CUSUM algorithm is restricted to independent time series with a large amount of
observations, while the time series in pedestrian experiments are normally dependent
with limited observations. To our best knowledge, no uniform method is defined to
detect automatic and reproducible steady state in pedestrian dynamics.

To solve this problem we propose a modified CUSUM algorithm. The original
CUSUM algorithm is introduced in Sect. 2. The modification and the calibration are
described in Sects. 3 and 4, respectively. The robustness of the modified CUSUM
algorithm is verified in Sect. 5. Finally, the summary is made in Sect. 6.

2 CUSUM Algorithm

The CUSUM algorithm is a sequential analysis technique for monitoring transitions
[15]. The precondition is a time series covering the observations in all situations,
as well as a reference excluding the outliers. In pedestrian experiments let (xi )ni=1
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Fig. 1 The interval between the two dash-dotted lines is the manually selected steady state, which
is regarded as the reference. The interval between the two dashed lines is the automatically detected
steady state by the CUSUM algorithm. Density (a); speed (b)

denote the time series of density or speed (see the curve in Fig. 1). The manually
selected steady state can be regarded as the reference (xi )mi= j ( j ≥ 1 andm ≤ n) (see
the interval between the two dash-dotted lines in Fig. 1).

The histogram for the distribution probability of the reference is plotted in Fig. 2.
The curve shows the kernel estimation of the distribution, which is used to smooth
the histogram. With the kernel estimation the upper percentile Q(α) and the lower
percentile Q(1 − α) are better estimated.

Statistics s+
i and s−

i are calculated as follows [15]:

s+
i = max{0, s+

i−1 + xi − Q(α)}, s+
0 = 0, (1)

s−
i = max{0, s−

i−1 + Q(1 − α) − xi }, s−
0 = 0. (2)

Fig. 2 Histogram for the distribution probability of the reference. The curve is the kernel estimation
of the distribution. Density (a); speed (b)
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Fig. 3 Detection process by the original CUSUM algorithm: density (a); speed (b)

The statistics of the time series (xi )ni=1 reflect the fluctuation degree. Higher statis-
tics represent larger fluctuations, which might indicate a transition (see Fig. 3). The
statistics of the reference (xi )mi= j are used to estimate the threshold of the detection
parameter θ by the upper percentile.

Combining the statistics of the time series and the threshold, the intersections in
Fig. 3 represent the detected transitions. One should note that these detected tran-
sitions are not the real ones in the time series. The detection process itself has a
reaction time when reaching and leaving the transition:

treaching = (max{si } − θ)/ f, (3)

tleaving = θ/ f, (4)

where f is the frame number per second in the time series. Thus the real transition
is the detected transition minus the corresponding reaction time. In Fig. 3 the inter-
val where the statistics below the threshold is the steady state. The corresponding
illustration is shown by the interval between the two dashed lines in Fig. 1.

3 Modification

The original CUSUM algorithm is able to detect steady state, but the detection
process has deficiencies. The major one is that the statistics are not sensitive to the
fluctuations (see Fig. 3). To overcome this point a step function is introduced to
enhance the sensitivity:

F(x̃i ) = 1 if |x̃i | > q(α), (5)

F(x̃i ) = −1 if |x̃i | ≤ q(α), (6)
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Fig. 4 Detection process by the modified CUSUM algorithm: density (a); speed (b)

where q(α) is the upper percentile of a standard normal distribution N (0, 1). x̃i is
the standard score transformation of the time series (xi )ni=1:

x̃i = (xi − μ)/σ, (7)

where μ and σ are the mean value and standard deviation of (xi )mi= j , respectively.
Another deficiency is the non-limitation for the statistics, which might lead to an
overlong transition. To avoid this situation a boundary smax = 100 is added to limit the
increase of the statistics. Moreover, the statistics s+

i and s−
i are calculated separately

but then combined to detect steady state. To improve the redundant calculation new
statistics (si )ni=1 are introduced:

si = min{max{0, si−1 + F(x̃i )}, smax}, s0 = smax. (8)

After the modification, the statistics show clear and sensitive response to the fluctu-
ations (see Fig. 4).

4 Calibration

Different methods can be used to calibrate the threshold of the detection parameter θ .
The regular way is taking the reference (xi )mi= j directly, which requires enough obser-
vations in the reference. Since the duration of pedestrian experiments is relatively
short, this way is not suitable for our work. Another way is using bootstrap method to
extend the number of the observations. However, this method requires observations
independent of each other, which is not realistic in our work. Thus we propose an
autoregressive process (yi )Ti=1 to model the standard score of the reference (xi )mi= j :
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Fig. 5 Verification of the
robustness for the modified
CUSUM algorithm. The
detection process with three
different references gives
similar steady state

yi = c · yi−1 +
√
1 − c2 · εi , y0 = 0. (9)

where c is the first autocorrelation of the reference, and (εi )
T
i=1 are independent

normal randomvariables. Themodelling process can be achieved by both simulations
and analytics (see [14]).

5 Robustness

To test the robustness of the modified CUSUM algorithm, three different references
are selected from the same time series (see Fig. 5). Then, the detection process is
repeated under the same conditions. Figure5 shows the detected steady state based
on different references is almost identical. This illustrates the modified CUSUM
algorithm is able to reproduce the same result between different researchers.

6 Summary

In the analysis of pedestrian experiments, finite size in time, space and events could
influence the system. Thus, it is necessary and important to carefully distinguish
between transient state and steady state. For this reason we propose a modified
CUSUM algorithm to automatically detect steady state from time series of pedes-
trian experiments. Major modifications on the statistics include introducing a step
function to enhance the sensitivity as well as adding a boundary to limit the increase.
In addition, the calculation is simplified to raise the computational efficiency. Further-
more, the threshold of the detection parameter is calibrated. Considering the fact that
the time series in pedestrian experiments are normally with limited and dependent
observations, an autoregressive process is employed to accomplish the calibration.
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Verifying the robustness by using the same time series with different references,
the modified CUSUM algorithm is proved to reproduce identical steady state. The
application of the modified CUSUM algorithm well contributes to accurate analysis
and reliable comparison of experimental results.
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Statistical Models for Pedestrian Behaviour
in Front of Bottlenecks

Nikolai W.F. Bode and Edward A. Codling

Abstract Understanding the movement of human crowds is important for our
general understanding of collective behaviour and for applications in building design
and event planning. Here, we focus on the flow of a crowd through a narrow bottle-
neck. We develop statistical models that describe how pedestrian behaviour immedi-
ately in front of a bottleneck affects the time lapse between consecutive pedestrians
passing through the bottleneck. With this approach, we isolate the most important
aspects of pedestrian behaviour fromanumber of candidatemodels.Wefit ourmodels
to experimental data and find that pedestrian interactions immediately in front of the
bottleneck appear to be less important for the observed time lapses than interactions
further away from the bottleneck. Furthermore, we demonstrate how our approach
can be used to rigorously compare microscopic pedestrian behaviours across dif-
ferent contexts by fitting the same statistical models to three separate datasets. We
suggest that our approach is a promising tool to establish similarities and differences
between simulated and real pedestrian behaviour.

1 Introduction

Themovement of human crowds is an important example of collective behaviour and
an understanding of such systems is important for applications in building design and
event planning [9]. The general consensus is that interactions between individuals are
crucial to the observed dynamics at the level of the crowd. This immediately leads to
two questions. First, how do individuals interact? Second, do these interactions differ
across contexts? Here, we present a framework to address both of these questions.
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We focus on the paradigmatic and well-studied example of pedestrian crowds
passing through narrow bottlenecks, such as exit doors. It is possible to address the
aforementioned questions indirectly. For example, the average relationship between
the speed of individuals and the density of crowds or the distribution of crowds in
front of and inside bottlenecks provide insights into how pedestrians use the available
space, whether they maintain a personal space around them and to what extent the
presence of others obstructs their movement [8, 10]. Egress times can be used to
investigate how different contexts (e.g. motivation of individuals) can affect the
movement of a crowd [6]. Computer simulations are another well-accepted approach
to explore the movement dynamics produced by different hypothesised models for
interactions between individuals [9]. In contrast to such indirect approaches, our
framework uses experimental, observational or simulated data to directly infer the
most likelymodel for interactions between individuals froma set of candidatemodels.

For narrow bottlenecks, a conveniently measured quantity is the time lapse (or
headway) between consecutive pedestrians passing through the exit. The distribution
of these time lapses provides important insights: the mean is related to the pedestrian
flow and the frequency of large values indicates the likelihood of jams, time-points
when the flow of pedestrians slows down temporarily. Previous work has investigated
properties of the distribution of time lapses. For example, it has been suggested that
the distributions have a power law tail [6]. Investigating the exponent of this power
law tail provides fundamental insights into the properties of the system. Exponents
below a value of 2 suggest that the mean of the distribution does not converge, but
grows without an upper bound as sample sizes increase—a profound issue for the
prediction of bottleneck blockages. However, this scenario does not seem to apply
to the pedestrian data investigated to date [6]. To study wide bottlenecks, Hoogen-
doorn and Daamen [8] suggest a dedicated definition of time lapses that takes the
distance orthogonal to the movement direction between pedestrians into account.
The authors then used a model which assumes that time lapse distributions are com-
posed of the contribution of freely walking pedestrians and constrained pedestrians
(who walk behind others) to estimate for bottlenecks of different widths the propor-
tion of constrained and unconstrained pedestrians, as well as the average time lapse
between consecutive pedestrians and the bottleneck capacity [8]. Our work presents
a departure from this previous work.We develop statistical models that describe how
pedestrian behaviour immediately in front of the bottleneck affects the time lapse
between consecutive pedestrians passing through the bottleneck. With this frame-
work we isolate the most likely model for pedestrian behaviour from a number of
candidate models. Furthermore, we demonstrate how our approach can be used to
compare microscopic pedestrian behaviours across different contexts by fitting the
same statistical models to three separate datasets.

2 Methods

Let tp and tp−1 be the time points at which two consecutive pedestrians cross a
line that marks a physical bottleneck (e.g. an exit). We assume that the bottleneck is
narrow, so that only one pedestrian at a time can exit.We defineΔtp = tp − tp−1 to be
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the time lapse between two consecutive pedestrians passing through this bottleneck.
We propose statistical models that describe the random variable Tp which takes
values Δtp. We assume that Δtp are distributed according to gamma distributions
and themodels take the general form Tp ∼ Γ (μp−1, σ ), whereΓ denotes the gamma
distribution with mean μp−1 and variance σ . While we treat σ as a constant model
parameter, we propose a number of models in which μp−1 depends on the relative
positions of pedestrians in front of the bottleneck. A different way of describing
our approach is that we perform a gamma regression on the values of Δtp using
pedestrian positions in front of the bottleneck as predictors. Specifically, we use
pedestrian positions at time p − 1, i.e. at the time point when the previous pedestrian
has just entered the bottleneck to predict Δtp. The rationale behind our models is
that relative pedestrian positions could affect the length of time it will take the next
pedestrian to enter the bottleneck. For example, if two pedestrians are close to the
bottleneck and equidistant from it, deciding who gets to exit next may take longer
than if one pedestrian is much closer to the exit than the other. We propose five
explanatory factors for the mean of Tp.

The first explanatory factor is a constant:m0 = α1, where α1 is amodel parameter.
It represents an intercept for μp−1 and thus an expected baseline for Δtp regardless
of the relative positions of pedestrians.

The second explanatory factor, m1, captures the effect on Δtp of how densely
pedestrians are clustered around the bottleneck. Let< d >k be the average distance to
the exit of the k pedestrians nearest to the bottleneck (at time tp−1; k = 2, . . . , 5).Here
and in the following, distances to the bottleneck are measured from the pedestrian
position to the centre of the line pedestrians cross when entering the bottleneck. Then
we define m1 = (α2 < d >k −α3)

2, where k, α2 and α3 are model parameters. For
example, very low values of < d >k indicate that many pedestrians are very close
to the bottleneck which may lead to higher expected Δtp (pedestrians may compete
against each other to exit as quickly as possible).

The third and fourth explanatory factors investigate effects of the relative positions
of the two pedestrians nearest to the bottleneck. We define di j to be the difference
in distance and θi j to be the angle between the two pedestrians i and j closest to
the bottleneck entrance. θi j is defined as the angle between the vectors pointing
from the position of pedestrians i and j to the centre of the bottleneck entrance.
The third and fourth explanatory factors are defined as m2 = (α4di j − α5)

2 and
m3 = (α6θi j − α7)

2, where α4 . . . α7 are model parameters.
The fifth explanatory factor takes the distance of the pedestrian nearest to the

bottleneck, di , into account: m4 = (α8di − α9)
2 (where α8 and α9 are model para-

meters). This explanatory factor is motivated by the observation that in the absence
of interactions with other pedestrians, the distance to the bottleneck of the closest
pedestrian is likely to be the determining factor for Δtp.

We use the five explanatory factors defined above to formulate 16 models for
the mean of Δtp by considering all possible combinations of m1,m2,m3 and m4

whilst including m0 into all models. The predicted mean for a given model is the
sum over all explanatory factors included in the model. For example, the model that
includesm1 andm3 has predictedmeanμp−1 = m0 + m1 + m3 (m0 is included in all
models).Wewill refer to the different models by the formula for their predictedmean
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(e.g. “m0 + m1 + m3”). By comparing the extent to which these different models are
supported by our data, we can establish which out of our explanatory factors best
predicts Δtp.

We use a maximum likelihood approach to fit our models. Let fΓ (Δtp;μp−1, σ )

be the probability density function of a gamma distribution with mean μp−1 and
variance σ evaluated at Δtp. Then we define the likelihood, L , of a given model as:

L =
∏
p

fΓ (Δtp;μp−1, σ ), (1)

where the product runs over all observed data points, Δtp (i.e. time lapses). In Eq.1,
we assume that separate time lapses are conditionally independent given our models
or that ourmodels explain any relationships between the probability densities for sep-
arate time lapses. We describe below how we assess the validity of this assumption.
For eachmodel, we find the parameter values that maximise the likelihood (requiring
α1, α2, α4, α6, α8, σ to be positive). From the maximum likelihood, Lmax , we com-
pute the Akaike Information Criterion (AIC), AIC = 2n − 2 log(Lmax ), where n is
the number of model parameters. We then use the AIC for model selection: models
with lower AIC are better supported by the data than models with higher AIC.

We use scaled deviance residuals to assess the fit of our models to the data [5].
We plot these residuals against the predicted values, μp−1. This allows us to check
if individual data points have particularly large residuals and should thus be treated
as outliers. Theory predicts that the mean of the residuals should be approximately
zero and systematic changes in this mean for increasing fitted values are indicative
of poor model fit, suggesting that model assumptions do not hold [5]. We also plot
the residuals as time series to test for correlations in our data over time that are not
explained by the models. If models fit the data well, we expect that there are no
systematic trends in the residuals over time.

We apply this analysis to three separate datasets. The first dataset is obtained
from experiments conducted on 1 October 2014 at the DANA centre of the Science
Museum in London with a crowd of 51 and a crowd of 71 visitors. Participants were
asked to walk at a normal speed through a 0.6m wide bottleneck (1.5m long) at the
end of a 2m wide corridor. At the start of the experiment, the crowd was lined up
in the corridor 3m away from the bottleneck. Experiments were filmed from above
at a rate of 10 frames per second and the camera (Microsoft LifeCam HD-3000
webcam™) was positioned directly above the centre of the start of the bottleneck
(see Fig. 1a). For each frame, the position of all visible pedestrians was obtained
manually by determining the position of the centre of participants’ heads. Pedestrian
positions were obtained in pixels and not converted to metres, as for the purpose of
our analysis only relative differences in distances matter. Time is given in seconds
throughout. To reduce the sensitivity of our analysis to errors in tracked positions
resulting from camera distortion, we focussed our analysis on the relative pedestrian
positions directly in front of the bottleneck (e.g. low values of parameter k) where
such errors are small due to the positioning of our camera. This dataset contained 325
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Fig. 1 Still images of experimental set-up in London (a), Bristol (b) and model simulations (c).
Red line segments indicate the bottleneck location used in the analysis. time lapse distributions
for the datasets presented in still images above (d–f). Dashed lines show gamma distribution fit
corresponding to model m0. AICs for all models analysed for the three datasets (g–i). Models are
shown in the same order in all panels. Dashed horizontal lines indicate the AIC of the baseline
model (m0)

data points (1 run with 51 participants, 4 runs with 71 participants; we only consider
time lapses when at least two pedestrians are still in front of the bottleneck).

The second dataset is obtained by repeating the same experiment with a group
of 39 students at the University of Bristol on 11 March 2015. We used the same
camera, but recorded at a rate of 15 frames per second (see Fig. 1b for a snapshot).
This dataset contained 147 data points (4 runs with 39 participants; in one trial, the
exit time of the last participant was not recorded).

The third dataset is obtained from simulations of a previously publishedmodel for
pedestrian movement [1]. Briefly, pedestrians move in continuous two-dimensional
space. The environment (e.g. walls), as well as preferred movement directions, are
encoded in a discrete floor field [4] and interactions between pedestrians and the
environment (e.g. avoiding walls) are modelled via forces acting on point masses
[7]. We simulate crowds of 80 pedestrians, each with 0.5m diameter, exiting a room
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through one 0.8m wide door (see Fig. 1c). At the start of simulations, pedestrians
are distributed randomly inside the room. All other model details and parameters are
given in previous work [1]. Simulation parameters are not fitted to the experimental
data. In our simulated dataset, we aggregate the data from the first 200s for 10
separate simulations. This results in 717 data points.

3 Results and Discussion

Figure1d–f show the time lapse distributions for the three datasets we analyse. We
begin by discussing the results for the first dataset to show how our framework can be
used to identify the most likely model for pedestrian behaviour from our candidate
models. Figure1g shows the AICs for each model obtained from our maximum
likelihood fits.We can see that most models are better supported by the data (i.e. have
lower AICs) than the baselinemodel,m0, which assumes time lapses are independent
of the relative pedestrian positions in front of the bottleneck. It is also clear that
our analysis does not simply favour more complex models. For example, the model
with the most parameters,m0 + m1 + m2 + m3 + m4, does not have the lowest AIC.
Based on our results, themodel that is best supported by the data ism0 + m4, inwhich
time lapses depend on the distance of the pedestrian nearest to the bottleneck. At first
glance this appears to be a trivial result: the closer individuals are to the exit, the less
time it will take them to reach it. However, this model outperforms other models for
interactions immediately in front of the bottleneck implying that such interactions
are less predictive for the observed time lapses. This suggests that in this data the
order in which pedestrians exit is already determined when individuals get close
to the bottleneck meaning that interactions between pedestrians occur further away
from the bottleneck. We caution that while this framework establishes the relative
performance of different models, it should not be over-interpreted as determining the
actual, truemechanismunderlying pedestrian interactions: our approach is inherently
probabilistic and only investigates a potentially incomplete set of candidate models.

Importantly, our analysis allows us to compare the relative performance of the dif-
ferent models across datasets (Fig. 1g–i). General trends in AICs indicate similarities
or differences across contexts. The trends in AICs for our two experimental datasets
are very similar (Fig. 1g, h), while the trend for the simulated dataset differs substan-
tially from the others (Fig. 1i). For the simulated dataset, only models that include
the contributing factor m1 perform much better than the baseline model and the AIC
of the model that is best supported in both experimental datasets, m0 + m4, does not
even outperform the baseline model. The performance of models including m1 for
the simulated data suggests that the density of pedestrians in front of the bottleneck
helps considerably to predict the time lapse between consecutive pedestrians. At this
point we have to re-iterate that we have not fitted our simulations to the experimental
data. Therefore, this result should not be interpreted to mean that our model or any
similar model is based on fundamentally different interaction mechanisms than seen
in experimental data. Rather, we show that our framework can be used to compare
microscopic pedestrian behaviours across different contexts and datasets.
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Fig. 2 Deviance residuals plotted against predicted mean time lapse for the model with the lowest
AIC for the London (a), Bristol (b) and simulated (c) data. Plots of residuals ordered in time for the
same data (d–f). Vertical grey lines separate data from different experimental or simulation runs

An additional advantage of our framework is that residuals provide a well-
established approach to assess the fit of models to data. In Fig. 2 we show residual
plots for the models with the lowest AIC for each dataset. There does not appear
to be a systematic trend in residual means against predicted values (Fig. 2a–c).
On close inspection, we find a consistent increase in residuals over time for each
simulation run in the model data (Fig. 2f; multiple simulation runs are shown).
In the experimental data, no such temporal correlations are immediately obvious
(Fig. 2d, e). This suggests that our model does not capture aspects of the simulated
data. One explanation for this result could be that our simulations implement forces
betweenpedestrians: as the number of pedestrians in front of the bottleneckdecreases,
the pressure exerted on pedestrians by others behind them is decreased which results
in longer time lapses. In this way, the analysis of residuals does not only highlight
potential shortcomings of our statistical models, but it can also provide an additional
way to highlight differences in interaction mechanisms between datasets.

4 Conclusions and Outlook

We have presented a framework of statistical models to analyse microscopic pedes-
trian behaviour in front of narrow bottlenecks. This approach allows us to isolate
the most likely interaction mechanism from a list of possible mechanisms which can
also be used to compare the behaviours underlying different simulations and datasets
in a rigorous and quantitative way.
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Our work presented here is a starting point and many extensions of our models
to take different scenarios and behaviours into account are possible or even neces-
sary depending on the context. For example, interactions within social groups, such
as friends, could be considered [2]. Our framework could also be developed fur-
ther to permit analysis of wider bottlenecks (an important topic, as wider bottleneck
occur frequently and pedestrians appear to preferentially exit through wider bottle-
necks [3]). Our models focus on interactions in front of bottlenecks but dynamics
inside bottlenecks could have a strong influence on time lapses between consecutive
pedestrians (e.g. consider a jammed bottleneck). If such dynamics are important, it
is likely that our approach as presented here is not appropriate.

To test the usefulness of our framework, it will be necessary to apply our analysis
to a wide variety of simulated, experimental and observational data. In particular,
applying our analysis to experimental data in which the behaviour of individuals is
controlled to some extent (e.g. motivation levels) would be very informative.

In conclusion, we suggest that our approach is a promising first step to directly
establish mechanistic similarities and differences between simulated and real micro-
scopic pedestrian behaviour.
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Congestion Dynamics in Pedestrian
Single-File Motion

Verena Ziemer, Armin Seyfried and Andreas Schadschneider

Abstract This article considers execution and analysis of laboratory experiments
of pedestrians moving in a quasi-one-dimensional system with periodic boundary
conditions. To analyse characteristics of jams in the system we aim to use the whole
experimental set-up as the measurement area. Thus, the trajectories are transformed
to a new coordinate system. We show that the trajectory data from the straight and
curved parts are comparable and assume that the distributions of the residuals come
from the same continuous distribution. Regarding the trajectories of the entire set-
up, the creation of stop-and-go waves in pedestrian traffic can be investigated and
described.

1 Introduction

In recent years, many research groups have executed experiments with pedestrians,
see e.g. [1, 4, 5, 10, 11]. One phenomenon which can be observed is a stop-and-go
wave well-known from vehicular traffic, e.g., [2]. It is visible in the simplest system
with a one-dimensional movement of pedestrians along a line with closed boundary
conditions, e.g., for a ring [10] and for a circle [5].

In the following, we summarise previous work on one-dimensional pedestrian
movements where stop-and-go waves were analysed. [10] executed the first one-
dimensional experiments in 2005. For the first time high densities were examined
in [7] and the existence of stop-and-go waves in pedestrian traffic was shown. In
[7] also an adaptive velocity model with reaction time was proposed, which is able
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to reproduce qualitatively similar stop-and-go waves as they are observable in the
experimental data, see [9]. A coexistence of two differing speed phases in this data
was shown in [8] by analysing the fundamental diagram in specific density regions.
A model that reproduces this coexistence was also proposed. The same experimental
data was taken in [3] to test a stochastic headway dependent velocity model. [5]
compared data from a circle with data from a straight line. Besides the free flow and
congested regime of the fundamental diagram they found a third regime between
both, named weakly constrained regime.

In [9], the measurement section of the nearly 27 m long corridor with closed
boundary conditions covers 4 m only. This restriction makes it impossible to test
models concerning number and dimension of a stop-and-go wave because of lack
of data. A second restriction is the duration of an experiment run. In experiments,
the duration may be too short to reach a stable state. That is why the lifetime of a
stop-and-go wave, its length in space and the number of stop-and-go waves in the
system cannot be observed.

In this article, we want to handle this problem. Experiments where the whole
system was observed are analysed. Furthermore, we introduce a methodology to
analyse characteristics of stop-and-go waves.

2 Experiments

Laboratory experiments were performedwithin the framework of the project BaSiGo
in June 2013. The aim of those experiments is a better understanding of pedestrian
dynamics in critical crowded states, e.g., in front of an entrance to a concert hall,
thus in high densities. It included large-scale experiments in various scenarios with
up to 1000 pedestrians per run during five days. The probands were mostly students
(55% male and 45% female) at the age of 18–72years, 25years on average, with
an average height of 1.71 m and received 50 e per day. 13% of them were living in
suburbs or rural areas and 68% in cities or major cities.

2.1 Experimental Set-Up

One-dimensional laboratory experiments for pedestrians in a system with periodic
boundary conditions were executed see Fig. 2a. The set-up is a ring corridor with a
circumference aboutC = 26.5m (r0 = 3m, l = 4m). Six runs were performed with
different numbers of participants (N = 15, 30, 47, 55, 52, 59) so that the global
density (ρg = N/C) ranges from 0.57 to 2.27 ped/m. For each run, the pedestrians
initially are arranged uniformly in the set-up. Then, there are two commands, the
first to start walking with normal speed in the corridor and the second for stopping.

2.2 Data Collection

To enable the automatic tracking of the trajectories, the pedestrians wear hats with
a marker. For each run the whole set-up was recorded from the top video camera
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Fig. 1 Extracted trajectories for various values of N : N = 15 (a); N = 59 (b)

with a frame rate of 16 fps. From those video recordings pedestrian trajectories who
are describing the movement of the heads of the pedestrians were extracted. For
more details to this method we refer to [6] in these proceedings. Figure1 shows the
trajectories for the runs with N = 15 and N = 59 which leads to the global density
0.57 ped/m and 2.27 ped/m, respectively.

2.3 Data Preparation

We want to study one-dimensional characteristics of stop-and-go waves. Therefore,
we introduce a coordinate x̂ along the ring which corresponds to the distance from
the origin measured along the middle line of the corridor. It corresponds to the
walking distance of a person staying always in the middle. The coordinate ŷ is
always perpendicular to the x̂-axis. It measures the deviation from the centre of the
corridor, see Fig. 2. We call x̂ the main position and ŷ the orientated distance.

The transformation λ : R2 → R
2,

(
x
y

)
�→

(
x̂
ŷ

)
is described by:

ŷ =
⎧⎨
⎩

√
x2 + (y − r0)2 − r0 x < 0,√
(y − r0)2 − r0 0 ≤ x ≤ l,√
(x − l)2 + (y − r0)2 − r0 x > l,

(1)

x̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2l + r0π + r0 arccos(
r0−y√

(x−l)2+(y−r0)2
) x < 0,

x 0 ≤ x ≤ l, y < r0,
2l + r0π − x 0 ≤ x ≤ l, y ≥ r0,
l + r0 arccos(

r0−y√
x2+(y−r0)2

) x > l.

(2)

Figure3 shows the trajectories of adjusted data in the new coordinate system
for two runs. The straight lines in the ring correlate to the intervals [0, 4] m and
[14.42, 18.42] m of the main position. Just as well the two other intervals correlate
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Fig. 2 The experiment. Photo by Marc Strunz (a). New coordinate system x̂ , ŷ (b)

Fig. 3 Adjusted trajectories in the new coordinate system: N = 15 (a); N = 59 (b)

to the two curved parts. In the following, we will only examine the main position,
described by Eq.2 and omit the orientated distance. That means that all further
calculations come from this one-dimensional main position.

3 Results

In this sectionwe test whether the fundamental diagram has different properties in the
straight and curved part of the corridor, i.e. whether it is influenced by the curvature.

3.1 Curvature-Dependence of the Fundamental Diagram

The ring corridor, our experimental set-up, has four parts, twice the straight line
and twice the half circle. Figure4 shows the Voronoi-based fundamental diagram for
pedestrians moving in the straight line and in the curve. To distinguish between the
six runs, each run has a separate symbol and colour.

The speed of pedestrian i at time t is calculated by the position difference over
half a second divided by the time vi (t) = (x̂i (t + Δt) − x̂i (t − Δt))/(2Δt) with
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Fig. 4 The fundamental diagram of single-file pedestrian motion. Data from the straight part (a)
and the curved part (b)

Δt = 0.25 s. The density is then ρi (t) = di−1, where the Voronoi space di of
pedestrian i is half the distance between the two neighbours i − 1 and i + 1, di =
(x̂i−1 − x̂i+1)/2.

For analysing the characteristics of stop-and-go waves in the whole system we
want to combine the data of both parts. First of all, we test the comparability of
the fundamental diagram for the straight line and the curve. That means we study
the distribution for both parts. The Kolmogorov–Smirnov test gives an indication
whether two data clouds have the same distribution or not. A precondition for this test
is that the data has to be independent, which can be shown with the autocorrelation.

We use two clouds with 3000 independent data points of each category, see Fig. 5
on the left side. The autocorrelation was tested for those data points to ensure that the
observations are independent. An exponential function f for the shape of the speed
according to the density is fitted by least square. The distributions of the residuals
for the clouds are tested with the Kolmogorov–Smirnov test. The null hypothesis is
H0: ‘the distribution is the same for the two samples’. The frequency of residuals
for both parts is shown in Fig. 5, right. With p = 0.791 we can clearly not reject the
assumption that the distributions of the residuals come from the same continuous
distribution.

With the Kolmogorov–Smirnov test we have shown that the density speed relation
in the straight line is subject to the distribution of the density speed relation in

Fig. 5 Kolmogorov–Smirnov test. Fundamental diagram of single-file pedestrian motion for 6000
data points and its fitted exponential function (a); result (b)
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the curve. That means that curvature effects on the fundamental diagram can be
neglected.

3.2 Visualisation of Stop-and-Go Waves

To visualise stop-and-go waves, we use the knowledge that there is a coexistence of
two separate speed phases. The fundamental diagram for the whole system for all
six runs is shown in Fig. 6. By analysing the frequency of speeds in specific density
regions the coexistence of two differing speed regimes can be identified, see Fig. 7.
One peak is around the speed 0.12 m/s and the other one around 0 m/s. Negative
speeds result from the swaying of heads of standing pedestrians.

In order to distinguish both phases, we introduce a stop speed vstop. Standing
pedestrians have a speed lower than this stop speed and moving pedestrians have a
speed which is higher than the stop speed. We set the stop speed to vstop = 0.05 m/s,
which appears to be a reasonable value for our experiments. We have to note, that
this value is not fixed and there might be better ones for other experiments.

Fig. 6 Fundamental
diagram of single-file
pedestrian motion

Fig. 7 Frequency of speed
for certain density regions,
N = 55
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Fig. 8 Trajectories of the main positions. A red dot indicates a pedestrian in a congestion,
that means he has a speed not higher than the stop speed. N = 15 (a). N = 52 (b). N = 55 (c).
N = 59 (d)

3.3 Stop-and-Go Waves

We define a stop-and-go wave by a consecutive sequence of one or more standing
pedestrians. Figure8 shows the main positions of the pedestrians for 1min for four
different runs. The plotted positions have a length of 0.2m to represent a body length.
Pedestrians in a stop wave are marked in red. With 15 pedestrians in the system, no
stopping occurs whereas 52, 55 or 59 pedestrians generate stop-and-go waves. Eye-
catching is the run with 55 pedestrians. Long and big stop-and-go waves can be
observed. The duration of the experiment run was too short to judge whether the
regarded time interval represents a stable state.

A stop wave can be characterised by the number of pedestrians in this region at a
certain time, by the length in space at a certain time and by the duration at a certain
time and position. The length of a stop wave can be described by the number of
standing pedestrians in a line or the distance between the first standing pedestrian
and the last one. Higher densities lead to stop waves with more standing pedestrians
than lower densities whereas the average length of a stop wave gets shorter. The
duration of a stop wave can be described by the time while the first pedestrian in this
stop wave is standing and the last standing pedestrian starts to move.

In the run N = 52, all stop waves have nearly the same speed around −0.5 m/s.
The run N = 59 has lower speeds of stop waves around −0.32 m/s.
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4 Conclusion

We extracted pedestrian trajectories from the whole set-up of a ring experiment. This
data was transformed to a quasi-one-dimensional straight line. The resulting funda-
mental diagram for the straight and curved part have the same shape and are compa-
rable, tested with the Kolmogorov–Smirnov test. The fundamental diagram of both
parts shows a coexistence of two differing speed zones in specific density regions. A
stop speed was introduced to distinguish between moving and standing pedestrians.
Standing pedestrians define a stop wave that can be described by the characteristics
length and duration.While the maximum number of pedestrians in a stop wave in our
data is increasing with growing density, the average length decreases. In the future,
we want to analyse those characteristics in a quantitative way.

Acknowledgements Dedicated to the memory of Matthias Craesmeyer.
This study was performed within the project ‘BaSiGo – Bausteine für die Sicherheit von Großver-
anstaltungen’ (Safety and Security Modules for Large Public Events), grant number: 13N12045,
funded by the Federal Ministry of Education and Research (BMBF). It is a part of the program on
‘Research for Civil Security—Protecting and Saving Human Life’.

References

1. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram
across cultures. Adv. Complex Syst. 12(3), 393–405 (2009)

2. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some
related systems. Phys. Rep. 329(4–6), 199–329 (2000)

3. Eilhardt, C., Schadschneider, A.: Stochastic headway dependent velocity model for 1d pedes-
trian dynamics at high densities. Transp. Res. Procedia 2, 400–405 (2014)

4. Hoogendoorn, S.P., Daamen, W., Bovy, P.H.L.: Microscopic pedestrian traffic data collection
and analysis by walking experiments: behaviour at bottlenecks. In: Galea, E.R. (ed.) Pedestrian
and Evacuation Dynamics 2003, pp. 89–100. CMS Press, London (2003)
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Determining the Density Experienced
by Pedestrians in Unstable Flow Situations

Dorine C. Duives, Winnie Daamen and Serge P. Hoogendoorn

Abstract In recent years severalmethods have been proposed to compute the density
of a crowd. Several studies have shown that the fundamental diagrams produced by
means of these methods differ greatly depending on the chosen density computation
method, especially in unstable flow situations where pedestrians are unequally dis-
tributed over the infrastructure. The results of these studies suggest that two density
computation methods are to be preferred, namely the Voronoi and the XT-method. In
light of these results, the question rises which of these two computation methods pro-
vides better results in more intricate flow situations that are unstable by nature. This
study shows that when computing the density of pedestrian movements in confined
spaces, the differences in the results generated by the two methods are limited. This
study, furthermore, ascertains that the XT-method provides more realistic results for
non-confined spaces.

1 Introduction

During the last decades numerous studies have attempted to understand, assess,
predict and manage the movements of pedestrians. Understanding the dynamics
which result from the interplay of the actions of a multitude of individuals is essential
in order tomanage pedestrian crowds and to design pedestrian infrastructure inwhich
the safety of pedestrians can be guaranteed. With a thorough understanding of the
dynamics of a pedestrian flow system, the predictive power of pedestrian traffic flow
theory can be used to support the effective and efficient management of pedestrian
facilities, which currently is mainly based on the experience and intuition of the
crowd manager.
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One essential part of pedestrian traffic flow theory is the derivation of the fun-
damental diagram. Many researchers hypothesise that, similar to vehicular traffic,
the general movement dynamics of pedestrians can be captured in a fundamental
diagram. This diagram relates the density experienced by pedestrians and the walk-
ing speed these pedestrians adopt. Several realisations of this diagram have been
presented over the years (e.g. [5, 6, 10, 11, 13]).

However, contrary to vehicular traffic, the existence and shape of the fundamen-
tal diagram is still debated. Many proposed fundamental diagrams have a similar
parabolic shape, but the capacity point, jam density and free speed differ severely
between diagrams. The culture (e.g. [8]), physical characteristics of the pedestrian
(e.g. [13]), the interactions with the physical infrastructure (e.g. [10]) and the flow
situation (e.g. [9]) have been mentioned as possible explanations for the differences.

Besides these characteristics of the situation, [2, 7, 14] have shown that also
the method used to compute the density might introduce dissimilarities between the
resulting fundamental diagrams. Johansson [7] transposed the available data sets
to show the similarities in pedestrian movement behaviour captured by differently
shaped fundamental diagrams. Zhang and Klingsch [14] illustrated that the result-
ing fundamental diagram varies with the location of the measurement area and the
adopted density measures, namely the grid-based density measure, the area-wide
density measure, a measure that averages the density within a certain area and a
measure which uses a Voronoi diagram. Duives and Daamen [2] visualised the influ-
ence of seven distinct density measures on the resulting fundamental diagram. In the
review of [2] two methods come out on top, namely the Voronoi [12] and the adapted
XT-method (adapted version of [3]). Yet, whether these twomethods produce similar
results irrespective of the flow dynamics has not been determined.

This study scrutinises the differences in results produced by the Voronoi and
adapted XT-method in case of unstable flow situations in comparison to the grid-
based method proposed by [4]. In order to study the characteristics of these two
methods, fundamental diagrams of several flow situations with an increasing level
of complexity are compared. Underneath, first the methodology is elaborated upon
in Sect. 2. Subsequently, the results are presented in Sect. 3. This paper finishes with
conclusions regarding the (dis)advantages and applicability of both methods and
some directions for further study.

2 Methodology for the Assessment of Density Measures

The following section elaborates on the set-up of the experiments. First, a formal
description of the density measures is provided. Accordingly, the adopted flow situ-
ations and pedestrian simulation model are described.



Determining Density Experienced by Pedestrians in Unstable Flows 99

2.1 Density Measures

In this study the results computed by means of three distinct density measures are
investigated, namely the grid-based method proposed by [4], the Voronoi method
proposed by [12] and an adapted version of the XT-method proposed by [3].

The adapted XT-method determines the total distance and total travel time by
all pedestrians in a predetermined space-time region based on the trajectories. The
density is afterwards computed as mentioned in Eq.1. The global density computed
for cell c at time t is assigned to the pedestrian p that resides at the centre of cell c at
time t . If period T goes to zero, this measure will take on the form of the Grid-based
formulation presented previously.

ρ(c, t) =
∑

p(tp,end − tp,begin)

Ac · dt (1)

where tp,begin represents either the moment that pedestrian p enters cell c or the
lower time boundary t − 0.5dt , tq,end either the moment that pedestrian p exits cell
c or the upper time boundary t + 0.5dt . In Fig. 1 a visual representation of this
method is provided. The thick part of each trajectory is being taken into account in
the computation of the density of the pedestrian standing in the middle of the cell.
The period dt is included to limit the time a pedestrian is accounted for during the
computation. dt is set to 1 s in this paper.

The Voronoi method uses a more dynamic space-based measure to estimate the
experienced density. In a Voronoi diagram a cell Ap consists of all points closer to
the location of a pedestrian than to each other pedestrians. The inverse of the area
Ap of the Voronoi cell corresponding to the location −→xp (t) of pedestrian p at time t
is allotted to pedestrian p (see Eq.2). Eucledian distances are used to compute the
Voronoi diagram.

Fig. 1 Visual representation
of the adapted XT-method
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ρ(
−→xp , t) = 1

Ap(t)
(2)

The shape of the diagram needs to be computed for every time step since the
shape of the Voronoi diagram changes over time. Besides that, boundary conditions
are generally implemented in order to deal with pedestrians which are not enclosed
on all sides by other pedestrians. The influence of this boundary conditions can be
quite severe. Moreover, adopting the spatial boundary might incur errors of variable
size in the estimation. Therefore, it has been chosen not to adopt a spatial boundary.

The grid-based method counts the number of pedestrians Nc within a cell c with
area Ac in an orderly grid formation. Accordingly, one obtains an estimate for density
within that specific cell. The estimate for the density in the cell is assigned to all
pedestrians in that cell. This classic definition of density can mathematically be
formulated as follows:

ρ(c, t) = Nc

Ac
(3)

In the remainder of this paper, this method is indicated as the k = N/A-method.

2.2 Flow Situations and Simulations

As mentioned before, this study investigates the influence of the density measures
on the fundamental diagram depending on the flow situation. There has been chosen
to increase the difficulty of the interaction behaviour in the flow situation, being
a very simple one-dimensional flow situation in which only interactions along a
line, a two-dimensional flow situation within a corridor, and a two-dimensional flow
situation in an open space in which pedestrians are forced to interact. Consequently,
the following three distinct flow situations are accounted for:

• 1D-Row: This situationmimics the situation inwhich pedestrianswalk in a straight
line and cannot pass each other. By means of this scenario the influence of the
metrics in the most simple flow situation possible is deduced.

• 2D-Row: The pedestrians are walking through a 2m wide straight corridor in one
direction. There is the possibility to side step and overtake.

• 2D-Bottleneck: In this situation pedestrians are walking towards a door. As such,
the interactions between pedestrians are occurring under an angle.

For all three flow situations, several demand levels are taken into account in order
to study the influence of the metrics under both free flow and congested conditions.
In the 1D-row and 2D-row case the end of the corridor is temporarily jammed in
order to create congestion. Each situation is modelled by means of Nomad. For the
details of this microscopic pedestrian simulation model the reader is referred to [1]
(Figs. 2 and 3).
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Fig. 2 Spatial distribution of the density resulting from three density computation methods for a
uni-directional straight flow situation. k = n/A (a). Edie (b). Voronoi (c)

3 Results

In order to understand how these differences arise, density plots have been made
(see Fig. 4). The high and low density areas are located approximately at the same
locations for all three density measures. In case of the 2D-bottleneck the two high
density regions can be neatly distinguished by means of the all measures. However,
especially at the boundaries of the flow, differences between the density measures
arise.

In case of the Voronoi method the lateral space near the boundary is always
assigned to the nearest pedestrian, even though this space might not be usable for
their walking movements. Moreover, near these boundaries, the allotted space is
highly dependent on the angle under which neighbours are standing. If pedestrians
are not standing directly behind each other, one of the two is allotted a very low
density, while the other is allotted a very high density, even though the amount of
space they actually have is fairly similar. As a result, near the boundaries between
traffic states and near walls, the Voronoi method can underestimate and overestimate
the density. Moreover, due to the unequal assignment of space, an error is introduced
of which the size is hard to establish which results in unstable outcomes.
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Fig. 3 Fundamental diagrams produced by the three methods for a 2D uni-directional straight flow
situation (left) and a 2D uni-directional bottleneck flow situation (right). Row-2D: k = n/A (a).
Bottleneck-2D: k = n/A (b). Row-2D: Edie (c). Bottleneck-2D: Edie (d). Row-2D: Voronoi (e).
Bottleneck-2D: Voronoi (f)

By contrast, the XT-method accounts also for the relative presence of pedestrians
which only enter the space-time box of a pedestrians for a fraction of time. As
such, it takes more individuals into account than the grid-based and Voronoi method.
Consequently, the XT-method generally finds higher densities than the k = N/A and
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Fig. 4 Density plots for three methods and two flow situations, where the plots are computed
based on the same data set and the same moment in time. The colour range represents the density,
were high densities are black and low densities are white. Row-2D: k = n/A (a). Bottleneck-2D:
k = n/A (b). Row-2D: Edie (c). Bottleneck-2D: Edie (d). Row-2D: Voronoi (e). Bottleneck-2D:
Voronoi (f)

Voronoi methods. Besides that, the XT-method always takes the relative presence of
pedestrianswithin a certain area into account, irrespective of the boundary conditions.
As a results, space that is not used for the walking movement is also not assigned to
a pedestrian, which reduces the noise in the computation.

4 Conclusions and Future Research

This paper provides an assessment of the applicability of the Voronoi method, the
adapted version of Edie’s XT-method and the k = N/A method in more intricate
and unstable flow situations. Each computation method is tested by means of three
data sets considering three distinct scenarios, namely the movement of pedestrians
along a line, in a wide corridor, and in a bottleneck flow situation. The data sets were
generated using the microscopic pedestrian simulation model Nomad.
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This study shows that if computing the density of pedestrian movements in con-
fined spaces, the differences in the results generated by the two methods are limited.
This study moreover concludes that particularly in the assessment of pedestrian
movement dynamics in non-confined spaces and unstable flow situations both meth-
ods introduce noise. However, the XT-method introduces less noise than the Voronoi
method in these unstable flow situations, and as such provides more realistic results
for non-confined spaces and transitional situations in which density changes quickly
over time and/or space.

Two suggestions for future research entail the assessment of the sensitivity of the
results produced by these three measures with respect to these boundary conditions
and the assessment of the other variables used to describe the walking behaviour of
pedestrians quantitatively. In both directions of future research, understanding the
behavioural implications of the assumptions is as important as determining the actual
quantitative differences that arise.

Acknowledgements The research presented in this paper is part of the research programTraffic and
Travel Behaviour in case of Exceptional Events, sponsored by the Dutch Foundation of Scientific
Research MaGW-NWO.
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Individual Microscopic Results of Bottleneck
Experiments

Marek Bukáček, Pavel Hrabák and Milan Krbálek

Abstract This contribution provides a microscopic experimental study of pedes-
trian motion in front of the bottleneck, and explains the high variance of individual
travel time by the statistical analysis of trajectories. The analysis shows that this
heterogeneity increases with increasing occupancy. Some participants were able to
reach lower travel times due to more efficient path selection and more aggressive
behaviour within the crowd. Based on this observations, a linear model predicting
travel time with respect to the aggressiveness of pedestrian is proposed.

1 Experiment

Various experiments have been conducted in order to verify crowd behaviour models
and to enable fundamental research of pedestrians phenomena [6–9].

Advanced processing of video records provides microscopic analysis of individual
behaviour [3, 4]. During critical situation, the individual behaviour plays an important
role—less aggressive pedestrians spend more time in the monitored area, which may
cause unexpected complications.

This article is based on an egress experiment organised at the Czech Techni-
cal University. A group of 75 students passes through an artificial room (Fig. 1),
instructed to leave the area as fast as possible, to avoid running and pushing each
other. The results supported phase transition studies as mentioned in [1, 2].
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Fig. 1 Experiment organised. Schematic view (a): The distance from the entrance to the exit
a = 7.2 m (considered for measuring of travel time), room width 4.5 m and exit width 0.6 m.
Snapshot from exit (b)

Table 1 Summary of performed rounds

Round Jin [ped/s] Jout [ped/s] T T [s] N (150)

[ped]
# paths Observation

# 2 0.99 0.99 5.67 3 158 Free flow

# 5 1.22 1.20 6.73 7 274 Free flow

# 4 1.37 1.30 16.59 24 294 Stable
cluster

# 3 1.43 1.33 14.39 22 260 Stable
cluster

# 6 1.39 1.31 20.40 33 270 Stable
cluster

# 7 1.55 1.37 25.78 45 260 Transition

# 11 1.61 1.38 21.65 41 141 Transition

# 9 1.78 1.37 24.06 47* 148 Congestion

# 8 1.79 1.38 25.03 46* 144 Congestion

# 10 1.78 1.37 23.33 44* 214 Congestion

Jin and Jout refer to flow measured flow at the entrance, respectively at the exit, T T is mean travel
time in given round. N (150) specify the number of pedestrians in the room 150 s after initialisation
and # paths denotes the number of passings in given round

Three entrances were controlled by traffic lights to get the demanded traffic mode
inside the experimental area, see Table 1. To simulate random inflow conditions,
green light was alternated by k · Δh seconds of red light, where k was generated
from a geometric distribution and Δh = 0.6 s was the time step. Each round started
with an empty room.

Unique codes on the hats of the participants enabled to detect and identify the
trajectory of each participant. From this information, travel times (covering the period
from entrance to exit) and Voronoi densities were extracted for further investigation.
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2 Travel Time Analysis

As mentioned in [2], the recorded travel time significantly depends on the occupancy
N (t), defined as the number of pedestrians inside the room. Travel time increases
linearly with occupancy and the variance is increasing as well, see Fig. 2. This phe-
nomenon will be described by pedestrian’s individual characteristics.

The term trajectory is understood to be the set of space-time coordinates assigned
to one participant during one of his passings

xi = (xi (t), yi (t), t),

where xi (t) and yi (t) are coordinates of paths i in time t . Here, we note that the path
identifier i does not refer to any specific participant, but to the recorded trajectory.

Travel time of trajectory i is defined as the time spent in the room, i.e.

T T (i) = Tout(i) − Tin(i),

where Tin and Tout are measured just behind entrances, resp. in front of the exit, see
Fig. 1.

The occupancy in the room N (t) was derived from paths; this quantity was used
to determine the mean occupancy N (i) for each path i as

N (i) = 1

T T (i)

∫ Tout(i)

Tin(i)
N (t)dt

2.1 Relative Travel Time

To compare the travel times measured under different conditions (stable state was not
reached for the whole experiment), scaling based on mean occupancy was introduced.
For each occupancy bin (N − 1, N 〉 the mean travel time T TN was defined as

Fig. 2 Travel
time—occupancy
dependency. Each point
represents one passing, lines
visualise mean and quantiles
evaluated for given
occupancy
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Fig. 3 Histograms of relative travel time. Data filtered for high density areas (a) and for low density
areas b

T TN = mean
i

{
T T (i) | N (i) ∈ (N − 1, N ]} .

Then, the relative travel time for each path may be evaluated as

T TR(i) = T T (i)

T TN
.

That enables to compare Travel time of paths reached under different conditions.
To underline the increase of variance in travel time, two histograms of relative

travel time are plotted in Fig. 3. As one can see, the travel time of dominant majority
of passings in free flow did not deviate more than 20 % from the mean value. On the
other hand, the travel time in congested mode covered 50–200 % of T TN .

2.2 Paths and Paths Density

Paths selection is one of the features, which affect reached travel time. The following
study summarises the space usage described by paths density. The workload W of
space element A j is defined as

W (A j ) = ∣∣{i : ∃t ∈ xi : (x(t), y(t) ∈ A j
}∣∣ ,

where A j is an area defined by rectangular grid, 0.2 m × 0.2 m.
Both trajectory and workload were evaluated in the area in front of the bottleneck,

the visualisation is provided in Fig. 4. In the following, the terms slow and fast trajec-
tories refer to set of 20 % higher, respectively lower travel time. These trajectories are
compared under meta-stable and congested phase of the system. Several conclusions
were drawn:
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fast in metastable slow in metastable fast in crowd slow in crowd

N [25,35] N [25,35] N [35,50] N [35,50]

TT 10 TT 21 TT 15 TT 35

Fig. 4 Paths (first row) and path density (second row) evaluated for two different density areas:
metastable cluster and congested crowd. For both traffic modes, trajectories of slow and fast pedes-
trians were compared. Here we note that the density was evaluated on a grid 0.2 m × 0.2 m,
each trajectory contributed to any segment maximally ones. The darker the colour, the higher the
workload

• the direct path to the exit was used more by fast trajectories,
• the area at the wall was used by fast paths,
• slow paths observed mainly along the angle 45◦ to the exit,
• observed asymmetry—fast on left, slow on right.

2.3 Individual Approach

More detail may be provided adding the pedestrian’s identification. Here we use the
Greek letters to denote identified participants.

While some participants reached similar travel times in free flow and congested
mode, others were not able to pass through the dense crowd and spent incomparable
more time in the room.

To compare participants, the individual relative travel time was defined as

T T α = mean
i

{T TR(i) | i ∈ Iα} ,

where Iα is the set of paths assigned to pedestrian α.
The histograms of T T α for free flow and congested state are visualised in Fig. 5.

As one can see, the heterogeneity among participants corresponds well to the variance
of relative travel time introduced in Fig. 3.
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Fig. 5 Histograms of individual relative travel time: free flow mode (a); high occupancy periods
(b)

Fig. 6 Individual travel time
with respect to the mean
occupancy. Data for three
pedestrians with different
strategies were highlighted
and the piece-wise linear
model is illustrated

Thanks to participant identification, it is possible to highlight records correspond-
ing to a given pedestrian in the travel time-occupancy diagram (Fig. 6). The observa-
tions show the same heterogeneity measured by individual relative travel time. While
some participants were not affected much by the crowd, some were not able to reach
the exit through the crowded area.

To compare the ability to push through the crowd, we define the pedestrian attribute
‘aggressiveness’ as the slope of piece-wise linear model

T T (iα) = S

v0
+ 1{N (iα)>7}(N (iα) − 7) · slope(iα) + noise.

The factor N > 7 specifies the mode, where pedestrians are affected by the motion
of others. Until N < 7, the free phase is observed and therefore the interactions may
be neglected.

Compared to the classic linear model T T (iα) = S
v0

+ N (iα).slope(iα), the piece-
wise model fits the data much better, mainly in free flow area, where the travel time
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Fig. 7 Individual results of travel time linear model. For the selected participants, the standard and
piece-wise linear model are compared. Slow participant (a). Fast participant (b)

Table 2 Table R2 values for piece-wise and standard linear models evaluated for each pedestrian

Piece-wise model Standard linear model

mean median min max mean median min max

0.688 0.691 0.386 0.936 0.679 0.676 0.362 0.938

Fig. 8 Path densities. Path slow pedestrian (a). Path density slow pedestrian (b). Path fast pedestrian
(c). Path density fast pedestrian (d)

obviously does not depend on occupancy. Vice versa, the area of constant TT trend
does not affect the slope modelled in the crowded area, see Fig. 7.

Mean values of residuals in both models are similar (see Table 2), the lower value
of mean R2 for the piece-wise model corresponds to the facts mentioned above.

In the end, the path density was investigated with respect to individual behaviour,
see Fig. 8. The observed trends are similar to the conclusions drafted from anonymous
paths data.

To conclude this part, the observed variance is successfully explained by differ-
ences in individual behaviour. Pedestrians hold to their different strategies which
leads to different performances.

3 Conclusions

Even when it was shown that lower travel time was reached by faster trajectories,
the path selection itself would not imply fast passing. Fast paths were not shorter or
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better curved to reach low travel time from physical point of view. However, these
paths were more effective to get through the dense crowd.

To support this idea, we found out many tokens of aggressive behaviour from the
camera records as pushing, rude overtaking or blocking each other. The concept of
aggressiveness as a property of pedestrians fits this idea well. This is supported by
the fact that some individuals reached low travel times under all conditions, while
others were very sensitive to occupancy.

The effect of heterogeneity has a dramatic influence to the progress of evacuation.
The time spent in dangerous area may be in mean value sufficiently low according
to local guidelines, but there is a high probability that some part of the pedestrians
would stay there much longer. This effect was implemented to the cellular automata
model, see [5].

Acknowledgements This work was supported by the Czech Science Foundation under the grant
GA15-15049S and by Czech Technical University under the grant SGS15/214/ OHK4/3T/14. Exper-
imental records available at the link https://www.youtube.com/watch?=d4zZpvhahYM.
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Modelling Stride Length and Stepping
Frequency

Isabella von Sivers, Gerta Köster and Benedikt Kleinmeier

Abstract A pedestrian motion model must be calibrated to measured data and
validated against observations to achieve predictive power for the simulations. The
relationship between the speed of pedestrians and the density of a crowd or the flow
through bottlenecks are widely accepted as important characteristics of pedestrian
movement. They are often used for calibration and validation. Other crucial charac-
teristics of pedestrian movement have been discussed in recent studies. Two of these
are the correlations between stride length and speed as well as between stepping fre-
quency and speed. We show that one can reproduce these dependencies as measured
in the experiments with the Optimal Steps Model (OSM), which captures stepping
behaviour of pedestrians.

1 Introduction

Simulation of pedestrian movement helps to plan events, to ensure safety in case of
an evacuation or to identify problems in the layout of buildings. For these applica-
tions, pedestrian motion models must have predictive power, that is, they must be
calibrated and validated against observations and measured data. Widely accepted
characteristics of pedestrian movement that are used for this are the correlations of
density and speed or the flow through bottlenecks.

Other crucial characteristics of pedestrian movement have been discussed only
recently. The correlations between stride length and speed as well as stride duration
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and speed were investigated in several experiments [1–3, 5, 6, 9, 11, 13, 18]. In
order to reproduce these correlations, a pedestrian locomotion model must capture
true stepping behaviour. One such model is the Optimal Steps Model (OSM). We
show that, with the OSM, one can reproduce the dependencies as measured in the
experiments by [3, 5].

2 Materials and Methods

In this section, we outline findings about stride lengths and stepping frequencies of
pedestrians that we use as a basis for our investigation. Furthermore, we describe a
small modification in the stepping behaviour in our locomotion model, the Optimal
Steps Model.

2.1 Stride Lengths and Stepping Frequencies of Pedestrians

The correlations between stride lengths and velocities or between stepping frequen-
cies and velocities were observed and measured in several experiments [1–3, 5, 6,
9, 11, 13, 18]. The stride length l of walking humans correlates linearly with their
velocity v. The parameters α and β of the linear function for the stride length

l = α + β · v (1)

differ depending on the experiment or the observations. For example, the residual
stride length α ranges from less than 10cm [5] to more than 30cm [9], the slope β

from approximately 0.3 to 0.7.
Experiments and observations of the stepping frequency, that is, the inverse of the

stride duration, show two main aspects [3, 5, 18]: When walking slowly (less than
1 m/s), the stride duration decreases with increasing speed; above a certain speed,
the stride duration remains constant or decreases much more slowly than before. In
this paper we focus on the walking in line experiment from [4, 5] where a full set of
parameters is available for comparisons.

2.2 The Optimal Steps Model

The Optimal Steps Model (OSM) is a pedestrian locomotion model that was devel-
oped in 2012 at the Munich University of Applied Sciences [11]. Newer versions
of the OSM [12, 15, 16] or combinations of the OSM with other social or naviga-
tional models [7, 17] were published in the following years. For this study, a slightly
modified version of [16] is used.
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Fig. 1 Stride annulus in the OSM with maximum stride length lmax and minimum stride length
α. The grey area depicts the torso of the pedestrian Left. Small scale navigation with the utility
function in the OSM. Next step to the position with the highest utility value Right

The movement of the pedestrians in the OSM imitates to a certain degree the
stepwise movement of humans [11]. Pedestrians in the OSM (version of [16]) make
their next step within a circle of which the radius represents the maximum stride
length. This stride length lmax of a pedestrian is determined from Eq.1

lmax = α + β · v f f , (2)

using the pedestrian’s free flow speed v f f . Since pedestrians choose their next posi-
tion on awhole disk, they canmake very small steps. However, the linear correlations
found in experiments imply a residual stride length α. Thus, we introduce aminimum
stride length with the length α in the OSM. Now, the pedestrians search for their next
position on an annulus. See Fig. 1.

Small scale navigation of the pedestrians in the OSM, that is the avoidance of
other pedestrians and walls and the orientation to the next target, is modelled by
a superposition of utility functions that reflect these behaviours [10, 11, 15, 16].
Hence, every place in the scenario has a specific utility value for each pedestrian at
every time step. The position with the highest utility on the stride annulus becomes
the next position of the pedestrian (see Fig. 1). Methods for solving this optimisation
problem can be found in [11, 14–16].

For the results in this paper, we use the avoidance and orientation functions from
[16]. The optimisation problem on the annulus is solved by theNelder–Mead simplex
method [8]. Positions are updated using an event driven scheme as described in [12].

We use the implementation of the Optimal Steps Model in the simulation frame-
workVADERE at theMunichUniversity of Applied Sciences. To allow reproduction
we lay open the parameters after calibration to the fundamental diagram of [4].
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3 Results

In this section,wedescribe our scenariowhichmimics the experiment in [4]. Then,we
compare the correlationsmeasured in the experiments with the correlations produced
by the OSM.

3.1 Scenario and Calibration

We re-enact the walking-in-line experiment from [4, 5]. The scenario is shown in
Fig. 2. Pedestrians walk along two circles. The number of pedestrians ranges from 8
to 28 pedestrians per circle. The radii of the circles are 2.4 and 4.1m. The density
on the circles is defined as the inverse of the distance between the centre of two
pedestrians [5]. Thus, different densities and velocities can be observed.

We use α and β from [5] to parametrise the stepping mechanism in the Optimal
Steps Model. We further calibrate the personal space parameters of the Optimal
Steps Model to the fundamental diagram from [4], measured in the same series of
experiments. The personal space parameters determine the distance agents try to keep
from each other to preserve their personal space [16]. The simulation parameters are
compiled in Table1. In Fig. 3 the measured fundamental diagram is compared to the
simulation output.

(a) (b)

Fig. 2 Re-enactment of the experiment from [4, 5] with the OSM in the simulation framework
VADERE. Highest density with 28 persons on the small circle (a). Snapshot before starting. Lowest
density with 8 persons on the large circle (b). Snapshot shortly after starting. The trajectories of the
first two to three strides are shown
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Table 1 Parameters of the OSM after calibration to the experiment from [4, 5]

Param. Description Value

α Residual stride length 0.065 m

β Slope of the stride length function 0.724 m

r Radius of a pedestrian’s torso 0.2 m

δint Intimate distance 0.45 m

δpers Personal distance 1.20 m

δo Distance kept from obstacles 0.8 m

μp Strength of ‘pedestrian avoidance’ 55.0

ap Moderation between intimate and personal space 0.8

bp Intensity of intimate space 1

cp Intensity of personal space 3

μo Strength of ‘obstacle avoidance’ 6.0

vm f f Mean free-flow speed 1.4 m/s

σm f f Variance of the mean free-flow speed 0.2 m/s

Fig. 3 Fundamental
diagram of the simulation
output after calibration to the
fundamental diagram from
[4]
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3.2 Stride Lengths and Stride Duration

Figure4 shows the dependency of the pedestrians’ stride lengths on their walking
speeds in the simulation. The red line is the reference line from the controlled exper-
iment [5]. The simulation results match the reference line quite well. Since only the
minimum and maximum stride length in the free-flow case are fed into the Optimal
Steps Model, this is an emergent model behaviour. The stepping mechanism adapts
to changes in density.

For slow walking speeds the dependency of the stride duration on the walking
speed in the simulation is almost identical to the dependency observed in the exper-
iment from [5]. The stride duration decreases with increasing speed. However, there
is a difference at higher velocities. In the experiment the stride duration remains
approximately constant between 0.7 and 1.2m/s. Then, it seems to increase again. In
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Fig. 4 Correlation of stride
lengths and velocities in the
simulation compared to the
reference line from the
experiment [5]
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Fig. 5 Correlation of stride
durations and velocities in
the simulation compared to
approximated data from [5]
and reference curve from [3]
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the simulation the stride duration keeps slowly decreasing beyond 0.7m/s. In other
experiments, this slow decrease when walking faster was also observed [3]. In Fig. 5
the simulation output of the Optimal Steps Model is compared to the data from [5]
and [3]. Unfortunately, no error margins were reported for the experiments. In view
of this, we argue that the general trend is well captured by the simulation.

4 Conclusions

In this paper, we focused on the reproduction of two characteristics of pedestrian
movement that were measured in several recent experiments: stride length and step-
ping frequency. We used the Optimal Steps Model to simulate a scenario from an
experimentwhere pedestrianswalked on two circleswith different radii andwhere the
density was varied. The simulations reproduced the measured correlations between
stride length and velocity as well as stride duration and velocity thus validation the
Optimal Steps Model. We propose these correlations as suitable test cases for the
validation of locomotion models that are able to capture stepwise movement.
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Experimental Study on the Influence of Step
Phase in Pedestrian Movement

Chi Liu, Weiguo Song and Siuming Lo

Abstract There is a fundamental relationship between the headway and velocity in
pedestrian dynamics; this is of great importance in building a pedestrian movement
model. However, it is found that even if experiment conditions are strictly con-
trolled, the velocity of pedestrians with the same headway varies considerably. This
implies that states of pedestrians should be considered thoroughly, and its influence
tomacroscopic parameters needs to be quantified. A single-file pedestrianmovement
experiment is carried out to analyse themicroscopic moving characteristics of pedes-
trians. The trajectories of participants in a straight passageway are extracted through
an image processing method based on a mean-shift algorithm. The transverse swing
of trajectories is correlated with the phase of pedestrians’ steps period. The stride
length and frequency of pedestrians are collected from the trajectories. Besides, the
synchronisation of the lock-step group varies during the movement. The findings
can give the stop-and-go phenomenon a new microscopic explanation. This study
can be used to evaluate pedestrian microscopic movement and the development of
evacuation models.

1 Introduction

Running a traffic system efficiently with limited resource is a great challenge for city
coordinators and facility designers. Pedestrian movement plays an important role in
traffic systems. Many measures have been adopted to improve efficiency and safety

C. Liu (B) · W. Song
State Key Laboratory of Fire Science, University of Science and Technology of China,
Hefei 230026, People’s Republic of China
e-mail: roygain@mail.ustc.edu.cn

W. Song
e-mail: wgsong@ustc.edu.cn

S. Lo
City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
e-mail: bcsmli@cityu.edu.hk

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_16

121



122 C. Liu et al.

of pedestrian traffic including route planning, density control, risk assessment, and
evacuation. All of these approaches based on the researches of pedestrian dynamics.

Experiments and models are used to study pedestrian dynamics. Many models
have been established to describe the movement and predict behaviour of pedestrian
[1, 7]. Experiments do not only provide data for the simulation itself, but also impact
significantly on model validation [3, 5–7]. One of the simplest forms of pedestrian
movement, the one-dimensional pedestrianmovement experiments have been carried
out in the past few decades. For example, Seyfried et al. [6] organised a single-file
pedestrian movement experiment. They observed pedestrians moving forward with
the front neighbour at the same time-step in high density, which behaviour is called
the lock-step. By analysing video recordings of a crowd disaster, Helbing et al. [2]
found two sudden transitions leading from laminar to stop-and-go flows and from
there to ‘turbulent’ crowd motion, which can trigger the trampling of people. Jelicet
et al. [3] studied the phenomena of synchronisation and showed its dependence on
flow densities by experimental analysis. Models containing stepping behaviour have
also been built. Yanagisawa et al. [4] developed a simple model for pedestrians by
dividing walking velocity into two parts, which are step size and pace of walking.
They have discovered that a rhythm that is slower than the normal-walking pace in
the free-flow situation increases the flow in congested situations.

In this paper, several single-file pedestrian movement experiments were per-
formed. Based on a space coordinate tracking approach, the trajectories were
obtained, containing information of stepping behaviour characteristics. By statis-
tical analysis, we discuss basic elements of stepping behaviour, such as step length
and step duration. We also make a comparison between the characteristics of syn-
chronisation and anti-synchronisation movement.

2 Experiment

2.1 Experimental Set-Up

The experiment was conducted by the research group of Prof. Song, in Baoji China,
in October, 2009. A sketch of the experimental set-up can be seen in Fig. 1. The
experimental scene is like a stadium track which has a length of 21.94 m. There
were 60 college students participating the experiment, of which 20 were male and
40 were female. The participants are between 19 and 22years old and between 152
and 180cm tall, on average 20years old and 164cm tall. There were 9 different
experiment situations (5, 10, 15, 20, 25, 30, 40, 50, 60 pedestrians on the track) and
the densities varied from 0.23 P/m (5 P/21.94 m) to 2.73 P/m (60 P/21.94 m). In
order to reduce tracking error, the red area was selected to be analysed. The length
and the width of the area are 3.6m and 0.7 m, respectively.
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Fig. 1 The single-file experiment: picture (a) and its set-up (b)

2.2 Data Extraction

The experiment procedures were recorded by a video camera with a resolution of
1920 × 1080 pixels and a frame rate of 25 fps. The positions of the red hats from
each frame image were extracted by a mean-shift algorithm in Matlab. The Direct
Linear Transformation method was used to transform the trajectories which com-
posed the image positions to the real space coordinates. Then, the time-space diagram
composed x-coordinates and y-coordinates of the trajectories, produced for further
analysis.

2.3 Statistical Method

When walking, humans alternate the feet their rest on. This causes the head of a
pedestrian to sway. The trajectories of participants sway more obviously when the
velocities get slower. Time-space diagrams of the head hence contain the information
of step length and step duration. The duration of a sway equals to the duration of a
single step, and the distance of the step can be derived from the wave length of the
sway (Fig. 2).

3 Results

3.1 Step Length and Step Duration

Step length and step duration are two basic variables of stepping behaviour. In previ-
ous researches, step length and step duration are investigated using experimental data
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Fig. 2 Trajectories. Sway of
the pedestrian trajectory (a).
The time-space diagrams
composed the information of
step length and step duration
(b). The black spots
represent x-coordinate and
the red spot represent
y-coordinate of the
pedestrian’s position. When
the velocity is lower, the
swaying is more obvious

and simulation [3, 7]. In this paper, the variables are correlated with the headway,
which can be directly obtained from the experiment data. The results are shown in
Figs. 3 and 4.

From statistical results, we can observe thatwhen the headway is larger than 1.1m,
the length and the duration of steps are almost steady. When the headway is smaller,
both the length and the duration are linearly correlated with the headway. The stable
length and duration are 0.59m and 0.54 s. Compared with the results of previous
research [3, 7], the step length and step duration of free walk in our experiments

Fig. 3 Step length. All points (a). Means (b)
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Fig. 4 Step duration. All points (a). Means (b)

correspond to the feature ofAsian and low-velocity-movement. InDaichi’smodel [7],
the step size is supposed to vary with the distance between two adjacent pedestrians,
whichmeans that the headway reduces the ‘thickness’ of pedestrians. The ‘thickness’
is about 0.35 m. By analysing the experimental data, we found the relation between
the headway and the length of steps. This length is almost linearly correlated with the
headway in congested situation. One possible explanation is the lock-step behaviour
gives extra space to the following pedestrian to put a foot and move.

3.2 Stop-and-Go Behaviour

Helbing et al. [2] found that even with local densities up to 10 P/m2, the motion of
the crowd is not entirely stopped. The pedestrians will keep moving in a stop-and-go
pattern. Stop-and-go waves start when the density is high and the flow drops below
a critical value. In this single-file experiment, stop-and-go behaviour is particularly
obvious in the situation of 50 pedestrians in the track. In the congested situation, the
stop-and-go behaviour becomes an important factor that influences the velocities of
pedestrian movement.

We suppose the following pedestrian will be reluctant to move when the headway
between two adjacent pedestrians is smaller than a rather close distance and once
a pedestrian stops, only if the headway is higher, the pedestrian will move on. By
analysing the experimental data, we obtain 86 stops in a congested situation. The cor-
responding average stop-headway and move-on-headway are respectively 0.344m
and 0.487 m (Fig. 5).

3.3 Synchronisation and Anti-synchronisation Movement

According to previous researches, many scholars have studied macro features on
the lock-step behaviour [3]. However, the microcosmic influence mechanism of
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Fig. 5 An example of
stop-and-go phenomenon in
pedestrian movement. There
are 3 visible stops on this
time-space diagram

synchronisation lacks of experimental analysis. In our research, twomodes are distin-
guished by time-space diagram. If the peak of the following pedestrian’s step is closer
to the peak of the leader pedestrian’s step in time sequence, this step is considered as
a synchronous step. This identification method might lack quantitative precision, but
it can qualitatively distinguish synchronisation and anti-synchronisation movement.

From statistical results, we do not find visible difference of length and duration of
steps between synchronous and anti-synchronous movement. One possible reason
for the result is that the human body is stereoscopic. Once the leader pedestrian is
moving, no matter whether the following pedestrian is synchronous or not, he or she
will be able to find a space to put a foot and move on (Figs. 6, 7, 8 and 9).

Fig. 6 Typical synchronous (a) and anti-synchronous (b) movements



Experimental Study of Step Phase on Pedestrian Movement 127

Fig. 7 Step length of two modes. All points (a). Means (b)

Fig. 8 Step duration of two modes. All points (scatter diagram) (a). Means (statistics) (b)

Fig. 9 Velocities of two
modes
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4 Summary

In this paper,we conducted a single-file experiment to study the stepping behaviour of
pedestrian movement. By statistical analyses of the experiment, the relation between
headway and movement characteristics is found, such as headway and step length,
headway and step duration headway and stop-and-go behaviour. Those relations can
be used in further model establishing. In addition, a quantitative comparison between
the characteristics of synchronous and anti-synchronous movement is presented.
From the data of our experiment, no visible difference between these two modes of
movement is found.

Generally speaking, we thought synchronising pedestrians steps would improve
the effect of movement. We proved such measure will be effective, because the dura-
tion of the steps will be controlled in high density. However, we found no evidence
that shows spontaneous synchronisation will also improve the effect of the pedestrian
movement. This fact should be considered in pedestrian intervention, which we plan
to take on as future research.
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The Influence of Moore and von-Neumann
Neighbourhood on the Dynamics
of Pedestrian Movement

Christian Rogsch

Abstract Developing models for pedestrian and evacuation dynamics using a cel-
lular automata is based on the fundamental question of the neighbourhood pedes-
trians should use to move from one point to another point in a selected geometry.
If a rectangular lattice is used for pedestrian movement and geometry represen-
tation, there are two possible types of neighbourhoods which can be chosen: the
Moore-Neighbourhood or the von-Neumann-Neighbourhood. Both neighbourhoods
are used in different kind of models. To show the effect the chosen neighbourhood
has on the dynamics of pedestrian movement, different scenarios are investigated
using both neighbourhoods by using the same evacuation model.

1 Introduction

Developingmodels for pedestrian and evacuation dynamics using a cellular automata
is based on the fundamental question of the neighbourhood pedestrians should use to
move from one point to another point in a selected geometry (see [5]). If a rectangular
lattice is used for pedestrian movement and geometry representation, there are two
possible types of neighbourhoods, which can be chosen:

• the Moore-Neighbourhood or
• the von-Neumann-Neighbourhood.

Both neighbourhoods (see Fig. 1) are used in different kind ofmodels, e.g. the PedGo-
Model [7] uses a Moore-Neighbourhood, the Dynamic Floor Field Model [4] uses
a von-Neumann-Neighbourhood. To show the effect the chosen neighbourhood has
on the dynamics of pedestrian movement, different scenarios are investigated using
both neighbourhoods by using the same evacuation model. Contrary to [1, 6, 8–10],
who show results in a more ‘mathematical’ way, in this paper more ‘practical’ results
are shown, so some different kind of view to this problem is used.
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Fig. 1 von-Neumann-
Neighbourhood: pedestrian
(black cell in the centre) can
only move to grey cells by
moving over edge, by using a
Moore-Neighbourhood the
pedestrian can additionally
move to the white cells by
moving over corner

1.1 Wayfinding and Distance Map

As written above, cellular automata models for pedestrian movement are based
(if they use a square lattice) on the von-Neumann-Neighbourhood or the Moore-
Neighbourhood. This has an influence of the movement of pedestrians inside a cho-
sen geometry as well as an influence of the calculated map to find the exit. For this
kind of map several names are used, the most common names are distance map,
potential field or floor field. In Figs. 2 and 3 the difference of a distance map calcu-
lated by using the von-Neumann-Neighbourhood and the Moore-Neighbourhood is
shown. For additional calculation methods the paper of Kretz et al. [2] shows some
additional calculation methods for distance maps.

2 Scenarios

The scenarios presented in this paper are calculated with the ‘Quo vadis?’ soft-
ware tool developed by Joerg Meister [3], the software tool can be downloaded for
free of charge (December 2015) from http://quovadis-simulation.de/src/downloads.
php. The ‘Quo vadis?’ software has an ‘enhanced’ Floor Field Model implemented

Fig. 2 Distance map calculated with a von-Neumann-Neighbourhood (a) and a Moore-
Neighbourhood (b)

http://quovadis-simulation.de/src/downloads.php
http://quovadis-simulation.de/src/downloads.php
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Fig. 3 3D Distance map visualisation calculated with a von-Neumann-Neighbourhood (left) and
a Moore-Neighbourhood (right) for a simple corridor-room scenario [3]

[3, 4], which uses a dynamic floor field. If simulations are done without this dynamic
floor field, the parameter kS is set to 10 and the parameter kD is set to 0, which means
the dynamic floor field is not used in the simulation (only static floor field is used). If
simulations are performedwith both static and dynamic floor field, the corresponding
parameters kS and kD are set to default values (kS = 3, kD = 1). As walking velocity
a speed of 1 cell per time-step is used. The size of each lattice is 40× 40cm.

2.1 Simple Room

The first investigated scenario shows a simple room (see Fig. 4), where pedestrians
are placed at one end. The exit is placed at the opposite side of the room. The
simulation is done with an underlying von-Neumann andMoore floor field. Thus the
results by doing a visual analysis seem to be very similar, the time-based results show
some differences: by using the von-Neumann-Neighbourhood the simulation takes
51 time-steps to finish, by using a Moore-Neighbourhood it only takes 38 time-steps
to finish.

2.2 Simple Corridor

Based on the results of the simple room scenario a very simple corridor is cre-
ated (see Fig. 5), pedestrians also walk from top to bottom. Contrary to the results
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Fig. 4 Simple room
scenario. Pedestrians walk
from top to bottom (exit is
signed with pink ‘00’ at the
bottom)

Fig. 5 Simple corridor
scenario. Pedestrians walk
from top to bottom (exit is
signed with pink ‘000’ at the
bottom). Screenshot at half
of the simulation time.
von-Neumann Left, Moore
right

obtained from the simple room scenario, in this case the time-based results are simi-
lar, but the visual analysis shows differences. As shown in Fig. 5 the von-Neumann-
Neighbourhood simulation (left) shows a ‘straight forward’ movement to the exit
while the Moore-Neighbourhood simulation shows a ‘line changing’ behaviour of
the pedestrians, which means that the pedestrians do not tend to move straight for-
ward, they tend to move ‘over corner’ and change the lane they started. The distance
maps of both scenarios (von-Neumann and Moore) are the same, but at the Moore-
Neighbourhood pedestrian has always a chance to move forward ‘over corner’ with
the same possibility than moving ‘straight forward’. In this simple scenario the effect
of this movement is clearly shown.
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Fig. 6 Simple corner scenario. Pedestrians walk from right to left to bottom (exit is signed with
pink ‘000’ at the bottom). Screenshot at half of the simulation time. von-Neumann Left, Moore
right

Fig. 7 Simple corner
scenario. Pedestrian
placement in the first
simulations (top, see Fig. 6)
and in the second
simulations (bottom), where
they behave visually in a
von-Neumann simulation
like a Moore simulation

2.3 Simple Corner

Based on the results of the simple room and simple corridor scenario a simple corner
is created (see Fig. 6), pedestrians walk from right to left to bottom. Thus, the two
scenarios above have shown different results, the question was now, what result
would predominate: the ‘moving over corner’ effect of the Moore-Neighbourhood,
or the ‘straight forward movement’ effect of the von-Neumann-Neighbourhood. The
results show, that the simulation does, what we expect. Both neighbourhoods show
their effects clearly (von-Neumann: straight forward, Moore: moving over corner, to
the inner wall), but the time-based results are nearly identical, so that in this case no
‘neighbourhood-effect’ shows us ‘better’ results. The same scenario calculated with
other pedestrian placement (see Fig. 7) at the beginning of the simulation shows now
(with the von-Neumann-Neighbourhood) that pedestrians are also trying to move to
the inner wall as shown in theMoore-Neighbourhood simulation. So by dealing with
simple scenarios it should be mentioned how pedestrians are placed at the beginning
of a simulation, the influence of visual results can be large, while the time-depending
influence can be neglected.
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Fig. 8 Room-corridor
scenario. Pedestrians walk
from each room to the exit
on the right (exit is signed
with pink ‘000’)

2.4 Rooms and Corridor

After the three simple scenarios based on room, corridor and corner movement, a
combination of the different scenarios will be shown. First, six rooms which lead
to a centred corridor are investigated (see Fig. 8). Each pedestrian has to move from
the end of a room through the door to the corridor and turn left or right towards
the exit. In each room four pedestrians are placed. This scenario has been investi-
gated with four possibilities: using the static floor field with a von-Neumann and
Moore-Neighbourhood and using a dynamic floor field also using the von-Neumann
and Moore-Neighbourhood. The visual results are as expected based on the pre-
vious simulation runs with a static floor field: if a Moore-Neighbourhood is used,
pedestrians tend to move more or less ‘over corner’ in the corridor and if a von-
Neumann-Neighbourhood is used they tend to move ‘straight forward’. Also the
time-based results are similar, thus in this case it does not matter if a von-Neumann
or a Moore-Neighbourhood is used. But if a dynamic floor field is used, the visual
results are nearly identical. On both types of neighbourhoods (von-Neumann and
Moore) pedestrians tend not to move straight forward as seen by using the sta-
tic floor field in combination with the von-Neumann-Neighbourhood, they tend to
move like it can be seen by using a static floor field in combination with a Moore-
Neighbourhood. So, the visual results are different from the static floor field results
discussed above, and the time-based results are also differing. By using the dynamic
floor field, both simulation runs are slower as the static floor field is used. The type
of neighbourhood has no influence on the time-based results (static floor field and
von-Neumann or Moore-Neighbourhood: ca. 36 time-steps, dynamic floor field and
von-Neumann or Moore-Neighbourhood: ca. 50 time-steps).

2.5 Rooms, Corridor and Corners

The last scenario presented in this paper is a combination of rooms, corners and
a corridor (see Fig. 9). As in the previous simulation, also the four different com-
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Fig. 9 Rooms, corners and
corridor scenario.
Pedestrians walk from each
room to floor to exit on the
left (exit is signed with pink
‘000’)

binations of floor field and neighbourhood are investigated. Here we can see, that
the main parameter, which has an influence on our simulation results, is the corner
movement. By using the static floor field the results clearly show that the pedestrian
‘benefit’ from the Moore-Neighbourhood. Based on this neighbourhood it is ‘eas-
ier’ for pedestrians to overtake an to use the full width of the corridor contrary to
a von-Neumann-Neighbourhood, where a ‘straight forward’ movement dominates
the simulation process, thus pedestrians do not use the full width of the corridor.
This visual results is also clearly represented in the time-based results: with the
von-Neumann-Neighbourhood, the simulation takes 120 time-steps, while using the
Moore-Neighbourhood, it takes only 100 time-steps until all pedestrians have left
the scenario. If now a dynamic floor field is used, the visual results are as different
as in the static floor field observations. Pedestrians in simulations based on a von-
Neumann-Neighbourhood still try to move ‘straight forward’ as expected. Sure, the
effect is not as distinctive as in the static floor field simulation, but is still can be seen.
If the time-based results are compared, the results are very different from the static
floor field results: with dynamic floor field and von-Neumann-Neighbourhood 210
time-steps are necessary, by using the Moore-Neighbourhood only 150 time-steps
are necessary.

3 Conclusions

In this paper several simple and complex scenarios for pedestrian movement using
cellular automata software are investigated with the focus on the von-Neumann and
Moore-Neighbourhood. For simple scenarios the neighbourhood does not have a very
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big influence on the results, it is more the visual component, which is influenced by
the neighbourhood. This is based on the fact, that on simple scenarios the effect
of different simulation methods can not be seen clearly, because the scenario is
to simple and short. To see the influence of different effect in a clear way, more
complex scenarios have to be built, based on combinations of the simple scenarios.
Only with these complex scenarios, like the scenario based on rooms, corners and
corridor the simulation method (here: the neighbourhood and the static or dynamic
floor field) could show how the results (visual and time-based) are influenced. Only
on this investigation it is not possible to say, which is the right choice for pedestrian
movement simulation. It is only possible to say what effects are ‘created’ by the
different methods. If the results should fit to real scale and full scale evacuation trials
or pedestrian movement, further research is necessary.
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Simulation of People Flow by a New Fuzzy
Discrete Automata Model and an Ergonomic
Approach

Henrique C. Braga, Gray F. Moita and Paulo E.M. Almeida

Abstract This work presents the computer program FUGA v. 1.0, developed to
simulate the movement of people in constructed environments in normal situations
and also during an evacuation in emergency situations. FUGA is based on a discrete
automata model using pre-defined rules. This program uses an ergonomic approach
associated with human movement and fuzzy logic as a computer intelligence tool to
emulate the humandecision-makingprocess. Themodel incorporatesmechanical and
mental aspects, as well as their quantitative and qualitative nature. This work shows
how selected ergonomic quantities are incorporated into a human decision-making
process emulated by a fuzzy logic system. FUGA simulates environments with any
internal or external geometry; with one or more floors; with or without staircases
or ramps and with uni or multi directional flows. Some simulations are performed
showing how the software FUGA can be used in the design of safer environments,
in a way that could hardly be achieved by simply applying the existing regulations.

1 Introduction

This work presents the new computer program FUGA v. 1.0, developed to simulate
the movement of people in constructed environments in normal situations and also
during an evacuation in emergency situations. This program is based on a discrete
automata model using pre-defined rules. There are several of evacuation models
in the literature [5, 8], but FUGA introduces two paradigms still little used, but
promisingly valuable. This program uses an ergonomic approach associated with
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human movement and the fuzzy logic as a computer intelligence tool to emulate the
human decision-making process.

The nuances involved in human movement are multidisciplinary, involving
physical, environmental, organisational, physiological and mental aspects and an
ergonomic approach allows for the incorporation of these different characteristics in
themodel. Thus, on top of those, there are several humansmental factors concurrently
involved [4, 7]. Therefore, the modelling needs to incorporate all the mechanical and
mental aspects, as well as their quantitative and qualitative nature. Fuzzy logic can
encompass these features [6, 13].

Thiswork shows how selected ergonomic quantities are incorporated into a human
decision-taking process emulated by a fuzzy logic system. FUGA is capable of
simulating environments with any internal or external geometry; with one or more
floors; with or without staircases or ramps; with different kinds of floors and with
uni or multi directional flows.

At the end, some simulations are shown to illustrate how the software can be used
in the design of safer environments, in a way that could hardly be done by simply
applying the existing safety regulations.

2 FUGA Background

2.1 Discretisation of the Constructed Environment

The first step is to discretise the constructed environment in the form of a bi-
dimensional rectangle matrix named environment matrix (EM). Each element of
the EM matrix has a specific meaning in the real world. Each element of the EM
matrix represents a square with 9cm of side (resolution of the simulation). Thus, the
real constructed environment must be discretised so that all its elements are multiples
squares with 9cm sides.

Differently from the previous version [3], the current FUGA allows the simulation
of movements in buildings with any quantities of floors, included staircases and
ramps. The entire constructed environment must be represented in just one unique
bi-dimensional rectangularmatrix, independently of the size, geometry (both internal
and external) and number of floors. For better understanding, Fig. 1 shows a two-floor
environment connected by a staircase represented in just one single bi-dimensional
matrix.

In Fig. 1, the empty area in the floors and in the staircase are show in white, the
walls are in black, the exit in the first floor is in orange and the connections between
the floors and the staircase are in dark blue. The part of the EM matrix which is
not represented in the constructed environment (i.e., which is not included in the
simulations) are in light blue surrounding the floors and the staircase. Finally, in
grey are pointed the regions of the first and second floors which, in spite of not
being obstructed by walls, does not allow human flow because the staircases cause
restrictions in the movement.
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Fig. 1 Two dimension
representation of a
constructed environment
with two floors connected by
a stair

2.2 Ergonomics Variables

Anthropometric aspects A person’s movement is a very sophisticated phenome-
nal in the three-dimensional space [9]. However, the current model is based on two
dimensions, and, therefore, the persons will be represented by its vertical body rep-
resentation. In this work, the human body will be represented by a square of 45cm
of side (25 elements with 81cm2 each).

WalkingVelocityThewalking velocity is an individual parameter that depends upon
various others components [1], such as age, gender, physical condition, familiarity
of the route; routing purpose; path length, route characteristics, visibility; mental and
cultural aspects. In this model, as proposed by Thompson and Marchant [11], the
walking velocity (vw) will be considered as function of the distance between persons
(d). When the movement happens in staircases, the walking velocities are reduced
in 50%.

Input Variables The input variables are: PR (preferential route), AD (apparent
distance), WE (wall effect), SL (stress level), I E (inertia effect) and AE (automata
effect). Here, PR is an indication of ideal routes to the exits generated for a given
artificial intelligence algorithm [2], AD is an empiric perception of the distance to
the exits, WE is the effect of the restrictions on the neighbourhood of the walls, SL
is the effect of the stress level of the people [10], I E is the tendency of keeping the
same direction of movement and AE is the influence caused by the nearest people.

2.3 Decision-Making Process

The decision-making process is based on fuzzy logic, considering the above input
variables and one output variable—RQ (route quality), which indicates the best
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individual option of movement for each person in the location. The route to be
chosen for each person will be the one that results in the higher RQ. Hence:

RQk = fFuzzy(inputk) (1)

RQke = max(RQk) (2)

ke = k ∀ RQke = RQk (3)

where fFuzzy is the function characteristic of fuzzy system; k is the option of the
possiblemovements: L (left), U (up), D (down) andR (right); ke is the bestmovement
option; RQk is each RQ for each possible movement calculated by the fuzzy system
and RQke is the RQ of the best route [3].

2.4 The Escape Time and the Possibilities of Internal
Collision

The time for the effective escape of the environment is an important asset. The escape
time is normally considered as the sum of three values: perception time, reaction time
and effective movement time. With the software FUGA it is possible to consider, or
not, the perception and the reaction time. Thus, in the start of the simulation, all people
begin to move in the direction of the nearest available exit after the perception and
reaction pre-set times.

Another important factor is the safety of the escape process. During the escape,
different people behaviour can happen. The first two are the organised behaviour and
the competitive behaviour [7]. In the organised behaviour one person does not touch
another person. The social agreements are partially respected. This is the safest
way. In the competitive behaviour, the people do not necessary respect the social
agreements and large energy transfer can occur among the involved people.

A situation potentially dangerous is when the so-called critical jamming occurs. In
the critical jamming, there are enormous energy transfers between different persons,
which can potentially cause deaths or brokenwalls, and no freemovement is possible.

The effective energy transfer between people cannot be directly determined by
this version of the software FUGA, neither the possibilities of jamming. However,
the software shows the parameter Possibilities of Occurrence of Internal Collision
(POIC) among the people, which can be used as a qualitative indicator of the jamming
possibilities.

There are four kinds of POIC. POIC 1 indicates how many times, during the
escape up to the exit, the persons have the first best option of movement obtained
by the fuzzy system (higher RQ option) blocked. POIC 2 indicate how many times,
during the escape up to the exit, the persons have the first and the second best options
of movement obtained by the fuzzy system blocked. According to the same rules,
POIC 3 indicates how many times the first, the second and the third best options of
movement are blocked. Finally, POIC 4 indicates how many times the persons have
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all possibilities of movement blocked (the only option for the person in this situation
is to remain in the same place, even if he/she wants to move).

Thus, a POIC 1 with low value indicates a low possibility of the occurrence of
internal collisions or jamming, but a higher POIC 4 indicates a real possibility of
jamming occurrence during the escape.

3 Results and Discussions

In order to better understand the influence of some parameter of the input of the
fuzzy system, some examples are showed in Figs. 2, 3 and 4. Figure2 shows the
distance map [12] of the environment of Fig. 1. Each colourful band indicates a 1m
exit estrangement, beginning in the exit, passing the first floor, through the staircases
and also covering all second floor. The distance map is produced by the algorithm
used to obtain the values of PR and AD necessary for the input of the fuzzy system.

Figure3 shows a simulation of an environment with two exits and one floor with
various internals rooms. The persons are depicted in their initial positions, the exits
are in orange and the routes used to get to the exits are in yellow. The blue ellipse
highlights an area in the simulated environment that is zoomed in the right-hand side.
In the enlarged image, an arrow identifies the route that a person used toward the
passage of the room. From the PR e AD input variables, this person should have
passed closer to the wall, but it did not happen due the effect of input variable WE .

Figure4 shows the influence of input variable AE . In Fig. 4, 100 people positioned
in the left of a large corridor are moving to the exit located at right end of it. The
persons are showedplaced in their initial position and the routes used to reach the exits
are shown in yellow. At the beginning the persons occupied only the middle of the

Fig. 2 Distance map for
Fig. 1 environment
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Fig. 3 Evacuation simulation of an environment (a), showing the influence of input variable WE
on the route chosen by one person (b)

Fig. 4 Evacuation simulation in a corridor with 100 people, showing the influence of the input
variable AE on the route choice (yellow) up to the exit

corridor. During the movement towards the exit the persons increased the occupied
area of transversal section of the corridor due the effect of the input variable AE (an
increase of the yellow range).

In order to better understand the potentiality of FUGA, some experiments are also
made. Figure5 shows a 400 m2 square environment with 200, 500 or 1000 people

Fig. 5 Evacuation a 400m2 square environment with 200, 500 and 1000 persons (a, b and c
respectively)
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Fig. 6 Evolution of the total number of persons leaving the environment as a function of time

Fig. 7 Evolution of the values of POIC 4 as a function of time

in their initial position and the routes to get to the exits are in yellow. The results
for the evacuation of 1000 people are showed in Figs. 6 and 7. Figure6 shows the
total number of persons leaving the environment as a function of time, considering
the non-occurrence of a critical jamming. However, the values found for POIC as
a function of time (Fig. 7) are very expressive and shows that this is a critical and
potentially dangerous situation.

4 Final Considerations

The new software FUGA uses an ergonomic approach to incorporate the human
behaviour and the fuzzy logic to emulate the decision-making process in people’s
movement. Important characteristics, such as the possibilities of simulating multi-
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floor environments, performing multi directional movement and generating very
precisely distance maps, for example, allow for a wide range of applications with
good quality results. The utilisation of software FUGA can yield studies about safety
of an environment during the project phase, which is very relevant as a complement
to the legal codes application.
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References

1. Abley, S.: Pedestrian Planning and Design Guide. LNTZ—Land Transport New Zealand,
Wellington (2007)

2. Braga, H.C., Moita, G.F., Almeida, P.E.M.: Algorithm to generate the smallest discretized path
to the exit of an environment. In: ABMEC (ed.) XXXVI CILAMCE—Ibero-Latin American
Congress on Computational Methods in Engineering (2015)

3. Braga, H.C.,Moita, G.F., Camargo, F., Almeida, P.E.M.: Simulation of themovement of people
in emergency situations: ergonomic and computational aspects with fuzzy automata and its
application in architectural design. Ambiente Construído 14(2), 61–77 (2014)

4. Kuligowski, E.D.: Predicting human behavior during fires. Fire Technol. 49(1), 101–120 (2013)
5. Kuligowski, E.D., Peacock, R.D., Hoskins, B.L.: A Review of Building Evacuation Models.

National Institute of Standards and Technology (2005)
6. Nunes, I.L.: Handling human-centered systems uncertainty using fuzzy logics. Ergon. Open J.

3, 38–48 (2010)
7. Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation

of human and social behaviors during emergency evacuations. AI Soc. 22(2), 113–132 (2007)
8. Pelechano, N., Allbeck, J.M., Badler, N.I.: Virtual crowds: methods, simulation, and control.

In: Synthesis Lectures on Computer Graphics and Animation, vol. 3. Morgan & Claypool
Publishers (2008)

9. Schadschneider,A.,Klüpfel,H.,Kretz, T.,Rogsch,C., Seyfried,A.: Fundamentals of pedestrian
and evacuation dynamics. In:Multi-Agent Systems for Traffic and Transportation Engineering,
pp. 124–154 (2009)

10. Staal, M.A.: Stress, Cognition, and Human Performance: A Literature Review and Conceptual
Framework. NASA Technical Memorandum (2004)

11. Thompson, P.A., Marchant, E.W.: A computer model for the evacuation of large building
populations. Fire Saf. J. 24(2), 131–148 (1995)

12. Thompson, P.A., Marchant, E.W.: Testing and application of the computer model ‘simulex’.
Fire Saf. J. 24(2), 149–166 (1995)

13. Yang, L., Zhao, T., Meng, F.: Ergonomic fuzzy evaluation of firefighting operation motion. J.
Ind. Eng. 2013 (2013)



The Inflection Point of the Speed–Density
Relation and the Social Force Model

Tobias Kretz, Jochen Lohmiller and Johannes Schlaich

Abstract It has been argued that the speed–density digram of pedestrian movement
has an inflection point. This inflection point was found empirically in investigations
of closed-loop single-file pedestrian movement. The reduced complexity of single-
file movement does not only allow a higher precision for the evaluation of empirical
data, but it occasionally also allows analytical considerations for microsimulation
models. In this way it will be shown that certain (common) variants of the Social
Force Model (SFM) do not produce an inflection point in the speed–density diagram
if infinitely many pedestrians contribute to the force computed for one pedestrian.
We propose a modified Social Force Model that produces the inflection point.

1 Introduction: Empirical Data on Pedestrians’
Speed–Density Relation

In the course of recent years a number of experiments have been conducted in which
pedestrians walk single-file in a closed loop [1, 9–12]. Having a different number of
pedestrians in the loop, different densities are prepared. In a section of the loop line
density and speed are measured. Figure1 shows the experimental set-up from which
most data stems. There were experiment runs in which the loop was larger and more
pedestrians participated, but the principle was always the same.

The experiment has been conducted at various places around the world. Figure2
shows the results for India and Germany.With the free speeds plotted in this diagram
the existence of an inflection point is obvious. It is not quite clear, however, at which
density curvature is maximally negative and also the density of the inflection point
can only be estimated roughly.
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Fig. 1 Experimental set-up. Source Figs. 2 and 3 of [12]

Fig. 2 Speed density diagram: India (a); Germany (b). Source Fig. 5 of [1]

Whereas Fig. 2 clearly shows that differences between India and Germany were
found, the loop size (corridor length) and the profession of participants did not make
a difference, at least not an obvious one. Compare Fig. 7 of [1] with Fig. 1 of [9].

The discussion1 in [12] indicates that the existence of an inflection point is com-
mon sense and more so that for—at least moderately—high densities the curvature
of the flow density relation is positive.

2 The Social Force Model for Steady States in Single-File
Movement

The circular specification of the Social Force Model [2] is defined as2:

1Quote (p. 3): “Domain I: …At low densities there is a small and increasing decline of the velocity
…Domain III: …For growing density the velocity remains nearly constant.”.
2We neglect here forces from walls from the beginning since we are anyway working towards the
one-dimensional case.
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ẍα(t) = v0α − ẋα(t)

τα

+ Ãα

∑
β

w(xα(t), xβ(t), ẋα(t), λα)e− |xβ (t)−xα(t)|−Rα−Rβ

Bα êαβ (1)

w(xα(t), xβ(t), ẋα(t), λα) = λα + (1 − λα)
1 + cos(θαβ(xα(t), xβ(t), ẋα(t)))

2
(2)

where v0α is the desired speed of pedestrian α. Ãα > 0, Bα > 0, 0 ≤ λα ≤ 1, and
τα > 0 are parameters of the model. R denotes the body radius of a pedestrian.
êαβ points from pedestrian β on pedestrian α. x is the position of a pedestrian and
dots mark time derivatives (i.e. speed and acceleration). The sum runs over all—
potentially infinitely many—pedestrians in a simulation scenario. Function w() is
there to suppress forces acting from behind. In it θαβ is the angle between pedestrian
α’s velocity vector and the line connecting α and β.

From here on we assume that parameters Ã, B, λ, τ R, and v0 have identical value
for all pedestrians, so we omit the indices. This allows to combine Ã and R into a
new parameter A = Ãe−2R .

Since it is obvious which properties are time dependent, we also omit the ‘(t)’.
Then Eq.1 reads for the one-dimensional case:

ẍα = v0 − ẋα

τ
+ A

∑
β

w(xα, xβ, λ)e− dαβ

B (3)

dαβ = |xβ − xα| (4)

w(xα, xβ, λ) = λ if xβ − xα < 0 (5)

w(xα, xβ, λ) = −1 if xβ − xα > 0 (6)

with the additional assumption that for all pedestrians and times ẋ > 0. Thus we
do not intend to model the loop from the experiment, but assume closed boundary
conditions in 1d.

Elliptical specification II is a variant of the Social Force Model where the force
between pedestrians—in addition to the mutual distance—also depends on the rela-
tive velocity of pedestrians α and β. The full definition is give in [3] and reduced to
one dimension it can be found in [6]. If—as in the scenario discussed in this work—
pedestrians α and β have the same velocity—vanishing relative velocity—elliptical
specification II gives the same force for α as the circular specification. Therefore the
further reasoning applies also to elliptical specification II (not elliptical specification
I, though).

Now, we investigate the steady state of this—in fact both—model(s). Steady state
means that the speeds and distances remain constant and consequently acceleration is
zero for all pedestrians. With the left side of Eq.3 being zero we can easily compute
the steady state speed without having to solve a differential equation:

ẋα = v0 + τ A
∑

β

w(xα, xβ, λ)e− dαβ

B (7)
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As we chose that the parameters for all pedestrians are equal and the system has
periodic boundary conditions or is infinitely large, all distances between neighbour-
ing pedestrians are equal. Then necessarily the distance (centre point to centre point)
from pedestrian α to the n next neighbour βn can then be written as:

dαβn = nd0 (8)

If we resolve thew() function into both directions—w() = −1 for all pedestrians
ahead and w() = λ for all pedestrians behind—we can rewrite Eq.7 more explicitly
with the sum running over natural numbers not pedestrians:

ẋα = v0 − (1 − λ)τ A
∞∑
n=1

e− nd0
B (9)

Since d0 and B both necessarily are positive it is e− d0
B < 1 and the sum is the

geometric series with the well known result

ẋα = v0 − (1 − λ)τ A

(
1

1 − e− d0
B

− 1

)
(10)

= v0 − (1 − λ)τ A
1

e
d0
B − 1

(11)

= v0 − (1 − λ)τ A
1

e
1
Bρ − 1

(12)

where ρ is the line density of pedestrians ρ = 1/d0.
With appropriately chosen values for parameters v0, λ, τ A, B Eq.12 should be

able to reproduce the empirical fundamental diagram as shown in Fig. 2—obviously
not each single data point, but the general, average course. This includes that the
speed density relation in Eq.12 computed for/from the Social Force Model should
also yield an inflection point. So for Eq.12 we compute the second derivative of the
speed function with regard to density:

v(ρ) = v0 − (1 − λ)τ A
1

e
1
Bρ − 1

(13)

∂v(ρ)

∂ρ
= −(1 − λ)τ A

e
1
Bρ

Bρ2(e
1
Bρ − 1)2

(14)

∂2v(ρ)

∂ρ2
= (1 − λ)τ Ae

1
Bρ

(2Bρ − 1)e
1
Bρ − (2Bρ + 1)

B2ρ4(e
1
Bρ − 1)3

(15)

and test if it is zero for some density ρi :

(2Bρi − 1)e
1

Bρi − (2Bρi + 1) = 0 (16)
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This does not have a solution, but the left side of the equation is always negative and
approaches zero only asymptotically for ρi → ∞.

At this point, we could write down conclusions and title the paper “Requiem
for the Social Force Model” (and a number of other models as well). However,
experience teaches to first search for possibilities of resurrection. Still we note as
first remarkable result of this work:

Result 1: Neither the circular specification nor the elliptical specification II of the
Social Force Model as originally defined produce an inflection point in the speed
density relation for homogeneous steady-state one-dimensional movement.

The next step does not follow as a consequence of what is written here so far, but
it has to be justified a posteriori: we reconsider Eq.7 and investigate a variant of the
model where not all pedestrians, but only the nearest neighbours—the one in front
and the one at the rear—exert a force on pedestrian α. This leads to

ẋα = v0 − (1 − λ)τ Ae− 1
Bρ (17)

which we write seemingly unnecessarily complicated as

ẋα = v0 − (1 − λ)τ A
1

e
1
Bρ − 0

(18)

In this form we note that the only difference between Eqs. 12 and 18—so between
the original formulation where infinitely many pedestrians exert a force on α and
the nearest neighbour variant—is only that in the first case there is a ‘1’ and in the
second case a ‘0’ in the denominator.

Having written the equations in this way the natural next question is “What if
instead of the zero or one in Eqs. 12 and 18 we write there some 0 < k < 1?”:

ẋkα = v0 − (1 − λ)τ A
1

e
1
Bρ − k

(19)

respectively in dimensionless form:

f (x)k(ρ) = 1 − ea − k

e
a
x − k

(20)

This modifies the second derivative:

vk(ρ) = v0 − (1 − λ)τ A
1

e
1
Bρ − k

(21)

∂vk(ρ)

∂ρ
= −(1 − λ)τ A

e
1
Bρ

Bρ2(e
1
Bρ − k)2

(22)
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Fig. 3 Relations of the k-extended Social Force Model for various values of parameter k. The plots
are based on the dimensionless variants of equations and it is a = 0.2. Speed density (a). Flow
density (b)

∂2vk(ρ)

∂ρ2
= (1 − λ)τ Ae

1
Bρ

(2Bρ − 1)e
1
Bρ − k(2Bρ + 1)

B2ρ4(e
1
Bρ − k)3

(23)

For 0 ≤ k < 1 the new equation to solve is

(2Bρi − 1)e
1

Bρi − k(2Bρi + 1) = 0 (24)

and it has a solution. For k = 0 it is obviously ρi = 1/(2B). For other values of k
the solution needs to be computed numerically. Table1 gives some values for Bρi .

The introduction of parameter k produces the desired inflection point in the fun-
damental diagram, see Fig. 3. To find an intuitively comprehensible interpretation
for this extension, we write Eq.21 in a slightly different manner

Table 1 Numerical solutions for the value ρi of the inflection point with regard to various values
for parameter k. Values computed with [14]

k Bρi k Bρi k Bρi

0.0 0.500 0.90 0.981 0.99 2.049

0.1 0.515 0.91 1.013 0.999 4.379

0.2 0.531 0.92 1.051 0.9999 9.416

0.3 0.551 0.93 1.096 0.99999 20.28

0.4 0.576 0.94 1.151 0.999999 43.68

0.5 0.606 0.95 1.219 0.9999999 94.10

0.6 0.646 0.96 1.309 0.99999999 202.7

0.7 0.703 0.97 1.435 0.999999999 436.8

0.8 0.793 0.98 1.635 0.9999999999 941.0
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vk(ρ) = v0 − (1 − λ)τ A
1

k

1

e
1
Bρ

k − 1
(25)

and undo the summation of the geometric series with k ‘on the back’ of the expo-
nential function

vk(ρ) = v0 − (1 − λ)τ A
1

k

∞∑
n=1

kne− n
Bρ (26)

= v0 − (1 − λ)τ A
∞∑
n=1

kn−1e− n
Bρ (27)

In terms of forces/acceleration this means:

ẍ = v0 − v

τ
− (1 − λ)A

∞∑
n=1

kn−1e− dαβ

B (28)

This is easy to interpret: the next neighbours of α exert a force on α unmodified
compared to the original SFM. The second next neighbours exert a force which is
suppressed by a factor k (always compared to the original model without parameter
k). The force from the next to next to next nearest neighbours is suppressed by a factor
of k2 and so on. This implies for example that if we take out each second pedestrian
from a simulation and the next to next nearest neighbour becomes the next nearest
neighbour the force from this new nearest neighbour is larger than before when s/he
was just the next to next nearest neighbour although the distance to α is the same as
before.

This can be comprehended intuitively. If two pedestrians approach ‘me’ indepen-
dently and the first remote pedestrian overtakes and becomes the closest one ‘my’
awareness is shifted from the former to the new nearest neighbour and that would
have an impact on my velocity changes, i.e. acceleration, i.e. forces. This intuitive
comprehensibility of the model extension adds to the pleasure of having gained the
desired inflection point. Thus:

Result 2: Suppressing the force from each pedestrian in the sequence ordered by
distance from the pedestrian for whom forces are calculated with an additional factor
0 < k < 1 produces an inflection point in the resulting macroscopic speed–density
relation and as a model extension can be motivated intuitively.

We would like to emphasise that the introduction of parameter k as extension
of the Social Force Model brings a major conceptual change. Without it forces of
various pedestrians superpose without interfering. With parameter k on the contrary
one has to know the local distribution of all pedestrians before one can compute the
force of one pedestrian on another one. Forces do not superpose anymore. Instead
the extended model—let us briefly call it ‘SFMk’—is rather described by Sherif’s
famous description of social systems: “the properties of any part are determined by its
membership in the total functional system.” [13]. In this sense the SFMk structurally
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bears some similarities to another extension of the Social Force Model—namely
the dynamic potential [4, 5, 7, 8]—where the desired direction of pedestrians is
computed such that they walk into the direction of earliest expected arrival, for this
considering the distribution and movement state of all pedestrians in a holistic way.
A difference, however, between SFMk and the dynamic potential is that in SFMk it
is exactly known which pedestrian βi contributes what to the effect on the movement
of pedestrian α. This is not the case for the dynamic potential. We would therefore
call the dynamic potential a mesoscopic or mean field or holistic modelling element
while the SFMk is non-superposing but non-holistic and entirely microscopic.

3 Summary

In this contribution we have computed the macroscopic limit of the Social Force
Model of pedestrian dynamics for single-file unidirectional movement. We found
that the speed–density curve does not have an inflection point, but that with the
introduction of one more parameter to the Social Force Model one can recover an
inflection point. The new model intuitively makes sense considering that humans
focus their awareness.
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Sensitivity Analysis of the Local Route
Choice Parameters of the Continuum Model
Regarding Pedestrian Movement Phenomena

Dorine C. Duives, Winnie Daamen and Serge P. Hoogendoorn

Abstract Numerous pedestrian simulation models have been proposed in the last
decade, many of which simulate the movement behaviour of pedestrians micro-
scopically. However, the numerous degrees of freedom of microscopic models com-
plicate the calibration process severely. Moreover, the computation speed of many
microscopic simulation models leaves much to be desired. Especially in cases where
computation speed is essential and no microscopic data is available to calibrate the
model, macroscopic models outperform microscopic models. This study provides a
detailed assessment of the impact of the combination of delay and density within the
formulation of the local route choice behaviour on the predicted movement dynam-
ics of the crowd in a continuum model (Physica A 416:684–694, 2014 [9]; Transp
Res Part C Emerg Technol 59:183–197, 2015 [10]). This study aims to understand
how the parameters of the respective versions of the continuum model influence the
development crowd movement phenomena. The impact of the parameter sets of the
continuum model is assessed for a uni-directional bottleneck, uni-directional corner
rounding, bidirectional straight walking and intersecting movements.

1 Introduction

In recent years, numerous (microscopic) pedestrian crowd simulation models have
been proposed. The nature of thesemicroscopic simulationmodels is very diverse, for
instance Cellular Automata (e.g. [11]), Social Force models (e.g. [13]), and Collision
Avoidance models (e.g. [12]). Generally, no exact solution exists, which complicates
the use of predictions by these models for crowd management solutions. Moreover,
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given the high amount of detail in the description of the pedestrian movement
behaviour, the computation speed of many microscopic simulation models leaves
much to be desired.

As a consequence, especially in processes where computation speed is essential,
such as for instancemonitoring ormanagement instructions, macroscopic simulation
models outperformmicroscopic simulationmodels. This second type of models does
not simulate individual behaviour, but estimates the aggregate characteristics of the
crowd movement. Over the course of the last five years several continuum models
have been presented (among others [2, 4, 14]).

Many of the recently proposed macroscopic models cannot simulate all rele-
vant behavioural processes and characteristics of crowd movement, such as self-
organisation and phase-transitions [9]. To the authors knowledge, the macroscopic
models mentioned above cannot simulate the more sophisticated forms of self-
organisation, such as stripe-formation or turbulence.

Studies [9] and [10] propose two versions of a multi-class continuum model that
captures these two key dynamic features of pedestrian flow (i.e. self-organisation
and phase-transitions). In both models, the global route choice (based on the distance
to the exit) and local route choice (based on the interaction of pedestrians nearby
dynamic changes in the traffic state) are balanced. The local route choice in the first
version of the continuum model is based on only the gradient of the density, while
in the second version a combination of the density and delay gradients is used.

This study provides a detailed assessment of the impact of the combination of
delay and density within the formulation of the local route choice behaviour. It shows
that the density and the delay gradients impact the walking behaviour in a similar
manner in uni-directional movement base cases. Furthermore, this paper shows that
the combination of delay and density gradients leads in most cases to either entirely
similar (uni-directional flow situations) or undesirable behaviour (in bidirectional
and intersecting flow situations).

This paper first describes the local route choice in both versions of the continuum
model. The research methodology is presented in Sect. 3, the results in Sects. 4 and
5. Section6 draws conclusions and shows avenues for future research.

2 Introduction of the Continuum Model

The continuum model presented in [9] describes the dynamics of the class-specific
density ρd(t, x) over time t and space x, where d denotes the pedestrian class (i.e.
a set of pedestrians that shares the same origin, destination and type of walking
behaviour). In the following, the most important characteristics of the model are
mentioned. For more specific details, we refer to the original papers [9, 10].

In the continuum model, the walking direction represents the results of the global
choice behaviour of pedestrians, which is modelled by means of the value function
proposed in [8]. Additionally, a local route choice component is introduced. It is
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assumed that the local route choice can be expressed as a function of the class-
specific densities ρd and density gradients �ρd

qd = γ d(ρ1, ..., ρD,�ρ1, ...,�ρD) · ρd ·U (ρ1, ..., ρD) (1)

where ρd represents the density resulting from the presences of class d, �ρd the
gradient of the density of class d,U the absolute velocity, and γ d the direction of the
velocity. The local route costs for a pedestrian of class d aim to avoid high density
areas, in particular when these areas are occupied by pedestrians from another class.

γ
densi t y
d =

D∑
d=1

βd · ρd (2)

The values of βd can be interpreted as weights that a pedestrian of class d attaches
to densities of its own (δ = d) and other classes (δ �= d).

In the second formulation of the model, both delay and density are accounted for
[10]. The local delay caused by reduced walking speeds due to high densities is also
incorporated in the local route choice decision.

γ
delay
d = (

1

U (ρ1, ..., ρD)
− 1

U (0)
)dt (3)

In this formulation, U (0) represents the free flow speed and U (ρd) the speed class
d adopts under the influence of effective density ρd .

The influence of the density and delay are accordingly added, rendering the local
route choice γ local

d of pedestrians of class d.

γ local
d = −1 · β

densi t y
d · γ

densi t y
d + β

delay
d · γ

delay
d

‖βdensi t y
d · γ

densi t y
d + β

delay
d · γ

delay
d ‖ (4)

whereβ
densi t y
d andβ

delay
d represent theweight of the influence of the delay and density

components and γ
densi t y
d and γ

delay
d represent the gradients of the density and delay.

This leads to the following route choice model

γ d = − β
global
d · γ

global
d + βlocal

d · γ local
d

‖βglobal
d · γ

global
d + βlocal

d · γ local
d ‖ (5)

where β
global
d and βlocal

d are weights representing the influence of the global and local
route choice components of pedestrians of class d. The global and local components
of the route choice are first transformed into unit vectors before addition. As a con-
sequence, the weight factors always have the same effect on the pedestrian flow,
irrespective of the geometry and size of the infrastructure.
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3 Methodology for the Assessment of the Sensitivity

As mentioned previously, this study aims to understand the impact of the addition
of the delay component in the local route choice formulation on the predicted traffic
state. Two distinct analyses are performed. Firstly, an analysis of the contribution of
the delay to the traffic state is carried out, which does not take the interference of the
density into account. Secondly, the influence of the interplay between density and
delay on the traffic state is performed.

In total, six parameters of the continuum model influence the resulting crowd
movement dynamics which can be separated into three pairs of antagonists. That is,
the ratio βlocal

d /β
global
d manages the respective influences of the static and dynamic

route choice, the ratio βown
d /βother

d operates the influence of the density gradient of
the own and other classes and the ratio β

delay
d /βcrowd

d determines the influence of
the delay and the density gradient. Table1 displays the parameter settings which are
tested in this study. These values have been chosen based on results of a previous
study [6].

Given that crowdmovement phenomena occur under different flow situations, this
study studies the impact of the parameter sets with respect to the crowd movement
dynamics that arise during several distinct flow situations. In total, four distinct flow
situations are distinguished:

• Uni-directional—Bottleneck, where one class of pedestrians is generated on the
left, walks through a bottleneck and exits on the right.

• Uni-directional—Corner, where one class of pedestrians is generated on the left
and exits at the bottom after making a sharp 90° turn.

• Bidirectional—Straight, where two classes of pedestrians are generated, one from
left to right and one from right to left.

• Crossing flow scenario—90°, where two classes of pedestrians are generated, one
from left to right and one from bottom to top.

Over the years several crowd movement phenomena have been mentioned in
research studies. In case of the four adopted flow situations a few specific ones apply.
Namely, the funnelling upstream and dissipation downstream of bottlenecks [3] and
corners [5], and the existence of self-organisation patterns such as lane formation in

Table 1 Parameter settings of the sensitivity test

Math. def. Influence of delay Influence delay and crowd

Local versus global
βlocal
d

β
global
d

0.2, 0.4, 0.6, 0.8, 1 0.7

Own versus other group
βown
d

βother
d

0.5 0.5

Delay versus density
β
delay
d

βcrowd
d

β
delay
d = 1, βcrowd = 0 βdelay = 0.2 : 0.2 : 1,

βcrowd
d = 1 : −0.2 : 0.2

Demand q 1 P/m/s 1 P/m/s
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corridors [7] and stripe-formation at intersections [1]. In the following, the continuum
model can simulate crowd movements realistically when all these crowd movement
phenomena can be predicted by means of the same parameter set.

4 Impact of Delay on the Movement Dynamics
of the Crowds

In this section, the impact of the delay on the crowd movement dynamics is pre-
sented (i.e. βcrowd

d = 0). As a result, an increase of the impact of the local route
choice behaviour on the movement behaviour via βlocal

d is directly related to a sim-
ilar increase of the impact of the delay on the movement behaviour. Underneath
the resulting dynamics are discussed separately for the four distinct flow situations
mentioned in Sect. 3.

The impact of delay on the movement dynamics of a flow around a corner is
depicted in Fig. 1a–d. The dispersion of the flow upstream of the corner is increased
by the increasing impact of the delay. An increase in the influence of the delay leads
to an increase of the dispersion at and downstream of the corner. Due to the improved
efficiency of the crowds’ movements, the high density region just upstream of the
bottleneck disappears.

For bottleneck flows, a similar analysis is presented in Fig. 1e–h. The results show
that without local route choice, minor queues upstream of the bottleneck are found.
A slight increase of the influence of the local route choice causes these minor queues
to change into a full-fledged bottleneck. The simulation results, furthermore, clearly
illustrate that an increase in the influence of the delay induces an increase in the
dissipation of pedestrians downstream of the bottleneck. In some specific cases, a
funnel shaped bottleneck flow arises. In most cases, however, the flow touches the
upstream wall in which the bottleneck is located. Empirical research performed by
e.g. [3], did not establish the formation of the latter shape.

Figure1i–p depict the impact of delay on the movement dynamics of crowds in
bidirectional and crossing situations. The graphs show that the impact of delay does
not improve the traffic state. In both cases, the overall density of the flow situation
does increase when the impact of the delay increases. Additionally, no formation of
lanes is seen in any of the simulations. This is not surprising, since the crowd flow
does not react differently on the own and other group based on the current formulation
of the delay.

5 Impact of Combination of Delay and Density Gradients
on the Movement Dynamics of the Crowds

The interplay between the influence of the density and delay gradients on the local
route choice is analysed in this section. The same four case studies mentioned in
Sect. 3 are used. Only this time, the ratio between βlocal

d and β
global
d is kept stable at
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 1 Traffic state in four flow situations, where the influence of the local route choice consisting of
only the delay component is varied. βlocal

d = 0 represents situations in which only the global route
choice is taken into account, and βlocal

d = 1 represents situations in which the global and local
route choice components carry equal weight. βlocal

d = 0 (a); βlocal
d = 0.2 (b); βlocal

d = 0.6 (c);
βlocal
d = 1.0 (d); βlocal

d = 0 (e); βlocal
d = 0.2 (f); βlocal

d = 0.6 (g); βlocal
d = 1.0 (h); βlocal

d = 0 (i);
βlocal
d = 0.2 (j); βlocal

d = 0.6 (k); βlocal
d = 1.0 (l); βlocal

d = 0 (m); βlocal
d = 0.2 (n); βlocal

d = 0.6
(o); βlocal

d = 1.0 (p)

0.7, while the ratio β
delay
d /βcrowd

d ratio is varied. In all cases, only the distribution
of the density for one of the pedestrian classes is displayed in order to illustrate the
development of self-organisation behaviour.

The influence of the combination of delay and density on the movement dynamics
of the crowd is visualised in Fig. 2a–f. As one can see, the traffic states do not differ
between distinct realisations of a uni-directional flow situation while very distinct
ratios of β

delay
d and βcrowd

d are used. The traffic state does not develop differently,
since in both flow situations similar directional fields γ local

d are found. That is, the
local route choice does not change depending on the ratio β

delay
d /βcrowd

d .
In the bidirectional flow situation differences in the traffic state do arise, see

Fig. 2g–i. Only in the cases where the influence of the delay gradient is less than the
influence of the density gradient, lane formation remains visible after 90 s. Thus, it is
concluded that especially the density gradient induces this type of self-organisation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 Traffic state in four flow situations, where the relative weight of the density and delay
components of the local route choice is varied. β

delay
d /βcrowd

d = 0.2 (a); β
delay
d /βcrowd

d = 1 (b);

β
delay
d /βcrowd

d = 5 (c); β
delay
d /βcrowd

d = 0.2 (d); β
delay
d /βcrowd

d = 1 (e); β
delay
d /βcrowd

d = 5 (f);

β
delay
d /βcrowd

d = 0.2 (g); βdelay
d /βcrowd

d = 1 (h); βdelay
d /βcrowd

d = 5 (i); βdelay
d /βcrowd

d = 0.2 (j);

β
delay
d /βcrowd

d = 1 (k); βdelay
d /βcrowd

d = 5 (l)

Figure2j–l display the effect of the combination of delay and density gradients
on the movement dynamics in case of a crossing flow situation. When the density
is dominant in the local route choice, stripe formation arises, while the combination
of both effects results in blockage. When the impact of the delay is dominant within
the local route choice, both groups are scattered over the entire infrastructure. As a
result, blockage does not occur any more, nor does stripe formation.

6 Conclusions and Future Research

This study has provided a detailed assessment of the impact of the combination of
delay and density gradient in the formulation of the local route choice behaviour of
the continuum model proposed by [9, 10] on the predicted traffic state. By means
of two distinct tests, the impact of these two types of gradients on the predicted traffic
state has been analysed.
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In the first test, for uni-directional flows the density and delay gradients were
found to impact the walking behaviour in a similar manner. For bidirectional and
intersecting flows no self-organisation was found in cases where only the delay, and
not the density, was taken into account. The second test established that the traffic
state in uni-directional flow situations is scarcely impacted by theβ

delay
d /βcrowd

d ratio,
since the total local route choice gradient is barely impacted by the ratio.

Based on the results, it is concluded that especially the density component needs
to be included in the local route choice in order to predict valid crowd movement
behaviour. Since the influence of the delay component renders no different results,
it is concluded that this component has no supplementary value.

Acknowledgements The research presented in this paper is part of the research program ‘Traf-
fic and Travel Behaviour in case of Exceptional Events’, sponsored by the Dutch Foundation of
Scientific Research MaGW-NWO.
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How to Get a Model in Pedestrian Dynamics
to Produce Stop and Go Waves

Felix Dietrich, Stefan Disselnkötter and Gerta Köster

Abstract Stop and gowaves in granular flow can often be describedmathematically
by a dynamical system with a Hopf bifurcation. We show that a certain class of
microscopic, ordinary differential equation-based models in crowd dynamics fulfil
certain conditions ofHopf bifurcations. The class is based on theGradientNavigation
Model. An interesting phenomenon arises: the number of pedestrians in the system
must be greater than nine for a bifurcation—and hence for stop and go waves to
be possible at all, independent of the density. Below this number, no parameter
setting will cause the system to exhibit stable stop and go behaviour. The result is
also interesting for car traffic, where similar models exist. Numerical experiments of
several parameter settings are used to illustrate the mathematical results.

1 Introduction

Stop and go waves are a prominent feature of flows of both pedestrians in corridors
and cars on highways. To investigate them experimentally, ring experiments have
been conducted with cars [8], pedestrians [7], robots and even ants [5].

Even in almost homogeneous conditions, these waves can occur ‘out of nowhere’,
meaning that a small error in the system can increase exponentially and change the
flow from homogeneous to wavelike. Figure1 shows the positions of 20 particles in a
corridor with periodic boundary conditions—mathematically realised as a ring (see
Fig. 2—in a computer simulation. Initially, the particles are all distributed with equal
spacing. Numerical errors introduce inhomogeneities, which are amplified by the
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Fig. 1 Stop and go waves occur through a small (invisible here) perturbation in the initial positions
of 20 pedestrians in a setting with periodic boundaries. The effect is visible after 60 s

Fig. 2 Circular scenario
with ten pedestrians. The
pedestrians at the bottom are
closer together than the ones
on top: a jam

instability at the given parameter setting. The system moves away from the unstable
steady state with equal spacing and enters the wavelike state. This behaviour is well
known in mathematics as Hopf bifurcation of a dynamical system, where changing
the value of a parameter changes the number of periodic orbits.

In car traffic, this phenomenon has been researched extensively [6, 9]. Models
in crowd dynamics differ from models in car traffic in a number of ways. Most
notably, they are two-dimensional focusing on path finding and navigation around
other pedestrians and obstacles. In car traffic, most models are one-dimensional,
producing so called single-file or single-lane flow.

In this paper, we present a mathematical and a numerical analysis for stop and go
waves of a class ofmodels in crowddynamics. The originalmodel formulation is two-
dimensional. This is different from many previous analyses of pedestrian models,
where only single-file movement models were used and often developed just for
the purpose of stop and go analysis. Our model can also be used in a general two-
dimensional setting [1].We briefly outline themathematical framework of dynamical
systems and Hopf bifurcations. Then, we introduce the ring scenario, and outline the
proof of a Hopf bifurcation in models similar to the Gradient Navigation Model.
We discover an interesting phenomenon: with less than 10 pedestrians, no parameter
value in the model leads to stop and go like movement. Numerical results illustrate
the theoretical results.
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2 Mathematical Framework

A dynamical system is a triplet of time T , space X and a continuous map f . This
map advances states x ∈ X in time. If time is continuous, for example T = R, the
advance is often described by a differential equation. Let x(t) be the state at time t ,
then

dx

dt
= ẋ = f (x(t)). (1)

A steady state of a dynamical system is a state x∗ ∈ X where f (x∗) = 0. If a
small perturbation ε to the steady state causes the system to return to x∗ or stay close
to it, the steady state is called stable. Otherwise, it is called unstable. Stability is more
rigorously defined through the Jacobian of f :

Definition 1 Let f be the continuous right hand side of a differential equation with
state space X ⊂ R

n , such that
ẋ = f (x). (2)

Furthermore, let x∗ ∈ X be a steady state such that f (x∗) = 0. We denote the Jaco-
bian of f at x∗ by J ∗. The steady state x∗ is called stable, if for all (possibly complex)
eigenvalues λ of J ∗,

R(λ) < 0. (3)

Otherwise, x∗ is called unstable.

Periodic solutions—including trivial ones—are present if J ∗ has pairs of conjugate
eigenvalues on the imaginary axis, that means λ1,2 = 0 ± bi , b ∈ R, and no other
eigenvalues with zero real part.

The map f may be dependent on several parameters p = (p1, . . . , pm) that influ-
ence the system behaviour. If the values are changed continuously, the number, posi-
tion and stability of steady states can change. A doubling of the number of periodic
steady states is called Hopf bifurcation. This is formalised in Definition 2 (adopted
from [3, p.150ff]):

Definition 2 Consider a system with right hand side f ∈ C∞(Rn) where fμ(x) =
f (μ, x),μ ∈ R is a parameter, and ẋ = fμ(x), x ∈ R

n . Let (x0, μ0) be a steady state
with the following properties:

1. Non-hyperbolicity: the Jacobian Dx fμ0(x0) has exactly two distinct, complex
conjugate eigenvalues with zero real part.

2. Transversality: the eigenvalues cross the imaginary axis when μ is varied at μ0

with non-zero speed,
R(λ(μ))

dμ

∣∣∣∣
μ=μ0

�= 0.

3. Genericity: the first Lyapunov coefficient must not be zero.
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The genericity condition determines whether the system is supercritical, sub-
critical, or degenerate.

Models for pedestrian dynamics are dynamical systems with parameters. We will
show analytically that the first two conditions of Definition 2 hold, which is a strong
indication that a Hopf bifurcation exists. These results mean a small change in the
parameters can cause a periodic solution to arise: the stop and go waves.

3 Results

Consider the ring scenario shown in Fig. 2, where the arc length of the ring is L > 0.
A number of P ∈ N pedestrians are placed equidistantly at positions xi , and are all
moving in the same direction on the ring. We ignore the shapes of the pedestrians
and focus on their respective distances. The distance between pedestrian i and its
successor i + 1 are called di , where di = (xi+1 − xi ) ≥ 0.

Movement and interactions of pedestrians are described by the Gradient Naviga-
tionModel (GNM)which was introduced and validated in [1]. It is based on ordinary
differential equations and has several parameters. Numerical simulations where stop
and go waves occurred even in two-dimensional scenarios suggested the existence
of Hopf bifurcations. Here, we look at the natural candidates among the model para-
meters to induce the bifurcations: the parameters for interaction strength between
pedestrians.

To generalise the theoretical results, we use a more general interaction function
than the one used in the Gradient Navigation Model. In this paper, the interactions
are described with a generic non-negative, bounded and monotonically decreasing
repulsion function h(di , μ), h : R≥0 × R → [0, K ], K > 0. This function depends
on the distance di to the person in front and a shape parameter μ ∈ R. The function
h is assumed to have compact support on [0, μ], such that

supp(h) = {d ∈ R≥0|h(d, μ) �= 0} = [0, μ]. (4)

Movement and interactions of pedestrians in the Gradient Navigation Model are
governed by a navigation function N , which depends on the position of other pedes-
trians, other obstacles and the position of the target. The simplified scenario does
not contain obstacles and all pedestrians are confined to the one-dimensional ring
setting. This reduces the navigation function to

N (d, μ) = K − h(d, μ). (5)

The position of pedestrian i is called xi , and wi is an auxiliary variable modelling
the desired speed with maxwi = K for all pedestrians. Also, the speed relaxation τ

is set to 1 without loss of generality. The equations of motion of the GNM reduce to

ẋi = wi N (di , μ)

ẇi = ‖N (di , μ)‖ − wi .
(6)
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Initially, all pedestrians are distributed with equal spacing on the ring. This is a
steady state of a reformulated dynamical systemwhere the position of one pedestrian
is fixed and all other positions are described relative to it. This is a achieved by a
change of variables zi := xi − x1. The corresponding system is

żi = wi N (zi+1 − zi , μ) − w1N (z2, μ)

ẇi = ‖N (zi+1 − zi , μ)‖ − wi .
(7)

The steady state of this system is given by

z∗
i = (i − 1) L

P
w∗

i = K N ( L
P , μ)

(8)

We formulate the main result of this paper as a theorem:

Theorem 1 The system in Eq.7 fulfils non-hyperbolicity and transversality condi-
tions for a Hopf bifurcation at the steady state in Eq.8 for the parameter μ.

Proof See [2] for a detailed analysis. Define F = F(μ) := N ( P
L , μ) and G =

G(μ) := ∂
∂d N ( P

L , μ). Furthermore, define the vectors Z = (z2, z3, . . . , zP)T and
W = (w2, w3, . . . , wP)T . Let A, B,C and D be matrices in R(P−1)×(P−1), where

A =

⎛
⎜⎜⎜⎝

−2FG FG 0 0
−FG −FG · · · 0

... 0 . . . FG
−FG 0 0 −FG

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎝

−F F 0 0
... 0 . . . 0

−F 0 0 F

⎞
⎟⎠ ,

C =

⎛
⎜⎜⎝

G 0 0 0
−G G 0 0
0 . . . . . . 0
0 0 −G G

⎞
⎟⎟⎠ , D = −I

(9)

The linearisation of the system in Eq.7 at the steady state (Eq. 8) is given by

(
Ż
Ẇ

)
=

(
A B
C D

)

︸ ︷︷ ︸
=:J

(
Z
W

)
. (10)

�
A transformation of the original system yields amatrix with higher dimension, which
by a similarity argument, allows for the calculation of the eigenvalues of J . We can
proof that the eigenvalues have the form

λ1,2(k) = 1
2

(
φk − 1 ±

√
1 + 6φk + φ2

k

)
,

φk := F(μ) · (−1 + exp 2π ik
P ), k �= P.

(11)

We assume that the number of pedestrians on the ring is large, that means P 
 1.
We thus equate
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Fig. 3 Combination of the paired eigenvalues z(b) and the matrix eigenvalues φk with P = 100.
The right figure zooms into the left figure at (0, 0)

1

2

(
z − 1 ±

√
1 + 6z + z2

)
= ib, z ∈ C, b ∈ R/{0} (12)

to find values z1,2(b) ∈ C that might fulfil the non-hyperbolicity condition of a Hopf
bifurcation–that is, two imaginary eigenvalues on the imaginary axis. We find

z(b) = −b2 + 2bi

8 + 2bi
, (13)

which is depicted as black line in Fig. 3. For F(μ) ∈ [0, 1];, there exist φk and num-
bers b so that φk = z(b) (the crossings of the circle and the black line in Fig. 3).
This can be shown by parametrising the curve z(b), see [2]. Since we can find para-
meter values so that these crossing points exist, we can prove the non-hyperbolicity
condition. To proof the transversality condition, we use Lemma 1.

Lemma 1 Let P(z, μ) a polynomial in z ∈ C with parameter μ ∈ R. Let λ(μ) ∈ C

a differentiable curve of roots of P, which depends on μ. Then for all μ∗ ∈ R where
∂P
∂z

∣∣
μ=μ∗ �= 0 it is

dλ

dμ

∣∣∣∣
μ=μ∗

= − ∂P
∂μ

∂P
∂z

∣∣∣∣∣
μ=μ∗

. (14)

Proof Total differentiation of P(λ, μ) and the fact that P(λ(μ), μ) = 0 for all μ

yields the result at μ = μ∗. �

Application of Lemma 1 on the characteristic polynomial of the higher-dimensional
matrix described above, P := λ2 + λ − F(μ) · (1 − exp( 2π iP )(λ + 2) yields the fol-
lowing:

λ

∂F

∣∣∣∣
F=F(μ0)

= − b2(b2 − 2)

(b4 + 12b2 + 4)F(μ0)
+ i

b(b4 + 8b2 + 4)

(b4 + 12b2 + 4)F(μ0)
. (15)



How to Model Pedestrian Stop and Go Waves 167

This can now be transformed to the final result, proving transversality:

R(λ)

∂F

∣∣∣∣
F=F(μ0)

= − b2(b2 − 2)

(b4 + 12b2 + 4)F(μ0)
. (16)

The denominator in Eq.16 is positive and the nominator is non-zero for b �= √
2,

which is true for P 
 1.Hence, the system fulfils the non-hyperbolicity and transver-
sality conditions of a Hopf bifurcation. This completes the proof of Theorem 1.

The genericity condition in this case is quite complicated to proof. Since non-
hyperbolicity and transversality is given, and the numerical results strongly indicate
that stop and go waves occur, we simply assume genericity in this paper. The exact
computations necessary for a proof are outlined in [2, 4].

Formany pedestrians, it is very easy to find parameters for the interaction function
h so that stop and go waves occur in numerical simulations. This can be seen in
Fig. 1, where P = 20. For P close to 10, an interesting phenomenon occurs. As soon
as there are less than ten pedestrians in the ring, no stop and go waves will occur
for any value of the parameters. The size of the ring does not seem to matter, as
confirmed by numerical experiments (see Fig. 4).

Fig. 4 Positions of 20, 10, and 9 pedestrians over time. In the last setting, the initial perturbation
decreases and no stop and go waves occur. This is independent of the size of the ring, or the density,
respectively
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4 Conclusions and Discussion

We showed that Hopf bifurcations, which formally explain the existence of periodic
steady state solutions in a dynamical system, can be found in a certain class ofmodels
in pedestrian dynamics. This helps to explain the phenomenon of stop and go waves.
We also presented the mathematical analysis necessary to detect Hopf bifurcations
so that it can be carried over to other models, such as force-based models. Numerical
results for our system indicated that no stop and go waves may occur for any density
or parameter value if the number of particles is below a threshold.

While our analysis is a step towards understanding periodic solutions in pedestrian
dynamics, many open questions remain. It seems important that only the nearest
neighbours are considered, and that the model incorporates a certain delay in the
reaction to others. The results may also be interesting for car traffic, where there are
similarmodels. It is particularly important for automatic distance controlmechanisms
that seek perfect alignment to the preceding car: If the settings are tuned incorrectly
the alignment itself may cause the traffic system to enter a stop and go state.
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A Force-Based Model to Reproduce
Stop-and-Go Waves in Pedestrian Dynamics

Mohcine Chraibi, Antoine Tordeux and Andreas Schadschneider

Abstract Stop-and-go waves in single-file movement are a phenomenon that is
observed empirically in pedestrian dynamics. It manifests itself by the co-existence
of two phases: moving and stopping pedestrians. We show analytically based on
a simplified one-dimensional scenario that under some conditions the system can
have unstable homogeneous solutions. Hence, oscillations in the trajectories and
instabilities emerge during simulations. To our knowledge there exists no force-
based model which is collision- and oscillation-free and meanwhile can reproduce
phase separation. We develop a new force-based model for pedestrian dynamics
able to reproduce qualitatively the phenomenon of phase separation. We investigate
analytically the stability condition of the model and define regimes of parameter
values where phase separation can be observed. We show by means of simulations
that the predefined conditions lead in fact to the expected behaviour and validate our
model with respect to empirical findings.

1 Introduction

In vehicular traffic, the formation of jams and the dynamics of traffic waves have
been studied intensively [1, 2]. Particular car-followingmodels including spacing and
speed difference variables have been shown to reproduce realistic stop-and-go phe-
nomena [3, Chap. 15]. In pedestrian dynamics this phenomenon has been observed
empirically, especially when the density exceeds a critical value [4, 5]. Jams can be
reproduced as a result of phase transitions from a stable homogeneous configuration
to an unstable configuration. In the literature some space-continuous models [6–9]
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reproduce partly this phenomenon. However, force-based models generally fail to
describe pedestrian dynamics in jam situations correctly. Often uncontrollable oscil-
lations in the direction of motion occur, which lead to unrealistic dynamics in form
of collisions and overlappings [10].

In this work we present a force-based model that is able to reproduce stop-and-go
waves for certain parameter values. By means of a linear stability analysis we derive
conditions to define parameter regions, where the described system is unstable.

We study by numerical simulations if the system behaves realistically, i.e. jams
emerge without any collisions in agreement with experimental results [4]. Further-
more, we validate the model by comparing the fundamental diagram with experi-
ments. We conclude this paper with a discussion of the results and the limitations of
the proposed model.

2 Model Definition

The phenomenon of stop-and-go waves in pedestrian dynamics was investigated
experimentally in one-dimensional scenarios [4]. Therefore, we limit our analysis
to 1D systems. Consider N pedestrians distributed uniformly in a narrow corridor
with closed boundary conditions and neglect the effects of walls on pedestrians.
Furthermore, for interactions among N pedestrians, we assume that pedestrian n is
only influenced by the pedestrian right in front.

For the state variables position xn and velocity ẋn = dxn
dt of pedestrian n we define

the distance of the centres Δxn and speed difference Δẋn of two successive pedes-
trians as

Δxn = xn+1 − xn, Δẋn = ẋn+1 − ẋn . (1)

In general, pedestrians aremodelled as simple geometric objects of constant size, e.g.
a circle or ellipse. In one-dimensional space the size of pedestrians is characterised
by an (Fig. 1), i.e. their length is 2an . However, it is well-known that the space
requirement of a pedestrian depends on its velocity and can be characterised by a
linear function of the velocity [11–13]

an = a0 + avẋn , (2)

Fig. 1 Definition of the quantities characterising the single-file motion of pedestrians (represented
by rectangles)
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with a0, characterising the space requirement of a standing person and av ≥ 0 a para-
meter for the speed dependence with the dimension of time. The effective distance
(distance gap) dn of two consecutive pedestrians is then

dn = Δxn − an − an+1 = Δxn − av (ẋn + ẋn+1) − 2a0. (3)

At each time the change of state variables of pedestrian n is given by superposition
of driving and repulsive terms. Thus, in general the equation of motion for pedestrian
n described by a force-based model is given by

ẍn = f
(
ẋn,Δẋn,Δxn

)
+ v0 − ẋn

τ
. (4)

Typical values for the parameters are τ = 0.5s for the relaxation time and v0 =
1.2m/s for the desired speed.

For f we propose the following expression

f (Δxn, ẋn, ẋn+1) = −v0
τ
ln

(
c · Rn + 1

)
, (5)

with

Rn = rε
( Δxn
an + an+1

− 1
)
, c = e − 1. (6)

rε(x) is an approximation of the non-differentiable ramp function

rε(x) = ε ln(1 + e−x/ε) (0 < ε � 1). (7)

Pedestrians anticipate collisions when their distance to their predecessors is
smaller than a critical distance a = an + an+1. Therefore, an does not only model
the body of pedestrian n but represents also a ‘personal’ safety distance. Assuming
that ẋn = 0, for Δxn = 0, i.e., Rn = 1, the repulsive force reaches the value −v0/τ
(at the limit ε → 0) to nullify the effects of the driving term (Fig. 2).

Fig. 2 The absolute value of
the repulsive force according
to Eq. (5) (at the limit ε → 0)
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3 Linear Dynamics

In this section, we investigate the stability of the system (Eq.4). The position of
pedestrian n in the homogeneous steady state is given by

xn = n

ρ
+ vt , (8)

so that xn+1 − xn = 1
ρ

= Δx , ẋn = v, being speed for the equilibrium of uni-
form solution. ẍn = 0 for all n, where derivatives are taken with respect to t . For
Δy = Δxn/a0 we consider small (dimensionless) perturbations εn of the steady state
positions of the form

εn(t) = αne
zt , (9)

with αn, z ∈ C. Replacing in (4) and expanding to first order yields a second-order
equation for z. To obtain stability, one needs to ensure �(z) < 0 for the real part of
all solutions z with the exception of the solution z = 0.

For the system (Eq.4) with the repulsive force (Eq.5) we obtain the following
stability condition

Φ :=
( 1

1 + 2ξa′
vΔy

)( ξ

1 + 2ξa′
vΔy

+ ξa′
vΔy

)
− 1/2 < 0, (10)

with ξ = c
d0

v′
0
a′ , a′ = a

a0
, v′

0 = v0
τ
a0

and d0 = 1 + c(1 − Δy/a′).
Figure3 shows the stability behaviour of the systemwith respect to the dimension-

less parameters v′
0 and ãv = av/τ . The system becomes increasingly unstable with

increasing v′
0 (for a relatively small and constant ãv). Assuming that the free flow

speed v0 is constant, this means that increasing the reaction time τ or diminishing the
safety space leads to unstable behaviour of the system. This results is well-known in
traffic theory (see for instance [14]).

Fig. 3 Stability region in the
(ãv, v′

0)-space for Δy = 1.5.
The colours are mapped to
the values of Φ and (ãv, v′

0)

are the dimensionless
parameters in Eq. (10)
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Fig. 4 Trajectories for
Δyn = 1.5 show stop-and-go
waves

4 Simulations

We perform simulations with the introduced model to analyse the unstable dynam-
ics. For av = 0, v′

0 = 1 and Δyn = 1.5 we calculate the solution for 3000s. These
parameters lay in the unstable regime of the model (Fig. 3). Thus, jam waves are
expected to emerge. Figure4 shows the trajectories of 133 pedestrians. ε in Eq. (7)
is set to 0.01.

We observe jam waves propagating in the system. Note that the observed jam
waves last for a long period of time (here 3000s), which is a indication that they are
not dependent on the initial conditions of the simulation and are ‘stable’ in time.

As shown in Fig. 5 the speed does not become negative, therefore backwardmove-
ment is not observed. This condition favours the appearance of stable jams.

Having reproduced stop-and-go waves, the model will be further tested by com-
paring qualitatively the produced density-velocity relation (fundamental diagram).
The same set-up as above is simulated several times. In order to scan a sufficiently
large density interval, the number of pedestrians N is increased after each simula-
tion. Figure6 shows a comparison of the simulation results with experimental data

(a) (b)

Fig. 5 Speed of pedestrians at different time steps: t = 300 s (a); t = 2000 s (b)
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Fig. 6 Fundamental
diagram: comparison with
experiments from [5]

from [5]. The observed fundamental diagram is composed of two different regimes:
free flow regime, where the speed of pedestrians does not depend on the density
(ρ < 0.5m−1), and a regime where the speed decreases with increasing density.
Here, we observe that the correct shape of the fundamental diagram is reproduced
quite well, although the velocity is slightly higher than the experimental velocities
for ρ > 2m−1.

5 Discussion

We have introduced a simple force-based model for which uniform solutions can be
unstable. By simulations we observe that the proposedmodel shows phase separation
in its unstable regime, in agreement with empirical results [4].

The linear stability condition of the models shows that we can find realistic para-
meter values in the unstable regime. However, depending on the chosen values for the
(rescaled) desired speed v′

0, collisions can occur, as a result of backwards movement
and negative speeds.

Further investigations remain to be carried out to determine the set of parameter
values for which the model have unstable solutions with realistic (i.e. collision-free)
stop-and-go phenomena and meanwhile a better quantitative agreement with the
experimental data e.g. in form of the fundamental diagram.
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Impact of Impulse Stops on Pedestrian
Flow

Jaeyoung Kwak, Hang-Hyun Jo, Tapio Luttinen
and Iisakki Kosonen

Abstract We numerically study the impact of impulse stops on pedestrian flow
for a straight corridor with multiple attractions. The impulse stop is simulated by
the switching behaviour model, a function of the social influence strength and the
number of attendees near the attraction. When the pedestrian influx is low, one can
observe a stable flow where attendees make a complete stop at an attraction and
then leave the attraction after a certain amount of time. When the pedestrian influx
is high, an unstable flow is observed due to strong social influence. In the unstable
flow, attendees near the attraction are crowded out from the clusters by others due to
the interpersonal repulsion. The expelled pedestrians impede the pedestrian traffic
between the left and right boundaries of the corridor. These collective patterns of
pedestrian flow are summarised in a schematic phase diagram.

1 Introduction

Walking is a fundamental activity of human life, not only for moving between places,
but also in interactions with surrounding environments. While walking to destina-
tions, pedestrians may be influenced by attractive stimuli, such as artworks and shop
displays. Some pedestrians may shift their attention to such attractions, opting to
stop walking and making an impulse stop to join an attraction [2].
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According to previous studies [3, 13], it has been reported that a growing number
of attendees around an attraction are likely to attract more passers-by to the attraction,
inferring that impulse stopping pedestrians can be affected by others’ choices. It has
been widely accepted that having more store visitors likely attracts more passer-by to
the store in that a growing number of visitors increases the possibility of passers-by
visiting the store. Therefore, marketing strategies have focused on increasing the
number of the impulse stopping visitors [1].

By means of numerical simulations, we have investigated the impact of impulse
stops on pedestrian flow for a straight corridor with multiple attractions. This study
employs the switching behaviour model, as shown in the next section. In Sect. 3,
we analyse the spatial distribution of the pedestrian flow, characterise the collective
patterns, and then summarise the results with a schematic phase diagram. Finally,
we discuss the findings of this study in the section following the results (Sect. 4).

2 Model

2.1 Switching Behaviour

Similar to the sigmoidal choice rule [3, 13], the probability of joining an attraction
Pa is a function of the number of pedestrians who have already joined Na and the
number of pedestrians not stopping by the attraction N0:

Pa = s(Na + Ka)

(N0 + K0) + s(Na + Ka)
. (1)

This suggests that larger Na likely yields higher joining probability. In order to
prevent indeterminate cases with Na = N0 = 0, two baseline values Ka and K0 are
introduced for Na and N0. Here, s > 0 is the strength of the social influence that can
be also understood as pedestrians’ awareness of the attraction. According to previous
studies [3, 8, 13], we assumed that the strength of social influence can be different
for different situations and can be controlled in the presented model. After joining
the attraction, the individual will then stay near the attraction for an exponentially
distributed time with an average of td , similar to previous works [3, 6, 10].

2.2 Pedestrian Movement

According to the social force model [6], the velocity vi (t) of pedestrian i at time t
is given by the following equation:
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dvi (t)
dt

= vdei − vi (t)
τ

+
∑
j �=i

f i j +
∑
B

f i B . (2)

Here, the first term on the right-hand side indicates the driving force describing
the tendency of pedestrian i moving towards his destination with the desired speed vd
and a unit vector ei pointing to the desired direction. The relaxation time τ controls
how fast pedestrian i adapts its velocity to the desired velocity. The repulsive force
terms f i j and f i B reflect his tendency to keep certain distance from other pedestrian
j and the boundary B, e.g., wall and obstacles. A more detailed description of the
pedestrian movement model can be found in previous works [6, 7, 9, 10].

2.3 Numerical Simulation Setup

Each pedestrian is modelled by a circle with radius ri = 0.25 m. Pedestrians move
in a corridor of length 55 m and width 6 m in the horizontal direction. They move
with desired speed vd = 1.2 m/s and with relaxation time τ = 0.5 s, and their speed
cannot exceed vmax = 2.0 m/s. The desired direction points from the left to the right
boundary of the corridor for one half of population and the opposite direction for the
other half. On the lower wall of the corridor, three attractions are placed for every
15 m. The number of pedestrians in the corridor is associated with the pedestrian
influx q, i.e., the arrival rate of pedestrians entering the corridor. The pedestrian
arrival rate is assumed to follow a shifted exponential distribution h = 1/q with a
minimum headway h0 = 0.5 s per unit width based on previous works [11, 12].

The joining probability (Eq. 1) is updated with the social force model (Eq. 2) for
each simulation time step of 0.05 s. The individual can decide whether he will join
the attraction when he enters the area of influence (see Fig. 1). The area of influence
is defined as a square area of 15 m by 6 m, and its horizontal centre coincides with
that of the attraction. Once the individual decides to join the attraction, he shifts his
desired direction vector ei towards the centre of the attraction. For simplicity, Ka

and K0 are set to be 1, meaning that both options are equally attractive when the
individual would see nobody within his perception range. An individual i is counted
as an attending pedestrian if his efficiency of motion Ei = (vi · ei )/vd is lower than
0.05 within a range of 4 m from the centre of the attraction after he decided to join

Fig. 1 A schematic
representation of the area
of influence
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there (red circles in the yellow shade area, Fig. 1). Here, the individual efficiency of
motion Ei indicates how much the driving force contributes to pedestrian i’s motion
with a range from 0 to 1 [4, 9]. The average of td is set to be 30 s.

3 Results and Discussion

For different levels of pedestrian influx q, different patterns of pedestrian movement
appear. When q is low, one can observe a stable flow where attendees form standstill-
like clusters near the attraction and such clusters do not impede pedestrian traffic near
the clusters (see Fig. 2a). For large values of q, an unstable flow can be observed if
the value of s is large. In the unstable flow, pedestrians form swirling clusters in
which pedestrians near the attractions are being pushed away from the clusters by
other pedestrians. Since increasing s makes more passers-by head for the attractions,
pedestrians tend to rush into the attraction and push others, as shown in Fig. 2b.

In order to analyse the spatial distribution of the pedestrian flow interacting with
attractions, this study evaluates local quantities, such as local density and local speed.
Following previous studies [5, 9, 14], the local density and local speed are associated
with a Gaussian distance-dependent weight function f (d):

f (d) = 1

πR2
exp

(
− d2

R2

)
(3)

with R = 0.7. The local density at a location z and time t is defined as

ρ(z, t) =
∑
i

f (diz), (4)

where diz is the distance between location z and pedestrian i’s position. Likewise,
the local speed is given as

Fig. 2 Snapshots of a stable (top) and an unstable (bottom) flow. Red circles indicate pedestrians
attracted by an attraction and blue circles pedestrians not attracted by the attraction. Snapshots of
stable flow with q = 0.05 and s = 0.2 (a). Snapshots of an unstable flow with q = 0.3 and s = 1.2
(b)
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V (z, t) =
∑

i ‖vi‖ f (diz)∑
i f (diz)

. (5)

For different patterns, Figs. 3 and 4 show the local speed maps V (z, t) and the
local density maps ρ(z, t) that have been averaged over the simulation period. In
the stable flow, pedestrians form tighter clusters around the attraction as s increases,
resulting in higher local density and lower local speed around the attractions (see
Fig. 3). In the unstable flow, one can observe higher local density as s increases,
similar to the observations from the stable flow. However, the local speed inside of

Fig. 3 Local speed b and local density a maps for stable flow with a low value of q = 0.05 Ped/m/s
and different values of s: s = 0.2, 0.6, and 1.2 (from top to bottom). In local speed maps, red and
blue colours indicate lower and higher speed, respectively. In local density maps, blue and red
colours indicate lower and higher density, respectively. The centre of each attraction is at x = 12.5,
27.5, and 42.5

Fig. 4 Local speed b and local densitybmaps for unstable flow with a high value ofq = 0.3 Ped/m/s
and different values of s: s = 0.2, 0.6, and 1.2 (from top to bottom)
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the clusters decreases and then increases as s increases, while the local speed near
the clusters begins to decrease when s is above a certain value (see Fig. 4).

In addition to the local quantities, one can better understand the spatial patterns of
the pedestrian flow by means of collective quantities, such as the collective efficiency
of motion E and the normalised kinetic energy K . As in previous studies [4, 9], E
and K are measured as:

E =
〈

1

N

N∑
i=1

vi · ei
vd

〉
=

〈
1

N

N∑
i=1

Ei

〉
(6)

and

K =
〈

1

N

N∑
i=1

‖vi‖2

v2
d

〉
. (7)

Here, 〈·〉 represents an average over the simulation period after reaching the sta-
tionary state. Similar to Ei in the previous section, the collective efficiency reflects
the contribution of the driving force in the collective pedestrian motion. The nor-
malised kinetic energy has the value of 0 if no pedestrians move, otherwise it has a
positive value.

Figure 5 shows how the collective efficiency E(s, q) and the kinetic energy
K (s, q) depend on the social influence strength s and the pedestrian influx q. For
each value of q, E decreases as s increases, indicating that more pedestrians are
distracted from their initial destination due to the higher social influence (Fig. 5a).
Depending on q, K reveals two distinct behaviours. First, for low values of q, the
decreasing behaviour of K appears to be similar to that of E . This corresponds to

s
0 0.5 1 1.5

E

0

0.2

0.4

0.6

0.8

1

q = 0.05
 q = 0.15
q = 0.2
 q = 0.25
 q = 0.3

s
0 0.5 1 1.5

K

0

0.2

0.4

0.6

0.8

1(a) (b)

Fig. 5 Numerical results. Different symbols represent different levels of q. One can observe that
E(s) decreases as s increases for each given q. The behaviour of K (s) is similar when the value
of q is low. However, K (s) decreases and then increases against s when q is large. The collective
efficiency of motion E(s, q) (a). The normalised kinetic energy K (s, q) (b)
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Fig. 6 A schematic
representation of phase
diagram. The dashed line
indicates ∂K/∂s = 0, the
boundary between stable and
unstable flow

Unstable

Stable

s

q

the stable flow that can be characterised by

∂E

∂s
< 0 and

∂K

∂s
< 0. (8)

Secondly, for large values of q, K decreases and then increases as s grows, indi-
cating the unstable flow. This case can be characterised by

∂E

∂s
< 0 and

∂K

∂s
> 0. (9)

This reflects that higher s does not only yield more attendees around attractions,
but also stronger repulsion among attendees. In this case, attendees near the attraction
cannot reach a standstill and they are crowded out from the cluster by other attendees
because of interpersonal repulsion. Consequently, expelled attendees from the cluster
impede pedestrian flow between the left and right boundaries of the corridor, and
thus this parameter region can be called the unstable flow. Those different patterns
of pedestrian flow can be summarised in a schematic phase diagram, as shown in
Fig. 6.

4 Conclusion

This study has numerically investigated the impact of impulse stops on pedestrian
flow by employing the switching behaviour model. For low pedestrian influx, one
can observe a stable flow in which attendees form standstill-like clusters. When the
pedestrian influx and the social influence strength are high, on the other hand, one can
see an unstable flow showing crowded out attendees from the clusters. Consequently,
the expelled attendees impede the pedestrian flow near the clusters. We have also
provided a schematic representation of phase diagram as a summary of the study
results.
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We believe that our study results can provide an insight into better management
of pedestrian facilities where impulse stops may be expected to occur. For instance,
during shopping holidays such as Black Friday in the United States and Singles day in
China, the influx of people with extreme desire for merchandise may lead pedestrian
incidents. The existence of the unstable flow suggests that controlling the pedestrian
influx for expected level of social influence is necessary for safe and efficient use of
pedestrian facilities.

The presented model can be further investigated for various scenarios. For
instance, one can explicitly consider the capacity of the attractions, meaning that
only a certain number of attendees can stay near the attractions. In addition, the
length of stay td can be associated with the number of attendees near the attractions.
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Investigation on Cooperative Avoiding
Behaviour in Bi-directional Flow

Daichi Yanagisawa

Abstract We have introduced an evolutionary game dynamics to a one-dimensional
cellular automaton to investigate evolution and maintenance of cooperative avoiding
behaviour in bidirectional flow of self-driven particles. In our model, there are two
kinds of particles, which are right-going particles and left-going particles. Since
the model is one dimension, they often face opponent particles. In order to avoid
conflicts, the particles try to avoid their opponents by swerving to the right or left
stochastically. The particles have a memory and reinforce their preference after their
successful avoidance. Result of our simulation indicates that cooperative avoiding
behaviour is achieved, i.e., swerving directions of the particles are unified, when the
density of particles is close to 1/2 and the memory-loss rate is small. Application
of our research will be useful to study evolution and maintenance of cooperative
avoiding behaviour in pedestrian dynamics.

1 Introduction

Pedestrian dynamics has been vigorously studied both theoretically and experimen-
tally in these two decades [4, 7, 9, 10]. Especially, bidirectional flow, which is one
of the most popular themes in pedestrian dynamics, has been investigated by many
researchers. Both continuous [5] and discrete space models [1, 2] have been devel-
oped, and experiments with real pedestrians have been also conducted [6, 11].

Bidirectional flow attracts many researchers since we observe lane formation.
When there are right-going pedestrians and left-going pedestrians in a street, they
try to follow the predecessors in the same walking direction, so that the lanes are
formed as in Fig. 1. It is a self-organised as well as spontaneous symmetry break-
ing phenomenon. Pedestrians form lanes in order to avoid conflicts with opponent
pedestrians. Besides, although the inflow from the right and left ends are same, the
number of right and left-going lanes are not always equal.

D. Yanagisawa (B)
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Fig. 1 Schematic view of the lane formation in bidirectional flow of pedestrians. Pedestrians
depicted by black and white particles move to the right and left, respectively

(a) (b)

Fig. 2 Schematic view of swerving pedestrians: both pedestrians swerving to their right (a) and to
their left (b) direction

In this paper, we consider swerving direction when pedestrians avoid their
opponents (Fig. 2). Unification of the swerving directions of pedestrians, which
smooths bidirectional flow, is a self-organised as well as spontaneous symmetry
breaking phenomenon as lane formation. Pedestrians try to unify their swerving
directions in order to avoid conflicts. Moreover, there are only right swerving pedes-
trians or left swerving pedestrians in the completely unified state. However, themech-
anism of the lane formation and unification of the swerving directions are different.
It is considered that the lane formation is achieved by the following behaviour of
pedestrians. On the other hand, preferred swerving direction seems to be determined
by the custom that pedestrians experience in their society.

Therefore, we develop a new model by combining one-dimensional cellular
automaton and evolutionary game dynamics. Particles, which represent pedestri-
ans, in the model have memories of their preferred swerving directions. They are
updated by interaction with other pedestrians and memory-loss effect.

The remainder of the paper is organised as follows. In the next section, our model
is introduced in detail, and the results of simulation are shown in Sect. 3. The final
section is devoted to summary and conclusion.

2 Model

A schematic view of our model is depicted in Fig. 3. We consider one-dimensional
discrete space with periodic boundary condition. The length of the space, i.e., the
number of cell in the system, is L . Time is also discrete in the model, and the parallel-
update rule is adopted.
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(a) (b) (c) (d) (e)

Fig. 3 Schematic view of themodel. The black particle cannotmove since its target cell is occupied
by the other particle moving in the same direction (a). The black particle moves to the vacant right
cell (b). The white particle moves to the vacant left cell (c). Interaction between the black and white
particles occur (d and e)

There are two kinds of particles, which are right-going (black) and left-going
(white) particles. The number of the right-going and left-going particles are NR and
NL , respectively. Similarly, the density of the right-going and left-going particles
are ρR = NR/L and ρL = NL/L , respectively. The total number of the particles is
N = NR + NL .

Every discrete time step, the right-going (left-going) particles move to the right
(left) for one cell if their target cell is vacant (Fig. 3 case b, c). They cannot move
if their target cell is occupied by the particles moving in the same direction (Fig. 3
case a).

When the right-going and left-going particles are moving to the same cell as
in Fig. 3 case d, they try to avoid each other by swerving to the right or left with
the probabilities pi or 1 − pi , respectively (Fig. 4), where pi is the right swerving
probability of the particle i ∈ [1, N ]. If the swerving directions of the two particles

(a)

(b)
(c)

(d)

Fig. 4 Schematic view of avoidance and conflict when the two particles move to the same cell.
Avoidance achieved by right swerving (a) and by left swerving (b). Conflict (c and d)
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(a)

(b)
(c)

(d)

Fig. 5 Schematic view of avoidance and conflict when the two particles try to exchange their cell.
Avoidance achieved by right swerving (a) and by left swerving (b). Conflict (c and d)

agree with the probability pi p j + (1 − pi )(1 − p j ) (i, j ∈ [1, N ], i �= j), they
avoid a conflict and stay at the same cell (Fig. 4 case a, b). In contrast, when the
swerving directions disagree with the probability pi (1− p j )+ p j (1− pi ), a conflict
occurs and they remain at their cell (Fig. 4 case c, d). Similar rule is adopted when
the right-going and left-going particles try to exchange their positions (Fig. 3 case e,
Fig. 5).

Now,we introduce an evolutionary game dynamics to themodel. Each particle has
preference of right swerving and left swerving,which are described by PR

i ∈ R≥0 and
PL
i ∈ R≥0, respectively. The right swerving probability, which is introduced in the

previous paragraph is represented by the Logit model [3] using theses preferences.

pi (t) = exp
(
PR
i (t)

)

exp
(
PR
i (t)

) + exp
(
PL
i (t)

) . (1)

The preferences are updated every time steps by the following equation

PX
i (t + 1) = (1 − φ)PX

i (t) + SX
i (t), (2)

where X ∈ R, L , φ ∈ (0, 1] is the memory-loss rate, and SX
i (t) is the payoff for

the particle i at the time step t . The payoff SR = 1 when the particles succeed in
avoiding conflict by swerving to the right (Case a in Figs. 4 and 5). Similarly, SL = 1
when the particles succeed in avoiding conflict by swerving to the left (Case b in
Figs. 4 and 5). In the other cases, SR = SL = 0.

Therefore, if the particles often interact with the opponent particles and succeed
in avoiding, their preference increase. By contrast, if they fail to avoid the oppo-
nent particles their preference does not increase. Furthermore, when there are few
interactions, the preference decreases due to the memory-loss rate φ.
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3 Simulation

Here,we consider the casewhere the samenumber of the right and left-going particles
are moving in the system, i.e., ρR = ρL(≡ ρ). We control the density of the particles
ρ and the memory-loss rate φ, and investigate the two quantities.

The first one is the unified ratio defined as follows:

U =
∣∣∣∣∣
∑N

i=1 2(pi − 1/2)

N

∣∣∣∣∣ ∈ [0, 1]. (3)

U ∼= 1 implies that the unified phase is achieved, i.e., all the particles swerve to the
same direction when they face their opponent particles. On the other hand, U ∼= 0
indicates that the disordered phase is attained, i.e., all the particles do not have their
preferred swerving direction, in other words, they swerve to the right and left with
the equal probability 1/2.

The other one is the flow of right-going particles QR ∈ [0, 1]. Note that the QR

may be positive even if all the left-going particles cannot move.
We set the length of the system as L = 50 and perform simulation for 22000 time

steps. For calculating the unified ratio and the flow, the results from t = 2001 to
22000 are used.

Figure6 shows the unified ratioU as a function of the density ρ and memory-loss
rate φ. We see two phases, which are the disordered and unified phases, and phase
transition between them. When φ is large, quick memory-loss prevents the particles
from keeping their preferences large, so that the disordered phase is achieved. Even
if the memory-loss rate is small, the disordered phase is observed in the low and high
density region. This is because there are few interactions between particles, which
are opportunities to increase the preferences, in the low and high density cases. In
the low density case, there are few particles to interact. In the high density case, it is
difficult tomove and interact since the cells are occupied by the other particlesmoving
in the same direction. If the memory-loss rate is small and the density is medium,

Fig. 6 Unified ratio U as a
function of the density
ρ(= ρR = ρL ) and
memory-loss rate φ. We see
two clear phases, which are
the disordered phase (black
top part) and the unified
phase (light-grey
bottom-middle part)
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Fig. 7 Flow-density
diagram of the right-going
particles. We see that the
flow of the simulation
(φ = 0.03) agrees well with
that of the TASEP (p = 1.0)
in the most part of the figure
(ρ ≤ 0.8). By contrast, the
flow of the simulation
(φ = 0.30) agrees well with
that of the TASEP (p = 0.5)
in the high density region
(ρ ≥ 0.5)

the unified phase is achieved. Many interactions between the particles reinforce the
preference of them.

Figure7 shows the flow of right-going particles QR as a function of the density
ρ for the memory-loss rate φ = 0.03 and 0.30. We see from Fig. 6 that the unified
phase is achieved in the most density region in the case φ = 0.03, whereas, the
disordered phase is attained in all the density region when φ = 0.30. The flows in
the unified phase (φ = 0.03, ρ ≤ 0.8) are close to the higher curve and those in the
disordered phase (φ = 0.03, ρ ≥ 0.86 and φ = 0.30) are close to the lower curve.
The curves represent the flow of the totally asymmetric simple exclusion process
(TASEP) with the parallel-update rule [8]

QR = 1 − √
1 − 4qρ(1 − ρ)

2
, (4)

where q is the hopping probability of the particles. The higher and lower curves
are the flow of the TASEP in the case q = 1 and q = 0.5, respectively. Thus,
the probability of successful avoidance in the unified phase and disordered phase
(ρ ≥ 1/2) in our model corresponds to the hopping probability in the TASEP. In the
disordered phase (ρ ≤ 1/2) both the movement with the probability 1 (to the vacant
cell) and 1/2 (interaction with the opponent particles) are included, so that the flow
is not simply represented by the TASEP.

4 Summary and Conclusion

In this paper, we have developed the one-dimensional cellular automaton model with
two kinds of particles, which are right and left-going ones. They try to avoid each
other by swerving to the right or left stochastically. Evolutionary game dynamics
is introduced in the model, so that the particles update their preference of swerving
direction by interacting other particles. The effect of memory-loss is also considered.
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The result of our simulation indicates that the swerving directions of the particles
are unified (the unified phase is achieved) when the effect of memory-loss is weak
and there are enough interaction between particles to increase the preference of
swerving direction. If the condition in the previous sentence is not satisfied, the
serving directions are not unified (the disordered phase is achieved), in other words,
all the particles swerve to both right and left with the equal probability 1/2. It is
also elucidated that the flow is well approximated by the totally asymmetric simple
exclusion process (TASEP)with periodic boundary condition and the parallel-update
rule. The flows in the unified phase and disordered phase in the high density region
correspond those in the TASEP with the hopping probability equals to 1 and 1/2,
respectively.

In this paper, we have focused on the case, where the number of right and left-
going particles are same. Thus, the other cases should be also investigated in the
near future. Moreover, further theoretical analyses are needed to be performed by
applying the theories of the TASEP. Elucidation of the model helps us to understand
when the cooperating avoiding behaviour is maintained in bidirectional flow.
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A Queuing Model Based on Social Attitudes

Gerta Köster and Benedikt Zönnchen

Abstract Modern pedestrian simulation models have to deal with queuing to obtain
realistic results. Queues control the number of pedestrians entering or leaving an
area and, through this, the number of pedestrians inside that area. Furthermore, they
impede passing pedestrians. But how do humans decide on a queuing strategy? And
how does this effect the form of the emerging queue? Based on dynamic floor fields
for navigation and a simple heuristic decision mechanism we present a computer
model that is able to capture different queuing patterns that we observe in every day
life. For this, we assume that there are two basic attitudes, aggressive competition
and cooperative getting in line. Pedestrians can switch between these strategies.

1 Introduction

Most people encounter queues as part of their everyday lives, including queuing in
front of a public bathroom, a check-in booth at the airport, an escalator or the entrance
of a concert. In many situations queues determine the exchange rate of pedestrians
between two separated areas and thus the number of pedestrians at a location. For
passing pedestrians physical queues are obstacles.

Queues form and dissolve formany reasons. Pedestrians in queues follow a variety
of rules and norms that may be situation specific. Queues can be self-organised or
controlled by queue managers. There can be physical constraints that structure the
queue or an abstract mechanism, such as allocating numbers. Traditionally, queuing
systems describe serving processes and can be used to model queuing in a strict line
without queue-jumps. See [1, 2, 7, 19] for examples from the extensive literature.

This contribution focuses on self-organised physically loose queues. The goal is
to extend an idea presented in [11] where loose queuing is induced by making the
queue itself attractive to the pedestrians navigating along a floor field. In [11] every
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pedestrian is cooperative. There is no jostling or queue-jumping. We now model the
opposite strategy, aggressive competition for the position closest to the service point,
by using a ‘classic’ floor field where the distance to the target determines the utility
of a position. In fact, this is the agent behaviour in many simulation models that
do not explicitly model the queuing process. See e.g. [4, 9, 10, 13, 15, 16] for the
mushroom shaped crowd that then forms in front of a bottleneck. This shape can also
be observed in reality, e.g. sometimes in front of ticket booths in India.

Next, we introduce queue-jumping and line cutting in a formerly cooperative
queue by allowing pedestrians to switch between strategies with a certain probability.
At this point we focus on the mechanism of the model and the analysis of emerging
formations, keeping the switching process simple. Yet, a queue is a complete social
system [14] where behaviour is governed by potentially very complex social rules
and norms. Therefore we demonstrate how our simplistic process can be replaced
by decision heuristics, in the spirit of [6], when more information about the waiting
crowd is available.

The paper is structured as follows. First we describe how dynamic floor fields are
used to model the basic strategies. This includes a novel method to detect the tail of
the queue. Then, we explain the process of switching strategies. Depending on the
parameter choice in the switching process different queue types emerge. Finally, we
discuss the impact, limitations and next steps.

2 Results

Our goal is to find a simple and plausible mechanism to generate a variety of different
queue formations as we experience them in daily life. We assume that there are two
basic queuing strategies: cooperative getting in line and aggressive competition. We
observe the types of queues that emergewhenwe allowpedestrians to switch between
strategies.

2.1 The Model

In many pedestrian motion models agent navigate along floor fields that indicate the
utility of a position ‘on the floor’. For the two basic queuing strategies we extend
ideas from [11] where we used dynamic floor fields to induce loose queuing. As
many others [8, 12, 16] we store the arrival time T (x) of an imaginary wave front
in the floor field. This wave front propagates in the area of observation Ω starting
from the target area Γ ⊂ Ω . The travelling speed F of the wave may depend on
travel conditions in the area such as obstacles, where the speed is zero, or surface
conditions or, in our case, crowd agglomerations. The shorter the arrival time the
higher the utility (set to the negative arrival time). In this contribution we use the
Optimal Steps Model [16, 18] to locally maximise utility when stepping to the next
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position. Thus, agents are guided along a path of high utility to the target. The queuing
mechanisms should work for any other locomotion model with fine spatial resolution
that uses floor fields for navigation, such as the Gradient Navigation Model [5], or
varieties of the Social Force Model e.g. [3].

The arrival time T of the wave front is computed by solving the eikonal equation
with Sethian’s Fast Marching algorithm [17].

||∇T (x)|| = 1

F(x)
, T (x) = 0 if x ∈ Γ. (1)

F(x) stands for the travelling speed of the propagating front at x. F(x) ≥ 0 ∀x ∈
Ω . Manipulating F is the key to both, avoiding and forming queues in [11]. F
depends on the crowd density defined in [16]. Our idea is to use different travelling
speed functions, and thus different floor fields (Fig. 1), to represent different queuing
behaviours. Switching queuing strategy then simply means switching the floor field
along which the agent navigates. The basic strategies are:

• Cooperative getting in line.We use a dynamic floor field where the travelling speed
F of the imaginary wave front in Eq.1 takes the changing queue into account. This
corresponds to two sub-behaviours:

1. Start queuing at the tail of the queue: getting in line.
2. Keep queuing until the target is reached: cooperative queuing.

• Aggressive competition.We use a static floor field where the imaginary wave front
propagates from the static target and does not consider pedestrian formations in
the way. This corresponds to one sub-behaviour:

3. Go to the target as fast as possible: competitive queuing.

Fig. 1 Comparisons of the floor fields T induced by different wave speeds F . Agents navigate
based on the displayed floor field. In dark areas, T is smaller than in light areas, that is, the utility
is higher. Black/grey agents try to reach the yellow target at the right. Grey agents try to reach the
queue tail. In the queue, all agents are cooperative forming a line without queue-jumpers. Floor
field T for F:= F1

coop seen by agents that need to get in line (a); floor field T for F:= F2
coop seen by

agents that queue cooperatively (b); floor field T for F:= F3
coop seen by agents who try to cut the

line (c); line formed by cooperative agents, joining the tail of the queue or queuing (d)
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To construct the navigation field for all cooperative agents that have not yet joined
the queue (behaviour 1) we solve Eq.1 with the queue tail as target and the travelling
speed function F :

F1
coop(x) = 1

1 + cob · ρob(x)
(2)

As in [11] the ‘obstacle density’ ρob makes sure that the utility decreases close to
an obstacle—and the agents keep a certain distance; cob is a calibration parameter.
Table1 gives a list of the parameter values used in this contribution. Since the target
position, the tail of the queue, changes we have to solve the eikonal equation with
speed function F1

coop for each time step. To detect the queue tail, we again solve the
eikonal equation Eq.1. This time we let the imaginary wave front propagate only
through the space occupied by the queue. With this, we cannot only detect the tail
of a winding queue, but we can also compare the travelling time of the propagating
wave T at positions inside the queue. This yields a measure for the relative queue
positions of agents that will be needed for decision strategies that take the position
in the queue into account.

Once the agent has joined the queue, the travelling speed function for queuing
F2
coop is the same as in [11]with one little extension:we need to exclude the pedestrian

density of aggressive pedestrians. Otherwise cooperative pedestrians would tend to
follow aggressive pedestrians if they are near by.

F2
coop(x) = 1

1 − min
(
cqueue · ρb

ped(x), 1 − ε
)

+ cob · ρob(x)
, (3)

with 0 ≤ (ρb
ped + ρa

ped) ≤ 1 and (1 − ε) > 0; ρb
ped(x) is the normalised pedestrian

density from [16], but restricted to cooperative pedestrians; cqueue is a calibration
parameter; 1 − ε levels out high densities in the middle of a crowd. See Table1 for
the parameter values. To model aggressive behaviour we let the agents be guided by
a floor field computed with F3

aggr := F1
coop from Eq.2. But this time the propagating

wave starts at the final target Γ . Utility is independent of the presence of others. If
an competitive agent is still at a distance from the queue it will try to get as close
as possible to the target. This may place it behind other agents but not at the end of
a queue. Collisions are avoided by utility reducing short range potentials carried by
each agent. As soon as an unoccupied position closer to the target opens, the agent
will use it. That means some agents will step out of the queue, use a path parallel

Table 1 List of simulation parameters

Parameter Usage Value

cob Controls distance to obstacles 3.5

cqueue Controls the queue width 6.0

μa Expected time in seconds a pedestrian will use the aggressive strategy (a) Varies

μb Expected time in seconds a pedestrian will use the cooperative strategy (b) Varies
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to the queue until they bump into others, reach the final goal, or, after a change of
strategy, rejoin the queue. When an competitive agent changes strategy it rejoins the
queue at the point in the queue it is closest to.

Next, we need to model how pedestrians decide which strategy to follow. We
set the default strategy to cooperative getting in line. Then, directly after creation,
agents adopt the strategy of the majority of all already existing agents, thus using
the ‘imitate the majority heuristic’ from [6]. We then allow strategy changes. At this
point, we want to keep the process of decision making rather simple and assume
that it is similar to a birth process with a memoryless exponential distribution. We
consider fixed sampling times ti and Δti = ti − ti−1 and propose

P (ped changes strategy in Δti ) =
⎧⎨
⎩
1 − exp

(
−Δti

μa

)
if ped is competitive

1 − exp
(
−Δti

μb

)
if ped is cooperative,

(4)

as probability for a strategy change inΔti . Since the actual strategy change could be at
anymoment inΔti we approximate it by ti . Parametersμa orμb can be interpreted as
the expected times pedestrians use competitive strategy (a) and cooperative strategy
(b), respectively. If μb is large, infinite in the extreme case, a strategy change from
cooperative to competitive is unlikely. With small μb, on the other hand, a strategy
change to queue-jumping is likely: Pedestrians are impatient. A large μa also indi-
cates impatience keeping competitive agents in queue-jumper mode. If μa → ∞,
all competitive pedestrians will cut the line. Let us consider the two extreme cases:

1. μa → ∞ and μb → 0: A tendency to stick to competitive behaviour, and no
patience, leads to a fully competitive line cut scenario with its typical jam in front
of the bottleneck. See Fig. 2d.

2. μb → ∞ and μa → 0: With large μb for patience, and small μa for a quick
return to cooperative behaviour, a fully cooperative line forms. See Fig. 2a.

(a) (b)

(c) (d)

Fig. 2 Snapshots of different line cutting simulations (μa → ∞). The final goal is the rectangle at
the right. Light grey pedestrians use aggressive strategy (a), black pedestrians cooperative strategy
(b). The shape in front of the bottleneck depends on μb. μa → ∞, μb → ∞. Fully cooperative
queue since agents start out cooperative (a); μa → ∞, μb = 300 (b); μa → ∞, μb = 100 (c);
μa → ∞, μb = 40 almost collpased queue (d)
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(a) (b)

(c) (d)

Fig. 3 Snapshots of different queue-jumping simulations. The final goal is the rectangle at the right.
Light grey pedestrians use strategy (a), black pedestrians strategy (b). The shape of the whole queue
depends on μa and μb. μa = 20, μb = 300 (a); μa = 2, μb = 100 (b); μa = 20, μb = 80 (c);
μa = 5, μb = 20 (d)

Between those extremes, many variations are possible. The case μa → 0, μb → 0,
for example, makes competitive agents quickly revert to queuing, while small μb

makes agents in the queue impatient. Then we get a queue but with very frequent
queue-jumping (Fig. 3c).

So far, the decision process can be said to depend on ‘attitudes’ such as patience
(large μb) or aggressiveness (large μa) of the agents. This does not reflect character
types or social or psychological states, since the values, μa, μb, are not attached to
the agents, but to the current strategy of the agent. This can and should be changed
with better knowledge of the crowd. Also, simple observations, that would naturally
be part of a heuristic decision process, such as the position in the queue, or the elapsed
waiting time, do not play a role.

We pick one example, the relative position in the queue, to show how this can
be adapted. We propose that a presently cooperative pedestrian is less likely to start
queue-jumping when he or she is close to the target. One might argue that he or
she would risk the close position to the target by temporarily leaving the queue.
Clearly further investigations are required to find heuristics that are substantiated by
psychology.Here,we focus on themechanismand replaceμb byμb·Tmax

queue/Tqueue(x),
where Tqueue(x) is the travelling time of the propagating wave at x used to detect the
tail of the queue and Tmax

queue = maxx∈ queue area(T (x)). We set Tqueue(x) = Tmax
queue if x

is outside the queue area. Since Tmax
queue/Tqueue(x) ≥ 1 ∀x we increase the expected

time the pedestrian at position x sticks to the cooperative strategy.

2.2 Simulation Experiments

We show simulation results for varying parameters μa and μb. For simplicity, we
select a single queue scenario. We let agents enter the room from three directions
(left, top, bottom) to demonstrate how and where they join the queue (behaviour (1)).
The all try to reach the service point (right). The service time of each pedestrian at
the service point is 6 s and decision changes are allowed every 0.4 s.
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First, we consider line cutting, that is, agents never change their strategy from
being competitive (a) to being cooperative (b). With μa → ∞, once an agent is
aggressive it sticks to this strategy until it reaches the final goal. For μb = 300 the
queue is a little shorter than the fully cooperative queue with μb → ∞. For μb = 40
the queue almost collapses. See Fig. 2.

Second, we look at queue-jumping where pedestrians may switch from the com-
petitive (a) to the cooperative (b) strategy before they reach the final goal. As a result,
swelling of the queuemay occur not only at the tail, but also at intermediate positions.
Figure3a, b look very similar, but in Fig. 3b the frequency of queue-jumps is higher
resulting in the swelling at the middle of the queue. Since μb is smaller in Fig. 3c
compared to Fig. 3a, the agents are less likely to stay cooperative and therefore more
pedestrians stand near the goal. In Fig. 3c the queue is thick and short approaching the
shape of a congestion as in Fig. 2. Table1 lists the parameters used in the simulations
for this contribution.

3 Discussion

In this paper we used floor fields to induce a variety of natural looking queues
in a pedestrian motion model. We assumed two underlying attitudes and ensuing
strategies, cooperative and competitive, that were each associated with a guiding
floor field. Cooperative agents were attracted by first the tail of the queue, for which
we presented a detection algorithm, then by the density of the queue itself, while
competitive agents were attracted by the service point only. We allowed switches
between the two attitudes to model queue-jumping and line cutting. The mechanism
produces realistic looking queue formations and thus is a step forward from classic
models in queuing theory that model the serving process, but neither the queue shape
nor queue-jumping. However, while the two parameters in the decision process can
be interpreted as patience or impatience, the process itself does not reflect natural
heuristics. Nor does it consider behavioural norms that may arise from the condition
of the crowd. The crowdmay, for instance, be onewith a high level of a shared identity
which results in cooperative behaviour. Clearly rules that are based on findings from
psychology must be identified. We believe that many such rules can be implemented
by slightly adapting the decision process described in this contribution.
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How Do People Queue? A Study of Different
Queuing Models

Angelika Kneidl

Abstract Whenever there are crowded spaces, queuing occurs. Many different sit-
uations force people to queue: Waiting for a service counter, lining up for a train or
bus, queuing in front of bottlenecks or simply waiting at a supermarket checkout.
Such queuing evolves in many different ways, depending on the situation, the reason
for queuing, the culture, the geometry and many more. Simulation models have to
cope with such different situations and behaviours. This paper gives an overview
on different queuing situations and corresponding models that exist for pedestrian
modelling. Additionally, it introduces a new queuing model for organised queuing
without demarcation tapes. First visual validations are shown.

1 Introduction

Since queuing occurs whenever we handle with large crowds, it is an essential build-
ing block whenmodelling and simulating pedestrians. However, there is not only one
single type of queuing: Depending on the situation, the reason for queuing as well as
the pedestrians’ culture, queues can form very differently. Okazaki [7] has defined
three different types of queuing: queuing in front of counters (type 1), queuing in
front of gates (type 2) and queuing in front of doors of vehicles (type 3).

When considering the first type of queues (type 1), we can further distinguish
between queues when flexible demarcation tapes or barriers dictate the formation of
a queue and queues which form without demarcation utilities. A lot of research has
been done for the type of queue with demarcation utilities, inspired from classical
queuing theory [1, 7]. Here, the objective is to predict queue lengths and waiting
times to make decisions about service provisions. Thus, a one-dimensional approach
is sufficient, since the formation of the queue is given by the demarcation. The focus
lies on waiting times and queue lengths.

The second type (type 2) of queue was examined byKöster and Zönnchen [6]. The
authors state that people do not queue naturally in “mush-room”-shaped formations
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in front of bottlenecks. However, that is what most simulation models produce. In
fact, the authors posit that pedestrian queue loosely in front of bottlenecks.

For the third type of queuing there has no explicit research been done, but there is
a case study described by Davidich et al. [2] where German train stations have been
observed.

In this contribution the different queuing models are described and a new model
for self-organised queuing (type 1 without demarcation utilities) is introduced.

The outline of this papers is as follows: starting with a review of existing models,
two queuing type models are described in more detail, followed by examples and
first validations. The outlook of further studies concludes the paper.

2 Queuing Models at a Glance

Before taking a closer look on different queuing models, a definition of a queuing
event is given.

Definition 1 We define queuing as a situation, when

1. More people are present than the capacity of a certain facility allows (e.g. service
desks, bottlenecks)

2. A more or less ordered formation is observable, thus people do not push each
other.

This definition excludes uncontrolled clogging situations in front of bottlenecks,
which may occur in emergency situations.

In Table1 we summarised and extended the typification of different queuingmod-
els suggested by Okazaki [7].

In the following sections these four types are described in more detail.

Table 1 Overview on queuing types

Queue type Appearance Characteristics Simulation model

Organised queuing
(demarcation tapes)

In front of service points
(e.g. at airports)

Queue formation and
length is given by
demarcation tapes

One-dimensional
approach

Queues in front of
trains

At train boarding Bulk of people next
to opening doors

Definition of waiting
zones

Queuing in front of
bottlenecks

In front of bottlenecks Loosely queue
formation

Navigational fields
with adjusted
velocities

Organised queuing
(no demarcation
tapes)

In front of service points
(e.g. at beer bar)

Queue width, length
and form grows
individually

Agent-based with
knowledge about
other queuing people
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3 Organised Queuing with Demarcation Tapes

In front of service desks of infrastructural buildings such as train stations or airports,
very often demarcation tapes are used to predefine the queue formation. Such queues
are quite simple to model from a simulation point of view, since the location of the
queue is given. The questions to be answered with such queues are waiting times
and queue length to optimally provide services without long waiting times. The
approaches which solve such questions have their origin in queuing theory [1, 7] and
apply these theories to humans.

4 Queues in Front of Trains

When waiting for a bus or a train, people tend to queue in order to get on the
bus or train. Depending on the culture and the country, such queues can form very
differently. In front of trains people tend to wait left and right to the openings in
order to let people get off the train. Such queues are more like an un-ordered but
organised bunch of people. Such situations can be modelled by using waiting zones
where people wait until passengers get off the train. Work has been done on that by
Davidich et al. [2].

5 Queuing in Front of Bottlenecks

When people try to get through a narrow passage with less capacity, a loosely formed
queue occurs. Such queues can differ a lot in their appearance: Depending on the
relation of the direction pedestrians coming from and the direction of the bottleneck,
such queues can form as well mushroom-shaped as tail-shaped. Such queues are
characterised by their loosely queue formation and no clear order.

An example for such queues is depicted in Fig. 1. Here, people queue in front of
an escalator. People tend to wait behind each other and do not overtake.

Simulation models can cope with such queues by using navigation fields. Nav-
igation fields are calculated as a sum of different influencing utility functions for
pedestrians on their way to their destination [6]. Such utility functions include the
shortest path to the destination, the avoidance of obstacles on that path and the
avoidance of other pedestrians. The latter utility function can be adapted in order to
generate loosely formed queues.

Equation1 describes the Eikonal equation, which solves the wave propagation.
To construct the navigation field, we can use this wave propagation by starting from
the destination and propagating to the position where a pedestrian is located [3]. The
solution to this equation is the time the wave arrives at a certain location. Thus, the
sooner the wave reaches a position, the more attractive the path is. The pedestrian
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Fig. 1 A queuing example in front of an escalator: People approach the escalator from the front,
thus a tail formation of the queue is observable

tends to always choose the positionwhere the remaining travel time to the destination
is lowest. Using the Fast Marching Method [10], this equation can be solved very
efficiently.

The velocity of the propagation wave is constant in normal cases, but if we change
the velocity F(x), we can change the wave propagation speed and formation [3]. By
defining F(x) as in Eq.2 stated, the speed is dependent the pedestrians’ density
D(x) at a position x and a factor c [4]. This c can now be varied in order to create
different shapes of queues. In [6] a study can be found on different values of c and
the corresponding formation of the queue.

F(x)|∇T (x)| = 1 in �,

T (x) = 0 in �.
(1)

F(x) = 1

c · D(x)
(2)

In order to reproduce the queue in front of the escalator as depicted in Fig. 1, c
was set to 1. The simulation results are shown in Fig. 2.

As can be seen when comparing the simulation result with the real-world data,
the queue forms quite similar to the queue observed in front of the escalator. The
proposed model seems to model this type of queues quite well and is flexible enough
to cope with different tail-shaped queues.
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Fig. 2 A queuing example in front of an escalator: People approach the escalator from the front,
thus a tail formation of the queue forms

6 Organised Queues Without Demarcation Tapes

For the last type of queues no queuing model could be found in literature. A very
distinctive shape of such queues is depicted in Fig. 3.1

To cope with such queues, a new model is introduced: the model is integrated
into an agent-based model. The optimal steps model [8] forms the locomotion layer
of the model. The tactical layer is based on navigation graphs [5]. With this graphs,
action plans and intermediate destinations can be defined. Such destinations are e.g.
service points. Each agent moves according to utility functions: He wants to get fast
towards his next destination whilst avoiding other moving agents and obstacles on
the way to the next destination.

Based on this model, the agents try to queue behind each other by choosing a spot
behind the last agent of the queue with a certain derivation angle.

The idea is as follows: The first agent approaching a service desk stops at a defined
stopping line in front of the service desk (Fig. 4). If a second agent approaches the
service desk as well, the agent ‘sees’ the first agent as soon as the first agent is within
his perception radius. Once having spotted the last agent, the new approaching agent
searches a waiting spot behind the agent. To avoid an artificial straight line of the
queue, the agent searches a stopping spot within a certain derivation angle. This is
done by defining a line which is of a certain distance to the waiting agent (Fig. 5).

1https://commons.wikimedia.org/wiki/File:Warteschlange_vor_dem_Eiffelturm.jpg.

https://commons.wikimedia.org/wiki/File:Warteschlange_vor_dem_Eiffelturm.jpg
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Fig. 3 Queuing example for
the Eiffel Tower in Paris. The
queue forms individually and
makes ‘random’ turns

Fig. 4 The model setup

The distance of the line to the waiting agent is considered as the comfort distance
and can be set dynamically. Between all possible valid spots on that line the spot
is chosen randomly. For the next approaching agent, the same procedure is applied.
By choosing the next position randomly from within a set of points, the queue starts
evolving and turning.

The idea behind the derivation angle is the observation of the tendency of agents
to queue slightly next to the already waiting agents in order to see where the head of
the queue is located.

Results of such queues are depicted in Fig. 6. One can observe that the queue starts
turning—the larger the derivation angle is chosen, the more turns the queue gets.

Since people often are not on their own butmovewithin groups, we consider group
queuing as well. The group model is based on [9]. To extend the queuing behaviour
for groups, we extended the model as follows: If a group approaches a service desks,
group members search waiting spots next to each other; Starting with the leader of
the group (the agent who is closest to the tail of the queue) who searches a spot
behind the last agent in queue as above, every following group member searches a
waiting spot within a wider range of α = 180. This leads to (a) wider queues which
seems more realistic when looking to queues in real and (b) leads to less turns in the
queue form. The results are shown in Fig. 7. We believe that the visual validations
for the model look already quite promising. A next step will be to gather real-world
data for more in-depth comparison.
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Fig. 5 Approaching agent searching for the next waiting spot

Fig. 6 Simulation results for different choices of α. The larger α is chosen the more the queue
starts turning. α = 0◦ (a); α = 30◦ (b); α = 40◦ (c); α = 60◦ (d)

Fig. 7 Simulation results for group queuing for different choices of α. The larger α is chosen the
more the queue starts turning. α = 0◦ (a); α = 60◦ (b)



208 A. Kneidl

7 Summary and Outlook

This paper summarised different queuing models. People do queue differently
depending on the situation. Thus, different models have been developed and serve
well for different occasions of queuing. For queuing without demarcation a new
model was introduced. First visual validations show already promising results. Fur-
ther studies have to be accomplished in order to further validate themodel.Moreover,
the reason for the turning and possible triggers have to be examined in more detail.
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The Relationship Between the Waiting
Crowd and the Average Service Time

Oliver Handel and André Borrmann

Abstract In this paper the relationship between the waiting crowd and the service
time—the average duration to serve one single customer—is evaulated in the con-
text of vendor stands (e.g. food stands, concession stands or kiosks). Drawing from
traditional analytic queuing theory, a distribution function for the service time that
remains steady is generally used. This steady state assumption is questioned in this
paper by using computer simulation, empirical observation and qualitative reasoning.
On the one hand, the impact of the amount of people waiting on the average duration
of service time is examined. On the other hand, the effects of crowding on the choice
of a customer are evaluated as well. Within this context different causal feedback
relationships are identified that are expected to be of fundamental importance. The
paper concludes that for the endogenisation of the service time, the incorporation of
these feedback relationships is key to obtain more accurate results.

1 Introduction

While the time a person spends waiting in a queuing situation is commonly overesti-
mated, the satisfaction tends to decrease the longer the waiting time is perceived [6,
9]. To avoid dissatisfaction of the people getting served, two different approaches
can be distinguished. The first approach aims to manage the actual waiting time by
predicting the demand and to provide a sufficient amount of servers to customers.
But as services cannot be inventoried [18] and the demand for the service is hard to
predict, waiting is often unavoidable if the cost of servers are not neglected. Various
approaches from operational management research aim to minimise the actual wait-
ing times, but because of the difficulties in providing the right amount of servers in
every situation and to control therefore the actual wait duration, another approach
aims to reduce not the actual waiting time, but the perceived waiting time by focusing
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on different characteristics of the service environment that affect time perception and
thus make the waiting experience for the people waiting less dissatisfying [1]. This
approach tries to influence the subjective perceived waiting time by drawing from
theories from sociology, psychology and marketing. The perception of wait time and
service satisfaction were discussed by [1, 12, 17] among others. Essential in this dis-
cussions are the degree of social interaction and distraction from the situation in the
filled time gap [17], considerations about social justice (first-in-first-out-principle)
and elements from the service environment (lightning, temperature, music, colour
and furnishings) [1] that influence the perceived waiting time.

Although it is smart aiming to make the duration of the wait as comfortable as
possible and thus to decrease the perceived waiting time and to avoid that the use of a
service is overshadowed by the frustration of a perceived long wait, the even smarter
way is to better optimise the actual waiting time and to overcome some obstacles
in doing so. One key issue is the service time, defined as the duration to serve one
single customer. Commonly the service time is seen as an input value that needs to
be empirically collected, statistically aggregated and then inserted in the evaluation
method as a fixed parameter or distribution function that remains the same over the
whole time span. In this paper, the static service time assumption is questioned and
the dynamic nature of the service time is pushed to the fore. Collected empirical
data in the context of vendor stands at a music festival provides evidence that an
endogenisation of the service time variable is necessary to increase the forecast
accuracy for the length of waiting queues within the simulation. Before results from
simulation are presented, analytic queuing theory is discussed in the next section
with the outlook that there is need for simulation in this context.

2 Analytic Queuing Theory and Kendall’s Notation

Analytic queuing theory aims tomathematically describe performance functions (e.g.
average waiting time of a customer or server utilisation rate) of different queuing
systems [5]. In this domain, queuing is not limited to queuing pedestrians, but also
includes other queuing situations. Kendall’s notation [10] prevailed to classify queu-
ing systems. In this notation a queuing system is defined by a row of different letters:
A/S/c/K/N/D (A = arrival process / S = service time distribution / c = number of
servers, K = capacity of the system / N = population size / D = service discipline).
In case of pedestrian queuing, the short form of the Kendall notation A/S/c can be
generally used, because K and N are commonly assumed to be infinite and a FIFO
service discipline is expected. A and S describe then different distribution functions,
such as the Poisson, Degenerate, Erlang or Phase-type distribution. An abbreviation
for each distribution function is used, plus the number for the amount of servers
to define the queuing system. After having defined the queuing system, different
performance functions can be specified. From a customer-focused perspective, the
number of waiting customers and the average waiting time can be examined. From
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a server-focused perspective, performance functions such as the idle and busy time
of a server or the utilisation of the server can be measured.

Over the past hundred years, several scholars have contributed to solve different
queuing systems analytically. An overview about which queuing systems is analyti-
cally solved can be found in [11]. It became a competition in probability and queuing
theory to solve these commonly called waiting time problems [16], because—from
a practical perspective—the only possibility to describe the performance of differ-
ent pedestrian queuing systems was in times without computational simulation the
analytic approach beside empirical observation. In other words, scholars who only
had the analytic approach as their hammer saw every waiting time problem as a
nail, nevertheless which limitations this approach embrace. Although it is of scien-
tific value to solve queuing systems mathematically, some managerial implications
remain especially in the domain of pedestrian queuing situations. Firstly, Kendall’s
notation includes the steady state assumption, as the arrival process and the service
time distribution remain constant. Therefore, the formulas are helpful to get some
quick benchmarks on how the queuing system would perform under the given nar-
rowmodel boundary constrains, but taking into account more realistic scenarios with
variations of the arrival pattern, the analytic approach is of limited help, if an overall
evaluation is necessary and thus there is need for simulation. Simulation enables to
take into account more dynamic arrival patterns or variations of the service time or to
endogenise these key factors. Finally, in respect of the research topic, Kendall’s nota-
tion may have contributed to the erroneous assumption that the amount of waiting
people and the service time distribution are in each case two independent variables.

3 Simulation of Pedestrian Queuing

Simulation has several advantages. First of all, different from the analytic approach,
simulation enables the generation of benchmarks for more complex queuing situa-
tions (e.g. oscillating batch arrivals). Secondly, in case of pedestrian queuing situ-
ations, the physical layout of the queuing environment—the servicescape [3]—can
be taken into account, leading to minor delays, if a walking distance from the end of
the queue to the server is necessary. And thirdly, simulation enables to endogenise
key factors and therefore to push the model boundary forward.

The Java-based software Anylogic [4] is used here for the simulation of pedestrian
queuing. In Fig. 1, a snapshot of anM/M/5-queuing system simulation is shown. The
set-up consists of five servers and a single queue in front of the servers. The arrival
process and the service rate are Poisson distributed. On the right hand side of the
figure, the amount of waiting customers are depicted in the upper diagram and the
utilisation rate of the servers is shown. In accordance with the amount of five servers
and the given service time distribution with a mean value of 41.6 s and an arrival
rate with a mean value of 250 arrivals per hour, a utilisation rate of around 80%
in steady state can be measured under the boundary condition that the amount of
waiting people does not have an effect on the service time.
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Fig. 1 Pedestrian queuing simulation with AnyLogic

If the arrival rate is increased step-wise from 100 to 450, Fig. 2 indicates that there
is some qualitative moment of change, where the waiting time increases drastically
and further increase leads to infinite waiting times. The diagram shows that, if the
number of arrivals increases from 350 arrivals per hour to 400 arrivals per hour (15%
increment), the waiting time increases from 24 to 90s (375% increment) and goes
from there on in the steady state quickly to infinity, because the waiting lines get
theoretically endless long. The point where the queuing system cannot cope with
the number of arrivals and the queues get endless long can be called a tipping point.
The occurrence of tipping points in queuing systems has managerial implications, as
the aim is to keep the queuing system away from the tipping point. The good news
is that there are generally feedback effects leading to an increase of the maximum
throughput of the queuing system, if waiting times get long. This form of systemic
self-organisation will be discussed in the next section and results into the dynamic
service time assumption.

Fig. 2 The relationship
between the arrival rate and
the average waiting time. The
blue dots are the measured
average waiting times as
results from the simulation
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Fig. 3 Empirical collection of service times and the amount of people waiting at the same moment
in front of a vendor stand at a music festival in Garching, Germany

4 Empirical Assessment and Findings

For the set-up of a microworld of an urban event case study, empirical data collection
was conducted to gather essential input values such as the average time it takes to
serve one customer. The data acquisition was carried out at a music festival in 2014
and 2015 in Garching, Germany. Video cameras have been used to assess the waiting
crowd in front of several vendor stands (outdoor bars and food stands), mobile toilets
and the entrance facility, and to get empirical values for the service times respectively
durations of use. Post-evaluation of the primary video data was conducted to collect
the secondary data material. A detailed report about the 2014 data collection and the
spots observed can be found in [2].

In Fig. 3, the left picture shows exemplarily such an observed bar with different
operational staff from the inside. On the right side of the figure, different measured
data values for the time length of the collected service times are marked together with
the information howmanypeoplewaited in front of the vendor stand at thismoment in
time. Surprisingly there exists a positive correlation between both features (indicated
by the linear trend line), i.e. the more persons waiting, the longer the average service
time. A causal explanation about this counter-intuitive finding is shown with the next
figure.

Figure4 shows a dynamic hypothesis in form of a causal loop diagram. Through
qualitative reasoning threemainmechanisms (efficiency increase, grouping and post-
ponement effect) are identified to be important in this context and are summarised
in the figure. The first assumption is that an increase of waiting people in front of the
vendor stand leads to an increased pressure on the employees and causes an efficiency

Fig. 4 The relationship
between the number of
people queuing and the
service time in form of a
causal loop diagram
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Fig. 5 A generic concept of
an action selection
mechanism. Internal and
external states affect
decision-making

increase that reduces the service time per customer and thus the amount of people
queuing. This effect is limited by an efficiency maximum. But beside this effect,
if more and more people queue up, two other stronger mechanisms also begin to
operate—so the second and third assumption—leading to the increase of the service
time. One the one hand, if many people queue up, people start to group orders by
asking a friend to bring along something for them and on the other hand, people start
to postpone their orders, leading both to an increased single order size. If a fixed
total order volume is assumed, the bigger the single orders are, the longer it takes to
serve one customer (increase of the service time), but also the less amount of people
need to be served. This effect is twofold counter-intuitive, because firstly the service
time increases, but secondly—at the same time—the total order volume throughput
increases. In compliance with the assumptions made, this finding is an example of
positive self-regulation within a system.

To embed these mechanisms in a simulation, it is necessary to feedback from
the amount of waiting people on the service time directly and on agent level on the
decision architecture that defines under which conditions people decide to queue
up, group and postpone orders. To make the simulation even more accurate, it is
furthermore necessary to incorporate the grouping of orders effect as well. In Fig. 5,
the generic concept of a decision architecture is shown. While the amount of waiting
people is in this form a sensory information coming from the simulated environment
and affects the dynamic decision-making of the agents and thus generate the grouping
and the postponement of orders, the dynamic change of the service time will affect
the simulated environment directly. More details about how crowding affects the
choice of a customers to queue up are summarised in the next section.

5 Crowding, Customer Choice and Queue Shape Selection

In accordance with the context, different shape formations of the waiting crowd are
possible. On the one hand, it is possible that very well organised queues are formed
in the shape of a single or multiple queue structure. On the other hand, without
according barriers it is often the case that an unorganised densely packed waiting
crush forms. In Fig. 6, the implementation of different queuing models is depicted
based on the AnyLogic software. These models allow to embed the different possible
queuing formations in the simulation. How these different formations influences the
choice of further customers to queue up are described in the following.
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Fig. 6 Three different queuing models: (1). Service points with a queuing area. (2). Service points
with separate queue lines. (3). Several service lines with one single queue line

Density and crowding are related to each other, but a differentiation is necessary
[8]. Density refers to the physical condition—according to the spatial parameters
[15] and crowding is more related to the unpleasant feeling of an individual in terms
of the control perception to move freely in the environment. Schmidt et al. [14] used
the term perceived control as an intervening variable between density and crowding
that influences the behaviour of an individual. Drawing from the work of Hui et al.
[8], perceived crowding affects negatively the emotional and behavioural responses
of an individual and thus may hinder individuals to queue up, so the assumption.
Handel et al. [7] argued that high-density conditions affect the risk-potential, as the
velocity decreases in dense crowds. Therefore the question which queue shape to
foster from a managerial perspective are quite straightforward to answer. The more
perceived control the individual will have, the less likely that negative emotional
responses are expected by the individual and the more likely that the individual not
avoids to queue up. Therefore, the first choice should be to avoid the formation of
an unorganised waiting crowd, and secondly in accordance with Rafaeli et al. [13],
a single queue structure is more preferred than a multiple queue structure, because
of fairness and predictability considerations.

6 Conclusion

In this paper, the relationship between the waiting crowd and the average service time
havebeen evaluated. In the beginning, the classical analytic approach to solvequeuing
systemswas discussed. Drawbacks of this approach have beenmentioned, such as the
non-endogenisation of essential key parameters and based on these considerations
the assumption was made that the analytic approach strengthened the error-prone
perception of a steady service time. From this point of view, the need of simulation
was emphasised as simulation enables to take into account the physical layout of
the queuing situation and to incorporate essential feedback effects to endogenise
variables of the queuing system and therefore to see the queuing system not as
isolated situation. Simulation of pedestrian queuing demonstrated the occurrence of
tipping points, as the thresholds where the queuing system can either cope with the
amount of arrivals or thewaiting queues get theoretically endless long.Based on these
considerations, several feedback effects between the waiting crowd and the average
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service time that occur in the real-world and prevents the system from going beyond
the tipping point, have been discussed. The efficiency increase, the postponement
and the grouping effect was introduced based on a causal loop diagram and the
incorporation of these effects into simulation was discussed. Finally, the effect of
crowding on customer choice was elaborated and different queuing models have
been introduced.
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How Do We Wait? Fundamentals,
Characteristics, and Modelling Implications

Michael J. Seitz, Stefan Seer, Silvia Klettner, Oliver Handel
and Gerta Köster

Abstract Pedestrian simulation models predominantly focus on the flow or motion
of agents. However, inmany real-world scenarios a large amount of pedestrians’ time
is spentwaiting. Furthermore, the initial spatial distribution of visitors of amass event
may contribute significantly to the overall evacuation time. In this paper, we discuss
social science concepts related to waiting, such as personal space requirements,
and identify relevant aspects for the modelling of pedestrian behaviour. With this
background, we develop measures and hypotheses for pedestrian waiting behaviour
and apply them to a field observation of a train station platform in Vienna.We discuss
implications formodelling approaches towaiting, which could be an important future
extension to pedestrian simulations.

1 Introduction

Pedestrian simulations can be useful for a wide range of applications, such as safety
engineering, transportation planning, or computer animation. The requirements for
simulations vary across disciplines, but the underlying model always has to be
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validated according to some criteria. Hence, developing such a model must be based
on knowledge of real pedestrians’ behaviour, and its predictions are often compared
to empirical data [15] gathered in field observations [17] or controlled experiments
[11].

So far, research on emergent collective pedestrian behaviour has predominately
focused on certain observable aspects, especially density and flow [18]. Although
the flow is important for safety and efficiency considerations, humans often do not
move but remain at a position for some time. Theymay have to wait or rest, or simply
stay to chat with others. Waiting is also a common human activity in transportation
systems but has been largely ignored in simulation models. Simulation approaches
have been proposed for distributing pedestrians in waiting zones [2] and for mod-
elling pedestrians to remain at a specified position within the social force model [8].
However, the individual choice of pedestrians to wait at a certain location and the
respective underlying causes are widely unexplored.

We study waiting as a type of behaviour by individuals remaining at a position to
pass time until an event they expect occurs. Waiting—according to this definition—
stands in contrast to remaining at one position for other reasons, such as chatting
with someone or enjoying the scenery. Standing in line can be considered a specific
form of waiting—with distinct characteristics—but is not studied in this work.

In this paper, we focus on passengers waiting at a train station. We draw on the
literature, especially from a social science perspective. Since the usage of space is
correlated to the context, such as the built and social environment, we pay special
attention to the context. This background from social sciences allows us to develop
measures and hypotheses about pedestrian behaviour. We then evaluate the hypothe-
ses with empirical data from a field observation.

2 Social Science Background

Environments are built with the intent that their functions and usage aim at regulating
activities of individuals and groups [12]. According to Ruesch [14], both objects and
spaces convey information just as spoken language, creating some symbolic mean-
ing, categorisations or beliefs about a place. In that sense, what distinguishes one
environment from another is “the nature of the rules embodied or encoded in it” ([13],
p.14). Albeit the influence of environmental characteristics on human responses, their
relation ought to be comprehended in a probabilistic way, i.e. the setting providing
possibilities for choices by increasing or decreasing the probability for activities and
behaviours [13]. In other words, choices and activities are not to be understood as
determined by the environment, but as being mediated by an individual’s charac-
teristics (e.g. abilities, motivation, cognition), by subjective evaluations of space, as
well as by (cultural) norms and conventions [3]. According to this understanding,
it is the subjective reading of the context which affects activities in and the uses of
space [9, 10].
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Possibilities for such activities and behaviours can be communicated by the phys-
ical environment, its features [1], and/or by the subjective meaning of space [7, 9].
For example, being in public is different from being in private, revealing that individ-
uals regulate their behaviours more in public environments [10]. At the same time,
distinct physical features can trigger certain behaviours, such as position changes.
Such influences can be grouped into two categories: push and pull factors. While
push factors move individuals away from physical features, such as platform edges,
pull factors attract and increase densities, such as by advertising screens.

Besides the physical environment, which provides possibilities for activities and
decisions, it is the social environment and cultural accepted norms that regulate
behaviour and social interactions, such as interpersonal distances to social group
members (pull factors) or to non-social group members (push factors). Invisible
boundaries around individuals and groups—often referred to as “small protective
sphere or bubble” ([6], p.119)—aremaintained to separate one fromothers [19] and to
regulate privacy [6]. Entering somebody’s intimate or personal sphere is normally an
indication of familiarity and sometimes intimacy.While intimate distance (<0.45m)
is reserved for close relationships, friends, and family members, personal distance
(0.45–1.2m) is used for conversations with friends and associates. Social distance
(1.2–3.6m) on the other hand is held when being with strangers, newly formed
groups, and new acquaintances, whereas at public distance (3.6–7.6m), individuals
are well outside the circle of involvement.

Anothermodel used to understand spatio-temporal patterns that takes into account
the social environment is Schelling’s segregation model [16]. Applied in a micro-
scopic context, its fundamental assumption is that individuals decide to change their
waiting location once the share of neighbouring people with different social charac-
teristics exceeds an individual-dependent threshold. In other words, the whereabouts
of an individual depends on the social characteristics of the surrounding environment.
Even though people are quite tolerant towards such differences (high acceptance
threshold), segregation processes occur quite rapidly.

In modern society, especially in crowded urban communities, it can be difficult
to maintain personal space requirements, such as when being in dense, impersonal
situations, e.g. on crowded trains, elevators, or streets. In such situations, physi-
cal proximity might be perceived as psychologically disturbing and uncomfortable.
Privacy and personal space may, however, be re-established by adjusting social inter-
action to a desired level by verbal, non-verbal, and physical processes [4], such as
by increasing physical or perceived interpersonal distances (e.g. stepping away from
others, avoiding eye contact).

3 Materials and Methods

The empirical data presented in this paper originates from observations in a metro
station inVienna consisting of a centre platformwith tracks on each side, as illustrated
in Fig. 1. The observed platform area was directly accessible for passengers via
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Fig. 1 Observed platform
area in the metro station. The
tactile paving is shown in
grey and the line indicating a
safety distance is shown in
yellow
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escalators and included tactile paving as well as yellow markings at the platform
edges. Positions of waiting passengers were manually annotated in single video
frames captured from an oblique camera view. Furthermore, all annotated waiting
passengers were manually tracked over consecutive frames.We determined the point
mapping between the image coordinate systemand theworld coordinate systemusing
multiple reference points which were measured on-site. For our investigations, we
used manual annotations from two video sequences each of 15min length, which
were recorded in the morning (7:00 AM with 38 passengers in 5 phases between
consecutive trains) and evening (6:30 PM with 91 passengers in 4 phases between
consecutive trains) with average train intervals of 80 s.

4 Results and Discussion

We analysed the data collected from the observation by clustering the spatial data in
quadratic bins with a side length of 1m. Figure2 illustrates the spatial distribution
of waiting passengers and the respective waiting times.

On the left in Fig. 2, the number of passengers occupying each bin was counted
every second. The sum was divided by the overall observation time yielding a nor-
malised measure for the occupancy. Warmer colours indicate positions that were
occupied more often. We observed higher levels of occupancy in the evening com-
pared to themorning. In both cases, passengers seemed to stay clear of close positions
next to the platform edge, yet some individuals remained close to it. Additionally,
only very few passengers waited close to the escalators on the left of the observation
area.

On the right in Fig. 2, the mean remain time in seconds was calculated for each
bin. Brighter colours indicate positions were passengers remained longer on aver-
age. Here, a similar picture can be observed as for the level of occupancy. We did
not find any additional systematic distribution of the remain time. However, with
additional data, this measurement methodology may yield interesting insights into
waiting behaviour.
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Fig. 2 On the left, passengers occupying one measurement bin were counted every second, and
this sum was divided by the overall observation time. Warmer colours indicate a higher level of
occupancy. On the right, the mean remain time was measured for each measurement bin. In both
cases, measurement bins have side lengths of 1m. Measure of occupancy, morning (a). Mean dwell
time (s), morning (b). Measure of occupancy, evening (c). Mean dwell time (s), evening (d)

Looking at the data in detail, we evaluated two working hypotheses we expected
to reject with the empirical observation. The first hypothesis states that passengers
distribute uniformly over the platform. The second hypothesis postulates an expo-
nential distribution for remain times. Both hypotheses were selected because of their
simplicity and the assumption that they are used frequently in simulation models. In
order to decide whether to reject the hypotheses, we explored the data with a series
of histograms as reported in Fig. 3.

In Fig. 3a, the frequency of chosen positions over the width of the platform is
shown. Again, this representation of the data reveals that passenger kept clear of
close positions—up to 0.5m—to the platform edge. Taken together with the spatial
representations in Fig. 2, this strongly suggests that the hypothesis that passengers
distribute uniformly can be rejected. Apart from the gaps close to the platform edge,
a uniform distribution may still be a plausible statistical model for the data.

In Fig. 3b, the empirical distribution of remain times is shown. The hypothesis that
the remain times are distributed exponentially seems implausible for two reasons.
First, there is little weight for very short remain times, leaving a gap close to 0 s
in the morning observation. Second, both distributions appear to be more heavy
tailed compared to an exponential distribution—especially in the morning. From
investigating the data we can conclude that the second hypothesis can be rejected as
well. However, an exponential distribution may still be a useful simplified model for
practical purposes.

In Fig. 3c, we report the distance kept for the chosen waiting position to the next
waiting passenger. In the morning, passengers kept a mean interpersonal distance of
3.0m. In the evening, pedestrians awaiting the train kept a mean distance of 1.2m.
Both empirical distributions could be modelled with a Gamma distribution, yet, with
different parameters. In the morning, greater distances seemed to be more frequent.
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Fig. 3 Histograms summarising the waiting behaviour during the observation. Left figures refer to
the morning, right figures refer to the evening. The frequency of chosen positions over the width
of the platform (a). The times passengers remained at one position (b). Minimum distance kept to
other passengers (positions were ignored when there were no other passengers on the platform) (c).
Distance kept to the border of the platform (d)

However, it is important to mention that densities were higher in the evening and
hence interpersonal distances are also more likely to decrease. Another reason for
greater distances in the morning could be that more commuters who did not know
each other were present. In contrast to that, in the evening, more passengers in social
groups who stay closer together can be expected.

In reference to [6], proximities of 1.2 and 3.0m are within the range of social
distance. When chosen voluntarily, it reflects the distance held between strangers,
newly formed groups, and new acquaintances. Following [6], onewould expect larger
distances, that are characteristic for public occasions. Yet, the limited platform space
does not allow for much larger physical interpersonal distances.
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Finally, in Fig. 3d, the empirical distribution of distances kept to the next platform
edge are shown. As it was also observed in Fig. 2, passengers did not wait in a range
from 0 up to 0.5m and with low frequency in a range of 0.5 to 1m. We propose
two possible explanations for this. First, there was a yellow line indicating a safety
distance people have to keep from the rails. This line is likely to encode the intended
instruction to stay away from the platform edge and thus may suggests the observed
behaviour (see [1, 9]). Second, the platform edge and the knowledge that trains arrive
and departure there might induce a possible threat leading to the observed behaviour.
Hence, the built environment itself and the familiarity of passengers with this context
could be dominant. Finally, these two aspects together may encourage the observed
behaviour.

While not often included, remain times and spatial distributions can be of great
value for pedestrian simulation. Social distances and the distance to the platform
edge could be modelled by push and pull factors. Additionally, we suggest to use
heuristic decision making [5] to model waiting behaviour and propose the following
four rules asworking hypothesis for future research: (a) passengers get close towhere
the train arrives; (b) they keep a safety distance to the platform edge; (c) passengers
keep a social distance to other passengers; (d) they stay away from the escalators.

5 Conclusions

In this paper, we reported a study of pedestrian waiting behaviour. First, we reviewed
related concepts from social sciences. Second, we explored observational data from
a train station platform and evaluated two simple working hypotheses. Finally, we
proposed four heuristic rules that may be used in simulation models.

We argue that waiting behaviour is an important aspect in pedestrian interactions.
Although waiting is especially relevant in public transportation systems, pedestrian
simulation models have put less focus on waiting behaviour so far. Furthermore,
quantitative data can also further the knowledge in social sciences. The measurement
methodologies we used can be applied for other scenarios.

In the future, the proposed heuristicsmay be formalised, implemented, and studied
in pedestrian simulations. The emergent effects can then be compared to empirical
data, allowing for the validation of the proposed decision making model. For empiri-
cal research, however, it is crucial to collect more data from heterogeneous scenarios
with different contexts. This would expose cultural similarities and differences, such
as in European and Asian commuters’ behaviour.

This contribution can be seen as a basis for the investigation of waiting behaviours
in pedestrian research—both for empirical research andmathematical modelling.We
emphasised the need to approachwaiting behaviour in broader contexts, such aswhen
taking into account the social environment (e.g. through social interactions) as well
as the physical environment (e.g. spatial behaviour). The presented study can be used
for future empirical measurements, mathematical modelling, and further studies in
social sciences.
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Collision-Free Speed Model for Pedestrian
Dynamics

Antoine Tordeux, Mohcine Chraibi and Armin Seyfried

Abstract We propose in this paper a minimal speed-based pedestrian model for
which particle dynamics are intrinsically collision-free. The speed model is an opti-
mal velocity function depending on the agent length (i.e. particle diameter), max-
imum speed and time gap parameters. The direction model is a weighted sum of
exponential repulsion from the neighbours, calibrated by the repulsion rate and dis-
tance. The model’s main features like the reproduction of empirical phenomena are
analysed by simulation. We point out that phenomena of self-organisation observ-
able in force-based models and field studies can be reproduced by the collision-free
model with low computational effort.

1 Introduction

Modelling of pedestrian dynamics have been strongly developed since the 1990s
[1–3].Microscopicmodels describe themovement of individuals in two-dimensional
representation of space. They are used for theoretical purposes [4, 5], as well as
for applications e.g. design and conception of escape routes in buildings [6, 7]
or optimal organisation of mass events or public transport facilities (VISWalk [8],
Legion [9], . . .). In the microscopic class of models, pedestrians are represented as
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autonomous entities (Lagrangian representation) with local interactions. Complex
collective phenomena of self-organisation emerge from the interactions. Examples
are the lane formation, clogging at bottlenecks, zipper effect or intermittent flow
at bottlenecks, stop-and-go waves, herding, strip formation or circular flows (see
[1, 10] and references therein). Even simple microscopic models can yield in rich
dynamics [11, 12]. Yet, the relations between the microscopic model parameters and
the emergence of phenomena of self-organisation are not straightforward. In most
of the cases, they have to be analysed by simulation.

Microscopic pedestrian models could be defined in continuous or discrete time,
space and state variables (see [3, Chap. 5]). One of the most investigated class is
the class of force-based (or acceleration) models [11–13]. They use an analogy
between pedestrian movement and Newtonian dynamics. Force-based approaches
allow to describe a large variety of pedestrian dynamics [11, 12]. Yet, this model
class describes particles with inertia and does not exclude particle collision and
overlapping. This is especially problematic at high densities [13]. Moreover, the
force-based approach may lead to numerical difficulties resulting in small time steps
and high computational complexity, or use of mollifies [14].

Pedestrian behaviours result from repulsive and attractive forces with the accel-
eration models. They are based on the visual perception of distances or obstacle
speeds resulting in instantaneous changing of the speed or the direction within the
speed models. Also, this model class is generally called vision-based. One example
is the synthetic-vision-based steering approach that notably allows to describe com-
plex collective structures avoiding gridlocks [15]. Also the velocity obstacle models
or reciprocal velocity obstacle model borrowed from robotics exist [16, 17]. These
models are defined in discrete time and are driven by collision avoidance. They are
by construction collision-free if the time step is smaller than a horizon time of antic-
ipation. In the evacuation model by Venel, the pedestrians move as fast as possible
to the desired destination with no overlapping [18]. There exist some variants of the
model with different interaction strategies [19]. Note that there exists also rule based
multi-agent models aiming to describe pedestrian psychology (see for instance [20,
21]) ormixedmodels, see for instance the gradient navigationmodelwhere the direc-
tion model is defined at first order while the speed is of second order [22]. In most
of cases, these models need a large number of parameters with inherent calibration
difficulties and, as for force-based models, high computational efforts.

In this paper, we aim to develop a minimal model for which the dynamics are
by construction collision-free (i.e. overlapping-free). The model belongs to Maury
and Venel mathematical framework [18]. We show by simulation that it allows to
describe some expected phenomena of self-organisation observed in field studies or
in simulations with forced based models. The model is defined in Sect. 2 while the
simulation results are presented in Sect. 3. Conclusion and working perspective are
given in Sect. 4.
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2 Collision-Free Speed-Based Pedestrian Model

A continuous speed model is a derivative equation for the velocity. Typical examples
are

ẋi = v(xi , x j , . . .) or ẋi = V (xi , x j , . . .) × ei (xi , x j , . . .), (1)

with xi the pedestrian position and ẋi the velocity of pedestrian i (see Fig. 1). The
velocity in regulated in one function for the first equality while the speed V and the
direction ei (unit vector) are regulated separately in the second approach.

2.1 Definition of the Model

The speed model is the optimal speed (OV) function depending on the minimal
spacing in front. The approach is borrowed from road traffic model [23]. The OV
approach has been already developed with a force-based model [24]. Here, we use
the OV function at the first order with the minimal spacing in front.

For a given pedestrian i , the set of the pedestrians in front is defined by

Ji = {
j, ei · ei, j ≤ 0 and |e⊥

i · ei, j | ≤ �/si, j
}
. (2)

The pedestrians in front are the pedestrians overlapping the grey area in Fig. 1. The
minimum distance in front si is

si = min
j∈Ji

si, j . (3)

The model is
ẋi = V

(
si (xi , x j , . . .)

) × ei (xi , x j , . . .), (4)

�
ei,k

ei

xi

xj

xkvi

θi

si,j

Fig. 1 Notations used: xi , vi and θi are the position, velocity and direction of the pedestrian i ; � is
the pedestrian size; ei, j is the unit vector from x j to xi ; ei = (cos θi , sin θi ) ; si, j = ||xi − x j ||
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with V (·) the OV function and ei (xi , x j , . . .) the direction model to define. As shown
below, such model is by construction collision-free if

V (s) ≥ 0 for all s and V (s) = 0 for all s ≤ �. (5)

In the following, theOV function is the piecewise linearV (s) = min{v0,max{0, (s −
�)/T }}, with v0 the desired speed and T the time gap in following situations (� is
the pedestrian diameter, see Fig. 1). This OV function satisfies the collision-free
assumption (Eq.5). The direction model is a simplified version of the additive form
of the gradient navigation model [22]. It is based on a repulsion function depending
on the distances (si, j ) with the neighbours

ei (xi , x j , . . .) = 1
N

(
e0 + ∑

j R(si, j ) ei, j
)

, (6)

with e0 the desired direction given by a strategic model, N a normalisation constant
such that ‖ei‖ = 1 and R(s) = a exp

(
(� − s)/D

)
the repulsion function, calibrated

by the coefficient a > 0 and distance D > 0. The parameter values used in the
simulation are presented in Fig. 2.

2.2 Collision-Free Property

Oppositely to the force-based models, the presence of collision and overlapping
can be controlled by construction with the speed-based models (non-overlapping
constraint). If pedestrians are considered as discs with diameter �, the set of collision-
free configurations is for a given pedestrian i

Qi = {
xi ∈ R

2, si, j ≥ � ∀ j
}
. (7)

The set of collision-free velocities

Cxi = {
v ∈ R

4, si, j = � ⇒ ei, j · vi ≥ 0 and e j,i · v j ≥ 0
}

(8)
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is such that the speeds are nil or in opposite direction for a pedestrian in contact with
an other (see [18] for more general conditions). Therefore, if initially xi (0) ∈ Qi ,
then xi remains in Qi for any dynamics in Cxi . In these conditions Qi is an invariant
set for xi , i.e. the dynamics are collision-free (see also [25]). It is easy to see that
the model (Eq. 4) belongs to this class if assumption (Eq.5) is satisfied. Consider
si, j = � then either ei · ei, j ≤ 0 and then j ∈ Ji , i.e. si ≤ si, j = � and V (si ) = 0, or
neither ei · ei, j ≥ 0 and then V (si ) ≥ 0 since V (·) ≥ 0. Therefore vi · ei, j = V (si ) ×
ei · ei, j ≥ 0 and the velocity belongs toCxi . The arguments are valid for any direction
model ei .

3 Model Features

We describe in this section by simulation some characteristics of the model with uni-
and bi-directional flows. The parameter settings are given in Fig. 2. The simulations
are done on rectangular systems with length L = 9m and width W = 3m from
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random initial configurations and by using explicit Euler numerical scheme with
time step dt = 0.01s.

3.1 Counter Flows and the Lane Formation

We observed with the model the formation of lanes by direction for counter flows
(Fig. 3, left panels). Such phenomena frequently occur in real data (see for instance
[26]). The system needs an organisation time for that the lanes emerge (Fig. 3, top
right panel), where the mean flow to the desired direction for counter flows is com-
pared to uni-directional ones). The formation of lanes is observed with the model for
some density levels up to ρ = 6 ped/m2 (Fig. 3, bottom right panel). As expected,
the density threshold value for that the lanes appear depends on the pedestrian size
� (here � = 0.3m). Note that the lane formation phenomenon disappears when a
noise is introduced in the model (freezing by heating phenomenon, see [4] and in
Fig. 3, thin dotted line in bottom right panel where a Brownian noise with standard
deviation σ = 0.1m/s is added to the model—the lane formation breaks as soon as
ρ ≥ 2ped/m2).
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fundamental diagram (e)
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3.2 Intermittent Bottleneck Flows

Oscillating phenomena for counter flows in bottlenecks are observed with both real
data and models [10, 12, 27]. Such phenomena are related as intermittent bottleneck
flows in the literature [5].We observe that the speed-basedmodel is able to reproduce
them (see Fig. 4, left and top right panels). The phenomenon occurs even at relatively
high density levels (see Fig. 4, bottom right panel). Yet, it induces frictions and the
flow volumes obtained for counter flows are less than the ones of uni-direction. As
expected, the frictions tend to increase as the density increases. Some simulation
results not presented here show that the intermittent flow phenomenon subsists for
high density levels when D is sufficiently high and that the frequency of the flows
oscillations tend to increase as the density increases.

4 Conclusion and Working Perspective

A new speed-based model is proposed for pedestrian dynamics in two dimensions.
Oppositely to classical force-based approaches, the model is intrinsically collision-
free and no overlapping phenomena occur, for any density level. The model has
five parameters. Three of them concern the optimal speed function. They are the
pedestrian length, desired speed and time gap with the predecessor. The two others
calibrate the direction model. They are the repulsion rate and repulsion distance.

Themodelmain properties are described by simulation.A large range of dynamics
observed in real data and force-based models are reproduced. For instance, linear
increase of flowwith the bottleneck width, lane formation for counter flows (with the
freezing by heating effect) or intermittent flows, are obtained with identical setting
of the parameters. However, other well-known characteristic such that stop-and-go
phenomena can not be described. Further mechanisms (and parameters) remain to
be introduced to the model.
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Finite Element Simulation of a Macroscopic
Model for Pedestrian Flow

Rebekka Axthelm

Abstract We analyse the results of a finite element simulation of a macroscopic
model, which describes the movement of a crowd, that is considered as a continuum.
A new formulation based on the macroscopic model from Hughes [2] is given. We
present a stable numerical algorithm by approximating with a viscosity solution.
The fundamental setting is given by an arbitrary domain that can contain several
obstacles, several entries and must have at least one exit. All pedestrians have the
goal to leave the room as quickly as possible. Nobody prefers a particular exit.

1 Introduction

In Sect. 2, we introduce the underlying model equations to describe the process of
pedestrian movement. We will present a reformulation, that is suitable with respect
to a stable finite element-discretisation together with the corresponding boundary
conditions. The description of the time-dependent density distribution ρ of pedes-
trians is based on the model introduced by Hughes [2]. This model is composed of
two coupled, non-linear partial differential equations: the eikonal and the continuity
equation. The solution of the eikonal equation determines the direction of the flow
field. Areas of high density are avoided, because of the density-dependent external
force. The density-dependent velocity is then given by a fundamental diagram. The
continuity equation ensures the required conservation of mass of the crowd. With
regard to a stable finite element-discretisation, we run over two equations in terms of
viscosity solutions. The regularised eikonal equation is reformulated as a Helmholtz
equation, which is a linear differential equation of second-order.

The discretisation in time of the new model is shown in Sect. 3 followed by
a verification result. The finite element-discretisation in space completes the fully
discretised model that finally presents itself as a system of linear equations.
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As validation we compare evacuation results of our software pFlow with the
corresponding results of the simulation tool Simwalk [4], which is based on a social
forced modelling approach. As an outlook we apply the software for real-world
situations. Corresponding outcomes can be found in Sect. 4.

2 Classical Model and Reformulation

First, we come from the model that is introduced by Hughes [2]. This is in short the
coupling of the eikonal and the continuity equation:

|∇Φ| = 1

f (ρ)
(1)

u = − f (ρ)
∇Φ

|∇Φ| (2)

ρt + ∇ · (ρ u) = 0 (3)

The solution of the eikonal equation gives the walking direction. The right-hand
side guarantees that high densities are disfavoured. The normalised gradient of Φ

represents the walking direction and the velocity of the moving crowd is given by a
fundamental diagram f . Together, we obtain the velocity field u. In order to require
conservation of mass, because nobody dies and nobody materialises itself, we intro-
duce the continuity equation. We formulate the corresponding boundary conditions
after the reformulation of the model.

To begin with a new formulation of the model we get rid of the modulus in the
eikonal equation by squaring Eq. (1):

(∇Φ)2 = 1

f 2(ρ)
(4)

Adding an additional Laplace-operator to Eq.4 greatly increases numerical stability.
For sufficiently small ε1 > 0 we obtain an approximationΦε1 of the original solution
Φ that is called the viscosity solution. Thus, we have to solve a non-linear partial
differential equation of second-order:

− ε21 ΔΦε1 + (∇Φε1)
2 = 1

f 2(ρ)
(5)

Φε1 is a regularisation of Φ as it is shown in Fig. 1.
We replace Eq.1 by Eq.5 in our model. For simplicity, we write Φ instead of Φε1

from now on. We now want to hide the non-linearity in (5). Defining

Φ = −ε1 ln ψ (6)
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Fig. 1 Profile of the
geometrical (empty room) Φ,
the solution of Eq.1 and the
solutions of the regularised
eikonal Eq.5 for different ε1
in Ω = [0, 1] × [0, 0.1]
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leads to the Helmholtz equation instead of the regularised eikonal equation. We then
have to solve a linear partial differential equation of second-order. For a given density
ρ and fundamental diagram f (ρ) we are looking for ψ satisfying

1

f 2(ρ)
ψ − ε21 Δψ = 0 . (7)

The velocity field is composed as it is done in Eq.2. As a showcase we imagine a
room split by a wall with a small passage in between. The shortest path from the
entry above to the exit on the right leads through the passage. We compare velocity
fields of an empty room at time t = 0 and a room where a crowd arose in front
of the passage at time t = 120. The normalised velocity fields in Eq.2 computed
from Eqs. 6 and 7 in Fig. 2 show at which point the people decide to take the longer
way around the wall instead of squeezing themselves through the passage.

Also, for the continuity equation we restrict ourselves to a viscosity solution by
adding a Laplace-operator multiplied by a sufficiently small ε0 > 0. All together,
with suitable boundary conditions the new model is made up as follows. In Ω we
solve

1

f 2(ρ)
ψ − ε21 Δψ = 0 , (8)

u = − f (ρ)
∇Φ√

|∇Φ|2 + ε22

, Φ = −ε1 lnψ , (9)

ρt − ε0 Δρ + ∇ · (ρu) = 0 . (10)
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Fig. 2 Velocity field. t = 0 (a); t = 120 (b)

As the gradient of Φ may vanish we regularise the velocity field u. We have to
postulate slip boundary conditions for the velocity field at walls due to the required
conservation of mass: u · ν = 0, where ν is the outer normal to Ω at ∂Ω . This
is automatically fulfilled by choosing ∇ ψ · ν = 0. For the same reason we claim
natural boundary conditions for the continuity equation at ∂Ω . We have

∇ ψ · ν = 0 on Γwall \ Γexit , (11)

ψ = 1 on Γexit . (12)

∇ ρ · ν = 0 on ∂Ω , (13)

ρ = ρin on Γentry . (14)

If there are any entries they feature non-zero Dirichlet boundary conditions ρin for
the continuity equation. In practise we want to set a flow-rate-value (ρ u) at entries
and not the density itself. Actually, we do this and compute the Dirichlet boundary
conditionρin by calculating the inverse of the specific power given by the fundamental
diagram f . There are almost always two possibilities: many slow or few fast people
entering. In- and out-flow occurs perpendicular to the domain boundary. This fixes
the direction of the velocity field. In doing so, the velocity at entries is given, whereas
it regulates itself at exits:

u = f (ρ) ν on Γexit (15)

u = − f (ρin) ν on Γentry (16)
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3 Discretisation and Verification

The time derivative of ρ is approximated by the Euler explicit method

ρt ≈ 1

δ
(ρ(t k+1, ·) − ρ(t k, ·)) . (17)

Together with a semi-implicit time-discretisation for the whole model we decouple
the equations from Eqs. 8 to 10. This leads in every time-step to a system of decou-
pled, linear partial differential equations of second-order. For a given initial density
distribution ρ0 = ρ(t0 = 0, ·) we iterate over k=0,…

1

f 2(ρk)
ψk − ε21 Δψk = 0 , (18)

uk = − f (ρk)
∇Φk

√∣∣∇ Φk
∣∣2 + ε22

, Φk = −ε1 lnψk , (19)

ρk+1 − δε0 Δρk+1 + δ∇ · (ρk+1 uk) = ρk , (20)

including the additional boundary conditions fromEqs. 11 to 16. The discretisation in
space is carried out by using piecewise linear finite elements, defined on a triangulated
domain. For the Delauney triangulation of the domain the emc2-software from [3] is
used.

Table1 shows the experimental order of convergence (EOC) for the stationary,
regularised continuity equation inΩ = [0, 1]2 with the Dirichlet boundary condition
on Γ . The computed example is given by Eq.21 and its exact solution by Eq. (22).

− Δρ + ∇ · (ρ u) = F (21)

ρex = 1

2
(1 − x2) , u , F suitable (22)

From [1] we expect a L2-error of second and H 1-error of first order:

‖ρ − ρh‖L2 ≤ C h2 and |ρ − ρh |H 1 ≤ C h1 (23)

Table 1 The experimental order of convergence for the stationary continuity Eqs. 21–22 shows the
convergence order in Eq.23

h ‖ρ − ρh‖L2 EOC |ρ − ρh |H1 EOC

2.80e-02 3.39e-05 1.97 1.51e-03 1.01

1.38e-02 8.40e-06 2.02 7.39e-04 1.02

6.92e-03 2.09e-06 2.02 3.65e-04 1.01
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4 Numerical Results

For all simulations we choose the fundamental diagram introduced byWeidmann [5]
with ρmax = 5.4Ped/m2 and umax = 1.334m/s.

The first example shows the comparison of our results (pFlow) to those from the
commercial software Simwalk [4]. We consider a platform Ω = [0, 100] × [0, n],
n ∈ {2, 3}. Passengers are leaving the train through one or more doors with a certain
flow-rate (ρin u). The exit is at right Γexit = {100} × [0, n]. Everyone strives towards
the exit. We count the passing pedestrians at the exit in both examples. We put an
additional counter for the second example at the position of 80m. The situations
are illustrated in Fig. 3. In the continuous case we count people by measuring the
flow-rate

N∑
k=0

δ

∫

Γexit

ρk uk · ν dox . (24)

As we can see in Fig. 4 the graphs on the left show a good agreement between
the two results. However, the right plot draws a discrepancy: the results of pFlow
show that less pedestrians find themselves between the two counters. This can be
explained by the additional diffusion term in Eq.10. Hence, the overall walking speed
of pedestrians is higher. That is why they leave the platform earlier.

As real-world situations we consider two public events in Zurich (Switzerland).
The ‘Münsterhof’-event (example 2a), where about 6,000 visitors appear, is a yearly
celebration. The ‘Zürifescht’ (example 2b) with more than 60,000 visitors is organ-
ised every third year. The geographical location of these two festivals is shown in

(a) (b)

Fig. 3 Domain and boundary settings. Example 1a (a); example 1b (b)

(a) (b)

Fig. 4 Comparison between the results. pFlow (lines showmeasured value of Eq.24) (a); SimWalk
(dots show counted persons) (b)
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Fig. 5 Geographical positions; example 2a (a), example 2b (b). Source Google-maps
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Fig. 6 Example 2a at t = 589s (bottom). Velocity field (a). Density distribution (b)

Fig. 7 Density distribution
of example 2b at t≈ 500s
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Table 2 Monitoring of the two real-world simulations

P0
[person]

diam(Ω)

[m]
#Tri Comp.

time
Sim.
time

Est. real
time
[min]

Max.
power
output

ρ ∈

example
2a

5,960 100 2,086 ≈27 ≈9.5 ≈15–20 ≈5 [0.5, 1.3]

example
2b

58,570 459 6,800 ≈64 ≈21 ≈30–40 ≈9 [0, 4.6]

Fig. 5. We are interested in the evacuation time of both situations and the paths that
pedestrians choose. Figure6 shows qualitative results of example 2a: higher densities
at the north-exit motivate more pedestrians to choose the west-exit.

Figure7 presents the status after about 8min where 58,570 people leave the
Zürifescht-festival. A monitoring of computational-, simulation- and real-time data
is given in Table2.
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A Unified Pedestrian Routing Model
Combining Multiple Graph-Based
Navigation Methods

Peter M. Kielar, Daniel H. Biedermann, Angelika Kneidl
and André Borrmann

Abstract The navigation behaviour of pedestrians in street networks can be forecast
by computer simulations based on routing models. These models characterise pedes-
trians’ route choices regarding a variety of factors. However, the spatial cognition
aspects are often omitted in routing models; thus, the diversity of predictable routes
is limited. Here, we present a unified routing model that describes route choices
of pedestrians by integrating the spatial cognitive aspects of allocentric-based and
egocentric-based navigation. We achieved this by combining graph-based routing
methods, each formalising a single spatial cognitive aspect. In addition, we present
a generic calibration method for our model. For validation, we show that our model
is able to correctly predict the routing behaviour of pedestrians in a case study.

1 Introduction

Every day, pedestrians navigate andwalk in the street networks of cities. It is possible
to forecast the pedestrians’ navigational behaviour and predict the chosen routes by
means of computer simulations. However, individual human navigation is influenced
bymany different factors [10] and there is still no pedestrian routing behaviourmodel
that can predict the complete richness of pedestrian route choices.

In our previous research, different aspects of human spatial cognitive abilities
were integrated successfully, and four different graph-based pedestrian navigation
algorithms were presented [8]. Nonetheless, eachmethod depicts only a specific type
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of navigation behaviour—but, as shown by research on spatial cognition, human nav-
igational abilities aremore fine grained [5, 10]. Here, we present a Unified Pedestrian
RoutingModel that combines these four routingmethods in a singlemodel. By apply-
ing our approach to a pedestrian simulation, one can simulate a more diverse range
of pedestrian way-finding behaviour.

1.1 Related Work

In contemporary research, there are several different approaches to model human
navigation behaviour. Graph-based concepts utilise routing algorithms to determine
an ordered set of street network joints to describe the path a pedestrian takes [7, 8].
Graph generation algorithms create the underlying routing network for the routing
algorithms, based on the scenario geometry [3, 9]. The corridor map method is a
concept that uses a route-map graph as well as clearance information to construct a
corridor covering the traversable scenario layout from an origin to a destination [4].
When the corridor is completed, a simulated pedestrian navigates inside its bound-
aries towards a given destination. Another concept is the floor field method and its
derivatives [1]. These methods compute distances on a grid that covers the simula-
tion scenario as underlying data structure. Each grid cell is able to hold values—
dynamically or statically—which are subject to gradual changes according to desti-
nation proximity and ground floor traversability.

1.2 Spatial Cognitive Concepts

The large field of research on spatial cognition contributes to improve our under-
standing of people’s navigational abilities and limitations [10]. Human navigation
abilities depend on the accuracy of perceiving spatial information, the competence
to generate a spatial representation of the environment, as well as the efficiency of
utilising the spatial representations [10]. In general, spatial representations of the
environment are denoted as cognitive maps. Thus, way-finding abilities are directly
related to the construction and processing of such maps [5].

Research on spatial cognitive abilities was able to prove that people use route-
based, survey-based, or fuzzy intermediate strategies for navigation [5, 10]. The
route-based navigation describes that a sequence of egocentric actions has to be
carried out to recreate a route. Hence, little overall knowledge about the environment
and relation between locations is needed. In contrary, the survey-based navigation
approach is an allocentric strategy. People who use this strategy have a general
understanding of relations and distances concerning a certain area, so they are able
to find newdirect paths from their current location to a not directly visible destination.

However, people do not simply choose one of these two strategies, but generate
intermediate and mixed routing solutions based on the integrity of their cognitive
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map, the reliability of their memory retrieval processes, their abilities to apply the
information into actions, and the navigation task at hand [5, 10]. This predicts that
intermediate variants of navigationmethodsmust exist. The proposed Unified Pedes-
trian RoutingModel captures these intermediates variants of route-based and survey-
based navigation behaviour in a single way-finding model.

2 Graph-Based Navigation Methods

Graph-based routing methods for pedestrians predict walking paths from an origin to
a destination either iteratively or directly in an algorithmic manner. The distinction
is based on the egocentric routing strategy (iteratively) and the allocentric routing
strategy (directly) outlined in Sect. 1.2. Direct routing solves the routing problem by
providing an optimal path to the destination, based on shortest path solutions [2, 6]. In
contrast, iterative routing algorithms provide the next vertex to visit stepwise, based
on local optima. Previous work [8] includes the development of two direct routing
methods—the Fastest Path (FP) and the Beeline Heuristics (BH)—as well as two
iterative routing methods—the Greedy Beeline Heuristics (GBH) and the Straight
and Long Legs (SALL). Figure1 presents example routes generated by a pedestrian
simulation that applies these methods on an artificial scenario.

2.1 Direct Routing Methods

We build upon two direct routing methods, the Fastest Path (FP) and Beeline Heuris-
tics (BH) algorithms [8]. Both methods model routing behaviour of pedestrians
who have a profound knowledge of the street network. The FP method is based on
Dijkstra’s algorithm [2]. The weight calculation method of FP combines the distance
di j between current vertex i and a successor vertex j as well as a velocity vi j , which
is based on the number of pedestrians pi j walking alongside a directed edge ei j .

FP BH SALL GBH(a) (b) (c) (d)

Fig. 1 The routes found by the four different basic routing models (a–d) in a pedestrian simula-
tion. The pedestrians started at the top-left corners and walked to the corresponding bottom-right
destination. The graph generation method of [9] was used for this artificial scenario
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If an edge ei j is not visible to a pedestrian, a standardised mean velocity vm is used.

wj = wi + di j/vi j (1)

Because the FP algorithm has to be applied each time a pedestrian visits a vertex,
the edge weights vi j are updated corresponding to the velocities of the pedestrians
vxi j on an edge ei j . If the number of pedestrians pi j at an edge is zero, a standardised
mean velocity vm is used for vi j .

vi j =
(

k∑
x=1

vxi j

)
/pi j (2)

The BH algorithm is based on the A-Star algorithm [6] and describes the tendency to
follow the beeline towards a destination. The algorithm of the weight calculation of
theBH routingmethod integrates the beeline distance d jg from the next vertex j to the
destination vertex g, the distance di j between current vertex i and a successor vertex
j , and a constant β. We omitted the random distance estimation error presented in
[8]. Nonetheless, we kept the constant factor β = 1.5 of [8] to strengthen the beeline
part of the calculation.

wj = wi + di j + d jg · β (3)

The BH method’s weight update uses the Dijkstra’s Algorithm update procedure.

2.2 Iterative Routing Methods

The Greedy Beeline Heuristics (GBH) and the Straight and Long Leg methods
(SALL) are the iterative routing concepts we build up upon [8]. They model the
routing behaviour of pedestrians who are not familiar with the street network. The
SALL method models the tendency to walk alongside straight and long streets. The
route choice is based on the angle γai j ∈ [0, π ] in between the last vertex a and a
next vertex j , as well as the relative distance reduction d jhg/d jg to the destination
vertex g. The value d jhg is calculated based on the vertex h, which is the farthest
vertex within the projection of an arc of the angle of ±μ. The arc is centred along-
side ei j and its successor edges in succession. We set μ to π/12 for scenarios with
rectangular street networks, and π/9 otherwise. For the calculation of the weight of
a successor vertex j , the angle γai j improves the weight in the case of straight roads.
The successor vertex with the smallest result is selected as the next vertex to visit.

wj = (1 − α) · (d jhg/dig) + α · (1 − |γai j |/180◦) (4)

The constant α = 0.75 increases the influence of the angle parameter between zero
and one. The value for α was determined by multiple pre-emptive test simulations.
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The GBH describes a BH approach for pedestrians who are not familiar with the
street network. Therefore, a simulated pedestrian can get lost by greedily following
the beeline to the destination. For the route choice, the vertexwith the smallest weight
wi j is selected as the next vertex to visit. The weight is influenced by the beeline
distance d jg from a successor vertex j to destination g only.

wj = d jg (5)

3 The Unified Pedestrian Routing Model

The Unified Pedestrian Routing Model (UPRM) integrates all routing methods
described in Sect. 2. By doing so, the integration is not a mutual exclusive appli-
cation of routing algorithms, but a calculation-based integrative concept.

3.1 Merging the Graph-Based Methods

The UPRM is an iterative routing method to model the route-choice decision behav-
iour of selecting the next vertex to visit at a street junction, based on the four base
algorithms. The weight calculation for UPRM is:

wj = ζ · wFP
j + η · wBH

j + κ · wGBH
j /max

(
wGBH

j

) + ψ · wSALL
j /max

(
wSALL

j

)
(6)

The successor vertex with the smallest weight wj of the current vertex i will be
selected as the next vertex to visit, as for the previous iterative methods.

TheUPRMintegrates theGreedyBeelineHeuristics (GBH) andStraight andLong
Legs (SALL) methods by assessing the weights of all adjacent vertices j of vertex
i . These weights are normalised by the maximal weight of all successor vertices of
vertex i for each method separately. The Fastest Path (FP) and the Greedy Beeline
(GB) algorithms contribute temporary calculations of the optimal paths, starting from
vertex i . The first vertex of each optimal path is compared to the adjacent vertices
j of the current vertex i . If a successor vertex of i is part of the optimal path, the
weight wFP

j (or respectively wBH
j ) is zero—and otherwise, it is one.

The resulting weights for each of the original methods are additively combined
based on influence factors. These factors describe how strong a pedestrian is associ-
ated to a routing strategy. The factors ζ and η describe a high familiaritywith the route
network, whereas the factor κ andψ describe a lesser knowledge of the network. The
values range in [0, 1], but a single factor with a value larger than zero is mandatory.
Hence, the factor concept also models interfering knowledge and uncertainty due to
overlapping or under-represented factor combinations.
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3.2 Model Calibration

The UPRM predicts the navigational paths based on the influence factors of the
underlying routing algorithms. Therefore, a calibration method has to find influence
factor combinations that yield realistic pedestrian routes for a scenario layout. We
suggest a generic calibration approach that finds factors by a test simulation compris-
ing a finite set of test pedestrians, initialised with random factors. We evaluated the
calibration method by running a simulation with 1000 independent test pedestrians
for an artificial world scenario. The simulated routes are compared by an extended
version of the turning angle metrics [8]. The extended method removes redundant
factor combinations that generate identical routes, based on the turning angles along
the routing path. Hence, the method accepts only factor combinations that generate

Table 1 Factor combinations derived from the calibration method for an artificial scenario

a b c d e f g h i j k l m n o p q r

ζ 0.00 0.26 0.12 0.10 0.06 0.12 0.20 0.00 0.18 0.21 0.05 0.08 0.00 0.07 0.05 0.31 0.24 0.00

η 1.00 0.42 0.31 0.37 0.30 0.24 0.23 0.00 0.12 0.00 0.15 0.16 0.14 0.03 0.00 0.01 0.00 0.00

κ 0.00 0.81 0.75 0.99 0.94 0.40 0.75 0.00 0.02 0.03 0.50 0.75 0.33 0.43 0.99 0.57 1.00 1.00

ψ 0.00 0.78 0.45 0.02 0.15 0.87 0.71 1.00 0.75 0.76 0.62 0.95 0.91 0.68 0.67 0.73 0.69 0.00

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 2 Routes created by the UPRM based on Table1 for the artificial simulation scenario. All
routes start at the top-left and end at the bottom-right (a–r). All routes are shown in (s), and the
used underlying graph is represented in (t) [9]
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unique routes that reach the destination. Using this method, we found 18 feasi-
ble factor combinations for the artificial test scenario (see Table1). Figure2 shows
the resulting routes based on the found factor combinations. Hence, our calibration
method yields plausible and usable combinations for any layout.

4 Model Validation

We validated the Unified Pedestrian Routing Model (UPRM) in a case study, an
annual music festival, by comparing the routes of real and simulated pedestrians.
Thus, we captured the routing behaviour of approximately 700 of the 5000 festival
visitors in 71GPSmeasurements. Thevisitors travelled fromapublic transport station
to the venue on walkways and streets that were closed for car traffic. Figure3a–f
shows the six different routes chosen by the visitors. For validation, we calibrated the
model described in Sect. 3.2 and simulated the travellers’ route choices. As visualised
in Fig. 3g–k, the simulation results reveal that the UPRM predicts six different routes
and forecast the route choices of the routes A to E correctly. The model could not
predict route F completely, but misses to forecast one single route choice only—
compare Fig. 3f, l. Naturally, the four original routing methods of [8] could predict
the route choices of four routes correctly. In summary, the UPRM forecasts the route
choices of pedestrian quite well, but seems to contain a minor flaw. We assume that
the found uncertainty in predicting route F is based on a non-optimal calibration

(a)

A B C D E F

A B C D E F’

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3 The measured walking routes of the festival visitors A to F (a–f). The simulation walking
routes A to F’ (g–l). The orange marker in (l) indicates the falsely predicted route choice. All routes
start at the bottom and end at the top. An extended version of the graph generation method of [9]
was used for the case study scenario
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of the routing graph generation algorithm. It might be necessary to include further
graph generation methods.

5 Conclusion

TheUnified Pedestrian RoutingModel (UPRM) represents amathematical combina-
tion of pedestrian routing models from previous research. The model predicts route-
based and survey-based navigation behaviour and, more importantly, intermediate
and mixed variants of these routing strategies. By utilising pedestrian simulations,
we showed that the UPRM is able to forecast a very large set of realistic navigation
routes. Additionally, we validated the UPRM using a case study. We could fore-
cast most of the pedestrian route choices of the study. Therefore, our approach of
combining existing graph-based pedestrian routing methods to simulate more real-
istic routing behaviour was successful. Nonetheless, further validation studies are
in preparation. We also aim to integrate herding-behaviour and a prediction of the
relative frequency of route usage in further extensions of the UPRM.
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Wayfinding and Cognitive Maps
for Pedestrian Models

Erik Andresen, David Haensel, Mohcine Chraibi and Armin Seyfried

Abstract Usually, routing models in pedestrian dynamics assume that agents have
fulfilled and global knowledge about the building’s structure. However, they neglect
the fact that pedestrians possess no or only parts of information about their position
relative to final exits and possible routes leading to them. To get a more realistic
description we introduce the systematics of gathering and using spatial knowledge.
A new wayfinding model for pedestrian dynamics is proposed. The model defines
for every pedestrian an individual knowledge representation implying inaccuracies
and uncertainties. In addition, knowledge-driven search strategies are introduced.
The presented concept is tested on a fictive example scenario.

1 Introduction

Microscopic simulations of pedestrian traffic flow are a suitable tool for designing
both escape routes in buildings and pedestrian areas, e.g. malls, train and bus stations.
Besides, simulations are used to investigate and analyse security risks in advance.

In the literature many elaborated microscopic pedestrian traffic flow models can
be found. For a first overview see [1]. These models try to describe the locomotive
actions of pedestrians, e.g. basic movement towards a certain location in space or
steering (around obstacles to a certain destination).
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However, they neither include the choice between currently accessible targets nor
the planning of proceeding destinations (wayfinding tasks). These tasks are covered
by the tactical level of pedestrian traffic flow modelling (see for example [2, 3]).

A majority of models concerning the tactical level assume the pedestrians to
have a comprehensive knowledge about the spatial structure of their environment.
Thus, the agents possess the ability to localise desired destinations in advance. They
are, furthermore, able to evaluate or rather compare the quality of the routes which
lead to the destinations. In many cases their evaluations are based on shortest path
calculations or travel time optimisation.

The assumption that all pedestrians are provided with comprehensive global
knowledge about a building’s structure is a rough approximation, for example when
pedestrians are not familiar with the facility. Even less, they are able to evaluate
metric information about multiple routes so that an exact comparison is possible. In
fact, the knowledge status of a group of pedestrians vary according to the number of
visits and the capability to learn the spatial structure of new environments.

Human wayfinding is a complex process which includes the use of (in some cases
inaccurate and incomplete) spatial memories [4], the use of signs and maps [4],
search strategies and herding phenomena.

Although there are already approaches to represent wayfinding aspects including
directional knowledge and uncertainties [5] there is room for improvements and
continuations.

In this work we introduce a modelling approach enabling agents to make exit
choice decisions based on inaccurate and incomplete knowledge about their envi-
ronment and destinations.

1.1 The Cognitive Map

Although many mechanisms of perception and cognition enabling successful
wayfinding are still unacquainted it is known that the hippocampal formation (part
of the limbic system of the human brain) is mainly responsible to store and retrieve
spatial memories which are essential to solve wayfinding issues [6]. John O’Keefe
[6] and Maybritt and Edvard Moser [7] discovered place cells and grid cells in rats’
brains that are involved in the formation of the so-called cognitive map. Similar
systems of place-like and grid-like cells were discovered in many mammals’ brains
including the human brain [8].

The term cognitive map has been introduced by Tolman [9]. It depicts the mental
representation of the spatial relationships between essential points, places, objects,
etc. of our environment and possible connections between them [10]. Despite the
prevailing opinion rats can only respond to stimuli, Tolman [9] conducted some
experiments which gave evidence about the fact that rats possess clues about spe-
cific objects’ positions relative to each other gathered from previous visits of the
environment.
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In the best case the cognitive map provides the possibility to locate the relative
position to a specific destination and enables us to find or to plan a route leading to
this destination [10, 11].

However, there is evidence that people get lost in several situations due to the
fact that their cognitive maps are inaccurate, incomplete, distorted, or even wrong
[10, 11].

Nevertheless, the cognitive map, although it does not provide detailed and much
less accurate metric information, successfully helps us to find our way in most situa-
tions, especially in environments visited multiple times before. This results from the
fact that humans possess the ability to store topological relations in a more accurate
way [10, 11].

1.2 Generalised Knowledge

In many cases a wayfinding problem is not merely solved by information about the
relations of explicit points or objects (the cognitive map). Additional knowledge
called generalised knowledge is used as well. Human beings classify their environ-
ments and retrieve information, implications and expectations about the according
classes, for example train stations, libraries, and office buildings [12, 13]. Gener-
alised knowledge does not concern the explicit set-up of the specific environment
itself but information about the environment’s type or rather classification.

Within buildings we differentiate between two types of rooms (enclosed areas).
On the one hand there are rooms serving the building’s circulation or rather enabling
people to reach efficiently their destination areas. Corridors, entrances, lobbies, stairs,
ramps, etc. belong to this group of rooms. On the other hand there are rooms allotted
to an explicit usage excluding the circulation. Concerning the second type of rooms
wemention functional rooms, common rooms (offices, living rooms, cafeterias, etc.),
store rooms, etc. as examples. We assume the majority of people to be capable to
distinguish between both mentioned types due to their generalised knowledge about
spatial structures.

Generalised knowledge provides the basis for various search strategies. To men-
tion an example we consider a person to be located somewhere in a completely
unfamiliar office building. The person is going to leave the building and is therefore
looking for an exit. Due to knowledge about the purpose of circulation rooms he/she
prefers to use them to reach the exit. Preferring circulation rooms instead of others is
a simple but expedient and efficient strategy compared to a simple room exploration
and thus facilitates the search for the exit severely.

2 Modelling Cognitive Map Knowledge

Following the findings mentioned in Sect. 1.1 we assume a simulated person to pos-
sess a cognitivemap consisting of uncertain, inaccurate information. Thus, the agents
possess only a vague idea of the exact (sub-)goals’ position. For this purpose the
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Fig. 1 The left figure shows the layout of a fictional building’s floor. The agent’s actual room is
highlighted. The ellipse represents the agent’s inaccurate idea of the exit’s position. The right figure
shows the agent’s actual room and the ellipse without exception. The lines indicate possible routes
to the exit region ignoring the spatial structure beyond the actual room. The shortest path from a
doorway of the room to the exit area is shown dashed

inaccurate memories of the goals are not restricted to a point location but are repre-
sented by ellipses (see Fig. 1).

We assume that the agent searches a route leading him, preferably following the
beeline, to the exit area. Therefore he chooses a doorway leading him as closely
as possible to the destination area. Due to the fact that the agent has no knowledge
about the remaining structure of the building his decision is onlymade by considering
position and shape of the actual room (and its doors) and the ellipse representing the
approximate position of the exit. Further rooms or rather their walls or obstacles
beyond the actual room are not familiar to the agent. Hence, they are not taken into
account within the decision making.

To determine the doorway which takes the agent as closely as possible to the
ellipse the (lengths of the) shortest paths between every accessible doorway and the
ellipse are calculated (see Fig. 1). The shortest path calculation is only performed
under the consideration of the current room’s walls (as obstacles). Even if the made
assumption of an empty area beyond the current room may be inaccurate in most
cases, this procedure will find the most appropriate doorway to come closer to the
exit area if no spatial information of proceeding areas is available.

Depending on the length of their paths compared to paths from other possibilities
the doorways are weighted differently. The doorway related to the shortest one of all
shortest paths will be preferred by the pedestrian (see Fig. 1, right, dashed line).

If the agent has arrived at the target area (is located inside the ellipse) and there is
still no exit in sight he has to rely on other information or strategies to look for the
continuative way to the exit.
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3 Examples

In the next section we demonstrate how the model presented performs in simple
scenarios with respect to different degrees of spatial knowledge.

In every scenario an agent is situated in a room at the left lower corner of a fictional
building (see Fig. 2) and searches a way to the outside. The entrance / exit can be
found at the right lower corner.

3.1 Scenario 1: Cognitive Map Knowledge

With the help of this scenario we investigate the effects of using the modelling
approaches concerning explicit cognitive map knowledge (see Sect. 2). The agent
supposes the exit to be somewhere in the area depicted by the ellipse in the right
lower region. At every choice point he decides to move to the direction taken him
closer to the assumed area location of the exit.

Having started his journey the agent crosses the first corridor (lower left corner)
heading to the opposing doorway as it is obviously the best choice to come closer to
the exit area, assuming the lack of knowledge about the structure beyond the doors.
However, as the agent recognises that he is located in a dead end he turns around
trying to reach the exit area by moving through the crossing to the adjacent room.
Eventually, he arrives at the corridor located in the middle of the building which
enables him to travel to the right lower region of the building. Inside the ellipse
depicting the exit area the agent proceeds to find the exit by exploring the rooms in
the surrounding. He starts by heading to the nearest doorway. After having explored
three further rooms within the exit area the agent finally reaches the exit.

Fig. 2 Trajectories of an
agent situated in a fictional
office building. The agent
has access to cognitive map
knowledge depicted with the
help of the ellipse
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3.2 Scenario 2: Combination of Generalised and Cognitive
Map Knowledge

Scenario 2 comprises the combination of generalised and cognitive map knowledge.
To highlight the effects of this combination the agent is simultaneously providedwith
the ability to distinguish between common rooms and circulation rooms and with a
directional sense of the exit’s location. For this purpose the colour coded rooms are
indicated as circulation rooms (see Fig. 3). Doorways leading to these rooms will be
preferred by the agent. Furthermore, the agent is following the procedure explained
in Sect. 2.

We assume the strategy to move to or to stay on a circulation room to be more
expedient as to keep the direction to the destination. Following this assumption, the
pedestrian will use circulation rooms even though he has to depart seriously from
the beeline to the exit area.

Leaving the starting room the agent proceeds to the corridor in the middle of
the building as it is the only adjacent corridor. Being located in the middle corridor
the agent has to choose between three corridors. Obviously, the corridor in the right
lower corner is the best possibility to come closer to the exit area. Within the exit
area the agent again prefers the only proceeding corridor taking him eventually to
the outside.

In this example scenario the agent is moving to the destination without making
any detours. Hence, the search strategy (go to and stay on circulation rooms) and a
vague idea about the location of the destination are sufficient in this example case.

Fig. 3 Trajectories of an
agent situated in a fictional
building. The agent has
access to both cognitive map
knowledge and generalised
knowledge
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4 Summary and Outlook

The modelling approaches introduced in this paper provide simulated agents with
restricted information about their environment instead of granting them access to
global comprehensive knowledge about every part of the environment’s structure.
Additionally, the restricted information consists of uncertainties and inaccuracies.
The information status of agents can be manipulated by modifying position and size
or shape of ellipses modelling its actual cognitive map. In addition, it is conceivable
to vary the knowledge degree of an agent compared to other agents by differing
modifications.

Based on two examples we demonstrated the effects of different knowledge
degrees. The first example showed that the agent does not instantly find an appro-
priate route to the outside by simply heading to the exit area. In the second example
(Sect. 3.2) it has been shown that a vague, inaccurate idea of the destination’s location
in combination with the use of a search strategy is sufficient to find a route leading
directly (without detours) to the desired destination.

Proceeding work implies the creation of a continuative framework modelling the
human wayfinding process. On the one hand the framework is supposed to contain
further mechanisms of the cognitive map, for example the involvement of landmarks
and self localisation procedures. On the other hand it is supposed to include search
strategies, recognition of signs and herding effects.

The affiliation of further models representing factors which contribute to exit
choice decisions beside the wayfinding process is possible. Concerning further fac-
tors we mention sensory input models according to the evaluation of congestions [3]
and smoke propagation [14].

Acknowledgements This research is founded by the Deutsche Forschungsgemeinschaft (DFG)
contract No. GZ: SE 17894-1.
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Adaptive Tactical Decisions in Pedestrian
Simulation: A Hybrid Agent Approach

Luca Crociani, Giuseppe Vizzari and Stefania Bandini

Abstract This paper presents the tactical level component of a hybrid agent archi-
tecture in which these decisions are enacted at the operational level by means of a
floor-field based model, in a discrete simulation approach. This allows the agent to
take decisions based on a static a-priori knowledge of the environment and dynamic
perceivable information on the current level of congestion of visible path alternatives.

1 Introduction

Simulating human decision making activities and actions is extremely challenging,
even if we focus onwalking behaviour: different types of decisions are taken at differ-
ent levels of abstraction: [8] provides a well-known scheme to model the pedestrian
dynamics, describing 3 levels of behaviour: (i) Strategic level, managing abstract
plans and final objectives motivating the overall decision to move (e.g., ‘I am going
to the University today to follow my courses and meet my friend Paul’); (ii) Tactical
level, constructing sequences of activities to achieve the defined objectives (e.g., ‘I’ll
take the 7:15 AM train from station X, get off at Y and then walk to the Department,
then …’); (iii) Operational level, physically executing the defined plans (i.e.,. cre-
ating a precise walking trajectory, such as a sequence of occupied cells and related
simulation turn in a discrete simulation).

Most of the literature has been focused on the reproduction of the physics of the
system, soon the lowest level.Relevant recentworks, such as [6, 9], start exploring the
implications of tactical level decisions during evacuation. In particular, [6] modifies
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the floor-field Cellular Automata approach for considering pedestrian choices not
based on the shortest distance criterion but considering the impact of congestion on
travel time. Wagoum[9] explores the implications of four strategies for the route
choice management, given by the combination of applying the shortest or quickest
path, with a local (i.e., minimise time to vacate the room) or global (i.e., minimise
overall travel time) strategy. The global shortest path is calculated with the well-
known Floyd–Warshall algorithm, implying computational times that can become
an issue by having a large number of nodes or by considering special features in the
simulated population (i.e., portion of the path where the cost differs from an agent to
another). The work in this paper will propose an alternative and efficient approach
to find a global path, where each agent will be able to consider additional costs in
sub-paths without adding particular weight to the computation.

We must emphasise the fact that the measure of success and validity of a model
is not the optimality with respect to some cost function, as in robotics, but the plau-
sibility, the similarity of results to data acquired by means of observations or experi-
ments. Putting together tactical and operational level decisions in a comprehensive
framework, preserving and extending the validity that, thanks to recent extensive
observations and analyses (see e.g., [2]), can be achieved at the operational level,
represents an urgent and significant open challenge.

This paper presents the tactical level component of a hybrid agent architecture in
which these decisions are enacted at the operational level by means of a floor-field
based model, in a discrete simulation approach.

2 Brief Description of the Approach

The approach presented in this paper represents an extension and completion of a
work started in [4], where a first hybrid agent architecture was defined, employing
a floor-field operational level and a first knowledge-based tactical level component.
The representation of the environment was derived by spatial annotations that were
used to define obstacles, areas in which agents entered the simulation, areas that
were target of their movements and way points. The derived spatial representation
did not include information about distances among the areas that were mapped to
nodes of a graph. In [5], this spatial representation was enhanced both to include
this information, that is actually necessary to grant the agents proper way-finding
capabilities, and also to consider computational issues related to model construction
and execution. In fact, instead of having the agents performing individually path
planning operations that required the inspection of the spatial representation, we
decided to define and construct a data structure called Paths Tree comprising all
plausible paths towards a destination and the associated expected travel cost not
considering potential congestions in the relevant areas.

In the model set-up phase (while constructing the floor fields guiding agents at the
operational level), this kind of structure is constructed for each possible destination
and then agents can access these shared structures for finding the most appropriate
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path towards its destination. While paths trees comprise static information about the
travel time in free flow conditions, each agent is also granted the ability to estimate
the added cost due to congestion close to the way points it is able to perceive: in
this way, agents are able to choose a longer but non congested path, instead of a
shorted one that would imply a significant queuing time. Agents are also able to re-
evaluate an adopted plan, considering additional freshly acquired information (i.e.,
the perceived congestion in an area they just entered), and potentially perform a re-
planning operation. Additional information about paths trees formal definition and
construction algorithms are omitted for sake of space and they are available in [5].

3 Experiments and Evaluation

In order to show the potential and the possibility to fine tune the proposed approach,
the evacuation in a hypothetical scenario has been simulated with a consistent incom-
ing flow of people. A graphical representation of the environment and flow config-
uration is depicted in Fig. 1a: it illustrates a sample situation in which two flows of

(a)

(b)

Fig. 1 The experimental scenario (a) and the associated paths tree (b)
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(a)

(b)

Fig. 2 Evolution over time. Number of pedestrians still in the scenario at a given time (a). Travel
time for pedestrians entering the simulation environment at a given time (b)

pedestrians enter an area with six exits, distributed among 3 equal rooms, at a rate
of 10 pedestrians per second. An important peculiarity is the slightly asymmetrical
configuration of the environment, that causes shorter distances towards the three
southern exits. This is reflected by the illustrated paths tree in Fig. 1b where, to give
an example, the paths starting from o4 and o5 and leading out through o2 take a little
more time than the ones going out by using o7.

A diagram showing the evolution of the number of pedestrians still in the sce-
nario through time is depicted in Fig. 2a and a graph showing the evolution of
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(a) (b) (c)

(d) (e) (f)

Fig. 3 The test scenario respectively without and with a random perturbation of the agent estimated
travel time. Step 150–200, w/o RE (a); step 300–350, w/o RE (b); step 450–500, w/o RE (c); step
150–200, with RE (d); step 300–350, with RE (e); step 450–500, with RE (f)

travel time for pedestrians entering the simulation environment at a given time in
Fig. 2b. Although the adopted approach is not actually aimed at finding the optimal
planning solution for pedestrians, minimising the overall evacuation time, but rather
a plausible one from the individual pedestrian perspective, the difference between the
baseline tactical level, based on the shortest path choice, and the adaptive planning
strategy, considering also the level of congestion, is apparent.

The slight asymmetry of the environment actually affected the results of the sim-
ulations, also shown with cumulative mean density maps [3]1 in Fig. 3.

1These heat maps describe the mean local density value in each cell. It is calculated in a time
window of 50 steps where, at each step, only values of occupied cells are collected.
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In particular, the results of two simulations in which different approaches have
been implemented for the dynamic estimation of the path travelling times by the
agents are shown. In the first approach, shown in the top row, all the agents perceived
the same congestion time for the openings that they can detect during the simulation
(i.e., the travel time corrected considering the path delay discussed in the previous
section). In the second approach, instead, a random error of ±10% has been added
to the overall calculation of the travelling time T ime(p) in order to consider the fact
that pedestrians do not have an exact estimation of distances and delays caused by
perceived congestion, in a more common sense spatial reasoning framework [1].

By comparing the results it is possible to notice that, counter-intuitively, the inser-
tion of the random perturbation caused an optimisation of the flows in this over-
crowded scenario. In the first 100 steps of the simulations, the dynamics for the
two approaches is similar and described by the missed usage of the central room,
since the distance between the northern and southern exits is quite small. The less
precise calculation causes the agents to start using the central room and associated
exits earlier than in the precise delay estimation case, in particular, around 130th
step versus 150th step in the first scenario, generating lower level of densities and,
thus, higher outgoing flow rates. Moreover, this error balances the attractiveness of
middle southern and northern exits that are more evenly adopted than in the precise
calculation approach (as shown in Fig. 3b, e, leading not only to a more efficient but
especially more plausible space utilisation.

Finally, to analyse the overall trend of the computational times during the sim-
ulations, an additional simulation scenario has been designed and executed. Both
benchmarks have been executed in a laptop PC with CPU Intel(R) i7 @ 2.3 Ghz, 16
GB RAM and operative system windows 8.1-x64.

The scenario consists of a relatively large area (200m × 200m) composed of
three large rooms connected one by one by three doors of different sizes: a large
one of 5m and two small ones of 2m. The environment configuration is shown in
Fig. 4a. Figure4b shows the results of the computational times analysis. It is possible
to notice that the trend is linear (at least for the considered number of agents) and
the results are characterised by a relatively small overhead due to the tactical level
computation. The tactical level affects the time by means of three main activities,
which are the perception of the congestion in the chosen path, the possible route re-
computation and the calculation of the block probabilities for the estimation of the
congestion time. The plan re-computation (the purple line in the figure) is the most
significant one, since it ‘bounces’ from having the lowest value between the three
activities to a much higher one sometimes also overcoming the floor field update
of the operational level. In the end the trend of these activities is as well linear and
the overall turn computation time remains lower than the actual simulated time until
about 1000 agents are simultaneously simulated.
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(a)

(b)

Fig. 4 The benchmark scenario used for the analysis of the computational times of the tactical
level. Set-up (a); results (b)

4 Conclusions

The paper has presented a hybrid agent architecture for modelling tactical level
decisions in pedestrian simulations. The agents make decisions based on a static
a-priori knowledge of the environment and dynamic perceivable information on the
current level of congestion of visible path alternatives. The model was experimented
in a sample scenario showing the adequacy in providing adaptiveness to the contex-
tual situation while preserving a plausible overall pedestrian dynamic: congestion is
detected and, when possible, longer trajectories are adopted granting overall shorter
travel times. The actual validity of this approach must still be proven, both in evac-
uations and other kinds of situations: this represents an open challenge, since there
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are no comprehensive data sets on human tactical level decisions and automatic
acquisition of this kind of data from video cameras is still a challenging task [7].
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Evacuation Dynamics of Asymmetrically
Coupled Pedestrian Pairs

Frank Müller and Andreas Schadschneider

Abstract We propose and analyse extended floor field cellular automaton models
for evacuation dynamics of inhomogeneous pedestrian pairs which are coupled by
asymmetric group interactions. Such pairs consist of a leader, whomainly determines
the couple’s motion and a follower, who has a defined tendency to follow the leader.
Examples for such pairs are mother and child or two siblings of different age. We
examine the system properties and compare them to the case of a homogeneous
crowd. We find a strong impact on evacuation times for the regime of strong pair
coupling due to the occurrence of a clogging phenomenon. In addition, we obtain a
non-trivial dependence of evacuation times on the followers’ coupling to the static
floor field, which carries the information of the shortest way to the exit location. In
particular we find that systems with fully passive followers, who are solely coupled
to their leaders, show lower evacuation times than homogeneous systems where all
pedestrians have an equal tendency to move towards the exit. We compare the results
of computer simulations with recently performed experiments.

1 Introduction

Human crowds and pedestrian traffic are usually composed of both social groups and
individuals. Recent empirical studies brought to attention that in this context social
groups are rather the normality than the exception (see several contributions in [1]).
Moussaïd et al. [2] observed in a field study that up to 70% of pedestrians walk in
social groups and Xi et al. [3] found that most pedestrians walk in two-person-groups
whereas individual pedestrian traffic is only second frequent. The high relevance of
two-person-groups shows the importance of a deeper understanding of the impact
such groups impose on evacuation processes.
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We recently introduced models for evacuation processes including social groups
which are inspired by methods of non-equilibrium physics [4]. From the perspective
of physics the pivotal characteristic of thesemodels is that social groups are cohesive,
i.e. group members tend to maintain a spatial coherence. The current work focuses
on asymmetrically coupled two-person-groups and aims to provide models for such
pairs in evacuation processes. Being the smallest social group two-person-groups still
can be very diverse. The strength and symmetry of interaction as well as the group
members’ level of orientation can differ significantly. Thus it has to be verified which
set of models is applicable for simulations. The model types studied here can e.g.
describe pairs like mother and child or siblings of different age where one part will
dominantly determine the motion and the other part will have a defined tendency to
follow. The dominating part will be called leader and the following part will be called
follower. The proposed models are used for computer simulations and characteristic
effects will be discussed.

The basic underlying model used for the computer simulations is the floor field
cellular automatonmodel (FFCA). It is a stochasticmodel defined on a 2-dimensional
grid with time evolution in discrete steps. A cell can be either empty or occupied
by a particle representing a pedestrian. Particles can move by transition to a neigh-
bouring cell. The transition will take place with a transition probability arising from
different floor fields which encode the tendency to move towards the room’s exit and
the interaction between pedestrians—here the group cohesion. Further details and
general properties of the FFCA can be found in [4].

The evacuation simulations are performed on a standard grid of 63 × 63 cells
with a moderate pedestrian density of ρ = 0.02. Observables are averaged over at
least 500 runs.

2 The DGFF and MTFF as Mediators of Group Interaction

The DGFF and MTFF are the central components which create the group cohesion
in the models studied here. We introduced both concepts in [4] and will recap the
most important properties in the following.

2.1 Properties of the DGFF

In the first proposed model the DGFF mediates the interaction between a leader and
the follower. An FFCA with DGFF provides a model for crowds with two-person-
groups which have a bond with a likelihood to permanently break up in higher
densities.

The DGFF extends the dynamic floor field (DFF) introduced in [5] in several
respects. It shares the basic idea that pedestrians increase a field value in the cell they
leave when moving to a neighbouring cell while decay and diffusion can modify it
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over time. This accounts for the important property that the DGFF is not related to
position, but to the movement the leader has performed in preceding time steps. Each
couple interacts via its individual DGFF. Only when the leader moves the field is
built up and only the follower who is associated with the respective leader reacts on
this leader’s DGFF. If we do not take the SFF into account followers are most likely
to transit to cells with a high associated DGFF value. This causes group members to
tend moving on the same trajectory. The full transition probability for the follower
including the SFF and the DGFF is

pF(s)
i j = N exp

(
kFS Si j

)
exp

(
kFDD

F(s)
i j

)
(1 − ηi j )ξi j . (1)

Here, pF(s)
i j is the transition probability for the follower of pair s, kFS is the coupling

constant to the static floor field for followers and kFD is the coupling constant to the
DGFF for followers, determining the coupling strength to this field. N is a normali-
sation term. The product (1 − ηi j )ξi j guarantees the exclusion principle and avoids
transition into wall cells, see e.g. [5].

The transition probability for the leader only considers the SFF, which encodes
the shortest way to the exit:

pL(s)
i j = N exp(kLS Si j )(1 − ηi j )ξi j . (2)

The DGFF can be understood as a field composed of field quanta (bosons1) with
defined internal degrees of freedom. E.g. each field quantum carries the information
by which particle it was produced. This allows particles to interact only with bosons
of a special type. In particular it enables a follower particle to ignore all bosons, but
these of its leader. The leader particles do not react with any boson type. This way an
asymmetric group interaction can be established while self-interaction of particles
is completely avoided.

It is an important characteristic of the DGFF concept that a moving particle
increases the DGFF by m � 1 instead of only m = 1 as it is the case in [5]. Small
values ofm would not lead to sufficiently structured boson traces the followers could
continuously follow since only one particle will contribute to the DGFF whereas in
case of the DFF all particles contribute to the field. In addition a diffusion parameter
α > 0 is important for continuous group cohesion as it broadens the boson trace. Both
factors highly increase the probability that followers do not lose the tracks of their
leaders. Figure1a illustrates the strong dependency of the average distance between
leaders and followers d on the diffusion parameter α and the boson multiplicity m.
d is a measure for group cohesion. While m = 1 does not create any noticeable pair
bond, m = 400 causes strong group cohesion.

1Despite the denomination, ‘bosons’ should not be considered as quantum mechanical particles.
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2.2 Construction of the Moving Target Floor Field

As explained in Sect. 2.1 the DGFF is solely increased in a cell when the leader
leaves the cell by moving to a neighbouring cell. Thus the DGFF is depending on the
leader’s movement. The question arises how evacuation dynamics changes when the
underlying floor field is solely depending on the leader’s position. This is the case
with the second model we examine here—the moving target floor field (MTFF).

In the FFCA model with MTFF group cohesion is achieved by an asymmetric
interaction related to the relative position of the leader with respect to the follower.
Every leader of pair s induces a group-specific floor field M (s) in the von Neumann
neighbourhood of his associated follower:

M(s)
i j (T ) = max

(ĩ, j̃)

{√
(iL (T ) − ĩ)2 + ( jL (T ) − j̃)2

}
−

√
(iL (T ) − i)2 + ( jL (T ) − j)2

(3)
(iL(T ), jL(T )) denotes the position of the leader at time step T . The first term on
the r.h.s. is a normalisation term where (ĩ, j̃) runs over the cells in the von Neumann
neighbourhood of the follower.

The MTFF contributes to the transition probabilities in an analogous manner as
the DGFF in Sect. 2.1. The total transition probability of the follower F of pair s is

pF(s)
i j = N exp((kFS Si j + kMM (s)

i j )(1 − ηi j )ξi j . (4)

3 Impact of Pair Cohesion on Evacuation Dynamics

In this section we will investigate the question how the fragmentation of a pedestrian
crowd into asymmetrically coupled pedestrian pairs impacts evacuation dynamics
and how the resulting evacuation process compares to the scenario with a homoge-
neous crowd without pair bonds. We will analyse both DGFF and MTFF systems
and compare the results.

3.1 Comparison of DGFF, MTFF and Homogeneous Model

For the purpose of comparison with a homogeneous crowd the model is configured
such that leaders and followers are equippedwith the same level of orientation, which
is realised by an equal coupling constant with respect to the SFF. When kFD = 0 the
configuration kLS = kFS coincides with a homogeneous crowd with no interaction
between the pedestrians.

First, we turn to themodel with DGFF. For growing kFD the homogeneous crowd is
fragmented into asymmetrically coupledpairswhich increasinglymaintain proximity
and tend to move on the same trajectory. How will this impact evacuation dynamics?
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(a) (b)

Fig. 1 Different views on the DGFF model. Dependence of the average pair distance d on the
diffusion parameter α for different values of the boson multiplicity m (a), Dependence of T on kFD
(b). The dashed line refers to T = Thom , which is the average evacuation time of a homogeneous
crowd without pair bonds

Figure1b shows the dependence of T on kFD for the DGFF model: The coupling in
pairs slightly improves the evacuation process. The effect is small, but it is clearly
visible that T drops for growing kFD . The drop takes place in a comparably small
interval since the boson multiplicity is high at m = 400. It is interesting to note that
the effect does not coincide with a lower average number of conflicts per time step.
An analysis of this number shows that conflicts are even increased for kFD > 0, but
still T is lowered. The higher number of conflicts is due to the group cohesion. The
continuous proximity of group members increases the likelihood that these choose
the same cell for a transition which leads to an overall increase of conflicts.

The improvement of evacuation time T in this model becomes comprehensible
when recalling the nature of the DGFF. It encodes spatio-temporal information about
the path the leader has successfullymoved on—not only spatial information about the
leader.Withoutmovement noDGFFbuilds up.Therefore, the information contributes
to choose successful paths through the crowd.

The coupling mechanism of the MTFF highly differs from that of the DGFF
since it is not related to the movement of the leader, but to his position. In fact
simulations show that this difference translates to measurable differences in the
respective evacuation processes. Figure2a is the analogon of Fig. 1b for the MTFF
model. It shows a non-trivial dependence of the evacuation time T on the coupling
parameter kM . The dashed line in Fig. 2a refers to the average evacuation time T of
a homogeneous system without pair bonds. In both figures coupling to the SFF is at
kLS = kFS = 0.8. In the domain of kM � 0.6 the coupling in pairs results in a lower T
while for kM � 0.6T is increased. T remains nearly constant for kM � 4 (T ≈ 258)
until clogging processes increase T again. Clogging is discussed in Sect. 3.3.
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(a) (b)

Fig. 2 Different views on the average evacuation time T for systems with MTFF. The dashed
line visualises T = Thom , which is the average evacuation time of a homogeneous crowd without
pair bonds and kS = 0.8. Dependence of evacuation time T on the coupling strength kM in a
configuration with kLS = kFS = 0.8 (a). Dependence of evacuation time T on kFS which controls the
follower’s coupling to the SFF. Pair coupling strength is constant at kM = 2 and kLS = 0.8 (b)

3.2 Influence of the Follower’s Coupling
to the Static Floor Field

In this section we shift the point of interest to the question how the coupling of the
follower to the static floor field (SFF) kFS influences the evacuation process. Apart
from the coupling to the leader via MTFF the follower is also coupled to the SFF,
which encodes the shortest way to the exit. kFS = 0 means that the follower’s motion
is not oriented at the exit at all whereas kFS → ∞ leads to a deterministic movement
on the shortest path to the exit. kFS can be interpreted as the follower’s orientation
towards the exit or more generally as the ability and will to reach the exit himself.

Figure2b shows the resulting average evacuation time for a system with kM = 2.
The dashed line depicts the evacuation time Thom of the homogeneous reference
system without pair coupling and equal kS . It is a counter-intuitive result that fully
passive followers, who do not have any tendency to move to the exit themselves
lead to a more efficient evacuation with lower evacuation times than a homogeneous
crowd with an equally good orientation towards the exit. It appears to be beneficial
if followers are solely led by their leaders. In contrary strong pair coupling together
with the equally good orientation towards the exit (kLS = kFS = 0.8) slows down the
evacuation. This result was also found in Fig. 2a.

The domain of kFS � 2.5 where T falls below Thom again arises from a situation
where followers have such good ability to reach the exit themselves that despite their
pair bond they overtake their leaders and reach the exit first. Here the overall average
evacuation time benefits from the fast evacuation of the followers.
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3.3 Clogging and Gridlocks

In [4] we had found clogging phenomena for the asymmetric fixed-bond leader–
follower model. In this model the pair bond is fully fixed as for every cell transition
the follower is positioned on the cell the leader had occupied previously. The pair
distance is always d = 1. The question remained if such clogging phenomena can
be found when the bond is dynamic and d can take on arbitrary values. Indeed this
is the case for systems with MTFF.

In Sect. 3.1 it was addressed that for high kM and the resulting high group cohesion
clogging starts to increase the average evacuation time T . Figure3a shows such
increase. Here T fluctuates strongly and the standard deviation of T is accordingly
high. The phenomenon occurs due to followers who maintain the nearest possible
position to their leaders in front of the exit and impede their leaders from reaching the
exit. If a configuration occurs where followers completely shield their leaders from
exiting no particle will be evacuated until the situation dissolves. Figure3b displays
an example of such situations. For very high values of kM the shielding followers have
a nearly vanishing probability to ever leave the cell next to their leader and it comes
to a final stop of the evacuation (gridlock). This is a situation which is not found in
reality. However, clogging due to pairs who do not let go each other in a high density
situation is well conceivable and a possible source of impediment in evacuation
processes through a narrow door. The high standard deviation in the domain of
clogging indicates that evacuation scenarios become increasingly unpredictable once
clogging becomes a likely effect during the evacuation.

The described clogging phenomenon does not occur in systems with DGFF as
this field is solely built up by the motion of the respective leader. While the MTFF
only encodes spatial information about the leader the DGFF encodes spatio-temporal
information about the path the leader has successfully moved on. When it comes to
highly congested states the DGFF is only rarely increased and the decay mechanism

(a) (b)

Fig. 3 Clogging in systems withMTFF. Dependence of evacuation time T on the coupling strength
kM with kLS = 0.8 and kFS = 0.2. High values of kM lead to increased values of T and high
σ(T ) due to clogging (a). Example for a typical clogging situation for a system with door width
d = 3 (b)
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brings the field strength down to low values or zero. Then movement is mainly
governed by the SFF and particles start moving towards the exit again. Thus, systems
with DGFF cannot develop long-term clogging or even gridlocks.

4 Conclusion

Quantitatively for moderate coupling both models show only small deviations from
the average evacuation time T of a homogeneous reference system without pair
coupling. This result is in linewith the evacuation experimentswe recently performed
with students [6]. However, qualitatively the two models differ significantly from
each other as the DGFFmodel always leads to a decreased T while the MTFFmodel
shows two domains with decreased T for low and increased T for high coupling
strength kM . At present the collected data from experiment does not provide sufficient
statistical significance to rank one model over the other. Further experiments will
contribute to investigate this question.

For the MTFF system our simulations have shown a non-trivial dependency of T
on kFS . The fragmentation of a crowd into couples with fully passive followers results
in a more efficient evacuation process than a homogeneous crowd.

In the domain of strong coupling to the MTFF clogging leads to an increase of
T and a high standard deviation, which makes the average evacuation time T less
meaningful and a single evacuation process less predictable. This is an important
factor when simulations are to predict evacuation times, e.g. for evacuation assistants
to support decisions about optimum evacuation routes during emergencies.
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Granulometric Distribution and Crowds
of Groups: Focusing on Dyads

Andrea Gorrini, Giuseppe Vizzari and Stefania Bandini

Abstract Pedestrianflows are characterised by the preponderant presence of groups,
with particular reference to dyads. The paper presents a research focused on group
and age-driven pedestrian behaviour in an urban crowded scenario. Data analysis
was performed by using an open source tracker tool. Results showed that in situation
of irregular flows (LOS B) dyads walked 30% slower than singles, and that elderly
walked 40% slower than adults. The achieved results have been used towards the val-
idation of the simulation platform ELIAS 38, with reference to the representation
of the granulometric distribution of groups and heterogeneous speed profiles.

1 Introduction

Traditional approaches did not consider the impact of social relationships among peo-
ple within the crowds [15] (generally defined as homogeneous systems composed of
single entities), but more recent empirical contributions [12] have showed that pedes-
trian flows in crowded scenarios are characterised by the preponderant presence of
groups. Analyses of crowd phenomena not considering this aspect have a reduced
accuracy since grouping was found to negatively impact flow rate, speed and evac-
uation time. This is due to the difficulty in movement coordination among members
(depending on the density level in the environment) [11], the need to maintain spa-
tial cohesion to communicate while walking (i.e. proxemic behaviour) [9] and/or the
urgency to evacuate together in case of emergency (i.e. affiliative behaviour) [10].
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Early studies [6] highlighted that the granulometric distribution of crowds is
strongly affected by two-members groups (i.e. dyads), the most frequent and basic
interacting elements of a crowd. Results achieved from a large data collection cam-
paign [8] showed that pedestrian flowswere characterised by 16% single pedestrians,
44% dyads, 17% triples and 23% groups of 4 or more members.

The presence of groups and their granulometric distribution in terms of size, but
also the walking speed, are largely determined by the motivation by which people
are gathered or move through a certain environment, and/or by the type of event
they are participating to (i.e. crowd profiling) [4]. For example, train stations are
mainly characterised by the presence of fast moving single commuters, while other
venues such as pavilions or stadia are more often characterised by the presence of
informal or guided groups of visitors, generally moving slower than the former type
of pedestrian.

Moreover, pedestrian density widely affects the locomotion and proxemic behav-
iour of groups (i.e. spatial patterns) [5]. At low density dyad members walk side by
side, forming a line abreast pattern but, when density increases, the linear formation
turns into a diagonal pattern, with an individual positioned slightly behind in compar-
ison to the other one. In situation of high density, the spatial distribution of the dyad
members leads to a river-like pattern to minimise collisions with other pedestrians.
Groups composed of three or more members often split into single individuals and
dyads, in a dynamic process of mutation of the spatial configuration of the group
(e.g., V-like pattern, spherical and ellipsoidal pattern) [11].

In this framework, the paper presents a research based on a field observation
focused on small size group behaviour (i.e. dyads) in situation of irregular density
condition. This is aimed at measuring the combined effect of grouping and density
on pedestrians’speed, trajectories and spatial behaviour (e.g., spatial distance and
degree of alignment between dyad members). Moreover, we focused on the impli-
cations of age on pedestrian behaviour. Compared to adult pedestrians, elderlies are
characterised by lower speed and larger distances among groupmembers while walk-
ing [3]. This is respectively due to the decreased perceptive and locomotor skills [16]
and a subjective sense of psychological vulnerability [18].

Data collection was based on the video recorded observation of pedestrian
dynamics in an urban crowded commercial-touristic walkway in Milan (the Vit-
torio Emanuele II gallery). Past data analysis of the video was manually performed,
to achieve preliminary results on the observed dynamics [1] and later it led to the
definition of a proper procedure for the detection of groups in the observed pedestrian
population: a checklist (see Table1), comprising a set of locomotion, communication
and physical indicators, was used to detect groups and elderly pedestrians (approxi-
mately between 65 and 70years old).

The data analysis performed for the present work used the Tracker Video Analysis
and Modelling Tool,1 an open source software built on the Open Source Physics

1http://physlets.org/tracker/.

http://physlets.org/tracker/
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Table 1 The checklist used by for detecting groups and elderly pedestrians

Group detection

Locomotion Behaviour • two or more people walking in the same direction

• high spatial cohesion and coordination while walking

• waiting dynamics to regroup in case of separation

• leader/followers dynamics in sudden changes of direction

Verbal Behaviour • talking while walking
Non Verbal Behaviour • physical contact

• body and gaze orientation to the each other

• gesticulation while talking and/or indicating
Elderly detection

Locomotion Behaviour • slow and regular walking pace

• stable trajectories towards the direction of movement

• attentive in anticipating oncoming pedestrians by far

• unsteady gait and lame posture

Physical Characteristic • white hair/baldness
• clothing (e.g., style, colours, hat)

• use of artefact (e.g. stick, tripods)

(OSP) Java framework.Video imageswere calibrated2 to achieve a zenith perspective
of the area and analysed one frame every ten (every 0.4 s). The pedestrians’ positions
(X, Y ) and the related frames (t) were exported for analysing data about trajectories
and speed.

The achieved results have been used towards the validation of the agent-based
simulation platform ELIAS 38 [2, 14], with reference to the representation of the
granulometric distribution of groups (starting initialisation of the simulated popu-
lation and model calibration) and heterogeneous group and age-driven speed pro-
files. Moreover, the checklist used for data analysis (see Table1) has been employed
towards the development of automated analysis tools employing computer vision
techniques.

The proposed approach is finally aimed at improving the walkability of congested
urban areas and the security of large gathering-transit facilities (e.g., quality and com-
fort of sidewalks, route navigation, pedestrian-vehicular interaction), in an attempt
to fulfil the prescriptions of the European Chart of Pedestrian Rights (1988) (i.e.
Pedestrian-friendly Cities).

2The functions Filter Perspective and Filter Resize allowed to achieve a zenith
perspective of the images and to maintain the proportion of the area adjusting the pixels. The
functionOrigin of the Axes allowed tofix the origin of an orthogonal plane. The dimensions
of the plane were calibrated by using a Calibration Stick, according to available spatial
references. The function Point Mass allowed to manually track pedestrians, considering the
space in between their feet (we did not use the position of their heads due to the image distortion).
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Fig. 1 Results. The red lines refer to average results. LOS are highlighted with a coloured back-
ground and labels. Level of density (a); pedestrian flow rate (b)

2 Level of Density

The average level of density was 0.22 ped/m2 (see Fig. 1a). The average flow rate was
7.78 ped/min/m (see Fig. 1b).According to theWalkwayLevel of ServiceCriteria [7],
results corresponded to LOSB:minor conflicts under low-mediumdensity condition.

3 Speed and Trajectories

Results about speed and trajectories are presented in Fig. 2 andTable2. 62 pedestrians
were tracked under LOSB condition. The sample3 was composed of: 15 adult singles
(AS), 16 adult dyadmembers (AD), 15 elderly singles (ES), 16 elderly dyadmembers
(ED).

A two-factor analysis of variance4 showed a significant main effect for the group
factor on speed [F(1,58) = 28.61, p < 0.0001], and a significant main effect for the
age factor on speed [F(1,58) = 105.97, p < 0.0001]. Finally, results showed that
the interaction between the group and age factors on speed was significant [F(1,58)
= 13.58, p < 0.001]. A series of independent-samples t-tests showed a significant
difference between the speed of: AS and AD, t(29) = 2.05, p < 0.0001; AS and ES,
t(28) = 2.05, p < 0.0001; AS and ED, t(29) = 2.05, p < 0.0001; AD and ES, t(29) =
2.05, p < 0.001; AD and ED t(30) = 2.04, p < 0.0001. There was not a significant
difference between the walking speed of ES and ED, t(29) = 2.05, p = 0.21.

360% single males and 40% single females. 25% male-male dyads, 25% female-female dyads,
50% mixed gender. 58% pedestrians from South to North, 42% from North to South. Pedestrians
who stopped were not tracked, as well as mixed age dyads.
4All statistics hereby presented were conducted at the p < 0.05 level.
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Fig. 2 Results: speed (a); trajectories (b)

Table 2 Results about speed, trajectories, spatial distance and alignment

Adult singles Adult dyads Elderly singles Elderly dyads

Speed (m/s) 1.25m/s ± 0.23 0.88m/s ± 0.08 0.68 m/s ± 0.19 0.61 m/s ± 0.09

Trajectories (m) 13.01 m ± 0.56 12.86m ± 0.49 12.80 m ± 0.34 12.84 m ± 0.34

Distance (m) – 0.64 m ± 0.31 – 0.65 m ± 0.2

Alignment (m) – 0.17 m ± 0.18 – 0.21 m ± 0.17

A two-factor analysis of variance was conducted to compare the length of trajec-
tories. Results showed that the group factor [F(1,58) = 0.25, p = 0.62] and age factor
[F(1,58) = 0.97, p = 0.33] had not a significant main effect on trajectories. Results
showed that the difference among the length of the trajectories of singles and dyads
was not significant, like so comparing adults and elderly pedestrians.

Results showed that at LOS B dyads walked 30% slower than singles, and that
elderly walked 40% slower than adults. Further analysis showed that gender and
direction of movements had no significant effect on speed.

4 Dyad Proxemic Behaviour

The results about dyad proxemic behaviour are presented in Fig. 3 andTable2. Spatial
distance and alignment were measures as the distance between the centroid (geo-
metrical centre of the group) and the relative positions of the group members along
the X-axis and Y-axis.

An independent-samples t-test showed that the difference between the spatial
distance of AD and ED was not significant, t(725) = 1.96, p = 0.75. Further t-test
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Fig. 3 Results about the spatial distance and degree of alignment: adult dyads (a); elderly dyads
(b)

analysis showed a significant difference between the degree of alignment of AD
and ED, t(725) = 1.96, p < 0.005. A linear regression analysis showed a significant
impact of speed on the spatial alignment of ED [F(1,287) = 5.97, p < 0.02].

Results showed that at LOSB adult dyadswalkedwith a line abreast pattern, while
elderly dyads walked less aligned with a slight diagonal pattern. Further analysis
showed that gender had no effect on spatial distance and degree of alignment among
dyads.

5 Final Remarks

The current work has proposed a methodological framework based on the integra-
tion between empirical surveys and computer-based simulations.We investigated the
impact of grouping and ageing on pedestrian circulation dynamics in urban contexts.
Results showed that in situation of irregular flows dyads walked much slower than
singles due to the need to maintain spatial cohesion to communicate; age signifi-
cantly reduced the speed and the degree of alignment among group members due to
locomotion skills decrease.

Although several empirical studies have been performed in this framework
[13, 17], there is still a lack of contributions in the design of standardised method-
ology for the observation of pedestrian crowds in natural contexts. From the social
science perspective, this approach allows a very limited control over the environment
in which the empirical study takes place. However, this allows collecting empirical
data about human behaviour considering the social context in which the subjects are
situated. According to this approach, we propose hereby a general conceptualisation
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of different walking behaviours based on this experience:

• Time driven pedestrians: people who have time constraints and walk through a
certain environment constantly adjusting the trajectory between origin and des-
tination to preserve a high speed (very often singles and commuters accessing
public transport services);

• Space driven pedestrians: tourists or shoppers who visit for the first time a certain
environment or have an exploratory attitude. Sometimes they are organised in
large groups led by a guide. They stop more often, either for taking pictures of
interesting spots or for shopping;

• Social driven pedestrians: strollers and inhabitants who amble thought a certain
environment since they live or work nearby the area (more often small groups or
families). They can stop their walk for an improvised conversation with somebody
they know or for looking at the shop windows.

The proposedmethodological approach is aimed at validating the pedestrian simu-
lation platform ELIAS 38. Omitting the representation of grouping, heterogeneous
behaviours and speed profiles could hardly compromise the accuracy of the results
obtained by means of simulation campaigns execution. Although there are some
objections about the simplified level of correspondence between simulations and
real phenomena, once validated this method represents an innovative contribution
for testing in advance the efficacy of alternative solutions for the design of complex
spatial layouts and the management of pedestrian circulation dynamics. (i.e. what-if
scenarios).
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Method for Simulating the Evacuation
Behaviours of People in Dynamically
Changing Situations

Tomoichi Takahahi, Toshinori Niwa and Rintaro Isono

Abstract Evacuation drills are executed to practice smooth rescue operations during
emergencies. Evacuation simulation systems have been proposed to simulate evac-
uation behaviours of people in such situations, and to improve prevention plans. In
this paper, we point out new features in simulating evacuation behaviours in dynam-
ically changing situations and propose a simulation method in a case of closing fire
shutters. Our simulation results show more realistic behaviours of evacuations than
the traditional simulations and indicate potential to improve prevention plans for
emergency situations and thus reduce fatalities, injuries, and damage from disasters.

1 Introduction

Multi-agent simulations (MAS) have been used to study the dynamics of social
systems [2]. Disaster-related simulation is one field of application that makes it pos-
sible to simulate emergency scenarios that are difficult to replicate in the real world.
MAS expresses the microscopic behaviours of humans and simulates evacuation
behaviours of crowds. People make decisions and change their actions according to
the guidance they receive from public announcement (PA) systems as the situation
changes dynamically by unexpected events. Examples of announcements are “Please
follow the warning lights leading to the emergency exit” or “The fire shutter closes
automatically, so please use caution.”

Fire shutters have been installed in buildings by law to prevent fire and smoke from
spreading inside the buildings. Some shutters are designed to close automatically in
a case of fire while other shutters are closed by human operations. The closing of
shutters forces people to change their evacuation routes. Some people take note of
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announcements from a PA system that broadcasts fire shutter closings and subse-
quently change their evacuation route. Others who do not notice the announcements
may go to routes that are closed by the fire shutters. These actions change evacuation
behaviours and make the required safe egress time (RSET) longer. RSET is one of
the standards in fire prevention planning [3].

In this paper, we propose a method of simulating evacuation behaviours from
buildings under dynamically changing situations. In Sect. 2, we show that it is com-
mon for environments to change during emergency situations and discuss problem
setting in the changing situations. Section3 describes an agent based evacuation sim-
ulation system, TENDENKO, and shows that a map is one of the important factors
in the simulations. The map changes during simulations and cognitive maps that
agents use will diverge from the real ones over time. The methods used to handle
the changes and inconsistencies of maps, and the simulation results are presented in
Sect. 4. Section5 summarises our study.

2 Background and Problem Setting of Changing Situations
During Evacuation

When emergencies occur, people start evacuation by sensing the emergency or they
are guided by PAs. Emergency situations vary by the minute, and in the case of a fire,
some rooms are filled with fire and smoke, thereby, activating an automatic fire alarm
system. Sprinklers installed into the ceiling will spray water and fire shutters will
close. During earthquakes, furniture can move over the floors, blocking occupants
from smooth evacuation to exits.

Table1 shows categories of changing situations during evacuations. Case 1 is a
normal situation in everyday life, and the other four cases correspond to emergency
situations. Case 2 corresponds to a situation during minor emergencies such as a
small fire. The layout of the floor inside the buildings remains the same as Case
1 during the evacuation. Cases 3, 4, and 5 correspond to situations where some
people may have trouble finding smooth evacuation to exits. Case 3 is a situation
where an earthquakes causes furniture to fall to the floor and the changes hinder or
prevent evacuations. In Case 4 human operations such as fire shutter closing, may
block the evacuation routes. Case 5 is the situation in extreme disasters, where large

Table 1 Category of changing situations at evacuations

Case Situations Environment Map Fire shutter

1 Everyday Static Same Open

2 Emergency Static Same Open

3 Emergency Dynamic Different Open

4 Emergency Dynamic Different Closed

5 Emergency Dynamic Unknown Open/closed
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Table 2 List of evacuation simulation systems

Building Exodus SimTread LEGION Studio TENDENKO

MAP model Network CAD level CAD level CAD level

Order of evacuees 100,000 10,000 10,000 10,000

Evacuation type Instant Instant Instant Instant/after
tasks/emergent

Communication No No No Among agents,
broadcast

earthquakes cause so much destruction to parts of buildings that the floor layout is
completely changed.

Evacuation drills are executed to practice smooth rescue operations during emer-
gencies. However, it is difficult to execute the evacuation drills in preparation for
the situations in Cases 3, 4, and 5. In fact, in those situations, real-time evacuation
guidance is required to ensure smooth evacuations from buildings. Evacuation sim-
ulation systems are proposed to simulate evacuation behaviours of people in such
situations, and to improve prevention plans in terms of available safe-escape time
(ASET) and the RSET. Table2 illustrates evacuation simulation systems [4], which
handle Case 2 situations but do not function to simulate the evacuation scenarios in
Cases 3 and 4.

In this paper, we perform and investigate evacuation simulations for a Case 4
situation. The following is our scenario: a fire breaks out at t1, the fire alarm system
detects the fire and warns occupants to evacuate to the outside at t2, and operators
at the prevention centre close the fire shutters at t3. Agents are expected to follow
a route to an exit to get outside the building after t2. After t3, the floor layout of
the building changes and agents must change their route according to the situations.
We propose a method of simulating agents’ behaviour in changing environments
and simulate 1,000 people evacuating from a building. The simulation results show
the differences in some metrics such as RSET and evacuation rates. They are useful
in improving prevention plans for emergency situations and for reducing fatalities,
injuries, and damage from disasters.

3 Simulation System for Changing Environments
and Evacuation Scenarios

3.1 Architecture of Agent Based Simulation System:
TENDENKO

The Agent Based Simulation System (ABSS) consists of two parts; agents and envi-
ronments [6]. Agents perceive data from the environment and decide their actions
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Fig. 1 System architecture of TENDENKO

according to their purposes. Their actions change the states of environment. Simula-
tors in the environment also alter the environments, for example, they can simulate
fire spreading and calculate human locations. ABSS repeats this simulation step. The
situations represent the features of tasks that the ABSS is applied to, and they are
conditions of simulations or parameters that affect the results of simulations. In a case
of evacuation from buildings, the number of people in the building, their location at
t1, the floor layouts of buildings, public announcement from the prevention centre,
and the rate of fire spread are the components of situations.

Figure1 shows the general architecture of TENDENKO that we developed based
on the RoboCup Rescue simulation system [5]. TENDENKO simulates agent behav-
iours in a three-dimensional world. The MAP refers to the data of the 3D world such
as the floor layout of inside a building and roads of outside of the buildings. Agents
useMAP information for route planning and a crowd simulator calculates the behav-
iours of agents with MAP.

3.2 Evacuation Behaviours in a Fire Shutters-Closing
Situation

When a fire breaks out at t1, the fire alarm system detects the fire and announces
evacuation guidance at t2. According to past reports on disasters, not all people
evacuated at the same time [1]. Agents start their own evacuations after t2: some
agents evacuate instantly, other agents evacuate after finishing their jobs, and others
stay there until they recognise the fire. The three types are referred to as instant
evacuation, evacuation after tasks, and emergent evacuation in Table2. Operators at
the prevention centre close the fire shutters at t3 when they decide this operation
is necessary for fire fighting. Agents will notice the fire shutter closing at t4 when
they reach the fire shutter, and change their evacuation routes. From t3 to t4, the
agents evacuate wrongly according to their own cognitive MAPs which have not
been updated, and are the same as the ones in every day use.
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Table 3 Inconsistency in the transition of MAPs

Time Status of MAPC
t & MAPai

t Agent’s path planning in
changing environment

t2 ∼ t3 ini tial M APC
t = ini tial M APai

t follow

the shortest path

t3 ∼ t4 newMAPC
t �= ini tial M APai

t

change the route in front
of the shutter

t4∼ newMAPC
t = newMAPai

t detour

to the exit

Table3 illustrates the transition of MAPs of simulations and agents in the simula-
tions. MAPai

k indicates a cognitive MAP that agent ai has at time tk , and MAPC
k is a

MAP that the crowd simulator use to calculate the locations of agents at time tk . From
start to t3, MAPai

k is the same as MAPC
k . At t2, agents start evacuation and move

to an exit that the agents think is the nearest exit. At t3 when the prevention centre
closes the fire shutters, the MAPC

k in the simulator changes to a new one newMAPC
k

in which some paths are blocked. newMAPC
k is then different from MAPai

k until the
agent recognises the closing at t4. After t4, newMAPC

k and newMAPai
k becomes the

same.

4 Evacuation Under Dynamically Changing Situations

4.1 New Feature and Multiple MAPs Among Agents
and Simulators

Simulating evacuation behaviour in dynamically changing situations is one of the
key functions which make ABSS useful in real applications. We point out that an
understanding of the following three points is necessary for simulating evacuation
from buildings.
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Fig. 2 The university library: building (1); CAD model (2); and layout of second floor (3)

1. The MAP that includes the floor layout of buildings changes dynamically during
emergencies.

2. For someperiods, there are inconsistencies between theMAP that the environment
has and the cognitive MAPs that agents have.

3. When and how the agents recognise the changes in the MAP.

We implemented the functions in TENDENKO, limited to Case 4 in Table1. In
Case 4, human operations change the situation and we incorporated the fire shutter
closing operation in our university library (Fig. 2), and simulated the evacuation of
1,000 agents from an exit on the second floor.

As it is pointed out, agents evacuate individually and differently. Even in a case
where they evacuated instantly, they notice the fire shutter closing at different t4
times. The agents have cognitive MAPs and at first, the MAPs of the simulator and
agents are linked to ini tial M AP . At t3, theMAP in the simulator is linked to newMAP
and agents’ MAPs are linked to newMAP at t4i . Figure3 shows a timing diagram of
the evacuation simulation with fire shutters closing. When agenti comes to an area
in front of the shutter at t4i , the kernel sends a message to the agent that the path to
an exit is blocked and the agent recognises that the fire shutter is closed.

4.2 Discussions of Simulation Results

The top snapshot in Fig. 3 shows the evacuation behaviours from t2 to t3. During
this period, agents evacuated to the nearest exit through the shortest path. At t3, the
fire shutter was closed. From t3 to t4, agents who do not know the change caused by
closing the shutter followed the route planned with the initial map and stopped at the
shutter. The middle snapshot in Fig. 3 illustrates a congested situation in the front of
the shutter. Individual agents noticed the shutter closed at t i4, and they changed their
own cognitive map, namely they changed MAP to newMAP . The bottom snapshot
shows that the behaviour of the agents who changed their evacuation routes.

Figure4 shows the rate of evacuation for three cases. Simulation, S1, corresponds
to case C2 where there are no fire shutters. The other two simulations, S2 and S3, are
in the category of C4 with the closing of the fire shutters. Agents did not recognise
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Fig. 3 Timing diagram among agents, kernel and simulator, and snapshots are situations at, t2 ∼ t3,
t3 ∼ t4 and t4∼ from top to bottom

Fig. 4 Evacuation rates of
1,000 people from the library

the fire shutters closing in S2; however, agents recognised the shutters were closed
in S3. The vertical axis shows how many people evacuate from the building and the
horizontal axis is simulation step. The three graphs correspond to scenarios S1, S2
and S3.

The evacuation rate of S2 shows that not all the people evacuate because some
agent stay in front of the shutters. In S1 and S3, all people evacuate. Around 30
steps, the evacuation rate of S3 is lower than the rate of S1. This caused that some
evacuees to detour to the exit. The simulation results of S3 appear more realistic than
the results for S1.
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5 Summary

Evacuation drills are undertaken to ensure smooth rescue operations. Proper evacua-
tion guidance is required to make smooth evacuations from buildings. However it is
difficult to execute the evacuation drills for emergencies where the situation changes
dynamically.

In this paper, a method for simulating an evacuation during dynamically chang-
ing situations is proposed. We examined evacuation situations where fire shutters
close and noted three key points concerning MAP in ABSS. The method is imple-
mented in TENDENKO and the simulations of 1,000 evacuations from a building
were demonstrated. The result is a more realistic prediction of behaviours during
evacuations than those obtained by traditional simulations. Additionally, the results
indicate a potential to improve prevention plans for emergency situations and thus
reduce fatalities, injuries, and damage from disasters.
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Efficacy of Pedestrian Evacuation Time
Estimate Using Agent Based Queuing
Network Model

Bharat Kunwar, Filippo Simini and Anders Johansson

Abstract There is an increasing risk of exposure to disasters due to rising instances
of extreme events (Munich et al. Topics Geo: Natural Catastrophes 2013: Analy-
ses, Assessments, Positions. Munchener Ruckversicherungs-Gesellschaft, Munich,
2014, [7]) and growing urban settlements (United Nationsin World economic and
social survey 2013: sustainable development challenges, 2013, [9]). As such, it is
important that we explore waysmeasure preparedness to such disasters. In a previous
work (Kunwar et al. in Evacuation time estimate for a total pedestrian evacuation
using queuing network model and volunteered geographic information, 2015, [5]),
we used agent based modelling (ABM) to investigate 50 cities in the UK and draw
a link between their attributes such as spatial size, population, exit width and their
evacuation time estimates (ETE) for a full city evacuation, one of the most stressing
mobility use cases for a city. In this work, we examine the efficacy of those results
by looking at how sensitive they are to fundamental diagram parameters. We found
the overall ETE to be most sensitive to density threshold for minimum velocity with
variations as large as an order ofmagnitude.We observed that ETE is also sensitive to
maximum density limit but the results keep within the same order of magnitude. We
also saw an increasing gap in ETE for lowest and highest values of density threshold
for minimum velocity with every doubling of population. We reached a conclusion
that it is necessary to carefully establish the input parampAGNeters if a robust result
is desired for a network-based ‘mesoscopic’ modelling.
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1 Introduction

There is a greater risk of exposure to disasters than ever before due to rising instances
of extreme events [7] and growing urban settlements [9]. It is important for us to be
prepared in advance and determining evacuation time estimate (ETE) [11] is an
essential component of proactive evacuation planning. A full city evacuation is one
of themost stressingmobility use case for a city and one of theways of understanding
the result of interaction between large numbers of autonomous agents to establish
ETE is by running an agent based model (ABM) simulation [3].

In a previous work [5], we investigated 50 regions in the UK similar in size to the
‘City of Bristol’ using OpenStreetMap data [1].We used amodified queuing network
model described in [4]. We established a link between parameters that describe a
city (spatial size, population, exit width) and its ETE. In this work, we examine the
efficacy of those results by looking at how sensitive the results are to fundamental
diagram parameters.

Since a fundamental diagram is a description of aggregate pedestrian crowd be-
haviour, it cannot describe system dynamics far from equilibrium (i.e. high density
crowds). We used Weidmann’s fundamental diagram [12] in [5] to establish ETE. It
has been shown that keeping a constant lower limit on the net-time headway is a key
mechanism behind dynamics of pedestrian streams [2]. This is more apparent in the
high density regime where density-velocity relationship transitions to a minimum
velocity ‘stop-and-go’ wave phase for a moving crowd. While a mesoscopic model
cannot replicate the exact microscopic interactions, it is possible to study how sensi-
tive the observed evacuation time is to density limit beyond which velocity remains
constant and the maximum density limit allowed on any given link.

Related work include sensitivity analysis of ETE route choice mechanisms, risk
area population, route degradation etc. [6, 8, 10]. There appears to be a gap in
identifying sensitivity of ETE to the shape of the fundamental diagram.

2 Methodology

For our analysis, we use OpenStreetMap data for ‘Carlisle’, a UK city that has
historically been prone to flooding. We assume a single catchment area to the south
of the city, an area to which all agents in the simulation evacuate to (Fig. 1). For
reference, 90% of agents in ‘Carlisle’ lie within 5371m of the exit as shown in
Fig. 2.

We useWeidmann’s [12] fundamental diagram to carry out the sensitivity analysis
for which the pedestrian density-velocity relationship written as follows:

v(k) = vf (1.0 − e−1.913( 1.0k − 1.0
kmax

)) (1)
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Fig. 1 Catchment area indicated by the inner rectangular box for ‘Carlisle’ where the green circle
indicates the exit

Fig. 2 Distribution of agent distance D away from the catchment area exit. 90% of agents in
‘Carlisle’ lie within 5371m of the exit

Consequently, the relationship between density k and flow rate Q is as follows:

Q(k) = kv(k) = kvf (1.0 − e−1.913( 1.0k − 1.0
kmax

)) (2)
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Fig. 3 Weidmann’s density-velocity and density-flow relationships as described by equations

v(k) = vf (1.0 − e−1.913( 1.0k − 1.0
kmax

)
) andQ(k) = kv(k) respectively. At a density of k = 5.4 ped/m2,

velocity v = 0. Similarly, a maximum flow rate Qmax = 1.22 ped/ms is possible at an optimum
density kopt = 1.75 ped/m2

We can see these equations represented graphically in Fig. 3. We can determine
using these equations that a maximum flow rate of Qmax = 1.22 ped/ms can be
achieved at an optimum density of kopt = 1.75 ped/m2.

For the sensitivity analysis, we have three variables: a density threshold to enable
a minimum velocity in the high density region kv,min which we expect the simulation
time to be most sensitive to (step = 0.1), maximum density upper limit klim which we
are not certain what effect it has on the outcome but keen to understand the general
trend (step = 0.5) and doubling range of population size N in order to determine its
effect on the result space. The range of parameters are listed in Table1.

In order to understand what these parameters mean visually, we present density-
velocity/density-flow diagrams for extreme values of kv,min and klim within our para-
meter space in Table2. The vertical green dotted lines indicate the position of kv,min
and the vertical red dotted lines indicate the position of klim.

Using these parameters, we run our ABM using queuing network model adapted
from [4]. For each of the 360 configurations, we measure the overall simulation time
T , which can be described as the time it takes the last agent to reach the exit.
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Table 1 The range of three parameters to be examined: density threshold for minimum velocity
kv,min, maximum density limit klim and catchment area population N . In total, we have 10 × 9 ×
4 = 360 individual configurations

Index kv,min klim N

1 4.4 5.0 25,000

2 4.5 5.5 50,000

3 4.6 6.0 100,000

4 4.7 6.5 200,000

5 4.8 7.0

6 4.9 7.5

7 5.0 8.0

8 5.1 8.5

9 5.2 9.0

10 5.3

Table 2 Density-velocity/density-flow diagrams obtained as we vary the density threshold for
minimum velocity kv,min and maximum density limit klim parameters

We present the diagrams for extreme values of kv,min and klim within our parameter space. The
vertical green dotted lines indicate the position of kv,min and the vertical red dotted lines indicate
the position of klim
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(a) (b)

(c) (d)

Fig. 4 3-dimensional plots for each value of N where we have kv,min and klim on the horizontal
axes and T/Tmin on the vertical axes. Tmin is the minimum observed value of T for each value of
N. The value of N and Tmin used to normalise the vertical axes are given next to each of the labels:
N = 25000, Tmin = 138 mins (a); N = 50000, Tmin = 166 mins (b); N = 100000, Tmin = 288
mins (c); N = 200000, Tmin = 737 mins (d)

3 Results

We present 3-dimensional plots for each value of N in Fig. 4 where we have kv,min
and klim on the horizontal axes and T/Tmin on the vertical axes. Tmin is the minimum
observed value of T for each value of N.

As we hypothesised, the simulation time T appears to be much more sensitive to
kv,min as it approaches 5.4 ped/m2 where v = 0 m/s.

It appears that with increasing klim, there is a gradual reduction in T apart from
a slight kink when klim < kv,min. However, the values keep within the same order of
magnitude.

As N doubles, we see an increasing gap between T at minimum and maximum
values of kv,min from ≈ 6 when N = 25000 to a maximum gap of ≈16 in the case of
N = 100000. The gap closes again to ≈13 in the case of N = 200000.
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4 Conclusion

The overall simulation time appears to be most sensitive to density threshold for
minimum velocity as hypothesised with variations as large as an order of magnitude.
It is therefore important to consider how we define this value, either empirically
or through microscopic modelling. ETE is somewhat sensitive to maximum density
limit but the results keepwithin the same order ofmagnitude.We also saw an increas-
ing gap in ETE between lowest and highest values of density threshold for minimum
velocity with every doubling of population. In conclusion, we stress to anyone con-
sidering network-based ‘mesoscopic’ modelling about the need to carefully establish
the input parameters if a robust result is desired.
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Modelling Pedestrian Evacuation Movement
on a Swaying Ship

Juan Chen, Jian Ma and Siuming Lo

Abstract With the advance in living standard, cruise travel has been rapidly expand-
ing around the world in recent years. The transportation of passengers over the water
has also made a rapid development. It is expected that ships will be more and more
widely used. Unfortunately, recent ship disasters caused serious losses. It raised con-
cerns on the effectiveness of passenger evacuation on ships. The present study thus
focuses on pedestrian evacuation features on ships. On ships, passenger movements
are affected by the periodical water motion and thus are quite different from the
characteristic when walking on a static horizontal floor. Taking into consideration
this special feature, an agent-based pedestrian model is formulated and the effect of
ship swaying on pedestrian evacuation efficiency is investigated. Results indicated
that the proposed model can be used to quantify the special evacuation process on
ships.

1 Introduction

In the past decades, cruise travel has been a rapid expanding field around the world.
A worldwide annual growth rate of 6.55 % for passage by sea from 1990 to 2019
has been recorded which is expected to grow. The transportation of passengers over
water has also made a rapid development. It is expected that ships will be more and
more widely used in transporting passengers. Unfortunately, several ship disasters
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occurred recently which caused serious losses to people’s lives and properties. It
raised concerns on the effectiveness of large crowd passenger evacuation on ships.

To mitigate the effect of an emergency, evacuating passengers from ships will be
necessary. The International Maritime Organisation (IMO) has already developed
guidelines for passenger ship evacuation. However, these guidelines and regulations,
like most building codes, only enforce the capacity of individual components such as
exits and passenger way width, thus can barely provide efficient setting and manage-
ment strategies. Computer simulation, on the contrary, can be helpful by performing
simulations even at the ship design stage. The International Conventions for the
Safety of Life at Sea (SOLAS) now requires evacuation analysis at the early stage
of ship design (IMO MSC.1/Circ.1238, 2007). Thus, some simulation models have
been built to perform computer simulation based evacuation analysis.

When compared to building evacuation, passenger ship evacuation is still a new
research topic and only limited publications can be found. Existing works were more
or less inspired by the IMO guidelines. The two full scale drill exercise projects, i.e.,
‘FIRE-EXIT’ and ‘SAFEGUARD’ have provided valuable information for model
validation, especially for ‘maritime-Exodus’ [5]. Some other models have also been
established, including AENEAS [11], EVI [1] and VELOS [6]. The former two
models are grid-based models, and thus have great advantage in computing efficiency,
yet the discretisation may affect their ability to model the environmental space and
detailed pedestrian motion when compared to the last two continuous space models.
The influences of ship motion on pedestrian movement in these models are almost
mimicked by speed reduction considering different inclination angles rather than
considering the coupled-forced pedestrian movement features.

In the present paper we establish an evacuation model taking into account forced
pedestrian movement patterns. The rest of the paper is organised as follows. In
Sect. 2, we introduce the model which takes into account the ship swaying effect. In
Sect. 3, we first compare several single pedestrian movement features under different
conditions and then analyse a ship evacuation process. In the last section, conclusions
are drawn.

2 Ship Evacuation Model

Basically, the design layout of the cruise ships is the same as that of hotels on
the ground, which includes separated accommodation cabins, restaurants, sports
facilities, etc., so that cruise ships can be regarded as mobile hotels. However, one
of the important differences between them is that the deck of a cruise ship has a
complex motion pattern as a result of periodical water movement. Thus, pedestrians
on board would be affected by the inertial force, which makes pedestrian movement
characteristic different from when walking on a static horizontal floor. Taking into
consideration this special feature, an agent-based pedestrian model is formulated,
and the effect of ship swaying on pedestrian evacuation efficiency is investigated.
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Fig. 1 Movement and forces. Scheme of ship motion types (a). Force analysis for an onboard
passenger (b)

2.1 Ship Swaying Features

As mentioned before, ship movement in the water is very complex. It displays a
six-degree-of-freedom motion feature because of the periodical water movement
and wind influence, as shown in Fig. 1a. These motions include linear translation
motions (surge, sway and heave) and non-linear rotation motions (pitch, roll and
yaw). Swaying refers to the linear side-to-side motion, while rolling and pitching
represent the tilting rotation of a ship about its front-back axis and side-to-side axis,
respectively. Due to combined motions of swaying, rolling and pitching, the deck
of a cruise ship may get inclining and then recovering periodically as a result of
the counter-rotating torque. Hereinafter, we do not distinguish these motion types
and use swaying instead. This special combined movement feature can be quantified
by two parameters, swaying amplitude B(t) and phase ϕ(t). It should be noted that
here, ϕ(t) is periodically changing with time t . The exact form of ship motions in
seaways should be based on water movement and wind influence features, however,
for simplicity and without loss of generality, we assume,

ϕ(t) = M × sin(t), (1)

where M indicates the maximum ship ground inclining degree.

2.2 Pedestrian Movement Features

When a pedestrian moves smoothly on a horizontal floor and there is no swaying,
the pedestrian movement is driven by the internal self-driven force, Fe, as shown in
Fig. 1b. This internal driven force makes the pedestrian move with a speed not far
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away from his expected speed ve, thus the required evacuation time can be estimated
based on walking speed, queuing length, and emergency exit capacity [3]. However,
it should be noticed that the movement of a pedestrian is accomplished step by step,
using their two legs. As a consequence, there is a gait cycle, as reported in [9, 10].
Thus, when the ground is swaying, the pedestrian gait would be affected by the new
force component, the inertial force Fs , as shown in Fig. 1b. This new force compo-
nent can be projected onto two directions, i.e., the pedestrian movement direction
and the direction perpendicular to his movement direction. The force component
along pedestrian movement direction, Fe||, would affect the maximum speed that
pedestrians can achieve, while the force component along the lateral direction would
affect the gait cycle, so we introduce a periodically changing force component along
the lateral direction, i.e., Fp to quantify this influence.

For the internal self-driven force, as in other force-based models [2, 7], we take
the following form,

Fe = m
v − ve

τ
(2)

where τ = 0.5 s is selected according to Ma et al. [8]. The ship swaying induced
parallel force component Fe|| can be denoted as,

Fe|| = Fs × cosψ (3)

where ψ means the angle between Fs and Fe. For the step by step lateral movement
of the pedestrian, we assume that,

Fp = A × sinθ (4)

It should be noted that a pedestrian can sense the ship swaying, and can as a result
adjust his gait, thus in Eq. (4), A quantifies the influence of the ship swaying amplitude
B(t), while θ represents his gait cycle, which can be determined by

A = f (B) = Fs × sinψ = βB(t)sinψ (5)

dθ

dt
= Ω + cB(t)sin(ϕ − θ + α) (6)

Here, c quantifies pedestrians’ sensitivity to ship swaying amplitude B(t) and phase
ϕ(t). Ω is a random step frequency, which can be estimated following the pedestrian
movement experiments [4]. α is a phase lag parameter. β represents the effect of
friction when a pedestrian walks on an inclining ground.
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3 Results and Discussion

Equations (1) to (6) in Sect. 2 together describe the forced movement pattern for a
pedestrian on a swaying ship. It should be noted that in reality, the ship swaying
induced force component Fs for a pedestrian might be very complex. So, in the
present section, we explore its effects by performing two simple case studies.

Firstly, we place a pedestrian 5 m away from his target, as shown in Fig. 2a. The
pedestrian has a free movement speed of 1.2 m/s. Three scenarios were considered:

1. The pedestrian is moving on a horizontal ground, without ship swaying.
2. The ship is swaying along the direction perpendicular to the pedestrian’s move-

ment direction.
3. The ship is swaying along the direction parallel to the pedestrian movement

direction.

x 

y 

(a) (b) (c) (d)

Fig. 2 Single pedestrian movement trajectories under different conditions: initial configuration (a);
no sway (b); Y-direction sway (c); X-direction sway (d)
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(a) (b)

Fig. 3 Effect of ship swaying: pedestrian movement features (a); ship passenger evacuation process
(b)

Simulation snapshots for these three different scenarios can be found in Fig. 2b, c, d,
respectively. As can be found in these figures, when there is no swaying, the pedestrian
can move freely towards his target. When the ship is swaying perpendicular to the
pedestrian movement direction, we can see as a result of the swaying, the pedestrian
makes lateral movements when approaching his target. That is due to the ship swaying
induced inertial force exerted on that pedestrian, which changed his gait. We can also
find that, although the pedestrian made lateral movements, the movement towards
his direction has barely been influenced, as can be found in Fig. 3a. When the ship
is swaying along the direction parallel to the pedestrian movement direction, as
shown in Fig. 2d, his trajectory seems like the one when there is no ship swaying,
as in Fig. 2b. We further compared the spatio-temporal feature of these trajectories
shown in Fig. 2b, d, and found, as shown in Fig. 3a, that the pedestrian accelerates at
first and then decelerates, meaning he keeps changing his speed during the process
when he moves towards his target in the case when the ship is swaying along the
direction parallel to his movement direction. We can see that the ship swaying affects
pedestrian microscopic features even in these simple conditions.

Secondly, scenarios of a ship evacuation with/without swaying were simulated.
In case of emergency, prior to any decision to actually abandon the ship, passengers
on a ship have to be evacuated to the assembling site. That is because if abandoning
is unavoidable, these passengers can be evacuated immediately, and if there is no
need to abandon ship, dealing with the emergency would be much easier with no
passengers around. So, passengers were ordered to evacuate to the assembling area
on the right side, i.e., front of the ship in the present case, as shown in Fig. 4. There
were in total 60 passengers on the ship. In Fig. 4a, b we show the trajectories of those
passengers on the ship when there is no sway and when there is sway, respectively.
Comparing these figures, we can easily find that due to ship swaying, passengers
made lateral movements during evacuation. The lateral movement slowed down the
evacuation process, as shown in Fig. 3a. We can also find that for those passengers
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(a)

(b)

Fig. 4 Passenger evacuation simulation snapshots: no ship sway (a); ship swaying (b)

initially located in the relatively open area, as shown in the left part of Fig. 4, their
trajectories show clear curved features when the ship is swaying. When there is no
sway, these trajectories were almost linear, representing these passengers can move
freely towards their targets. For those who were located in the long channel, as can
be found in the right part of Fig. 4, they were barely influenced by the swaying ship.
The reason is that the channel is so narrow that passengers’ lateral movements were
hindered by those chairs and walls.

When we compare the evacuation process, as can be found in Fig. 3b, when there
was no ship swaying, the total assembling time for 60 passengers is only slightly
shorter than when there was ship swaying. That is because the evacuation processes
were mainly performed in the long channel section, as shown in Fig. 4. However, the
assembling efficiency when there was no sway is always higher, as indicated by the
number of assembled people shown in Fig. 3b. That is because, passengers located on
the back and front sections had to make movement along the ship swaying direction,
which would slow them down, as shown in Fig. 3a.



304 J. Chen et al.

4 Conclusion

An agent-based passenger evacuation model was built. Each agent in the model can
sense ship swaying and adjust its own gait. This way, forced pedestrian movement
feature as a result of ship swaying was mathematically quantified. Simulations of sin-
gle pedestrian movement show that the angle between pedestrian movement direction
and ship swaying direction may influence spatio-temporal features of a pedestrian.
Thus, under the situation of total evacuation, the passenger assembling efficiency
would be affected. The simulated assembling time provides a very important crite-
rion to evaluate the total evacuation time needed for an orderly evacuation. It should
also be noticed that the computed evacuation time gives an estimate of the time the
passengers need to get out of the ship interior and reach a boarding site, thus the
influence of the ship interior can be evaluated to find bottlenecks.
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Granularity of Pre-movement Time
Distribution in Crowd Evacuation
Simulations

Jakub Porzycki, Jarosław Wąs, Robert Lubaś and Grzegorz Bazior

Abstract This paper addresses issues of spatial distribution of pre-movement time.
Three different, real life cases of egress are analysed. In all the analysed cases a
coarse spatial distribution of pre-movement time is observed. On the basis of the
examples the authors investigatewhether this phenomenon has a significant influence
on the evacuation process. It has been found that in more complex scenarios, the
spatial distribution of pre-movement time affects the evacuation process, while in
simple scenarios (like large room evacuation) no significant influence is observed.
Finally, some factors that increase the magnitude of the observed phenomenon were
identified, namely the complicated geometry of the facility, evacuees confusion,
existence of groups and appearance of a leader. As a consequence of the findings,
it is recommended to include coarse spatial distribution of pre-movement times in
simulations of complex scenarios.

1 Introduction

In practice pre-movement time is a significant component of the total evacuation time.
In general, the term pre-movement time refers to the time before evacuation of an
area. More precisely, pre-movement time is the interval between the time at which
the alarm signal is given and the time at which the decision is made and person starts
the evacuation process [1].

With respect to fire safety engineering, there are two terms crucial from a safety
point of view: RSET (Required Safe Evacuation Time) and ASET (Available Safe
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Fig. 1 Classification of evacuation time components according to SFPE Handbook of Fire Protec-
tion Engineering

Evacuation Time). On the one hand, RSET refers to the time required for escape, on
the other hand, ASET is defined as the time to loss of tenability [5]. According to the
methodology proposed in the SFPE Handbook of Fire Protection Engineering [1],
particular components of the evacuation time are classified as follows (Fig. 1):

The response of occupants in buildings and other facilities during hazardous
situations depends on many factors. The sample factors are occupant alertness
(awakens, long term occupancy, medical care etc.) [1], occupant familiarity with a
facility/environment, complexity of a facility/environment, social affiliation, occu-
pant density, and effectiveness of the alarming system (poor, average or good) [4].

One can also point outmany other factors influencing pre-movement times such as
frequency of false alarms, training of occupants, commitment (it is usually reluctant
to turn attention of people committed to an activity) [1].

The issue of pre-movement time has been a subject of an intensive research dur-
ing the past few years. Zhang et al. analysed evacuation times of students from a
classroom [8] and finally discovered that it corresponds to log-normal distribution
and varies within a region of about 30% of the mean value. Another interesting
observation in the article is that the first arrival student has a great significance on
the evacuation results and optimises influence of pre-movement time due to the
coordination among evacuees.

D’Orazio et al. recently presented an interactive wearable system for reducing
pre-movement time [2]. The system consists of two main parts: a Zig-Bee-based
localisation module which identifies the occupants positions after the alarm and
individual electronic devices generating a personal stimulus to latecomers.

Rogsch et al. [6] tested the correlation between initial distribution of occupants in
a building and the distributions of evacuation times. They concluded that the range
of the pre-movement time interval has a major influence of the pedestrian movement
inside the building, especially the pre-movement time interval influences the density
inside the staircases.
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Fig. 2 Illustration of the stated hypothesis. Pedestrians are represented as dots, the redder the dot—
the longer is its pre-movement time. In both figures the overall distribution is the same (normal):
classical approach, with fine spatial granularity (a); coarse spatial granularity, where similar pre-
movement times appears among all the members of the groups (b)

2 Hypothesis of Coarse Spatial Granularity

In the vast majority of crowd dynamics simulation the only assumption about pre-
movement time is that it can be described using predefined distribution (uniform,
normal, log-normal or exponential) [6, 8]. It is also the only requirement in documents
that define validation and verification procedures [3, 7]. However, no attention is
given to its spatial distribution (see Fig. 2). It is assumed that every pedestrian starts
his/her movement independently from each other.

Contrary to this classical approach, the authors claim that the pedestrians pre-
movement time strongly depends on its position and behaviours of its neighbours.
Therefore, in real life situation we observe rather coarse, than fine spatial granularity
of pre-movement time distribution. In order to investigate this hypothesiswe analysed
a number of real life evacuation and normal condition egress scenarios.

3 Observations of Real Life Evacuation Scenario

3.1 Egress of a Football Stadium Tribune

We analysed a normal condition egress of the football stadium tribune with five
sectors and capacity of 5,806 persons. During the observation of the event tribune
was occupied by approximately 5,000 fans (see Fig. 3a). Significant differences in the
behaviour of persons occupying the particular sectors of the stadium were observed.
In the first sector (on the left) and fifth sector (faintly visible on the right) the vast
majority of fans began to leave the stadium quickly after the match, only small
groups stayed longer in their places. On the other hand, in the three central sectors
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(a) (b) (c)

Fig. 3 Consecutive stages of normal condition egress of theWisla Krakow stadium. Easily observ-
able evidence of coarse spatial granularisation of pre-movement times: initial state (moment when
referee ends the match) (a); 2min, 53 s differences in behaviour of whole sectors (b); 4min, 28 s
large spots of empty seats, nearby the dense crowd (c)

only small groups of fans began to leave early, while most of them decide to stay
longer to thank the team. This situation is visible in Fig. 3a. At this moment one can
observe coarse granularity on two levels—different decision between sectors, as well
as groups decision to behave differently than its sector.

Figure3c shows the three central sectors a few minutes after ending the match.
Coarse spatial granularisation at the group level is clearly visible. There are dense
groups of fans next to a relatively large area of empty seats. In the case of the classical
approach to pre-movement times distribution we would rather observe tribunes with
a uniform sparse crowd, without large empty spots.

3.2 Announced Fire Drill in a Lecture Hall

Another test is an announced evacuation of a lecture hall containing 450 students.
Participants were informed about the evacuation and instructed what they should do.
The populationwas young and prepared for evacuation, therefore the total evacuation
timewas short (1min 57 s). The observedminimal andmaximal pre-movement times
were only 1 and 6s, respectively.

The initial state, at the moment of triggering the alarm (time = 0s), is presented
in Fig. 4a. After 2.5 s one can observe the number of students that already stood up.
Even in the case of such a short pre-movement time coarse granularity of its spatial
distribution is visible. Figure4c shows the situation at time = 6s—all students have
begun to move towards the exit, and the first persons have already left the lecture
hall. Finally, the evacuation state at time = 25s is shown in Fig. 4d—high density,
clogging exit areas and queues forming are observed.

Generally, efficient evacuation is observed: occupants evacuate without any hes-
itation and delay. All the participants try to leave the hall as quickly as possible,
however no competitive behaviour is observed. Clogging appears only in the close
vicinity of exits.
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(a) (b)

(c) (d)

Fig. 4 Consecutive stages of an announced evacuation of a lecture hall. One can observe how
quickly all the occupants begin their movement towards the exits. In the last figure the clogging of
exit areas is visible: initial state (a); 2 s after drill (b); 6 s after drill (c); 25 s after drill (d)

3.3 Unannounced Fire Drill in an Academic Building

A completely different behaviour was observed during unannounced evacuation test
of an academic building. The fire alarm was triggered at 9:20 a.m. when all the
occupants (approximately 350 persons in the monitored area) perform their normal
activity: several lectures and laboratories were taking place, a number of researchers
was in their rooms, as well as some office staff. The whole evacuation process took
16min 45s, while 95% persons were evacuated in 14min 40s.

The beginning of the evacuation process is presented in Fig. 5a. One should note
the behaviour of a lecturer (a person in a white shirt): after the siren, he goes down-
stairs to check the authenticity of the alarm, returns to lecture hall and instructs the
students to evacuate. Approximately 30s later a security guard appears and checks
the consecutive rooms to make sure that everyone was informed about the evacuation
(Fig. 5b). Both lecturer and security staff are the leaders that trigger off the evacuation
of rooms.

Figure5c shows the moment, when a few persons join the pedestrian stream from
the lecture hall. Single persons were able to join the stream without any qualitative
change of its flow. Contrary to this, when a larger group (17 persons) joins the stream,
one can observe the formation of queue (Fig. 5d).

It is worthwhile to note, that the manwith a blue-grey hood (Fig. 5c) is an example
of a person who goes upstairs instead of evacuating the area. There could be two
reasons of such a behaviour: one does not receive the information about evacuation
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(a) (b)

(c) (d)

Fig. 5 Unannounced fire drill in an academic building: a lecturer (white shirt) - leaves the classes
to check the authenticity of the evacuation (40s) (a); evacuation of lecture halls begins, security
staff appears (1min 12s) (b); single person joins the stream from another room (c); a larger group
joining the same stream (d)

or ignores the information. During the whole experiment, there were approximately
25 persons who went upstairs.

The outflow of the discussed evacuation was measured in the staircase, below the
corridor shown in Fig. 5. This is presented in Fig. 6. During the evacuation process
there are peaks in flow, when consecutive groups are evacuating. Between peaks
there are long breaks (30–120s) when no one appears on the staircase. In the whole
building there are no obstacles or bottlenecks that can slow down the evacuees in such

Fig. 6 Outflow in the staircase below the corridor. Each bar in the chart shows the number of
pedestrians passing through, in consecutive 5 s time windows
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a way. Therefore, it is clear that the observed outflow pattern is caused mainly by
coarse spatial pre-movement time distribution, where groups of people start moving
at the same time.

4 Analysis

In all analysed real life scenarios, one can observe that the spatial granularity of pre-
movement time is coarse. In the stadium, the large spots of empty seats and dense
crowd nearby are clearly visible. Moreover, on a larger scale the pre-movement time
distribution differs significantly between sectors. During the unannounced evacua-
tion, the existence of groups that make the decision to begin evacuation at the same
time can be detected by the analysis of the outflow plot. In the case of the announced
evacuation in the lecture hall, the coarse granularity of pre-movement time was more
subtle, due to the fact that it takes only 6 s to complete the pre-movement time phase
by all the participants, however it was noticeable. Having such evidence it should
be clear that coarse granularity of pre-movement time distribution is a fact. Thus,
two questions should be asked: Does observed phenomenon significantly affect the
evacuation process? Should it be included in crowd dynamics simulations?

The only example where the evacuation process was not quantitatively influenced
by spatial distribution of pre-movement time is the announced evacuation of the
lecture hall. In this case the occupants were in the same room and were well prepared
for the evacuation.

The fans in the stadium are also prepared to leave, but they do not receive a clear
signal to leave—it is their decision to leave or to stay while longer. Moreover, the
visibility of the actions in the other sectors was reduced.

During the unannounced fire alarm one can observe that spatial time distribution
is strongly related with the existence of leaders (lecturer or security staff etc.), they
trigger the evacuation of larger groups of pedestrians. This is especially significant
when people are unprepared for evacuation and do not have the full knowledge as
what they have to do. The fact that the occupants were in different rooms magnified
the granularity of pre-movement time distribution. One can observe the queue before
staircase when two groups of pedestrians merge, such a situation will probably not
occur if we assume fine spatial distribution—there will be no numerous groups.

It is worthwhile to note that, in both the stadium case and the unannounced fire
alarm case the pre-movement time was a significant part of the total evacuation time,
while in the case of announced evacuation it takes only a few seconds. On the basis of
the discussed examples, we presume that spatial distribution of pre-movement time
can be omitted in simulation of simple scenarios (occupants prepared for evacuation,
clear signal, simple geometry, lack of groups and leaders). However, in the case of
complex scenarios of multi-room andmulti-floor buildings, in the case of pedestrians
unprepared for evacuation, where they can follow the groups or some leaders, the
spatial distribution of pre-movement times is coarse and can significantly change the
evacuation process.
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5 Summary

The phenomenon of coarse spatial distribution of pre-movement time was dis-
cussed in this paper. Three real live cases: stadium tribune normal condition egress,
announced evacuation of a lecture hall and an unannounced fire alarm in academic
building were analysed. We have shown that in terms of spatial relations the distri-
bution of pre-movement time is coarse-grained. Pedestrians have a tendency to start
their movement according to decision of group, neighbours or leaders.

There is a big class of complex scenarios where simulation results can be strongly
affected by the pre-movement time spatial distribution. We identify the list of factors
that can increase this influence: complex geometry with multiple rooms, presence of
persons unprepared for evacuation, lack of knowledge what action should be taken,
existence of groups or appearance of leaders. Contrary to this, in simple scenarios
one cannot identify no significant influence.

According to our knowledge, the coarse spatial granularity of pre-movement time
distribution is not taken into account in neither crowd dynamics simulations nor
verification and validation tests. In conclusion we would like to emphasise, that in
real life complex scenarios this phenomenon can change the evacuation process and
it should be considered in models.
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Estimation of Discretised Motion
of Pedestrians by the Decision-Making Model

Pavel Hrabák, Ondřej Ticháček and Vladimíra Sečkárová

Abstract The contribution gives a micro-structural insight into the pedestrian deci-
sion process during an egress situation. A method how to extract the decisions of
pedestrians from the trajectories recorded during the experiments is introduced. The
underlying Markov decision process is estimated using the finite mixture approx-
imation. Furthermore, the results of this estimation can be used as an input to the
optimisation of a Markov decision process for one ‘clever’ agent. This agent opti-
mises his strategy of motion with respect to different reward functions, minimising
the time spent in the room or minimising the amount of inhaled CO.

1 Introduction

This study can be used as an auxiliary calibration tool for microscopic models
of pedestrian flow with spatially discretised motion of agents, as e.g. floor-field
model [4] or optimal-steps model [7]. The results can be applied in the navigation
robotic systems [8]. The introducedmethod builds upon the floor-fieldmodel. Thanks
to the restriction to the discretised motion of pedestrian we are able to express the
local decisions of pedestrian in the terms of Markov decision process [5].

For the analysis of the real data, we use the experimental data from a passing-
through experiment [1]. In this experiment, pedestrians were instructed to pass
through a simple room equipped by one entrance with controlled inflow and one
exit of the width 60 cm. Since we are mainly interested in the pedestrian interaction,
we used the data from the rear camera covering the space of 2.5m in front of the exit
and short part of the corridor behind the exit.
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The Institute of Information Theory and Automation of the Czech Academy of Sciences,
Pod Vodarenskou Vezi 4, 182 08 Prague 8, Czech Republic
e-mail: hrabak@utia.cas.cz

O. Ticháček
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V. Sečkárová
e-mail: seckarov@utia.cas.cz

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_40

313



314 P. Hrabák et al.

Throughout the article, we use the notation related to Markov decision processes
(MDP) adopted from [5]. The main task of the contribution is to express the basic
entries of theMDP theory in the scope of pedestrian flow dynamics. This is necessary
to use the optimisation technique described in [5, Chap. 4].

2 Basic Concept

Let us describe the MDP in general. The considered decision process (DP) is char-
acterised by a sequence (s1, a1, s2, a2, . . . , sT−1, aT−1, sT ) of states st ∈ S and per-
formed actions at ∈ A. Here, T plays the role of a finite time horizon used for the
optimisation. At time t an agent, who is making the decision, observes the system
to be in state st and based on this observation performs an action at with conditional
probability pt (at | st ). The system reacts to the action stochastically and the state
changes to st+1 with conditional probability pt (st+1 | st , at ). This probability can be
understood as the agent’s image of the environment behaviour. TheMarkov property
is hidden in the fact that both, the decision part pt (at | st ) and the environmental
model pt (st+1 | st , at ), depend only on the situation at time t . Then, the probability
of a sequence (s1, a1, s2, a2, . . . , sT−1, aT−1, sT ) is given as

Pr (s1, a1, s2, a2, . . . , sT−1, aT−1, sT ) = p(s1)
T−1∏
t=1

pt (at | st )pt (st+1 | st , at ). (1)

This concept can be easily applied to the floor-field model [4] (For more details
about themodel we refer the reader to [6]). The floor-fieldmodel is a particle hopping
model defined on a rectangular lattice L representing the discretised layout of the
simulated facility. Particles are hopping between cells stochastically according to
the hopping probabilities, which are influenced by the static floor field S. Usually
S(y) = dist(y, E) refers to the distance of the cell y to the exit E in defined metric
dist. Let the state of the system at time t be denoted by τt ∈ {0, 1}L , where τ(x) = 1
refers to an occupied cell and τ(x) = 0 to an empty cell. Let further nt = ∑

x τt (x)
be the number of agents in the lattice at time t .

In each algorithm step t → t + 1, every agent i ∈ {1, . . . , nt } chooses his future
position yi,t given he is sitting in xi,t with probability

p(yi,t | xi,t , τt ) ∝ exp{−S(yi,t )}1{dist(xi,t ,yi,t )≤1} (2)

according to floor-field model. The model of the environment is then a consequence
of the choices of future positions of all agents, i.e., the dynamics is driven by the
environment model

p
(
τt+1 | τt , yi,t , i ∈ {0, . . . , nt }

) = F(p(yi,t | xi,t , τt ), i ∈ {0, . . . , nt }) , (3)
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(a) (b) (c)

Fig. 1 Transformation of trajectory record to actions: trajectories are extracted from video records,
figure from [1] (a); transformation to motion within sectors (b); interpretation as motion in the
lattice (c)

where F is a function that reflects conflicting situation where two agents choose the
same target cell.1

3 Estimating pt(at | st)

This section focuses on the probabilistic decision pt (at | st ) from the data recorded
during evacuation experiment [1].

Let us assume that the pedestrians act similarly to the floor-field particles, i.e.,
all pedestrians are following the same decision strategy, which does not change
in time and space. Furthermore, we assume that pedestrians react only on their
immediate neighbourhood reflecting the direction towards the exit, but not their
absolute position. Therefore, the state st in MDP can be associated with the state
of the immediate neighbourhood. Contrary to the floor-field model we consider the
neighbourhood to be oriented with respect to the direction towards the exit. The
actions are associated with direction angle a pedestrian can choose, see Fig. 1.

The experimental data for trajectory analyses have been provided by our colleague
Marek Bukáček (Czech Technical University). The data are in the form of paths
records

(
xi (t), t ∈ [t ini , touti ]), where t ini and touti is the time of the first and the last

appearance of the pedestrian i on the screen respectively. xi (t) is the position of the
pedestrian on the screen at time t . Tomatch the discrete nature of the decision-making
process, the motion of pedestrians has been discretised in time with the discretisation
step Δt = 1 s. The vector of motion at time t is then Δxi (t) = xi (t + Δt) − xi (t)
and the direction of motion ϑi (t) is an angle given by

cosϑi (t) = [E − xi (t)] · Δxi (t)

‖E − xi (t)‖ · ‖Δxi (t)‖ . (4)

This angle is then associated to the action a ∈ A according to the Table1. The set
of actions is A = {⊗,←,↖,↙,↑,↓,→}, e.g., an angle ϑi (t) = 20◦ corresponds

1Without conflicting situations the function is just a product of the entries.
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Table 1 Action set in detail

Action ⊗ ← ↖ ↙ ↑ ↓ →
Angle ∅ (− π

8 , π
8

) (− π
8 ,− 3π

8

) ( 3π
8 , π

8

) (
− 3π

8 ,− 5π
8

) (
5π
8 , 3π

8

) (
−π,− 5π

8

)
∪(

5π
8 , π

)

Colour Black Blue Red Red Green Green White

Direction angle towards the exit is 0. Colours refer to Fig. 1

to the forward motion ←, while ϑi (t) = 30◦ corresponds to the left-forward motion
↙. Every motion performed with velocity vi (t) = ‖Δxi (t)‖/Δt less than 0.5m/s
has been considered as standing (⊗).

In Fig. 2, the frequency of chosen direction with respect to the direction angle is
plotted. Two main clusters for forward stepping and standing can be distinguished,
the latter dominates. The data are aggregated over all pedestrians and all records for
each. From this graph we can conclude that the majority of pedestrians preferred
standing in line and moving forward centimetre by centimetre rather then trying to
push through the crowd or overrunning it.

For the estimation of the decision process we associate the state st in the decision
process p(at | st ) with the occupancy of the immediate neighbourhood. By the
neighbourhood N (x) of a position x we understand a circle around x with the radius
0.75 m (maximal step size) divided into 6 sectors {←,↖,↙,↑,↓,→} defined in
previous section. The state si,t for the decision p(ai,t | si,t ) of the agent i is then
a vector from {0, 1}6, where si,t (y) = 0 for empty sector y and si,t (y) = 1 for
occupied sector. Here y ∈ {←,↖,↙,↑,↓,→}. The sector is considered occupied
if it contains at least one position vector of another agent or if it is covered by a wall
by at least 40%. Since the data are aggregated over all pedestrians, the index i will
be further omitted.

Most natural way how to estimate the decision process p(at | st ) is to compare the
frequency of chosen directions (actions) given the occupancy of the neighbourhood.
However, this method fails in the case of the trajectory data from considered exper-
iment, since most of the combinations (at , st ) appear very rarely. For this reason we

(a) (b) (c)

Fig. 2 The frequency of occurrence of the motion length in given direction angle. The graphs are
oriented similarly to the snapshot from the experiment in Fig. 1: no filter (a); filter velocity < 0.5
m/s (b); gaussian-kernel estimation of the distribution of chosen direction (c)
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applied the approximation of the decision by finite mixturemodel with forgetting [3].
The idea consists in approximation of the complex decision process p(at | st ) by the
convex combination of marginal decision processes Θ(at |st (y)), i.e.,

p(at | st ) ≈ p(at | Θ, st ) =
∑

y∈N (xt )

αyΘ(at |st (y)) , (5)

whereαy is the coefficient of influence of the state of y to the decision;
∑

y αy = 1.
For more details see [2].

The resulting values of the mixture model are given in Table2. The following
phenomena can be observed analysing the values in the table. The occupancy of a
neighbouring sector almost always contributes with the highest value to the decision
“to stand” (⊗). However, a free neighbouring sector does not always tend to imply
motion, see the forward sector (←). The most diverse influence of the empty and
occupied states show the “slightly right” (↖) and “slightly left” (↙) sectors. The
explanation for this may be a zipper-like effect of agents passing through a narrow
exit and corridor.

The table also implies, that the occupancy of right and left sectors (↑,↓) does not
play a significant role in agent’s decision as it does not restrain him from moving
in desired (forward) direction. Finally, although in principle, the occupancy of the
back sector (→) should not affect the agent’s decision in his desire to go straight,
this sector is mostly occupied if the agent is in a high-density situation (e.g. a jam)
and therefore its occupancy reflects the agent’s (in)ability to move at all.

4 Optimising pt(at | st)

This chapter offers an alternative view on the application of MDP to pedestrian flow
modelling. Let the result of previous section be used as the behavioural frame of the
majority of pedestrians, which determines the environmental model pt (st+1 | st , at )
described by Eq. (3). The aim of this section is to equip one of the pedestrian agent
by an optimal decision strategy how to move among the pedestrians following the
majority behaviour.

Table 2 Influence of regressors y to decision a for two states of sector occupancy (◦ symbolises
empty sector, • occupied)

y ← ↖ ↙ ↑ ↓ →
α̂ 0.9212 0.0749 0.0014 0.0002 0.0002 0.0021

a ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •
⊗ 0.76 0.94 0.03 0.97 0.05 0.52 0.11 0.12 0.12 0.11 0.07 0.69

← 0.22 0.06 0.63 0.01 0.73 0.12 0.39 0.23 0.35 0.24 0.68 0.10

↖ 0.01 0.01 0.02 0.01 0.05 0.06 0.09 0.11 0.10 0.11 0.06 0.04

↙ 0.01 0.01 0.27 0.00 0.04 0.08 0.09 0.11 0.10 0.11 0.06 0.04

↑ 0.00 0.00 0.02 0.00 0.04 0.06 0.08 0.11 0.09 0.11 0.04 0.04

↓ 0.00 0.00 0.02 0.00 0.03 0.05 0.08 0.11 0.08 0.11 0.04 0.03

→ 0.00 0.00 0.02 0.00 0.06 0.10 0.15 0.20 0.16 0.22 0.06 0.06

α̂ is the weight of the regressor
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(a) (b)

Fig. 3 An example of the state of the lattice with one clever agent (red) and 4 floor-field particles
(grey): The state is st = (xt , zt ), where xt = 18, zt = {8, 14, 17, 22} (a); The numbering of
directions corresponding to actions at ∈ {1, . . . , 9} (b)

Let us in the following, for simplicity, return to the Floor-field basis of the simula-
tion. Consider that there is one ‘clever’ particle among the ordinary undistinguishable
floor-field particles behaving according to Eq. (2) or (5). By the optimal strategy of
the clever particle we understand the sequence (d1, d2, . . . , dT−1), where dt (st ) = q
is the distribution on the set of actions A playing the role of the decision process, i.e.,
p(at | st ) = q(at ). The strategy is optimised with respect to given reward function
R(s1, a1, . . . , sT ), which can be used to model different preferences of the clever
particle.

Contrarily to Sect. 3 we consider in the following the position and the orientation
to be absolute, i.e., there are not preferred positions on the lattice regarding the
distance or orientation towards the lattice. The optimising algorithm is supposed to
find the shortest path given the maximal reward R itself. The state of the system is
expressed by the position of the clever agent xt and by the set of positions of all
floor-field particles zt , where |zt | = nt −1 (compare to previous section, where only
the neighbouring pedestrians play role). Let the positions be numbered by natural
numbers as shown by an example in Fig. 3.

The actions an agent can choose are related to the 8 neighbouring sites and a
possibility to stay in current position. Therefore the action set can be chosen as
A = {1, 2, . . . , 9}, where the directions are numbered as depicted in Fig. 3, i.e.,
at = 1 means to choose as next target site the current position xt = 18; at = 2
corresponds to the target site xt ‘+’(−1, 0) = 17, etc. Here, we note that, similarly to
the floor-field, the chosen target site can be entered by a near floor-field particle. The
choice of the target site is therefore influenced by the probability that other particles
can change their positions.

For the purposes of this contribution we have chosen a simple updating scheme in
which the clever agent moves after all other particles performed their actions. Then,
the environmental model pt (st+1 | st , at ) = p(xt+1, zt+1 | xt , zt , at ) decomposes
into a stochastic part p(zt+1 | xt , zt ) and a deterministic part p(xt+1 | xt , at , zt+1) as

p(xt+1, zt+1 | xt , zt , at ) = p(zt+1 | xt , zt )p(xt+1 | xt , at , zt+1) . (6)
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In our case, the transition probability (5) can be simplified to the form

p(zt+1 | xt , zt ) ∝ exp{−U (zt+1)} , U (zt+1) =
|zt+1|∑
j=1

dist(zt+1( j), E) (7)

for all states zt+1 reachable from zt by the motion of floor-field particles by one site.
The introduced potential U supports the states in which particles are closer to the
exit and therefore suppresses the random motion away from the exit.

The above mentioned concept fits the finite time optimisation of the MDP strate-
gies using the backward induction algorithm described in [5, Sect. 4.5]. The final
step is to define properly the reward function R. The reward function is defined as a
cumulation of local rewards rt (st , at ) and the final reward vT (sT ), i.e.,

R =
T−1∑
t=1

rt (st , at )+vT (sT ) , rt (st , at ) =
∑
st+1

p(st+1 | st , at )rt (st+1, st , at ) . (8)

The final reward is the same for all agents preferences taking into account the
distance to the exit multiplied by a factor of 2, i.e., vT (sT ) = −2 dist(xT , E). The
local reward then reflects the agent’s preferences.We introduce twomain approaches:
minimising the time spent in the room and minimising the amount of inhaled carbon
monoxide (CO) related to the aim to minimise number of lost conflicts.

The reward function minimising the time simply subtracts one reward unit for
each step an agent spends outside the exit, i.e.,

rt (st+1, st , at ) =
{
0 x = E ,

−1 x �= E .
(9)

The reward function minimising the amount of inhaled CO takes into account the
possibility that the agent can choose a site which becomes occupied by another
particle. Such choice can be interpreted as running to another pedestrian, which
causes a significant loss of energy with no improvement of the distance to the exit.
Such situation costs 2 reward units, while standing only one half. Therefore

rt (st+1, st , at ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 xt = E ,

−1/2 at = 1 ,

−1 at �= 1 , xt+1 /∈ zt+1 ,

−2 at �= 1 , xt+1 ∈ zt+1 .

(10)

5 Conclusions and Future Plans

The main goal of this paper was to introduce a concept of Markov decision process
(MDP) to the pedestrian flow simulation. Two aspects have been studied by means
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of this concept: the estimation of pedestrian behaviour within crowded area and
the optimisation of the decision with respect to given pedestrian preferences. Both
approaches are motivated by the cellular floor-field model used for simulation of
pedestrian evacuation.

The estimation of pedestrian behaviour have been analysed from experimental
trajectories. By means of the space discretisation and finite mixture approximation
we have been able to extract the pedestrians decision in relation to the occupation
of his immediate neighbourhood. The analysis showed that the main influence to
the decision has the occupation of the area in the forward direction towards the exit.
Further, most of the decisions pedestrians performed was to move forward or stay at
the position. The overrunning of the crowd was rather a rare event.

The results of the experiment analyses can be then used as the input to the optimi-
sation task of one ‘clever’ agent among usual floor-field particles.We have introduced
a technique of expressing the pedestrian evacuation model in terms of the MDP. Fur-
thermore, two different reward functions have been introduced to simulate different
preferences of the clever agent: to minimise the time spent in the room and to min-
imise the amount of inhaled carbon oxygen, i.e. minimising the number of conflicts.
In the future we plan to test the combination of those two strategies in order to prove
that optimal is the combination of the two above mentioned strategies.
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Oppilatio: The Forecast of Crowd
Congestions on Street Networks During
Public Events

Daniel H. Biedermann, Peter M. Kielar and André Borrmann

Abstract At many events, the arrival of visitors depends mainly on public transport
services. On such occasions, people walk from the station or bus stop to the event site.
This can lead to crowdcongestions since thevisitors arrive in largenumbers according
to the schedules of the public transport services. Unfortunately, organisers of such
events have very limited information about the arrival behaviour of their visitors.
Normally, they only know the number of incoming visitors on the event site and the
timetable of the public transport service. It is difficult to perform crowd management
successfully with so little data. Oppilatio uses this limited data to determine the
most likely routing paths of incoming visitors. This allows an early recognition
of potential crowd congestions on the access routes and therefore the initiation of
countermeasures.

1 Motivation

Size and significance of public events have increased in the last decades [1]. There-
fore, research about crowd control has become more and more important. A vital
aspect of crowd control is pedestrian dynamic simulations, which serves to pre-
dict the visitors’ movement behaviour and can be distinguished into three different
model types. Macroscopic approaches describe pedestrians as flowing densities [5]
and reduce the scenario to a simple network graph. Mesoscopic approaches describe
pedestrians as discrete objects thatmove on a cellular grid [4].Anothermodel type are
microscopic models which simulate individual and discrete pedestrians on a continu-
ous scenario [8]. Eachmodel type has different attributes according to computational
effort and spatial resolution [3]. Additionally, two types of hybrid modelling exist.
The first type combines pedestrian models of different spatial resolutions [3]. The
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second type couples pedestrian dynamic simulations with simulation models from
other research fields [2]. A proper use of simulations requires valid data about all
boundary conditions of the scenario (e.g. number of visitors) and background knowl-
edge about pedestrian dynamics (e.g. for the specification of input parameters).

Unfortunately, most organisers of public events are lacking such background
knowledge. Furthermore, the acquisition of valid data according to boundary con-
ditions is difficult to achieve, especially if an event is carried out for the first time.
However, knowledge about the visitors’ walking behaviour is essential for organis-
ers to successfully perform crowd control. Many visitors arrive with public transport
services like subways or shuttle buses. These transport services carry the visitors to
a subway station or bus stop, from which they walk to the event site. Since many
events take place in an urban environment [1], the access routes are often narrow
and insufficient for large crowds. It is important to forecast possible congestions and
therefore to prevent hazardously high densities. Broad video observation of all access
routes would be useful, but this is expensive and difficult to execute due to govern-
ment regulations according to data privacy. In order to fill this gap, we developed the
Oppilatio method to estimate route choices based only on public transport schedules
and data of arriving visitors. Oppilatio is a real time data analysis approach which
helps organisers to survey incoming pedestrian streams. Contrary to simulations, no
background knowledge about pedestrian dynamics is necessary and the needed input
data can be easily collected (see Fig. 1):

1. Arrival times of public transport services at the station
2. Accessible routes from station to the event site
3. Time-stamped counting of incoming visitors at the event site

Local transport operators provide timetables of their public transport services. Possi-
ble pathways from the station to the event site can be determined by openly-licensed

Fig. 1 Based on data commonly accessible for event organisers, it is possible for Oppilatio to
calculate the routing behaviour of incoming visitors to an event site
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geo-databases. The accessible routes are entered as a network of edges and nodes
into Oppilatio: streets are represented by edges and intersections are represented by
nodes. Time-stamped counting of incoming visitors can be acquired easily by event
organisers (e.g. time-stamped entrance tickets). Solely based on this information,
Oppilatio can calculate the most likely routes for each incoming visitor pi , using
algorithms described in Sects. 2 and 3.

2 Allocation of Arrival Times at the Station

We use the arrival time ti at the event site to determine the time a visitor pi started at
the public transport station. For this calculation, we need the pedestrian’s velocity, a
parameter which is unknown. Therefore, we have to estimate this value based on the
classical velocity distribution by Weidmann [13]. It is a normal distribution with a
mean value of v∅ = 1.34m/s and a standard deviation of σv = 0.26m/s. We assume
a minimal velocity vmin = v∅ − 2σv and a maximal velocity vmax = v∅ + σv. The
assumption is based on our field observation, that visitors of public events have a
significantly lower minimal velocity, since many of them stop on their way to the
event site to communicate and socialise with other visitors.

ϕi (vi ) = 1√
2πσ 2

v

exp

(
−

(
vi − v∅

)2
2σ 2

v

)
(1)

A new velocity vi has to be determined if a velocity value larger than vmax or smaller
than vmin is calculated by Eq.1. ParameterΛ describes the set of all accessible routes
λl ∈ Λ from the station to the event site. The length dl of a route λl is the sum of
all straight route section lengths |sl,m |. The index m = 1...M classifies the singular
edges and nodes of a route λl . The sequence of indices describes the chronological
order a pedestrian on route λl visits the nodes and edges. Therefore, the length dl of
a route λl with M nodes can be calculated as:

dl =
M−1∑
m=1

∣∣sl,m
∣∣ (2)

The parameter dmin defines the length of the shortest route λmin ∈ Λ, and dmax the
longest. Therefore, we can determine a minimal walking timeΔtmin = dmin/vmax , or
maximal walking time Δtmax = dmax/vmin . If a pedestrian enters the event site at ti ,
he or she has left the station in the time interval τi ∈ ΔDi = [ti − Δtmax , ti − Δtmin].
Thus, only arrival times of public transport services during this time interval can be
starting times of a pedestrian pi . If multiple transport services arrive at the station
during the time intervalΔDi , a clear assignment of starting times τi is not possible. In
this case, we assume a normal distribution as a probability distribution to distinguish
between multiple possibilities of starting times:
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ψi (t) =
{

1√
2πσ 2

exp
(
− (t−μi )

2

2σ 2

)
t ∈ ΔDi

0 t /∈ ΔDi

(3)

The expected value μi = ti − 1
2 (Δtmax + Δtmin) describes the mean value of the

time interval ΔDi . The behaviour of the normal distribution is given by the standard
deviation. If we assume that our interval ΔDi includes about 95% of all possible
values, we can determine the standard deviation as σ = 1

4 (Δtmax − Δtmin). In the
next step, we determine the probability that the arrival time τk of a public transport
service is chosen as the starting time of pedestrian pi at the station:

Ψi,k = ψi (τk)∑
j ψi (τ j )

(4)

Parameter τ j with j = 1...J corresponds to all possible arrival times of public trans-
port services at the station relating to their timetable. If multiple starting times τi are
possible, one starting time τi = τk is chosen randomly relating to its probabilityΨi,k .

3 Allocation of Routes from Station to the Event Site

In the next step, we determine the most likely route a pedestrian has chosen from
the station to the event site. Thus, we introduce a rating system which is based
on the physical boundary conditions of the scenario and on the cognitive routing
behaviour of humans. The time a visitor pi needed to walk from the station to the
event site equals Δτi,k = ti − τk . This corresponds to an estimated walking distance
of di = vi · Δτi,k . The smaller the difference between di and the total length dl of a
route λl , the higher the probability that this route was chosen by pedestrian pi . Thus,
we introduce a rating system Ξ to rate all possible routes for a visitor pi . The route
with the highest score will be assumed as the route the pedestrian has chosen:

Ξ(pi , λl) =
{

ξ(pi , λl) vmin · Δτi,k ≤ dl ≤ vmax · Δτi,k
0 else

(5)

In a first step, the score depends only on the difference between the estimatedwalking
distance di and the total length dl of a routeλl . According to the potential time interval
ΔDi of a visitor, a walking distance di must be between vmin · Δτi,k and vmax · Δτi,k .
Thus, we can normalise the distance between di and dl by:

α(di ) = 1 − |dl − di |
(vmax − vmin) · Δτi,k

(6)

Unfortunately, the matching of walking distance di and total route length dl is not
sufficient, since the assumed velocities vi are only approximations. Cognitive sci-
ences suggest, that the navigation behaviour of humans is a complex process [11].
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Some routes are more likely to be used even if the lengths between the predicted
walking distance and the existing routes to the event site match not perfectly. Thus,
we correct the rating ξ(pi , λl) of routes λl according to their attractiveness for the
human navigation process. For example, pedestrians prefer routes which run close
along the beeline from their position to their target ΘΘΘ [9]. Based on these scientific
findings, we extend the rating Ξ(pi , λl) by a factor β(ol) to describe the preference
of beeline-oriented routes. We calculate the mean derivation ol,m from the beeline
for each section sl,m . The beeline from a certain intersection to the target is given by
ΓΓΓ l,m = ΘΘΘ − el,m . Since the intersection el,m is located at the beginning of section
sl,m , we can calculate the mean derivation of this section as (see Fig. 2):

ol,m = 1

2

∣∣∣∣∣el,m +
(
el,m+1 − el,m

) ◦ ΓΓΓ l,m

ΓΓΓ l,m ◦ ΓΓΓ l,m
· ΓΓΓ l,m − el,m+1

∣∣∣∣∣ (7)

The total derivation ol equals the sum ol = ∑
m ol,m of all sections of route λl . For

the rating, we scale om,l by the average beeline derivation o∅ = 1
L

∑L
l=1 ol of all

routes:

βl(ol) =
⎧⎨
⎩
1 − Δp o∅/ol < 1 − Δp
o∅/ol 1 − Δp ≤ o∅/ol ≤ 1 + Δp
1 + Δp o∅/ol > 1 + Δp

(8)

According to a field experiment from Kneidl [10], 71.2% of all routes chosen by
the participants were beeline-oriented and 28.1% were not [9]. Thus, we limited
the influence of the rating to Δp = ±0.5 · (71.2 − 28.1)% = ±21.6%. Another
important aspect is the preference of humans to choose routes with a small number
of direction changes [10]. A direction change occurs if the angle ωl,m between two
sections sl,m−1 and sl,m differs by more than ω0 = π/18 [9]. The angle ωl,m can be
calculated by the scalar product of the neighbouring edges (see Fig. 2). The total
number of direction changes hl for a route λl can be calculated by the Heaviside-
function:

hl =
∑
m

H
(
ωl,m − ω0

)
(9)

The rating γ (hl) is analogue to the calculation of the beeline factor β(ol) with h∅

as the average number of direction changes per route:

Fig. 2 Scoring calculation for the preference of beelines (left) and few direction changes (right)
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γ (hl) =
⎧⎨
⎩
1 − Δq h∅/hl < 1 − Δq
h∅/hl 1 − Δq ≤ h∅/hl ≤ 1 + Δq
1 + Δq h∅/hl > 1 + Δq

(10)

Rating parameter Δq is based on Kneidl’s experiment [10]. 73.2% of all routes
selected by the participants had few direction changes, where as 26.8% had many
direction changes. Therefore, the influence of the number of direction changes was
limited to Δq = ±0.5 · (73.2 − 26.8)% = ±23.2%. Additionally, the navigation
of humans is influenced by the surrounding density of pedestrians. Persons with
low local knowledge often use the route choice of other people to navigate. A suffi-
cient description of this behaviour was described by Schadschneider et al. [12], who
applied the established ant-algorithm from Dorigo et al. [6] to pedestrian dynam-
ics. At this, the influence of other humans on the route choice is valid only if these
people are visible for the pedestrian pi . Additionally, other people can decrease the
attractiveness of a route: a too crowded street (ρ ≥ 0.5 P/m2) affects the operational
behaviour of pedestrians [13]. Thus, people will avoid such sections. A density
depending algorithm can model both contrary aspects. Since each unique section
sl,m runs linear between el,m and el,m+1, we can assume that each pedestrian on a
section sl,m is visible to any other pedestrian on this section. This means, that a
pedestrian p j is visible on sl,m for a time period [T−

l,m, j , T
+
l,m, j ] with the starting time

T−
l,m, j = τ j + ∑m−1

k=1 |sl,k |/v j and the ending time T+
l,m,i = τi + ∑m

k=1 |sl,k |/v j . The
sumof all visible pedestrians determines the density of this section for a pedestrian pi :

ρl,m,i = Nl,m,i∣∣sl,m
∣∣ · bl,m (11)

The parameter bl,m describes thewidth of a section sl,m . The number of all pedestrians
p j , which are visible for a pedestrian pi at a section sl,m are given by:

Nl,m,i =
∑
j

H
(
tl,m,i − T−

l,m, j

)
· H

(
T+
l,m, j − tl,m,i

)
(12)

Parameter tl,m,i is the moment a pedestrian pi would enter the intersection el,m . At
this time, the pedestrian pi has to decide which section they choose next. Therefore,
the local density at this moment would influence the decision making process. This
point in time can be calculated by tl,m,i = τi + ∑m−1

k=1 |sl,k |/vi .We use the established
parabolic relation from Greenshields [7] to model this density depending behaviour.
It is based on the fundamental relation of traffic sciences and describes the density
dependency of traffic flow. Our scoring system is based on this approach to model
the contrary density behaviour of pedestrians:

ζl,i =
M∑

m=1

ρl,m,i

ρmax

(
1 − ρl,m,i

ρmax

)
(13)
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The parameter ρmax = 5.4 P/m2 describes the amount of density, at which crowd
flow stops [13]. The rating of each route is compared to the average value ζ∅:

δ(ρl,i ) =
⎧
⎨
⎩

1 − c ζl,i/ζ∅ < 1 − c
ζl,i/ζ∅ 1 − c ≤ ζl,i/ζ∅ ≤ 1 + c
1 + c ζl,i/ζ∅ > 1 + c

(14)

The factor c = 0.01 determines the influence of the density dependencies and is
based on our experimental observations. Finally, we can calculate the total score of
a route λl . The route with the highest score is assigned to pedestrian pi .

ξ(pi , λl) = ξ(di , ol , hl , ρl,i ) = α(di ) · β(ol) · γ (hl) · δ(ρl,i ) (15)

4 Field Study and Outlook

The Oppilatio method was implemented and afterwards tested on a local music
festival with 5000 visitors. We tracked 700 visitors on their way from the subway
station to the actual event site to verify the routing suggestions. The field study was
executed by student assistants, who followed visitor groups to record their trajectories
with GPS devices. Based on this data, we determined the probability that visitors
use a specific section sl,m on their way to the event site. These probabilities were
compared with the probabilities calculated by Oppilatio. The results (see Fig. 3 and
Table1) were averaged over 30 calculation runs and corresponded quite good to the
data. Larger differences to the experiment exist in section sequence 02–04 (seeFig. 3).
The reason ismainly due to problemswith the data acquisition. During the field study,
about ten student assistants tracked the visitors from the station to the event site. At
the peak hours, as most of the visitors arrived, the number of student assistants was
too small to record a proportional share of visitors. Thus, the route choices of these
visitors are under-represented in the experimental data. Due to herding behaviour,
nearly all of them walked along the section sequence 01-03-06-09-11-13. Thus, our
experiment has most likely underestimated the total number of pedestrians on this
section sequence. In further research, various extensions are planned for Oppilatio.
One main issue concerns the layout input: at the current state, event organisers have
to set possible routes from station to event site on their own. We will couple the

Fig. 3 Layout of the
researched field study with
section-wise identification
numbers for Table1
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Table 1 Experimental pedestrian distributions compared with the results from Oppilatio

Section 01 02 03 04 05 06 07 08 09

Study (%) 82.5 17.5 82.5 12.2 5.3 74.9 19.8 5.3 74.9

Oppilatio (%) 98.2 1.9 98.2 1.1 0.9 83.8 15.5 0.9 83.8

Section 10 11 12 13 14 15 16 17 18

Study (%) 25.1 74.9 25.1 74.9 25.1 2.1 22.9 2.1 22.9

Oppilatio (%) 16.3 84.6 16.3 84.6 16.3 0.9 15.5 0.9 15.5

Oppilatio method with an network design approach, which calculates optimal route
networks based on information from open geo-databases.
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Simulation-Based Forecasts of Crowd Flows
at Major Events Using Real-Time
Measurements

Thomas Matyus, Stefan Seer and Helmut Schrom-Feiertag

Abstract The complexity and dynamic nature of large events arise the need for
decision makers to assess the current situation and to derive multi-temporal fore-
casts in order to identify critical situations in a timely manner and to initiate appro-
priate countermeasures. In this work, we present a fast mesoscopic simulation model
which incorporatesmeasurements from counting and Bluetooth sensors, thus provid-
ing real-time forecasts of crowd flows at major events. With this approach already
a sparse placement of sensors at strategic points on an event area is sufficient to
achieve the necessary spatial and temporal resolution for a complete characteriza-
tion of the current crowdflows. Formodel verification and validation, we investigated
case studies from two music festivals in Austria in 2012 and 2013 where extensive
measurements on human motion data were obtained to evaluate the deviations of the
simulation results from the measured walking times.

1 Introduction

Despite extensive pre-event planning andwell-developed security concepts, the com-
plexity and dynamic nature of large events can lead to unforeseen, tragic incidents.
While real-time sensor measurements on human motion may deliver essential quan-
titative data, complete coverage of an entire large outdoor event area with counting
sensors to provide all required data is prohibitively expensive. Here, the combina-
tion of fast crowd simulation tools with various types of real-time pedestrian flow
measurement technologies can achieve the required spatial and temporal resolution
for estimating the distribution, densities and walking speed of pedestrians. In [1]
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an evacuation assistant has been developed which allows forecasting the emergency
egress of large crowds in complex buildings by using data of video-based person
counting as input for a real-time simulation. Extending this concept to a monitoring
and decision support system of large outdoor events requires the ability to handle
dynamic origin-destination-relations (OD-relations). Whereas the OD-relations dur-
ing an evacuation are predefined and nearly static, pedestrian flows between multiple
areas of a venue are highly dynamic. These dynamic OD-relations can be determined
by detecting mobile devices at predefined positions for example by using Bluetooth
sensors.

In this work we present a pedestrian simulation model based on a mesoscopic
Cellular Automaton which simulates crowd flows at major events faster than real-
time and incorporates measurements from counting and Bluetooth sensors. This
enables decision makers to assess the current situation and to derive multi-temporal
forecasts in order to identify critical situations in a timely manner and to initiate
appropriate countermeasures. From the measured motion data, the following input
for the simulation model is derived: (1) Pedestrian generation rate at each entrance,
(2) exit rates and (3) the OD-relations. The first two are provided by counting sensors
which have to be deployed at neuralgic points such as entrances and exists. The third
input data is obtained by Bluetooth sensors. Depending on the number and locations
of Bluetooth sensors, in general, the resulting data reveals the relations between
origin and final destination points as well as the relations between intermediate
targets. Thus, the model is required to deal with dynamic OD-matrices which are
extended by intermediate targets.

In the following section the data model is described which is used to prepare
the raw sensor data for the input into the simulation model. The latter is presented
in Sect. 3. For the model verification (in Sect. 4) and validation, we investigated
case studies from two music festivals in Austria in 2012 and 2013 where extensive
measurements on human motion data were obtained. The results are summarised in
Sect. 5 and concluded in Sect. 6.

2 Data Model

2.1 Types of Sensors

There are a variety of sensor technologies available to measure crowd flows and
densities. It is very important to select reliable and affordable sensors that allow
counting people at cross-sections and detecting peoplemovements at outdoor festival
areas under all light and weather conditions. The two types of sensors chosen for
our framework are (1) laser based counting sensors and (2) Bluetooth sensors. The
counting sensor is the laser based LD PeCo 3100 [6] with head detection for wide
passage areas with high visitor frequencies especially suitable for outdoor use. The
number of people passing the counting sensor in and out are recorded and transmitted
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directly via GSM to a server and aggregated every quarter of an hour. For Bluetooth
detection the BLIDSBluetooth sensor network [3] was chosenwhich is cost-efficient
and easy to instal. The BLIDS sensor detects Bluetooth-enabled mobile devices
in its vicinity but provides no information about directions. Direction information
can be obtained in a sensor network over the sequence of those sensors where the
specific device was detected. The BLIDS network enables the real-time acquisition
of crowd flow data and similar to the counting sensors the data are buffered locally
and transmitted via GSM to a server. The data stored are the detection log from the
Bluetooth sensor network which consists of timestamp, sensor id and device id.

2.2 Data Preperation

To calculate the people counts based on the number of detected Bluetooth-enabled
mobile devices the correlation between the measurements of a certain Bluetooth
sensor and the number of pedestrians passing this sensor has to be estimated. For
this purpose, a linear regression model is fitted to the dataset using the least squares
method.

The final result is a graph (for example see Fig. 1) consisting of nodes representing
all sensor locations and all possible connections between sensors with complete
information about the crowd flow on each arc in the last quarter hour. The graph and
its data serve as input for the simulation model in order to initialise it with the current
situation. This enables the simulation to predict the movements of the crowd for a
specified time horizon.

Fig. 1 Number of detected Bluetooth-enabled mobile devices over all three days: Donauinsel
festival 2013 (a); Nova Rock festival 2012 (b)
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3 Simulation Model

The mesoscopic simulation model is based on a Cellular Automaton model [2]. With
respect to the data model the navigation model has to be adapted: the infrastructure
consisting of walkable regions, obstacles, etc. is represented by polygons. For each
entry in the OD-matrix a corresponding decision point is generated in the walkable
region. The value of theOD-relation is interpreted as the probability for the pedestrian
to choose the corresponding destination as next goal. Between the decision points
the pedestrians are routed on the shortest path by applying Dijkstras algorithm [4]
on a visibility graph.

The operational model is based on a regular 1 × 1m grid with Moore-
neighbourhood. The maximum density of a cell is 5 persons per square metre. The
velocity for movements within a cell corresponds to Helbings Fundamental Diagram
[5]. Since Helbing’s data offer no values for densities lower than 1.0 persons per
square metre the dataset is extended by data points from Weidmann’s Fundamental
Diagram [7].

The real-time input data of the crowd flow are obtained from the sensor network:
(1) Pedestrian generation rate at each entrance and (2) the exit rateswhich are updated
every 15min and (3) the OD-relations in real-time.

4 Model Verification

For a proof of concept we tested the computational performance of the implemented
mesoscopic simulation model applied to data recorded at the Donauinsel festival
2013 in Vienna. It is an open access festival on an island in the river Danube lasting
for three days with overall three million visitors. For this purpose, we restricted
the observation area to that part of the festival site with the highest crowd flows.
Namely, the area where the visitors leave the island via two bridges towards the two
nearest subway stations. Figure1 shows the OD-relations of all three festival days
extrapolated from the recorded Bluetooth data (see Sect. 2). The highest pedestrian
flow occurred in the hour after midnight on the second festival day. We used the
15min data of this period to test if the implementation of the mesoscopic simulation
model reproduces the OD-relations correctly, if the temporal resolution is suitable
and if it is fast enough for forecasts during the festival. At the maximum of the crowd
flow 42,000 visitors have been simulated simultaneously on a typical laptop ten times
faster than real-time.
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5 Model Validation

In order to validate the simulationmodel we compared thewalking times in a corridor
measured by Bluetooth sensors, with the forecasts of a simple macroscopic model
and with results computed by the proposed mesoscopic simulation model. As test
site we chose the ‘Nova Rock’ festival 2012.

The festival area is located on a flat and open terrain and the whole area is sur-
rounded with security fencing. The festival area inside is divided into a camping
zone and a core zone which in turn is again separated from the camping zone by a
fence. In Fig. 2 the festival area with the camping zone as well as the core zone with
its two stages, the Blue and the Red Stage are shown. The two stages are far apart
and connected over a corridor with a length of 600m and a width ranging from 23 at
the widest to 16m at the narrowest point. The core zone has only two entrances, one
near the Blue stage and one near the Red stage. For crowd control 14 line-up gates
at the entrance of the Blue and 12 line-up gates at entrance of the Red Stage were
installed.

5.1 Data Analysis

The correlation between the number of persons and the Bluetooth measurements as
shown in Fig. 3 was estimated by a linear regression model (see Sect. 2). The results
of the linear regression are: 41.41 for the linear coefficient, nearly zero for the p-value
of the t-statistic and 607 for the rootmean squared error. The regressionmodel cannot

Fig. 2 Overview of the Nova Rock festival site with its main parts (Blue stage, Corridor, Red Stage
and Camping area) and the sensor locations
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Fig. 3 Number of persons (blue line) and number of detected Bluetooth-enabled mobile devices
(green line) per hour for all three festival days

be determined at the beginning of the festival without having data. Therefore, the
linear model is updated constantly during the progress of the event having a current
linear coefficient.

5.2 Macroscopic Model

The macroscopic model was used to calculate the walking times by estimating the
meanvelocities for each 15min time slot. Thiswas done by applying theFundamental
Diagram, given in Sect. 3, on the corresponding average densities in the corridor.
Of course, this underlies the assumption that all visitors are distributed uniformly
in the corridor. In order to determine the number of pedestrians. we extracted the
walking time distribution from the Bluetooth measurements of the previous hour.
This rather long time interval was chosen because there were small stages located
inside the corridor which induced some visitors to remain in the corridor instead
of just passing through. For each time point within the next hour the number of
pedestrians staying inside the corridor was estimated. This was done by drawing
from the generated distribution and integrating the inflow into the corridor which
we got from the corresponding counting data. Thus, the average densities inside the
corridor and subsequently the mean velocities were determined.
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5.3 Results

For the model validation we considered two periods on the second festival day. A
longer one which lasted from 08.00pm until 00.15am on the next day and a shorter
one from 11.00pm until 00.15am. At 11.00pm a thunderstorm warning induced a
heavy and continuous crowd flow through the corridor whereas in the hours before
we observed the usual crowd behaviour with lingering visitors. Based on the sensor
measurements of these two periodswe calculated the deviation between themeasured
walking times and the walking times estimated first, by the macroscopic model as
described before and secondly, by the mesoscopic simulation model. As it can be
seen in Fig. 4 both models, the macroscopic model and the mesoscopic simulation
model, predict the walking times quite well and the difference between the deviations
of the two can hardly be detected. Nevertheless, the detailed results presented in
Table1 reveal that the assumption of the macroscopic model that all pedestrians
are distributed uniformly in the corridor does not hold. The simulation is able to
model the pedestrian flows inside the corridor more precisely and hence, produces
better results. Especially, in the hour when the corridor was crowded, the mesoscopic
simulation model reduced the average walking time deviation by −17% and the
median deviation by −31% compared to the results of the macroscopic model.

Fig. 4 The histograms of thewalking time deviations from themeasured data for the period between
11.00pm and 00.15am: macroscopic model (a); mesoscopic simulation model (b)

Table 1 Comparison of the walking time data of the macroscopic model and of the mesoscopic
simulation

Period Mean deviation Median deviation

Macroscopic
[min]

Simulation
[min]

Delta
[%]

Macroscopic
[min]

Simulation
[min]

Delta
[%]

20:00–0:15 18.18 18.13 −0.24 1.45 1.41 −2.92

23:00–0:15 1.25 1.03 −17.30 0.54 0.37 −31.23
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6 Conclusions

We presented a fast mesoscopic simulation model for real-time forecasts of crowd
flows atmajor eventswhich incorporatesmeasurements from counting andBluetooth
sensors.Data fromcounting sensors showedagoodcorrelation todata fromBluetooth
sensors and the combination of them can be considered as an appropriate method
for crowd flow acquisition with respect to spatial and temporal resolution. Based on
these real-time measurements the presented mesoscopic simulation model is able
to improve forecast quality compared to a macroscopic model. Of course, future
investigations how the computational performance and the quality of the simulation
results of themesoscopic simulationmodel can be increased are necessary. Therefore,
we are pursuing several options such as improving the implementation, calibrating the
simulationmodel, searching for alternative models and extending the sensor network
with alternative technologies, such as WiFi scanners or video-based counting and
crowd flow analysis. For this purpose, it is indispensable to acquire more data for
case studies and to test the forecast for diverse real-life events. Finally, the validation
process presented herein can only be seen as a first approach and has to be further
refined.

Acknowledgements The results presented in this paper are part of the research projectsENMASSE
and MONITOR, funded by the Austrian security research program KIRAS of the Austrian Federal
Ministry for Transport, Innovation and Technology (bmvit).
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Level of Safety Concept for Major Events

Stefan Holl, Maik Boltes and Armin Seyfried

Abstract Most of the international guidelines for the dimensioning of pedestrian
traffic facilities are built on the ‘Level of Service’ concept. It is well suited for a
lot of traffic conditions like unidirectional pedestrian flows on pavements or in cor-
ridors. However, the concept reaches its limit in case of more complex situations
like bi- and multi-directional streams, e.g. at railway stations, airports or large public
events. Several disasters in context of large public events revealed the lack of applica-
ble rules. The deficit is explainable against the background of missing experience.
Neither emergency forces and responsible authorities nor researchers in the area of
pedestrian dynamics have a valid database to describe multi-directional streams in
high densities. As part of the research project ‘BaSiGo—Bausteine für die Sicher-
heit von Großveranstaltungen’, large-scale laboratory experiments with about 2,000
pedestrians have been conducted in 2013. The aim of thework is to convert the ‘Level
of Service’ concept into a ‘Level of Safety’ concept for large public events. A first
approach for the new concept, based on a traffic light system (green, yellow, red), is
presented in this article.

1 Introduction

Various accidents at mass events in the past years (e.g. the ‘Loveparade’ disaster in
Duisburg 2010) revealed some serious problems: First of all, it had to be noted, that
there are no generally obliging rules for the approval of large public events. In the
past, such outdoor events were often treated as such in buildings. In Germany, the
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Regulations on Places of Assembly,1 which normally applies for assembly buildings,
was used frequently. Neither this regulation nor the guidelines for the design of
road traffic facilities [1] include binding criteria for the assessment of pedestrian
areas in case of high densities, such as found at large public events. This is not
surprising, because there is no adequate empirical database until today. Field studies
and experiments are already carried out for many years, but only in recent years it
is possible to observe the microscopic correlations inside the pedestrian flows. The
topic of the project ‘BaSiGo—Bausteine für die Sicherheit vonGroßveranstaltungen’
[2] has been to define safety and security modules for large public events. In about
30 setups typical traffic facilities at large public events like corridors, intersections,
entrances, corners, etc. have been investigated. At various runs up to 1,000 probands
have participated. The pedestrian density in these experiments reached up to six and
more persons per square metre. The results of the project will be incorporated step
by step into the new ‘Level of Safety’ concept.

2 State-of-the-Art

Most regulations in context of pedestrian traffic are based on the ‘Level of Service’
concept [3–5], which focuses on comfort, but not on safety aspects. Multi-directional
traffic is usually not taken into account, it is assumed that the pedestrian traffic takes
place in only one or two directions. The most popular guideline for the design of
road traffic facilities in Germany is the ‘Handbuch für die Bemessung von Straßen-
verkehrsanlagen (HBS)’ [1]. The method therein for pedestrians is based on Weid-
mann’s fundamental diagram

Js = ρ · v0 ·
(
1 − e

−1.913·
(

1.0
ρ

− 1.0
5.8

))
(1)

where Js is the specific flow, ρ the density and v0 the desired speed. According to
this fundamental diagram six quality levels are defined, which are indicated by the
letters A to F (see Fig. 1). The limit, which normally should be complied, is level
D. The threshold values have been identified in field studies. Since in these studies
only densities up to ρ = 0.63 m−2 could be observed, the high density areas were
simulated by a microscopic model [6, p. 26]. For major events, however, the people
densities are generally much higher. Densities of more than five persons per square
metre are not uncommon. On the other hand, the fine-scaled classes in the low density
areas are only relevant for comfort aspects. Although theHBS has been proven useful
for standard traffic situations, it should not be used for major events.

1The building codes in Germany are regulated by the federal states. The conference of the min-
isters of construction works out the ‘Muster-Versammlungsstättenverordnung’ (MVStättV). It is a
proposal for the federal ordinances. In North Rhine-Westphalia places of assembly are regulated in
a Special Construction Regulation (Part 1: Assembly Areas).
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Fig. 1 Level of Service diagram according to HBS [1, Fig.S9–4a and TableS9–1]. The curves are
defined by the fundamental diagram ofWeidmann and depend on the free velocity v0. In the ‘fictive
density of pedestrian traffic’ different factors, such as the oncoming traffic or the manner of walking
are taken into account. Footnote in HBS: For safety reasons, the fictive density of pedestrian traffic
may not exceed the value of 1.90ped/m2

3 Level of Safety Concept

First of all, it is necessary to distinguish between the different traffic situations at
major events. There are three typical conditions associated with the priority use of
the areas:

1. Traffic areas, which are used for movement, e.g. pavements or entrances
2. Common areas, e.g. waiting zones or areas in front of stages
3. Mixed used areas, e.g. in the centre of flea markets or parish fairs

TheLevel of Safety concept applies to areaswhich serve themovement. Stationary
individuals—who do not want to move—may only be considered as barriers to the
flow of traffic. Nevertheless, the concept is also interesting for the escape routes of
common and mixed used areas. The crucial criterion for these areas is the possibility
to reach the escape routes and exits in adequate short time. In common or mixed
used areas (e.g. directly in front of the stage at a musical event) the acceptable local
density can be significantly higher than in areas, which are used for movement.

The concept should be easy to apply and the focus should be on safety aspects.
Therefore the HBS method is used as a template but the classification is simplified:
instead of levels A to F, a traffic light system (red, yellow, green) is used. These three
levels are based on the elementary zones of the fundamental diagram (see Fig. 2).
The figure does not intend to describe all states exactly. High densities for example
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Fig. 2 Schematic representation of the fundamental diagram. The elementary zones are correlated
with the safety levels ‘green’, ‘yellow’ and ‘red’

show additional effects, like stop-and-go-traffic. For the safety levels, however, these
effects have no relevance. Nevertheless, there are three basic zones:

• Free flow regime I: rare interferences and free velocities
• Free flow regime II: interaction between pedestrians with needs for changes of
velocity and direction but still a stable flow

• Congested state: traffic jams up to stoppages which could lead to critical situations

At the transition between ‘yellow’ and ‘red’ we have a special situation because
of the overlap which is defined as red. In this transient region, the dependency of
flow and density is no longer unique. For a given density in the transient region the
flow may either be free or congested, depending on the circumstances. The state of
metastability is insufficiently researched until today.

As a result of the laboratory experiments in the projects Hermes [7] and BaSiGo
[8] (see Fig. 3) the fundamental diagrams for various geometries could already be
determined. The analyses are based on individual trajectories [9–11]. To describe
the traffic conditions the methods developed by Steffen [12] and Zhang [13, 14] are
used. Based on this data the first threshold values for uni- and bidirectional traffic
are set (see Table1 and Fig. 4).

4 Procedural Steps

For practical use of the Level of Safety concept six steps have to be executed:

1. Visualisation of site and traffic
2. Specification of pedestrian flows
3. Conversion into 2-minute-intervals
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Fig. 3 Image sequence of an intersection experiment, one of the large-scale laboratory experiments
in BaSiGo project: experiment setup, each entrance has a width of four metre, the streams cross at
an angle of 90◦ (a); experiment with more than 600 probands. The density exceeded six persons
per square metre (b)

Table 1 Level of Safety classification

Level of Safety

Type of traffic Green Yellow Red

Unidirectional Js ≤ 1.3 (ms)−1 Js ≤ 1.6 (ms)−1 Js > 1.6 (ms)−1

ρ ≤ 1.0m−2 ρ ≤ 1.7m−2 ρ > 1.7m−2

Bidirectional Js ≤ 0.6 (ms)−1 Js ≤ 1.2 (ms)−1 Js > 1.2 (ms)−1

ρ ≤ 0.5m−2 ρ ≤ 1.0m−2 ρ > 1.0m−2

Intersections, corners,
waiting areas, ...

Current analysis of BaSiGo results

(a) (b)

Fig. 4 Level of Safety zones: for unidirectional flow (a); bidirectional flow (b). The fundamental
diagrams originate from Zhang [13]. The vertical lines mark the boundaries between the safety
levels ‘green’, ‘yellow’ and ‘red’
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4. Calculation of effective width
5. Calculation of specific flow
6. Level of Safety classification

Maybe the most important step is the visualisation of site and traffic. The planner
has to pay close attention to all the upcoming traffic flows. In this step he does
it just in a qualitative way. The traffic—induced by the event just as additional
everyday traffic—is visualised on a true-to-scale site plan. As a basis for these plans
municipal cadastral plans are recommended. The presentation is done in scale 1:500
(1 cm =̂ 5m), but in no case at a scale smaller than 1:1,000 (1 cm =̂ 10m). For each
time period of arrival, the event itself and the departure a separate plan (or separate
CAD layer) is created on which the traffic streams are shown as coloured arrows. In
particular load peaks (e.g. due to the timing of public transport or special attractions),
it may be useful to shorten the intervals for the presentation on 60, 30 or 15min.
Based on the visualisation it can be determined which critical sections are relevant
for detailed analysis. Particular attention should be addressed on the identification of
bi- and multi-directional traffic at intersections and bottlenecks (e.g. at barriers and
entrance gates).

The second step is the specification of pedestrian flows. For each relevant section
the traffic is predicted hourly (or for shorter intervals in case of special load peaks).
Relevant for the further consideration are the time intervals with the largest flow of
people. In case of hourly prediction the pedestrian flow is referred as q60.

In the previous step, the traffic volumes were usually acquired for
60-min-intervals. For further calculations, the flow values are converted into 2-min-
intervals. For this, the conversion factors of theHBS are used. The conversion of units
and a surcharge which accounts the fluctuations in traffic flow are already contained
in these factors. Example: For the transition from sixty to two minutes a surcharge of
1.8 is set. This produces a conversion factor of 0.06 = 1.8 · 2/60 min (see Table2).

Next step is the calculation of the effective width. The effectively available width
of the walking area is decisive for the number of persons which can pass the section
within the specified period. For the calculation of usable width bef f obstacles (walls,
masts, trees, bollards, bins, etc.) are considered in their geometrical width plus addi-
tional distance to boundaries (0.25 to 1.00m each side) [1, 15].

Table 2 Factors for translation into 2-min-intervals (see HBS [1, Fig.S2–2 and TableS2–3])

Prediction interval [/min] Surcharge Conversion factor [/(Δt min/2min)]

60 1.80 0.06

30 1.50 0.10

15 1.35 0.18

10 1.25 0.25

Example: q60 = 30, 000 ped
60 min ⇒ q2 = 30, 000 ped

60 min · 0.06 · 60 min
2 min = 1, 800 ped

2 min
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The next to last step is the calculation of the specific flow. For this purpose, the
following equation can be used:

Js = q2 · 2 min
120 s

bef f
(2)

For the example in Table2 and an effective width bef f = 10 m results:

Js = q2 · 2 min
120 s

bef f
= 1, 800 ped

2 min · 2 min
120 s

10 m
= 1.5

ped

ms
(3)

Final step is the Level of Safety classification. For unidirectional traffic the com-
parison with Table1 shows that the exemplary calculated specific flow is still in the
yellow range. However, for bi-directional traffic this value is already in the red zone.
In this case, safety-critical situations have to be expected.

Acknowledgements This study was performed within the project ‘BaSiGo—Bausteine für die
Sicherheit von Großveranstaltungen’ (Safety and Security Modules for Large Public Events), grant
number: 13N12045, funded by the Federal Ministry of Education and Research (BMBF). It is a
part of the program on ‘Research for Civil Security—Protecting and Saving Human Life’.

References

1. Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS), Teil S, Stadtstraßen.
Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV), Köln (2015)

2. Bausteine für die Sicherheit von Großveranstaltungen (BaSiGo). http://www.basigo.de/
3. Fruin, J.J.: Designing for Pedestrians: A Level of Service Concept. Ph.D. thesis, Polytechnic

University of Brooklyn (1970)
4. Fruin, J.J.: Pedestrian Planning and Design, revised edn. Elevator World (1987)
5. Weidmann, U.: Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fuss-

gängerverkehrs (Literaturauswertung), Schriftenreihe des Instituts für Verkehrsplanung, Trans-
porttechnik, Strassen- und Eisenbahnbau, ITH Zürich, vol. 90. Zürich (1993)

6. Alrutz, D., Friedrich, B., Mennicken, C., Bohle, W., Busche, K., Irzik, M., Rose, M.: Bemes-
sungsgrundlagen für Fußgängerverkehrsanlagen: Kurzbericht zum FE 77.452/2000. Planungs-
gemeinschaft Verkehr und Institut für Verkehrswirtschaft, Straßenwesen und Städtebau der
Universität Hannover, Hannover (2003)

7. Holl, S., Seyfried, A.: Hermes—an evacuation assistant for mass events. In: SiDE, vol. 7(1),
pp. 60–61 (2009)

8. Holl, S., Seyfried, A.: Laboratory experiments on crowd dynamics. In: SiDE, vol. 11(2), pp.
102–103 (2013)

9. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomput. Spec. Issue Behav.
video 100, 127–133 (2013)

10. Boltes, M., Seyfried, A., Steffen, B., Schadschneider, A.: Automatic extraction of pedestrian
trajectories from video recordings. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A.,
Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 43–54. Springer,
Berlin (2010)

11. Mehner, W., Boltes, M., Seyfried, A.: Methodology for generating individualized trajectories
from experiments. In: Traffic and Granular Flow 2015 (2015)

http://www.basigo.de/


344 S. Holl et al.

12. Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction
with minimal scatter. Phys. A 389(9), 1902–1910 (2010)

13. Zhang, J.: Pedestrian fundamental diagrams: comparative analysis of experiments in different
geometries. Schriften des Forschungszentrums Jülich, IAS series, vol. 14. Jülich (2012)

14. Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamen-
tal diagrams of straight corridors and T-junctions. J. Stat. Mech. Theory Exp. 6, 06004–06004
(2011)

15. Nelson, H.E., Mowrer, F.W.: Emergency movement. In: DiNenno, P.J., Drysdale, D., Beyler,
C.L., Walton, W., Douglas, C., Richard, L.P., Hall, J.R., Watts, J.M. (eds.) SFPE Handbook of
Fire Protection Engineering, pp. 3–367–3–380. National Fire Protection Association, Quincy,
Massachusetts (2002)



Brazilian Legislation and the Boate Kiss
Tragedy: Computational Modelling
of Evacuation

Henrique C. Braga, Gray F. Moita and Paulo E. M. Almeida

Abstract Brazil was recently the scenario of a great tragedy in the nightclub Boate
Kiss, where 242 people were killed. The starting point of the fire was the use of a
pyrotechnic device over an acoustic coating made of a kind of polyurethane foam.
The causalities were caused mainly by asphyxia and by the inhalation of toxic gases.
However, several additional causes contributed to the amount of damage and human
losses. The investigation emphasised the necessity to discuss details in the applicable
Brazilian legislation. In thiswork, theBoateKiss tragedy is presented and the some of
their mainly aspects discussed. The software FUGA, used to simulate the evacuation
process, is also summarised. A computational model for evacuations in environments
similar to the Boate Kiss is built and analysed. Finally, some considerations are made
in order to improve the current Brazilian safety codes.

1 Introduction

In 2013 a great tragedy occurred in Brazil. A fire at nightclub Boate Kiss, in the city
of Santa Maria—state of Rio Grande do Sul (RS), Brazil, killed 242 people, most of
them young university students. About 680 peoplewere injured,many seriously. This
was the second largest Brazilian official tragedy by fire and the largest in the last 50
years. Historically [6], accidents in environments such as nightclubs (even in small
ones) can be considered critical in terms of safety. The Boate Kiss tragedy presented
similarities to what happened in the fire at a nightclub in Rhode Island—USA, in
2003, and, mainly, with the tragedy at República Cromañon in Argentina, in 2004.
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Unfortunately, the knowledge acquired in these earlier tragedies was neglected by
many, including the authorities.

The starting point of the fire was the use of a cheap pyrotechnic device called
‘Sputnik’—prohibited for indoor use—over an acoustic coating made of a kind of
polyurethane foam. The causalities were caused mainly by asphyxia and toxic gases
inhalation, such as hydrocyanic, from the smoke generated by the burning foam [2, 4].
In spite of the causative main factor, the investigations pointed out that, as it usually
happens in great tragedies such as this one, several additional causes contributed
to the amount of damage and human casualties [3, 7]. Therefore, the necessity to
discuss many of the crucial technical details in the applicable Brazilian legislation
was also emphasised [9].

In this work, the Boate Kiss tragedy is presented and some of the main points
related to the incident discussed. It is important to highlight that this is a recent event
and that the investigations are still in progress. Some of the information provided is
provisional and subject to modification. The software FUGA [5] used to simulate
the evacuation process is briefly described. Afterwards, computational simulations
of evacuations in environments externally similar to the nightclub are performed.
No considerations about the internal design are taken into account at this moment.
All simulations are made considering an occupancy of 350, 700 (approximately the
maximum legal occupancy of Boate Kiss) and 1000 persons. The environments are
considered with a single exit of 3.2m (the real situation in the location) and with
some alternative situations, with a wider exit and with additional exits.

The dynamics of people flow is evaluated by checking the flow capacity of the
exits, the time and flow profile and the possibility of the occurrence of internal
collisions. It is demonstrated that even if all of the requirements of theBrazilian codes
were thoroughly followed, serious accidents could still potentially occur in certain
situations, demonstrating the need for a greater discussion of the codes applied to
these types of environments in Brazil. At the end, some considerations are made in
order to improve the existing Brazilian fire and safety codes.

2 Background

2.1 Boate Kiss Tragedy

The nightclub Boate Kiss was located in a residential and commercial area, in the
centre of Santa Maria, and the noise generated caused a big problem with the neigh-
bourhood, specifically during the nights. Thus, the entire nightclub was sealed as
a way to avoid noise dispersion. There were absolutely no windows or alternatives
ways to eliminate the smoke. The fire started in the roof above themain stage after the
ignition of a cheap pyrotechnic device by a member of the band that was performing
in the premises. Soon after the beginning of the fire, a fire extinguisher was used in
an attempt to extinguish the fire in the roof, but to no avail (the fire extinguisher was
not fully operational).
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The spreading of the smoke was accelerated by the air conditioning system of
the place. There are evidences reporting that it took no more than three minutes to
engulf almost the entire club. It was really a very fast phenomenon. Furthermore,
there was no kind of smoke suppression system installed in the nightclub. The smoke
generated took a critical importance in this tragedy.

The nightclub was overcrowded. According to the original project (from 2009),
its maximum occupancy should be 691 people [9], but the real number could be
significantly higher. Additionally, instead of applying the correct (and approved)
project, the owners have changed themselves the environment design (there is no
official or updated project elaborated by an architect or an engineer). Several obstacles
and iron bars in the exit route were added, causing a bottleneck effect. This alteration
by the owners in exit route was done to avoid unauthorised people to leave and to
facilitate the bill payment (all food and beverage consumption within the nightclub
was paid when the costumer left the premises).

The excerpt below, a transcript of the police investigation of the tragedy [3], helps
to illustrate some of the numerous problems which have occurred:

Panic took hold of individuals whowere in the club, causing people to despair and try to leave
the place, but Boate Kiss had only one exit that led to the outside. That exit was absolutely
insufficient to give flow to the amount of people throng in desperate attempt to leave the
area, many of which have died trying to. Not only the single exit, the existence of several
physical barriers, guard rails (containment bars) in the exit routes, stairs, emergency lighting
disability, lack of indication or escape routes signalling, in addition to the crowded site, also
contributed to the resulting damage, factors that together hampered the rapid evacuation of
the spot (free translation)

To better exemplify one of the above points: to complywith theBrazilian standards
Boate Kiss had two emergency exits [1], but these exits were placed side by side,
so that in fact it had only a single double sized emergency exit. Later on, experts
considered that this single exit was irregular [10], but this is a point not fully covered
(or dealt with) in the applicable Brazilian codes [9]. During the investigation, it was
shown that the (effective) unique double exit was of the knowledge of the municipal
government and also of the local Fire Department. However, these authorities did not
restrain this condition, probably due to gaps created by thewording of the prescriptive
rules and the institutionalised relaxation and disregard with the inspection of fire
safety [10]. In RS, the simplification in the process to obtain a legal license was
such that even a nightclub of the size and occupation of Boate Kiss could get its
authorisation of conformity against fire without an updated fire protection design
made by a specialist [3, 10].

Particularly for Boate Kiss, despite numerous irregularities in statements, a senior
officer of CBMRS (State Fire Department) said to the press:

I have been telling that it (the premises) was regular with respect to fire prevention; the
code itself is a very, very limited code.1 That property was in compliancy with the Brazilian

1Discovery Channel, Documentary ‘Tragédia em Santa Maria’, 2013.
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Fig. 1 Images of the escape route of Boate Kiss (adapted from [9])

standards for fire safety, including the emergency exit, the anti-panic bars, the emergency
lighting and the fire extinguishers. Everything was ok2 (free translations).

Finally, Fig. 1 shows some images of the escape route, taken after the tragedy.

2.2 Brazilian Code

The legal code used in this work to determine the dimension of the exits is the Brazil-
ian standard ABNT 9077 [1]. It is important to state that, in reality, as a substitute
of the national standard, each Brazilian state has its own legislation, but in general
they are very similar and comply with ABNT.

In ABNT 9077, the total width of the exits is given by the following equation:

N = P/C (1)

2https://esportes.yahoo.com/fotos/boate-estava-regular-diz-bombeiro-photo-185217717.html
(2013). Accessed 13 Nov 2015.

https://esportes.yahoo.com/fotos/boate-estava-regular-diz-bombeiro-photo-185217717.html
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where N =number of passages unit (PU ), rounded to the higher natural number;
P =occupation (according specific criterions); and C =capacity of PU (referential
number of people to get through the doorway in one minute).

The value of P and C are obtained in ABNT 9077 (Sects. 4.3 and 4.4.1.1 and
Table5 of ABNT 9077 Appendix). One PU represents 0.55m. The width can never
be less than 1.1m (or 2 PU ).

For example, a nightclub with 350 m2 useful floor area (areas like bathrooms or
staircases are not considered as useful areas) will admit a population of 700 people.
As C is equal to 100, according to Eq.1 the minimum width of all exits must be
equal to 7 PU (or 3.85m). The code for this environment imposes the necessity of
a minimum of two exits. There is no specification about the best positioning for the
exits. Additionally, the use of hydrant, sprinkler, alarm or smoke suppression systems
are not mandatory for a night club like Boate Kiss.

Independent of the technical laws, another important point is that the facilities for
a night club (as almost all kind of company) work without a fire license in Brazil.

2.3 The Software FUGA

In order to simulate the evacuation, the software FUGAv. 1.0was used. Its conception
is based on a discrete automatonmodelling, considering as paradigms the ergonomics
aspects relate to the human movement and the fuzzy logic to emulate the human
decision making process. Two results were obtained from the simulations: the time
for the effective escape of the environment and the possibilities of occurrence of
internal collisions (POIC) among the persons during the evacuation.

The effective escape time is normally considered as the sum of three times: the
perception time, the reaction time and the effective movement time. With FUGA,
it is possible to consider, or not, the perception and reaction times. However, in the
current evacuation simulations, the whole crowd immediately begins to move in the
direction of the nearest available exit. Thus, in these cases the considered escape
time is only the effective movement time up to the exits.

The parameter POIC can be used as a qualitative indicator of the jamming or
congestion possibilities [5]. There are four kinds of POIC. POIC 1 indicates how
many times, during the escape up to the exit, persons have thefirst option ofmovement
obtained by the fuzzy system blocked. POIC 2 indicate how many times, during the
escape up to the exit, the first and the second options ofmovement of persons obtained
by the fuzzy system are blocked. By applying the same rules, POIC 3 indicates how
many times the first, the second and the third options of movement are blocked, and,
finally, POIC 4 indicates how many times all possibilities of movement are blocked
(in this situation, even if a person wants to move, he or she has to remain in the
same place). Consequently, a low value for POIC 1 indicates a low possibility of the
occurrence of internal collisions or jamming; however, a high POIC 4 indicates a true
chance of jamming occurrence during the escape, specially in case of non-adaptive
behaviour [8].
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Fig. 2 Different exits configuration adopted in the evacuation simulation (topview,with the external
walls in black and the exits in orange). Configurations 1 (real): 1 exit of 3.2m (a); 2: 1 exit of 7m (b);
3: 2 exits of 3.5m in the facade (c)

3 Results and Discussions

All the evacuation simulations were performed by FUGA in environments externally
similar to the nightclub Boate Kiss (rectangular, with dimensions 23.18m long by
26.45m wide). No obstacles or inner walls were considered. Three different exit
configurations were possible. The first is similar to the real Boate Kiss, a single exit
with 3.2m. The second configuration considers a single exit with 7m in the centre
of the building façade. The third configuration considers two exits, each one with
3.5 m. Figure2 shows each exit configuration adopted in the simulations. Each exit
environment configuration was simulated considering occupancies of 350, 700 and
1000 persons. Figure3 shows an example of the different occupancy profiles.

Fig. 3 Examples of the adopted occupancy profiles (initial random distribution): 350 persons (a);
700 persons (b); 1000 persons (c)
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Fig. 4 Evolution of POIC 4 as a function of escape time for the real external environment (exit
configuration 1) and occupancy of 700 persons

Table 1 Result of evacuation simulations

Exit configuration Occupancy Total escape time (s) POIC4

Configuration 1: 1 exit of 3.2m 350 60 70

700 110 4,000

1000 153 13,300

Configuration 2: 1 exit of 7m 350 44 15

700 70 700

1000 90 2,800

Configuration 3: 2 exits of 3.5m
in the same side

350 40 0

700 62 140

1000 82 1,700

As example, Fig. 4 shows, for the real environment (externally), i.e., exit configu-
ration 1, the evolution of POIC 4 as a function of the escape time. Finally, the results
of all evacuation simulations are summarised in Table1.

The results of Table1 show that the real environment is the worst exit config-
uration, i.e., by increasing the width of total exit all safety aspects become better.
However, an important point noted is that even if the total escape time for the real
environment could be considered to be satisfactory (about 2.5 min to evacuate all
environment even in an overcrowded situation), the POIC values indicate high pos-
sibilities of congestion in all simulated configurations for the most critical situation
(1000 persons). This happens even in normal legal occupancy (700 persons) on the
real external environment (configuration 1).

Hence, the evacuation results indicate that the exitwidth of 3.2m is reasonably safe
in the environment only if the abandonment happens in an organised manner. If the
evacuation takes place with a non adaptable behaviour (such as in panic situations),
there is a large probability of congestion and accidents to occur. It is noteworthy to
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emphasise that no considerations were made about the internal configuration of the
environment; thus, the real possibility of congestion in panic situation is higher than
what is shown here.

4 Final Considerations

The minimum legal exit width is capable to ensure safety (in terms of escape time)
during an evacuation in case of no panic (organised behaviour), but incapable to
ensure safety in case of panic (non-adaptive behaviour). Thus, the control of the
internal layout, of the materials used in edifications, of the smoke generated and the
use of fire fighting systems like hydrants and sprinklers are paramount in order to keep
safety and avoid losing control in a panic situation. However, these are not mandatory
requirements for environments like Boate Kiss in Brazil nowadays. Additionally, it
is clear that the overcrowded situation and the alteration by Boate Kiss owners of
the internal layout, and also the sound isolation materials used had great influence
on this fatal situation.

Thus, the results of this work showed that Brazilian legal codes for safety in
environments such as nightclubs are really weak and the situation is worsened by the
weakness of the public system of licensing and inspection.

Acknowledgements The authors would like to thank CAPES and FAPEMIG for their financial
and material support during the course of this work.
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Simulation of Crowd in the Corridor
of Ziara in Masjid-e-Nabwi, Madinah

Abdullah Alshehri, Muhammad Arif and Emad Felamban

Abstract Visitors to Saudi Arabia for Hajj and Umrah from around the globe
are constantly increasing with each passing year and hence visitors to the Prophet
Muhammad (S.A.W)’smosque, inMadinaMunawara are also increasing. This paper
investigates numerically the corridor of Ziara Place which is the most congestion
place in the mosque. In order to improve crowd management and minimise the
occurrence of emergency situations or hazardous conditions necessary arrangements
e.g. decreasing the waiting time, avoiding barriers, controlling the crowd size and
optimising the queuing process, are suggested. Certain simulation scenarios are stud-
ied in helping to reduce the risk of people colliding into each other, as well as helping
to reduce long waiting times in this particular area. Visitor’s behaviour, crowd den-
sity, and crowd flow around the Prophet (S.A.W)’s grave is analysed for varying
crowd densities.

1 Introduction

With the advances in the computational power and availability of huge memory,
crowd simulation is not only becoming a tool for creation of virtual environment and
rendering the crowd but also to study the behaviour of crowd in different scenarios
[6]. There are enormous applications in the field of education, training and entertain-
ment [9, 10]. Behaviour analysis of the crowd has many applications in the area of
crowd management, public space design, visual surveillance, virtual and intelligent
environments [5] etc. Crowd simulation can be done as goal-driven collision free
navigation of group of agents or individual agents. According to the literature, there
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are numerous methods to avoid collisions between agents, and collisions between
agents and environments. Computing collision free paths of an agent through veloc-
ity obstacles helps generate a simulation of multiple agents in a moving obstacles
environment with pre-calculated roadmaps [3]. Some collision avoidance techniques
consider only the agents in a small area and ignore the agents which are distant from
that area, this helps reduce computational cost [4]. Models that help in understand-
ing crowd behaviour in various scenarios are proposed in the literature. Intrinsic
information of the crowd like direction of the crowd flow, velocity profiles in these
crowds, and motion anomalies can be studied in order to model crowd behaviour [5].

Crowd behaviours in emergency and evacuation scenarios are different from nor-
mal behaviours. In these scenarios, people tend not to process situations logically and
are prone to act irrationally [1]. Santos and Aguirre [7] presented a critical review of
some evacuation simulation models including flow based, cellular automata, agent
based, and activity based models. Similarly seven methodologies including cellular
automata, lattice gas models, social force model, fluid dynamic model, agent based
model and game theoretic model are studied and advantages and disadvantages of
these models are highlighted in relevance to crowd evacuation [11]. Different crowd
behaviours in panic conditions are reported in [8] and empirical results are elaborated
for the various models.

2 Methodology

Based on the recorded videos of the Prophet (S.A.W)’s Mosque during the Hajj
season of 2013 [2], a randomly selected sample of people were manually tracked
to trace their walking speed and total time spent in the corridor of the Ziara place.
The corridor is divided into two regions (Fig. 2). Distance from the entrance gate
to the Ziara place is 69.7m, while distance from Ziara place to the exit door is
22.2m. The corridor is 8m wide. The exit door is 3.13m wide. The first region is
the incoming/approach region leading from the entrance gate to the Ziara place. It
was observed in this region, that people move at relatively normal speeds. However,
when near the Ziara place, they tend to walk as fast as they can within a reason of
respect. The second region is in front of Ziara place where people slow down to
pay salam to Prophet Muhammad and the two companions. Our team tracked 100
randomly selected individuals from different videos to calculate the average speed
and standard deviation in both regions. The average walking speed in the approach
region was 1.2m/s with a standard deviation of 0.3 m/s. In the region in front of the
Ziara place, the average walking speed slowed to 0.42m/s with a standard deviation
of 0.2m/s. These parameters are used in setting up agent profiles for MassMotion in
these two regions (Fig. 1).

MassMotion is a pedestrian simulation tool for designing and optimising high
occupancy facilities. It is the world’s most advanced system of its kind, featuring
3D environments, automatic path-finding, discrete event logic, etc. MassMotion is
designed for the creation and execution of large scale (1,000,000 + individuals)
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Fig. 1 Crowded view of Ziara place

Fig. 2 3D sketch of the investigated area

3D crowd simulations. The MassMotion toolset has been successfully applied to
some of the most demanding pedestrian environments in the world including mass-
transit stations, performance venues, airports, and stadiums. MassMotion enables us
to make informed decisions about crowd management pertaining to the design and
operations of complex facilities.

3 Results and Discussions

In this section, results of the crowd simulations are discussed for two modes, namely
full crowd mode and batch crowd mode. In the full crowd mode, simulations are
conducted for ten cases starting from 1000 agents, gradually going up to 16,000
agents [2]. All agents are simultaneously released from the entrance gate and the
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Table 1 Mean time (mm:ss) spent in two regions for different number of agents, standard deviation
in between brackets

Agents 1000 6000 8000 10000 12000 14000 16000

En—Z Time
duration

1:41 8:47 11:53 15:08 18:00 20:29 22:31

Standard
deviation

0:28 4:58 6:52 8:47 10:40 12:35 14:16

Z—Exit Time
duration

1:04 1:56 1:59 2:02 2:13 2:45 3:22

Standard
deviation

0:18 0:38 0:37 0:37 0:45 1:19 1:52

simulation runs until all agents have crossed the exit door. The results of the all
the simulation in full crowd mode (number of agents from 1000 to 16,000) are
summarised in Table1. Mean and the standard deviation of the time spent by agents
in both regions (Entrance to start of Ziara En-Z and Start of Ziara to Exit door Z-Ex)
are reported. Agents pass through the entrance gate to reach the Ziara place and the
time spent in the region of En-Z can be considered as the waiting time for agents in
queue to reach the Ziara place. It can be seen from the table that as the number of
agents increase, the time spent in the first region En-Z also increases, as it reaches
an approximate average of 23min. Due to the proximity of the second region to the
exit, the crowd disperses faster than it gathers. Although time spent in front of Ziara
place has increased but it is not significant in comparison to the first region.

Let da(t, k) be the number of agents at time t in the agent density slot k (according
to Table2). The percentage of the agent’s experienced kth density slot over all the
times is defined as PDRk and calculated as below,

PDRk =
∑

t da(t, k)∑
k

∑
t da(t, k)

(1)

Values ofPDRK for simulations of different number agents are summarised inTable2.
It can be seen from the table that for 1000 agents, the highest percentage is in the

Table 2 PDRK for simulation of different number of agents

Agents Crowd density range

<0.31 0.31–0.43 0.43–0.72 0.72–1.08 1.08–2.17 2.17–3.17 3.17–4.17 >4.17

1000 2.69 4.38 10.00 14.58 29.17 16.71 13.94 8.52

2000 0.65 1.10 2.60 4.25 22.78 14.73 13.20 40.70

4000 0.15 0.32 0.66 1.13 5.34 5.67 16.50 70.23

6000 0.07 0.18 0.35 0.52 2.45 2.67 7.57 86.18

8000 0.04 0.10 0.20 0.29 1.33 1.62 4.72 91.70

10000 0.02 0.07 0.12 0.19 0.85 1.07 3.32 94.36

12000 0.02 0.05 0.09 0.14 0.62 0.80 2.50 95.77

14000 0.01 0.04 0.06 0.09 0.45 0.58 1.79 96.97

16000 0.01 0.03 0.05 0.08 0.34 0.44 1.29 97.76
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Table 3 Batch calculation for fixed number of agents (16,000)

Number Crowd Density
(P/m2)

Initial batch Batch increment Time between
batches (s)

A1 2 1115 355 113

A2 3 1673 533 170

A3 4 2230 710 227

A4 5 2788 888 284

A5 6 3346 1066 340

A6 7 3903 1243 397

density slot of 1.08 to 2.17. Small percentage of the agents (8.5%) experienced the
highest density slot. As the number of agents has increased, peak of PDR is moved
towards highest density slot (>4.17). In the simulations where the number of agents
surpassed is 8000, PDR for the density slot (>4.17) reached above 90%. It shows
that increasing the total number of agents is inversely proportional to the comfort
level of the indicated agents.

In the batch mode, the crowd is divided into batches. Batch sizes and time interval
between batches are varied according to the target crowddensity values. Total number
of agents is restricted to 16,000 for all simulations. Table3 shows 6 scenarios where
different initial batch sizes, batch increments and intervals are selected [2].

Table4 shows PDRk for all settings. It can be seen how with settings higher than
A3, the percentage of highest density slot grows beyond 50%. However, this is still
far less than the 97% in case of full crowd mode. Average and standard deviation of
the time spent in both regions are tabulated in Table6 for each setting. In the previous
section we learnt that in full crowd mode (16,000 agents), the average duration of
time spent in the first region was 22, and 3:22min in the second region. Whereas
in the batch mode, the duration of time spent in region 1 is below 5min for all the
settings. This is also very comforting and encouraging for the agents as region 1 is
considered the waiting region.

Table5 shows total time taken by each setting to complete the ziara for all agents.
It was observed that at the expense of increasing the crowd density, for a short
duration of time, the overall time reduces from setting A1 down to setting A6. When

Table 4 PDRk for simulation of different number of agents

Agents Crowd density range

<0.31 0.31-0.43 0.43-0.72 0.72-1.08 1.08-2.17 2.17-3.17 3.17-4.17 >4.17

A1 5.50 7.64 12.25 12.41 25.43 10.97 5.86 19.95

A2 3.24 4.58 8.27 10.49 24.13 12.41 9.01 27.88

A3 1.92 2.76 5.19 7.37 22.82 11.90 12.45 35.60

A4 1.58 2.25 4.29 6.40 21.63 6.22 9.40 48.24

A5 0.79 1.22 2.38 3.82 17.02 9.83 13.14 51.79

A6 0.51 0.84 1.67 2.62 13.29 9.25 12.50 59.32



358 A. Alshehri et al.

Table 5 Time duration (mm:ss) spent in two regions as Mean (standard deviation)

Settings A1 A2 A3 A4 A5 A6

En-Z 1:53 (0:35) 2:12 (0:47) 2:35 (1:07) 3:02 (1:34) 3:35 (2:06) 4:15 (2:41)

Z-Exit 0:56 (0:19) 1:04 (0:26) 1:12 (0:32) 1:20 (0:34) 1:28 (0:37) 1:36 (0:38)

Table 6 PDRk for simulation of different settings (Modified Exit Door)

Agents Crowd Density Range

<0.31 0.31–0.43 0.43–0.72 0.72–1.08 1.08–2.17 2.17–3.17 3.17–4.17 >4.17

A1 6.57 9.62 15.33 15.97 22.96 18.82

A2 4.34 6.02 12.89 28.54 24.11

A3 2.77 3.86 30.41 9.40 28.50

A4 1.84 2.67 29.23 11.17 10.21 33.04

A5 1.32 1.90 27.01 12.22 10.97 37.57

A6 0.95 1.37 22.83 14.20 12.07 41.78

comparing with the full crowdmode (approximately 57min), total time of A6 setting
(approximately 72min) is quite comparable with a more comfortable flow of the
agents. The difference between setting A1 and setting A6 is also not great, given the
fact that the door’s throughput (width 3.13m) is limited, so by increasing the batch
size, we do not affect the total time significantly.

4 Structural Modification: Exit Door Width Is Modified

It is observed in the results of above simulations that width of the exit door is a
bottleneck to improve the throughput and increased agent density in the Ziara place.
Hence we have modified the width of the exit door and increased it to the width of
the corridor (8m). Figure3 shows the modification in the layout for wider exit door.
The door’s width is increased from 3.13 to 8 m. In the batch mode, we have done
two sets of simulations. In the first set of simulations, batch sizes and time between
batches are kept similar to the case of batch mode in the existing door width. In the
other set of simulation time between batches are reduced as the throughput from the
exit door is increased. Simulations for the batch mode are run for this modification.
Table6 shows that agent densities are better, compared to the full crowd mode with
modified door width.

Based on the simulations done and results discussed, following recommendations
are made. Crowd management should be done in the batch mode with appropriate
selection of the batch sizes and timing between batches. To ensure smooth flow of the
crowd strong motivation from the security personnel especially in the high density
cases is recommended. With the existing door, A4 batch mode setting is suggested to
compromise the operation completion time and lower crowd density in the regions.
It is suggested that following mechanism can be adopted for the batch mode control
of the crowd.
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Fig. 3 Layout of the Ziara place with modified door

Fig. 4 Proposed Batch mode control plan

Figure4 shows the proposed batchmode control plan. There are two control points
outside the entrance door. First control point OC1 brings the people from outside to
the batch waiting area. Length of these two points depends on how much will be the
batch size. Initially, initial batch is allowed in the batch waiting area by opening OC1
and OC2 is closed. Then, OC1 is closed and OC2 will be open to let the batch into
the mosque through entrance door. A security personal will be placed on monitoring
post. The distance of monitoring post from the entrance door depends on the batch
size. Once the whole batch enters in the mosque, OC2 is closed. The OC1 is open
to bring another batch in the waiting area. When the security personal signals the
crossing of last person of batch from the monitoring line, new batch is entered by
opening OC2. This procedure keeps repeating until all persons complete ziara or
outside waiting crowd falls below certain threshold. Proper motivation to move is
required in front of Ziara place to keep the flow smooth.
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5 Conclusion

In this paper, crowd simulation is done in various scenarios including full crowd
mode and batch mode. Simulation results are compared to find out the best crowd
management policy. It was found that batch mode strategy is better to compromise
between throughput of the crowd from the exit door and the crowd density levels
inside the Ziara place. It was found that existing door width is a bottleneck in the
maximum throughput of the crowd and the increased crowd density levels in the
Ziara place. It is therefore suggested that exiting door should be modified to make
the width of the door equals to the width of the corridor so that there can be no
congestion near the exit door. Simulation results should the efficacy of the structural
modification in the exit door.
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Pedestrian Dynamics at Transit Stations:
An Integrated Pedestrian Flow Modelling
Approach

Emily Porter, Samer Hamdar and Winnie Daamen

Abstract The objective of this chapter is to explore an integrated modelling frame-
work that captures pedestrian walking behaviour in congested and uncongested con-
ditions and covers different traffic dynamics caused by complex geometric and oper-
ational characteristics such as those observed in transit stations. The integrated mod-
elling framework is built using concepts from the Social Force model, behavioural
heuristics, and materials science. Pedestrian trajectory data provided by the Delft
University of Technology were used to test the validity of the aforementioned mod-
elling framework. A simulation study showed that the model reproduces realistic
trajectory patterns in an environment similar to that at the Foggy Bottom METRO
station in Washington, D.C, USA.

1 Introduction and Motivation

Pedestrians play an increasingly important role in the traffic scenes of the modern
world. This role is particularly important in urban areas, such as Washington D.C.,
where pedestrians often dominate the traffic flow [3]. By accuratelymodelling pedes-
trian behaviour, design of civil infrastructures may be improved by increasing the
number of pedestrians who can safely flow through the corresponding geometric
components (i.e. pedestrian infrastructure capacity). Of particular interest is the flow
of pedestrians through public transit stations [1, 6, 12]. Transit stations must be able
to hold large numbers of travellers while also allowing pedestrians tomove safely and
efficiently from one location to another. Accurately modelling pedestrian behaviour
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through transit stations allows identifying areas with critical densities that might be
dealtwith through changing the corresponding geometric features or through offering
some level of control (pre-timed or real time). Many models of pedestrian behaviour
have been previously suggested, however, a relatively recent review of crowdmodels
suggested that model usability is highly dependent on the application for which the
model was originally developed [4]. In this chapter, the model is intended to be used
for crowd management and control for the Washington, DC METRO system. As
such, the model must be able to accurately show high-density situations, run in real
time, and consider the complex nature of human decision making. Although some
existing pedestrian models are computationally efficient, these models frequently
capture one-to-one interactions and fail to consider the complexities of decision
making that occur in crowded conditions [9, 11].

The objective is to accurately and efficiently model pedestrian operational behav-
iour (focusing on walking behaviour), using a combination of the Social Force model
[7], the behavioural heuristics model [10], and concepts from materials science such
us multi-body potential molecular interactions [5]. The resulting integrated model
(IM) rules are programmed in a JAVA simulation platform constructed by the authors.
Realistic parametric values were initially taken from the literature and later cali-
bration efforts were conducted using experimental data obtained by the Transport
and Planning Department at the Delft University of Technology. The basic manual
calibration was aimed to reproduce the observed densities in a bidirectional flow
experiment. Afterwards, simulations were run to look into the reproducibility of tra-
jectory patterns observed in 4 additional experiments. After this introduction, Sect. 2
presents the model itself, including a description of the models formulation and basic
calibration. Section3 contains an analysis of the results obtained from model simu-
lation related to the 5 experimental scenarios previously described in addition to an
exploratory study on simulating pedestrian movements in a transit station. In Sect. 4,
the paper concludes and suggests future research recommendations.

2 Model Formulation and Calibration

In this section, some IM related details are explained, beginning with the formulation
framework, which specifies the aspects of the suggested model that were adapted
from other sources as well as the method by which they were combined. Afterwards,
the calibration efforts that were undertaken for this model are described.

The motivation behind offering the suggested integrated modelling framework
is the hope that the resulting formulation will benefit from the attraction/repulsive
force concepts offered by the social force models (offering realistic one-to-one inter-
actions), the flexibility of the behavioural heuristics (incorporating multiple psycho-
logical and physiological pedestrian characteristics) and the theoretical foundation
from materials science. Accordingly, the basic interaction between ‘bodies’ (i.e.
pedestrians or obstacles) is adapted from the Social Force model [7]. The Social
Force model essentially uses Newtonian physics to describe how pedestrians move.
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The model defines attractive and repellent forces which push and pull pedestrians
along their path of motion. On the other hand, the behavioural heuristics model
utilised in this paper considers that pedestrians take advantage of their eyesight and
cognitive perception of their surrounding environment to determine which direc-
tion is the most efficient to reach their local destination (i.e. operational navigation)
[10]. Finally, an essential concept from materials science is incorporated; this con-
cept states that molecular interactions can be well modelled by taking into account
directly neighbouring molecules. This greatly simplifies the complexity of the cal-
culations since not all surrounding objects need to be considered. This conceptual
hypothesis is to be tried in this paper: when applied to pedestrian dynamics, this con-
cept implies that accurately modelling pedestrian behaviour requires ‘social force’
calculations not only between the two closest bodies (i.e. pedestrians or obstacles),
nor all surrounding bodies, but rather betweenmultiple bodies (i.e. multi-body poten-
tial interactions) within the corresponding field of view [5]. In our model, based on
the findings of the research conducted in materials science [5], the closest three other
pedestrians/obstacles are taken into account when determining a specific pedestri-
ans course of action. It should be noted that this number may be a parameter to be
calibrated depending on surrounding traffic conditions.

Given the aforementioned modelling framework, manual calibration was con-
ducted using a bidirectional flow experiment data set provided by TU Delft (Fig. 1c).
A more detailed review of these experiments is provided by [2]. From this data,
macroscopic information such as average flows and densities were extracted. The
mean and standard deviation of the pedestrians speed in the experimental data (assum-
ing a normal distribution) was applied to the modelled pedestrians as their desired
speed.

The density from the model was recorded at every time step and compared to the
actual density recorded in the data. In this case, the density consists of the number
of pedestrians in the entire walking area (40m2). These density recordings taken
from the data were used to determine how closely the model was representing the
experimental results on a macroscopic level. The resemblance between the experi-
mental data (i.e. observed density) and the model output (i.e. simulated density) was
measured based on a simple relative error term expressed as the absolute (positive)
difference between the two values (i.e. observed density simulated density) divided
by the observed data (i.e. observed density). The parameter values in the model were
changed using a tabu-search approach in order to reproduce results similar to those
seen in the experimental data. The error resulting from the density comparisons is
24.6% error for the IM approach. Such error is outside the acceptable error ranges
[8] despite the low density values recorded; the integrated model still obtained the
lowest error if compared to the BH and SF models implemented by the authors.

Section3 describes the numerical results gathered from simulation, including
a comparison between the experimental data and the integrated approach model
output for 5 scenarios: a unidirectional flow scenario, a bidirectional flow scenario, a
crossing scenario, a wide bottleneck scenario and a narrow bottleneck scenario. The
simulation study is further extended to explore some trajectory patterns produced by
the integrated model at a transit station.



364 E. Porter et al.

Fig. 1 Comparison of data andmodel trajectory results for 5 experimental scenarios. Unidirectional
flow: data (a), model (b); bidirectional flow: data (c), model (d); crossing flow: data (e), model (f);
wide bottleneck: data (g), model (h); narrow bottleneck: data (i), model (j)
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3 Simulation

Figure1 presents a trajectory comparison between experimental data gathered by TU
Delft and the corresponding trajectories that were gathered from the IMmodel (using
the parameters that produced the lowest error). From the top, the images show: one
directional flow, two directional flow (left to right in blue and right to left in black),
crossing (right to left in black and top to bottom in blue), wide bottleneck (colours
based on entrance time: red most recent and orange yellow, less recent), and narrow
bottleneck. The sharp changes in direction seen in the IM trajectories are due to the 1
second time step that has been employed. Aside from this obvious difference, there
are numerous similarities between the experimental trajectories and the simulated
trajectories. The one directional flow indicates consistency in the area occupied by
pedestrians. In the two directional flow situation, in addition to matching in terms
of area occupied by pedestrians (i.e. area mainly occupied by pedestrians moving
from right to left—black trajectories—versus area occupied mainly by pedestrians
moving from left to right—blue trajectories), the simulation suggests lane formation
similar to that seen in the data, although this phenomena cannot be definitively
observed with all of the trajectories plotted at once. The simulated pedestrians in the
crossing scenario are also seen to have similar trajectory patterns as those observed
in the experiment. It seems there is a major crossing area and a minor crossing area
towards the left of the corresponding plots). The last two scenarios illustrated in the
figure correspond to bottlenecks. The simulated wide bottleneck scenario provides
more similarities with the observed trajectories if compared to the narrow bottleneck
scenario; such results at this exploratory level of the study is somewhat expected
due to the increasingly complex interactions that occur at narrow bottlenecks [8]. In
both simulated bottleneck results, the funnelling effect can be seen as the pedestrians
fan outwards before entering the bottleneck area. The experimental results from the
narrow bottleneck show sharp zig-zagging trajectories from pedestrians travelling on
the outermost edge of the funnel shape who are attempting to enter the central area,
whereas the simulation shows these trajectories as smooth. The zig-zagging seen in
Fig. 1i is caused by the swaying effect, which is visible at low speeds, and occurs
when pedestrians shift their weight from their right foot to their left foot.

Since the IM is ultimately intended to be used at the Washington DC METRO
system, a simulation was conducted based on the layout of the station at Foggy
Bottom. In the corresponding scenario, it was assumed that pedestrians entered the
platform from the escalator near the right side of Fig. 2a (descending escalators) as
well as from train doors. Pedestrians were able to leave the platform via the more
centrally located escalator (ascending escalators) as well as by entering train doors.
The simulation was conducted with pedestrians entering from the escalator at a
uniform arrival rate.

Figure2a shows the simulated trajectory data with the train doors and escala-
tors shown. Figure2b is a density plot, which shows the areas with the highest
‘congestion’, which correspond primarily to waiting areas. The darkest areas in
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Fig. 2 Transit scenario results: simulated trajectories at transit station (a); density distribution for
transit simulation (b)

Fig. 2b indicate areas in which pedestrians have spent prolonged periods of time
(more than 1s). These dark points correspond to waiting areas, such as those located
near train doors where pedestrians who have descended on the escalator are awaiting
their train and the area in front of the escalator where pedestrians are waiting to exit
the station. The pedestrians waiting for the escalator are experiencing delays due to
congestion, which may be mitigated by crowd control, whereas the pedestrians wait-
ing near the train doors are waiting for their train to arrive, which is controlled by the
train scheduling. The highest density area occurs near the escalator that leads from
the platform to the stations exit, where pedestrians can be seen queuing. This result
is expected, especially considering trains from both directions arrived at the same
time. This causes a queue to build up in front of the escalator as pedestrians await
their turn to leave. This result resembles the real-world lane formation, which shows
pedestrians queuing in straight lines (rather than half a circle) before entering the
escalator. This queuing is shown by the green and red points in front of the escalator
in Fig. 2a. Although the transit simulation cannot be numerically verified by empir-
ical data at this stage (the same traffic patterns observed in real-life are observed in
the simulation), the results appear to accurately reflect basic densities and crossing
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areas on the station platform. These results, in addition to the proximity between the
empirical data and the simulation results shown above (Fig. 1), indicate that the IM
approach is well-suited for performing in transit situations, and further work should
be conducted to reinforce this indication.

4 Conclusions

Pedestrianmodelling faces numerous challenges, ranging from covering heterogene-
ity among the behaviour of individuals to a lack of commonly used datasets. These
difficulties affect models in different ways the heterogeneity of pedestrians con-
tributes to the non-existence of a single model that can accurately describe all types
of scenarios, and the lack of common data sets contributes to different approaches
taken by authors to validate their models. Furthermore, there is a lack of commonly
accepted calibration and validation methods as well as a lack of agreement on which
phenomena and behaviours a model should be able to capture, which adds to the dif-
ficulty of verifying that a particular model is working well. Although the pedestrian
modellers ultimate goal, of being able to realistically simulate all types of situations
with a single model, has not yet been reached, there are many models which are
capable of reproducing specific situations. One such model has been presented here.
The IM approach is intended to be used in high-density situations, and this paper
discusses the initial calibration and validation efforts that have been taken towards
achieving that goal. In order to further improve this model, experimental data gath-
ered in high-density situations will need to be used for calibration. Additionally,
a sensitivity analysis must be conducted, in addition to more intensive calibration
efforts, in order to verify that the IM approach is capable of simulating all types of
scenarios that are seen in transit stations. Future calibration efforts will consist of a
thorough macroscopic and microscopic calibration in addition to specifying individ-
ual pedestrian information, such as sight angle and distance. The primary future goal
identified by the authors of this paper is to collect data from high-density experi-
ments, which will be invaluable to this model, as well as to other models with similar
objectives.
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PedVis: Pedestrian Flow Visualisations

Jimmy Schmid, Harald Klingemann, Arne Scheuermann,
Judith Bühling, Nicolo Bernasconi and Michael Flückiger

Abstract More and more people are using public transport. The Swiss Federal
Railways (SBB) are expanding their railway stations and redesigning them so that
all passengers will in future still reach their destinations safely and quickly. In this
context, the depiction, planning and simulation of people flows (customer flows,
movement patterns) are of increasing importance. This project will open up new
access points in this field. Starting with seven topical clusters, different aspects of
peopleflowswill be analysed anddepicted anew, basedon a comprehensive collection
of images. The prototypes for new visualisations developed from this have been
validated using aDelphi survey of expert opinions and tested for their future potential.
The SBB have been presented with a catalogue of recommendations with all the
visualisation models, and a practice manual will be developed during the last phase
of the project.
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1 Introduction

Influencing people flows is becoming increasingly important on account of user
numbers and limited space in the halls and surfaces of railway stations. Such space
was not a rare commodity at stations in the past. However, it is rare today, and will
presumably remain so in the future [9, 13].

Assessing the dynamic of people flows in railway stations means answering rel-
evant, specific questions such as: which trains should arrive on adjacent platforms?
Which trains are involved when people have to change trains? What constellations
of trains and public facilities create minimum flows of people? What constellations
create the smallest distances to be covered? How do demographic change and mul-
tilingualism influence orientation behaviour?

The paths taken by travellers and shoppers can be influenced by measures taken
in the realms of structure, design, atmosphere and operations, as well as through
customer information and customer guidance. Attention must be paid here to the
fact that in the spaces of a railway station, four systemically linked worlds come
together:

• Public facilities: entrances/exits; pedestrian underpasses and overpasses; access
points to the platforms (ramps/stairs/lifts); platforms;

• Actual station operations: which trains stop when, and at which platforms; train
lengths;

• Local environment: city planning, public spaces, non-motorised traffic, public
transport, motorised private transport, ...;

• Human behavioural patterns (e.g. pedestrian speed of movement, interpersonal
proximity, whether people proceed over certain distances in isolated fashion or in
a crowd) [5].

Models, simulations and calculations in the context of people flows and the dimen-
sions of stations are all ultimately based on assumptions about precisely this human
behaviour. The more accurately such behaviour can be characterised, the greater is
the prognosis strength of the models, simulations and calculations developed.

The interdisciplinary approach necessary when monitoring and influencing peo-
ple flows, is contingent upon models and simulations [8]. Currently, multiple data-
bases are available that describe people flows from an external perspective (including
sensor readings, counts, films ...), from internal perspectives (questionnaires, eye-
tracking ...) and models and statements derived from them. However, these have
been insufficiently exploited, have been depicted in a suboptimal fashion, and are
correspondingly limited in what they are able to interpret.

They also often remain incomprehensible outside a small circle of experts. There
is a need—inadequately met at present—for appropriate, public-friendly depictions
of ideal and actual spatial uses that are suitable for other target groups [1, 2].

This is the starting point for the project presented here, which offers new
approaches for a contemporary form of communication about people flows that is
appropriate to the context and to the needs of the public [14].
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2 Methods

The research design encompasses three phases: (1)Adesign analysis and inventory of
existing visual depictions and knowledge visualisations; (2) Developing practicable
prototypes for context-appropriate knowledge visualisations; (3) Monitoring the
added value of the prototypes and the potential of alternative visualisation mod-
els when compared to current solutions. For this, a three-round Delphi survey was
carried out from a pool of n = 43 SBB experts in May, 2015. Delphi surveys are
used to assess trends and prognoses [12], also within the context of system tasks and
topic evaluations, and are thus suitable for use in our current context [11]. Experts
who have no direct contact with each other are presented with a list of questions or
statements and comment on them over the course of several rounds, each time getting
feedback on the group opinion [4, 6]. This step-by-step procedure enables the devel-
opment of a group consensus. The Delphi method was developed as an alternative
to expert meetings in which there is often the danger of a distorting influence on the
part of dominant participants in the group, with the group consequently losing sight
of the actual aim of its discussions. As a suitable tool for a complex on-line survey
[7] that provides an optimal view of the static and dynamic visualisation models
and offers interfaces to statistical evaluations, we chose ‘Qualtrics Research Suite’
(http://www.qualtrics.com/research-suite/). The method and the tool were subjected
to a ‘pre-test’ between 27April 2015 and 21May 2015 inwhich threemembers of the
research team took part, along with the person responsible for the project; together,
they produced a finalised version.

The participation level in theDelphi survey can be regarded as very satisfactory—
in total there was a response rate of between 64 and 76%. The absolute number of
14 participants in all three rounds also corresponded to the optimal group size for
Delphi surveys as stated in the literature, which suggests a minimum of 10 and a
maximum of 16 participants [11].

Above and beyond this, we must still investigate the extent to which the profes-
sional profile of the participants might have shifted over the course of the rounds.
When recruiting and compiling the initial list, the assumption was made, that three
types of target groups should be taken into considerationwhich represent the different
forms of familiarity and experience with such visualisations. It emerged that these
target groups were almost equally represented in the group of the first round, namely
users (n = 9), authors (n = 11) and recipients (n = 9). This picture remained largely
unaltered, with a distribution in the second round of users (n = 8), authors (n = 8)
and recipients (n = 6) and in the third round of users (n = 6), authors (n = 4) and
recipients (n = 4). Thus, we achieved a broad spectrum of opinions representing the
data base for the analysis.

http://www.qualtrics.com/research-suite/
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3 Results

The following results of the project highlight intermediate stages of the interdisci-
plinary design and research process. Using social scientific methods, the alternative
visualisation strategies and prototypes are tested by eliciting feedback from experts
and end-users. This information informs subsequent stages of design solutions as
part of an open process.

3.1 Cluster Identification

A thematic classification has been developed of the visual language of the SBB on
the topic of ‘people flows’ [10]. The inventory of this depictional world of the SBB
has been complemented by the opinions on current visualisation practices of key
persons from different functional areas (see target groups above). This way, we have
prioritised subject areas for subsequent work (subject clusters).

The focus of our work has been on the design development of prototypes to depict
the different parameters of spaces and movement, and their impact on each other in
specific time windows. Here, it was necessary to pay greater attention to linkages
of the subject clusters with the terminology of existing guidelines (‘Assessing pub-
lic facilities and development projects from the perspective of people flows’) and
the important time dimension. This led to the identification of new subject clusters
(‘Connection times of people types’ and ‘Platform occupancy’) and to the deriva-
tion of further visualisation prototypes (‘Space-time axis’ and ‘Platform occupancy
topology’) [3]. Visualisations were subsequently prepared (Figs. 1, 2, and 3) and the
on-line Delphi expert survey was carried out.

Fig. 1 Explorative, experimental arrangement for visualising people flows by means of LED
printing: using long exposures of a programmable LED strip moved in space, strips of light are
created. According to how the blinking speed, duration and colour are set, and according to the
movement in the space, different impressions and associations arise
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Fig. 2 This visualisation offers an overview of all regular trainmovements at the different platforms
in a specific railway station. Thus a glance at the graphic offers information on the arrivals and
departures of trains during a specific hour, and the time they spend at platforms. This circular map
may also be expanded, by adding further data, such as people density, so that the volume of people
on the platform is visible

3.2 Expert Feedback

More specifically, the expert feedback from the three Delphi rounds showed, that the
majority of the innovative visualisation strategies was considered a clear improve-
ment on the status quo. Specific suggestions were screened by the research team
and provided input for the finalised solutions. More specifically, this positive picture
emerged particularly from the first round with the highest participation of n = 29
experts; the highest rating was received by the new visualisation of the topic ‘Arriv-
ing and departing travellers’ (x = 3.3 on a scale from 1–4) and only the topic ‘heat
map’ was attributed a potential similar to that of existing plans. During the second
and third rounds with n = 22 and n = 14 participants, a more critical assessment
prevailed; however, eight out of twelve suggestions for new topical visualisations
were still considered to be superior to plans used so far.

Most notably, as a result of the second round, specific comments from the partici-
pants highlighted the pros and cons of the alternative and conventional visualisation
strategies:From a pragmatic point of view, participants in the second round remarked
that the expense of making realistic isometric depictions would be far too great, and
that it must be possible to edit the depictions oneself. Conciliatory positions were
adopted in that different degrees of information for the usual plans and alternative
solutions may be emphasised paradigmatically: thus the necessary widths of pedes-
trian overpasses and underpasses were adopted from the old plan, while the new plan
offers information on high people densities. Furthermore, it was suggested that it
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Fig. 3 Based on a situational ground plan, people flows in this interactive model are depicted as a
function of the pre-set points of departure and destination. The colour coding in each case refers to
a train (source or goal). Every person is depicted by a line. Depending on the increase or decrease in
the volume of people, the model can display problematic intersections or cumulative people flows
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should be possible to switch between 2D and 3D depictions to a varied degree—for
example, if individual people are to be counted on the platforms, then a 2D-depiction
is surely easier to read. In order to display the density of travellers on the platforms
and to get an idea of this, however, a 3D-depiction would be appropriate. It would
correspondingly be advantageous if one could switch between these two depiction
options.

3.3 Modifications and Practical Relevance

In general, the participants propose a sequential approach when offering alternative
depictions in the form of follow-ups. In other words, if information is lacking in a
depiction, then a second or complementary depiction should be made possible that
would focus on this particular lacuna.

While this feedback makes evaluating additional potential dependent on the spe-
cific question to be answered in each case, a second focus arose during the group
echo on the problem of the target public and aspects of communication: a further
expansionwas proposed for communicating to laypeople.When communicatingwith
laypeople, more could be gained from using an expanded palette in the SBB colour
world, while project-relatedwork should focus on primary colours. In addition, it was
pointed out that alternative visualisations have considerable communication poten-
tial for external presentations. It was accepted that they could make it possible to
explain clearly and simply to a town or local authority why a railway station should
be subjected to further development. All the relevant information would thereby be
made available.

At the same time, the opinion was expressed that readability was important for
all stakeholders, both laypeople and experts, and that the old depictions were also
not ‘management-friendly’. As in round 1, obstacles in the organisational area were
highlighted that couldmake an adjustment process necessary among technical experts
and planners. Often, it is not recognised that utilising alternative visualisations can
make it unnecessary to use special software or to carry out complex surveys. Instead,
they make it possible to use empirical data or observations on the spot.

This opinion also surfaces in the closing section of round 2: ‘... and what I still
wanted to say—group forum’. Here, the focus was once more on the implementation
of alternative visualisations, i.e. when they should be used, and forwhat target groups.
Here two tendencies became clear. First, the opinion that the alternative depictions
are exclusively appropriate as a means of communication to laypeople; and sec-
ondly, that the alternative depictions should take a broad spectrum of addressees into
consideration that also includes new employees and internal specialists who do not
concern themselves with these topics on a regular basis.
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3.4 Limitations and Outlook

As a general conclusion from the feedback of the Delphi rounds it became clear that
the research team had not successfully communicated the idea of a ‘modular toolbox’
to be applied across topics and the optional use of existing and new visualisations; the
latter need not necessarily replace current practices. A perceived loss of information
or a requirement to learn newways of readingmore complex alternative visualisations
emerged as additional factors impacting on the acceptance of innovative solutions.

To summarise, the findings gained from the project—especially the findings of
the Delphi survey—will provide the basis for a manual that demonstrates the vari-
ety of possible visualisations and describes their respective strengths and possible
applications.
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Facing Needs and Requirements of Crowd
Modelling: Towards a Dedicated Computer
Vision Toolset

Sultan Daud Khan, Giuseppe Vizzari and Stefania Bandini

Abstract The modelling and simulation of pedestrians and crowd dynamics require
empirical evidences and quantitative data describing the relevant phenomena that
models must be able to reproduce. Computer vision can provide several tools both to
semi-automatically acquire the demand of a given situation and actually configure a
simulation model, as well as to gather information for the sake of model calibration
and validation. This paper proposes methods supporting the segmentation and pedes-
trian counting of crowd flows, the identification and characterisation of main flows in
an analysed scene and the detection of social groups in an observed population. The
methods are briefly introduced and the achieved results are presented and discussed
with reference to the current state of the art.

1 Introduction

Crowds of pedestrians are, at the same time, complex entities to study by means of
observations, analyses and simulation and also extremely relevant to the activities of
architects, designers, urban planners and organisers of events involving a large public
participation in relatively constrained spaces. Pedestrians showa variety of individual
and collective behaviours, such as competition for the space shared and collaboration
due to generally shared (at least in a given scenario) social norms. Individual goal
orientation, based on the least effort principle, is often in conflict with contextual
conditions pushing pedestrians to adapt their behaviour to avoid congested areas or

S.D. Khan (B) · G. Vizzari · S. Bandini
CSAI Research Center, University of Milano-Bicocca, Milan, Italy
e-mail: sultan.khan@disco.unimib.it

G. Vizzari
e-mail: giuseppe.vizzari@disco.unimib.it

S. Bandini
e-mail: stefania.bandini@disco.unimib.it

S. Bandini
RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_48

377



378 S.D. Khan et al.

Fig. 1 Integration of
analysis and synthesis

to negotiate their individual preferences with those of other members of a group they
belong to.

Crowd studies represent successful applications of researches carried out both in
the context of computer simulation and computer vision. Comprehensive simulation
studies require the synthesis of pedestrians and crowd behaviour, but the developed
models must be (i) calibrated and validated by means of data acquired in the field
and (ii) informed by the specific contextual conditions of the simulated environment.
Synthesis requires thus the results of analysis. In turn, the analysis of crowding
phenomena can benefit from results on the side of synthesis: researches on the latter
often produce formalisation of phenomena and lead to the definition of metrics and
indicators to evaluate the generated dynamics. These concepts and mechanisms can
represent a useful contribution towards the automation of the analysis techniques
that, thanks to the development of computer vision techniques, can actually produce
useful information even from cluttered scenes like those taken from security cameras
in public spaces. In this paper, we discuss different specific contributions from the
computer vision area that are also schematised in Fig. 1 and that provide different
kinds of support to the definition of the demand or simulation model configuration
on a specific situation, as well as useful elements for validation of achieved results,
considering naturalistic videos as inputs.

2 Elements of the Toolset

2.1 Crowd Flow Segmentation and Crowd Counting

In this section we briefly describe a framework proposed in [3] that tackles the
problems of crowd flow segmentation and, at the same time, people counted in the
different flows. The segmentation of crowd flows provides a clutter free visualisation
of the dynamics taking place in the scene, and it supplies a first characterisation of the
overall dynamics in an environment. The fact that flowsare immediately characterised
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Fig. 2 Crowd flow segmentation and counting

in terms of an estimation of the number of pedestrians they are made up of makes it
useful also for quantifying the demand.

The framework consists of three main parts: foreground extraction, crowd flow
segmentation, and crowd counting as depicted in Fig. 2. The first component works
according to two different ways, the first one aimed at capturing motion information
describing the overall pedestrian flows, and the other focused on the identification of
shapes that could represent pedestrians. The first sub-component is implemented by
means of optical flow computation followed by Gaussian and Median filtering oper-
ations, extracting the foreground in terms of areas of the picture showing significant
changes due to the movement of pedestrians. The results of this elaboration repre-
sents the input to the block performing the segmentation: the different portions of the
picture are in fact clustered (using K-means algorithm) according to the direction of
movement associated to the pixels into a configurable set of directions (e.g. four ones:
up, down, left and right). Since small sets of pixels, associated (for instance) to parts
of pedestrian bodies, can actually move in different directions from the body (e.g. an
arm swinging backwards), we also employ the blob absorption method. Small blobs
are either absorbed by a dominant cluster or by the background.
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The second foreground segmentation block employs the Gaussian Background
Subtraction (GBS) technique, which is quite effective in separating objects from the
background. The result of this task undergoes a scale filtering and morphological
analyses to support a subsequent analysis of the achieved blobs, to identify those
associated to pedestrians. The size of a blob to be considered as a pedestrian can
undergo an optimisation phase that could require a minimal human intervention.

Experiments revealed that crowd flow segmentation does not produce high quality
results unstructured crowds, which involve complex and conflicting movement of
people like in airports, stations, shopping malls, etc. For this purpose, in the next
section, we propose another framework tackling this problem.

2.2 Characterisation of Main Flows

Pedestrians in videos from fixed cameras tend to appear and disappear at precise
locations (e.g. doors, gateways, edges of the scene). We refer to locations where
pedestrians appear as sources (potential origins) and the locations where they disap-
pear as sinks (potential destinations). Intuitively, detecting sources and sinks implies
detection and tracking of pedestrians, however, those operations generally fail in
high density situations because of the severe clutter and occlusions. Therefore, we
propose a different algorithm in [2] employing a more robust approach. A set of
particles is overlaid to the scene, to initialise a dynamical system based on optical
flow. Time integration of the dynamic system over a segment of the video provides
particle trajectories (tracklets) that represent motion patterns in the scene for a certain
time interval associated to the analysed segment. We detect sources, sinks and main
flows in the segment by analysing motion patterns followed by clusters of tracklets,
obtained using an unsupervised hierarchical clustering algorithm, where the simi-
larity is measured by the Longest Common Sub-sequence (LCSS). The proposed
framework is shown in Fig. 3.

As depicted in Fig. 3, the input video is divided into N number of segments s,
each containing K frames. Next, we compute the optical flow field between two
consecutive frames of every segment. We employ the method proposed by [1]. The
next step is to advect grid of particles over the optical flowfield, that corresponds to the

Fig. 3 Source and sink identification framework
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time interval 1 to T for each segment. As a result of this evolution of particles, small
tracklets are generated. These tracklets represent a relatively raw kind of information,
plausibly about the movement of an individual, and they can be fruitfully grouped
to provide a more concise description of overall flows in the scene. In the next step,
therefore, we cluster those that are spatially close to each other and have similar
direction of motion by employing Longest Common Sub-Sequence (LCSS).

The trajectories produced by this method represent dominant motion patterns in
the scene. The source and sink points of the trajectories give us the precision starting
and stopping locations of the group of people moving in different directions.

2.3 Social Group Detection

A crowd is generally composed of several small groups of people, for instance due
to social relationships (families or friends) or a common goals, like reaching a cer-
tain point of the environment. Since group membership actually influences overall
pedestrian dynamics, it is important to detect their presence in a given situation and,
for this purpose, we propose a framework described more in detail in [4].

The overall approach is described in Fig. 4: the input is a video sequence in
which individual pedestrians are detected, and tracked.We adopted a semi-automated
detection techniques and the Generalised Minimum Clique Graphs (GMCP) [5]
method for tracking. The next step is to construct anAssociationMatrix, that captures
the joint distribution of source and sink locations of all pedestrians to all other
pedestrians in the scene. A single pedestrian (not member of a group) tends to move
or stop freely in the environment, changing his/her speed and keep a distance from
other pedestrians or obstacles, pursuing his/her own goals. This behaviour uniquely
identifies his/her source and sink locations. Members of a group generally move and
stop together, preserving a certain distance between them despite the obstacles and
counter flows.

To define groups based on the trajectories, we defined a bottom-up hierarchical
clustering approach following three step process.We first assign distinct cluster iden-
tifiers by treating each pedestrian as a separate cluster. Then, we discover couples by
measuring the difference between distribution of each pedestrianwith the distribution
of all other pedestrians in the scene employing Kullback-Leibler (KL) divergence,
also known as relative entropy. This process always proposes for each pedestrian the
best possible partner to form a couple, although this candidate partner might even be
a bad partner, since the pedestrians do actually not follow similar paths. The next step

Fig. 4 Framework for group detection
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is thus to prune these bad couples. After pruning, an adjacency matrix is generated
which captures the connectivity information among all pedestrians. In the third step
of the algorithm, groups of couples, those having strong intergroup closeness are
merged into a larger group.

3 Experimental Results

3.1 Crowd Flow Segmentation and Crowd Counting

This framework consists of two major parts, respectively focuses on segmentation
and counting, so experiments are carried out in two steps. In Fig. 5, we qualitatively
compare segmentation results with state of the art methods: the proposed approach
detects relatively small groups and highlights clear boundaries among different flows.

For the same video, we report the counting results in Table1: since two domi-
nant flows are detected, we estimate the number of people in these two segments.
Table shows counting results of random frames taken from analysed video, where
F.n. represents frame number of the analysed sequence. The rise and fall in people
count in different frames represents the fact that people are entering or leaving the
scene affecting people count at different time. To check the counting accuracy of
the proposed framework, ground truth (G.T.) for each direction (East (E), West (W),
North (N), South (S)) is found for the frames after random intervals and count error
(Err) is computed by comparing results with the ground truth data.

3.2 Characterisation of Main Flows

The results of the source and sinks detection and characterising main flows are qual-
itatively depicted in Fig. 6. Different colour codes are used for representing different
flows, while source and sink points are always marked with yellow and red circles
respectively. Two extremes situations are depicted, since Unimib sequence is char-
acterised by medium-low density and a structured crowd while Gallery covers high
density and extremely complex and unstructured crowd. The framework correctly
extracts semantic regionswith the corresponding source and sink points in theUnimib
video, while providing plausible results also for the Gallery video.

3.3 Social Group Detection

We used different videos that include both structure and unstructured crowds with
different density condition.We evaluated the approach by using two coding schemes:
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Fig. 5 Comparing results: sample frame (a); histogram curve (b); our approach (c); sample frame
(d); histogram curve (e); our approach (f)

Table 1 Hajj video people counting in sequence of frames

F.n. G.T.(E) G.T.(W) Cnt.(E) Cnt.(W) Err(E) (%) Err(W) (%)

12 151 159 170 154 12.58 3.14

20 153 161 167 154 9.15 4.35

29 185 185 195 194 5.41 4.86

37 176 187 192 201 9.09 7.49

45 187 186 200 191 6.95 2.69

55 187 187 195 188 4.28 0.53

63 189 185 194 194 2.65 4.86

Average error 7.16 3.99

Fig. 6 Results of sources and sinks detection framework: unimib sequence (a); gallery sequence (b)
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Fig. 7 Qualitative results of different video sequences: hotel sequence (a); gallery sequence (b)

Table 2 Dichotomy and Trichotomy on different video sequences

Videos τs Dichotomoy (%) Trichotomy (%)

ETH 10−10 100.0 95.0

HOTEL 10−15 100.0 92.0

GALLERY 10−19 96.3 89.9

SU2-L 10−12 90.70 86.7

SU2-H 10−12 81.06 77.2

Dichotomous and Trichotomous. In the former, we checked whether a pedestrian is
alone or in group while in the trichotomous scheme we also determine the size of
the group. The accuracy of our results using different videos is reported in Table2.
Figure7 shows qualitative results of the proposed framework.
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Part II
Vehicular Traffic



Computer-Aided Bifurcation Analysis
for a Novel Car-Following Model
with Relative Velocity Effect

Akiyasu Tomoeda, Tomoyuki Miyaji and Kota Ikeda

Abstract The global behaviour of mathematical models for traffic flow is important
in order to understand their characteristics because of the bistable property observed
in real traffic. This bi-stability can be discussed in a bifurcation analysis. In fact,
bifurcation analysis of optimal velocity models in several studies has revealed the
global bifurcation structure of the model, which shows a loss of stability due to the
Hopf bifurcation and bistable property. Shamoto et al. proposed a novel car-following
model with relative velocity effect (STNNmodel), which was not introduced into the
optimal velocity model, but is important in real traffic scenarios. They discussed the
linear stability of homogeneous traffic flow; however, they did not reveal the global
bifurcation structure of the STNN model. In this paper, we numerically investigated
the global bifurcation structure of the STNNmodel and observed that the strength of
the relative velocity effect drastically changes the bifurcation structure. This result
provides a possibility of implementing (semi-)automatic driving systems to alleviate
traffic jams.

1 Introduction

Various types of self-driven particle systems, such as vehicular traffic and pedestrian
dynamics, have attracted a great deal of attention during the last few decades in a
wide range of fields, such as natural sciences, applied sciences, and engineering,
for the potential practical use of investigation results [2, 5, 9]. Especially, a better
understanding of traffic flow has been achieved by developing sophisticated math-
ematical models. One of the common goals among these modelling approaches is
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to understand the spontaneous occurrence of traffic jams when the average density
of vehicles exceeds a certain critical value. This transition in flow behaviour is con-
sidered as a dynamical phase transition and can be discussed in terms of instability
of homogeneous flow. That is, jamming flow occurs as a result of the instability of
homogeneous traffic flow due to fluctuations of the driving behaviour over the critical
density; the instability leads to the transition of the homogeneous traffic flow to a
jamming flow due to enhancement of fluctuations.

Linear stability analysis is very useful for detecting critical density. As the loss of
stability is often accompanied by a bifurcation, one may expect a jamming flow to
exist. The linear stability analysis, however, does not provide any information regard-
ing a bifurcating solution. It is important to understand the global bifurcation structure
of periodic solutions bifurcating from the critical density because bi-stability, which
is regarded as one of the characteristics of transition to a jamming flow, is not a local
property. Moreover, the features of a global bifurcation structure provide us with
hints for controlling traffic flow by changing the parameters of a model. Thus, global
bifurcation analysis is important from both theoretical and practical viewpoints. Sev-
eral researchers have investigated the global bifurcation structure of a car-following
type model by describing the dynamics of N vehicles on a circular road via special
continuation codes [4, 6–8].

Gasser et al. [4] focused on an optimal velocity (OV)model, which is described as

d2

dt2
x j (t) = a

{
V (h j (t)) − d

dt
x j (t)

}
, (1)

where x j ( j ∈ N ) and h j = x j+1 − x j are the position of the j th vehicle, and the
headway distance between the j th vehicle and the vehicle in front, respectively. The
function V (h j ) is called the OV function, which provides an ideal velocity decided
by the headway. This model (Eq.1) was originally proposed by Bando et al. [1],
and they considered the OV function as V (h) = tanh(h − 2) + tanh(2). In [4], they
proved that the loss of stability is generally due to a Hopf bifurcation, and they
analytically showed a quantity related to the first Lyapunov coefficient of the bifur-
cation, which determine if Hopf bifurcation is supercritical or subcritical for general
OV function satisfying a few basic properties. This result mentioned that the type of
Hopf bifurcation depends on the OV function, length of the circuit, and the number
of vehicles. Moreover, they numerically investigated the global bifurcation structure
for periodic solutions and revealed a complete picture of OV model dynamics. From
these numerical results, the behaviour of a Hopf bifurcation is locally supercritical,
but macroscopically subcritical under some situations, i.e., the OV model shows bi-
stability. One of their conclusions was that the Hopf bifurcation is not necessarily
subcritical, which depends on the optimal velocity function. Moreover, they con-
cluded that a stable periodic solution may (co-)exist even in the stable region; in
particular, this coexistence does not depend on the type of Hopf bifurcation, but on
the global bifurcation structure.
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Orosz et al. [6–8] proposed a novel OV model with driver reaction time delay,
which is described as

d2

dt2
x j (t) = a

{
V (h j (t − τ)) − d

dt
x j (t)

}
, (2)

where τ is the reaction time of the drivers in perception, which is different from the
relaxation time T = 1

α
in action to adjust the vehicle’s velocity. They also showed

the loss of stability due to Hopf bifurcation and the global behaviour of the system
(Eq.2) numerically, although their computational technique was different from the
one in [4] because of the delay effect. As a result, they also observed branches
of oscillating solutions connecting Hopf bifurcation points, where the OV function
determines whether the Hopf bifurcation is supercritical or subcritical, and then they
revealed the existence of the regions of bi-stability.

These investigations are very significant in order to understand the complete pic-
ture of each trafficmodel in detail; however, thesemodels did not consider the relative
velocity effect, and the parameters in these models were difficult to be estimated by
real experiments, i.e., difficult to be controlled in practical use. Thus, in this paper,
we investigate the global bifurcation structure of a model proposed by Shamoto
et al. (STNN model) [10], in which the relative velocity effect is introduced, and
the parameters are estimated by real experiments. Moreover, we show the changing
the global bifurcation structure based on variation in the relative velocity effect as a
possibility of the strategy to alleviate traffic jams, as the strength of relative velocity
effect is varied.

This paper is organised as follows. In Sect. 2, we briefly review the STNN model
proposed by Shamoto et al. [10] and modify the model to a suitable form for use with
numerical bifurcation algorithm in AUTO [3]. The computational results are shown
in Sect. 3. Finally, Sect. 4 is devoted to the concluding discussions.

2 STNN Model and Its Rewritten Form

Recently, Shamoto et al. proposed a novel car-following model (STNN model) in
[10], which takes into account the relative velocity effect. Their model is described
in the following form :

d

dt
v j = a − b

v j
(h j − d)2

exp
(
−cΔv j

)
− γ v j , (3)

where a, b, c, d and γ are positive parameters. The parameter a represents the max-
imum acceleration. The initial acceleration of the vehicles, when they start to move
forward, is determined by a. The parameter d indicates the headway when vehicles
stop completely. The other parameters b, c, and γ denote the strength of interaction
with the vehicle in front, the weight of the relative velocity effect, and the strength
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Fig. 1 The definition of the
variables y j to suppress
translation symmetry in the
periodic condition

of friction, respectively. The advantages of the STNN model are that it is experi-
mentally accessible, and it is easy to understand the physical meaning, although the
model has only five parameters. Actually, the parameter values were estimated by
circuit experiments in [10]. They mentioned that their model showed a metastable
homogeneous flow around the critical density from the linear stability analysis. That
is, if the traffic density exceeded the critical density, the homogeneous flow became
unstable because of a small perturbation that changes into another branch (a jamming
flow). However, their results are local and do not give us any insight into the stability
of the other branch and the changes in the global bifurcation structure, as a parameter
is varied. We thus use the software AUTO [3] to numerically obtain and investigate
the global behaviour of their model (Eq. 3).

The STNN model in the periodic system has a continuous family of solutions
corresponding to the homogeneous traffic flow due to the translation symmetry. This
feature is unsuitable for analysis by using AUTO, as AUTO can follow only a one-
parameter family of solutions.

Let N ∈ N and L > 0. N is the number of vehicles, and L is the length of the
circuit. We regard xN+1 = x1 + L . Obviously, we have

N∑
j=1

h j = L . (4)

That is, the sum of headways is equal to the length of the entire circuit.
We suppress the translation symmetry by introducing variables y = (y1, · · · , yN )

(see Fig. 1), which satisfy

y = (y1, . . . , yN ) = (h1, . . . , hN−1, x1). (5)
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Note that this transformation of variables is regular. Indeed, the inverse is given by

x j = yN +
j−1∑
k=1

yk, j = 1, 2, . . . , N , (6)

where the sum is taken only when j − 1 > 1.
The STNN model can be written in the following form:

ẍ j = a − ẋ jW (h j , ḣ j ), j = 1, 2, . . . , N , (7)

where a is a positive parameter, which is the same as the original model. W is, for
example,

W (h j , ḣ j ) = b

(h j − d)2
e−cḣ j + γ. (8)

Here, we consider the case of N vehicles. In general, y is governed by

ÿ j = −(ẏN +
j∑

k=1

ẏk)W (y j+1, ẏ j+1) + (ẏN +
j−1∑
k=1

ẏk)W (y j , ẏ j ), (9)

ÿN−1 = −
(

N∑
k=1

ẏk

)
W (L −

N−1∑
k=1

yk,−
N−1∑
k=1

ẏk) + (ẏN +
N−2∑
k=1

ẏk)W (yN−1, ẏN−1),

(10)

and

ÿN = a − ẏNW (y1, ẏ1), (11)

where j = 1, 2, . . . , N − 2. yN is just an integral of ẏN . Note that the problem is
reduced to a system on R

2N−1.

3 Numerical Bifurcation Analysis

In this section, we show bifurcation diagrams of Eq.3. In particular, we focus on the
effect of relative velocity. First, we consider the case when c = 0. Next, we consider
the case when c �= 0 by computing a two-parameter bifurcation diagram. We regard
L and c as the primary and the secondary parameters, respectively. The remain-
ing parameters are assigned the same values estimated in [10], that is, a = 0.73,
b = 3.25, d = 5.25, and γ = 0.0517. Moreover, now we assign the number of vehi-
cles N = 30.
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(a) (b)

Fig. 2 Bifurcation diagram. Abbreviations: Stable Equilibrium (SE), Unstable Equilibrium (UE),
Stable Cycle (SC), and Unstable Cycle (UC). Global bifurcation diagram of STNN model for the
parameters a = 0.73, b = 3.25, c = 0, d = 5.25, and γ = 0.0517 (a); close-up picture of the right
Hopf bifurcation point (b)

3.1 Without Relative Velocity Effect (c = 0)

First, we investigate a global bifurcation structure in the case of c = 0, where the
model has no relative velocity effect. Under this condition, the model should reflect
the characteristics that are in common with the OV model.

Figure2 illustrates a bifurcation diagram, which has L on the horizontal axis and
the relative velocity of the first vehicle on the vertical axis. The left image shows
the entirety of the bifurcation diagram and the right image is the close-up picture
at L = 1333.43. The solid line (curve) and the dashed line (curve) indicate a stable
solution and an unstable solution, respectively. From these figures, we reveal the
birth of a supercritical Hopf bifurcation as the parameter L becomes small (density
becomes large). That is, if one moves along the horizontal line ( dh1dt = 0) from right
to left, one can find at first a stable equilibrium point (L = 1333.43) that eventu-
ally loses its stability in favour of a periodic solution branch. Subsequent to that, two
saddle-node bifurcations (L = 1333.41 and L = 2619.25) take place on this periodic
solution branch. In the region 1333.43 < L < 2619.25, both the homogeneous solu-
tion and the periodic solution are stable, that is the traffic flow shows bi-stability. This
global bifurcation structure is qualitatively similar to the structure of the OV model
shown in [4], that is, the behaviour of a Hopf bifurcation is locally supercritical, but
macroscopically subcritical.

3.2 With Relative Velocity Effect (c �= 0)

Next, we consider the case when c �= 0. A Hopf bifurcation point and a saddle-node
bifurcation point draw a curve in two-parameter plane when an additional parameter
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(a) (b)

Fig. 3 Two-parameter bifurcation diagram: behaviours of Hopf Bifurcation points (HB) and
Saddle-Node points (SN) on (L, c)-plane for the parameters a = 0.73, b = 3.25, c = 5.25,
γ = 0.0517 (a); close-up picture at the cusp point (b)

is varied. We vary c as well as L to numerically compute the curves starting at two
Hopf bifurcation points ((L , c) = (205.612, 0), (1333.41, 0)) and two saddle-node
bifurcation for Eq.3 with c = 0.

Figure3 shows the two-parameter bifurcation diagram and its close-up view. The
curve of Hopf bifurcation points turns down at (L , c) = (395.55, 1.955), and no
Hopf bifurcation is found for c > 1.995. From phenomenological point of view,
this implies that the enhancement of relative velocity effect leads drivers to a good
response and eventually makes the homogeneous flow stable for a fluctuation. Thus,
we have found that homogeneous flow becomes stable in all densities in a parameter
region c > 1.955. On the other hand, the curve of saddle-node bifurcation points
meets at a cusp point (L , c) = (1019.23, 0.6664). This implies that the bi-stability
as shown in Fig. 2 does not appear when c > 0.6664. Thus, we have three intervals
0 < c < 0.6664, 0.6664 < c < 1.955, and 1.955 < c in which bifurcation diagrams
are qualitatively different. It should be noted that here we discuss only two Hopf
bifurcation points. Other Hopf bifurcation points exist at the region 205.612 < L <

1333.41 and may show another stable periodic solution branch, which implies multi-
stability. These features will be also investigated in the near future.

4 Conclusion and Discussion

In this paper, we investigated the global bifurcation structure of the periodic solu-
tions bifurcating from the critical density for STNN model, wherein the relative
velocity effect is introduced. In the case when c = 0, which corresponds to the
model without the relative velocity effect, the global bifurcation structure shows fea-
tures that are similar to the OV model; the model shows that the loss of stability in
homogeneous flow is due to a Hopf bifurcation, and the behaviour of a Hopf bifur-
cation is locally supercritical, but macroscopically subcritical. Moreover, we have
found that two Hopf bifurcation points turn down at a point on (L , c)-plane, and two
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saddle-node pointsmerge andmake a cusp point in the case of c �= 0,where themodel
takes into account the relative velocity effect. In particular, this result shows that the
instability of the homogeneous flow disappears, and the homogeneous flow becomes
stable in a parameter region c > 1.955. This situation might not be realistic in non-
automatic driving, but could provide a solution in the near future for implementing
(semi-)autonomous driving systems, such as the adaptive cruise control system, to
alleviate traffic jams.
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Lane Change Strategies on Freeways:
A Microscopic Simulation Study

Mehdi Keyvan-Ekbatani, Victor L. Knoop, Vincent Grébert
and Winnie Daamen

Abstract Understanding the influence of lane changing manoeuvres on the capac-
ity, stability, and breakdown of traffic flows is a crucial issue. In a recent study, four
distinct lane change strategies on freeways have been found: (1) Speed Leading;
(2) Speed Leading with Overtaking; (3) Lane Leading; (4) Traffic Leading. To the
best of our knowledge, combining speed choice and lane preference is not currently
considered in most driving behaviour models. The principal aim of this paper is to
investigate the impact of the forenamed lane change strategies on freeway traffic oper-
ations. The developed strategy-based lane change model has been implemented in a
microscopic simulation environment. The study revealed that different lane change
strategies may have various impact on the lane flow distribution and consequently
on the freeway capacity. It has been seen that an unbalanced distribution of flow
on a multi-lane freeway may lead to reduction of capacity. In addition, it has been
found that the lane change rate variates under different lane change strategies. The
highest traffic stability has been observed under speed leading and speed leading
with overtaking strategies.
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1 Introduction

Microscopic simulation tools might be applied in various traffic and transportation
studies. They can be utilised for analysing traffic incidents or providing a virtual envi-
ronment to evaluate new traffic management policies and evaluating their impacts.
Modelling of the movement of vehicles on freeways is mimicked by a combination
of a longitudinal (car-following) and a lateral (lane change (LC)) model. The valid-
ity of the aforementioned microscopic sub-models is currently a challenging issue.
Comprehending the influential factors of the driver’s lane change behaviour and the
corresponding decisions seems to be an essential issue for developing realistic and
accurate models.

Knoop et al. [1] addressed that there are large discrepancies between the princi-
ples modelled and the observations for discretionary lane changes (DLC). Empirical
studies have revealed that drivers show different driving behaviour in practice (see
[2] for lane changing and [3] for car-following behaviour).

Without asking people, the motive and stimulus behind the lane change decision
process cannot be known. Thus, Kondyli and Elefteriadou [4] applied interview
techniques for a study on driving behaviour in merging areas. Later, the same authors
conducted a test-drive with an instrumented vehicle [5]. Keyvan-Ekbatani et al. [2]
combined an interview-based study with a test-drive (using an instrumented car).
The test-persons were requested to drive on a freeway sketch in a camera-equipped
vehicle. Immediately after the drive, the participants were interviewed and questioned
regarding their decisions (i.e. for changing lane or not) during the test. The study led
to a categorisation of lane change decision process (i.e. strategies). Four distinct lane
change strategies for DLC behaviour were unveiled based on the aforementioned
study: (1) Speed Leading; (2) Speed Leading with Overtaking; (3) Lane Leading; (4)
Traffic Leading.

The research objective is to study the impact of the forenamed strategies on the
traffic flow characteristics. The four lane change strategies have been implemented
in the microscopic simulation tool MOTUS [6]. A three-lane freeway stretch without
considering any on- and off-ramps has been applied as a test-bed. It should be noted
that this paper only focuses on the simulation part of the strategy-based lane change
model and does not discuss the modelling and implementation details.

The remainder of the paper is organised as follows. The methodological details
(i.e. brief introduction of the four lane change strategies and simulation set-up) are
addressed in Sect. 2. The simulation results are presented in Sect. 3. Finally, a brief
summary and conclusion are included in the last section.

2 Methodology

In this section, the four lane change strategies found in [2] are introduced briefly.
Then, the defined simulation scenarios along with some technical details of the
simulation set-up are discussed.
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2.1 Lane Change Strategies

The four lane change strategies found in [2] (i.e. Speed Leading, Speed Leading with
Overtaking, Lane Leading and Traffic Leading) are defined as follows:

Speed Leading: The drivers who follow this strategy choose a desired speed and
try to keep it. They change lanes such that they can drive with their desired speed.
Drivers choose their speed based on their driving style and preference. Drivers using
cruise control are usually speed leading.

Speed Leading with Overtaking: Drivers driving with this strategy choose a speed
and stay at the rightmost lane possible with that speed. In case the speed on that
lane decreases (i.e. presence of a vehicle with a lower speed), the driver will change
lanes. In other words, the drivers applying this strategy consider this action as an
overtaking and increase their speed while being in the more left lane. The motivation
for increasing the speed is that ‘an overtaking manoeuvre takes less time’.

Lane Leading: In this strategy drivers choose a lane based on their perceived
relative driving speed. In other words, drivers settle for a lane and adapt their speed
to that of vehicles in that lane. The combination of speed and lane choice is the
incentive in this strategy.

Traffic Leading: Drivers follow the speed of the other drivers in a stream. There
is no desired speed or lane in this strategy. Drivers may join faster vehicles or slower
ones. Faster drivers might drive faster in busier conditions, since there is a higher
probability of existence of a driver with higher desired speed.

2.2 Simulation Set-Up

The main goal of this paper is to investigate the impact of the different lane change
strategies on the traffic flow characteristics. To this end, the strategy-based lane
change model has been implemented in a microscopic simulator. More specifically,
lane flow distribution, lane change rate, creation of stop-and-go wave and the road
capacity under each lane change strategy have been investigated. Four different sim-
ulation scenarios have been defined. In scenarios (1)–(3), 100 % of drivers drive with
the strategies Speed Leading, Speed Leading with Overtaking and Lane Leading,
respectively. Scenario (4) includes 50 % of the drivers driving with Traffic Leading
and 50 % with Speed Leading strategy. Drivers with traffic leading adapt their speed
to other drivers. However, if all drivers are traffic leading, no reference speed is
available. This implies that a flow composition cannot only consist of traffic leading
vehicles. We therefore choose a traffic composition of 50–50. A longitudinal neigh-
bourhood of 100 m from the front and 50 m from the back of the vehicle linearly
distance-weighted (highest weight for the closest vehicle) has been considered. For
the lateral neighbourhood, the vehicles on the same lane, adjacent lane and next to the
adjacent lane have the weights 1, 0.8 and 0.6. If the vehicle drives on the middle lane,
the left and the right lanes are equally weighted (i.e. 0.8). Trucks are not considered
in these scenarios.
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Fig. 1 Simulation set-up: three-lane freeway stretch applied as test-bed (a); two-hour demand
profile (b)

MOTUS is an open-source microscopic traffic simulation package which is devel-
oped in java. MOTUS is stochastic, thus different simulation runs (replications) with
different random seeds may lead to different results. For this reason, 10 different
replications have been utilised for each investigated scenario and then the average
value of the 10 runs for each simulation result has been calculated. As shown in
Fig. 1a, a three-lane freeway stretch (7 km) without any off- and on-ramp has been
modelled in the microscopic simulation MOTUS. To create a bottleneck (for repro-
ducing a part of the congested branch of the fundamental diagram), a speed limit
has been imposed on the last 2 km of the modelled road layout. A step-wise demand
increase has been implemented for the two-hour simulation (see Fig. 1b). The car-
following model utilised for this simulation is IDM+ [7]. In scenarios (1), (2) and (4)
a speed limit of 100 km/h for the first 5 km and for scenario (3) different speed limits
(i.e. 100, 85 and 70 km/h for the left, middle and right lanes, respectively) have been
set. The speed limit in the last 2 km of the freeway is 60 km/h in all scenarios. The
desired speed of the drivers are produced based on a Gaussian distribution function
with an average value of 100 km/h and a standard deviation of 10 % (or 10 km/h).

3 Simulation Results

In this section, we describe the simulation results for the previously introduced
scenarios. First, we discuss the speed contour plots (for one replication), followed by
the fundamental diagram, the lane flow distribution and the lane change rates. The



Lane Change Strategies on Freeways: A Microscopic Simulation Study 399

Fig. 2 Speed contour plots for the four simulation scenarios: speed leading (a); speed leading with
overtaking (b); lane leading (c); speed leading + traffic leading (d)

trajectory data of a section of 1000–5000 m has been considered for derivation of
the last three plots.

Figure 2a–d display the speed contour plots for scenarios (1) to (4), respectively. In
all scenarios, congestion starts at the bottleneck (after 5 km) and propagates upstream.
As it is realised from Fig. 2a, b, the instabilities (stop-and-go waves) are similar for
the first two scenarios. For scenario (3), a different pattern of stop-and-go waves can
be seen. The traffic conditions showed more unstable under this lane change strategy
(more waves are visible) compared to two previous scenarios. The most congested
traffic condition can be seen in scenario (4). After 4000 s the entire freeway stretch
is affected by the congestion created upstream of the bottleneck. This might be due
to the speed adaptation concept of this scenario. The drivers adapt their speed to
the speed of the vehicles in their neighbourhood, thus reduction of speeds at the
bottleneck might affect the drivers upstream more and faster.

The fundamental diagrams for the different simulation scenarios are found in
Fig. 3a, b, c, d, (10 different replications shown by different colours). A rough esti-
mation of the capacity might be determined by taking the maximum value in the
fundamental diagrams. The highest observed flows of the speed leading, speed lead-
ing with overtaking and traffic leading strategies appear to be larger than the lane
leading strategy. All scenarios except scenario (3) reach a flow value of around 2500
veh/h/lane. The flow in scenario (3) does not exceed 2000 veh/h/lane (see Fig. 3c).
This might be due to the suboptimal distribution of flow over lanes and consequently
congestion occurrence on specific lanes. In the cases of speed leading strategies,
drivers will merge into the faster lane if needed and also merge back to the right, and
high flows will be obtained in all lanes.



400 M. Keyvan-Ekbatani et al.

0 10 20 30 40 50
0

500
1000
1500
2000
2500
3000

Density [veh/km/lane]

Fl
ow

 [
ve

h/
h/

la
ne

]

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10

0 10 20 30 40 50
0

500
1000
1500
2000
2500
3000

Density [veh/km/lane]

Fl
ow

 [
ve

h/
h/

la
ne

]
0 10 20 30 40 50

0
500

1000
1500
2000
2500
3000

Density [veh/km/lane]

Fl
ow

 [
ve

h/
h/

la
ne

]

0 10 20 30 40 50
0

500
1000
1500
2000
2500
3000

Density [veh/km/lane]

Fl
ow

 [
ve

h/
h/

la
ne

]

(a) (b)

(c) (d)

Fig. 3 Fundamental diagrams for the four simulation scenarios: speed leading (a); speed leading
with overtaking (b); lane leading (c); speed leading + traffic leading (d)

For the traffic leading strategy, much more noise and scatter have been found in
the fundamental diagram after the onset of congestion (around the density of 30–
40 veh/km/lane) compared to the other three strategies. Apparently, drivers accept
different speeds at the same densities. This is in line with the fact that drivers adapt
the speed in this strategy.

Figure 4 displays the lane flow distribution on different lanes versus density in the
four introduced simulation scenarios, averaged over 10 different runs. As it can be
realised from Fig. 4a and b, under speed leading and speed leading with overtaking
strategies, most of the traffic is on the right and the middle lane in the low-flow
conditions. In higher densities, gradually, traffic utilises the middle lane and the
median lane more. A similar pattern has been found in empirical data for Dutch
freeways [8]. In the study with real data [8], it was found that near capacity, the
left lane has an excess load, because drivers do want the ‘spots in the overtaking
lane’. This is partially found in the simulation data: indeed, there is the high flow
in the left lane, but this at densities which are slightly lower than capacity. In speed
leading with overtaking, the reduction of right lane usage is less sharp than in speed
leading. In the lane leading strategy, the flow distribution is not as balanced as in the
other scenarios. This might be one of the reasons of the lower capacity compared
to the other scenarios (see Fig. 3). In traffic leading strategy, drivers distribute quite
well over the lanes. This could be a reason of the high capacity despite of the more
congested traffic state.

Figure 5 shows the lane change rate vs. density for each of the scenarios. For
the speed leading strategy, the number of lane changes depends strongly on the
density. For lower densities, drivers change lanes often (approximately 0.5 lane
change per km). As the densities increase, drivers keep their lane for a longer time.
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Fig. 4 Lane flow distribution for the four simulation scenarios (averaged over 10 runs): speed
leading (a); speed leading with overtaking (b); lane leading (c); speed leading + traffic leading (d)

Fig. 5 Lane change rate for
the four simulation scenarios
(averaged over 10 runs)
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This can be explained by the fact that the speeds in all lanes become similar, taking
away the necessity of a lane change. A similar pattern is visible for the speed leading
with overtaking strategy. As anticipated, the number of lane changes for the lane
leading strategy is very low. Note that the number of lane changes increases with
an increasing density. This can be explained by the fact that if there are no other
vehicles, the lane leading drivers will follow the lane. The most remarkable pattern
is found for the traffic leading strategy. In cases of low density, drivers tend to follow
other drivers, which might have a different speed. Hence, the lane changes are rela-
tively high. For higher densities, the number of lane changes decreases to the lowest
values found for all strategies (they even stop changing lane). Traffic leading drivers
will simply follow the traffic, and if there are drivers in front, driving at a reasonable
speed, they have no incentive to leave the lane and change lane, since there is neither
a desired lane where they should head to, nor a desired speed.
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4 Conclusions

In this paper, the recently found lane change strategies are implemented in a micro-
scopic simulation environment. The impact of each strategy on the freeway traffic
operations has been investigated. In particular, it has been realised that under different
lane change strategies, various stop-and-go waves can occur. Under speed leading
and speed leading with overtaking strategies the highest stability has been observed.
In addition, for higher densities, the number of lane changes decreases to the lowest
values in all strategies. Various lane flow distributions have been found under differ-
ent lane change strategies. It has been seen that an unbalanced distribution of flow
on a multi-lane freeway may lead to reduction of capacity.

Future research directions in this area include investigating the traffic operations
under different combinations of lane change strategies, sensitivity analysis of the
model parameters, validation and calibration of the model.
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When Is a Bottleneck a Bottleneck?

Andreas Schadschneider, Johannes Schmidt and Vladislav Popkov

Abstract Bottlenecks, i.e. local reductions of capacity, are one of the most relevant
scenarios of traffic systems. The asymmetric simple exclusion process (ASEP) with
a defect is a minimal model for such a bottleneck scenario. One crucial question is
“What is the critical strength of the defect that is required to create global effects,
i.e. traffic jams localised at the defect position”. Intuitively, one would expect that
already an arbitrarily small bottleneck strength leads to global effects in the system,
e.g. a reduction of the maximal current. Therefore, it came as a surprise when, based
on computer simulations, it was claimed that the reaction of the system depends in
non-continuous way on the defect strength and weak defects do not have a global
influence on the system. Here, we reconcile intuition and simulations by showing
that indeed the critical defect strength is zero. We discuss the implications for the
analysis of empirical and numerical data.

1 Introduction

One of the most important scenarios in any traffic system are bottlenecks, i.e. (local)
flow limitations. Typical examples are a reduction in the number of lanes on a high-
way, local speed limits or narrowing corridors or exits in pedestrian dynamics. The
identification of bottlenecks gives important information about the performance of
the system. E.g. in evacuations, egress times are usually strongly determined by
the relevant bottlenecks. Therefore, a proper understanding of bottlenecks and their
influence on properties like the flow is highly relevant.

One of the most natural questions is “When does a bottleneck lead to a traffic
jam?” Does any bottleneck immediately lead to jam formation or is there a minimal

A. Schadschneider (B) · J. Schmidt · V. Popkov
Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany
e-mail: as@thp.uni-koeln.de

J. Schmidt
e-mail: schmidt@thp.uni-koeln.de

V. Popkov
e-mail: vladipopkov@gmail.com

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_51

403



404 A. Schadschneider et al.
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bottleneck strength required? Intuitively, one would say that even a small bottleneck
strength leads to macroscopically observable effects, like a reduction of the maximal
current or jams. However, other scenarios have been considered as well and have
even been part of legal guidelines. One prime example in pedestrian dynamics is
the dependence of the current on the width of a corridor [10, 13]. Originally it was
believed that the current increases stepwise, i.e. non-continuously, with increasing
bottleneck width. This increase was assumed to happen when the corridor width
allows an additional lane of pedestrians to be formed (Fig. 1). Taking the corridor
width as measure for the bottleneck strength (rather its inverse) this implies that
an increasing bottleneck strength not necessarily leads to smaller current values or
jam formation. In the meantime, we know that this scenario is not correct and the
current increases linearly with the width [13]. However, it is still possible that there
are situations where lane formation is relevant and this scenario is more adequate,
e.g. in colloidal systems [14].

In the following, we will take a theoretical physics point of view by considering a
minimal model for bottlenecks. Experience shows that the results capture the generic
nature of bottleneck transitions.

2 Bottlenecks in the ASEP

The Asymmetric Simple Exclusion Process (ASEP) is a paradigmatic model of non-
equilibrium physics (for reviews, see e.g. [2, 4, 7, 9, 12]) and arguably the simplest
model that captures essential features of traffic systems, i.e. directed motion, volume
exclusion and stochastic dynamics. It describes interacting (biased) random walks
on a discrete lattice of N sites, where an exclusion rule forbids occupation of a site
by more than one particle. A particle at site j moves to site j + 1 with rate p if site
j + 1 is not occupied by another particle (Fig. 2). In the following we will mainly
use a random-sequential update. If sites are updated synchronously (parallel update)
the model is the vmax = 1 limit of the Nagel-Schreckenberg model [8, 9]. Many
exact results are known for the homogeneous case of the ASEP, e.g. the fundamental
diagram and the phase diagram in case of open boundary conditions [2, 4, 7, 9, 12].
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Fig. 2 ASEP with a defect (slow bond) where the hopping probability is r < p. r = p corresponds
to the homogeneous case. Left Periodic boundary conditions with N = 8 sites, the slow bond is
between sites 8 and 1. Right Open boundary conditions with N = 16 sites, the slow bond is between
sites 8 and 9

A simple but generic model for a bottleneck is obtained by replacing one of the
hopping probabilities p by a defect, or slow bond, with hopping probability r < p
(Fig. 2). Many properties of this defect system have been obtained in a seminal paper
by Janowsky and Lebowitz [6]. They have shown that the shape of the fundamental
diagram can be understood by a simple mean-field theory. In the stationary state the
current can be obtained by matching the current Jhom in the homogeneous system
with the current Jdef at the defect. Neglecting correlations at the defect site one finds
that the defect has no influence on the system for low densities ρ < ρ1 and large
densities ρ > ρ2.1 The density remains uniform throughout the whole system and
the current is identical to that of the homogeneous system (Fig. 3).

For densities ρ1 < ρ < ρ2, on the other hand, the fundamental diagram exhibits
a plateau where the current is independent of the density (Fig. 3). The plateau value
Jplat corresponds to the maximal current that is supported by the defect. In this density
regime the stationary state is no longer characterised by a uniform density. Instead
phase separation into a high and a low density region is observed. The high density
region corresponds to a jam that is formed at the defect position (Fig. 4). For periodic
boundary conditions the jam length shows characteristic fluctuations (Fig. 4a) [6].

For the ASEP with periodic boundary conditions, random-sequential update and
a defect r mean-field theory makes quantitative predictions for the phase-separated
regime [6]. The value of the current in the plateau region is given by

Jplat = pr

(p + r)2
(1)

and the densities in the low and high density region by

ρ� = r

p + r
and ρh = p

p + r
(2)

1For the ASEP, due to particle-hole symmetry, ρ1 = 1 − ρ2.
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r1 r2

Fig. 3 Fundamental diagram of the ASEP with a defect r (circles). The full line is the fundamental
diagram of the homogeneous system without defect. The current J (r) is independent of the global
density ρ for ρ1 < ρ < ρ2. The plateau value Jplat in this region is smaller than the maximal flow
Jmax in the homogeneous system
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Fig. 4 Phase separation in the plateau regime: particle trajectories for Periodic boundary conditions
(a); open boundary conditions (b)

The critical densities ρ1, ρ2 which determine the plateau regime ρ1 < ρ < ρ2 are
simply

ρ1 = ρ� and ρ2 = ρh (3)

The mean-field results are supported by systematic series expansions [3].
Figure 5 shows the resulting phase diagram. For any defect r < p only currents

up to the plateau value Jplat can be realised in the system which then phase separates
into a high density region pinned at the defect and a low density regime. For currents
J < Jplat the density is uniform. The important point is that Jplat < Jmax for any r < p
where Jmax is the maximal current in the homogeneous system. In other words:
any bottleneck leads to a reduction of the current and a phase-separated state (at
intermediate densities).
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Fig. 5 Phase diagram of the
ASEP with defect according
to [6]. The full line shows
the current at the plateau as
function of the defect
hopping rate r . Any r < p
leads to a reduction of the
maximal current compared
to that of the homogeneous
system Jmax. In the phase of
uniform density the defect
has only local effects

r

J

p

forbidden

uniform density

plateau

J
max

3 What Is the Critical Bottleneck Strength?

Mean-field theory predicts that any bottleneck r < p leads to the formation of a
plateau in the fundamental diagram and the associated phase-separated state [6].
Defining the bottleneck strength by

Δp = p − r

p
(4)

implies that the critical bottleneck strength (Δp)c at which the defect has global
influence on the system (e.g. its current or the density) is predicted to be

(Δp)c = 0 , i.e. rc = p (5)

As mentioned in the introduction this is what is intuitively expected. Therefore it
came as quite a surprise when it was claimed [5], based on extensive computer
simulations, that rc ≈ 0.8, i.e.

(Δp)(Ha)
c ≈ 0.2 (6)

The corresponding phase diagram is shown in Fig. 6. In contrast to Fig. 5, for defects
r > rc all currents up to Jmax can be realised and there is no phase separation at any
density for weak defects! In this case the bottleneck has only local effects which can
be observed near the defect, but not in the whole system.

Due to this apparent contradiction with expectations we have revisited the ASEP
defect problem in [11] based on highly accurate Monte Carlo simulations. Similar to
[5] we have simulated the ASEP with open boundary conditions, random-sequential
dynamics (with p = 1) and a defect in the middle of the system (Fig. 2). However,
choosing α = β = 1

2 as in [5], corresponds exactly to the phase boundary of the
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Fig. 6 Phase diagram of
ASEP with defect according
to [5]. Defects with
rc < r ≤ p have no
influence on the current J
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high, low and maximal current phase [4, 9, 12]. Fluctuations in finite-size systems
will systematically underestimate the defect current J (r) [11]. We have therefore
chosen α = β = 1 well inside the maximal current phase which allows to obtain a
much better statistics.

To determine rather subtle bottleneck effects, very good statistics and advanced
Monte Carlo techniques are required. To minimise errors induced by pseudo-random
number generators we have used the Mersenne Twister [11].

Measurements of bottleneck effects for small defect strengths are easily hidden
by fluctuations. Instead of using independent measurements for each defect strength
r the systems are evolved in parallel, i.e. with the same protocol and the same set of
random numbers, which leads to a strong suppression of fluctuations [11].

In order to minimise finite-size corrections, system lengths of up to N = 200, 000
were considered (Fig. 7) which is two orders of magnitude larger than the systems
considered in [5].

To estimate the global effects of the defect we first considered the finite-size cur-
rent J (N , r) through a system of length N and with a defect r . Due to the fact that
finite-size corrections lead to an enhanced current, i.e. J (r, N ) > J (r, N = ∞),
one finds a lower bound for the critical hopping rate by satisfying J (N , rc) −
J (N = ∞, r = 1) < 0. However, in this way we only could derive a lower bound
rc ≥ 0.86 for the critical hopping rate (Fig. 7). Assuming the existence of an essential
singularity at rc = 1, i.e. j (1) − j (r) ∼ exp (−a/ (1 − r)) [3], further improve-
ment of the lower bound for the critical defect rc by increasing the system length is a
hopeless enterprise: e.g. a numerical proof of rc > 0.9, rc > 0.95, rc > 0.99 would
require N > 1010, N > 1022, N > 10147, respectively.

A much better quantity to determine the global influence of the defect (see e.g.
Fig. 4, right) is the density profile or rather the difference between the density profile
of the defect system with a corresponding homogeneous system (Fig. 8). Using the
approach of parallel evolving systems we could clearly show a non-local influence on
the density profile for defect strengths up to r = 0.99 (Fig. 8). This strongly supports
the mean-field prediction rc = 1.
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Fig. 7 Finite-size
corrections to the current.
The exactly known
current in the infinite
homogeneous system is
J (N = ∞, r = 1) = 1/4

0.78 0.8 0.82 0.84 0.86

−4

−3

−2

−1

0

1

2

3

4

x 10
−5

r

j  F
S
 (

 r
 )

  −
  0

.2
5

N=4.100
N=10.000
N=200.000

Fig. 8 Arbitrary defects r
have a non-local effect on the
density profile. The figure
shows the difference between
the density profile ρr (x) with
and that without defect
ρr=1(x) where x = j/N is
the rescaled position

0 0.5 1 1.5 2

x 10
4

−2

−1

0

1

2
x 10

−4

ρ r(x
) 

−
 ρ

r 
=

 1
(x

)

x

r=0.99
r=0.98
r=0.97
r=0.96
r=0.95

4 Discussion and Relevance for Empirical Results

Despite its relevance for applications some fundamental aspects of bottlenecks are
not fully understood. Even for a minimal model like the ASEP with a defect the
influence of weak bottlenecks is rather subtle and can be easily lost in fluctuations.

We have shown how to reconcile computer simulations with the intuition that even
small defects have a global influence on the system. These effects are not easily seen
in a reduction of the current which presumably shows a non-analytic dependence
on the bottleneck strength. Bottlenecks are better identified by their effects on the
density profile which spreads throughout the whole system.
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Based on a careful statistical analysis of Monte Carlo simulations we have found
strong evidence that an arbitrarily weak defect Δp → 0 in the ASEP has a global
influence on the system. Meanwhile, a mathematical proof of (Δp)c = 0 has been
announced in [1].

These results are believed to be generic for bottleneck systems. As a consequence
the identification of weak bottlenecks in noisy empirical data is extremely difficult.
Even for computer simulations very good statistics is required. Since the effect on the
current is rather small, the density profile might be a better indicator for the presence
of weak bottlenecks.
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Jam Avoidance with Autonomous Systems

Antoine Tordeux and Sylvain Lassarre

Abstract Many car-following models have been developed for jam avoidance in
highways. Two mechanisms are used to improve the stability: feedback control with
autonomous models and increasing of the interaction within cooperative ones. In
this paper, we compare the linear autonomous and collective optimal velocity (OV)
models.Weobserve that the stability is significantly increasedby addingpredecessors
in interaction with collective models. Yet, autonomous and collective approaches are
close when the speed difference term is taken into account. In the linear OV models
tested, the autonomous models including speed difference are sufficient to maximise
the stability.

1 Introduction

Recently, many car-following models have been developed for jam avoidance in
highways.Models have equilibrium homogeneous solutions where all vehicle speeds
and spacings are constant and equal. ‘Jam avoidance property’ is investigated through
analysis of the stability of such solutions. Most of the approaches are extended
versions of the optimal velocity (OV) model [1]. The basic model is solely based on
the distance spacing with the predecessor (local next-neighbour interaction). Several
studies have shown that speed and spacing feedback mechanisms in autonomous OV
models allow to improve the stability of the homogeneous solution and to avoid jam
formation [2, 6, 9, 10, 16]. Similar results are obtained with the intelligent driver
(ID) model for specific parameter values [7, 8].
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Several vehicles in the neighbourhood are included in the interaction for collective
(or cooperative) systems. Many studies show improvements of the stability if the
number of predecessors in interaction increases [3, 4, 11, 15]. Comparable results
are obtainedwith symmetric interaction (interactionwith predecessors and followers,
see for instance [12, 13]). Opposite to autonomous models for which the variables
can be directlymeasured, cooperative systems require that the vehicles are connected
to communicate their states. This makes their implementation difficult.

In this paper, autonomous linear OVmodels and extended ones with speed differ-
ence term are compared to their collective versions including several predecessors in
interaction. Both extended and collective OV models describe significant improve-
ment of the stability. More precisely, we observe that the number of predecessors in
interaction in the collective models and the speed difference term in the autonomous
approaches have similar roles in the dynamics. The paper is organised as follows. The
linear jam avoidance models are introduced in Sect. 2. The results of the simulation
experiment of a jam are presented in Sect. 3, while the Lyapunov exponents of the
different autonomous and collective models are calculated in Sect. 4. Section5 gives
the conclusion and outlook.

2 Linear Jam Avoidance Models

The optimal velocity model is

ẍn(t) = 1

T

(
V (Δxn(t)) − ẋn(t)

)
, (1)

with xn(t) the position of the vehicle n at time t ,Δx(t) = xn+1(t)−xn(t) the distance
spacingwith xn+1 > xn the predecessor position (seeFig. 1), andT > 0 the relaxation
(or reaction) time [1]. A jam avoidance should have stable homogeneous solution.
More precisely, it should be locally stable with no oscillation (LSNO) to avoid
collision and globally stable (GS), see for instance [14, Chap.15]. The conditions
ensure a collision-free convergence of the system to the homogeneous solution for
any initial condition. In the OV model, the linear LSNO and GS conditions are
respectively:

V ′ <
1

4T
and V ′ <

1

2T
. (2)

Fig. 1 Notations used. xn is
the position and Δxn is the
spacing of the vehicle n

Spacexn xn+1 xn+2

Δxn = xn+1 − xn

n n + 1 n + 2
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Note that the first condition implies the second. The full velocity difference (FVD)
is an extended OV model including a speed difference term [5]:

ẍn(t) = 1

T1

(
V (Δxn(t)) − ẋn(t)

) + 1

T2
Δẋn(t). (3)

It includes two relaxation times T1 > 0 and T2 > 0. The model is the same as the
OV model at the limit T2 → ∞. For the FVD model, the LSNO and GS conditions
are respectively:

V ′ <
1

4T1

(
1 + T1

T2

)2

and V ′ <
1

2T1
+ 1

T2
. (4)

These conditions are simply V ′ < 1/T if T1 = T2 = T (the first inequality implies
the second if T1 < 3T2). Clearly, the speed difference has a stabilisation effect on
the dynamics. The LSNO and GS conditions always hold at the limit T2 → 0.

The models (Eqs. 1 and 3) are autonomous: they are solely based on distance
spacing and speed difference with the predecessor. Collective models depend on
several predecessors in front. Generally, collective OVmodels have the form ẍn(t) =∑K

k=1 Fk
(
Δxn,k(t), ẋn(t),Δẋn+k(t), where K is the number of predecessors taking

into account andΔxn,k = xn+k − xk is the distance to the vehicle n+k. Fk represents
the influence of the vehicle k on the acceleration rate of the considered vehicle. In
theMulti-anticipative (MA) model [11], this influence is

Fk = αk

T

(
V

(
Δxn,k(t)/k

) − ẋn(t)
)
. (5)

The velocity difference multi-anticipative (VDMA) model includes speed difference
terms

Fk = αk

[
1

T1

(
V

(
Δxn,k(t)/k

) − ẋn
) + 1

T2
Δẋn+k(t)

]
. (6)

Here, the positive coefficients (αk) are such that
∑

k αk = 1. They specify the
interactionwith the predecessors. In the followingwe setαk = 1/K for all k (uniform
interaction) in order to maximise the stability [3, 11]. Note that the MAmodel is the
OV one and the VDMA model is the FVD one for K = 1, while the VDMA model
is the MA one at the limit T2 → ∞. The tested models are resumed in Table1.

3 Simulation of a Jam

In this section, the models (Eqs. 1, 3, 5 and 6) are simulated with periodic boundary
conditions from jam initial conditions by using explicit Euler schemes with time step
0.001 s. N = 20 vehicles are considered with the settings: V ′ = 1 s−1, T = T1 =
0.25 s (fix), and T2 = 2, 0.5, 0.1 s, K = 2, 4, 10 veh (tested). The settings are defined
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Table 1 Name, acronym, type and parameters of the tested models

Name Acronym Type Parameter

Optimal velocity OV Autonomous V ′, T
Full velocity difference FVD Autonomous V ′, T1, T2
Multi-anticipative MA Collective V ′, T , K
Velocity difference multi-anticipative VDMA Collective V ′, T1, T2, K
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Fig. 2 Trajectories with the OV and FVD models from jam initial configuration

so that the LSNO and GS conditions occur for any model. The trajectories obtained
withOVandFVDautonomousmodels are presented in Fig. 2. The convergence speed
to the homogeneous solutions increases as T2 → 0. The same phenomenon occurs
with MA model as K → ∞, see Fig. 3. However, there is no clear improvements of
the stability with the VDMA model if T2 is sufficiently small (see Fig. 4).

The speed of convergence of the system to the uniform solution can be quantified
by spacing standard deviation sequence (Lyapunov function):

σΔx =
√

1
N

∑N
n=1 (Δxn − Δx̄n)

2 with Δx̄n = 1
N

∑N
n=1 Δxn. (7)

In Fig. 5, the logarithms of the spacing standard deviation are plotted according
to the time for the different models. We observe linear evolution, meaning that the
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Fig. 4 Trajectories with the FVD and VDMA models from jam initial configuration
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Fig. 5 Sequences of the spacing standard deviation logarithm with OV, FVD, MA and VDMA
models

deviation tends to zerowith exponential speed.As expected, the slopeof the logarithm
(i.e. the convergence speed) increases as T2 decreases with the autonomous models
(see Fig. 5a), while the speed depends on the number of predecessors in interaction
K with the collective MAmodel (see Fig. 5b). As we observed previously, the speed
does not change significantly if K increases with VDMA model (see Fig. 5c). In
fact, the speeds of convergence of FVD, MA, and VDMA models are close (see
Fig. 5d); they are strongly faster than the convergence speed of ordinary OV model.
Such results suggest that speed difference term with the autonomous models and the
number of predecessors in interaction with the collective ones have similar roles in
the dynamics. The convergence speed to the homogeneous solution is maximised as
T2 → 0 or as K → ∞.

4 Lyapunov Exponents

The solution of the linear systems are a linear combination (LC) of exponential terms

xn(t) = LC
(
exp(λl t), t exp(λl t)

)
(8)

with (λl) the Lyapunov exponents of the system (i.e. the eigenvalues of the system
Jacobian matrix). In our stable case, all the exponents have strictly negative real
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Fig. 6 Lyapunov exponents for OV, FVD (top figures), MA (middle figures) and VDMA (bottom
figures) models with N = 100

parts, excepted one equal to zero. Moreover, we can expect that the convergence to
the homogeneous solution gets faster as the exponents go the left of the imaginary
axis. With the optimal velocity we investigate, the exponents are:

λl = 1

2

∑K

k=0
βk ι

k
l ± 1

2

[ (∑K

k=0
βk ι

k
l

)2

− 4
∑K

k=1
αk(1 − ιkl )

]1/2
(9)

with ιl = exp(2iπl/N ), l = 1, . . . N , N being the vehicles number, αk = 1
kT1

V ′
K ,

β0 = − 1
T1

− 1
T2

and βk = − 1
KT2

for all k = 1, . . . N . The Lyapunov exponents are
plotted in Fig. 6 for the different models. We observe that they converge to a double
mode pattern as T2 → 0 with the autonomous FVD model, and K → ∞ with the
MA collectivemodel. They remain doublemodewith the collective VDMAmodel as
K increases. Such results confirm qualitatively the ones observed by simulation. The
speed difference behave in the dynamics as the number of predecessors in interaction.
Also increasing the interaction seems not necessary to maximise the stability.

5 Conclusion

The convergences to the homogeneous solution of linear jam avoidance OV models
are compared. We observed that extending the OVmodel with speed difference term
significantly improves the stability. In a similar way, the adding of neighbours in
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interaction gives stability enhancements. However, increasing the interaction does
not improve the stability with the extended OV model. This suggests that both the
number of predecessors in interaction in the collective models and the speed dif-
ference term in the autonomous approaches allow to maximise the convergence
speed to homogeneous solutions. Also, the connection between the vehicles, hard to
implement, may not be necessary to optimise the stability and efficiently avoid jam
formation. Further investigations remain to be carried out to validate this hypothesis.
For instance, the influence of the geometry, initial conditions or vehicle density have
to be investigated. The shape of the Lyapunov exponents and their impact on the
stability are not explicit. Furthermore, nonlinear models may present better conver-
gence speed than the basic linear models we analysed. These subjects will the topic
of future works.
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Modelling Backward Travelling Holes
in Mixed Traffic Conditions Using
an Agent Based Simulation

Amit Agarwal, Gregor Lämmel and Kai Nagel

Abstract A spatial queue model in a multi-agent simulation framework is extended
by introducing a more realistic behaviour, i.e. backward travelling holes. Space
corresponding to a leaving vehicle is not available immediately on the upstream end
of the link. Instead, the space travels backward with a constant speed. This space is
named a ‘hole’. The resulting dynamics resembleNewell’s simplified kinematicwave
model. Furthermore, fundamental diagrams from homogeneous and heterogeneous
traffic simulations are presented. The sensitivity of the presented approach is tested
with the help of flow density contours.

1 Introduction

Use of an iterative algorithm to determine the dynamic user equilibrium in simulators
is common, but simulating large scale scenarios within a reasonable time frame is
rare [11]. A simple queue model is very helpful in traffic flow models due to its
computational efficiency [11, 16]. In these models, vehicles move along a link at
free flow speed until the end of the link. At the end of the link, if the inflow is higher
than the maximum possible outflow (link capacity), a queue appears. A simple
approach is the point queue model in which vehicles are stacked on top of each
other as vertical stack [19, 20]. In such models, the storage capacity is assumed
to be infinite and therefore, the queue length is zero, and spillover into other links
does not occur. Shortcomings of the point queue model are the ignorance of the
physical length of the queue, unclear interaction between links and missing intra-
link congestion [19]. In urban settings spillover often occurs at many intersections
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in particular during peak hours. Spillover is considered in spatial queue models (see,
e.g., [16]). This is achieved by assigning storage capacities to links based on length of
the link and number of lanes. Spatial queue models observe those storage capacities
by verifying the available space on the downstream link before allowing vehicles to
enter it. Consequently, queues can spillover onto the upstream link(s).

In the spatial queue model, queuing occurs upstream of the bottleneck links as
observed in real-life, but it is assumed that the space originating from leaving vehicle
is available immediately at the upstreamendof the link. Thus, in both point and spatial
queue models, intra-link congestion is not incorporated.

Intra-link flow dynamics is described by the LWRmodel [12, 15] and by Newell’s
simplified kinematic wave model (KWM) [14]. Daganzo has proposed the cell trans-
mission model (CTM) to solve the kinematic wave equation [6, 7]. A link transmis-
sion model (LTM) is introduced by Yperman [17]. In this model, traffic propagation
is consistent with KWM.

Differences between point queuemodel, spatial queuemodel and cell transmission
model under dynamic network loading condition are shown by [19]. The authors
show that the point queue model considerably underestimates the dynamic network
travel time. In addition, for heavily congested networks with spillback, spatial queues
without kinematic waves can also underestimate the impact of congestion. The
limitations of the point and spatial queue models are shown also in a previous study
by Frederix et al. [10] by comparing the results of toy scenarios with LTM.

One way to incorporate KWM like flow dynamics into spatial queue models is
the introduction of backward travelling holes (or gaps) [5, 8]. The present study
continues this line of research by using the backward travelling holes in the spatial
queue model.

In most of the developing economies, a variety of vehicles are prevalent on the
streets, which can be differentiated based on their static (dimension) and dynamic
(speed, acceleration etc.) attributes. In this direction, the LWR model is extended
analytically formixed traffic by Zhang and Jin [18]. However, to avoid computational
complexities, the present study focuses only on extending the queuemodelwith holes
for mixed traffic rather than addressing more general LWR model.

2 Modelling

The multi-agent transport simulation framework MATSim [13] is used for all sim-
ulation experiments. The minimal inputs are physical boundary condition (the road
network) and daily plans of individual travellers as an initial condition. Daily plans
are loaded simultaneously using a network loading algorithm which is embedded
into an iterative co-evolutionary algorithm [4]. The network loading algorithm of
the MATSim framework is a so-called queue model [11, 16]. The queue model in
MATSim allows spillback, thus, from here onwards in the present study, the queue
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model refers to the spatial queue model. In the present study, the queue model with
holes is presented in detail. A brief introduction of the queue model with holes for
link dynamics is given in two previous studies [1, 2].

2.1 Race Track Experiment

A race track experiment is set up to establish the relation between the three funda-
mental quantities of traffic flow, i.e. flow (q), density (ρ) and speed (v). A triangular
race track is taken as experimental network in which agents keep travelling until a
steady state is achieved [3]. Each side of the track is 1000 m long and the maxi-
mum allowed speed on all links is 60 km/h. Maximum flow capacity and density of
each link are 2700 PCU/h and 133.33 PCU/km. Here, PCU refers to passenger car
unit. Further, in order to check the behaviour of heavy vehicles, truck mode is also
used. The maximum speeds and PCUs of car, truck, motorbike, and bike modes are
assumed as 60, 30, 60, 15km/h, and 1, 3, 0.25, 0.25 respectively.

Corresponding to each discrete density point andmodal split, the number of agents
on the race track is determined. These agents are allowed to run on the track until
the fluctuations in the flow and speed of each mode are damped. This situation is
referred to as steady state. Flow and speed corresponding to each density point are
then recorded. The average values for each mode are recorded. Data is not recorded
if a steady state is not achieved.

2.2 Queue Models Without ‘Holes’

For reference, two link dynamics—namely, first-in-first-out (FIFO) and passing of
queue model without holes—are presented here briefly.

2.2.1 FIFO

Thequeuemodel inMATSimfollows the traditionalfirst-in-first-out (FIFO) approach
and processes the vehicle queue on each road segment (link) according to FIFO order.
In theMATSim framework, a link l has a number of attributes e.g. link length �l , flow
capacity c f low, storage capacity cstorage, maximum allowed speed on the link vl,max ,
etc. The flow capacity (link outflow) controls the maximum number of vehicles that
can leave the link, whereas storage capacity controls the link density, i.e. maximum
number of vehicles that can be placed on the link. For each entering vehicle with
maximum vehicle speed vv,max , an earliest link exit time (or free speed travel time,
t f ree) is computed as = �l/min(vl,max , vv,max ). Afterwards, the vehicle is added to
the queue data structure, from where the vehicle is moved across the downstream
intersection provided: (1) the vehicle has spent free speed time (t f ree) on the link;
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(2) flow capacity of the link is available; (3) the downstream link has enough space.
The queue model controls vehicles only at entries and exits, and never in between,
which makes it computationally efficient.

2.2.2 Passing

In order to simulate a traffic mix that consists of vehicles with different maximum
speed (vv,max ) and physical characteristics, the MATSim queue model is modified
by a passing queue [3] as follows:

1. A passenger car unit (PCU) equivalent is assigned to each vehicle type to con-
sume the flow and storage capacities on the link.

2. The queue data structure is sorted based on the earliest link exit time (t f ree).
Thus, it allows faster vehicles to overtake slower vehicles.

2.3 Queue Model with ‘Holes’

In the FIFO and passing queue models, it is assumed that when a vehicle leaves the
downstream end of the link, the freed space is available immediately on the upstream
end of the link. As stated earlier, this is unrealistic: in real-life it takes some time for
the free space to arrive at the upstream end of the link [5, 8]. Therefore, the present
study continues by introducing backward travelling holes into the queue simulation.
As the name indicates, in this approach, there are holes and they travel backwards,
i.e. opposite to the direction of the traffic flow. The approach works as follows:

• Whenever a vehicle leaves the downstream end of the link, the space freed is called
a ‘hole’. Every hole has a size equivalent to the PCU of the leaving vehicle.

• The space freed by the leaving vehicle is then occupied by the following vehicle
and thus the hole propagates one step backward. This process continues until the
free space (hole) arrives at the upstream end of the link.

• Consequently, the space on the upstream end of the link is not available instantly;
instead it reaches the upstream end of the link after time thole. Each hole is equipped
with upstream arrival time which is defined as = �l/vhole, where vhole is the hole
speed. This speed corresponds to the speed of the backward travelling kinematic
wave in the KWM and mainly depends on the reaction time of the drivers.

• In this study, a constant hole speed of 15 km/h is assumed. This hole speed corre-
sponds to a time headway of about 2 s between two subsequent vehicles.

• After a certain density, no vehicle can enter the link until free space reaches the
upstream end of the link. Therefore, in contrast to the queue model without holes,
in this approach, vehicles wait for the free space. Consequently, in addition to the
existing outflow link capacity, an implicit inflow link capacity is introduced.
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2.3.1 Comparison of with and Without Holes Models

Figure1a, b show a comparison of both queue model approaches—with and without
holes—for a car only simulation. In the free flow regime, the primary relationship
between the three fundamental variables of traffic flow (q = ρ · v) holds for queue
models with and without holes. As already described in Sect. 2.2.1, in the queue
model without holes, the free space on the upstream end of the link is available
instantly and therefore, in capacity regime, a horizontal section is observed corre-
sponding to the outflow capacity [16] and afterwards, at higher densities, this hor-
izontal section joins together with a nearly vertically downward sloping congested
branch (see golden points in Fig. 1a). In contrast, in the queue model with holes,
the slope of the congested branch is reduced to the speed of the backward travel-
ling holes. This branch is then met with the upward sloping free flow branch at a
capacity below the outflow capacity. It can also be observed that the critical density
at which speed starts decreasing is less for the queue model with holes than for the
queue model without holes. Thus, the maximum flow for queue model with holes
mainly depends on the backward travelling hole speed and the maximum speed of
the vehicle [9]; this can also be verified from Fig. 1c.

2.3.2 FIFO

Initially, FDs for single mode simulations, namely car, truck, motorbike, and bike
are plotted (see Fig. 1c, d). Car and motorbike modes have different PCUs and same
speed, therefore, when plotting density in PCU/km, the FDs for these two modes are
similar. The FDs are not able to achieve the maximum flow due to implicit inflow
link capacity as described in Sect. 2.3. Moreover, for truck and bike the maximum
flow is even lower due to (1) lower maximum speed of these modes and (2) implicit
inflow link capacity. The former can also be confirmed from FDs for queue model
without holes, in which lower bike speed results in lower maximum flow [3]. The
maximum flow for trucks and bikes is achieved at a higher density than for cars and
motorbikes due to lower maximum speeds.

2.3.3 Passing

The queue model with holes is also applied to passing link dynamics. It is assumed
that the reaction time of all vehicle types is the same, which results in a constant back-
ward travelling hole speed for all vehicle types. In order to show the FDs for passing
link dynamics in the queue model with holes, car and bike modes are simulated in
equal PCU units. The resulting FDs are shown in Fig. 1e, f.

Clearly, cars can overtake the slower bike mode. Car mode has the maximum
flow at a lower density than bike because of slower speed of bike mode; this can be
also verified from Fig. 1c in which maximum flow for bike mode occurs at a higher
density.
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Fig. 1 Fundamental diagrams: flow density plot for with and without holes queue models (a);
speed density plot for with and without holes queue models (b); flow density plot from one mode
simulations for with holes queuemodel (after [2]) (c); speed density plot from onemode simulations
for with holes queue model (after [2]) (d); flow density plot for passing queue model with holes (e);
speed density plot for passing queue model with holes (f)

3 Sensitivity

In order to check the sensitivity of the queue model with holes, flow density contours
are plotted in Fig. 2 for different modal split variation of car and bike simulations
on the race track. Figure2a, b show the flow density contours for the queue models
with and without holes respectively. Clearly, at higher densities (diagonal values) the
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Fig. 2 Flow density contours for car bike simulation and passing link dynamics. Queue model:
without holes (a); with holes (b)

queue model with holes has a clearer jammed regime compared to the queue model
without holes. Furthermore, it can be observed that the queue model with holes is
not able to reach the link capacity due to the limited inflow caused by the backwards
travelling holes.

4 Conclusion

This study extended spatial queue model in a computationally efficient multi-agent
simulation framework by introducing a more realistic behaviour, i.e. backward trav-
elling holes. Since, in this concept, space freed by leaving vehicles is not immediately
available on the upstream end of the link, the link inflow capacity is restricted implic-
itly. This eliminated the previously present unclear dynamics in jammed regime of
the fundamental diagrams.

In order to validate the model, first, fundamental diagrams for one mode simula-
tions were presented. Later, to test the mixed traffic behaviour, combination of car
and bike were simulated and corresponding fundamental diagrams were presented.
The sensitivity of the model was tested by comparing the flow density contours from
with and without holes queue models. The presented queue model with holes is able
to simulate mixed traffic more realistic and still is applicable to large scale scenarios.
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Analysis in Kantorovich Geometric Space
for Quasi-stable Patterns in 2D-OV Model

Ryosuke Ishiwata and Yuki Sugiyama

Abstract The two-dimensional optimal velocity (2D-OV) model, which consists of
self-driven particles, reproduces a big variety of dynamical patterns as seen in bio-
logical collective motions (Sugiyama (2009) Natural Computing. Springer Japan,
Tokyo [7]). We perform simulations of the 2D-OV model in a simple maze. Dynam-
ically stable patterns are observed from the simulation results. The stability of the
patterns seems to be related to a kind of degeneracy of a state. In order to look for
some physical quantity, which can indicate the relation between the stability and
the degeneracy, we construct a geometric space based on the Kantorovich distance
among patterns and represent the changing of flow pattern as the trajectory in the
geometric space. As a result, a point corresponding to distributions of particles for
the quasi-stable pattern converges to the localised region in the space.

1 Two-Dimensional Optimal Velocity Model

The optimal velocity model is first introduced for a mathematical model of traffic
flow as a motion in one dimensional space. The model well describes the phenomena
of forming a traffic jam.

The model is easily extended to a two-dimensional version (2D-OV model) [6].
Every particle moves as the equation of motion as

d2

dt2
xi (t) = a

⎧⎨
⎩

∑
j

V(Δxi j (t)) − d

dt
xi (t)

⎫⎬
⎭ . (1)
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Fig. 1 Illustration for the
interaction of 2D-OV i th
particle moving with the
velocity ẋi interacting with
j th and kth particles

xi is the position of a particle.Δxi j = x j − xi is the difference between two particles.
V is the interaction between two particles, so called an optimal velocity function.

V(Δxi j ) = f (ri j )(1 + cos θi j ) ni j , (2)

f (ri j ) = f0{tanhm(ri j − d) + c}, (3)

where ri j is the distance of two particles, and ni j is a unit vector for the direction
of the j th particle to the moving direction of i th particle. The strength of the inter-
action depends on ri j , and is polarised in the direction of motion by (1 + cos θi j ),
which expresses asymmetric interaction. The parameter c, (−1 < c < 1), controls
the threshold of attractive and repulsive interactions. According to the value c, each
particle surrounding the i th particle contributes to an interaction dependent of the
distance, which is illustrated in Fig. 1. The model is applicable to a pedestrian flow
and collective bio-motion [2, 5].

The 2D-OV particles show several pattern-formations for group motions after
a relaxation time, depending on the control parameter c. For example, a cluster
flow like a fleet at c = 0.0 is organised, as shown in Fig. 2a. In this case, particles
have a repulsive interaction in short distance (exclusive behaviour) and an attractive
interaction in long distance (following behaviour). In another example at c = 1.0,
particles have only attractive interaction at any distance. Particles form several sizes
of moving strings bending easily as shown in Fig. 2b, owing to the dominance of
following behaviour. In this paper, we use this case for further study.
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(a) (b)

Fig. 2 Collective motions of 2D-OV particles. A cluster flow of 2D-OV particles at c = 0.0. All
particles move in the same direction with the same velocity forming a homogeneous distribution
with hexagonal pattern (a), A string-like flow of 2D-OV particles at c = 1.0. Each particles move
along a formed string. A string moves with deforming continuously (b)

2 Formation of a Solution for a Maze

Collective bio-motions create several phenomena of collective behaviours, so called
‘group intelligence’. For example, amoeboid organisms solve a maze, that is, they
organise the optimal path between the two locations of food in a maze [4].

Similarly, collective motions of 2D-OV particles organise an optimal path of flow
pattern between two gates connected with the periodic boundary condition in amaze.
The wall of the maze is an elastic boundary.

We set a simple maze shown in Fig. 3. An appropriate number of 2D-OV particles
for c = 1.0, a = 20, N = 130, are initially distributed homogeneously in random
motions. In the intermediate state, particles create several sizes of moving strings.
After a relaxation time, they compose a unit string with moving particles, which
solves a maze.

There are twoquasi-stable solutions as shown inFig. 4.One is Fig. 4a,which shows
a solution of motions of the optimal path reflecting two elastic opposite boundaries.
The second one is the solution of the periodic boundary, as shown in Fig. 4b, where
particles move along the optimal path through the gate of the periodic boundary.

Fig. 3 A simple maze filled
with 2D-OV particles
distributed homogeneously
in random moving
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Fig. 4 Two optimal patterns formed bymotions of OV particles. Themotions of particles: by elastic
reflection by two opposite walls (a); the motions of particles through the two gates connected with
periodic boundary condition (b)

3 Kantorovich Metric Space

We briefly present the metric space of measuring affinity of patterns [1] in the context
of amany-particle system.A pattern is represented to a point in this space, andwe can
measure how similar the two patterns are, using the distance of two corresponding
points.

We denote two patterns as Pi and Pj . We set each pattern to consist of N iden-
tical particles. A pattern is given by the positions of N particles. Suppose that we
transport all particles of a pattern Pi to another pattern Pj . We have several plans of
transportation of points from Pi to Pj in Fig. 5. The distance of affinity between two
patterns is defined by the minimum cost of transportation from a pattern to another
pattern, which is denoted by Kr(Pi , Pj ). Cost should be appropriately defined as
the situation of the problem. In our case, we simply define the total sum of path
lengths for transportation as a cost. In mathematics, this is related to the ‘Optimal
Transportation problem’ [8].

In our context for dynamics of many-particle system in pattern formation, we
consider a time sequence of patterns: P(t1) → P(t2) → P(t3) → · · · → P(tn).
Now,wedefine the ‘affinitymatrix’ as Bi, j := Kr(P(ti ), P(t j )),meaningmeasuring
the affinity of every pair between each pattern appearing in the whole sequence. We

Fig. 5 Transport of particles
from pattern Pi , at their
positions, x1, x2, · · · , xN , to
another Pj at x ′

1, x
′
2, · · · , x ′

N

Transportation of the points
of particles from Pi to Pj

Pattern Pi Pattern Pj

x1

x2

xN

x3

x’1

x’2

x’N

x’3
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Fig. 6 Time evolution of
forming pattern in the
Kantorovich metric space:
Time steps goes from red
through blue to green. The
first quasi-stable pattern as
Fig. 4a corresponds to the
clump of states with a purple
colour. The second
quasi-stable pattern as shown
in Fig. 4b corresponds to the
states coloured green

0

500

1000

1500

2000

2500

Time step

diagonalise the matrix and obtain the eigenvectors ψ and corresponding eigenvalues
λ as

ψ1, ψ2, . . . , ψr

λ1 > λ2 > · · · > λr , (4)

where r = rank B.
We represent a pattern Pi consisted with particles as a vector in the Kantorovich

metric space as
c1ψ1 + c2ψ2 + · · · , (5)

which is mapped in Euclidean space Rr , We usually take the first two eigenvectors
with two largest eigenvalues for constructing sufficiently coarse variables for describ-
ing a pattern. In the present case of group formation with particles, it is sufficient
to describe a difference between patterns. This means a dimensional reduction of
degrees of freedom of particles RN to Rr ∼ R2 [3].

Thus, we have constructed the Kantorovich metric space describing a pattern
in the real space as a point in that space. The time evolution of forming a pattern
consisting of many particles is represented as a trajectory in the low dimensional
Kantorovich metric space.

4 Time Evolution of Forming Optimal Flow Patterns
in the Kantorovich Metric Space

Starting the initial pattern as Fig. 3, which is at the centre point in the Kantorovich
space, the whole time evolution of group formation in 2500 time steps is shown in
Fig. 6.
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There are two quasi-stable patterns forming in the period of 2500 time steps. The
first formed pattern is the optimal path moving and reflecting between two opposite
boundaries as shown in Fig. 4a. After a while, the second pattern emerges, which is
the optimal path through the periodic boundary as shown in Fig. 4b. Either of the
two quasi-stable patterns of particle-flow is represented as a localised region in the
Kantorovich metric space.

5 Discussions

We have shown quasi stationary states in 2D-OV particles as macroscopic patterns
as optimal flow in a maze. The patterns are represented as points in localised regions
in a low dimensional Kantorovich metric space. We would like to insist that we have
shown an example that the quasi stationary state in a non-equilibrium many-body
system can be represented as a localised region in the Kantorovich metric space,
which is constructed with the basis of a few macroscopic variables.

Time evolution of a system converging to a localisation in a space of variables
indicates that the time sequence of changing a state can be expressed by a gradient
flow of some potential in this space. We have a possibility to find such a potential
using a fewmacroscopic variablesmadeofmicroscopic variables in anoriginalmany-
body system. We suppose that the potential is some sort of ‘free energy’ or ‘thermo
dynamical potential’ for the non-equilibrium many-body system, which controls a
state of the system for changing its stability.

Actually, we may understand the search of a solution in a maze using 2D-OV
particles as follows. Group motion of 2D-OV particles for c = 1, which has purely
attractive interaction, form a free moving string with continuous deformation of
a shape. This indicates the formed pattern has continuous degree of freedom for
bending freely. This corresponds the high degeneracy of ground state of a ‘thermo
dynamical potential’. When the 2D-OV particles for appropriate number put in a
maze, they spontaneously form a flow pattern fitting the boundary conditions of the
maze, that is finding a solution of the maze as an optimal flow.
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Fractal Analysis of Empirical and Simulated
Traffic Time Series

Thomas Zaksek and Michael Schreckenberg

Abstract Time series can show signs of fractal and multi-fractal behaviour. An
analysis from this perspective can unearth features of time series that remain hidden
for analysis with standard statistics. We analyse the multi-fractal spectra of traffic
time series with the help of Multi-fractal Detrended Fluctuation Analysis (MDFA).
Empirical time series of traffic flows and velocities measured by loop detectors are
compared with time series gathered from traffic simulations. As a second focus,
we analyse multi-fractal features of time series from different vehicle classes, i.e.
passenger and transport traffic.

1 Introduction

Time series can not only describe systems with fractals features (e.g. systems with
chaotic behaviour and strange attractors), but also the graph of a time series itself can
be a fractal (e.g. time series of full developed turbulence or financial time series like
the S&P500). Not only statistical self-similarity but also roughness of time series is
quantified by signatures of fractal behaviour like box counting dimension [3].

Some studies indicate that time series of traffic data show fractal and especially
multi-fractal behaviour [10]. In this context velocity traffic time series from Beijing
were analysed [11]. We present an analysis of empirical and simulated time series
of German motorway traffic with focus on multi-fractal spectra.

The empirical traffic data for this studywere gathered from themotorway network
of the German State of North Rhine-Westphalia. Based on empirical traffic data,
synthetic traffic time series are created from simulations with a cellular automaton
approach using a Nagel-Schreckenberg-alike model.
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We obtain multi-fractal spectra for time series of velocity and flow with Multi-
fractal Detrended Fluctuation analysis (MDFA) and also calculate estimates for frac-
tal dimensions. This indicators of (multi-)fractal behaviour are used to compare the
empirical data with the simulated data and also to compare time series of different
classes of vehicles. We try to give explanations for the differences and similarities
in the multi-fractal spectra of the traffic time series.

2 Methodology

In this study we use a multi-fractal formalism that gives us multi-fractal spectra by
calculating a hoelder grain exponent α and plotting the graph of the scaling function
τ(α) versus α.

A Multi-fractal Detrended Fluctuation Analysis [5–7] ansatz is used here on the
assumption that traffic time series most of the time have trends on many scales
(e.g. intra day because of commuters, weekly because of workdays and weekend, or
seasons). As a first step, we profile the time series:

X p(i) = X (i) − 〈X〉, i = 1 . . . N

for a discrete time series X with length N .
The time series is divided in dyadic intervals of degree n (i.e. 2n non overlapping

intervals with length 2−n each).
αn,k is the exponent such that the coefficients

D(In(k)) =
(

1

#In(k)

∑
χ∈In(k)

(
X p(χ) − Pdp

i

)p)1/p

show a power law behaviour to the interval size:

αn,k = log(Dx(In(k))

log(2−n)

(with In(k) the kth dyadic interval at scale n, #I the cardinality of the points in I ,
Pdp
i a polynomial fit of degree dp fitting the X ∈ I ).
Due to method and partitioning in dyadic intervals, the grain exponents α drift

with dependency on scale n. It is necessary to normalise the signal (see [6]).
Now, we calculate the Legendre spectrum

τ ∗
X,n(α) = inf

q∈R
{αq − tx,n(q)
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with

tx,n(q) = −1

n
log2

∑
I∈ξn

2−nqαX (I )

for a range of q ∈ [−50, 50].
We analyse the multi-fractal spectrum τ ∗(α) over α at different scales n. Qualita-

tively the width of these spectra relate to multi-fractal properties of the time series.
Theoretically, each value for the width above zero gives us some degree of multi-
fractality, but in practice, small values (<0.1) are just some artefact because of the
finite length or resolution of the time series. The peak of the spectra (if it exists) and
mean of the spectra can be both interpreted as an estimator of the likeliest fractal
dimension of the time series.

3 Empirical Data and Simulations

We use measurements from loop detectors on the A3 freeway from the German
province of North Rhine-Westphalia, located north of Cologne. The time series in
this study are gathered from a detector at the second lane (three lanes altogether) and
include separate transport traffic (including heavy trucks, light trucks and buses).
The data set we analyse includes flow and velocity, separated into passenger car and
transport traffic.

For comparison we use simulated traffic data from the autobahn.nrw project. The
simulation uses a multi-lane variety of the Nagel-Schreckenberg-Model [1, 2, 4, 8].
The simulated network spans thewhole freeway network ofNorth Rhine-Westphalia.
Every minute the simulation runs trough a tuning process where the state of the sim-
ulation is compared and balanced with real time empirical data. In the simulated
network virtual detectors are placed to gather the time series. The placement of the
virtual detectors covers approximately the same positions as the corresponding detec-
tors on the real freeway. For an in depth description of the autobahn.nrw simulation
see [1].

For this study we use a time series of traffic flow and velocity with 16,348 data
points (about 1 week of data, a power of two was chosen for convenience with dyadic
scales). Each data point corresponds to one minute. Traffic flow is cumulated over
one minute, velocity is averaged over one minute. Figure1 shows a comparison of an
empirical traffic flow time series and the corresponding simulated traffic flow time
series.
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Fig. 1 Empirical and
simulated time series (traffic
flow, 2048min)

4 Results and Discussion

Figure2 shows a comparison of multi-fractal spectra for empirical and simulated
passenger car velocity time series for n = 8, . . . , 11. Both spectra show signs of
multi-fractal behaviour with a width of 0.5 respectively 0.7. The estimated likeliest
fractal dimension for these time series is about 1.8 respectively 1.7.

Figure3 shows a comparison of multi-fractal spectra for empirical and simulated
traffic flow time series for n = 8, . . . , 11. Both spectra show weaker multi-fractal
behaviour than the velocity time series with a width of about 0.3 to 0.4. The estimated
likeliest fractal dimension for these time series is about 1.9. For traffic flow, both
spectra resemble each other much more than for the velocity time series.

Fig. 2 Multi-fractal
spectrum of passenger traffic
velocities. Empirical
measurements and simulated
data with 16,348 data points
each
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Fig. 3 Multi-fractal spectra
of traffic flows. Empirical
measurements and simulated
data with 16348 data points
each

In [9] it was shown that multi-fractal properties of velocity time series can origin
both from long range correlations and a broad probability distribution. We suppose
that the differences between the spectra of empirical and simulated velocity time
series originate in part from the fact that the cellular automata model uses a step wise
car velocity and acceleration. This may lead to a different probability distribution, a
more unsteady behaviour of the single cars and as a result to a rougher, more volatile
velocity time series. On the other hand, the traffic flow time series from simulated data
resembles the time series from empirical data. This may be due to both empirical and
simulated measurements are integer count data and the simulation by construction
resembles the distribution of the empirical flows. The weaker signs of multi-fractal
behaviour for the flow compared to the velocity may originate from the less volatile
nature of the traffic flow and its relative insensitivity to changes of the traffic state
(e.g. free flow and synchronised traffic may have the same amount of traffic flow).

In Figs. 4 and 5 part of the time series is split into windows of 2048 data points.We
compare the multi-fractal spectra of each of these intervals. On a qualitative level,
there is not much difference between the different intervals, both for empirical and
simulated data. The slight differences may be due to the changing traffic situation
on different days. Overall, this shows that multi-fractal analysis with MDFA is a
robust tool for analysis of traffic time series. Multi-fractal spectra seem to have a low
dependence concerning specific date and time of the day.

Figures6 and 7 compare multi-fractal spectra of velocities for passenger and
transport traffic and the multi-fractal spectra of total traffic flow and transport traffic
flow. The multi-fractal spectra of the transport traffic velocity differs wildly from
the spectrum of the passenger car velocity. The former shows a much narrower
spectrum, i.e. the behaviour of these time series seems to be more mono-fractal than
multi-fractal. The traffic flow time series on the other hand show only a slight shift
of the peak. The striking difference in the velocity time series may arise from the
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Fig. 4 Intervals of 2048 data points, empirical data set

Fig. 5 Intervals of 2048 data points, simulated data set

Fig. 6 Multi-fractal spectra
of traffic velocity time series.
Comparison between
passenger and transport
velocities
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Fig. 7 Multi-fractal spectra
of traffic flow time series.
Comparison between time
passenger and transport
traffic flow

fact that transport traffic in general has a much more steady pace due to speed limits
and temporary driving in large convoys.

There arise some apparent questions from themulti-fractal point of view on traffic
time series. If and how fractal behaviour of traffic time series changes with time of
the day, different traffic situations, a different share of heavy transport traffic? Can
we use fractal analysis for traffic forecasting and to improve traffic simulations? How
different traffic models differ in their multi-fractal behaviour?

Conclusions
This paper discusses the multi-fractal behaviour of different traffic time series.
We analyse multi-fractal spectra generated withMDFA. Especially the spectra
of velocity time series show signatures of multi-fractal behaviour. We found
deviations of the spectra of simulated time series compared to spectra from
empirical data. We also show that the multi-fractal spectra of transport traffic
velocities differ strikingly from passenger traffic. Multi-fractal analysis can be
another helpful tool to characterise and compare traffic time series apart from
standard statistics.

Acknowledgements Part of the work on this paper has been supported by Deutsche Forschungs-
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Wide Scattering of Nagel-Schreckenberg
Fundamental Diagram Under Traffic
Bottlenecks

Wei Liang Quek and Lock Yue Chew

Abstract Based on current traffic flow studies, there are several traffic cellular
automaton (TCA) models, in which the wide scattering of flow-density data are
observed. In this study, we propose that the physical mechanism behind the observed
wide scattering is the variability of cluster formation in congested traffic. By simulat-
ing road bottlenecks on highways using the Nagel-Schreckenberg (NaSch) model,
varying degrees of wide scattering is observed. Numerical analysis of the results
shows a strong correlation between the variance in the number of clusters and the
width of scattering in the flow-density data. By studying the microscopic dynam-
ics of the NaSch model, we proposed the physical mechanism of wide scattering
in TCA models to be the heterogeneity of cluster formation in congested traffic
flow. In addition, the results were compared with Tian (2012)’s Average Space Gap
Model (ASGM) and through qualitative analysis, we suggest that the wide scattering
observed is due to the AGSMmechanism favouring statistically unfavourable cluster
configurations.

1 Introduction

In the past 30years, there has been a large variety of studies on vehicular traffic,which
range from quantitative studies of extensive traffic data to the modelling of traffic
flow through computer simulations. In general, the common goal of these studies
is to gain an understanding of the nature of traffic flow and how various traffic
patterns (congestions) emerge in homogeneous traffic flow. One such feature is the
flow-density relation of vehicular traffic, which is also known as the fundamental
diagram.
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Nagel and Schreckenberg proposed one of the most used simulation models [4],
the Nagel-Schreckenberg (NaSch) Cellular Automata (CA)model, in 1992. Bymod-
elling the microscopic behaviour of cars, the model exhibits spontaneous emergence
of congestion in homogeneous traffic flow (without bottlenecks), which was later
reproduced experimentally by Sugiyama [7]. The fundamental diagram obtained
from this model shows a roughly functional relationship between flow and density,
which highlights 2 distinct phases in traffic flow—free flow and congestion. When
the results are compared to real traffic, the existence of two distinct phases were
also apparent, even though real traffic has a wider spread of flow-density data in the
congested phase [1].

In Three Phase Traffic Theory (3PT) [2], Kerner proposed that the origins of wide
scattering is not trivial. Traffic is classified into 3 phases: free flow (F), synchronised
flow (S), and wide moving jam (J), with the (S) phase covering a 2-D region in
the flow-density plane. To capture this phase, Kerner proposed the Kerner-Klenov-
Schreckenberg (KKS)model [3], which is aNaSchmodelmodifiedwithmechanisms
of anticipation and competition effects. This leads to a numerical fundamental dia-
gram that better reflects the wide scattering of flow-density data.

While the KKS model is successful in reproducing many traffic features and
patterns, its critics [6] found it too complex in its description of the physics of captured
traffic features. For example, the exact mechanisms that lead to wide scattering in
TCA models were not established [6]. This drives current research in working on
a simpler model that is able to capture various phenomena that the traditional two-
phase models failed to. Out of these studies, a few captured the wide scattering in
TCA models. Tian [8] proposed the Average Space Gap Model (ASGM), which is
a NaSch model modified with slow-to-start and anticipation mechanisms. Neto [5]
proposed the defensive driving model (DD Model), which is also a NaSch Model
modified with defensive reactions. Compared to the KKS model which requires
13 additional mechanisms [6], these models are much simpler with significantly less
addedmechanisms (<5).Despite their simpler nature, bothmodels are able to capture
a certain degree of wide scattering in their simulated flow-density data. In this study,
we aim to investigate a physical mechanism that could lead to wide scattering in
TCA models using a simple NaSch model modified with a traffic bottleneck. With
that, the relationship between this mechanism and the existence of wide scattering
in various TCA models will be studied quantitatively and qualitatively.

2 Preliminary Studies

2.1 Simulation Model

In an exploratory study of simulating a road bottleneck, we found that one of the
effects of bottlenecks in theNaSch simulation is awider spread in the numerical flow-
density data plot in the congested phase (Fig. 1). In traffic studies, a road bottleneck
has been defined as the result of the merging of a two-lane traffic flow into a single
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Fig. 1 Plot of NaSch fundamental diagram with and without the effects of road bottleneck

Fig. 2 Illustration of implementation of bridge bottleneck which was proposed in [9]

lane. The general concept of our implementation of road bottleneck is based on the
‘bridge bottleneck’ described by Xiao [9], and illustrated in Fig. 2. While the details
of this implementation are documented in the Appendix, the crucial point is that
we are able to obtain a tunable parameter, which systematically varies the width of
scattering of the fundamental diagram.

The typical parameters used in our study are given in Table1. Since this study
is carried out only with periodic boundary conditions, i.e., Position(L + 1) =
Position(1), the number of cars is conserved. In addition, the road bottleneck involves
an additional tunable parameter, the Lane interface probability.

Wide scattering of flow-density states is defined as the existence of a multitude of
steady flow-density states. While one of the motivations behind Kerner’s 3PT traffic
is wide scattering, the width of scattering was not properly defined throughout his
studies. As such, we have to define our own measure. By definition, the absence of
wide scattering means that flow-density has a functional (1–1) relation. Hence, for

Table 1 Parameters used in
this study

Parameter Symbol Value

Maximum velocity vmax 6

Random deceleration p 0.2

Road length L 1000

Simulation time t 1000

Transient time t0 5L = 5000

Lane interface probability ploop 0.5
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Fig. 3 Plot of width of
scattering versus tunable
parameter (loop probability).
Results taken from an
average of 10 realisations of
10,000 time-step simulations

each particular density point, we can define the width as the number of flow rate
data that corresponds to that density. Since the focus of this study is the fundamental
diagram as a whole (over the full density range), the width of scattering presented
will be value averaged over the discretised values of density, which in this case is
1000 data points (step size of density = 0.001).

Figure3 shows the relationship between the loop interface probability (ploop) and
the width of scattering. Since this TCA simulation results in amonotonic relationship
between width of scattering and a tunable parameter, this model can be used as a
systematic study between the width of scattering and the proposed mechanism.

2.2 Proposed Mechanism

In the congested state, vehicles bunch up randomly, forming clusters of various
sizes. From the rules of the NaSch model, cluster formation has a direct effect on
the fluctuation of the flow rate. While the stochasticity of the NaSch CA model
does contribute to the flow rate variations, the hypothesis of this study is that wide
scattering, i.e., macroscopic flow variations is due to the variability of clustering in
congested traffic states.

With this hypothesis, we will go on to discuss the objective function of our study.
In this study, a cluster is defined as one or more vehicles connected spatially without
any space between them. With the cluster count—no. of clusters—fluctuating in
time, the standard deviation of this fluctuation quantifies this variability. Using the
varying degrees of wide scattering obtained in our simulation work, Fig. 4 plots
the standard deviation of the cluster count as a function of the width of scattering.
As presented, the monotonic relation between the variance of cluster count with the
width of scattering supports our hypothesis that variability in cluster formation could
result in macroscopic flow variations in the form of wide scattering.
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Fig. 4 Plot of cluster
variance versus width of
fundamental diagram.
Cluster variance taken as the
standard deviation of 10,000
simulations. Width is derived
from 10,000 flow-density
data points

3 Analysis on Existing TCA Models

In the previous section, we proposed the methods that cluster formation could lead to
wide scattering in TCA models. This is supported by numerical results that displays
a strong association between the width of scattering and the variance of the time
series cluster count. However, before further conclusions are made, it is important to
take a closer look at the wide scattering thus far. The weakness of this study is that it
could be overly ambitious to claim that the wide scattering results we obtained under
traffic bottlenecks have the same nature as those claimed by the other TCA models.
Hence in this section, we will apply a similar approach on one of the two mentioned
studies: the Average Space Gap Model (ASGM) by Tian [8].

The average space gapmodel is a TCAmodel based on theNaSchmodel,modified
with slow-to-start and velocity anticipation rules. The values for the parameters are
shown in Table2.

Using the same approach as before, Table3 is the tabulation of the cluster vari-
ability and the width of scattering of the fundamental diagram, with and without the
added ASGM mechanism.

Table 2 Parameter values
used, values taken from [8]

Parameter Value

ρa 0.95

ρb 0.60

ρc = p 0.20

a 2

b 1

tc 6

ml 3
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Table 3 Width of scattering and cluster variation between ASGM and NaSch Model

Width of scattering Cluster variation

Control 49.5 ± 3.3 18.3 ± 0.4 (Mean = 136.2)

ASGM 76.7 ± 1.9 32.3 ± 0.7 (Mean = 64.9)

Data obtained for density = 0.16, sampled over 10 sets of 100 readings

As presented, the addition of theASGMmechanism in theNaSchmodel increases
the width of scattering by about 50%. At the same time, we see that this increase
corresponds with the increase in cluster variation, measured as the standard deviation
of the cluster count. In fact, the percentage variation in cluster count increases from
13 to 50%. This numerical result further supports our claim that the wide scattering
in TCA model are highly associated and possibly caused by the increased variations
of cluster formation.

However, unlike the previous studies, the ASGM does not provide a systematic
way of varying the cluster count to substantiate the hypothesis. However, a qualitative
analysis can be done based on the additional rules of the ASGM. These rules are the
speed adaptation, and the slow-to-start rule.

Our hypothesis claims that wide scattering is a result of cluster variation in the
TCA models. This is illustrated in Fig. 5. In this figure, the densities of both roads
are the same. However, according to the rules of the NaSch model, their overall flow
rates are 6 and 15 respectively.

For each car in the ASGM, the speed adaptation rule assesses the speeds of the
preceding cars, and synchronises the vehicles speeds with the vehicles in front of
them. With regard to clustering, this causes the system to favour a multiple single
vehicle cluster, which are otherwise statistically unfavourable. This state corresponds
to flow rates that were otherwise statistically unfavourable too. This accessibility to
high flow rates are reflected as wide scattering of flow-density data.

The effect of the slow-to-start (STS) rule is the same, but instead it favours flow
rates that are lower than thosewhich are statistically favoured. The hypothesis behind
the STS is that the vehicles stopped for an extended period of time will take a longer
time to start up as compared to the vehicles that had stopped for a comparatively
shorter time span. This results in the STS favouring large clusters because the vehicles
take a comparatively longer time to leave the cluster than to join it. In our hypothesis,
this configuration leads to very low flow rates, which are statistically unfavoured in

6

3 3 3 3 3

(a) 

(b) 

Fig. 5 Illustration of different cluster configurations in the NaSch model and how they could
lead to a fluctuation of flow rates. Cluster configuration: cluster count = 1; flow rate = 6 (a);
cluster count = 6; flow rate = 15 (b)
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the NaSch CA model. Hence, the same conclusion can be made regarding how this
rule leads to the wide scattering of flow-density data.

To summarise, between the ASGM model and the NaSch model, the additional
mechanism of the ASGM model only seems to accentuate the effects of extreme
cluster configurations, which are otherwise statistically unfavourable. This leads to
the system occupying comparatively more flow-density states, which is reflected in
the observed wide scattering in the flow-density diagram.

4 Conclusion

In this study, we aim to propose a physical mechanism—the variations of cluster
formation in congested traffic flow—which captures the wide scattering of flow-
density data in traffic cellular automata (TCA) models. Using the standard deviation
of cluster count fluctuation as the objective function, and a simulationof tunablewidth
of scattering, we obtained a monotonic relationship that shows a strong association
between the variations of clustering and the width of scattering.

An additional test of this hypothesis was done on the Average Space Gap Model
(ASGM) [8], which also captures wide scattering in the flow-density data. While
there is limited numerical analysis to supporting this argument, qualitative analysis
presents how thewide scattering in theASGMcould be a result of themodel favouring
statistically unfavourable cluster configurations.

Appendix

The bridge bottleneck implemented by Xiao (2003) [9] involves splitting a road
into 5 different segments, with L1L2 and L4L5 as 2 pairs of lanes and L3 as the
single bridge lane. Since each segment has its own specific boundary condition, the
evolution rules are implemented separately for each lane. These conditions are:

1. At 2-lane-1-lane interface, only the car from one of the two lanes can enter L3 at
each time step

2. At the 1-lane-2-lane interface, there is a 50% chance the car will enter either lane,
L4 and L5 from L3 at each time step

Since the rule 184 CA model [9] is an elementary model where vehicles can only
move at unit velocity, implementing the bridge bottleneck as 5 different segments (L1

to L5) is still relatively simple and computationally efficient. However, the NaSch
model involves the velocities that range from 0 to 6 and its evolution involves two
parallel matrices (position and velocity). Hence, implementing the road bottleneck in
the NaSch model in this manner will be highly inefficient. Since one of the successes
of theNaSchCAmodel lies in the computational efficiency of the cellular automaton,
modifications have to be made in order to preserve this aspect in the road bottleneck
case.

Instead of splitting the simulation into 5 different road segments, we proposed to
split the entire model into only two different loops called the primary and secondary
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loops, with the primary loop containing three of the original lanes, and the secondary
containing two. The new proposed loops are dynamical, such that the grouping
changes for each time step under the following algorithm:

if rand() < ploop = 0.5 then
primary loop = L1 → L3 → L4

secondary loop = L5 → L2

else
primary loop = L2 → L3 → L5

secondary loop = L4 → L1

end if

From there, the 4-step evolution rule will first be done on the primary loop and the
secondary loop separately. Since the secondary loop is not connected to the single
lane L3, only one car from L1 and L2 can enter the single lane at each time step. This
randomised selection of lanes as each time-step forms the 2-lane-to-1-lane (and vice-
versa) interface condition similar to that of Xiao (2003). With the 4-step evolution
taking these sets of lanes as a whole, and the choice of the loops taking care of the
conditions at the interfaces, our implementation of the road bottleneck took 25.4%
of the time taken by Xiao’s 5-segment implementation of the bridge bottleneck in
the NaSch model.

Due to this proposedmethods of implementing the road bottleneck as twodynamic
loops, we are able to favour one of the lanes by varying the probability, ploop of
choosing each loop. The physical analogue of favouring one of the lanes is a street
merging with a major highway. Most importantly, we are able to vary the width of
scattering systematically as seen in Fig. 3.
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A General Scheme for Deterministic
Microscopic Traffic Models. Part I:
Theoretical Construction

Bo Yang and Christopher Monterola

Abstract We propose a theoretical construction of the master model for the deter-
ministic microscopic traffic models with the assumption of identical drivers. The
construction is based on a renormalisation like procedure that integrates out unim-
portant degrees of freedom. This leads to a universal mathematical structure of such
models, enabling us to carry out a controlled expansion, allowing all deterministic
microscopic traffic models to be compared and classified systematically. We illus-
trate the controlled expansion with a few examples. The theoretical construction also
paves the way for us to obtain the master model from the microscopic empirical data,
which will be discussed in A General Scheme for Deterministic Microscopic Traffic
Models. Part II: Empirical Verifications.

1 Introduction

Modelling the traffic system has been the active field of research for both the physi-
cists and the transportation engineers, due to its theoretical interest and practical
applications [4, 8, 11]. While in many cases only macroscopic quantities such as
flow and density are used for the applications of urban planning, they will not be
sufficient when the flow and density are high and the interaction between vehicles
can not longer be ignored. Good traffic models are thus needed that can capture
the essential features of human driving behaviours. Such models are indispensable
for the numerical simulation, which is an efficient and economic way of studying
the urban planning and evaluation of new technologies such as the adaptive cruise
control [6, 12, 13] and the urban intersection control [14].
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The traffic system is intrinsically difficult to model due to the non-linear inter-
action and the lack of symmetry. In the simplest possible case, the traffic flow is
modelled as a one-dimensional flow of particles moving in a viscous media with
anisotropic nearest neighbour interactions. The non-linear nature of the interaction
makes the validation of the model difficult, since many features of the model can
only be obtained numerically, with the time evolution very sensitive to the initial
conditions. The lack of symmetry implies that there are very few constraints to the
traffic theory and modelling. Indeed, in contrast to the more conventional physical
systems, not only is there a lack of translational invariance both in space and time,
even individual components are not identical to one another. This results in a plethora
of traffic models being proposed in the literature. Even for the microscopic traffic
models, many different models have been proposed with different assumptions and
intuitions [8, 11]. Comparing numerical simulations with empirical data are further
complicated by the fact that the empirical traffic flow cannot be easily controlled in
the same way as a physical experiment.

The over-abundance of themicroscopic trafficmodels reflects a lack of fundamen-
tal principles in the construction of suchmodels. The real human driving behaviour is
highly nuanced, and it is the goal of the simple models to capture only the important
characteristics of such behaviour so as to make useful predictions of the dynamics
of the traffic flow. It is thus important to have a theoretical framework to understand
unambiguously the assumptions made in various models in a universal way, so that
different models can be meaningfully compared. In addition, such framework should
also allow empirical verifications of the assumptionsmade in themodels at themicro-
scopic level. The framework should also be general enough so as to be applicable to
most, if not all, of the proposed microscopic traffic models, including the three-phase
traffic models proposed in accordance to the three-phase traffic theory [8].

In this paper, we propose such a general framework in Sect. 2 that was explained
in more details in [17], but here we illustrate it with more examples in Sect. 3. In
Sect. 4 we briefly summarise our results and show how they can be connected to the
empirical verifications described inAGeneral Scheme forDeterministicMicroscopic
TrafficModels. Part II: Empirical Verifications, in which amore complete conclusion
and discussion will be presented.

2 The Universal Mathematical Structure

We assume it is possible to model most of the essential empirical features with a
single agent, and start with the most general model for such an agent, exploring its
general mathematical structures based on a few simple physical arguments. Such
mathematical structures are thus universal to any microscopic traffic models with
the assumption of identical drivers, as we will illustrate with specific examples in
Sect. 3.
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2.1 The Master Model

In general, the driver decides to accelerate or decelerate based on his/her ownvelocity,
as well as the distance and velocity of the vehicle in front of him/her. We assume
all other factors, including the intrinsic stochasticity of the driving behaviour, have a
much weaker effect, compared to the vehicle’s own velocity and its interaction with
the vehicle in front, so they can be properly averaged to obtain the following master
model [11]:

a = f (h, v,Δv) (1)

Here, a is the acceleration of the vehicle, v is its velocity, h is the bumper-to-
bumper distance to the vehicle in the front, andΔv the approach velocity to the vehicle
in the front. The functional form f is the renormalised model after unimportant
degrees of freedom are averaged, including the variation of the driving behaviours
between different vehicles [17]. It is thus potentially different from observing the
behaviour of a single, or a few vehicles in an experimental setting, and is in general
also a very complex function. All proposed microscopic models in the literature can
be taken as its special cases, when the complex RHS of Eq.1 is replaced by simple
functions in the hope of still retaining the essential features of the common driving
behaviours.

Due to the lack of the symmetry not much can be said about the possible forms
of f, other than certain stability requirements [11] that are also based on the intuitive
driving experience. We exploit the fact that now the traffic system is described for
identical drivers, and make the reasonable assumption that for each headway h there
exists one or more preferred velocity at which the driver will neither accelerate or
decelerate. For a chain of vehicles travelling in one direction this corresponds to zero
approach velocity, and all vehicles are equally spaced travelling at the same constant
velocity. This state of the traffic flow, if undisturbed, will last forever, and this is the
fundamental assumption of the traffic system we study, which implies the solutions
to the following equation exist:

f (h, v, 0) = 0 (2)

For a fixed headway h, the solutions give a set of optimal velocities V (k)
op such that

f
(
h, V (k)

op , 0
)

= 0. Note that in some models the optimal velocity function is shown

explicitly [1, 2, 5, 7], while in other models it is not [15, 16]. The solutions of Eq.2
show that the optimal velocity function is intrinsic for any deterministic model.

We thus define Eq.1 as the master model of the deterministic microscopic traf-
fic models with the assumption of the identical drivers travelling in a single lane
without overtaking. Note that for the same vehicle density there may be more than
one preferred or optimal velocities. The two-phase models are characterised by a
unique optimal velocity at any vehicle density, whereby in three-phase models such
relationship is no longer unique [8, 9].
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2.2 The Controlled Expansion

Wenowproceed to assume themastermodel of Eq.1 is analytic. For the traffic system
consisting of many vehicles, all the variables in Eq.1 are labelled with a subscript n,
which is the car index. Note the function f is the same for all vehicles. The steady
states are thus given by hn = h0, vn = V (k)

op . We can now undertake a well-defined
Taylor expansion around these states as follows:

an =
∑
p,q

κp,q (hn)
(
vn − V (k)

op (hn)
)p

Δvqn (3)

κp,q (hn) = 1

p!q!
∂ p+q f

∂ pvn∂qΔvn

∣∣∣∣vn=Vop(hn)
Δvn=0

(4)

Note that the expansion can be carried out for any V (k)
op , if it is not unique.While Eq.3

may potentially contain an infinite number of terms, it is mathematically equivalent
to Eq.1. In particular, for any specific traffic model with a given functional form
of f, Eq. 3 can be carried out. The differences between any two specific models can
be quantitatively characterised by the differences between V (k)

op , and the set of the
coefficients of expansions. It is also clear that in general the set of coefficients of
expansion depends on hn , each of them giving the relative importance of the driver’s
reacting to his/her velocity deviating from the optimal velocity and the approach
velocity. Such reactions are thus dependent on the density of the traffic.

The universal mathematical structure of the microscopic models, as illustrated by
Eq.3, not only allows us to evaluate quantitatively the different assumptions built in
the model, but also to simplify the model in a systematic way. Both the coefficients
of expansion and the optimal velocity function are in general very complicated in
Eq.1, and can be replaced with simple functions as long as the essential features of
the master model are retained. It is also generally the case that higher order terms
in the Taylor expansion can be truncated because they are small, without affecting
the quantitative and qualitative features of the numerical simulations [17]. Thus,
seemingly very different models can actually be shown to be effectively similar,
after the unimportant terms in the expansions are removed.

3 Case Studies of Existing Traffic Models

In this sectionwewill employ the controlled expansion of some of the popular micro-
scopic traffic models proposed in the literature, and to illustrate the main differences
between these models under this general framework.We focus on popular two-phase
traffic models. For the discussions regarding three-phase models more details can be
found in [17].
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3.1 Optimal Velocity Models

The optimal velocity models [1] are arguably the simplest class of traffic models that
can especially capture the evolution of the wide moving jams from the dense traffic
flow. The optimal velocity is explicitly defined in such models, and the most popular
form is given by

an = κ
(
Vop (hn) − vn

) + g (Δvn) (5)

Thus, the assumption here is that at any vehicle density there is only one optimal
velocity, and only the lowest order of

(
Vop − vn

)
is kept. If the second term on the

right is ignored, it is the original Bando’s model [1]. If g (Δvn) is linear, then Eq.5
is the full force model [7]; if it is non-linear with even powers, then Eq.5 is the
asymmetric full force model [2].

An important characteristic of the optimal velocity models is that all the coef-
ficients of expansion are independent of the density. The cluster solutions of such
simplified models are easier to understand with well-defined emergent properties
[3, 10, 18]. From the empirical perspective, however, the human’s response time and
sensitivity to the vehicle’s environment in general should depend onwhether the road
is empty or packed. It is thus reasonable to generalise the car-following models by
making the parameters dependent on hn in the appropriate way. We will now show
this is implicitly done by other more realistic models proposed in the literature.

3.2 Intelligent Driver Model

The intelligent driver model [16] is a popular model proposed to more realistically
simulate the human driver behaviour, with the following specific functional form:

an = a

(
1 −

(
vn
v0

)δ

−
(
h∗ (vn,Δvn)

hn

)2
)

(6)

h∗ (v,Δv) = s0 + s1

√
v

v0
+ T v + vΔv

2
√
ab

(7)

Comparing to the optimal velocity model, the acceleration and deceleration patterns
as predicted by this model have a much better match to the empirical data from the
sensor equipped vehicles. To explicitly compare the IDM model and the optimal
velocity model, we carry out the controlled expansion by first finding the intrinsic
optimal velocity function given by solving

1 −
(
v

v0

)δ

−
(
h∗ (v, 0)

h

)2

= 0 (8)
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Fig. 1 The coefficients of
expansion of the IDM in
Eq.6 as the function of the
bumper-to-bumper distance
h, and λpq is defined in Eq.9
and normalised to have the
same dimensions. We use the
parameters in the original
IDM from [16], and the plot
is taken from [17]

In this case, the optimal velocity is also unique for any value of h, and the Taylor
expansion around such ground states gives

an =
p=4,q=2∑
p=0,q=0

λp,q
(
vn − Vop (hn)

)p
Δvqn (9)

Thus, not only the higher orders of expansion are present, all the coefficients of
expansion, λp,q , are explicitly dependent on hn , or the local density of the vehicles.

Not all terms in Eq.9 are important, and some can be completely ignored. We
now plot these coefficients of expansion in Fig. 1. It is obvious that only λ10, λ01 and
λ11 play significant roles in the effective modelling. When the density of the traffic
is fixed, the dependence of the acceleration on Δvn is always rather linear. At high
density, the terms quadratic in

(
Vop − vn

)
, as well as the terms coupling

(
Vop − vn

)
,

Δvn are also important, reflecting hard braking at very high density when either the
approach velocity or the deviation of the velocity from the near-zero optimal velocity
is large. For intermediate density, however, the dependence of the acceleration on(
Vop − vn

)
and Δvn is both quite linear, though the coefficients strongly depend on

the density. At low density the coefficients depends only weakly on the density.
The Taylor expansion reveals in detail the qualitative and quantitative assumptions

of the human driving behavioursmade by the IDM. In particular, one can also truncate
all the unimportant terms, so that the IDM model can be understood as a simple
generalisation of theOVmodel, as verified bynumerical simulations [17]. The IDMis
more realistic because of the appropriate dependence of the coefficients of expansion
on the density. However, it does not distinguish between the acceleration and braking
behaviour, since the model is predominantly linear in Δvn [15].

3.3 Shamoto’s Car-Following Model

Shamoto’s car-following model [15] is claimed to be more realistic than the IDM
especially for the braking behaviour. It also has an artificial divergence of the accel-
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Fig. 2 The coefficients of
expansion of the Shamoto’s
model in Eq.10 as the
function of the
bumper-to-bumper distance
h, and λpq is defined in
Eq.11 and normalised to
have the same dimensions.
We use the parameters in the
original model from [15]
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eration when the bumper-to-bumper headway approaches some small value. The
model and its optimal velocity function is explicitly given by

an = A − B
vn

hn − D
eCΔvn − γ vn, Vop = A (hn − D)2

B + γ (hn − D)2
(10)

For this model the expansion around the steady state will yield an infinite number
of terms due to the exponential in the model. However, the coefficients of expansion
for the higher order terms with the power of Δvn greater than 3 are very small and
can be ignored. The full expansion is given by

an = λ10
(
Vop − vn

) +
∞∑
p=1

(
λ0,p + λ1,q

(
Vop − vn

))
Δvpn (11)

We again plot the significant coefficients of expansion as a function of the average
headway in Fig. 2. All coefficients of expansion diverges when h approaches D. The
main difference between Shamoto’smodel and the IDM is that the former emphasises
on the non-linearity in Δvn , especially in the region of high density. For Shamoto’s
model, at low density the drivers are paying more attention to their own velocities as
compared to the approach velocity. This is presumably more realistic, in the sense
when the vehicle in the front is far away, it is difficult for the driver to judge the
approach velocity.

4 Conclusions

In summary, we have proposed a theoretical construction of the master model for
the deterministic microscopic traffic models, which can be used to systematically
understand all suchmodels proposed in the literature with the assumption of identical
drivers. In particular, we propose such models can be completely characterised by
the intrinsic optimal velocity function (as well as its multiplicity), and the set of
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coefficients of expansions. In this way, not only can different models be compared
quantitatively, the underlying assumptions of the human driving behaviours for each
model can also be understood in a universal way.

The master model can also be measured from the microscopic empirical data,
whichwe describe inmore detail inAGeneral Scheme forDeterministicMicroscopic
Traffic Models. Part II: Empirical Verifications.
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A General Scheme for Deterministic
Microscopic Traffic Models. Part II:
Empirical Verifications

Bo Yang, Jiwei Yoon and Christopher Monterola

Abstract We describe the techniques for the extraction of the microscopic empir-
ical data from high frame-rate videos of the traffic flows in Singapore. Such data
include accelerations, velocities, headways and approach velocities. Following the
discussions and the proposal from A General Scheme for Deterministic Microscopic
Traffic Models. Part I: Theoretical Construction, we aggregate the collected micro-
scopic empirical data by the proper sampling and the averaging of the unimportant
factors influencing the driving behaviours, and present some of the tentative results
in mapping the master model for the deterministic microscopic traffic models.

1 Introduction

Empirical verification of the traffic models is an important topic in the research of
traffic modelling and simulation [3, 5]. The complexity of the traffic system, espe-
cially due to the diversity of the interacting vehicles and the intrinsic stochasticity,
makes the task highly non-trivial. The non-linear interaction between the vehicles,
as well as the inability to control the traffic system the same way as a physical
experiment, also makes the tuning of the models based on the comparison between
numerical simulations and empirical observations controversial [4, 10, 11]. Many
efforts on tuning the models based on microscopic vehicle dynamics from a small
number of sensor equipped vehicles or with video analysis [2, 6–9] lead to much
better understanding of the viable range of parameters in many models. They do not,
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however, provide conclusive resolutions to the plethora of existing traffic models
or to the controversies between the two-phase and the three-phase traffic models
[4, 10, 11].

In this paper, we aim to implement the theoretical construction of themaster deter-
ministic microscopic traffic model in A General Scheme for Deterministic Micro-
scopic Traffic Models. Part I: Theoretical Construction, by collecting microscopic
empirical data at a large scale from the highway traffic flow in Singapore. We use
a commercially available high-speed video camera to record the traffic flows of
Queensway, one of the major expressways in Singapore. Advanced video-processing
techniques are employed to extract velocity, acceleration, headway and approach
velocity of each passing vehicle. Our algorithm combines machine learning, edge
detection and adaptive averaging to give accurate measurements of velocities and
accelerations, with errors close to the systematic limit. This is an on-going project
and some tentative results will be presented.

2 Empirical Verification of the Traffic Model

While it is useful to understand various types of assumptions in different models
in an intuitive way, we would also like to be able to verify such assumptions from
the microscopic empirical data. We start with a formal and statistically rigorous
approach, whereby the master model (as proposed in A General Scheme for Deter-
ministic Microscopic Traffic Models. Part I: Theoretical Construction) is obtained
via a renormalisation procedure where all the unimportant details are averaged over.
In this section, we will present the theoretical framework in obtaining such a master
model from the microscopic empirical data.

In principle, the driver’s decision to accelerate or decelerate depends on many
factors. Thoughwewould expect themajor factors to include the velocity, headway as
well as the approach velocity, other factors should also be taken into account, because
their collective impact on the driving behaviour is rather non-trivial. Formally, using
the subscript n as the vehicle index, the acceleration of the vehicle is given by

an = Fn,{si }n ({ti }n) (1)

where {ti }n contains all factors influencing the nth vehicle that are considered impor-
tant, on which the dependence of the acceleration will be studied in detail whereby
{si }n contains all other factors, so in principle Eq.1 is the complete model, though
it is not very useful for analytical or numerical studies by itself. One can, however,
average over all the unimportant factors as follows [11]:

ān = 1

N0

∑
{si }n

Fn,{si }n ({ti }n) = f̄n ({ti }n) (2)

where N0 is the appropriate normalisation factor. The summation is done over all
possible values of {si }n , weighed by their respective possibility. In practice, one
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cannot list all possible factors in {si }n , so to obtain the averaged function in Eq.2, a
large number of the pairs {an, {ti }n} are sampled from a single vehicle. The functional
form is thus obtained by averaging over all values of an for each set of {ti }n .

Since we are looking for a microscopic model with identical drivers, different
types of drivers and vehicles can be treated as another ‘unimportant’ factor, and can
be averaged over in a similar way:

ān = 1

N

N∑
k=1

f̄k ({ti }n) = f̄0 ({ti }) (3)

In practice, this can also be done by sampling over a large number of vehicles
appearing in the traffic system. The resulting dependence of the acceleration on {ti }n
is now given by f̄0 that is renormalised by the average of all other factors, and may
well be different from what is obtained from a few sensor equipped vehicles in test
driving. In particular, f̄0 depends explicitly on the vehicle composition in the traffic
system under study, as well as on the statistical distribution of the conditions in {si }
during the period of study, including the demographic composition of the drivers.

To study the dynamics of the traffic flow, we choose {ti }n = {hn, vn,Δvn}. The
possible dependence of the driving behaviours on the vehicles at the back, as well as
the vehicles further ahead, are thus treated as unimportant factors and averaged over.
The resulting Eq.3 is thus the renormalised master model for all the deterministic
microscopic models in which the acceleration only depends on headway, velocity
and approach velocity.

3 Extraction of Microscopic Empirical Data

To obtain Eq.3 empirically, we video-taped the traffic flow of a fixed segment of the
expressway in Singapore, over the period of six months. The video is shot with a
camera with a high frame rate to reduce the systematic error. With the full videos
available, it is easy to implement the virtual ‘double-loop sensor’ for themeasurement
of the velocities, and the ‘triple loop sensor’ for themeasurement of the accelerations.
One should be aware of, however, the intrinsic systematic error due to the finite
resolution of the video, as well as the finite frame rate of the camera. They lead to
inaccuracies both in the spatial and time domain. In our empirical measurements, a
video camera of 250 frames per second was aimed at a section of the Queensway
in Singapore. The resolution of each frame is 640 pixels in width and 360 pixels in
height.

The following steps are implemented in generating the empirical data of interest:

1. Pre-processing the raw videos: in Fig. 1 we illustrate the pre-processing of the
raw videos before detection and analysis are executed. Firstly, every frame of the
video was un-tilted and cropped to the region of interest using the comprehensive
video editing software FFmpeg. The cropped video is then converted into the
moving edges by the Canny Edge Detection algorithm [1].
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Fig. 1 The top segment part
is the complete view of the
video; the middle segment is
the cropped part where we
focus on the fast lane of the
traffic from left to right. The
bottom segment is the result
after conversion of the
original video into moving
edges using the Canny Edge
Detection algorithm

2. Extraction of Detector Time Series: a series of virtual detectors were placed
along the fastest moving lane in the edge detected videos to detect the sum of
pixel values. In total, there are more than 500 detectors along a lane, resulting in
a maximum of 500 velocity measurements for each passing vehicle.
Figure2 shows the normalised sum of the pixel values as detected by a virtual
detector, from the edges of themoving vehicles shown in Fig. 1 (bottom). The high
signal-to-noise ratio is evident from the non-discernible baseline of Fig. 2. Even
with strong overhead sun and the associated shadows of the trees, the empirical
signal-to-noise ratio remains above 100:1.

3. Peak Detection and Temporal Positioning: the peak series in Fig. 2 needs to be
further processed to extract the time of incidence of amoving object.We employ a
two-step approach. In the first step, we identify the approximate temporal position
of the peaks. In anticipation of the background noise we employ a baseline sensi-
tive method to identify first the approximate temporal position of the peaks. The
[N1, N2] percentile of the signals of the consecutive segments of a pre-specified
time window (on the order of less than a few minutes) of the video was sampled
to measure the fluctuation of the baseline. Signals within the [N1, N2] percentile
give us a sampling of the local baseline. Both values of N1 and N2 are chosen
empirically.
In the second step, we perform a test to identify the rising wall and then find
the exact time of the rise. Consecutive points around the approximate temporal
positions identified by the first step are compared to identify the rising wall. We
then employ a descent method to find the exact time which satisfies the condition
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Fig. 2 The time series of the
pixel values of a single
virtual detector, measuring
the accumulation of the
bright pixels in the converted
video (see Fig. 1 bottom
segment). Each peak
indicates a moving vehicle
having reached and passed
the virtual detector

that the local change in signal value is within the range of the fluctuation of the
signal around the local mean, in both the forward and backward direction in time.

4. Velocity and Acceleration Calculation and Averaging: from the list of time of
incidences of the objects on each detector,wefind the sameobject on twodetectors
that are distance d apart. To that end, we define a search time period �t , for the
N th object on the M th detector. The search time period was chosen to be the
time from the incidence of the N th object to that of the (N + 1)th object on the
M th detector. We search for the incidence of an object on the (M + d)th detector
within �t and associate the two events to the same object. We can then calculate
the velocity by dividing the separation distance with the time separation.
To reduce the noise of the data, velocity averaging for the N th detector was done
by associating the calculated velocities that are within the time period �t from
the N th to the (N + N )th detector. A simple average and standard deviation were
calculated (see Fig. 4). The method of calculating acceleration is identical to the
method of calculating velocity.

5. Machine-LearningClassificationofVehicles: aswe are only interested in the inter-
actions between large vehicles (cars, trucks, buses, etc.), we trained a machine
learning Haar classifier to identify them. This was done using the OpenCV pack-
age with C++ code. A total of 3000 positive samples of cars and 400 negative
samples were cropped. Figure3 shows some of the positive and negative samples.
The positive samples include vehicles that are occluded by trees. The negative
samples include a segment of road with lane markers, trees and road divider, as
well as shadows and motorcycles. For the classification, we use FFmpeg to seek
for the frame at which velocity calculations were made. The classifier is used to
identify the cars in the frame.

4 Tentative Empirical Results

We now proceed to discuss the results from the simple analyses of the dataset.
In Fig. 4 we plot the theoretical systematic error and the average empirical error
in the velocity calculation against velocity. The theoretical systematic error curve
assumes that the velocity is kept constant. Therefore, the error is entirely due to
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Fig. 3 Examples of the positive (a–f) and negative samples (g–l) for the Haar classifiers in machine
learning

Fig. 4 Results. The empirical and theoretical errors of the velocity measurements. The empirical
error is calculated after averaging over the velocitymeasurements fromvery closely spaced detectors
(one pixels apart), while the theoretical errors are calculated from the video resolution and camera
frame rate (a), the frequency distribution of the velocities measured, showing two peaks giving the
most common velocities at the congested phase and the free-flow phase respectively (b)

the spatial granularity of the frame and the finite time frame. On the other hand,
empirically derived velocity over a finite separation distance is susceptible to an
additional error source due the acceleration of the vehicle. This error tends to be
more pronounced for smaller velocities as the vehicles have more time to accelerate
in the finite detector separation. This explains the larger empirical error as compared
to the theoretical systematic error. At ∼8 m/s the two curves meet, suggesting that
the error due to acceleration becomes less significant than the theoretical error. For
the measured velocity frequencies we observe two peaks, one at 9m/s and another at
18m/s, corresponding to the most common velocities in the congested flow and the
free flow respectively. Also, the average empirical errors are all below ∼0.3 m/s.

A large number of such data has been collected for the past sixmonths.We attempt
to construct the master model of Eq.3 by mapping the dependence of the averaged
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acceleration as a function of the headway, velocity and approach velocity, {h, v,Δv}.
Significant noises are expected when the number of data points is small for each set
of {h, v,Δv}. It is empirically observed that the noises decrease with the increase
of the number of the data points, and the averaged accelerations tend to converge
to specific values when more than one thousand of measured accelerations with the
same {h, v,Δv} are averaged over, leading to a smooth manifold of the acceleration
as a function of the three parameters in Eq.3.

While this is still work in progress and the acceleration is only converged for a
small sub-domain in the three-dimensional parameter space, we show some well-
converged results in Fig. 5, where the acceleration is plotted as a function of the
velocity at various different headways, with zero approach velocity. The plots are
rather smooth, with the uncertainty value given by the size of the black dots in the
plot. One can see clearly that the x-axis intersection increases with the headway,
which gives the optimal velocity as a function of the headway. Detailed features
of the velocity dependences at h = 10 m and h = 11 m indicate multiple steady
states with different velocities corresponding to the same density, as evidenced by
the formation of the plateau around zero acceleration. This is potentially strong
microscopic empirical evidence for the three-phase traffic theory [3], whereby the
synchronisation gap can now be measured empirically.

5 Conclusion and Discussions

In summary, we have shown how the average human driving behaviours can be mea-
sured from the microscopic empirical data and used to validate various assumptions
in the traffic models. We also presented some tentative results on the microscopic
empirical data collected from the real traffic flow in Singapore, and showed how we

Fig. 5 The dependence of
the averaged acceleration as
a function of the velocity,
measured at zero approach
velocity and different
headway. Each data point is
averaged over more than
5000 measurements and is
well-converged, with the
error bar the same size of the
black dots in the plot.
Headway = 4 m (a),
Headway = 8 m (b),
Headway = 10 m (c),
Headway = 11 m (d)
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used it to construct the master model empirically under the same theoretical frame-
work. The partial results we have obtained already show very interesting behaviours
of the human driving behaviours especially when the traffic is congested, suggesting
that at the same density, there is a range of preferred average velocity for the traffic
flow. It remains to see how various popular traffic models in the literature, and in par-
ticular the three-phase traffic models, compare with the microscopic empirical data.
This can potentially be very useful for both understanding the nature of the traffic
flow and for the construction and tuning of the most appropriate traffic models.

The relevant technical details can also be found in [11], the complete results of the
microscopic empirical data are stillwork in progress andwill be published soon. From
themodelling perspective, the general framework proposed in those references and in
this paper should provide a standard way in treating deterministic microscopic traffic
models with the assumption of identical drivers. The rawmicroscopic empirical data
we have also contain information on the driving behaviours of different vehicle
species (i.e., cars and trucks) as well as the statistical distribution of the stochastic
part of the human driving behaviours. Further analysis of such data can lead to amore
complete traffic model, in which different vehicles species and the stochasticities can
be taken into account.

Acknowledgements This research was partially supported by Singapore A*STAR SERC ‘Com-
plex Systems’ Research Programme grant 1224504056.
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Influence of Various Traffic Densities
on 1/f Noise

Reuben Thieberger

Abstract Previously, we examined 1/f noise for a simple cellular automata model.
For illustrative purposes, we considered a specific case of approaching a city. The
case involves a traffic light where one continues on the main road, where additional
cars are entering at the light. At this intersection an alternative route begins, which is
longer, but where no additional cars are entering. In this paper we add a ‘slow to start’
model. We calculate the Fourier transform of the average velocity for each traffic
light cycle. We consider different average ‘slow to start cases’ and obtain different
results for different cases. All cases can bewritten as 1/ f α .We check by least squares
the value of α. We compare qualitatively our results to experiments. When we do
not assume cars which are ‘slow to start’, the results differ from the experiment, but
when we introduce ‘slow to start’ cars, the results are similar to the experimental
values. We consider different densities of cars. There are different characteristics for
low densities, mid range and high densities.

1 Introduction

In a previous study [9], we examined a specific traffic problem. In this study we
introduce the ‘slow to start’ model. The motivation for this improvement in our
model is that we wish to improve the agreement between our calculations and the
experimental results.

To make our exposition clearer we describe again the procedure given in our
previous study. This traffic problem mimics to a certain degree a real situation. We
did not try to obtain the actual values as we wish here just to show the feasibility
of our approach. The real situation we encounter when entering the city of Beer
Sheva, Israel, from the North-East. Therefore the main question posed is how does
the amount of ‘slow to start’ cars influence α (in the noise term, Eq.1).

Empirical observations of traffic show that at high enough densities the behaviour
of traffic becomes quite complex. Cellular Automata is one of the most used meth-
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ods for evaluating traffic, because of their speed and complex dynamic behaviour.
Cellular Automata were first studied by Ulam and von Neumann [4]. An important
contribution to the field was in the work of Wolfram [8] who introduced classifica-
tions, used in the present study. The elementary Cellular Automaton is a collection
of cells arranged on a one dimensional array. Each cell can obtain just two possible
numbers: 1 and 0. The ‘time’ is discrete and at each time step all the cell values
are updated synchronously. The value of each cell depends just on the values in the
previous step of that cell and its two neighbours. Wolfram names each elementary
Cellular Automaton with a binary numeral, which he calls ‘rule’. This value results
from reading the output when the inputs are lexicographically ordered. This will
become clearer when we will explain the rules we use. The rules we used are taken
from the Cellular Automata model proposed by Gershenson and Rosenblueth [3].
Our main interest in this paper is the power spectrum of the average velocities over a
cycle. This value gives us the main contribution to the noise. All cases can be written
as 1/ f α . We check by least squares the value of α. We will consider this expression
in the section dedicated to calculating the noise.

2 The Model

We will deal here only with the ‘microscopic’ models where we consider each indi-
vidual vehicle. Our highways are represented by an array of cells, each cell has the
values 0 or 1. 1 represents a vehicle and 0 an empty portion of the highway. We
assume that the magnitude of a cell corresponds to the average length of a vehicle.
In Fig. 1, we show the layout of our model. At a certain point we have a bifurcation
where there are two different ways to proceed and they merge again at a later point.
This model represents in a simplistic way the possibility of using two alternative
routes (the main route and the ‘bypass’) when approaching a city from a certain
direction of suburbs. We add the possibility that additional cars are coming into the
main road and are removed when approaching the city. So that overall the number
of vehicles is preserved. The rules, which are the same as used by Gershenson and
Rosenblueth [3], are given in Table1.

In this paper we have one modification, which is quite significant. Previously the
model enabled a car to move if there was an empty space in front of it. In this study
we assume that a certain part of the cars do not follow into the empty space in front
of them. This is equivalent to having some cars which are slow to start. This is a
more realistic model than the one we used in our previous study. This is called the
slow to start rule [1] and we expect that it will give more realistic results.

In our analysis we distinguish four regions:

1. The ‘bypass region’ (denoted by iq).
2. The region on themain road between the entrance and exit of the ‘bypass’ (denoted

by ipe).
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Table 1 Wolfram rules used in this model

t − 1 t184 t252 t136

000 0 0 0

001 0 0 0

010 0 1 0

011 1 1 1

100 1 1 0

101 1 1 0

110 0 1 0

111 1 1 1

3. The whole of the main road (denoted by ip).
4. The part of the main road from the second traffic light and on (denoted by t).

In this paper we will be dealing only with the fourth region, therefore we can omit
the letter ‘t’.

2.1 Measures

The density, ρ, is given by the number of ‘ones’ (i.e. vehicles) divided by the general
number of cells. Initially we take this value to be the same for the three sections. We
check how this value changes in the different regions. Here, we are interested only
in the equilibrium values. The velocities, v, denoted by vp, vq , vpe and vt , are given
by the number of cells which change in one step from 0 to 1.

In our calculation, space and time are just abstract quantities. Still if concrete
numbers are desired, one can quote [3] where one cell represents five metres, and a
time step represents a third of a second, which gives us about 50km/h, roughly the
speed limit within a city.

2.2 The Grid

The schematic picture of our specific problem is given in Fig. 1.
In Fig. 2 we show schematically the movements of the vehicles. We have two

traffic lights (denoted by ‘1’ and ‘2’ on the diagram). When the movement is on the
‘main road’ diagram ‘a’ gives us the movement. When we enter or exit the ‘bypass’
then ‘b’ gives us the rules.

We have a parameter telling us the amount of ‘cars’ added to the main road at the
junction of the bypass. This same amount is deducted from the ‘main road’ further
away and is done in order to preserve the total number of vehicles. The actual addition
of cars is governed by a random number which depends on the parameter (i.e., the
percentage of cycles when a car is added).
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Fig. 1 The route of vehicles

Fig. 2 The movement of
vehicles

We have a parameter telling us what part of cars do not move, even when they
could move according to our rules. We denote this parameter by crr , and it changes
between 0 and 1.

3 Noise

Traffic noise is one of the most important sources of noise pollution. It is well known
that this is a health hazard. In this study we wish to check the frequency distribution
of the noise. It was shown by Takayasu and Takayasu [6], that we obtain 1/ f noise.
Let us explain here this term: ‘1/ f noise’ refers to the phenomenon of the spectral
density, S( f ), of a stochastic process having the form:

S( f ) = const./ f α (1)

Here, S( f ) is the spectral density and f the frequency. When α = 0, we say that
we have white noise. If α = 1, we say we have pink noise. If α = 2, we say we
have brown noise. To understand better this term, we refer to [2, 5]. An Indian
group [7] made measurements in a number of selected locations from busy roads
of Aurangabad and obtained mostly pink noise in a large range of frequencies. To
obtain S( f ) we make the Fourier transform of the velocities. To perform our Fourier
transform we take the averages over each traffic light cycle and study the frequencies
of these averages over all cycles taken in our calculations. We compare the results to
1/ f α by a least square test.
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4 Results and Discussion

We used a fixed grid. The main road was comprised of 1200 cells, the ‘bypass’
300 cells and the distance between the two traffic lights was 120 cells. We used the
‘green wave’ regime. As we have just two traffic lights, it was shown by Gershenson
and Rosenblueth [3], that in this case one does not get different results using the
‘self-organising’ regime.

We introduce a vehicle on the first intersection for 40% of the steps and we
eliminate the same number of vehicles on the last point of our main route, again per
unit time.

In the next figure we show the results for the case of no ‘slow to start’ cases. This
figure appeared in our previous paper. The purpose of showing it here again is to
understand better the effect of the ‘slow to start’ rule.

We averaged the velocities over a traffic light cycle and studied the power spec-
trum. The value we are interested in is α, in the expression 1/ f α . We give this value
in Fig. 3.

This is an interesting result. When we increase the density so that we reach the
transition from free flow to the jammed region, the noise shoots up from white noise
to brown noise and then settles in the region of pink noise. This result does not
correspond to a real situation where α is close to 1 [1]. Our purpose in the present
study is to see if introducing the improved model, i.e. the model with ‘slow to start’,
we obtain a better agreement with the experiment.

In the next figures we show the effect of the ‘slow to start’ probability. In Fig. 4
we show the values of α(t) for the low densities. This is the region of free movement
therefore there is no significant change for different ‘slow to start’ scenarios.

In Fig. 5 and in Fig. 6 we present the results for α at mid range densities and for
high densities.

We see in Fig. 5, that even a very small percentage of cars which are slow to
start results in α being closer to the pink noise just as is given by the experimental
results [7].

Fig. 3 The values of α as a
function of density
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Fig. 4 α values as function
of change in probability of
slow to start values for low
densities
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Fig. 5 The values of α as a
function of change in
probability of slow to start at
mid range densities
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Fig. 6 The values of α as a
function of change in
probability of slow to start at
high densities
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In conclusion, we can say that our calculations give us a wide range of information
which can be applied for specific cases. It shows us the importance of modifying the
simple rule by adding the ‘slow to move’ rule.
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AMulti-class Vehicular Flow Model
for Aggressive Drivers

Wilson Marques Jr., Rosa María Velasco and Alma Méndez

Abstract The kinetic theory approaches to vehicular traffic modelling have given
very good results in the understanding of the dynamical phenomena involved [3, 8].
In this work, we deal with the kinetic approach modelling of a traffic situation where
there aremany classes of aggressive drivers [5]. Their aggressiveness is characterised
through their relaxation times. The reduced Paveri-Fontana equation is taken as a
starting point to set the model. It contains the usual drift terms and the interactions
between drivers of the same class, as well as the corresponding one between different
classes. The reference traffic state used in the kinetic treatment is determined by a
dimensionless parameter. The balance equations for the density and average speed for
each class are obtained through the usual methods in the kinetic theory. In this model,
we consider that each class of drivers preserve the corresponding aggressiveness, in
such a way that there will be no adaptation effects [6]. It means that the number of
drivers in a class is conserved. As preliminary results, we have obtained a closure
relation to derive theEuler-like equations for twodrivers classes. Somecharacteristics
of the model are explored with the usual methods.

1 Introduction

In the literature, traffic flow in highways is described through different approaches
going from the microscopic to the macroscopic points of view [1, 3, 8]. All have
advantages as well as problems in their development. Our goal in this work is the
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construction of a macroscopic model starting from a kinetic approach for multiple-
user class of drivers, in particular, we will focus in two classes of drivers which have
certain aggressiveness. We characterise it by means of the response time, which is
shortly called the relaxation time, one for each class τ1, τ2, τ1 �= τ2. Our treatment
starts with the Reduced Paveri-Fontana equation (RPF) for the distribution function
fi (c, x, t) where we have introduced a model for the averaged desired speed, then
the homogeneous steady state (equilibrium) in the system leads to a parameter α

which contains the aggressiveness parameter, the characteristic density and average
speed proper to this state ρe

1, ρe
2, ve1, ve2 [6]. The kinetic model is averaged over the

speed c to obtain the macroscopic equations with the interaction terms. Then, the
distribution function corresponding to equilibrium is written in terms of the local
densities and speeds and they are taken to calculate the passive and active interaction
integrals, leading to a closure relation in the macroscopic description.

2 The Model

The kinetic model we consider to construct our macroscopic description is the
reduced Paveri-Fontana equation (RPF), which comes from an integration over the
desired speed giving place to an average speed called as c0(c, x, t) where c is the
instantaneous speed of vehicles.On the other hand, the interaction terms are separated
according to an active ψi (c) or passive ξi (c) interaction as follows

∂ fi (c)

∂t
+ c

∂ fi (c)

∂x
+ ∂

∂c

(
c0(c) − c

τi
fi (c)

)
= (1 − p)

∑
j

[
ρi f j (c)ξi (c) + ρ j fi (c)ψ j (c)

]
(1)

where p is the probability of overpassing and the interaction terms are defined as

ψi (c) =
∫

w<c
(w − c)

fi (w)

ρi
dw, ξi (c) =

∫

w>c
(w − c)

fi (w)

ρi
dw, (2)

where it should be noted that we have written only the instantaneous speed depen-
dence to shorten the notation. Clearly, the distribution functions and the densities
depend on (x, t). The densities and average speeds are defined as

ρi (x, t) =
∫

fi (c)dc, vi (x, t) =
∫

c
fi (c)

ρi
dc = 〈c〉i . (3)

The average over c taken in Eq.1 leads to the density equations

∂ρi

∂t
+ ∂ρi vi

∂x
= −(1 − p)

∑
j

ρiρ j
[
v j − vi + 〈ψi 〉 j − 〈ξ j 〉i

]
, i = 1, 2 (4)

where 〈...〉i means the average over the fi distribution function, and it should be
noted that 〈ψ j 〉i − 〈ψi 〉 j = v j − vi . As a consequence, we obtain that both densities
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satisfy conservation equations as it is expected due to their lack of adaptation between
classes of drivers. Also, the macroscopic equations for flux are obtained from Eq.1
after the multiplication by c and the corresponding integration

∂ρi vi
∂t

+ ∂

∂x
(ρi v

2
i + Pi ) = ρi

τi
(V 0

i − vi ) + (1 − p)
∑
j

ρiρ j
[〈cξi 〉 j + 〈cψ j 〉i

]
,

(5)

where V 0
i (x, t) comes from the average of the desired speed now taken over the

instantaneous speed c, Θ(x, t) = ∫
(c − vi )2 fi (c)dc is the i−class speed variance

and Pi is the traffic pressure. In this case, we do not have conservation equations.
Instead, we obtained a kind of relaxation equation from the average flux ρi vi to
ρi v∗

i (x, t) = ρi [V 0
i + τi

∑
j ρ j (〈cξi 〉 j + 〈cψ j 〉i )], which depends explicitly on the

interaction of both within (i − i) and between (i �= j) classes.
Let us call the interaction integrals as

Ii j = 〈cξi 〉 j + 〈cψ j 〉i , (6)

and we must calculate them with a distribution function fi (c) which is a solution of
the kinetic Eq.1. Here, we will use the local distribution function obtained for one
class of drivers, which is given as

fi (c, x, t) = ρi
α

Γ (α)vi

(αc

vi

)α−1
exp

(
−αc

vi

)
, (7)

where the (x, t) dependence is understood in the local variables (ρi , vi ) and Γ (α)

is the gamma function [9].
Then, when considering the interaction between vehicles in the same class it is

immediately obtained that Ii i = −ρiΘi . On the other hand, the case where i �= j
can be calculated in a closed way in terms of hypergeometric functions. In fact, we
have found that they can be approximated by a simpler expression with the step
function H (vi − v j )

Ii j = vi v j
{
2 −

(α + 1

α

)(v j
vi

+ vi
v j

)
H (vi − v j )

}
. (8)

3 Two Classes of Drivers

In order to analyse the macroscopic model we consider just two classes of drivers,
though it is clear that the treatment can be done in a more general case. Besides,
one class goes faster than the other v2 > v1 in such a way that there is only one
nonvanishing interaction integral between them I12 = 0, I21 �= 0.
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Also, the traffic pressure chosen corresponds to the usual model for one class
of drivers, it contains the speed variance Θi = v2i /α and an anticipation term pro-
portional to the average speed gradient and a coefficient similar to the viscosity,
then

Pi = ρi
v2i
α

− μi
∂vi
∂x

. (9)

Here, the first term comes from our equilibrium state solution in which 1/α can
be identified with the variance prefactor obtained from the empirical records in the
literature [7]. In a general case, the variance prefactor is a function of the density and
within a good approximation, it becomes a constant at low densities. In fact, it can
be seen that the dimensionless parameter α ∼ 100, a value which allows us to make
some approximations.

3.1 The Equilibrium State

Now, we write the set of macroscopic Eqs. 4 and 5 for this particular case

∂ρ1

∂t
+ ∂ρ1v1

∂x
= 0, (10)

∂ρ2

∂t
+ ∂ρ2v2

∂x
= 0, (11)

∂v1
∂t

+ v1
∂v1
∂x

= − 1

ρ1

∂P1

∂x
+ v∗

1 − v1
τ1

, (12)

∂v2
∂t

+ v2
∂v2
∂x

= − 1

ρ2

∂P2

∂x
+ v∗

2 − v2
τ2

, (13)

where the interaction integrals are given as

I11 = − v21
α

, I12 = 0, I21 � −(v2 − v1)
2, I22 = − v22

α
, (14)

v∗
1 = wv1 − τ1(1 − p1)

ρ1v21
α

, v∗
2 = wv2 − τ2(1 − p2)

ρ2v22
α

− τ2(1 − p2)ρ1(v2 − v1)
2, (15)

with the traffic pressure written as in Eq.9.
The solution for the equilibrium state is obtained in a direct way in terms of the

equilibrium densities. First, we find that v∗
1 = ve1(ρ

e
1) which will be written in terms

of a chosen fundamental diagram here simply called ve1, specified at the end of the
calculation. From Eq.13, the equilibrium speed for the second class is written as
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(ve2
ve1

)± = δ

{
β + 2α ± √

(β + 2α)2 − 4(1 + αδ)α/δ

2(1 + αβ)

}
, (16)

where δ = ρe
1

ρe
2
, β = τ1

τ2
are dimensionless quantities written in terms of the model

parameters and the equilibrium densities for both classes. It should be noted that
both values for the quotient ve2/v

e
1 are positive and their values depend on both the

model parameters and the densities in the equilibrium state.
Now, according to Eq.16 we have two equilibrium states and we have to decide

which one has a physical meaning. First of all, the average speeds must be positive
which means that the speed goes in the direction of the flow, both solutions satisfy
such criteria. Second, we will ask that a free flow regime must be stable at least in a
certain set of parameters values, otherwise, the model would be not able to reproduce
the free flow stage. Then, our next step will be the linear stability calculation.

4 Stability Analysis

As a first step in the model analysis, we will take a small perturbation around the
equilibrium state and calculate the conditions for the stability of the corresponding
equilibrium solution. Hence

ρi = ρe
i + ρ̂i exp(ikx − σ t), vi = vei + v̂i exp(ikx − σ t), (17)

where the perturbation has been expanded in modes with a wave vector k and a com-
plex frequency called σ in such a way that the stability condition for the equilibrium
state is determined by the condition Re (σ ) > 0.

In order to linearise the dynamical equations, it is necessary to make a comment
about the density dependence in the probability of overpassing. In fact, we have taken
the usual modelling and express it in terms of an effective density, then 1 − p = ρe f f ,
where ρe f f = ρ/ρmax . Besides, in the two classes model it has been argued [2,
10] that the effective density for the slow class (class-1 in our case) is given as
(ρ1)e f f = ρ1/ρmax . On the other hand, for the fast class (ρ2)e f f = (ρ1 + ρ2)/ρmax .

The direct substitution of Eq.17 in the set of Eqs. 10–13 and the corresponding
linearisation can be written in terms of a matrix in which its determinant must vanish
to obtain the dispersion relation,

⎛
⎜⎜⎜⎜⎝

−σ + ikve1 0 ikρe
1 0

(ve1)
2ik

αρe
1

− γ e
11
τ1

0 −σ + α+2
α

ikve1 + μ1
ρe
1
k2 + 1

τ1
0

0 −σ + ikve2 0 ikρe
2

− a1
τ2

ik(ve2)
2

αρe
2

− a2
τ2

− a3
τ2

−σ + α+2
α

ikve2 + μ2k2

ρe
2

+ 1−a4
τ2

⎞
⎟⎟⎟⎟⎠

(18)



480 W. Marques Jr. et al.

The quantities a are given as

a1 = −τ2ρ
e
2(v

e
2)

2

αρmax
− τ2

ρmax

[
2ρe

1(ρ
e
1 + ρe

2)(v
e
2 − ve1)γ

e
11 + (2ρe

1 + ρe
2)(v

e
2 − ve1)

2
]

(19)

a2 = − τ2

αρmax
(ρe

1 + 2ρe
2)(v

e
2)

2 − τ2ρ
e
1

ρmax
(ve2 − ve1)

2 (20)

a3 = 2τ2
ρmax

ρe
1(ρ

e
1 + ρe

2)(v
e
2 − ve1) (21)

a4 = ω − 2τ2ρe
2

αρmax
(ρe

1 + ρe
2)v

e
2 − 2τ2ρe

1

ρmax
(ρe

1 + ρe
2)(v

e
2 − ve1), (22)

all of them can be written in terms of the dimensionless parameters.
Due to the fact that the macroscopic equations are valid in a kind of hydrodynam-

ical limit (k → 0), we will expand the roots in the dispersion relation around k = 0
and take terms up to order k2,

σ = σ0 + kσ1 + k2σ2 + O(k3), (23)

and there will be four different roots, which will be called as Σi . The results being
given as follows

Σ1 = ikc1 + k2τ1
αρe1

[
c21 − (α + 1)(γ e

11ρ
e
1)

2] (24)

Σ2 = 1

τ1
+ ik

α
(2ve1 + αve1 − αγ e

11ρ
e
1) + k2

αρe1

[
αμ1 − τ1ρ

e
1
(
(ve1)

2 + 2ρe1v
e
1γ

e
11 − α(ρe1γ

e
11)

2)],
(25)

Σ3 = ik

a4 − 1

[
(a4 − 1)ve2 − a2ρ

e
2
] + k2Σ32 (26)

Σ32 = − τ2

α(a4 − 1)3

[
(a4 − 1)2(ve2)

2 − a2ρ
e
2

(
2ve2(a4 − 1) + αa2ρ

e
2

)]
,

Σ4 = 1 − a4
τ2

+ ik

α(a4 − 1)

[
(a4 − 1)ve2(2 + α) + αa2ρ

e
2

]
+ k2Σ42 (27)

Σ42 = 1

(a4 − 1)3αρe2

[
(a4 − 1)ρe2v

e
2τ2

(
(a4 − 1)ve2 − 2a2ρ

e
2

)
+ α

[
(a4 − 1)3μ2 − ρe2τ2(a2ρ

e
2)

2
)]

,

where γ e
11 = (dve1/dρ1)

e and can be calculated once the fundamental diagram for the
slow class is chosen.

The mode determined by Σ1 associated with the slow class density (ρ1) propa-
gates with a speed c1 = ve1 + γ e

11ρ
e
1 and the real part of it determines a time scale

which tends to zero as k2. However, this real part must be positive to have stabil-
ity, it means that the quantity c21 − (α + 1)(γ e

11ρ
e
1)

2 > 0 and it depends on the slow
class fundamental diagram. Note that this condition corresponds to the usual one for
Payne-like models, it is known that in this case there exists stability regions [4].
The root Σ2 has a leading term independent of the wave vector magnitude given by



A Multi-class Vehicular Flow Model for Aggressive Drivers 481

Fig. 1 Real part of rootΣ32 for α = 100.We recall that δ and β correspond to the quotient between
the equilibrium densities and the relaxation times τ1, τ2

Fig. 2 The effective relaxation time determined by the leading term in root Σ4

the relaxation time in the slow class (τ1), obviously positive. This root is associated
with mode v1, which also propagates with a speed determined by the fundamental
diagram.

The modes in the fast class (ρ2, v2) also propagate and both of them determine
the stability condition. First, the real part in root Σ3 is given through Σ32 and it can
be written as

Σ32

τ2(ve2)
2

= 1

α(a4 − 1)3

[
(α + 1)

(a2ρe
2

ve2

)2 −
(c2
ve2

)2]
, (28)

where c2 = 1
1−a4

[(a4 − 1)ve2 − a2ρe
2] is the propagation speed for mode ρ2.
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Lastly, the leading term in root Σ4 determines an effective relaxation time given
as (1 − a4)/τ2, which must be positive to have the interpretation given as time of
response in the fast class. Figure1 shows this characteristic for a region of the para-
meters δ, β with α = 100. It should be mentioned that this characteristic is valid
only for the equilibrium state (ve2/v

e
1)

− meaning that this equilibrium state represents
a physical point of interest. Its behaviour is shown in Fig. 2, where we can see that
the region of stability coincides with the stability situation for Σ32.

5 Concluding Remarks

The kinetic model based on the reduced Paveri-Fontana equation when applied to
two classes of drivers leads to a macroscopic model where the interaction between
user classes plays an important role. In fact, even in the simplest case studied in this
paper we have found that the free flow is stable only for a region of densities and
relaxation times. The analysis and figures shown tell us that the stability occurs for
certain regions in the δ and β. First, δ > 1 which means that the density of the slow
vehicles must be greater than the density of fast vehicles. Besides the fact that β > 1
shows that the relaxation time for the slow class is bigger than the corresponding
relaxation time for the fast class. Both conditions together lead to the stability of
just one equilibrium state for which it is possible to obtain free flow, at least in a
small region. It should be mentioned that this result represents a step in the complete
analysis of the model and some simulations must be performed in the unstable region
to possibly find other traffic phases.
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City Traffic: Features of Synchronised Flow
Patterns
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Abstract Understanding the physics of vehicular traffic and the emergence of traffic
patterns in city traffic is important for the implementation of trafficmanagementmea-
sures. Recently, the synchronised flowpattern has been found in empirical GPS probe
vehicle data of oversaturated city traffic (Phys Rev E 90:032810, 2014 [13]). Traffic
simulation models based on classical theories cannot reproduce this synchronised
flow. We present simulation results of oversaturated city traffic with the stochastic
microscopic Kerner-Klenov traffic flow model that is based on Kerner’s three-phase
traffic theory. These results show features of synchronised flow. It is found that the
drivers speed adaptation effect plays the key role in the understanding of the emer-
gence of synchronised flow in oversaturated city traffic. The physical meaning of
the speed adaptation effect in oversaturated city traffic is explained. The influence
of the speed adaptation effect on the average speed and travel time in oversaturated
city traffic is investigated.
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1 Oversaturated City Traffic

On an urban road with a traffic signal various congested traffic patterns can be
observed. The understanding of these city traffic phenomena is important for the
development of effective tools for traffic management and intelligent transportation
systems.

Traffic signals at city intersections act as bottlenecks determining themain features
of city traffic. Urban traffic on a multi-lane road with a traffic signal at its end can
either be oversaturated or undersaturated. In undersaturated city traffic all vehicles
waiting in a queue in front of a traffic signal during the red light phase can pass the
signal in the next green light phase. In oversaturated city traffic on the other hand,
not all vehicles can pass and therefore the queue of waiting vehicles grows with each
cycle of the signal. In accordance with classical theories as in [2, 3, 18, 20–22],
when the flow rate increases above some signal capacity value, a transition occurs
from under- to oversaturated traffic which consists of a series of moving queues,
sequences of stopped vehicles interrupted by sequences of vehicles that move from
one moving queue to the next adjacent queue downstream. The mean duration of a
vehicle stop within a moving queue does usually not change while the moving queue
propagates upstream of the signal.

Based on simulations in the framework of the three-phase theory [7, 8, 10], Kerner
et al. recently predicted that in addition to classical sequences of moving queues, in
oversaturated traffic synchronised flow pattern(s) (SP) should also occur [17]. Empir-
ical synchronised flow has recently been found in an empirical study of anonymised
GPS probe vehicle traces measured in navigation systems of TomTom company [6,
13] and common empirical characteristics and features of synchronised flow have
been revealed. In this paper, based on the use of the Kerner-Klenov stochastic micro-
scopic traffic flow model for two-lane city road [9, 11, 12, 14–16] in the framework
of Kerner’s three-phase theory, we make a classification of different spatio-temporal
patterns which can occur in oversaturated traffic with different parameters of drivers
speed adaptation.

2 Kerner-Klenov Simulation Model

In contrast with two-phase traffic flow models with a fundamental diagram (e.g.,
[1, 4, 19], in the stochastic model [14–16] used for all simulations, there is a 2D-
region of synchronised flow associated with the fundamental hypothesis of three-
phase theory (see Chap. 3.2 in [8]). When a driver approaches a slower moving
preceding vehicle and he cannot overtake it, the driver begins to decelerate and adapts
its speed to the speed of the preceding vehicle,when the gap g to the preceding vehicle
becomes smaller than a synchronisation gapG. This driver’s speed adaptation occurs
under condition gsafe ≤ g ≤ G, where gsafe is a safe gap.

We use a discrete version of a stochastic three-phase microscopic model of Kerner
and Klenov [14–16]. The physics of the model variables are explained in [7, 8].
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The parameters of the model have been adapted for city traffic in [9, 11, 12]. All
simulations are made with the same set of parameters as in [12].

In the model, if a vehicle reaches the upstream front of a moving queue at a signal
it decelerates as it does at the upstream front of a wide moving jam propagating on a
road without traffic signals [7, 8]. During the green light phase, vehicles accelerate
at the downstream front of the moving queue (queue discharge) with a random time
delay as they do at the downstream jam front. During the yellow phase a vehicle
passes the signal location, if the vehicle can do it until the end of the yellow phase;
otherwise, the vehicle comes to a stop at the signal.

2.1 Speed Adaptation Effect

A key role in the simulation of synchronised flow plays the driver’s speed adaptation
for which we use a stochastic description through the probabilities p1 and p2 in
Eq. (14) of [12]. We write these probabilities as follows:

p1 = min(1, (1 + ε)p(0)
1 ), p2 = min(1, (1 + ε)p(0)

2 (vn)), (1)

where p(0)
1 = 0.3, p(0)

2 (vn) = 0.48 + 0.32Θ(vn − v21), ε is the coefficient of speed
adaptation. The larger ε, the stronger the speed adaptation and, therefore, the larger
the mean space gap (the longer the mean time headway) between vehicles in syn-
chronised flow. This can be explained as follows. If on a multi-lane road a driver
approaches a slower moving vehicle in front and if he cannot change lane, the driver
has to decelerate. In the model he can start to decelerate as soon as he enters the syn-
chronisation gap to his leader. The driver will decelerate if his distance to the leader
becomes smaller than the safety gap, and he will accelerate if the distance becomes
greater than the synchronisation gap (Fig. 1). But in contrast to models based on
classical theories, in three-phase traffic flow models a vehicle does not try to abide
to a specific distance to the preceding car, usually the safety gap. Instead, the vehicle
tends to adapt its speed to the speed of the preceding car, but it will do this while
taking an arbitrary distance to it as long as it stays within the synchronisation gap.

Therefore, the driver could decelerate gradually to the speed of the leader as soon
as he enters the synchronisation gap, which would lead to a short headway to the
preceding vehicle (Fig. 1a). This situation, described with ε = 0, is called usual or
weak speed adaptation and leads to the classical behaviour of stop-and-go traffic: the
mean duration of the stops of the vehicles remain almost constant along the moving
queues that build upstream of the signal [17]. Alternatively, the driver can decelerate
more sharply when reaching the synchronisation gap distance, which would lead to a
large headway to the preceding vehicle (Fig. 1b). This situation, describedwith ε > 0,
is called strong speed adaptation and leads to the behaviour that cannot be described
by classical theories: the mean duration of the stops of the vehicles decreases the
further upstream of the traffic signal the moving queue is located [17]. The growth
of the space gap leads to the dissolution of the jam upstream of the traffic signal.
So, in oversaturated city traffic adjacent to the traffic signal there is still the classical
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Fig. 1 Explanation of speed
adaptation effect: weak
speed adaptation (a);
strong speed adaptation (b)

Strong Speed Adaptation

Safety Gap

Slower moving preceeding vehicle

Vehicle under consideration

Synchronisation Gap

Weak Speed Adaptation

Safety Gap

Synchronisation Gap

(a)

(b)

stop-and-go behaviour of the vehicles, but further away from the signal synchronised
flow emerges due to the dissolution of the jam.

3 Synchronised Flow in Oversaturated City Traffic

To investigate the influence of the speed adaptation effect, we made simulations
with constant inflow rate on a two-lane road of 5km length with a traffic signal with
constant phases. Figure2 shows simulation results forweak (ε = 0) speed adaptation:
not all vehicles waiting in front of the traffic signal are able to pass in the same green
phase, the queue of waiting vehicles grows (Fig. 2a). Vehicles approaching the ends
of themoving queues start to decelerate to a standstill, then after some time accelerate
out of the queue, drive a short distance and decelerate again when they reach the next
queue downstream. This is repeated until the vehicles reach the traffic signal. The
evolving traffic pattern is that of classical Moving Queues as shown in Fig. 2b–d: the
vehicles marked red and blue pass through several moving queues. It should be noted
that Figs. 2b and 3a, b show trajectories of vehicles in the right lane only, except for
the red and blue marked vehicles that are independent on lane changes.

In contrast to the classical behaviour, Fig. 3 shows simulation results for strong
speed adaptation (left: ε = 1.33, right: ε = 2). The length of the queues in front of
the traffic signal does not increase further upstream than a few hundred metres, so
the vehicles do not have to pass more than one or two moving queues in front of the
traffic signal. With increasing value of the speed adaptation coefficient ε the queue
length decrease as they dissolve into the synchronised flow upstream. In both cases
ε = 1.33 and ε = 2, the vehicles drive with relatively small speed of around 10–
20km/h and do not decelerate to a standstill for most part of the road. The vehicles
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Fig. 2 Simulation results forweak (ε = 0) speed adaptation.Dotted lines denote the position of traf-
fic signal and time instant when vehicles pass the traffic signal, respectively. qin = 948 veh/h/lane,
ϑ = 70 s, TR = 35 s, TY = 4 s: speed in space and time (a); in white regions the speed is higher
than 30 km/h, in black regions speed is 0 km/h. Trajectories upstream of traffic signal (b); speed
profile of vehicle 1 (c); speed profile of vehicle 2 (d)

driving slowly and not stopping is a characteristic behaviour of the Synchronised
Flow phase. This driver behaviour is shown with the microscopic speed profiles in
Fig. 3c–f of vehicles marked with numbers 3–6 in Fig. 3a, b.

It is also apparent that the increase of the speed adaptation coefficient leads to
higher average speeds of the vehicles and therefore to lower travel times. Table1
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Fig. 3 Simulation results for strong speed adaptation (left: ε = 1.33, right: ε = 2). Dotted lines
denote the position of traffic signal and time instant when vehicles pass the traffic signal, respec-
tively. qin = 948 veh/h/lane, ϑ = 70 s, TR = 35 s, TY = 4 s: strong speed adaptation (ε = 1.33):
Trajectories upstream of traffic signal (a); strong speed adaptation (ε = 2): Trajectories upstream
of traffic signal (b); speed profile of: vehicle 3 (c); vehicle 5 (d); vehicle 4 (e); vehicle 6 (f)

shows average speed and travel time for vehicles numbered 1–6 in Figs. 2 and 3,
calculated for the final 800m upstream of traffic signal. Vehicle 1 drives under the
condition of weak speed adaptation (ε = 0) and as it approaches the traffic signal, it is
forced to pass several moving queues. This leads to a low average speed of vavg = 9.6
km/h and a high travel time of almost 5 min (Ttr = 299 s) for 800m. Vehicle 5 drives
under the condition of strong speed adaptation (ε = 2) and as it approaches the traffic
signal, it drives quite regularly for the first part of the road. Only when it reaches the
last part of the road in front of the traffic signal it is forced to stop. This leads to a
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Table 1 Average speed and travel timea dependent on coefficient of speed adaptation

Coefficient of speed
adaptation

Vehicle number Average speed (km/h) Travel time (s)

0 1 9.6 299

0 2 11.8 245

1.33 3 16.6 174

1.33 4 19.3 149

2 5 25.7 112

2 6 25.3 114
aSpeed and travel time calculated for the last 800m upstream of traffic signal

rather high average speed of vavg = 25.7 km/h and a travel time of only Ttr = 112 s
for 800m.

This means that the average speed for vehicles driving under the condition of
weak speed adaptation is lower and the travel time is higher than for vehicles driving
under strong speed adaptation. It can be explained as follows. Under the condition
of a high speed adaptation factor, the vehicles in average tend to greater space gaps
(headways) to the preceding vehicles as they decelerate more sharply when they
reach the synchronisation gap than under the condition of weak speed adaptation.
This also leads to a reduction of the speed fluctuations as can be seen in Fig. 3c–f,
respectively. The higher the coefficient of speed adaptation, the more the vehicles
spend their time moving.

In conclusion, one can say that the reproduction of the synchronised flow pattern
in oversaturated city traffic in the simulation is a direct result of the use of the speed
adaptation effect.

4 Conclusions

Oversaturated city traffic has been simulated with the Kerner-Klenov three-phase
traffic flow model and the use of the drivers speed adaptation effect. The simulations
show that under strong speed adaptation synchronised flow patterns that have previ-
ously been found empirically can be produced with this model. Under weak speed
adaptation the classical moving queue pattern is reproduced. Strong speed adaptation
is associated with an average increase of the space gaps (time headways) that drivers
choosewhilemoving inoversaturated city traffic.Thehigher the speed adaptation fac-
tor, the higher the average speed of the vehicles and the lower the average travel time.

The existence of the synchronised flow phase has an important impact on fuel
consumption calculations in oversaturated city traffic. As shown recently [5] the fuel
consumption of vehicles driving in a moving queue pattern is considerably higher
than that of vehicles driving in a synchronised flow pattern.
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Traffic Simulations with Empirical Data:
How to Replace Missing Traffic Flows?

Lars Habel, Alejandro Molina, Thomas Zaksek, Kristian Kersting
and Michael Schreckenberg

Abstract For the real-time microscopic simulation of traffic on a real-world road
network, a continuous input stream of empirical data from different locations is
usually needed to achieve good results. Traffic flows for example are needed to
properly simulate the influence of slip roads and motorway exits. However, quality
and reliability of empirical traffic data is sometimes a problem for example because
of damaged detectors, transmission errors or simply lane diversions at road works.
In this contribution, we attempt to close those data gaps of missing traffic flows with
processed historical traffic data. Therefore, we compare a temporal approach based
on exponential smoothingwith a data-driven approach based on PoissonDependency
Networks.

1 Introduction

Microscopic road traffic simulations based on a real-world topology usually need
many preparations to deliver reliable results. At first, a promising simulation model
has to be chosen and the topology has to be converted into a model-friendly repre-
sentation. When the simulation shall use traffic data from real-world detectors, they
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and the belonging areas to fill in (or remove) vehicles according to the data have to be
implemented as well. For complex topologies, this means that the simulation results
then not only depend on the quality of the model and the topology representation,
but also on a possibly huge number of empirical traffic detectors.

Usually, empirical traffic detectors provide new trafficflowdata everyminute. This
data is then used in the simulation to reproduce all the recent traffic in- and outflows
of the real-world system. Therefore, the permanent availability of empirical data is
necessary especially at on- and off-ramps. Unfortunately, the reliability of empirical
detectors is often not good enough to ensure this requirement minute by minute. This
contribution provides a comparison of two approaches to close the resulting gaps in
empirical data, oneworking on temporal level, the other one on level of dependencies
between multiple detectors.

2 Methods

In case of missing data, a decision has to be made how the simulation shall handle
this issue. Principally, different strategies are possible: Some detectors are redundant,
so the missing data simply could be ignored because the coverage of neighbouring
detectors is sufficient enough. However, it is often difficult to decide whether a
detector is important or not. The importance of such a redundant detector can also
rise when neighbouring detectors go off-line. Additionally, each detector often has
a complex neighbourhood, which is sometimes not fully known because the given
location data is lacking precision or is outdated. The same issues can also occur on
temporal level because it is usually unknown how long a detector will be off-line.
This is especially problematic when the simulation is used in a real-time context,
i.e. in a traffic information system [1], and thus new empirical data is queried by the
simulation at run time.

The described problem is somewhat related to short-term traffic forecasting meth-
ods and to interpolation methods for incomplete time series in general. These topics
have already been addressed by numerous approaches (see e.g. [8] for a summary).
However, these are often complicated to understand or to apply, or they also need e.g.
a complete set of historical data or a working detector neighbourhood. As described,
these preconditions are often not met. Because of this, we focus on two simple and
resilient methods for filling these gaps in real-time.

2.1 Exponential Method

The temporal approach [2] is based on exponential smoothing a set j of historical
traffic flows. j comprises previously collected traffic flows from up to 30 timestamps
t measured at the particular detector, which are chosen by a clustering algorithm that
distinguishes between different weekdays, school holidays and public holidays. The
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predicted flow j∗t is then obtained by

j∗t = α jt + α

t−1∑
i=1

(1 − α)i jt−i + (1 − α)t j0 , (1)

where jt is the most recent historical traffic flow. We use α = 0.8 for long-term gap
filling [3].

2.2 Poisson Dependency Network (PDN)

For the dependency-based gap filling, we use the recently proposed Poisson Depen-
dency Networks [4]. Dependency networks are graphical models, meaning that each
graph node represents a single detector and each edge between nodes describes
dependencies between them. Note that neighbouring detectors on the road do not
have to be strongly connected in the PDN.

Here, the set j comprises traffic flows from other detectors, but measured at the
same time. The probability function to obtain a traffic flow for detector a given all
the other flows j\a = j \ ja at that time is then denoted as

p( ja|j\a) = λ
ja
a (j\a)
ja! e−λa(j\a) , (2)

where λa(j\a) is a function which contains all knowledge about correlations between
detector a and the others. In this contribution, each λ is modelled by Poisson regres-
sion trees which have been learned by the R-package rpart.

3 Comparison Setup

For the comparison, we use empirical traffic data from the Cologne orbital motorway
network in Germany, which is formed by the motorways A1, A3 and A4 and is about
100km long. Traffic data is provided by 187 detectors at 95 cross-sections.

Both approaches use historical traffic data in a certain sense. In the Exponential
Method, there is usually a window of 1 week between each time stamp t , because
Eq. (1) is not suitable for intra-day traffic forecasting, as it does not take the intra-
day shape of a traffic flow time series into account. For the calculation of Eq. (1),
historical timestamps with missing values and timestamps of different classes (i.e.
holidays, see Sect. 2) have to be removed,meaning that the effectivewindow between
two timestamps is sometimes more than 1 week.

To create a level playingfield for the comparison, thePDNapproachuses data from
the preceding week as well to learn λa(j\a), see Fig. 1 for a graphical explanation. A
sufficient number of timestamps has to be in the training set to reflect the correlations,
so we decided to use a 60-min window from that week. Note that in contrast to the
Exponential Method, the PDN gets data from n detectors. The set of all 187 detectors
is resized dynamically to n for each prediction, because detectors without passed
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Fig. 1 Visualisation of different data sets used for the predictions. Each column represents a time
series of a single detector. Highlighted rows are used for the prediction at the next new time stamp

traffic (i.e. with var(ja) = 0) during the 60-min window have to be excluded. Also,
missing values have to be removed. This can be done row-wise by removing the
whole time stamp, but usually a huge number of missing values is produced by a
small subset of detectors. We have excluded them column-wise first, if more than
5% of their values were missing.

We used traffic data from 21/09/2015 to 27/09/2015 to test the predictions and
data from the preceding week to train the PDN. The exponential method got data
from the preceding week and up to 30 weeks before.1

4 Results

To compare the accuracy of both strategies, we calculated the root-mean-square error
between all N predicted traffic flows P and observed traffic flows O

RMSE =
√

1

N

∑N

i=1
(Pi − Oi )

2 (3)

and its normalised variant

NRMSE = 100
RMSE

sd(O)
, (4)

where sd(O) is the standard deviation of all observations.
The overall prediction accuracies are shown in Table1. There, every time stamp

of the whole test week is included. It is obvious that both prediction methods are

1These values had been calculated in advance as a part of OLSIM [1].
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Table 1 Overall prediction accuracy

Method RMSE (vehs/min) NRMSE (%)

Exponential 4.93 53.2

PDN 4.50 48.6

bold numbers show better results

not faultless, because both of them basically perform a 1-week-prediction of 1-min
count data.

For a deeper analysis, it is typically better to use a subset of data fromworking days
only.We also categorised the data by time interval2 and created a spatial visualisation,
which is shown in Fig. 2, by using the R-package ggmap [6].

The visualisation reveals that prediction problems typically are bound to topolog-
ical problems: The north-eastern part of the network around the motorway junction
between A1 (connects north-east and west) and A3 (connects northeast and south-
east) was affected by several construction sites at time of this analysis. On the A1
a speed limit of 60km/h had to be implemented because of repairs on a damaged
bridge, also trucks were not allowed to pass that bridge. Parallel, works on the A3
started to upgrade the road cross-section from three to four lanes per direction. These
required temporally closed lanes and driving on the hard shoulder. Hence, these sites
and the related upstream road sections were heavily affected by congestion because
of their huge bottleneck impact. They can be identified in Fig. 2 by the size of the
dots, which denote the mean empirical velocity at test time.

The colours of the dots in Fig. 2 show the mean differences between predicted and
observed traffic flows per lane, meaning that negative differences indicate an ongoing
underestimation of flow by the prediction. As can be seen, the Exponential Method
underestimated traffic on the A3 inside and upstream of the bottleneck heavily. One
reason for this are the temporal lane closures. Then, the distribution of vehicles on the
remaining lanes changes in contrast to the preceding weeks and thus the exponential
predictions become incorrect. The predictions from the PDN clearly benefit from the
learned correlations, although it was trainedwith historical data aswell. However, the
PDN sometimes overcompensated the lane closure, albeit an overestimation of traffic
flow is usually less of a problem than underestimation: Traffic breakdowns happen at
high traffic flows and with an underestimation, a potentially unstable traffic situation
would be missed by the simulation. Also, common microscopic traffic models tend
to underestimate the spatial extent of congestion [7], so that a slight overestimation
usually will not harm the simulation results.

One has to note that although the mean differences are often very low outside the
hotspot areas, the RMSE is usually higher, because positive and negative differences
balance each other out from minute to minute. This is shown in Fig. 3, which also
shows that the (N)RMSE rises heavily inside a jam. However, the PDN is always a
bit more accurate.

Most of the time, time series of observations and both predictions have a quite
similar shape. Figures4 and 5 show typical examples of special situations, where

2Time intervals (in local time):morning 05:00–09:59,midday 10:00–13:59, afternoon 14:00–17:59,
evening 18:00–21:59, night 22:00–04:59.
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Fig. 2 Spatial visualisation of differences between predicted and observed traffic flows on working
days by time interval. Each dot represents a detector cross-section in clockwise (a) or anti-clockwise
driving direction (b). The size of each dot shows the mean empirical velocity measured in the
corresponding time interval during the test week. First row Exponential Method, Second row PDN

Fig. 3 Prediction accuracy in congested traffic onworking days in anti-clockwise direction. Results
are divided into different classes of empirical velocities and TMC event type at test time
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Fig. 4 Different time series with diverted traffic: less traffic than usual on the northbound A3.
Some data points are missing because of missing observed data (a); more traffic than usual on the
eastbound A4 avoiding the jammed north-eastbound A1 (b)

Fig. 5 Time series with an accident on the A3 in northbound direction: upstream of the bottleneck
(a); downstream of the bottleneck (b)

Fig. 6 Established links and
the corresponding weights in
the PDN for a northbound
detector on the motorway
A3, located in the
south-eastern corner of the
map. The hotspot area
determines the upstream
traffic conditions
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the predictions differ. When traffic uses different ways than usual (see Fig. 4), the
PDN approach has a clear advantage, because it implicitly detects the necessary
dependencies to deal with the situation. However, it is not able to avoid any mispre-
diction. Figure 5 shows time series with a big accident during the rush hours, where
prediction accuracy of traffic flow was not only affected upstream of the incident,
but also downstream, because the flow was drastically reduced by the accident. This
event was not foreseeable for both methods.

5 Conclusion

In this contribution,wehave analysed the prediction accuracy of PoissonDependency
Networks in the context of traffic simulations in comparison to an older approach.
It is interesting to see how good the PDN performed, given the fact that we did
not implement the detector network topology explicitly. Further improvements are
planned, namely using a more flexible window of training data as well as trying out
different strategies for learning λa(j\a).

Also, a detailed analysis of the graphical structure of the PDN seems to be promis-
ing. An example for the correlations the PDN is revealing is shown in Fig. 6. With
the described training window, the PDN only established up to 4 edges per node.
When used with more learning data it uses more edges, even to the other side of the
ring, as we showed in [5] in a different context.
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Dynamic Model for Assignment
in a ‘Sky-Car’ Transit System: Spatial
Interactions with Other Common
Transport Modes

Kwami Sossoe and Jean-Patrick Lebacque

Abstract This paper provides a Lagrangian dynamic fluid model of the traffic of
Personal Rapid Transit (PRT) system or of personal rapid maglev-transporters. The
transport system using these maglev-transporters or sky-podcars operates in the style
of demand-responsive systems. The advantage of the sky-podcars is that they are fast
and that they do not operate in the same physical space as the other ground transporta-
tionmodes. Thus theywill contribute to alleviate congestion.Wemodel the dynamics
of the sky-podcars transportation system and we solve the problem of relocation with
minimum cost in this maglev system. An analysis of assumptions of effective oper-
ation of the PRT is carried out. Reactive dynamic assignment in such PRT system is
described. In a multi-modal transport system where the maglev-transporters mode is
taken into account, we describe the multi-modal dynamic assignment and its spatial
interactions with other common transportation systems.

1 Introduction

Transport demands of passengers increasingly grow nowadays in big cities and busi-
ness cities all over the world. Those demands of traffic in view of networks supplies
of relatively small size lead to traffic incidents, especially problems of traffic con-
gestions. Researchers and engineers construct, and deploy many scientific tools in
the sense that these tools can handle these issues. That is in the line of network traffic
flow management. Different traffic flow models, built at different scales of details
and representations, such as link and node based flows, and network-based flows,
abound in the literature. However, one still observes that operators’ services are not
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quite performing to provide non-congested and fluid traffic for their correspondent
networks, in many cities.

In order to address traffic issues, many new transport vehicles and transport sys-
tems are being built. We notice autonomous vehicles, automated vehicles, and fur-
ther special technologies such V2V (vehicle-to-vehicle) communication and also
V2I (vehicle-to-infrastructure) communication for traffic management. This paper
focuses on a new demand-responsive transportation system, namely sky-car trans-
portation system. This is a new generation of Personal Rapid Transit (PRT) system
[7], and is being held by the project skyTran. skyTran is a new project for the con-
struction of rapid vehicles (podcars or sky-cars) that use maglev system relying on
magnetic levitation rather than wheels (or conventional motors). The maglev pro-
pels podcars along sky railways lanes, resulting in nearly silent transportation. The
maglev system makes safe, reliable form of travel, with high speed up to 240 km/h;
thus, allowing local, regional and national networks to be built. Further, skyTran
extends the transport network area by creating a new traffic game area at twenty feet
from the ground. In order to prevent congestion on the main sky railways, podcars
are pulled off onto the sidetracks for dropping off and picking up the passengers.
Since the chosen context is futurist, a study has been carried out on the reliability
and the efficiency of the sky-car system. Its impacts and its spatial interactions with
the common already existing transport modes such as classic car, taxi, bus, bike,
ride-car, carpooling, tram or train are studied. An implementation of such a sky-car
system shall obtain an evaluation of the proposed solution in this paper in Sects. 2
and 3.

The contents of the paper are the following: we recall graph approach for mod-
elling network in Sect. 2 with few extending components. Section3 addresses the
fluid model of the dynamic of podcars by describing motions of the personal rapid
maglev-transporters. Some assumptions on how the sky-car transportation system
may work efficiently have made. We establish control laws in Sect. 3 and design
algorithms for traffic control and for good interactions with other transport modes.

2 Background

2.1 Sky-Car Network—Notion of Maglev-Graph

In connection with transport graph as well, the maglev-graph includes a few dif-
ferent components. We describe this graph, denoted by GM , by a quadruple of sets
(NM , AM , LM , PM), where NM is the set of all nodes (that are the intersections,
the poles of stations, the departure and the arrival portals at stations) of the maglev
system, AM is the set of arcs connecting two nodes of the same maglev-lanes. There
are different maglev-lanes such as deceleration lanes, non-stop guideways, acceler-
ation non-stop guideways (or acceleration lanes) which are vertically set up above
the former. We denote by LM the set of all lanes. PM denotes the set of all pairs of



Dynamic Assignment in a ’Sky-Car’ Transit System 501

portals (departure and arrival) that physically represent the stations or the sky-car
stops location. At any station, there is an ‘off line guideway’ which keeps sky-cars
that are at rest waiting for passengers to board. There are diverging and merging
zones, that is to say intersection or nodes, that allow podcars for switching from
‘acceleration lane’ onto ‘low non-stop guideway’, and inversely.

2.2 Traffic Models for Demand-Responsive Transports

Taxi services work as demand-responsive transport services, and they have been
improved to a more flexible way to respond to transport demands. A succinct review
on taxi systems and urban demand-responsive systems are given in [1–6, 8] where
multi-agent-based models of simulation are provided for urban dynamic traffic ser-
vices. These models also addressed the problem of traffic congestions and accidents,
CO2 emissions, air pollution, financial costs, and other environmental damages.

3 Model of the System—Lagrangian Coordinates

This section describes the model of the system: first the sky-car motion formulation,
then the demand optimisation, followed by the spatial interactions with other modes.

3.1 Sky-Car Motion Formulation

To set ideas on the dynamic of podcars along sky railways, the following assumptions
have made on the functioning of the PRT system.

1. The number of sky-car stations in the system can be as high as desired to reach
all transport demands.

2. Sky-cars do not takeover each other except at internal intersection.
3. Capacity of a sky-car is limited, taking a finite number of passengerswith a similar

profile.
4. Any sky-car is available for only one transport demand.
5. For each transport demand in the system, more than one passenger can enter in

the sky-car at the starter station to a target destination station.
6. Twomaglev-lanes of the same level cannot intersect with each other at any station;

maglev-lanes of different levels interconnect together with poles. That allows
avoidance of collisions. The transfer of traffic is made between two lanes of
different levels through poles by switches.
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7. Generally, we assume that the considered demand-responsive transportation sys-
tem is equipped with an adaptive cruise control that increases the driving comfort,
reducing traffic accidents and increasing the traffic flow throughput.

8. We assume that accelerations of pods do not cost anything while they are offset
by decelerations, in term of energy consumption of the system. However, we do
not address this aspect which concerns the control of the energy consumption of
the system.

Let S be the set of all stations s ∈ S of the maglev system. Let x denote the
position of podcar, t � 0 the time and a the podcar index. {xa(t), t ∈ R

+} refers to
the trajectory of the podcar a ∈ Λ,Λ being the total number of podcars of the transit
system, and x j

a (t) referring to the position of a on the arc ( j) ∈ AM . Let ua(t) be the
speed of the podcar a at the time t , and wa(t) the acceleration–deceleration of the
pod a at the time t . Assuming that vehicles are labelled according to a snapshot of
line from downstream to upstream, the podcar labels will increase with the position
x . Therefore, ra(t) = xa−1(t) − xa(t) is the spacing between vehicle a and its leader
a − 1 at time t , and va(t) = ṙa(t) = ẋa−1(t) − ẋa(t) = ua−1(t) − ua(t) is its relative
velocity at the same time t .

Let us describe the dynamic of the vehicles along the sky transit network. Along
the same lane, and on a line section without intersection and without switch pole,
the dynamic of sky-car is governed by the following system of equations:
∀t ≥ 0,∀a ∈ Λ, ∃!( j) ∈ AM such that:

⎧⎨
⎩
x j
a (t + 1) = x j

a (t) + δtu j
a(t)

u j
a(t) = min

(
Ue

(
r j
a (t)

)
, u pa

(
x j
a (t)

))
.

(1)

Ue
(
r j
a (t)

)
is the speed equilibrium relationship depicted by Fig. 1. u pa

(
x j
a (t)

)
is the

sky-car velocity profile that may depend on the vehicle a, the charge of the current
link ( j) or current arc ( j) and the mission of the podcar a. In the sake of capturing
all cases, one may apply a following dynamic system (2) instead of the system of
governing Eq. (1):

rmin

Umax

Spacing r

Equilibrium speed Ue

Fig. 1 Spacing-equilibrium speed fundamental diagram of sky-car motion
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x j
a+1(t) x j

a(t) x j
a−1(t)

x j′
a′ (t)

arrival pole departure pole

acceleration lanedecceleration lane

Fig. 2 Notations of sky-car following model

∀t ≥ 0,∀a ∈ Λ, ∃!( j) ∈ AM such that,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x j
a (t + 1) = x j

a (t) + δtu j
a(t)

u j
a(t + 1) = min

(
u j
a(t) + δtw j

a(t),Ue
(
r j
a (t)

)
, u pa

(
x j
a (t)

))

wj
a(t) = fa

(
r j
a (t), u j

a(t)
)
.

(2)

Let us briefly describe how merges and diverges work in our model. Diverges
are trivial. Let a be the first podcar on an upstream link ( j). Let (d1) be the next
link pertaining to the mission of the podcar a, and nd1 be the last podcar on this
lane. Then the motion of the podcar a is given by Eq.2 with r j

a (t) being the sum of
the distance from a to the intersection plus the distance from the intersection to the
podcar nd1. This can be stated as: r j

a (t) = |xa(t) − xI |( j) + |xi − xnd1 |(d1) (Fig. 2).
Let us now consider a merge with two upstream links (u1) and (u2), and (d) the

downstream link, a1 and a2 the first podcars on links (u1), (u2) respectively, and
ad the last podcar on the downstream link. The two upstream podcars are liable to
compete for passage through the intersection (I ). The first issue to be solved is to
determine which podcar will cross first the intersection (I ). For each podcar ai we
calculate Δti = |xai (t) − xI |(ui )/uuiai (t), time required to reach the intersection. The

velocity uuiai (t) is calculated following Eq.2, with the distance r j
ai (t) being the sum

of the distance from ai to the intersection plus the distance from the intersection to
the podcar ad . Once the order of passage is decided, it is not changed. The trajectory
of the first podcar to pass is calculated by Eq.2 with respect to the podcar ad . Let
a1 be this podcar. The trajectory of the second podcar is calculated with respect to
the podcar ad but with an additional term forcing passage as second. This term is
applied as long as the podcar a1 has not exited link (a1). Thus, the velocity of the
podcar a2 is uu2a2 (t + 1):

uu2a2 (t + 1) = min
(
uu2a2 (t) + δtwu2

a2 (t),Ue
(
ru2a2 (t)

)
, u pa

(
xu2a2 (t)

)
, α

|xa2 − xI |(a2)
|xa1 − xI |(a1)

uu1a1

)
.

(3)
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3.2 Travellers’ Demand Optimisation

The following notation will be used.

• k, �,m: the attributes for stations or destinations or origin points of the trips.
• Tm�(t): the demand of displacement from � to m: (� → m) between the instants t
and t + δt . So there is Tm�(t)δt customers that want to travel from the station � to
the station m.

• N�(t): the number of sky-cars at the station �.
• K�(t): the maximal capacity in term of number of travellers that can board at the
station �, and at the time t . The following relation holds: N�(t) ∗ KR = K�(t),
with KR the residual capacity of any sky-car.

• Kσ (t): the capacity of the sky-car σ at time t . This variable changes only at
stations due to the passengers boarding in σ and the passengers exiting the σ . So
KR constrains Kσ (t) such that Kσ (t) � KR,∀t .

• SW (�, t): the ordered set of sky-cars waiting to board passengers at station �.
• D�(t): the demand at the station � and at the time t .
• n�m(t): the number of sky-cars that want to go to the stop m from the station � at
time t . This number represents the total demand at � to m.

• U�(σ, t): the set of achievable sky-car stations from the station �.
• τ�m : the travel time from � to the achievable station m.
• ν�mσ : the number of travellers from � tom using the sky-car σ at the instant t . This
the number of travellers that is transferring exactly from the stop � to m. That is
to say the performed travellers’ demand by the system.

• N�m(t): the performeddemand.Hence, the followingholds: N�m(t) = min(n�m(t),
K�m(t)) with N�m(t) = ∑

σ∈S(�,t) ; m∈U�(σ,t)
Kσ (t).

• σ ∈ S(�, t) means that σ is at the station � at time t .
• m ∈ U�(σ, .) means that m is in the neighbourhood of � and is easily reachable
from � using the sky-car σ , when departing at time t at �.

At a station�, the demandD�(t) at time t collapses in:D�(t) = ∑
m

{⌊
T�m (t)δt

KR

⌋
+1

}
.

Therefore, the estimation of the travel time, from � to m at time t , is suggested to
follow the below optimisation problem (4):

min
∑

σ∈S(�,t) ; m∈U�(σ,t)
ν�mσ ∗ τ�m(σ, t)

s.t.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

N�m(t) = ∑
σ/m∈U�(σ,t)

ν�mσ , ∀�,

∑
m

ν�mσ � Kσ , ∀σ,

ν�mσ ∈ N, ∀�,m,∀σ,∀t.

(4)

The residues from � to m, is r�m(t) = n�m(t) − N�m(t). Added to the arrival of sky-
cars at time t , denoted by a�m(t), we get n�m(t + 1).
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3.3 Multi-modality—Spatial Interactions with Other Modes

Let us consider a multi-modal transport system with the sky-car transit system. We
assume that thewholemulti-modal system is semi-computerised, that is to say there is
advanced information for travellers about traffic conditions, for each network mode.
For the sky-car transit system, there is dynamic allocation of podcars on stations with
respect to the following:

• the known cumulative demands,
• the stocks of sky-cars at stations on the off line guideway, and
• the foreseeable demands induced by passengers travel orders for some future times.

We propose a logit model for the modal choice in general, and user paths choice.
In the case of this PRT system, it is only up to the system manager to make the
path choice according to the origin, the destination and the traffic state of system
itself. We assume only three choices for users in our considered multi-modal system
comprising only road network (by referring to private vehicles) and personal maglev
network. Any OD pair could be joined with the below choices:

• mode m1: the use of road vehicle, then parking search availability to park and
parking, and pedestrian walk for attending final destination, or

• mode m2: the use of sky-car and pedestrian walk, or
• mode m3: the use of modes m1 and mode m2.

For ∀p ∈ {1, 2, 3} (p being the index of the mode), and for ∀w = (o, d), the
Logit-based rules are reduced to:

π
p
od = P[choice = mp | (o, d) = w ∈ W ] = exp

(
−θC

mp
od

)

∑
p′∈{1,2,3} ; (o,d)=w∈W exp

(
−θC

mp′
od

) (5)

The probability of choosing one mode p from an origin o to a destination d is set by:

⎧⎪⎨
⎪⎩

0 ≤ π
p
od ≤ 1, ∀p = 1, 2, 3 ,∀w = (o, d) ∈ W,

3∑
p=1

P[choice = mp] = 1.
(6)

C
mp

od is the cost of the mode mp from origin o to destination d, cost which depends
on the monetary cost, the predicted time that will be spent in the system (given by
a system of information), and the search time of availability of parking-car (in case
when using partially car mode), and the walking time.
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4 Conclusions and Perspectives

The implementation of the model and the sky-car demand-responsive system shall
show its real performance. The proposed system of equations is a queue approach
with adaptive cruise control on the dynamic of sky-cars. The model proposed in this
paper focussed onLagrangian coordinates of themotion of sky-cars in thewhole PRT
system.We discuss about multi-modal trips that take into account the new responsive
automated transport system. The relocation of sky-cars shall be addressed to respond
to extra transport demands at stations where there are no available sky-cars to board
passengers, and where re-routing of other sky-cars which are at rest in other locations
is relevant.
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Technological Research SystemX, and therefore granted with public funds within the scope of the
French Program ‘Investissements d’Avenir’.
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Phenomena-Based Traffic Flow Multi-scale
Modelling

Mahtab Joueiai, Hans van Lint and Serge Hoogendoorn

Abstract The aim of multi-scale modelling is developing both theoretical and com-
putational methods that can be used to couple microscopic, mesoscopic and coarse-
level descriptions of complex traffic system, in order to describe a variety of phe-
nomena. In multi-scale modelling approach, the modelling paradigms are switched
dynamically depending on traffic condition. One important question in this approach
pertains to the criteria that trigger the switchingmechanism. The time and position of
shifting from onemodelling paradigm to the next should be chosen such that the con-
sistency of traffic features at the interface between implemented models is ensured.
This paper presents a generic simulation strategy that enables shifting paradigm from
one modelling scale to the next, based on the propagation and emergence of traffic
phenomena. The interface between implemented models in this approach, dynam-
ically adapt its position regards the phenomenon of interest. The paper concludes
with an illustrative example that shows the applicability of our proposed methods.

1 Introduction

Traffic models are important part of understanding and predicting the traffic con-
dition. Traffic models and simulation are used to assess the performance of roads,
networks and new control systems. Therefore, a model should be a close approxima-
tion of a real traffic system to be able to accurately predict dynamic traffic features.

Models at each level of complexity are necessarily simplified to minimise compu-
tation and to emphasise the key factors that are required to reproduce certain traffic
phenomena. Different modelling paradigm are thus developed that each could pre-
dict and reproduce a certain range of phenomena. This implies that there exists no

M. Joueiai (B) · H. van Lint · S. Hoogendoorn
Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
e-mail: m.joueiai@tudelft.nl

H. van Lint
e-mail: j.w.c.vanLint@tudelft.nl

S. Hoogendoorn
e-mail: s.p.hoogendoorn@tudelft.nl

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_64

507



508 M. Joueiai et al.

single simulation model that is able to reproduce and predict all the phenomena of
interest under all sorts of circumstances over all scales. As a result, modellers and
traffic engineers need to carefully select the models that are suitable for specific
applications (e.g. the evaluation of ITS). In many cases, this is not trivial, and for
some applications (e.g. in large mixed urban and freeway traffic networks) even
impossible.

An obvious solution is to use a combination of models that runs on different
spatial and temporal scales. Such multi-scale model is able to reproduce any traffic
phenomena at the desired scale. During the simulation of a multi-scale model, the
abstraction level of traffic flowmodel is switched dynamically, depending on prevail-
ing traffic conditions. For example, macroscopic models could be employed for fast
and efficient simulation of traffic networks such as freeways, whereas microscopic
models could be used to simulate and predict traffic conditions on specific points of
interest such as coordinated intersections. This approach is attractive if the required
simulation fidelity varies spatially. Examples of such approach can be found in [3,
10]. In these examples macro/meso and micro models are implemented on different
parts of the network.

Despite the widely acknowledged need for multi-scale modelling and simulation,
there is a scarcity of underpinning literature on themethodology and generic descrip-
tion of the process. One important question in this approach, relates to the criteria
that activates the switching mechanism. The time and position of shifting the mod-
elling paradigms should be chosen wisely to avoid inconsistency between integrated
models. Furthermore, finding the appropriate modelling scale that can accurately
reproduce the phenomena of interest is not a trivial task.

In this paper we first discuss the concept of choosing an appropriate level of traffic
model. In Sect. 2, a discrete mechanism to switch from one modelling representation
to the next is presented. This approach is based on the emergence and propaga-
tion of the traffic phenomena. Section4 is devoted to an experimental example that
demonstrates the applicability of our proposed methods. The paper concludes with
the results and conclusion.

1.1 Dynamic Modelling Scale Selection

Traditionally, a model is selected by a modeller or the analyst, who chooses a model
based on experience, heuristics and personal judgement, to depict events that are
assumed to occur on well-defined spatial and temporal scales. However, one might
argue that selecting the appropriatemodel for reproducing the phenomena of interest,
should not only depends on modeller’s experience, but it also closely relates to the
degree of complexity of the phenomena and the power of the model to predict them.

The complexity of traffic phenomena is observer dependant. Suppose that the phe-
nomena are reported by a sequence of observers observing the system at different
scales. For example, one of the observers looks at traffic from 1km above the ground.
Traffic for this observer appears as a fluid with propagated waves. The variation of
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density, flow and speed in this case are dependent to each other, but the observer can-
not see the inter-connected relationship between individual acceleration/declaration
and propagated waves. On the other hand, the observer who looks at traffic 100m
above the ground sees traffic as a collection of moving particles that are reactive to
each other as well as to the traffic state. This scale dependence reflects the observer’s
ability to distinguish details of the system. All observers observe the same system in
its entirety. Larger scale observers, however, see only redundant information.

To choose an appropriate model that can accurately reproduce a phenomenon of
interest, The scale of the model should match the observation scale that phenomena’s
complexity. The classification of various traffic models to micro, meso and macro
scales is not sufficient to understand the modelling’s characteristics at each scale.
Thus, we apply themodelling classification that is presented in [8]. This classification
categorises the traffic models based on behavioural law that governs the models and
representation scale of them.

The behavioural law scale makes a distinction between the models that their gov-
erning mathematical and computational formulation consider the individual behav-
iour of a driver (individual behavioural law) and themodels that consider the analysis
of the propagation of density or flows (collective behavioural law). The second cri-
terion is the representation scale. It differentiates the ability of models to predict and
reproduce the phenomena according to the scale at which the traffic is represented:
i.e. vehicle to flow representation. With such classification it is easier to find a model
that has sufficient detail to reproduce and predict a complex phenomenon.

2 Discrete Phenomena-Based Multi-scale Algorithm

In this paper, we present an algorithm to multi-scale modelling based on the notation
of event-based simulation [9]. The central assumption in this approach is that the
simulation model changes instantaneously in response to certain discrete sequence
of events. The events that trigger the switching mechanism from one modelling
paradigm to the next, is a set of traffic phenomena that are occurring at various
temporal and spatial scales. Emergence and propagation of traffic phenomena causes
the traffic states to change between free flow, synchronised flow and jam [5, 6].

The change of traffic state cause a discontinuity in traffic flow. This discontinuity
can be tracked by following the trajectory of the interface that separates the traffic
states (Γ (x, t)). The interface between traffic states is assumed to be sharp- meaning
that from one time and position point to the next, the traffic state is changing from
β1 to β2 and there is no diffuse phase between these two states. The sharp interface
Γ at any given time, separates the two traffic phases β1 and β2 so that:

β(z) =
⎧⎨
⎩

β1 for x > 0
β2 for x < 0
Γ for x = 0

(1)
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(a) (b)

Fig. 1 One dimensional representation of phase transition and interface between phases. Phase
field (a). Sharp interface (b)

In order to determine the time and position of sifting the modelling paradigms in
multi-scalemodelling approach, we propose to use the interface of phase transition to
act as an interface between implemented models. Lets define the phase field φ(x) ∈
[0, 1] to approximate the sharp interface topologies. We associate φ = 0 with phase
β1 and φ = 1 with phase β2. A direct description of the resulting sharp interface
topology would yield that φ(x) is a step function, see Fig. 1a.

The interface of phase transition Γ and respectively the interface between imple-
mented models, lies within the range 0 < φ < 1 and it is dynamically change its
position regards to the propagation of the phenomenon of interest. The presented
method in this part is inspired by the ideas in [2].

3 Experimental Case

To illustrate the applicability of our proposed solutions, the following experiment
is provided. The road section under consideration is 13km long, and contains a
ramp metering exactly half-way. Initially, the entire road stretch is modelled with
fast and efficient macroscopic LWR model. When the red light starts, a shock-wave
propagates to the upstream road section. Our phenomenon of interest is the queuing
and acceleration/deceleration process in the congested area.

The descriptive and explanatory information that is needed to simulate the queue
and vehicle’s decelerated in congestion enforce the use of a model that lies within
both individual behavioural law scale and vehicle representation. We chose IDM as
a microscopic model to reproduce and predict the vehicles behaviour in congestion.
Therefore, we simulate the queuing and acceleration process during the ramp meter-
ing with the microscopic model and the rest of the road section with the macroscopic
model.
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Table 1 IDM parameter settings

Parametres Quantity

Desired velocity, v0 100km/h

Safe time headway, T 1.6s

Maximum acceleration, a 0.73m/s2

Comfortable deceleration, b 1.67m/s2

Acceleration exponent, δ 4

Minimum jam distance, s0 2m

Jam distance, s1 0m

Vehicle length, l 5m

Table 2 LWR parameter settings

Parameters Quantity

Critical density, ρcri t 25veh/km

Jam density, ρ jam 150veh/km

Mean speed, V f 80km/hr2

As shorthandwe use superscript A and B to denote variables and quantities related
to the macroscopic and microscopic models respectively. Simulation time is set to
1h which is discretised into i = kΔt A, k = 0, 1, 2, . . . macroscopic time steps (e.g.
Δt A = 12 s) and j = kΔt B microscopic time step (e.g. Δt B = 1 s). The LWR is
numerically solved by Godunov scheme as reinterpreted for the LWR model by
[1, 7]. To satisfy the Courant-Friedrich-Levy (CFL) condition, the network is spa-
tially discretised to n = 1, 2, . . . N cells of each Δx = 260m.

The IDM variable and parameters can be found in Table1 and the LWR variables
are in Table2.

The discrete position of the interface Supi and Sdni can be determined as in [3, 4].
This interface isolates the two models such that average behaviour of models at

the interface is in agreement and as a result, traffic is locally consistent along the
interface.

Figure2 shows the result of the dynamic interface due to the development of
the shock-wave in 1h simulation in which 1 ramp meter takes place. Figure 3 shows
results of a 3h simulation in which three rampmeters activate. The simulation results
show that the dynamic interface ensures a correct wave propagation in multi-scale
model, and, as a result, do not induce unwanted shock waves, artificial modification
or oscillations of reality abstraction (network) when changing the representation.
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Fig. 2 Traffic flow resulting from red phase and dynamic interface developed by the shock-wave

Fig. 3 Red phases in sequence are tracked by dynamic interface in a 3h simulation

4 Conclusion

This article presents a new multi-scale simulation algorithm that enables the switch-
ingmechanism fromonemodelling paradigm to the next, depending on the prevailing
the traffic condition. The presented approach is based on the emergence and propa-
gation of traffic phenomena that are separately occurring in the traffic network. The
simulation results in the example case shows that we could successfully single out the
phenomenon of interest to simulate it with finer scale model. The dynamic interface
between models in this example, ensured the consistency of traffic features that are
passing through the interface.

Furthermore, we provided a concept of dynamically select an appropriate mod-
elling scale that can reproduce and predict the phenomena of interest with sufficient
accuracy and degree of details. This concept can eventually help model users to sys-
tematically select the fittest model for the purpose at the hand. Alsomodel developers
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can implement the modelling selection concept that is presented in this paper to find
the modelling scales that are not yet developed, but are needed.
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Travel Behaviour in case of Exceptional Events’ sponsored by the Dutch Foundation of Scientific
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Calibrating the Local and Platoon Dynamics
of Car-Following Models on the
Reconstructed NGSIM Data

Valentina Kurtc and Martin Treiber

Abstract The NGSIM trajectory data are used to calibrate two car-following
models—the IDM and the FVDM. We used the I80 dataset which has already been
reconstructed to eliminate outliers, non-physical data, and internal and platoon incon-
sistencies contained in the original data. We extract from the data leader-follower
pairs and platoons of up to five consecutive vehicles thereby eliminating all trajec-
tories that are too short or contain lane changes. Four error measures based on speed
and gap deviations are considered. Furthermore, we apply three calibration meth-
ods: local or direct calibration, global calibration, and platoon calibration. The last
approach means that a platoon of several vehicles following a data-driven leader is
simulated and compared to the observed dynamics.

1 Introduction

Nowadays, microscopic traffic data have become more available and provides infor-
mation about thousands of vehicle trajectories. As a result, the problem of analysing
and comparing microscopic traffic flow models with real microscopic data has
becomemore actual. In this paper,we consider theNGSIMI80data set for calibration.
Two car-following models of similar complexity are studied—the Intelligent-Driver
Model (IDM) [13] and the Full Velocity Difference Model (FVDM) [4]. We apply
four error measures to investigate the robustness of these models. To compare the
results with respect to these error measures, the two-sample Kolmogorov–Smirnov
test is used. Finally, we compare the residual errors of the global and platoon calibra-
tion methods to estimate the ratio between inter-driver and intra-driver variations.
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2 Car-Following Models Under Investigation

Two microscopic car-following models are considered—the IDM and the FVDM.
These are formulated as (coupled) ordinary differential equations and characterised
by an acceleration function which depends on the actual speed v(t), the approaching
rate Δv(t) = v − vl to the leader, and the gap s(t). Both considered models contain
five parameters and are therefore formally equivalent in their complexity.

The IDM is defined by the acceleration function [13]

v̇IDM(v,Δv, s) = a

[
1 −

(
v

v0

)4

−
(
s∗(v,Δv)

s

)2
]

(1)

This expression combines the acceleration strategy to reach a desired speed v0 with
a braking strategy that compares the actual gap s with the dynamically desired gap
s∗(v,Δv) = s0 + max(0, vT + vΔv/(2

√
ab)). A more detailed model description

can be found in [13].
The acceleration function of the FVDM model [4] is as follows

v̇FVDM(v,Δv, s) = vopt(s) − v

τ
− λΔv (2)

The model properties are defined by the optimal velocity function vopt(s). In this
paper we consider it as follows:

vopt(s) = v0
2

[
tanh

(
s

lint
− β

)
− tanh(−β)

]
(3)

3 The Data Set

The Next Generation Simulation (NGSIM) I-80 trajectory dataset [3] is considered
for calibrating. It was recorded from 4:00 to 4:15p.m. on April 13, 2005. The mon-
itored area is approximately 500m length and has 6 lanes. The internal and platoon
inconsistencies as well as the noise from original data measurements have already
been eliminated [7]. Calculating of derived quantities was performed and a smooth-
ing algorithm was proposed in [12]. NGSIM data contains information about 3366
vehicle trajectories, that is, for each car we have its current lane position, longi-
tudinal coordinate of its front centre, speed, and acceleration, its length and type
(motorcycle, auto or truck), ID of the immediate following and leading vehicle in the
current lane. A great part of the deviations between measured and simulated trajec-
tories can be attributed to the different driving styles, as has been shown in previous
works [5].Microscopic trafficmodels can easily cope with this kind of heterogeneity,
because different parameter values can be attributed to each individual drivervehi-
cle unit. To obtain these distributions of calibrated model parameters, a significant
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number of trajectories have to be analysed, that is why the NGSIM trajectory data
sets are considered in this work.

The consecutive trajectories used for the calibration are extracted by following
procedure:

1. Consider trajectory sets of more than 30s length because the calibration of shorter
ones does not sufficiently represent the car-following model properties.

2. Filter out all active and passive lane changes. We do this, because the calibrated
car-following models describe only the longitudinal dynamics.

3. Eliminate the first and last 5 s of the remaining trajectory sets to filter out some
inconsistencies. It allows to exclude the influence of not longitudinal effects such
as lane changes.

4. Filter out all trajectories on the right most (HOV) and left most (on-ramp) lanes.

4 Calibration Methodology

To find the optimal parameter values of a car-following model with a non-linear
acceleration function such as Eqs. (1) or (2), we need to solve a non-linear optimisa-
tion problem numerically. The MATLAB optimisation toolbox is used that provides
several algorithms for finding minimum of constrained non-linear multi-variable
function. In this case, the interior-point algorithm was used.

4.1 Simulation Setup and Calibration Methods

We initialise the microscopic model with the empirically given speed and gap, and
compute the trajectory of the following car. Then, it can be directly compared to the
speeds vdata(t) and gaps sdata(t) provided by the empirical NGSIM data.

Three calibration methods are considered:

• Local or direct calibration: at any time instant, the model’s acceleration function
is calibrated directly to the observed acceleration. No simulations are needed.

• Global calibration: the simulated trajectory of a follower with its prescribed leader
is compared to the empirical data.

• Platoon calibration: the dynamics of a platoon of several vehicles following each
other with a single data-driven leader are compared to the whole empirical dataset.

4.2 Objective Functions

The calibration procedure aims at minimising the difference between the measured
and simulated dynamic variables. Any quantity which represents aspects of the
driving behaviour can serve as an objective function, such as the gap s, speed v,
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speed difference Δv, or acceleration a. In the following, for global and platoon cali-
bration the errors in the gap s(t) and speed v(t) are used. To assess quantitatively the
error between measured and simulated data, an objective function is needed. Three
types of measures are considered. The absolute error measure is given by

Sabs =
∑n

i=1(s
sim
i − sdatai )2∑n

i=1(s
data
i )2

(4)

while the relative error measure reads

Srel = 1

n

n∑
i=1

(
ssimi − sdatai

sdatai

)2

(5)

The relative measure is more sensitive to small gaps while the absolute measure
focusses on large gaps. Due to the weighting bias of these two methods, we also
consider the mixed error measure having a more balanced weighting:

Smix =
∑n

i=1(s
sim
i − sdatai )2/|sdatai |∑n

i=1 |sdatai | (6)

In some papers, the speed instead of the gap is used to measure the performance [2,
8, 9]. To compare the calibration results corresponding to different variables, we also
consider the absolute error measure Sabsv which is defined as in Eq. (4), but with the
speed as the dynamic quantity.

4.3 Parameter Constraints

The IDM and the FVDM contain five parameters to identify by the calibration. To
restrict the solution space for optimisation to reasonable parameter values without
excluding possible solutions, box constraints are applied. For the IDM, the desired
speed v0 is restricted to the interval [5, 40]m/s, the minimum distance s0 to [0,
10]m, the desired time gap T to [−5, 5] s, and the maximum acceleration a and the
comfortable deceleration b to [0.01, 10]m/s2. We explicitly allow negative values
for T , because some trajectories represent negative time gap values. For the FVDM,
the box constraints are [0, 70]m/s for the desired speed v0, [0.05, 20] s for relaxation
time τ , [0.1, 100]m for the interaction length lint , [0.1, 10] for the form factor β, and
[0, 3]1/s for the sensitivity parameter λ.

5 Calibration Results

Both models have been calibrated for all trajectory pairs or platoons satisfying the
filtering criteria of Sect. 3. For the local and global approach, 876 trajectory pairswere
under investigation, whereas for the platoon calibration only 251 trajectory sets were
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studied. For each calibration approach, optimal parameter value distributions were
obtained. Distributions corresponding to different error measures were compared by
means of the two-sample Kolmogorov–Smirnov test.

5.1 Global and Platoon Calibration

Figure1 visualises the distributions of the parameter values of the IDM (first row)
and the FVDM (second row) as obtained from the global calibration of all the 876
trajectory pairswith respect to the errormeasure based on the absolute gap differences
(Eq.4). Only estimates with residual errors below 50% are considered.

To compare distributions obtained with four different measures for each specific
model parameter the two-sample Kolmogorov–Smirnov test was used. In this case,
the Kolmogorov–Smirnov statistic is

Dn,n′ = sup |F1,n(x) − F2,n′(x)| (7)

where F1,n and F2,n′ are the empirical distribution functions of the first and the second
sample respectively. The Kolmogorov–Smirnov statistic is in the range from 0.02
(parameter s0, relative and mixed error measures) to 0.27 (parameter b, absolute with
gaps and absolute with speeds error measures) for the IDM and from 0.02 (parameter
λ, absolute and mixed error measures) to 0.21 (parameter λ, relative and absolute
with speeds error measures) for the FVDM.
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Fig. 1 Calibration results for IDMand FVDM if calibrated (global calibration) on the errormeasure
of the absolute gap differences. Plots are histograms of the resulting parameter values
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Fig. 2 Calibration results for IDM and FVDM if calibrated (platoon calibration) on the error
measure of the absolute gap differences. Plots are histograms of the resulting parameter values

For the platoon approach we use trajectory sets which contain at least five vehicles
following each other. In accordancewith filtering rules, 251 data setswere considered
for calibration. The optimisation procedure was evaluated with four error measures
as well. Figure2 presents the parameter values with respect to the error measure
based on the absolute gap differences, which estimated errors are less or equal to
100% for both models. In case of platoon calibration the Kolmogorov–Smirnov
statistic is in the range from 0.05 (parameter b, relative and mixed error measures)
to 0.38 (parameter b, absolute with gaps and absolute with speeds error measures)
for the IDM and from 0.05 (parameter lint , absolute and mixed error measures) to
0.35 (parameter lint and β[1], relative and absolute with speeds error measures) for
the FVDM.

Table1 presents the obtained calibration errors. For the global approach these
range from8.3 to 12.5%,which is lower than typical error ranges obtained in previous
studies [1, 5, 10, 11]. Platoon method corresponds to higher error values, because
it does not allow to distinguish between drivers. These are in the range of 12.8 to
32.4%.

5.2 Inter-driver and Intra-driver Variations

Let us consider the absolute gap error εi = ssimi − sdatai for the specific trajectory at
time ti . Then we can calculate the variance of this error considering that the mean
is equal to zero. It is well-known that variations in driving behaviour come in two
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Table 1 Calibration errors for IDM and FVDM

IDM FVDM

Global Platoon Global Platoon

abss 0.098 0.256 0.097 0.239

rels 0.125 0.324 0.112 0.303

mixs 0.111 0.296 0.105 0.279

absv 0.086 0.131 0.083 0.128

Table 2 Inter-driver and intra-driver variation. IDM and FVDM

IDM FVDM

abss absv abss absv

Var(εglobal ), [m2] 1.74 0.35 1.83 0.32

Var(εsuperglobal ), [m2] 12.01 0.57 10.42 0.54

Var(εinter ), [m2] 10.27 0.22 8.59 0.22

Var(εinter )/Var(εintra), [1] 5.9 0.6 4.7 0.7

forms—inter- and intra-driver variations. In case of global approach the trajectory of
one vehicle is calibrated and, thus only intra-driver variation is considered, that is,
εglobal = εintra . Theplatoonmethod incorporates several driver styles simultaneously
and, as a result takes into account both types of variation ε platoon = εintra + εinter .
Assuming no correlation between these two types of errors cov(εintra, εinter ) = 0,
we can derive the inter-driver variation as follows

Var(εinter ) = Var(ε platoon) − Var(εglobal) (8)

Both values in the right-hand side of Eq. 8 can be directly calculated. Table2 visu-
alises the results.

6 Conclusion

The NGSIM trajectory data were used to calibrate two car-following models—the
IDM and the FVDM. Four error measures were considered basing on speeds and dis-
tances to the leader. Three approaches were used for estimating model parameters—
local, global and platoon calibration. During the global calibration the error rates of
the models in comparison to the data sets for each model reach from 8.3 to 12.5%.
The global method incorporates only intra-driver variability (a non-constant driving
style of human drivers), because it considers only one vehicle following its leader.
On the contrary, the platoon approach exploits several drivers simultaneously and,
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as a result, the inter-driver variation is incorporated as well. Calibration errors in this
case are higher and were found to be between 12.8 and 32.4%.

The parameter values distributions for the IDM represent negative time gaps
T as well. Studying of the empirical trajectories with negative T shows the non-
trivial driver behaviour—speed increasing and gap decreasing simultaneously. Such
behaviour could be interpreted as failed lane changing.

A significant part of the deviations between measured and simulated trajectories
can be attributed to the inter-driver variability [5, 6]. In this paper we estimated the
ratio between inter-driver and intra-driver variations. It was found between 0.6 and
0.7% for calibration according to speeds and from 4.7 to 5.9% calibration with gaps.
This ratio is much higher for gaps because, in congested traffic, the speed is more or
less determined by the leading vehicles, while the gap can be chosen freely.

As for benchmarking of car-following models, no model considered in this study
appears to be significantly better. Calibration with four objective functions and the
two-sample Kolmogorov–Smirnov test demonstrates the same robustness properties
of both investigated models.
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Scaling from Circuit Experiment to Real
Traffic Based on Optimal Velocity Model
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Shin-ichi Tadaki and Satoshi Yukawa

Abstract The optimal velocity (OV) model was proposed to explain the physical
mechanism of jam formation. The emergence of a traffic jam can be understood as
a kind of dynamical phase transition. We confirmed the physical mechanism by two
experiments. In this study, we investigate the relation between experimental results
and observations of real traffic based on the OV model. In the OV model, the critical
density at which a traffic jam occurs is determined by the OV function. The OV
function is estimated from data of headway and velocity obtained by the experiments.
Then,wepropose a scaling rule of theOVfunction from the experiments to real traffic.
Using this rule, we obtain critical density as a function of a single parameter. The
obtained critical density is consistent with the observed values for highway traffic.
From this result, we conclude that the jam formation in real traffic is explained by
the same mechanism as the circuit experiments.
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1 Introduction

The optimal velocity (OV) model was proposed to explain why a traffic jam occurs
[4]. The occurrence of a traffic jam is considered to be a kind of dynamical phase
transition. If the car density is low, homogeneous flow, which corresponds to free
flow in real traffic, is realised. If the car density exceeds a certain critical value, the
homogeneous flow becomes unstable and transits to jammed flow. In order to confirm
this physical mechanism of traffic jam, we carried out two circuit experiments. In the
first experiment [12], we confirmed that the traffic jam occurs without bottlenecks,
that is, without any causes which can be identified. The second experiment consisted
of many sessions with various car density. From the experiment, we estimated the
critical density [14]. This result shows that the density is the control parameter of jam
formation. As a result of two experiments, the physical mechanism of traffic jam is
confirmed. However, there is a criticism that circuit experiments are unrealistic situ-
ations and the results obtained by those experiments cannot be applied to real traffic.

In this study, we investigate the relation between circuit experiments and real
traffic.Wefirst determine the parameters of theOVmodel in the two experiments. The
experimental values are different from those for real traffic, because the maximum
velocities in the circuit experiments are smaller than those in real traffic. Next, we
find a relation between the parameters in the circuit experiments and real traffic, and
define a scaling rule for the parameters. If the relation is established, we can predict
the critical density in real traffic without additional estimation of parameters. In our
method, the critical density is given by a function of a single parameter. The predicted
critical density is tested against observations of real traffic.

This paper is organised as follows. In Sect. 2, we briefly review the OV model.
The estimation of the model parameters is shown in Sect. 3, and the scaling relation
between the experiments and real traffic is shown in Sect. 4. A summary is given in
Sect. 5.

2 Review of Model

The OV model is expressed by the equations of motion

d2xi
dt2

= a

[
V (xi+1 − xi ) − dxi

dt

]
, (1)

where xi is the position of the i th car. The parameter a is called sensitivity. The OV
function V (h) expresses the optimal velocity as a function of headway h. Typically,
we adopt a hyperbolic tangent function as the OV function

V (h) = α tanh[β(h − h0)] + v0. (2)

Sensitivity a and the OV function V are assumed to be common to all cars.
The OV model predicts that a homogeneous flow becomes unstable and transits

to a jammed flow if
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dV (h)

dh

∣∣∣∣
h=hmean

>
1

2
a , (3)

where hmean is the mean headway. Then, the critical density ρc = 1/hcritical can be
analytically calculated from Eq. (3).

ρc =
[
1

β
cosh−1

√
2αβ

a
+ h0

]−1

. (4)

Therefore, the difference of critical density between the experiments and real traffic
is reduced to the difference in the OV function.

Properties of traffic jams in the OV model are summarised as follows. When the
jammed flow becomes stationary, the trajectories of all cars in the headway-velocity
space are expressed by a hysteresis-like loop shown in Fig. 1 [3]. In other words, the
motion of all cars becomes periodic. In most of the period, however, cars stay in the
states represented by the two cusps of the loop. The lower cusp represents the state
of cars inside jam clusters, and indicates the minimum headway at which cars stop.
The upper cusp represents the state in which cars are running almost freely in the
regions outside the jam clusters. The backward velocity of a jam cluster is given by
the velocity-axis intercept of the line connecting the upper and lower cusps (Fig. 1).
Here, we note that the inflection point of the hyperbolic tangent function also lies on
this line.

Because the motion of all cars is periodic, each car retraces the motion of the
preceding car with a certain time delay. The time delay T is equal to the time interval
at which cars depart from a jam cluster one after another. Therefore, T is given by

T = hmin

vback
, (5)

where hmin is the minimum headway and vback is the backward velocity of jam
clusters.

inflection point

backward velocity

ve
lo

ci
ty

minimum headway

headway

Fig. 1 Typical hysteresis-like loop. The OV function is represented by a thin solid curve. The thick
solid loop represents the periodic motion of the cars. The dashed line connects two cusps. Black
dots on the line represent the inflection point, the minimum headway and the backward velocity,
respectively
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It is known that a relation exists between sensitivity a and the time delay T in the
framework of the OV models [1, 2, 8, 13]. The value of aT is known as 1.6 ∼ 1.8,
and is insensitive to changes in the model parameters. Here, we set

aT = 1.8. (6)

Then, the sensitivity is not a free parameter, and is essentially determined by the OV
function through T .

3 Estimation of OV Function

In this section, we estimate the parameters in the OV functions from the experimen-
tal data. OV functions express the relation between headway and velocity. In the
experiments, three types of flow, free, jammed, and stop-and-go flow are realised.
Figure2 shows relations between headway and velocity for the three types of flow.
Obviously, data points cover only a part of the OV function in the cases of free and
jammed flows. We can estimate the OV function in the case of stop-and-go flows.

In the estimation, we first choose five representative points to determine the OV
function, and next fit a function to these points.

Two of the five points are two cusps of the loop shown in Fig. 1. The lower cusp is
given by the minimum headway, which is the headway in jam clusters. To determine
the minimum headway, we select data of stopped cars and average their headway.
The upper cusp is found in the data sequence at the moment that stopped cars exist.

Three of the five points are determined by the distribution of data points of head-
way and velocity. We first obtain smooth distribution by Parzen window density
estimation. In this method, we assign a Gaussian distribution for each data point
and sum them over all data points. Two peaks and one saddle point of the smoothed
distribution are found. Then, we can determine five representative points. Figure3a
shows the smoothed distribution and the five points. The OV function fitted to these
points is obtained by the standard least square method. The estimated OV function
is also shown in Fig. 3a. We observed the stop-and-go flow in four cases in the two
experiments. Then, four OV functions are obtained for these cases. Figure3b shows
the OV functions for four cases.
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Fig. 2 Headway-velocity relations for the three types of flow: free flow (a); jammed flow (b);
stop-and-go flow (c) Dots represent headways and velocities for all cars
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Fig. 3 OV functions. Smoothed distribution of headway and velocity. Colours represent the loga-
rithm of the summation of Gaussian distributions. Black dots represent two peaks and a saddle point
of the distribution. Two cusps are also shown by black dots. Solid curve represents the fitted OV
function (a), OV functions are determined for four cases of stop-and-go flow. Two legends 2030
and 2934 represent session IDs in the second experiment, and run (I) and (II) represent two sessions
in the first experiment (b)

4 Scaling Relation

In this section, we propose a scaling rule for the OV function. The OV function
(Eq.2) has four parameters, α, β, h0, and v0. The scaling rule should be defined by
a single scaling parameter, and therefore three relations are necessary to reduce free
parameters. For this purpose, we use two observational facts.

One is a relation among inflection points for experiments and real traffic. The
inflection points for real traffic can be easily identified from car following experi-
ments on real highways [11, 16]. Figure4 shows examples observed onChuo, Tomei,
and Tokyo metropolitan highways [11]. The inflection point is considered to be the
most unstable point in the OV model, and therefore is expected to exist at the place
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Fig. 5 Black squares
represent inflection points
from our experiments.White
and black circles represent
inflection points from
Japanese highways reported
in [11] and [16], respectively.
Solid line represents the line
fitted to the data
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where there are no data points. The position of the inflection point for each case is
estimated by eye.

Figure5 shows inflection points observed in the experiments and on real highways.
We suppose that there is a linear relation

v = 0.7(h − 2), (7)

among inflection points.
The other observational fact is that the backward velocity of jam clusters is com-

mon for the experiments and real traffic. Observations on real highways show that
the backward velocity is roughly 20km/h [12, 15]. On the other hand, the backward
velocity is roughly 6m/s in our circuit experiment [14]. Obviously, both jam clusters
have almost the same backward velocity.

Now, we can define a scaling rule by use of the above two facts and the property of
jam in the OV model. The scaling rule is summarised as follows: (1) Inflection point
lies on the line (Eq.7), (2) Backward velocity is 6 m/s, (3) The OV function passes
the point corresponding to minimum headway determined by the infection point and
the backward velocity. Figure6 shows an illustration which explains the scaling rule.

From this scaling rule, we can find relations among parameters of OV functions.
Suppose two OV functions for experiments and for real traffic as
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V (h) = α tanh[β(h − h0)] − v0, (8)

V ′(h) = α′ tanh[β ′(h − h′
0)] − v′

0, (9)

respectively. Then, the relations among parameters are given by

α′ = v′
0

v0
α, (10)

β ′ = h0 − hmin

h′
0 − h′

min

β, (11)

h′
min = vback

v′
0 + vback

h′
0 . (12)

and Eqs. (6) and (7). Any of parameters, α′, β ′, etc., can be used as scaling parameter.
For convenience, we adopt the maximum velocity α′ + v′

0 as the scaling parameter,
because it corresponds to the speed limit of a road.

Then, the critical density (Eq.4) can be expressed by a function of the maximum
velocity. Because we found four OV functions as shown in Fig. 3b, we obtain four
expressions for the critical density. Figure7 shows the profiles of critical density in
the four cases and observed values on real highways [5–7, 9, 10] and the experiments
[14]. The estimated critical density roughly agrees with the observed values.

5 Summary

In this study, we investigated the relation between critical densities for the circuit
experiments and real traffic based on the OV model. In the OV model, the difference
of critical densities is essentially determined by the difference of OV functions.
For the purpose, we first estimated the OV function from the data obtained by the
circuit experiments. In order to find the relation between OV functions, we used two
observational facts. One is the relation among inflection points of OV functions, and
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the other is the common backward velocity of jam clusters. These facts determined
the scaling relations among the parameters of OV functions. As a result, we can
express the critical density as a function of a scaling parameter. The agreement of
estimated critical density with observed values is fair. Then, we can conclude that
the jam formation in real traffic is explained by the same mechanism as in the circuit
experiments.
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Traffic Flow Optimisation at Sags
by Controlling the Acceleration
of Some Vehicles

Bernat Goñi-Ros, Victor L. Knoop, Kenichi Kitahama, Bart van Arem
and Serge P. Hoogendoorn

Abstract Sags are bottlenecks in freeway networks. Nowadays, there is a growing
interest in the development of traffic management measures for sags based on the
use of in-car systems. This contribution determines the movements that individual
(equipped) vehicles should make in order to minimise congestion. Specifically, we
optimise the accelerations of some selected vehicles as they move along a one-lane
freeway stretch with a sag, setting as objective the minimisation of total travel time.
The optimisation results highlight the relevance of two traffic management strategies:
(a) motivating drivers to accelerate fast along sags; and (b) limiting the inflow to
sags. Also, they suggest ways to apply these strategies in practice by regulating
the acceleration of vehicles equipped with in-car systems. These results prove the
usefulness of the proposed method as a tool for control measure development.

1 Introduction

Sags (or sag vertical curves) are freeway sections along which the gradient increases
gradually in the direction of traffic. The capacity of sags is lower than that of sections
with other vertical profiles [1]; hence, traffic often becomes congested at sags in high-
demand conditions [2]. For example, in Japanese intercity freeways, 60 % of traffic
jams occur at sags [1]. The main cause of congestion appears to be that most drivers do
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not accelerate enough as they move along the vertical curve [3]. Consequently, they
keep longer headways than expected given their speed [4]. This leads to periodic
formation of stop-and-go waves when traffic demand is sufficiently high [5]. The
bottleneck is generally the end of the vertical curve [6]. In the last decades, various
traffic control measures have been proposed for mitigating congestion at freeway
sags. Most of these measures use variable message signs as actuators [1, 7, 8].
Recently, however, there is a growing interest in developing traffic control measures
that use in-car systems as actuators [9, 10]. Although this type of measures have
great potential, they are mostly in early phases of development. We argue that, at
this stage, it is important to determine how equipped vehicles should move at sags
in order to minimise congestion. This would lay the theoretical foundation for the
development of effective traffic control applications.

The main goal of this paper is to identify the optimal acceleration behaviour of
vehicles equipped with in-car systems at sags and the related effects on traffic flow,
assuming low penetration rates. To this end, we optimise the accelerations of some
vehicles of a traffic stream as they move along a one-lane freeway stretch with a
sag, considering as objective the minimisation of total travel time. This is done for
various scenarios defined by the number of controlled vehicles and their positions
in the stream. By analysing the results, we identify the main strategies that vehicles
equipped with in-car systems should use at sags to minimise congestion.

2 Optimisation Problem

2.1 System Elements

The system consists of a stream of n vehicles moving along a single-lane freeway
stretch. Every vehicle is assigned a number i that corresponds to its position in
the stream (i = 1, 2, . . . , n). The set that contains all numbers i is denoted by N .
A total of m vehicles are controlled vehicles. The subset of N that contains the
numbers i of these vehicles is denoted by M . Each controlled vehicle is assigned a
number j that corresponds to its position in relation to the other controlled vehicles
( j = 1, 2, . . . ,m). The freeway stretch has no ramps and its vertical profile is known.

2.2 State and Control Variables

The state variables are: (a) position of all vehicles along the freeway (ri , ∀i); (b)
speed of all vehicles (vi , ∀i); and (c) amount of freeway gradient compensated by the
drivers of all vehicles (Gcom,i , ∀i). These variables are the ones needed to determine
the trajectories of all vehicles in the space-time plane (see Sect. 2.3). The state at
simulation time step τ is defined as follows:
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x(τ ) =
⎡
⎣

r1(τ ) r2(τ ) . . . rn(τ )

v1(τ ) v2(τ ) . . . vn(τ )

Gcom,1(τ ) Gcom,2(τ ) . . . Gcom,n(τ )

⎤
⎦ (1)

The control variables are the maximum accelerations of all controlled vehicles
(u j , ∀ j). Section 2.3 describes how u j influences the actual vehicle acceleration. The
control input at control time step κ is defined as follows:

u(κ) = [
u1(κ) u2(κ) . . . um(κ)

]
(2)

Different counters are used for simulation and control time steps (τ and κ) because
the control time step length (Tc) can be assigned a different value than the simulation
time step length (Ts), as long as Tc is a multiple of Ts.

2.3 State Dynamics

The position and speed of all vehicles change over time as follows:

ri (τ + 1) = ri (τ ) + vi (τ ) · Ts + 0.5 · ai (τ ) · T 2
s (3)

vi (τ + 1) = vi (τ ) + ai (τ ) · Ts (4)

In Eqs. 3 and 4, ai (τ ) denotes the acceleration of vehicle i at time step τ , which is
calculated as follows. For non-controlled vehicles, ai (τ ) is equal to the acceleration
given by the car-following model presented in [11] (aCF,i (τ )). For controlled vehicles,
ai (τ ) is the minimum of the control input (u j (κ)) and aCF,i (τ ). Therefore:

ai (τ ) =
{
aCF,i (τ ) if i /∈ M

min(u j (κ), aCF,i (τ )) if i ∈ M
(5)

where i and j are the same vehicle, and κ is such that τ · Ts ∈ [κ · Tc, (κ + 1) · Tc).
The car-following model has the following variables: speed, relative speed, spac-

ing, gradient and compensated gradient (Gcom). The gradient is dependent on the
freeway location. The way Gcom changes over time is explained in [11].

2.4 Cost Function and Optimisation Problem

The cost function (J ) is defined as the total travel time of all vehicles from their
initial positions to the arrival point R:

J (x(0), x(1), . . . , x( T
Ts

),u(0),u(1), . . . ,u( T
Tc

)) =
n∑

i=1

(
Ts · τR,i + Δti

)
(6)
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where τR,i denotes the last simulation time step at which vehicle i is upstream of R:

τR,i = max (τ | ri (τ ) ≤ R) (7)

and Δti denotes the time required by vehicle i to move from its position at time step
τR,i to point R, which is calculated by solving the following quadratic equation:

ai (τR,i )

2
· (Δti )

2 + vi (τR,i ) · Δti + (ri (τR,i ) − R) = 0 (8)

The discrete-time optimisation problem, which is non-linear and non-convex, can
be formulated as the following mathematical program:

Find u∗(0),u∗(1), . . . ,u∗( T
Tc

)

that minimise J (x(0), x(1), . . . , x( T
Ts

),u(0),u(1), . . . ,u( T
Tc

))

subject to:
x(0) = x0 (9)

u(κ) ∈ U , for κ = 0, 1, 2, . . . , T
Tc

(10)

x(τ + 1) = f(x(τ ),u(κ)), for τ = 0, 1, 2, . . . , T
Ts

(11)

where κ is such that τ · Ts ∈ [κ · Tc, (κ + 1) · Tc).
In Eq. 9,x0 denotes the initial state, which is assumed known. In Eq. 10,U denotes

the admissible control region. T is the total simulation period.

3 Experimental Set-Up

We carried out a series of optimisation experiments that entailed solving the problem
presented in Sect. 2.4 (using sequential quadratic programming) for various scenar-
ios. The goal of these experiments was to determine the optimal acceleration behav-
iour of controlled vehicles at sags (and the related effects on traffic flow), assuming
low penetration rates and nearly-saturated traffic conditions.

Eight scenarios were defined. In all scenarios, the traffic stream contains 300 vehi-
cles (n = 300). The scenarios differ in the number of controlled vehicles (m) and
their positions in the stream (set M). To define the scenarios, we set the number of
controlled vehicles to 0, 1, 2 or 3, and their positions to n

4 , 2n
4 and/or 3n

4 . A scenario
was defined for every possible configuration of set M .

All other inputs are the same in all scenarios. The simulation time step length
(Ts) is 0.5 s and the control time step length (Tc) is 8 s. The total simulation period
(T ) is 800 s. The freeway stretch can be divided in three consecutive sections:
(a) constant-gradient downhill section; (b) sag vertical curve; and (c) constant-
gradient uphill section. The sag vertical curve is 600 m long. Upstream and down-
stream of the sag, the freeway slope is equal to −0.5 % and 2.5 %, respectively.



Traffic Flow Optimisation at Sags by Controlling Some Vehicles 535

Table 1 Values of the car-following model parameters

Description Value Units

Desired speed 120 km/h

Maximum acceleration 1.4 m/s2

Maximum comfortable
deceleration

2.1 m/s2

Net distance headway at
standstill

3 m

Safe time headway 1.2 s

Congestion factor on safe time
headway

1.0 Dimensionless

Sensitivity to
non-compensated gradient

22 m/s2

Maximum gradient
compensation rate

0.0004 s−1

Along the vertical curve, the gradient increases linearly over distance. The arrival
point used to calculate travel times (R) is 3400 m downstream of the end of the sag.
All vehicle-driver units are 4 m long and are assigned the same value for every para-
meter of the car-following model (see Table 1). At time zero, the initial speed of all
vehicles is equal to the desired speed (120 km/h), the first vehicle of the stream is
located on the constant-gradient downhill section (3000 m upstream of the sag), and
the traffic density is the critical density of that section. Initially, the compensated
gradient is equal to the actual gradient for all vehicle-driver units, hence the freeway
gradient has no influence on vehicle acceleration. The set of admissible maximum
acceleration values is the same for all controlled vehicles and for all control time
steps: it contains all real numbers between −0.5 and 1.4 m/s2.

4 Results

The optimisation results show that the optimal acceleration behaviour of controlled
vehicles is defined by two strategies. Sections 4.1 and 4.2 describe the characteristics
of these strategies and their effects on traffic flow.

4.1 Primary Strategy

The primary strategy is used by all controlled vehicles in all scenarios. It involves
performing a four-phase manoeuvre in the sag area (see for example Fig. 1). The
first phase (D1) begins upstream of the sag or right after entering it. During this
phase, controlled vehicles decelerate moderately (at the minimum acceleration rate
allowed by the controller) and their distance headway increases considerably. During
the second phase (A1), which begins halfway through the vertical curve, controlled
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Fig. 1 Example of four-phase manoeuvre in the sag area (scenario with M = {75}). The behaviour
of vehicle 75 in the control scenario (C) and the no-control scenario (NC) are shown together for
comparison purposes: speed over time (vehicle 75) (a); position over time (vehicles 74 and 75) (b)
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Fig. 2 Speed contour plots: no-control scenario (a); the scenario with M = {75} (A is region of
low traffic speed and limited flow; B is a region of high traffic speed and high flow) (b)

vehicles accelerate fast (with maximum acceleration rates up to 1 m/s2 or higher)
and their distance headway decreases quickly. The third phase (D2) begins on the
last part of the vertical curve. In this phase, controlled vehicles decelerate slowly in
order to adjust to the behaviour of the leader. Their distance headway continues to
decrease because the preceding vehicle is slower. Controlled vehicles catch up with
their leader at around the end of the sag. From that point on, controlled vehicles
simply accelerate to the desired speed (fourth phase, A2).

In all cases, the type of manoeuvre described above has two main effects on traffic
flow. Firstly, it induces the first group of vehicles located behind the controlled vehicle
(up to 85 vehicles in some cases) to accelerate fast along the sag. As a result, traffic
speed at the end of the vertical curve (bottleneck) increases and stays moderately
high (70–90 km/h) for a particular period (2–3 min), contrary to what happens in the
no-control scenario (compare Fig. 2a, b). The main consequence of this increase in
traffic speed is that the flow at the bottleneck increases by up to 5 %, which leads
to a decrease in total travel time. Secondly, every manoeuvre triggers a stop-and-go
wave on the first part of the sag (see Fig. 2b) that temporarily limits the inflow to the
vertical curve. Limiting the inflow is beneficial because it slows down the formation
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Fig. 3 Speed (a) and time headway (b) of every vehicle at the end of the sag in: (i) the no-control
scenario; (ii) the control scenario with M = {150} (including the supporting strategy); and (iii) a
virtual scenario corresponding to the scenario with M = {150} in which the supporting strategy
was excluded from the solution

of congestion at the end of the sag, hence high levels of sag outflow can be maintained
for a longer period of time.

4.2 Supporting Strategy

The supporting strategy is only applied by some controlled vehicles in some sce-
narios. It consists in performing one or more deceleration-acceleration manoeuvres
upstream of the sag, catching up with the preceding vehicle before entering the ver-
tical curve. The characteristics of these manoeuvres are very case-specific, but their
overall effect on traffic flow is similar in all cases1. Essentially, they change the
location and severity of congestion upstream of the vertical curve in such a way
that the inflow to the bottleneck is slightly lower than if the supporting strategy was
not applied. As a result, the primary strategy is able to produce high traffic speeds
and flows at the end of the sag for a slightly longer period of time (see for example
Fig. 3a, b). This causes additional total travel time savings. It is important to note,
however, that in all scenarios the primary strategy is the one that contributes the most
to reduce the total travel time.

5 Conclusions

The goal of this paper was to identify the main strategies that define the optimal
acceleration behaviour of vehicles equipped with in-car systems at sags and their
effects on traffic flow, considering as objective the minimisation of total travel time.

1The effects of the supporting strategy have been identified by comparing the scenarios in which
some or all controlled vehicles use this strategy with corresponding virtual scenarios in which the
supporting strategy was excluded from the solution.
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To this end, we optimised the accelerations of some vehicles of a traffic stream that
moves along a single-lane freeway stretch with a sag. Our findings provide valu-
able insight into how congestion can be reduced at sags by means of traffic control
measures based on the use of in-car systems. More specifically, they highlight the
relevance of motivating drivers to accelerate fast along sags and limiting the inflow
to the vertical curve. In addition, they indicate ways to do that by regulating the
acceleration of equipped vehicles. Our findings also prove the usefulness of the pro-
posed optimisation method as a tool for control measure development. We conclude
that this method could be used to identify effective traffic management strategies for
other types of bottlenecks, possibly considering alternative control objectives.

Further research is necessary to determine whether the traffic management strate-
gies identified in this paper would also be the most effective in other scenarios (such
as scenarios with multi-lane freeways, higher penetration rates and/or lower traffic
demand). In addition, further research is necessary to translate the identified strate-
gies into implementable traffic control measures (e.g., cooperative adaptive cruise
control applications).
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Impact of Synchronised Flow
in Oversaturated City Traffic
on Energy Efficiency of Conventional
and Electrical Vehicles

Peter Hemmerle, Micha Koller, Gerhard Hermanns,
Michael Schreckenberg, Hubert Rehborn and Boris S. Kerner

Abstract In this study of city traffic, we show that empirical synchronised flow
patterns, which have been revealed recently in oversaturated traffic, exhibit consid-
erable impact on the energy efficiency of vehicles. In particular, we have found that
energy consumption in oversaturated city traffic can decrease considerably when
the oversaturated city traffic consists of synchronised flow patterns rather than con-
sisting of moving queues of the classical traffic flow theory at traffic signals. Using
empirical GPS data measured by navigation devices on two different road sections in
Düsseldorf, Germany, we show that synchronised flow patterns and moving queues
differ in their cumulated vehicle acceleration (a sum of positive speed differences
along a vehicle trajectory) despite similar mean speeds. Energy efficiency in return
is dependent on the cumulated vehicle acceleration. We consider both the fuel con-
sumption of conventional vehicles with combustion engines and the energy balance
of electrical vehicles.
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1 Introduction

Synchronised flow is known to be one of the three traffic phases in Kerner’s three-
phase theory of traffic [6–10]. The three phases are:

1. Free flow.
2. Synchronised flow.
3. Wide moving jams.

Congested highway traffic is subdivided into the synchronised flow phase and the
wide moving jam phase. Recently, it was predicted that synchronised flow patterns
(SPs) should exist in oversaturated city traffic at traffic signals as well [13].

Real field GPS (global positioning system) data measured by navigation devices
are commonly used for on-line route guidance. An analysis of such data has con-
firmed the existence of SPs in oversaturated city traffic [12]. It has been revealed
that oversaturated city traffic after speed breakdown consists of SPs, sequences of
moving queues (MQs) corresponding to the classical theory of city traffic [1–3, 15,
16, 18], and mixtures of these two spatio-temporal traffic patterns.

In this paper, we study the impact of SPs in oversaturated city traffic on the energy
efficiency of vehicles. We compare SPs and MQs with regard to their cumulated vehi-
cle acceleration, which is a sum of positive speed differences. We relate the cumulated
vehicle acceleration to energy efficiency by means of macroscopic energy matrices.
We address both conventional vehicles with a combustion engine and electrical vehi-
cles. The data basis of this work are empirical anonymised GPS data from navigation
devices, empirical data of fuel consumption and electrical energy measured in field
trials with vehicles, and microscopic speed and acceleration data from traffic flow
simulations.

2 Empirical Synchronised Flow Patterns
in Oversaturated City Traffic

For the study of spatio-temporal traffic patterns in oversaturated city traffic we use
anonymised GPS probe data measured by navigation devices in vehicles provided
by the company TomTom. A navigation device measures the GPS locations of the
vehicle at time instants tn with a fixed time interval ΔT = tn+1 − tn between GPS
measurements. In on-line applications, ΔT = 5 s is commonly used. We consider
GPS probe data from two road stretches in the city of Düsseldorf, Germany: a 630 m
section of Völklinger Straße and a 450 m section of Südring (see [4] for sketches of
these road sections). There is a traffic signal at the downstream end of both sections
and no traffic signals between their upstream and downstream ends. Measurements
with stationary traffic detectors confirm that on these road stretches oversaturated
traffic occurs on many days [12].
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Fig. 1 Empirical examples of single-vehicle speeds from anonymised GPS probe data measured by
navigation devices in vehicles on the roads Völklinger Straße and Südring in Düsseldorf, Germany.
Dash-dotted lines indicate the time instant of the first measurement after the vehicle has passed the
traffic signal and thus left the road section under consideration: synchronised flow patterns (SPs)
(a); sequences of moving queues (MQs) [4] (b)

Empirical single-vehicle speeds derived from GPS data are shown in Fig. 1. In
Fig. 1a, the vehicles stop no more than once at the traffic signal location before
passing the signal. Before these stops, the vehicles traverse SPs: they move with a
speed that is considerably lower than free flow speed, but within the SP, they do
not stop, and hence there is no flow interruption. In contrast, when vehicles traverse
MQs (Fig. 1b), traffic flow is interrupted as the vehicles stop several times in queues.
When leaving each queue, a vehicle accelerates from speed zero and moves on to
the next queue, until it eventually reaches the traffic signal location.
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3 Cumulated Vehicle Acceleration

While the SPs and MQs shown in Fig. 1 have similar mean vehicle speeds, they differ
considerably with regard to the acceleration behaviour of the vehicles. Obviously,
both speed and acceleration affect the energy efficiency of vehicles.

To quantitatively assess how SPs and MQs affect the energy efficiency of vehicles,
we choose macroscopic parameters that can feasibly be calculated on the basis of GPS
data from navigation devices and that correlate with the energy efficiency of vehicles.
The mean speed per road section is such a parameter. However, in addition to the
mean speed, the speed differences vn+1 − vn (see Fig. 2) between GPS measurements
contain information about the frequency and strength of acceleration along a vehicle
trajectory. The cumulated vehicle acceleration A per road length is a sum of positive
speed differences between GPS measurements. It is defined by the formula [11]

A = L−1
N−1∑
n=1

(vn+1 − vn)Θ(vn+1 − vn − Δv), (1)

where L is the road section length, Θ(x) the Heaviside function, and Δv ≥ 0 is used
to reduce the effect of the error resulting from speed calculations from GPS data. We
use Δv = 0.5 km/h.

The idealised and artificial speed profiles depicted in Fig. 3 give an idea of the
order of magnitude of the cumulated acceleration in certain situations.

For the empirical vehicle speeds from Fig. 1 and several additional examples
of SPs and MQs from the two considered road sections, the dependency of the
cumulated vehicle acceleration on the mean vehicle speed is shown in Fig. 4. Clearly,
the cumulated vehicle acceleration is greater for MQs than for SPs.
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Fig. 2 Example of single-vehicle GPS data. The cumulated vehicle acceleration is calculated on the
speed differences (e.g. vn+1 − vn) between GPS measurements. The dash-dotted line indicates the
time instant of the first measurement after the vehicle has left the road section under consideration
[11]
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Fig. 3 Hypothetical vehicle speeds on a road of length L = 1 km with different values of the
cumulated vehicle acceleration A [4]: A = 0 h−1 (a); A = 30 h−1 (b); A = 180 h−1 (c)

Fig. 4 Dependency of the
cumulated vehicle
acceleration A on the mean
speed V for several examples
of empirical synchronised
flow patterns and moving
queues on the examined road
sections of Völklinger Straße
and Südring in Düsseldorf,
Germany
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4 Energy Efficiency of Vehicles

For energy efficiency calculations, we use empirical microscopic consumption matri-
ces. These are based on empirical CAN (Controller Area Network) bus data of
speed, acceleration and fuel consumption or, respectively, electrical energy recorded
from the following vehicles: a conventional medium-sized vehicle with a combus-
tion engine [14] and a Smart electric drive. These vehicles were driven during field
trials in real traffic [14]. Neither data from test bench measurements nor consumption
models (compare [17]) were used.

The empirical microscopic matrices were aggregated by grouping energy values
into matrix elements according to their associated speed and acceleration values. For
each matrix element, the energy median was then calculated. Visualisations of the
resulting energy matrices are shown in Fig. 5, where normalised energy scales are
used. For the fuel consumption, which is a measure of the energy consumption of
conventional vehicles, the normalised values are between 0 and 1. For the electrical
vehicle, due to energy recuperation associated with regenerative braking, several
energy values associated with negative acceleration are negative.

The empirical microscopic energy matrices were combined with microscopic
speed and acceleration data from a traffic flow simulation of city traffic [5]. As a
result, macroscopic energy matrices were calculated that can be used in energy-
efficient route guidance. For the conventional vehicle, simulated trajectories were
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Fig. 5 Empirical microscopic consumption matrices: matrix for a conventional vehicle [14] (a);
matrix for an electrical vehicle (b)

classified according to their mean speed and cumulated acceleration, and mean ‘rel-
ative consumption’ values were calculated for each class. The relative consumption
value 1 (as well as the ‘relative electrical energy’ value 1) corresponds to a drive with
time-independent speed 60 km/h. The resulting macroscopic consumption matrix MC

for a conventional vehicle (see Fig. 6) shows the following results [4]:

1. For mean speeds between 0 and 65 km/h, fuel consumption increases with decreas-
ing mean speed.

2. Fuel consumption increases with increasing cumulated acceleration.

We have seen in Sect. 3 that the cumulated acceleration is greater for MQs than
for SPs. This finding in combination with the above result under 2 (compare Fig. 6b)
leads to the following conclusion. The fuel consumption associated with MQs is
considerably greater than the fuel consumption associated with SPs.

For electrical vehicles we chose a modified approach to take account of energy
recuperation associated with regenerative braking. To this end, we split the simulated
trajectories into their portions with non-negative and negative acceleration for sepa-
rate energy calculations, and calculated two separate macroscopic matrices: Matrix
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Fig. 6 Macroscopic consumption matrix MC for a conventional vehicle with a combustion engine
[4]: Mean dependency of fuel consumption on mean speed V and cumulated vehicle accleration A
(a) and Mean dependency of fuel consumption on the cumulated vehicle accelaration A for typical
SP and MQ between 10 and 15 km/h (b)
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Fig. 7 Macroscopic energy matrices: Mean dependency of electrical energy on mean sped V and
cumulated vehicle acceleration ME1(a) and Mean dependency of electrical energy on mean speed
V and cumulated vehicle deceleration ME2 for an electrical vehicle (b)

ME1 (Fig. 7a) represents the dependency of the electrical energy balance on mean
speed and cumulated acceleration, matrix ME2 (Fig. 7b) represents the dependency
of the electrical energy balance on mean speed and cumulated deceleration D which
is defined in analogy to the cumulated acceleration (Eq. 1) by the formula

D = L−1
N−1∑
n=1

(vn+1 − vn) Θ(−(vn+1 − vn) − Δv). (2)

In ME2 (Fig. 7b) there are both negative entries, where the recuperation prevails
(15 km/h ≤ V ≤ 65 km/h), and positive entries (0 km/h ≤ V ≤ 15 km/h), where
the consumption prevails. A comparison between ME1 and ME2 shows that for all
mean speeds and possible combinations of A and D, energy consumption consider-
ably outweighs energy recuperation. ME1 is qualitatively similar to matrix MC for
conventional vehicles. However, for mean speeds between 0 and 20 km/h that are
associated with oversaturated city traffic, the relative electrical energy consumption
according to ME1 and ME2 is considerably lower than the relative fuel consump-
tion according to MC . This means that the impact of oversaturated traffic on energy
efficiency is stronger for a conventional vehicle than for an electrical vehicle. One
has to keep in mind the different sizes of the vehicles that the energy data have been
measured with. However, the difference in relative energy consumption between
electrical and conventional vehicles affects energy-efficient route guidance. Due to
oversaturated traffic, the most energy-efficient route for conventional vehicles can
be different from the most energy-efficient route for electrical vehicles.

5 Conclusions

1. Oversaturated city traffic after speed breakdown commonly consists of synchro-
nised flow patterns (SPs), sequences of moving queues (MQs), and mixtures of
these.
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2. The cumulated acceleration is considerably greater for MQs than for SPs.
3. The energy consumption of vehicles increases with increasing cumulated accel-

eration.
4. Items 2 and 3 mean that the energy consumption of vehicles traversing MQs is

considerably greater than the energy consumption of vehicles traversing SPs.
5. The impact of oversaturated city traffic on the energy efficiency of vehicles is

stronger for a conventional vehicle than for an electrical vehicle.
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Evaluation of Air Transportation Network
Resilience Using Adaptive Capacity

Suhyung Yoo and Hwasoo Yeo

Abstract Enhancing network resilience has been an important research topic for
several decades with the increasing failures of critical infrastructure by disasters or
terrorist attack. For critical infrastructures, such as electricity grid, water supply,
and transportation, reliability to provide a stable level of service is most required.
This paper proposes a resilience evaluation methodology with application to air
transportation system. It is one of the major worldwide transportation modes and
known as one of representative scale-free networks, which is relatively robust against
random failure but vulnerable to targeted attack on hubs. This paper evaluates
the air transportation network resilience using proposed adaptive capacity concept.
Suggested measurements quantify the adaptive capacity, by which the capability of
a network is to replace the damaged node with other redundancy of the network.
Consequently, this study will help to diagnose the network resilience and contribute
to planning for improvement of network resilience.

1 Introduction

Network resilience has been importantly researched for a reliable system to main-
tain a stable level of performance of the system. Critical infrastructures, including
electricity grid, water, and transportation system, especially have direct impact on
our daily life by providing a certain level of service maintaining our society. There
has been noticeable disruptive events, such as the 9/11 attack in 2001, the volcano
Eyjafjallajkull, Iceland eruption in 2010, and recent threats of ISIS terrorism, that are
examples to show the necessity of evaluating network adaptive capacity to sustain
level of service and to maintain the network resilience [5]. The word ‘resilience’
stems from the Latin verb ‘resilio’, meaning ‘rebound’ [10, 11]. It first emerged

S. Yoo (B) · H. Yeo
Department of Civil and Environment Engineering, Korea Advanced Institute
of Science and Technology, Daejeon, South Korea
e-mail: suhyung.yoo@kaist.edu

H. Yeo
e-mail: hwasoo@kaist.edu

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_69

547



548 S. Yoo and H. Yeo

Fig. 1 The reaction process of a system resilience before and after hazard occurrence

in ecology fields to investigate the properties of a number of different types of sta-
bility. As the term resilience has been studied and adopted in other researches, it
has been mixed with other words such as risk, vulnerability, robustness reliability
and flexibility. There are various definitions of resilience [8, 10–12]. This paper
uses the definition of resilience, which is the characteristic of the system’s ability to
return to a stable state following a strong perturbation caused by failure, disaster or
attack, following Holling [8]. According to [12], the resilience framework consists
of three system capacities reducing systemic impact and total recovery effort. They
are absorptive capacity, adaptive capacity and restorative capacity. Each capacity has
a role in enhancing the system resilience and affects to different state of the response
to a disruption. Figure1 depicts this recovery process of the system resilience before
and after hazard occurrence.

In this paper, the adaptive capacity composes the main idea to measure the net-
work resilience by the ability of the system to respond to external impact on the
system and to adjust its resources for recovery of the target system performance
level through the short-term recovery period. At the same time, this research uses
the air transportation network as an example, which is one of critical infrastructures
providing the worldwide rapid transportation.

The air transportation network has been studied as one of representative scale-
free networks [1, 3, 4, 7], which is composed of hub nodes with high degrees
and follows a power-law distribution. In the complex network theory, most of com-
plex systems are able to be represented as a network, in which components become
nodes and the interaction between components are edges connecting two nodes.
Following the research, the complex theory studies have found that a scale-free
network, such as the air transportation system, is vulnerable against an attack on a
hub [1, 2, 6, 7]. Consequently, the resilience of the air transportation network is
required to be investigated for providing a reliable service of transportation. Thus,
this paper has a purpose to identify vulnerable nodes and to quantify the network
resilience in terms of the adaptive capacity.
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2 Methodology

This paper regards the air transportation network as a node-based spatial scale-free
network with node capacity. In other words, the network’s degree follows power-law
distribution (scale-free network), the nodes are located in a space equipped with a
metric (spatial network), the cost of link connection is relatively low (node-based
network), and each node has a capacity to function. The simulated network is a
weighted, undirected graph with nodes (airports) and links (air routes). The basic
idea for quantifying network resilience andmeasuring adaptive capacity is the ability
of a network if an attacked node can be replaced by other adjacent nodes. When a
performance level of a system is maintained after a disruption, the system can be
regarded as resilient. We calculate the performance level by accumulating the whole
airports’ capacity and margin within the network. Assume that a network is in its
initial stable condition, in which each node has performance redundancy under the
capacity. When a disruption occurs, one node is extracted from the network, and all
connected links are disabled. It alters the balance between capacity and work load
(flow), causing redistribution of flows within the network. If the adjacent nodes have
enough margin to absorb the redistributed flow, the network can adapt to the shock
and maintain stable performance level. In other words, a substitution happens when
the network has enough adaptive capacity.

The simulation will proceed to remove vertices in two ways: a random failure
or a sustained attack in the network. The latter approach is closely related to the
study of percolation in physics. Percolation is referred to the process that results
from taking a network and removing some fraction of its vertices together with the
edges connected to the vertices [9].

2.1 New Measurements for Network Resilience

This part demonstrates the network, in which each node is disabled randomly. The
failed node’s flow is reassigned to the closest node first, only if it has enoughmargin to
handle the traffic.

• Degree of adaptation (ka): the number of nodes required to absorb the shock and
substitute.

• Unit cost of adaptation (costunit ): the unit cost of each flight in terms of detoured
distance.

• Total cost of adaptation (costtotal ): the total cost of all traffic in terms of detoured
distance.

In case of sustained attack, the simulation removes the nodes from the network
one by one until all nodes are extracted. Following the sustained attack, some parts
of network fail in the order of their importance. As the attacked node’s flow is
redistributed to other nodes, the remaining margin of the network is changed and
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measured to quantify the network adaptive capacity.

I ndicator of adaptive capacity =
∑n

i Margink(k)∑
i Margini

(1)

where a network has n nodes and Margink is i th node’s margin after kth node is
attacked.

• Alpha index: the fraction of nodes required to remain a certain level of remaining
margin.

• Alpha zero (α0): the fraction of nodes at which the network cannot afford to absorb
the extra load.

• Adaptive capacity coefficient: the difference between adaptive capacity of the
network failure under random failure and sustained attack.

ACC = Area below sustained attack prof ile

Area below random f ailure prof ile
=

∫ 1
ρ=0 pAρ∫ 1
ρ=0 r Aρ

(2)

where ρ is a fraction of nodes removed from 0 to 1.

This study assumes that the ideal resilient network may lose its adaptive capacity
constantly as nodes are removed. However, the less resilient network fails faster and
its remaining margin drops faster than the ideal one.

3 Results

This research utilises theUS air transportation network to examine themeasurements
suggested in the last section through the simulation of a network failure and the
change of its adaptive capacity.

3.1 Simulation Under a Single Failure

In this part, the adaptive capacity of a network under a single failure will be investi-
gated. The experiment attacks a single node, redistributes the attacked node’s work
load to other adjacent nodes in order of closeness, and evaluates its effect on the net-
work. The simulation runs 1000 times for random generation of weather conditions
to decide each airport’s capacity. So, the distribution of each measure is obtained by
recursive simulations.

Table1 shows the summary of simulation results. In the previous studies of com-
plex network theory, a node was evaluated by its degree or weighted degree to rep-
resent the importance. If a node has high value of weight, it is thought to have high
impact on the network in case of failure. The vulnerable airports are identified in the
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Table 1 Summary of simulation results under a single attack, showing top 10 airports

Airport Degree Weighted degree ka costunit costtotal

ORD 203 32,378,906 3 81.92 7,676

ATL 195 45,308,685 3 171.8 19,070

IAH 173 19,528,631 3 90.51 5,341

DEN 187 25,497,348 2 136.1 8,794

DFW 187 27,100,656 2 107.6 9,892

LAX 164 32,427,115 2 27.9 1,936

LAS 163 19,923,594 2 182.6 7,339

SLC 134 9,910,493 1 241.7 7,601

MSP 206 16,282,038 1 98.94 2,968

DTW 166 15,683,787 1 79.16 2,399

The ranks are in order of the median value

order of the degree of adaptation, in Table1. Airports ORD, ATL, and IAH require
three airports to adapt to the disruption.When additional costs are ignored, the values
of total cost of adaptation, which considers both the number of detours flights and
their detoured distance, implies that airports ATL, DEN, and DFW are less resilient.

The left graph of Fig. 2 shows the result of the unit cost of adaptation. Top 2 (FAI,
ANC) airports are located in Alaska, which is located apart from the main territory
of America and has a wide area so that each airport is placed to be far each other. And

Fig. 2 Recursive simulation results in box plot. Diamond symbol represents its mean value: unit
cost of adaptation (UC) (a) and total cost of adaptation (TC) (b)
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the airports such as SLC, ELP, MEM and LIT are the mid-sized and isolated airports,
although they may be the important airport in the state. Whether the airport is large
or small, the presence of the alternative node with enough margin is important for
adaptation.

On the other hand, the right side of Fig. 2 shows that airports ATL,DEN, andDFW
are identified as the most important ones to improve their adaptive capacity. But for
improving of adaptive capacity, it should be noted that the results are stochastic
with responding to the disruptive circumstance. The dispersion of data is also an
useful information to compare and analyse similar results. The result shows a range
as shown in a box plot in Fig. 2. For instance, the airport ORD shows lower mean
value of TC than airport LAS, while it has larger deviations. It means that ORD has
higher uncertainty than LAS. This uncertainty requires us more careful preparedness
because the cost of detour for ORD ranges from 675 miles to 9362 miles for total
traffic.

3.2 Simulation Under a Sustained Attack

Next, the simulation attacks the nodes one by one until all nodes fail. When a net-
work collapses, the indicator of adaptive capacity drops differently depending on the
network topology and the types of attack. Note that the area under a profile implies
the network performance. So the area between two profiles represent the difference
caused by the network failure under the intended attack. By definition, as the area
between two profiles is smaller and the adaptive capacity coefficient is closer to one,
the network has more adaptive capacity and can be regarded as resilient under a
sustained attack.

The simulation investigates the sub-network resilience of the US region. Table2
shows the analytic result of the experiment. The US network has 0.66 value of

Table 2 Regional sub-network resilience: adaptive capacity coefficient and alpha index

Region Adaptive capacity
coefficient

α0.5 α0

USA 0.48 0.13 0.52

Alaskan 0.88 0.36 0.86

Central 0.66 0.22 0.83

Eastern 0.51 0.16 0.40

Great Lakes 0.50 0.12 0.59

New England 0.71 0.25 0.92

Northwest Mountain 0.56 0.13 0.71

Southern 0.46 0.13 0.45

Southwest 0.48 0.16 0.55

Western Pacific 0.48 0.15 0.43
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Fig. 3 Regional profile of adaptive capacity indicator (y-axis) by the fraction of removed
nodes (x-axis). The blue line shows random failure case, and red line is for an intended attack
case

adaptive capacity coefficient, in other words, the network can function 66% of the
network capability compared to the failure under randomerror.Compared to the value
of US, the region Southern and Western pacific are worst resilient with less adaptive
capacity coefficient. On the other hand, Alaskan, Central, and New England regions
are relatively resilient. Figure3 depicts the result of the resilient case (Alaskan,
Central) and the less resilient case (Southern, Western pacific). As the line falls
steeply to the bottom, the network can be thought less resilient because the relatively
small fraction of nodes may cause a failure of the whole network.

4 Conclusion

This study has initiated with the need of evaluating critical infrastructure’s resilience.
To secure a stable level of service, the short-term emergency recovery from a dis-
ruption is needed through sufficient adaptive capacity of a system. So this paper
regards the network’s adaptive capacity as the system capability of self-organisation
for recovery of system performance level to reflect the essential ability for resilient
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infrastructure. Following the idea, the research has been conducted to simulate
two types of network failure and measure the adaptive capacity with several
measurements. Both the unit cost and total cost of adaptation are measured by addi-
tional distance to detour. It has demonstrated the air transportationnetwork simulation
under two types of attack, a single failure and a sustained attack.

The first part discovered the vulnerable nodes with less ability of adaptation, in
terms of the number of nodes and the distance to detour. Under a single failure, the
airports ATL, DEN, PHX, LAS, and SLC are identified as less resilient node. On the
other hand, the airports ORD, LAX, JFK, and SFO seem to be relatively resilient
in the US air transportation network. In the latter part, sustained attack is dealt with
and the sub-network’s resilience is evaluated by quantifying the adaptive capacity
between random failure and intended attack scenarios. Compared to the average
of US region, the Southern and Western pacific region are shown as relatively less
resilient.

Consequently, this paper identified the vulnerable airports and sub-regions for
diagnosing network resilience. Following this research, future study can develop
a strategy to improve the resilience of infrastructure. For example, a projection of
demand change or expanding airport capacity.
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Network-Wide Mesoscopic State
Estimation Based on a Variational
Formulation of the LWR Model
and Using Lagrangian Observations

Yufei Yuan, Aurélien Duret and Hans van Lint

Abstract This paper presents a generic data assimilation framework based on a
mesoscopic-LWR model formulated in Lagrangian-space coordinates and using
Lagrangian observations. This is a challenging work since probe trajectories are not
directly related to specific vehicle/platoon indexes in the simulation model. There-
fore, we develop a method to incorporate probe information and to further estimate
states. The proposed method has been validated on a homogeneous road stretch, and
it provides promising results for further extension of the framework.

1 Introduction

Traffic state estimation (TSE) is crucial in dynamic trafficmanagement.Model-based
TSE relies on two components: a model-based component and a data assimilation
algorithm. The same traffic flow model can be formulated in three two-dimensional
coordinates regarding space x, time t and vehicle number n. Laval and Leclercq [3]
have presented three equivalent variational formulations of the first-order traffic flow
models, namely N(x, t) model, X(t, n) model, T(n, x) model, respectively, under
the theory of Hamilton–Jacobi partial differential equations. This paper presents a
generic data assimilation framework based on a mesoscopic-LWRmodel formulated
in vehicle number-space (Lagrangian-Space, L-S) coordinates, using Lagrangian
observations. The information that we can receive from road networks is (i) probe
trajectory information (Lagrangian data), and (ii) flow and speed information from
loop sensors (Eulerian data). The question is how to estimate traffic state on the
network from the two data sources?
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Duret et al. [2] have proposed an assimilation framework to incorporate loop
detector data into the mesoscopic-LWR model. With this LS-LWR formulation, cell
boundaries have to be located at network discontinuities. Thus, it requires no inter-
mediate nodes within a homogeneous road stretch, and this would improve compu-
tational efficiency. Moreover, cell boundaries also have to be defined at loop sensor
locations to assimilate those Eulerian observations.

In this work, we will focus on incorporating Lagrangian observations into the data
assimilation framework. This is a challenging work, since probe trajectories are not
directly related to specific vehicle/platoon indexes in the simulation model. There-
fore, we need to first estimate the best possible vehicle index of a selected trajectory
via a data assimilation procedure. The traffic information from this trajectory will be
further used to update model states.

2 Lagrangian-Space Formulation of the LWRModel

This section first presents amesoscopic formulation of the LWRmodel as the process
model in the estimation framework. The LWRmodel is formulated in vehicle platoon
and space (n, x) coordinates. We apply a variational formulation of the T -model. The
numerical solution to the Hamilton–Jacobi formulation, under the assumption of
a triangular fundamental relation with the free-flow speed vm, the maximum wave
speed w and the jam density kx, reads as follows:

T(n, x) = max(T(n, x − Δx) + Δx

vm
, T(n − Δn, x − Δn

kx
) + Δn

wkx
) (1)

This indicates traffic flow is divided into vehicle platoons of certain size Δn, and
road stretch is discretised into spatial cells of certain length Δx. The state in this
formulation is the passage time T(n, x) of vehicle platoons at cell boundaries. This
state is always determined by the maximum of two uncorrelated terms: the demand
(arrival) time and the supply time. For an elaborate description we refer to [3].

3 Methodology

The mesoscopic-LWR assimilation framework proposed in [2] allows to incorporate
loop data along the spatial dimension.Alternatively, information can also be observed
along the vehicle number dimension. The Lagrangian type observation allows more
accurate estimates and provides additional state information that is not available from
loop data.
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3.1 Data Assimilation with Lagrangian Data

In this paper, we focus on incorporating Lagrangian observations. First, we will look
at how to deal with a single data source from probe vehicles. The main idea is to
derive general (internal) boundary conditions along probe trajectories (n fixed). At
these probe boundaries, we know the observed information (position x and time t)
and can estimate probe vehicle indices (namely na

p) based on the variational princi-
ples. That is, the ‘observation’ information is compared to the model ‘background’
information to deliver ‘analysis’ states of vehicle indices. Next, the indexing probes
would act as internal boundaries, directly provide the analysis states, in supply times
at its upstream boundary and arrivals times at its downstream boundary. Finally, the
passage times of influencing vehicles can serve as arrival/supply time constraints to
further update traffic states in the simulation model.

Data assimilation is progressing with a sequential framework. Let us consider an
observation period P during which time positions from probes have been collected.
Three steps are identified to transform time position information from probes into
traffic conditions at surrounding boundaries.

3.1.1 Step 1. Estimation of Probe Index

Let us consider the trajectory of a probe p from which several (at least two) inter-
mediate time positions, denoted to

p,i and xo
p,i, have been observed during the period

P. According to the variational principle, a (‘analysis’) probe index na
p,i can be esti-

mated from its ‘observed’ time position (to
p,i and xo

p,i) and from the ‘background’
state (b-state) at its downstream boundary (xdown) and upstream boundary (xup). Let
nu and nw be the indexes at upstream and downstream boundaries, as illustrated in
Fig. 1a.

na
p,i = min(nu,up, nw,down + kx(xdown − xo

p,i)) (2)

(a) (b)

Fig. 1 Estimation of (analysis) probe index of trajectory: one point (a); several points (b)
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subject to T(nu, xup) = to
p,i − xo

p,i−xup

u , T(nw, xdown) = to
p,i − xdown−xo

p,i

w
. Here, na

p,i
denotes the analysis probe index, i denotes the index of measurement of each probe
trajectory p.

Then, we could estimate the most possible vehicle index that corresponds to this
probe trajectory (a-state, na

p) as the simple average of vehicle index na
p,i at each point

i, see Fig. 1b. As a first approximation, we consider the average:

na
p = (na

p,i), i ∈ p (3)

3.1.2 Step 2. Estimation of Arrival and Supply Times (Analysis a-state)

According to the shockwave theory, time position information of the probe vehicle
will be propagated in two directions: downstreamwith the free-flow speed u in arrival
time and upstream with the congested wave speed w in supply time. Consequently,
information from probe vehicles will only be used to update the arrival/supply times
at surrounding boundaries over the period P. Then, the model will confront new
arrivals and supplies to improve traffic states at cell boundaries. Note on the arrival
and supply times:

• Arrival times
It should be noted that the influencing probe vehicles are located in a time window
with a lengthP thatmoveswith a speed u between xup and xdown, as in Fig. 2.Within
the area, the dynamics of each probe provides information of its own upcoming
arrival times. The latest observed time position information of the probe vehicle
p, denoted by to

p,end and xo
p,end , respectively, will be used to update its arrival time

at the downstream boundary following:

ta
a,na

p
= to

p,end + xdown − xo
p,end

u
(4)

(a) (b)

xdownxdown

xupxup

x spacex space

t    time

P

np
a

ta,np
a

a

xp,end
o

tp,end
o

Fig. 2 Arrival time estimation for influencing vehicles: determination of observed traffic state and
influencing vehicles (a); estimation of arrival time from a probe (b)
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Here, the subscript ‘a’ is for ‘arrival’ and the superscript ‘a’ is for ‘analysis’.
• Supply times
Similarly, the influencing probe vehicles are located in a timewindowwith a length
P that moves with a speed w between xup and xdown, as illustrated in Fig. 3. Within
the area, probe trajectories provide information related to the supply times of their
followers. Based on the variational principle, we show that

ta
s,na

p+kx(xo
p,i−xup)

= to
p,i + xo

p,i − xup

w
,∀i ∈ p (5)

Here, the subscript ‘s’ is for ‘supply’ and the superscript ‘a’ is for ‘analysis’.
The probe vehicle na

p sends as many supply times as time positions observed along
its trajectory. To go further, one can interpolate linearly the trajectory of the probe
to obtain supply times for a continuous set of followers influenced by the probe
vehicle na

p, denoted by S(na
p):

S(na
p) = {na

p + kx(x
o
p,start − xup) : na

p + kx(x
o
p,end − xup)} (6)

Note that the vehicle index n may be influenced by several probe trajectories. The
final supply time, denoted t̂a

s,n, will be calculated by averaging all the supply times
that contribute to the current vehicle index. To do so, for each vehicle index n, we
will build the list L(n) of probe vehicles that send supply times {ta

s,L(n)}

t̂a
s,n = {ta

s,L(n)}, n ∈ L(n) (7)

In this step, the analysis state of supply/arrival times is directly obtained from
the estimated internal probe boundaries. Even if the current procedure does not
present a proper analysis step, we cannot say that we fully trust the observations
from probe trajectories. We do not use a ‘conventional’ assimilation technique
to find the best compromise between observations and backgrounds. Here, the
philosophy is to combine both observations from probes (x − t) and background

(a) (b)

Fig. 3 Supply time estimation for influencing vehicles: determination of observed traffic state and
influencing vehicles (a); estimation of supply time from a probe (b)
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(T(n, x) at boundaries) to estimate the most likely state (n − x − t) of probes. This
is Step 1. However, the resulting analysis states cannot be directly used to update
the model, because it can only be updated at its cell boundaries. Consequently,
we have proposed a procedure that transforms the analysis state (n − x − t) into
boundary conditions at the models cell boundaries. This is handled in Steps 2 and
3. Note that if analysis states present some inconsistencies, certain methods (e.g.
the Kalman filter) could also be proposed to find the best compromise between the
inconsistent analysis states.

3.1.3 Step 3. Update of the Model and CFL Condition

During the observation period P, the analysis state serves as supply/arrival time con-
straints to overwrite the background supply/arrival times for the influencing vehicles.
Next, the simulation model will calculate the most possible states based on the max-
imum between supply and arrival (see Eq.1).

The update procedure requires to respect the CFL condition [1], which to ensure
the numerical stability. Let ΔT denote the duration of the observation period P. If
ΔT is larger than ΔTCFL that is the minimum time for information to travel across
two node boundaries (boundary distance divided by free-flow speed), the update has
to be processed step by step restricted by the time step ΔTCFL.

3.2 Comparison of Data Assimilation Using Eulerian
and Lagrangian Data

The difference from the methodology in [2] for loop data is that the ‘analysis’
arrival/supply information is used to determine the new boundary conditions for
influencing vehicles, instead of updating model states (passage times) directly. The
main contribution of this work is to develop a method (outlined in Steps 1–3) that
considers probe data, and further the fusion between these two data sources. The
data assimilation with Lagrangian data is developed under a consistent structure as
the one with loop data. Therefore, the two data assimilation frameworks can support
each other.

4 Model Validation with Experiments

The next step is to validate the proposed data assimilation framework. We have built
a Mesoscopic Simulation Platform. This platform has been used to validate the data
assimilation framework with only loop data, in a synthetic case and a realistic large-
scale network. For now, we will consider additional probe data for model validation.

First, the validation at a local scale is performed on a homogeneous road stretch of
4km in length. The fundamental diagram is bilinear, with three parameters: vm = 30
m/s, w = 5 m/s and kx = 0.17 veh/m.
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The ground truth is generated with the same LS-LWR model, but with a finer
cell resolution, with the complete vehicle trajectories. The result returns the passage
time of every single vehicle with a space frequency dx = 1/kx = 5.9 m. The probe
data have then been generated by identifying probe vehicles with a random selection
of a subset of 5% of vehicles and an interpolation of probe trajectories every 30 s.
Here, the demand–supply scenario is defined as follows. The simulation duration
is set to 1 hour. The demand at the entry is constant (0.25 vps). The supply at
the position x = 3.5 km has been modified to simulate an incident (for instance
an accident), which decreases the capacity between t = 15 min and t = 45 min.
Congestion is rapidly triggered, propagates backward and then resolves before the
end of the simulation. The vehicle trajectories and their respective travel times are
illustrated in Fig. 4.

Then, the LS-LWR model has been run with a low space resolution (dx = 1 km)
as it would have been implemented for a real-time monitoring purpose. The same
parameters have been considered, but the model does not know that an incident
occurs: it ignores its location and capacity. First, the model has run (without the
assimilation procedure) and the results returns a free-flowing on the network. Then
the model has run considering probe data (red circle in Fig. 4a) and the proposed
assimilation procedure. The global results with 5% probes are illustrated in Fig. 5.

The LS-LWR model returns passage time, consequently the travel times are con-
venient to illustrate the performance of the model. In Fig. 5c the overall shape of the
estimated travel times is similar to the travel times returned by the ground truth. It
clearly demonstrates the ability of the model to adjust its traffic states accordingly.
Focusing on partial travel time along the stretch of road, one can observe that the
travel times between the entry and 3 km is perfectly estimated. This demonstrates
the ability of the method to estimate and propagate supply information backward.
However, between 3 km and the exit, travel times globally fit the ground truth, but
they also show regular dropout. This phenomenon can be explain as follows. The
incident occurs between these two points. Consequently, the assimilation procedure
here is used to update both arrival times downstream (exit) and supply time (3 km).
However, it has been noticed that only arrival times of probe vehicles are properly
analysed during the assimilation procedure, which explains that travel times regu-

4000
(a) (b)

3500

3500

1000

800

600

600 700 800 900

400

200

0
0 100 200 300 400 500

3000

3000

2500

2500

2000

2000

1500

1500

1000

1000
Time (s) N-index (#)

500

500

S
pa

ce
 (

m
)

Tr
av

el
 ti

m
e 

(s
)

Probe data
Ground truth

0

Fig. 4 Ground truth data: trajectories and probe data (a); travel times (b)



562 Y. Yuan et al.

(a) (b) (c)
800

1000

800

600

400

200

0

700

600

500

400

300

200

100

0
0 200 400 600 800

N-index (#)

Tr
av

el
 T

im
e 

(s
)

Tr
av

el
 T

im
e 

(s
)

Tr
av

el
 T

im
e 

(s
)

N-index (#) N-index (#)

1000

Ground truth
Simulation (with DA)

Ground truth
Simulation (with DA)

Ground truth
Simulation (with DA)

0 200 400 600 800 1000 0 200 400 600 800 1000

700

600

500

400

300

200

100

0

Fig. 5 Results: estimated travel times: between entry and 3 km (a); between 3 km and exit (b);
between entry and exit (c)

larly meet the ground truth every time a probe vehicle is observed. On the contrary,
the travel times gradually dropout from the ground truth when no probe vehicle is
observed. It is expected that this phenomenon is mitigated as the rate of probe vehicle
increases.

Based on the proposed assimilation procedure, the experiment succeeds to recon-
struct traffic states over the whole spatiotemporal domain based on a limited amount
of probe data. Overall, the method fulfils the expectations of state estimation. The
main contribution of the probes is to capture the information between spatial bound-
aries and further propagate it downstream and upstream, and thus to update traffic
states by means of arrival/supply time constraints.

5 Conclusion and Future Work

This paper has proposed a generic network-wide mesoscopic state estimation frame-
work based on variational-formulated LWRmodel in Lagrangian-space coordinates,
to incorporate Lagrangian observations. The experiment has demonstrated the valid-
ity of the proposed method. Future research includes, (i) to validate the framework in
a more general case, a realistic large-scale network; (ii) to test both Lagrangian and
Eulerian observations (data fusion) in a consistent and coherent data assimilation
framework; (iii) to apply specific data assimilation techniques to account for model
and observation reliability.
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Route Choice Behaviour in a Three Roads
Scenario

Dominik Wegerle and Michael Schreckenberg

Abstract We present results of three simple three roads scenarios, which were
simulated with an extended Nagel–Schreckenberg CA model. We studied how the
global travel times of cars could be optimised by simple routing or distribution
strategies. Besides the well-known methods as shortest path, travel times and equal
distribution we tested alternating loads and present two strategies based on a remain-
ing road capacity. The strategies were applied only to 25% of the cars, whereas the
remaining cars and trucks were distributed over the three roads as a fixed propor-
tional load. The first scenario contains three different road lengths of 20, 22 and
24km length and the fixed load is evenly distributed. In the second scenario, all three
roads have a length of 20km, but the fixed load is distributed unequally. The third
scenario combines the different road length with an unequally distributed load.

1 Introduction

This researchwas part of the projectDiNav—Dynamics inNavigation [7], to improve
the efficient usage of road networks and to lower travel times. Former studies [6] as
well as recent results [1–3] also based on the Nagel–Schreckenberg CA model [5]
have led us to the idea to investigate simple routing or distribution strategies on a
more complex three roads scenario. In this case, more complex means simulating
with two vehicle classes on three roads each with two lanes and overtaking rules for
cars. In addition, this study presents two routing strategies based on the maximum
vehicle flow capacity, which was derived as well from the simulation.
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2 Simulation

For the simulations we used an extended Nagel–Schreckenberg CA model [5] with
two vehicle classes: cars and trucks. Cars have a length of one cell equivalent to 7.5m
and a maximum velocity of five cells per second equivalent to 135km/h. Trucks have
a length of two cells equivalent to 15m and a maximum velocity of three cells per
second equivalent to 81km/h. Furthermore, we simulated roads with two lanes and
asymmetric lane change rules for cars only, according to [4]. Trucks can only use
the right lane. The vehicular traffic was split into three fractions. Ten percent of the
traffic flow was considered to be trucks. The remaining cars were split into a fixed
load (75% cars) and an additional load (25% cars). Only this additional load of
25% of the cars are affected by the routing strategies. The other cars and trucks are
distributed by fixed ratios. For the whole network, we wanted a desired traffic flow of
6480 vehicles per hour. The outcome of this are 648 trucks per hour and 4374 cars per
hour as the fixed load and 1458 cars per hour as the additional load. We simulated a
period of thirteen hours. Every simulation started with empty roads. Each simulation
was repeated one hundred times.

2.1 Global Topology

We presume that the three roads connect one source with one destination. Even
though the three roads share the same destination, we assume that there is an infinite
outlet capacity. These roads may have different length or not, but share the same
characteristics. Each of the three roads has the same bottleneck structure to reduce
the flow capacity towards the end. The bottleneck is implemented as a speed limit
with two cells per second as maximum velocity. The bottlenecks are about 200m
long and start at 90% of each roads length.

2.2 Routing/Distributing Strategies

In this three road scenarios we tested eight routing, respectively, distribution strate-
gies. However, at first, we simulated each scenario without the additional load to
determine the travel times under free flow conditions. Besides, we want to be assured
that this empty road system is under saturated and behave stable. The investigated
methods can be grouped into three categories. The first two methods, shortest path
and equal distribution, are static methods. Followed by two cyclical approaches,
which can be categorised as dynamic. The last group of methods are dynamic and
responsive methods with feedback strategies. In the following, we will describe the
applied methods in more detail.
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Shortest Path The shortest path algorithm routes the whole additional load to the
shortest of the three roads. In the scenarios with different road length this would be
road A. It is easily predictable that this will lead to an over saturated system and to
a breakdown in the vehicular flow. We will look at the results here nevertheless.

EqualDistribution Here, the additional load is split evenly byone third. Thismethod
is independent of road or scenario differences.

Alternating Roads Rather than splitting the load evenly, this method will route the
respective cars cyclical on the roads. Each minute the extra load will be directed to
another road.

Travel Time This is the first method with a feedback strategy, assuming that the
travel time of each vehicle can be measured. It prefers the road with the shortest
mean travel time. Those travel times are measured from all cars, which left the road
within the last minute. Each minute the mean travel times are recomputed for each
road. In case the current mean travel time could not be calculated, the mean travel
time under free flow conditions will be used instead.

Travel Time Additional Load In this case the mean travel times on a road are
calculated only fromcars of the additional traffic load.This is basedon the assumption
that only cars which can be influenced in their routing decisions are able to send travel
times to a central service. Againwithout current travel time information, the free flow
value acts as substitute.

Remaining Road Capacities We came up with the idea to use a remaining road
capacity as feedback strategy. Therefore we identified the flow capacity for the roads
in our scenarios. This was done by simulations a single road with the same road and
traffic characteristics. However, in this special test case, we started with a low traffic
flow which was then increased in small steps over time. The result of one of those
simulations is shown in Fig. 1. This simulations indicate that a flow of 40veh/min is
the appropriate maximum capacity for the roads used in our simulations. The actual
traffic flow is measured with a virtual loop detector at the beginning of each road
and aggregated over 1min. The remaining road capacities are calculated for each
road by subtracting the current flows from the maximum road capacity. Negative

Fig. 1 Simulating one road
with slowly increasing
vehicle flow (red) to
determine maximum road
capacity. With flow up to 40
vehicles per minute the travel
times (black) increases
proportional, but above travel
times become unstable and
rise exponentially. In the end
the whole system collapses
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Fig. 2 Resulting traffic flow per minute within scenario II and the remaining road capacity strategy
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Fig. 3 Resulting traffic flow per minute within scenario II and the mean remaining road capacity
strategy

remaining capacities are neglected. These results are then standardised to generate a
distribution formula for the additional load. Figure2 shows that this method induces
a high fluctuation in the traffic flows.

Mean Remaining Road Capacity To enhance the former method the mean remain-
ing capacities over 3min generate the adapted distribution formula. This last method
leads to more stable traffic flows as shown in Fig. 3.

3 Scenarios and Results

The three scenarios differ regarding to the road length and the distribution ratios
for the fixed load. Below, each scenario is explained and the respective results are
discussed. To calculate the mean travel time for each method and scenario the first
and last half an hour of all simulations were discarded. To compare the distribution
strategies in each scenario the results are presented in tables. The first table lists the
distribution strategies in their tested order and shows the average road use for each
road and strategy. The second table lists the travel times for all cars and for cars of
the additional load. The strategies are in order of the increasing average overall travel
time.
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3.1 Scenario I

In the first scenario the three roads have different length. RoadAhas a length of 20km
with the bottleneck between 18.0 and 18.2km. Road B is 10% longer, therefore has a
length of 22km with the bottleneck between 19.8 and 20.0km. Road C is the longest
with 24km length (20% longer than road A) and has the bottleneck between 21.6
and 21.8km. The fixed load is equally distributed. This results in a desired vehicle
flow of 1458 cars and 216 trucks per hour on each road (Table 1).

We can summarise that all methods were able to reach the desired vehicular flow
rates, besides the shortest path algorithm, which could only reach about 62% of the
additional vehicular flow. In this scenario, all strategies which utilised the roads more
or less equal achieve an average global travel time about six to eight percent above
free flow conditions, as Table2 shows. Both strategies considering the travel times
shift the additional load from road C to road A and perform less in reference to the
average travel times.

3.2 Scenario II

The second scenario has three roads with the same length. Roads A, B and C have
the length of 20km with the bottleneck between 18.0 and 18.2km. But in contrast to
scenario I, the fixed load is now distributed uneven. The desired fixed vehicle flow
on road A is raised by 20% to 1750 cars and 259 trucks per hour. That is 40% of the
fixed traffic load. Road B remains at a third of the fixed load with the vehicle flow of
1458 cars and 216 trucks per hour. The main vehicle flow on road C is lowered by
20% to 1166 cars and 173 trucks per hour equal to 26.67% of the fixed load. The
shortest path algorithm was excluded here, because of the missing difference in road
length (Tables 3, 4, 5 and 6).

In this scenario with symmetric roads, but asymmetric fixed traffic loads the per-
formance of strategies with an even distribution dropped. Now, the capacity driven

Table 1 Distribution of the additional load on the three roads in scenario I

Strategy Road A (%) Road B (%) Road C (%)

No additional load 0.00 0.00 0.00

Shortest path 100.00 0.00 0.00

Equal distributed 33.33 33.33 33.33

Alternating roads 33.30 33.30 33.41

Travel time 42.15 36.45 21.40

Travel time additional
load

42.02 36.80 21.17

Remaining capacity 33.28 33.19 33.52

Mean remaining
capacity

33.33 33.34 33.33
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Table 2 Simulation results of the mean travel times in scenario I

Strategy Mean travel time
all cars (min)

Percentage (%) Mean travel time
additional load
(min)

Percentage (%)

No additional
load

11.018 100.00 NA NA

Equal distributed 11.708 106.26 11.737 100.10

Mean remaining
capacity

11.711 106.29 11.725 100.00

Remaining
capacity

11.769 106.81 11.835 100.94

Alternating
Roads

11.857 107.61 11.948 101.90

Travel time
additional load

12.818 116.34 13.427 114.51

Travel time 13.137 119.23 13.912 118.65

Shortest path 23.386 212.25 37.900 323.23

Table 3 Distribution of the additional load on the three roads in scenario II

Strategy Road A (%) Road B (%) Road C (%)

No additional load 0.00 0.00 0.00

Equal distributed 33.33 33.33 33.33

Alternating roads 33.34 33.29 33.37

Travel time 16.39 35.49 48.13

Travel time additional load 18.25 37.36 44.39

Remaining capacity 17.78 34.34 47.88

Mean remaining capacity 18.29 33.33 48.38

Table 4 Simulation results of the mean travel times in scenario II

Strategy Mean travel time
all cars (min)

Percentage (%) Mean travel time
additional load
(min)

Percentage (%)

No additional
load

10.129 100.00 NA NA

Mean remaining
capacity

10.671 105.35 10.623 100.00

Remaining
capacity

10.728 105.91 10.733 101.04

Travel time
additional load

11.617 114.70 12.172 114.59

Travel time 11.747 115.98 12.405 116.78

Equal distributed 12.056 119.02 11.853 111.57

Alternating roads 12.159 120.04 12.026 113.20
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Table 5 Distribution of the additional load on the three roads in scenario III

Strategy Road A (%) Road B (%) Road C (%)

No additional load 0.00 0.00 0.00

Shortest path 100.00 0.00 0.00

Equal distributed 33.33 33.33 33.33

Alternating roads 33.31 33.29 33.40

Travel time 30.15 32.94 36.29

Travel time additional
load

36.78 31.46 31.76

Remaining capacity 17.89 34.21 47.90

Mean remaining
capacity

18.36 33.33 48.31

Table 6 Simulation results of the mean travel times in scenario III

Strategy Mean travel time
all cars (min)

Percentage (%) Mean travel time
additional load
(min)

Percentage (%)

No additional
load

10.972 100.00 NA NA

Mean remaining
capacity

11.681 106.46 11.974 100.00

Remaining
capacity

11.739 106.99 12.085 100.93

Equally
distributed

12.948 118.01 12.847 107.29

Alternating roads 13.095 119.35 13.059 109.06

Travel time 13.351 121.68 13.461 112.42

Travel time
additional load

16.152 147.21 16.615 138.76

Shortest path 23.777 216.70 37.071 309.60

strategies distributed the additional load in average similar to the methods with the
travel time feedback but beat them when the average travel time is concerned. Dis-
tributing the additional flow even over the three roads results in a steady rise of travel
times on road A, which then dominates the average global travel time. All strategies
were able to reach the desired vehicular flow rates.

3.3 Scenario III

The third scenario is a combination of the former two. We simulated the three roads
scenario with the different road length (20, 22 and 24km) and the shifted distribution
(40, 33.33 and 26.67%) of the fixed traffic load. Again the simulation results are
combined within the following tables.
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Again all the algorithms except shortest path, were able to reach the desired
vehicular flow rates. The shortest path method could reach just about 39% of the
additional vehicular flow. The capacity based strategies head the table of the average
travel times again, even though a significant load shift towards the longest road C is
observed. In addition the travel time strategy with the feedback of only cars of the
additional load lead here as well to an over saturated road A which results in a poor
performance of the average travel time. We observe that the values for the average
distribution is contrary to the results considering the travel times of all cars.

4 Conclusion and Outlook

All three chosen scenarios show that a distributing or routing strategywhich takes the
actual traffic flowand the flowcapacity of a road into account can improve the average
travel time in a road network. Averaging this method over 3m stabilises the traffic
flow and increases the performance. Both strategies work especially well in systems
with asymmetric basic loads. In further studies we want to compare these methods
with even more feedback strategies. Also, it is interesting to investigate networks
with shorter road length and how these methods perform under time variant dynamic
vehicular traffic flows. The same applies for studies with different ratios between the
fixed and the additional traffic load.
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Traffic Phase Dependent Fuel Consumption

Micha Koller, Peter Hemmerle, Hubert Rehborn, Boris Kerner
and Stefan Kaufmann

Abstract Fuel consumption is one of the key cost factors relevant for the movement
of vehicles. In times of increasing traffic congestion on both freeways and urban road
sections the question arises how the fuel consumption is influenced by congestions
congestion occurring in many sections of the road network. Congested traffic states
are defined based on Kerner’s three-phase traffic theory [1, 2]. The article presents the
probability functions of traffic breakdowns for road sections: the probability curve as
function of the traffic flow rate is an increasing function of the flow rate and similar
for both freeway an urban sections with traffic signals [4]. Therefore, the recognition
of traffic breakdowns and the determination of the emerging traffic state is crucial for
the prediction of the additional fuel consumption. By investigating empirical field
data from vehicles driving on a specific freeway section statistical analysis reveals
the additional fuel consumption factors for the two different congested states in
comparison to free flow.

1 Introduction

Currently, the deviation of emission and pollution measurements on test benches from
measurements in real traffic is discussed in public. Beside vehicle emissions also the
fuel consumption is part of this discussion. Automobile manufacturers in Europe
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apply the New European Driving Cycle to calculate their vehicle consumptions.
Empirical data show that speed profiles of vehicles driving through congested traffic
can be distinctly more complex than it is covered in the New European Driving Cycle.
This can be one reason for the differences between measurements in real traffic and
driving cycle measurements.

In the literature there are many theories and simulations about increased fuel
consumption caused by congested traffic. However, literature which provides an
empirical evidence for increased fuel consumption is hardly available.

Empirically the existence of two different phases of congested traffic is verified.
The dependence between the increased fuel consumption and the traffic phases is
unknown but important for the development of future driving assistance systems,
automatic driving and traffic management.

Within this article we clarify how severely congested traffic affects the fuel con-
sumption. Based on empirical data we discuss the dependency between the increased
fuel consumption and traffic phases. Additionally, we explain that the increased fuel
consumption has a probabilistic nature.

2 Kerner’s Three-Phase Traffic Theory

Kerner’s three-phase traffic theory describes in addition to free traffic flow (F) two
phases of congested traffic: synchronised flow (S) and wide moving jam (J).

As example we consider highway section with a bottleneck caused by on-ramp
(Fig. 1a). The empirical data from 23 June 1998 measured on the A5 near Frankfurt,
Germany gives an empirical example of the traffic phases (Fig. 1b).

Fig. 1 Empirical example of a traffic situation [1]: schematic three-lane highway with on-ramp
bottleneck (a); reconstructed spatiotemporal traffic phases (b)
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Fig. 2 Schematic illustration of traffic phase transitions and traffic state transitions

The wide moving jam phase is characterised by its constantly moving downstream
front as it can be seen in the example as red marked area.

The synchronised flow phase is shown as yellow area. The downstream front of
the traffic phase synchronised flow is fixed at the location of the on-ramp bottleneck.

Congested traffic occurs if a traffic phase transition from free traffic flow to syn-
chronised flow happens (F→S phase transition). This is also named traffic breakdown
and is marked by the black ellipse in Fig. 2. This example visualises a spontaneous
F→S traffic phase transition. Other traffic phase transitions are indicated as black
points in the time space diagram. Within synchronised flow a wide moving jam can
emerge in another phase transition. The black line in Fig. 2 indicates the trajectory of
one vehicle passing this traffic pattern. When a vehicle enters a new traffic phase, we
call this a traffic state transition. First the vehicle passes through free traffic flow till
there is a traffic state transition at the time the vehicle enters the wide moving jam.
Traffic state transitions of the example vehicle are represented by white triangles.

3 Probabilistic Traffic Breakdown Curves

Considering traffic breakdowns on highways spontaneous F→S traffic phase transi-
tions have a probabilistic nature as it is theoretically described in [2]:

PF→S
theoretical = 1

1 + eα(qp−qsum )
(1)

The parameters α, qp and qsum depend on the specific bottleneck. We analysed empir-
ical data measured over three years by stationary detectors located on highways. The
empirical probability of spontaneous F→S traffic phase transition can be described
as:

PF→S
empirical = hF→S(qi , qi + Δqi )

hF (qi , qi + Δqi )
(2)
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(a) (b)

Fig. 3 Theoretical and empirical probability for spontaneous F → S traffic phase transitions:
on-Ramp bottleneck (a); off-Ramp bottleneck (b)

The frequency of traffic breakdowns observed in the flow interval (qi , qi + Δqi ) is
divided by the frequency of the occurrence of flow rates in the same interval before
the traffic breakdown.

Our results (Fig. 3) show that the theoretically predicted probability (black line)
is similar to the empirically measured (black points) probability for spontaneous
F→S traffic phase transitions. This is valid for both on-ramp (Fig. 3) and off-ramp
bottlenecks (Fig. 3) on highways: traffic breakdowns can be found in broad range of
traffic flow between 3840 and 8640 veh/h.

The three-phase traffic theory also explains traffic breakdowns on urban roads
with traffic signals. In this case a traffic breakdown occurs if the state of the traffic
signal switches from undersaturation to oversaturation. Theoretically, the probability
of traffic breakdown is described as [3]:

PBLSA
theoretical = 1

1 + eβ(qp−q̄in)
(3)

The parameters β, qp and q̄in depend on the specific traffic signal.
Data measured by a stationary detector located in Düsseldorf on the Völklinger

Straße were used to determine the empirical probability for a traffic breakdown which
is:

PBLSA
empirical = hBLSA(qi , qi + Δqi )

hF (qi , qi + Δqi )
(4)

The comparison (Fig. 4) shows that the probability for empirically found traffic break-
downs on urban roads with traffic signals follows the theoretical probability.

The program of this traffic signal changes during the day. During the morning
hours between 6:30 a.m. and 11 a.m. (Fig. 4a) traffic breakdowns occur at traffic
flows between 1680 and 2640 veh/h. In the evening between 6:00 p.m. and 8:30 p.m.
(Fig. 4b) traffic breakdowns occur already at traffic flows between 960 and 1920
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(a) (b)

Fig. 4 Theoretical and empirical probability for traffic breakdowns on a urban road [5]: Völklinger
Str., morning (a); Völklinger Str., evening (b)

veh/h which is caused by a shorter duration of the green phase of the traffic signal
compared with the morning program. This probability function also shows that on
urban roads traffic breakdown can occur in a broad range of traffic flow.

The analysis of the empirical data shows that traffic breakdown has a probabilistic
nature both at highway bottlenecks and urban traffic signals. In the following we will
show that the increased consumption is dependent on the traffic phase and therefore
also has a probabilistic nature.

4 Microscopic Vehicle Measurements

We analysed empirical measurements which were recorded in vehicles driving
through real traffic situation on a public highway. A space-time diagram of an exem-
plary traffic situation on the observed highway (Fig. 5) shows vehicle trajectories as
black lines. The slope of the lines indicates the velocity. Considering Trajectory 1
(Fig. 5) the vehicle drives within the free flow phase first. Then a rapid deceleration
follows as the vehicle experiences a traffic state transition form free flow to wide
moving jam.

Detailed empirical measurements of the vehicle labelled as Trajectory 1 during
this traffic state transition are shown in Fig. 6. The velocity (Fig. 6a) decreases from
over 100 to 0 km/h. Beside strong decelerations up to 3 m/s2 also acceleration up to
3 m/s2 were measured (Fig. 6b). The consumption was determined per time (Fig. 6c)
and per distance (Fig. 6d). During the deceleration the vehicle consumptions per
time is in average higher than during the vehicle standstill in the second half of the
diagram (Fig. 6c). Reversed to that the fuel consumption per distance is low during
the deceleration and goes up to infinity if the vehicle standstill (Fig. 6d).
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Fig. 5 Exemplary microscopic vehicle trajectories [5]

Fig. 6 Measurements during
a traffic state transition from
free traffic flow to wide
moving jam [5]: Velocity (a);
Acceleration (b);
consumption per time (c);
consumption per distance (d)

(a) (b)

(c) (d)

5 Empirical Fuel Consumption

In total, we examine vehicle trajectories with a length of approximately 5444 km, 5.6
million velocity and 3.6 million consumption measurements. The empirical velocity
data is used to reconstruct the traffic phases by applying the in-vehicle traffic state
detection [6]. After that, the consumption data can be assigned to the three traffic
phases.

The vehicles drove 130 h in free traffic flow, 52 h in the phase of synchronised
flow and 13 h in the phase of wide moving jam. The distribution of all consumption
measurements per traffic phase is shown in Fig. 7 as boxplot. This means that the
black box covers 50 % of all measurements and the anchors indicate the minimum
and maximum consumption value.

The fuel consumption during congested traffic can be much higher than in free
flow. The fuel consumption is dependent on the traffic phase. In the phase of wide
moving jam much higher fuel consumption can be found than in the phase of syn-
chronised traffic.
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Fig. 7 Boxplots of the
consumption distribution per
traffic phase: CF free traffic
flow, CS synchronised flow
and CJ wide moving jam [5]
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Table 1 Average increased fuel consumption per traffic phase

Traffic phase Arithmetic average
consumption

Increased consumption

Free traffic flow C̄F = 8.73 l
100 km MVAB,F = 1

Synchronised flow C̄S = 12.43 l
100 km MVAB,S = C̄S

C̄F
= 1.42

Wide moving jam C̄J = 20.41 l
100 km MVAB,F = C̄J

C̄F
= 2.34

The red line indicates the median that is very close to the arithmetic mean which
is listed in Table 1. Based on that an average increased consumption per traffic phase
is determined and listed in the last column of Table 1.

6 Increased Fuel Consumption for a Typical Traffic
Situation

On average a wide moving jam has a length of 1023 m [6]. Often wide moving jams
propagate for more than one hour across the highway. This is chosen as typical traffic
situation for which we quantify the increased fuel consumption (Fig. 8).

Vehicle V1 drives only trough free traffic flow and vehicle V2 has to pass a wide
moving jam with the length of 1023 m. Based on the average consumption values
the vehicle fuel consumption is CF within the traffic phase of free traffic flow and CJ

within the traffic of wide moving jams. Vehicle V1 consumesCV 1 = 1023 m · C̄F =
89.31 ml and vehicle V2 consumes CV 1 = 1023 m · C̄J = 208.79 ml.

A typical wide moving jam increase the fuel consumption of a single vehicle
by CV 2 − CV 1 = 119 ml. On a three-lane highway a flow rate of 6000 veh/h can
be assumed. Thus, the collective increased fuel consumption for this typical traffic
situation is 6000 veh/h · 119 ml = 714 l/h.
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Fig. 8 Typical traffic
situation: wide moving jam

1023 m 

V1 V2 

1 Hour

Position 

Time

Free Traffic Flow

Wide Moving Jam

7 Conclusions

• Empirical microscopic data show that fuel consumption in congested traffic can
be significantly higher than in free flow.

• In congested traffic, fuel consumption can depend considerably on whether the
synchronised flow phase or wide moving jam phase of congested traffic is realised.

• At the same average speed in congested traffic, fuel consumption can be con-
siderably smaller in the synchronised flow phase than in the wide moving jam
phase.

• The empirical evidence of the dependence of fuel consumption on the traffic phase
can be used for the development of new driver assistance systems and traffic control
strategies.
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Examining Perimeter Gating Control
of Urban Traffic Networks with Locally
Adaptive Traffic Signals

Mehdi Keyvan-Ekbatani, Xueyu Gao, Vikash V. Gayah
and Victor L. Knoop

Abstract Traditionally, urban traffic is controlled by traffic lights. Recent findings
of the Macroscopic or Network Fundamental Diagram (MFD or NFD) have led to
the development of novel traffic control strategies that can be applied at a network-
wide level. One pertinent example is perimeter flow control (also known as gating
or metering), which limits the rate at which vehicles are allowed to enter an urban
region. This paper studies to which extent a combination of adaptive traffic control
and gating improves the traffic flow. To this end, combinations of gating and traffic
signal timing tested implemented in a microsimulation. It is found that gating is
much more effective than adaptive signal timing for high traffic loads. Adaptive
signal timing can improve the network performance by increasing the maximum
flow and increasing the critical accumulation, i.e. the number of vehicles inside a
protected network for which the performance is maximised. The latter helps to reduce
queuing outside the protected network.

1 Introduction

The objective of urban traffic control (UTC) has traditionally been to implement
signal timings that minimise the total vehicular delay in the network. UTC systems
constitute a scientific field with long-lasting, extensive research and development
activities. Widely applied UTC strategies like SCATS (Sydney Coordinated Adap-
tive Traffic System) [7], despite being applicable to large-scale networks, are not
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very efficient when the traffic network is saturated or over-saturated. On the other
hand, traffic-responsive strategies like OPAC [1], which are more advanced, apply
optimization algorithms with exponential increase of complexity. Because of this
complexity, these do not permit a practical central network-wide application. In fact,
Gayah et al. [2] showed that in an extremely congested network, typical adaptive
traffic signal control schemes might have little to no effect on the network due to
downstream congestion and queue spill-back. Moreover, the aforementioned meth-
ods may allow too much traffic to enter into the part of the network to be protected
from over-saturation and only act after the congestion starts occurring. This might
be an important reason that most of the existing adaptive traffic control strategies do
not operate efficiently in highly congested urban road networks.

Assuming a constant length of the trip in a network, one can also show that the
outflow of the network (i.e., rate vehicles reach their destination) is maximised if
the accumulation is at the critical accumulation. For accumulations less than the
critical value, the relationship between outflow and accumulation is increasing. The
relationship between these two macroscopic traffic values at the network level is
called Macroscopic or Network Fundamental Diagram (MFD or NFD). Geroliminis
and Daganzo [3] verified the existence of the NFD using the data of downtown
Yokohama in Japan. The notion of NFD is still under thorough investigation in
various aspects, but it can be applied as a basis for development of urban signal
control strategies. As details of individual links are not required to describe the real-
time traffic state at the network level, NFD is useful to introduce elegant control
concepts that can maintain the accumulation at the capacity level.

The control idea derived from the aforementioned approach is to hold vehicles
back upstream of a ‘protected network (PN)’ such that the accumulation does not
exceed the critical value in order to maximise the outflow. This control strategy is
called gating or perimeter control. This concept has already been utilised to numerous
efficient perimeter flow control policies in homogeneous networks (see [4] for single
region, and [6] for multiple concentric regions).

As discussed in [5], the scatter and hysteresis in the NFD might be decreased
slightly by applying only gating or perimeter control strategy, since the PN will
operate at the capacity level and possible gridlocks are avoided as much as possible.
considering the fact that the PN utilises the fixed-time signal control plan, the net-
work may still experience heterogeneity in distribution of congestion. To the best of
our knowledge, for a more homogeneous distribution of the density in PN, none of
the existing gating strategies consider an adaptive traffic control. Up to now, these
two (control) schemes (i.e. adaptive traffic control and gating control) have only been
implemented separately in the studies. This paper tries to fill this gap and integrate
the gating concept at the boundary of the PN with the traffic-responsive adaptive
signal control strategy inside the PN. Two different adaptive traffic signal strategies
are considered with the feedback-based gating strategy developed in [4]: (1) a simple
volume-based strategy and (2) a modified version of the SCATS algorithm. To this
end, we set up six different control scenarios in the microscopic simulation environ-
ment AIMSUN. The control scenarios are as follows: (1) fixed control, (2) modified
SCATS [8], (3) volume-based strategy [2], (4) only-gating, (5) gating plus modified
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SCATS, (6) gating plus volume-based strategy. Two overall performance indexes
(i.e., average delay (s/km) and maximum virtual queue (veh)) have been utilised to
evaluate the efficiency of the tested scenarios. The study shows that application of
adaptive traffic signal control in PN increases the critical accumulation in NFD and
consequently leads to shorter virtual queue sizes (i.e. vehicles waiting to enter the
network) during the gating time.

The remainder of this paper is set up as follows: Sect. 2 presents the control
strategies (i.e. gating and adaptive control). Section 3 discusses the simulation set-
up and the test-bed description. Section 4 illustrates a comparative appraisal of the
six simulated scenarios. Finally, summary and conclusions are included in the last
section.

2 Control Strategies

Four different control strategies are implemented in this study. As a base-line we
applied the fix-time control. Two different adaptive control strategies are used within
the PN: (1) volume-based strategy; (2) modified SCATS and the recently developed
feedback-based gating control strategy [5].

2.1 Adaptive Traffic-Responsive Strategies

In this paper, two different adaptive traffic-responsive strategies (adopted from pre-
vious efforts) were considered. The goal of both strategies was to provide more
green time to the approach(es) with more traffic. Offsets between adjacent signals
were not modified by either strategy. In the first strategy, a fixed cycle length was
adopted for each signal that was then divided among competing approaches every
cycle. A simple proportional algorithm was used to allocate the available green time
at each intersection based on traffic volume measured at upstream detectors on each
approach. In this algorithm, the green time to a subject approach i is determined as
follows:

gi(t) = (C − L)
vi(t − 1)∑
i vi(t − 1)

(1)

where gi(t) is the green time allocated to approach i during cycle t, C is the fixed
cycle length, L is the lost time for vehicle movement (usually due to and directly
proportional to the number of phase changes) and vi(t − 1) is the volume observed
on approach i during cycle t − 1. All available green time was allocated in this way.
Thus, it is possible that some approaches received zero green time if no vehicles
were queued at the approach. This strategy was called the ‘volume-based’ strategy.
In this paper, a fixed cycle length of 90 s was used for all adaptive traffic signals.
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The second strategy is a simplified version of the realistic SCATS, which is cur-
rently applied in many cities throughout the world. This strategy was adopted from
[8] where it was used to assess the impacts of adaptive signal control on the NFD
using simulation. In this strategy, both the green time and total cycle lengths are
variable and adjusted based on volume data obtained from upstream loop detectors.
As described in [8], an appropriate cycle length is first select based on the volume
ratio observed during the previous cycle. This cycle length is designed to maintain a
volume ratio between 0.85 to 0.95 during the next cycle and is selected based on the
following rules:

C(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

STOPPER if C(t) = MIN, R(t − 1) > 0.4

MIN if C(t) = STOPPER, R(t − 1) < 0.2

min {C(t − 1)+ STEP, MAX} if R(t − 1) > 0.95

max {C(t − 1)− STEP, STOPPER} if R(t − 1) < 0.85

C(t − 1) otherwise

(2)

where MIN and MAX are the minimum and maximum cycle lengths, respectively,
STOPPER is an intermediate cycle length that allows for sharp increases in cycle
length due to sharp increases in traffic demands, and R(t − 1) represents the volume
ratio at a given intersection during cycle t − 1. The cycle length is allocated among the
competing approaches based on the vehicle demand on each approach. The following
equation is used to allocate this green time:

g(t) = (C(t)− L − Gmin)
di(t − 1)∑
i di(t − 1)

+ gi,min (3)

where Gmin is the minimum green time allocated to each approach, and gi,min is the
vehicle demand on approach i. For this paper, the following values were used for
the adaptive signals with SCATS: MIN = 42 s, MAX = 132 s, STOPPER = 66 s,
STEP = 6 s, gi,min = 6 s.

2.2 Feedback-Based Gating Control

Keyvan-Ekbatani et al. [4] developed a control design model and an appropriate
feedback controller for the described gating task. Given the derived model structure
(4), the following proportional-integral-type (PI) feedback controller is appropriate:

qg(k) = qg(k − 1)− Kp [TTS(k)− TTS(k − 1)] + KI

[̂
TTS − TTS(k)

]
(4)

TTS is the Total Time Spent,̂TTS is desired set-point (critical accumulation in NFD,
see [4]), qg is the gated flow ordered by the controller, KP and KI are the proportional
and integral gains, respectively. The flow calculated by the regulator (5) must be
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constrained by pre-specified minimum and maximum values to account for opera-
tional constraints. Proper controller parameters may be derived by the methodology
presented in [6] or manual fine tuning.

3 Simulation Set-up and Scenario Description

A greater part of Chania urban network in Greece is modelled in the microscopic
simulator AIMSUN. Since the objective was to test our proposed control strategies
on a network with realistic features but not completely identical, we manipulated the
number of traffic lights in the PN. Figure 1 demonstrates the location of the eight gated
links (shown by the black arrow and violet circle) and the traffic lights controlled
with fix-time and adaptive (i.e. modified SCATS and volume-based) traffic control
signal plan (shown by violet squares) within the protected network. In the middle of
every link inside the red border line, a loop detector has been installed, and the related
measurements are collected every cycle (90 s in the case of the fixed cycle lengths).
The utilised 4-h trapezoidal demand profile simulates traffic conditions similar to the
real traffic conditions (mimicking the peak and off peak period).

The following control scenarios (including gating and no-gating) are simulated
in this study:

1. (no-gating) The traffic lights in the PN (indicated by square and circle) are con-
trolled applying fix-time control signal plan.

2. (no-gating) ‘Volume-based’ traffic-responsive control strategy is implemented to
control all the traffic lights within PN.

3. (no-gating) Adaptive traffic control strategy ‘modified SCATS’ is used for con-
trolling the signalised junctions within PN.

Fig. 1 Part of Chania urban network modelled in AIMSUN; PN is indicated by bold red line
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4. Gating at the perimeter and fix-time control inside PN.
5. Gating at the border and ‘volume-based’ for the rest of the traffic lights in the PN.
6. Gating at the boundary and ‘modified SCATS’ within PN.

We use 15 different replications (i.e. simulation runs) for each investigated sce-
nario and then calculated the average value of the 15 runs for each performance
index (the average vehicle delay (s/km) and maximum queue length (veh)) in order
to compare different control strategies.

4 Simulation Results

Figure 2a displays the NFD (TTD vs. TTS; TTD is Total Travelled Distance) for
the Chania PN (assuming that all links are detector-equipped) for the first 2 h of
the employed scenarios 1, 2 and 3, i.e. the loading period of the network, and the
congestion is created; 15 different replications (shown by empty dots in the plot)
were carried out. Utilising Eq. (1–3), the TTD and TTS of the PN are estimated every
90 (cycle time of all the fixed traffic lights in the network). For a better clarification of
the PN traffic state, a moving-average curve for the scattered NFD of each scenario
has been shown with different colour. An interesting finding at this stage of the study
is the fact that using adaptive traffic control lead to higher critical accumulation
(750 vehicles for the green and the blue curve). The shifted̂TTS value in the case of
adaptive traffic control signal plan might be extremely beneficial since it allows more
vehicles into the PN during gating. This might help to reduce the gated queue size
at the boundary of protected network and reduce the negative impact of the growing
queues upstream of the gated junctions. To illustrate better the advantageous effect
of the gating strategy on the traffic flow throughput (i.e. TTD) in the PN, the NFDs
for scenarios 4, 5 and 6 are shown in Fig. 3b. Obviously, the feedback controller has
perfectly performed and maintained the TTS or the vehicle accumulation in the PN
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Fig. 2 NFD for the first 2 h. No-gating scenarios (scenario 1, 2, and 3) (a); gating scenarios (scenario
4, 5 and 6) (b)
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Table 1 Average values of performance indexes for different control scenarios (over 15 replica-
tions)

Performance index Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Delay (sec/km) 389 294 351 203 193 203

Max. virtual
queue (veh)

728 696 702 965 808 888
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Fig. 3 Results for scenario 4: TTS versus time (a); flow versus time (b)

close to the critical value of the corresponding scenario (in a region of TTS 700 to
750 veh) and consequently kept the network throughput at the maximum level during
the peak period. The TTD for the gating scenarios plus adaptive control has higher
value compared to the gating plus fix-time.

Table 1 summarises the average simulation results for the six different scenarios
(over 15 runs each) studied in this research. In the no-gating case, the adaptive traffic
control strategies lead to an improved mobility (lower average delay) compared
to the fix-time signal plan. Under gating, the average delay improved significantly
compared to the no-gating scenarios.

Figure 3 illustrates the controller action during the simulation for scenario 4.
Concentrating on Fig. 3a, the controller managed perfectly to maintain the TTS close
to the set-value (shown by the green horizontal dashed line). Similar results are
obtained for scenarios 5 and 6. The red line in Fig. 3b shows the actual flow crossing
the stop bar at the gated junction and entering the PN. There is a gap between the
actual flow and the flow ordered by the controller (red and black lines). This could be
due to the flow distribution policy, which in this case is only based on the saturation
flows of the gated links. In an on-going work, a queue management policy will be
implemented at the gated junctions in order to reduce the chance of wasting green
times due to blockages downstream or lack of demand at the gated links.

5 Conclusions

In this paper, we examined the joint implementation of two unique urban traffic
control strategies: perimeter gating of a protected network and adaptive traffic sig-
nal control. The former limits vehicle entries into a protected network to maximise
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throughput within the protected region. The latter modifies signal timings at individ-
ual intersections in response to real-time traffic fluctuations. Here, we have showed
that the combination of these two strategies can be even more beneficial. The adaptive
signal control strategies help to provide more efficient NFDs in which more vehicles
can be accommodated within the protected network with higher overall throughputs.
The gating strategy makes use of these higher accumulations and throughputs, which
results in fewer vehicles queuing at the boundaries of the protected network during
the implementation of gating. Overall, the results find that the combination of gating
and adaptive signal control results in lower network delays, shorter boundary queues
(on average).
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A Comparison of Tram Priority at Signalised
Intersections in Melbourne

Lele Zhang, Timothy Garoni and Somayeh Shiri

Abstract We study tram priority at signalised intersections using a stochastic cellu-
lar automaton model for multi-modal traffic flow. We simulate realistic traffic signal
systems, which include signal linking and adaptive cycle lengths and split plans,
with different levels of tram priority. We find that tram priority can improve service
performance in terms of both average travel time and travel time variability. We con-
sider two main types of tram priority, which we refer to as full and partial priority.
Full tram priority is able to guarantee service quality even when traffic is saturated,
however, it results in significant costs to other road users. Partial tram priority signifi-
cantly reduces tram delays while having limited impact on other traffic, and therefore
achieves a better result in terms of the overall network performance. We also study
variations in which the tram priority is only enforced when trams are running behind
schedule, and we find that those variations retain almost all of the benefit for tram
operations, but with reduced negative impact on the network.

1 Introduction

To promote use of public transport, which is a key means of alleviating congestion
in urban transport networks, it is important for public transport to run reliably. One
useful tool is to provide transit priority at signalised intersections. Transit signal
priority (TSP) has been used in practice since the 1970s. Several studies on TSP
have been undertaken previously, either via analysing empirical data [1, 4] or using
simulation methods [2, 5–7].

Most of these studies focus on bus signal priority, and very few concern trams.
Compared to buses, trams operating in mixed traffic have much higher impact on
other road users, and vice versa. In addition, studies on bus priority cannot be directly
adapted to the case of trams due to the following reasons: trams block the entire link
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when they stop, trams cannot change lane and it is comparatively difficult for early
trams to stay on schedule.

Simulation studies of TSP have typically been limited to small-scale networks.
[6] studied the impact of active bus priority under various traffic conditions on a
4-lane route. [2] also considered a 4-lanemixed traffic environment. [5] evaluated the
heuristic algorithm,which deals withmultiple requests of priority, on a 2-intersection
arterial. [7] tested the advanced TSP control method on one intersection. These
studies were all confined to the question of bus priority. Furthermore, all of them,
except [2], in which the signal system used was not specified, are confined to the
study of fixed cycle signal systems, which are rarely used in practice nowadays.

In this paper we utilise a multi-modal stochastic cellular automaton (CA) model
on a 8 × 8 square grid governed by SCATS (Sydney Coordinated Adaptive Traffic
System), to study four tram priority schemes currently used, or being considered, in
Melbourne, Australia. The schemes all belong to active priority [4], which is to say
that the signal control system starts priority strategies when the trams are detected at
prescribed locations. The scenarios can be divided into two groups: full (or absolute)
and partial priority. The former signals start the priority phase immediately after
detecting a tram and keep the phase running until the tram traverses the approaching
intersection while the latter group has less disruptive priority tactics, which include
a clearance phase and a green extension. For both signals, we consider two variants:
conditional and unconditional priority. The former is active only when trams are
behind schedule. Unconditional partial priority is currently employed in Melbourne.

2 Multi-modal Traffic Model

Themulti-modal CAmodel used in our simulations extends theNetNaSch uni-modal
trafficmodel, (see [3] for a comprehensive description), to includemulti-modal traffic
and complex vehicular behaviours. In this paper, we focus on two vehicle classes of
private vehicles (or cars) and trams. In the studied network, illustrated in Fig. 1a,
each alternating east-west route is a tram route. For each tram link there are two
lanes, of which the right lane is a car-tram mixed lane, whereas for a non-tram link
there are two lanes plus an additional right-turning lane.

Each lane is discretised into a number of cells, each of 7.5m long. Each vehicle can
occupy z cells, z = 1, 2, . . ., and take speed v = 0, 1, . . . , vmax, depending on local
traffic conditions. In our simulations, we set z = 1 and vmax = 3 for private vehicles,
and set z = 3, and vmax = 2 for trams. The length of each link and each right-turning
lane were set to 750 and 90m, respectively. The model includes boundary links as
a means of inputting and outputting vehicles, but does not consider them part of the
network for the purposes of measuring observables (see [3] for more details).

In our model, for each tram link there are three stops being located kerbside,
one stop every 250m. In our simulations, the probability that a tram loads/unloads
passengers at stop s was set to 1 if s was an intersection stop and 0.5 otherwise.
When a tram stops to load/unload passengers, traffic in the left-hand lane must come
to a stop in order to give way to passengers.
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Fig. 1 The network used.
Illustration of an 8 by 8
square-lattice network
studied in our simulations
(a). All links carry
bidirectional traffic.
Boundary links are treated as
ramps (buffering zones) for
inputting and outputting
vehicles. Signal phases.
Phases E and F are only used
at tram nodes (b)

(a)

(b)

In this paper we consider open boundary conditions. At each time step, vehicles
enter a boundary inlink with a prescribed inflow rate and exit via a boundary outlink
with a prescribed outflow rate. We simulated the network over a 4h period, and
measured the last 3h, considering the first hour as a burn-in period. We applied two
orthogonal peak directions: eastbound and southbound.

The inflow rate for cars follows a typical AM-peak profile, and is higher in the
second and the third hours than the other hours. The inflow rates in the peak directions
are about twice as large as those in the counter-peak directions during the peak hours.
For tram inlinks, the inflow rates of vehicles are only 50% of those for the non-tram
inlinks in the same direction. The outflow rates have similar profiles to the inflow
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rates. We consider two scenarios: over-saturated (OS) and unsaturated (US). Link
density in OS scenario can reach higher than that of US scenario when the network
is running close to capacity. Trams are inserted into the network on the boundary
inlinks periodically at deterministic times. Every hour 12 trams are scheduled on
each tram route in the peak direction, and 9 trams in the counter-peak direction.

In our simulations, at each non-tram node (tram node), each link was assigned
with a probability 0.85 (0.9) of continuing straight ahead, a probability 0.06 (0.04) of
turning into a non-peak-direction link, and a probability 0.09 (0.06) of turning into
a peak-direction link. For trams, turning decisions are deterministic as they need to
follow routes. As shown in Fig. 1b, each node in the network was assigned with a set
of phases, depending on the signal system discussed in the next section.

To evaluate the different priority systems, we use throughputs as the total number
of cars (trams) that have traversed the network in a duration of simulation time. We
further compare aggregated travel time per car (tram), defined by the mean total
travel time spend in the network by those cars (trams), for different priorities. In
addition, we evaluate aggregated travel time per car (tram) variability to measure the
extent to which the travel time varies from tram (car) to tram (car) on a particular day.
By considering occupancy numbers for both trams and cars, we further evaluate the
throughput of people and travel time per person. In our simulations, we assumed that
the number of occupants that each car carries is identical, that is, 1.2 [8]. Moreover,
we assumed that the occupancy of trams operating in the same direction is the same.
Namely, 80 if the tram runs in the peak direction and otherwise 20.

For each distinct choice of traffic signal systems and boundary conditions, we
performed 100 independent simulations, in order to estimate the expected values of
the quantities defined in the last subsection. We used one standard error to set the
error bars.

3 Traffic Signal Systems

The SCATS traffic signal system uses knowledge of the recent state of traffic to
choose appropriate values of three key signal parameters: cycle length, split time,
and linking offset. At each intersection it can adaptively adjust both the total cycle
length, and the fraction (split) of the cycle given to each particular phase. In addi-
tion, it can coordinate (link) the traffic signals of several consecutive nodes along
a predetermined route in a subsystem by introducing offsets between the starting
times of specific phases, thereby creating a green wave (see [9] for details). In our
simulations, on non-tram nodes, whose inlinks are all non-tram links, we apply
SCATS model with signal linking from east to west and phases A, D, C and G in
Fig. 1b.

For tram nodes, we consider five variants of SCATS with/without tram priority:
NT which is SCATS with no tram priority, PU which is SCATS with partial and
unconditional tram priority, PC which is SCATS with partial and conditional tram
priority,AU which is SCATS with absolute and unconditional tram priority, and AC
which is SCATSwith absolute and conditional tram priority.We do not apply linking
along tram routes since the tram priority phase and tram loading/unloading renders
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the linking inefficient. Therefore, tram nodes choose their own cycle lengths and split
plans according to their local traffic conditions, independent of their neighbours.

NT assigns 20% of the cycle length to either phase E or F. The purpose of phases
E and F is primarily to clear right-turning cars in the east-west direction.When a tram
passes a mid-link detector, a priority process is called provided that no one is already
running. When the tram has passed the middle-link detector but not the end-link one,
PU runs phase ET, and when it has passed the end-link detector but has not traversed
the intersection, PU runs phase B. PU is a partial priority system in the sense that the
time for running priority phases ET and B is limited, not more than 20% per cycle.
When the tram priority process is triggered, AU starts phase ET immediately and
keeps running it indefinitely until the tram that triggered the process has traversed the
intersection.PC andAC are conditional variants ofPU andAU, respectively. In these
cases, tram priority processes can be called only if tram detectors detect a late tram.

4 Simulation Results

4.1 Tram Performance

Figure2b, d, f compare the tram performance for various signal schemes under OS
scenario. Note that the results under US aremostly similar to that of OS. As expected,
tram priority reduces the average tram travel time in the eastbound direction, when
compared to the no priority system NT. It is also unsurprising that the AU scheme
produces the largest improvements, saving about 56% eastbound travel time. The
average travel times under the PU system lie in-between the results of NT and AU.
The performance of eastbound trams is improved whilst westbound trams does not
suffer significant delays. In terms of throughputs, the priority systems produce essen-
tially the same results. NT results in a marginally lower eastbound throughput than
other systems.

Bus priority only produces significant delay savings at high levels of saturation
[6]. By contrast, tram priority achieves great savings in both US and OS scenarios.
This is because trams are more likely to be affected by cars, especially right-turning
ones. Since trams cannot change lane, a single right-turning car, which has to give
way to opposite traffic on the mixed traffic lane during phase A (or B) could block
the tram for an entire phase and cause a significant delay. For NT, the large delay in
eastbound tram travel times is due to insufficient running time for phase E (or ET).

In addition to improve travel times and throughputs, tram priority significantly
reduces eastbound travel time variability. The absolute priority systems provide the
best result in the eastbound direction and the worst result in the westbound direction.

4.2 Private Vehicle Performance

Figure2b, d, e, f show the mean travel time of cars travelling along different
approaches under OS scenario. The tram performance under US scenario is sim-
ilar, albeit less significant. For the west-east direction, we separate cars that have
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Fig. 2 Left Tram performance (OS). Right Mean car travel times (OS). Error bars corresponding
to one standard deviation are shown but are usually too small to observe: mean tram travel time (a);
W–E tram routes (b); mean tram throughput for all routes (c); N–S routes (d); tram travel time
variability (e); W–E non-tram routes (f)

travelled along non-tram routes from those along tram routes. We remark that a car
is considered to travel along a tram route only if it traverses the whole route without
turning into other links. Similar definitions are used for cars travelling in different
directions.

Although the inflow rate of cars on tram routes is much less than that on non-tram
routes, the car travel time along tram routes is much longer, which is partly due
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Fig. 3 Person performance (OS). ot,p/ot,n = 4 and ot,p = 40, 60, . . . , 200. Error bars correspond-
ing to one standard deviation are shown but are usually smaller than the symbol size of the data
point: mean person travel time (a); mean person throughput (b)

to trams and partly due to right-turning cars at nodes. Right-turning cars result in
capacity drops at tram nodes, since there are no exclusive right-turning lanes on tram
routes and such vehicles are required to give way to opposing traffic during phases
A and B and so hinder other straight-going vehicles behind them.

As expected, when tram priority process is active, regardless of the scheme
used, both southbound and northbound travel times increase. The higher the priority
imposed, the more the north-south traffic gets penalised. Even though the AU and
AC schemes penalise all three non-priority directions, they penalise the north-south
traffic more than PU and PC do. This is because SCATS uses adaptive split plans.

Interestingly, we observe fromFig. 2f that in theOS case trampriority can penalise
the traffic in parallel non-tram routes. Perhaps surprisingly, the penalty generated by
PU and PC is larger than that by AU and AC. This arises because absolute tram
priority results in larger decreases in both the north-south flow and the amount of
traffic turning into the east-west direction,which therefore induces an effective gating
of the west-east non-tram routes.

4.3 Person Performance

We pinned the car occupancy oc and the ratio ot,p/ot,n of tram occupancy in the
peak and counter-peak directions, and studied people travel time and throughput as
a measure of network performance with various ot,p, shown in Fig. 3.

AU provides the worst result in the US case and for ot,p ≥ 120 in the OS case,
whereas PC always provides the best result. PU and PC obtain the smallest travel
times for all reasonable values of tram occupancy. The travel time curve for NT
intersects with AC and AU at ot,p = 100 and ot,p = 120 separately. This implies
that although the absolute tram priority schemes bring relatively large penalties to
other road users, compared to no priority scheme, they provide better overall network
efficiency in terms of person travel times when tram occupancy is sufficiently high.
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5 Conclusion

We have utilised a multi-modal traffic model to study a variety of tram priority
schemes in a mixed traffic environment on a square- lattice network. In particular we
have studied the adaptive traffic signal system SCATSwith a number of tram priority
scenarios, using a morning-peak traffic profile and two orthogonal peak directions.
We have considered two scenarios with low and high levels of saturation.

Regardless of the traffic condition, the absolute tram priority results in the best
tram service in the priority direction at the expense of delaying other traffic in the
non-priority directions. With respect to the overall person performance, the partial
priority gives the best result. The savings for priority-direction traffic derived from
the absolute priority is negated by the costs imposed on opposing traffic, unless trams
have extremely high occupancy. For both the absolute priority and the partial priority,
the conditional version achieve almost the same level of improvement of service as the
unconditional version but with reduced impact on other traffic. Therefore, the partial
conditional priority system appears worth trialling. In the case that the absolute tram
priority is necessary, e.g. in order to keep tram service on time regardless of the traffic
condition, the absolute conditional priority should be implemented, rather than the
absolute unconditional.

The analysis of tram priority presented in this paper is just a first attempt at using
the multi-modal traffic simulation model on large-scale networks. Future work will
extend the study of the tram priority to two directions: both peak and counter-peak
for all the priority schemes. This is challenging since counter-peak-direction tram
priority may disadvantage peak-direction trams.
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Boarding of Finite-Size Passengers
to an Airplane

Jevgenijs Kaupužs, Reinhard Mahnke and Hans Weber

Abstract An airplane boarding model, introduced earlier by Hemmer and Frette, is
considered. In this model, N passengers have reserved seats, but enter the airplane
in arbitrary order. Here we focus on the blocking relations between passengers. The
total boarding time is equal to the longest blocking sequence, represented by a line,
connecting points of the two-dimensional q versus r scatter plot. Here, q = i/N and
r = j/N , i and j being sequential numbers of passengers in the queue and their seat
numbers, respectively. Such blocking sequences have been studied theoretically by
Bachmat. We have developed an algorithm for numerical simulation of the longest
blocking sequences, and have compared the results with analytical predictions for
N → ∞.

1 Introduction

The growing need for mobility through the world shows no sign of slowing down.
Like the vehicular traffic, also the air traffic is a very important part of the global
transportation network [9]. A distinguishing feature of air traffic is that a significant
part of the total transportation time is related to the boarding of an airplane. Here,
we study an airplane boarding model, introduced in 2012 by Frette and Hemmer [8].
Following this paper, there has been a spurt of activity regarding airplane boarding,
resulting in five papers in Physical Review E [3–6, 8] in roughly 16 months. This
problem has been also later discussed during the Traffic and Granular Flow confer-

J. Kaupužs (B)
Institute of Mathematical Sciences and Information Technologies,
University of Liepaja, Liepaja 3401, Latvia
e-mail: kaupuzs@latnet.lv

R. Mahnke
Institute of Physics, Rostock University, 18051 Rostock, Germany
e-mail: reinhard.mahnke@uni-rostock.de

H. Weber
Department of Physics, Luleå University of Technology, 97187 Luleå, Sweden
e-mail: Hans.Weber@ltu.se

© Springer International Publishing Switzerland 2016
V.L. Knoop and W. Daamen (eds.), Traffic and Granular Flow ’15,
DOI 10.1007/978-3-319-33482-0_75

597



598 J. Kaupužs et al.

ence in 2013 [11]. In the model considered by Frette and Hemmer [8], N passengers
have reserved seats, but enter the airplane in arbitrary order. Besides, there is only a
single isle of rows and only one seat in each row. Each passenger occupies a place
equal to the distance between rows. In this model, a passenger requires one time
step to place carry-on luggage and get seated, the time for walking along the isle
being neglected. However, a passenger must wait for a possibility to move forwards
to his/her seat if the motion is blocked by other passengers. The number of seats is
equal to the number of passengers in this model. In [4], the same process has been
considered with more than one seat per row. It has been also discussed what happens
if only some fraction p of the passengers occupies the seats. In a series of works [2,
4, 5, 8], a non-random ordering of passengers has been also considered. One of the
basic quantities of interest is the boarding time tb of an airplane. All these papers deal
with a numerical estimation of the mean boarding time 〈tb〉, stating that it is more
ore less well consistent with the power law 〈tb〉 = cNα . Estimates α = 0.69 ± 0.01
and c = 0.95 ± 0.02 have been obtained in [8] from the data with a small number
of passengers, 2 < N < 16.

Later on, it has risen an interesting discussion [4–6] about the value of the expo-
nent α, describing the asymptotic power law at N → ∞. It has been found that the
numerical estimates converge to a remarkably different from 0.69 value α = 1/2 for
large N . In particular, α = 0.5001 ± 0.0001 has been found in [6] from the Monte
Carlo simulation data up to N = 216. In fact, α = 1/2 is exactly the analytical value
reported earlier in [1]. As explained in [4], the ∝ N 1/2 asymptotic behaviour fol-
lows from the mathematical theorem reported already in [7, 10]. In [1], the propor-
tionality coefficient c = 4 − 2 ln 2 ≈ 2.6137 has been also found. A similar value
2.6092 ± 0.0002 has been numerically obtained in [6] (see Fig. 1 in [6]). Correc-
tions to scaling have been considered in [6], as well as in [1]. Numerical estimation
in [6] suggests that correction-to-scaling exponent θ in 〈tb〉 = cNα

(
1 + O

(
N−θ

))
is approximately 1/3. It has been also numerically found there that the variance of tb
scaleswith a similar exponent γ ≈ 1/3. In [11], some analytical arguments have been
provided, suggesting that the scaling relation γ = 1 − 2θ holds. It has been found
in [11] that the numerically estimated exponents γ and θ very accurately satisfy this
scaling relation, whereas the consistency with the value 1/3 is not perfect, allowing a
possibility that θ < 1/3 holds in reality. Probably, even larger than N = 216 system
should be simulated to obtain a reliable numerical estimate of this exponent. In [1]
it has been argued that α − θ is larger than 1/6, i.e. θ < 1/3. The question about the
precise values of θ and γ is interesting and merits further investigation.

2 Blocking Sequences

In our current study, we use the following definitions of the blocking sequences.

(i) Suppose passengerA takes his/her seat at the nth time step.We say that passenger
A has been blocked by passenger B, if B is the closest passenger in front of A
among those ones, which took seat at the (n − 1)th time step.
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(ii) We depict this blocking relation by drawing an arrow from B to A in the scatter
plot (number in queue versus seat number). Nodes and arrows, pointing in certain
flow direction, represent a blocking sequence. Its length is equal to the number
of nodes. By definition, unconnected nodes are blocking sequences of length 1.

By these definitions, the longest blocking sequences have the length tb, where tb
is the boarding time. They can be easily deciphered starting from the passengers who
get seated at the last time step. The number of such sequences is equal to the number
of these passengers.

3 Point-Like Passengers

Let us denote by i A and iB the sequential numbers of passengers A and B in the
queue. By the definition, we always have iB < i A if B is blocking A (i.e. B enters
airplane first). In a model with point-like passengers, passenger A can be blocked by
passenger B only if jB < jA, where jA and jB are the seat numbers of passengers A
and B, respectively. It means that blocking sequences are increasing sequences with
arrows always pointing upwards.

However, an arbitrary increasing sequence is not necessarily a blocking sequence
we defined here. In our blocking sequence, the seating time increases just by one
time step Δt = 1 when moving forwards by one node along the sequence. To the
contrary, we can have Δt ≥ 1 for an arbitrary increasing sequence. The maximum
possible length thus is tb, which corresponds to the case, where the increment of
seating time is always Δt = 1. In such a way, we have Ωbl ⊂ Ωincr , where Ωbl

is the set of longest blocking sequences and Ωincr is the set of longest increasing
sequences. In general, Ωincr contains more elements than Ωbl owing to the fact that
many passengers can get their seats simultaneously. However, since all sequences
of Ωbl and Ωincr have the same (and maximal possible) length tb, these sequences
are equivalent and look similar for a large system. Namely, it is expected that they
follow a certain line inside the unit square for normalised quantities q = i/N and
r = j/N at N → ∞, where N is the number of passengers. For point-like cars, this
line is known to be the diagonal.

4 Finite-Size Passengers

In the model introduced by Hemmer and Frette passengers are not point-like. They
occupy space, which is equal to the distance between seats. For finite-size passengers,
jB < jA does not necessarily hold, since the blocking can occur via passengers
staying between A and B. In the asymptotic limit N → ∞, the condition jB < jA
(for iB < i A) is replaced by

dr > −dq kα(q, r) (1)



600 J. Kaupužs et al.

for dq > 0.Here k = bu/w, whereu is the passengerwidth,w is the distance between
successive rows (in our case seats), b is the number of passengers per row (in our case

b = 1) and α(q, r) =
1∫
r
p(q, z)dz with p(q, r) being the probability distribution in

q − r plane (p(q, r) ≡ 1 for random queue).
In the asymptotic case, the longest sequences obeying the causal relation (Eq.1)

have the length tb. (We can conclude it, considering seating times as in the case of
point-like passengers). Denoting this set of sequences byΩ , we haveΩbl ⊂ Ω , since
the blocking sequences satisfy Eq.1 at N → ∞ and also have the length tb.

According to [1–3], it is expected that the sequences of set Ω follow a certain
line in the q − r plane. Since Ωbl ⊂ Ω , it has to be true also for the set of longest
blocking sequences Ωbl . This line L is obtained by maximising the line integral,

∫

L

ds → max , (2)

with the conditions that the integration path (line L) goes from (0, 0) to (1, 1) and
belongs to the unit square. Besides, the measure is given by

(ds)2 = 4D2 p(q, r)
[
dqdr + kα(q, r)(dq)2

]
, (3)

called the Lorentz metric. In fact, one finds that D = 1.
By solving the variational problemone finds [1] that L is given by the geodesic line

r(q) = C1e
kq + C2e

2kq + 1 (4)

for k < ln 2with coefficientsC1 andC2 determined from the conditions that r(0) = 0
and r(1) = 1. For k > ln 2, this line does not fit inside the unit square and therefore
the path L goes along the border r = 0 up to some point q = q0 and then follows the
geodesic (Eq.4) from (q0, 0) to (1, 1) [1]. Besides, q0 is such that the geodesic line
is tangent to the border r = 0 at this point [1]. In such a way, for k ≥ ln 2 one finds

r(q) = 0 : 0 ≤ q ≤ q0(k) , (5)

r(q) = −4ek(q−1) + 4e2k(q−1) + 1 : q0(k) ≤ q ≤ 1 , (6)

where q0(k) = 1 − ln 2/k. The resulting curve for k = 1 is shown in Fig. 1 by a solid
line. The mean boarding time tb = d(k)

√
N has been reported in [1], where

d(k) = 2

√
ek − 1

k
: k ≤ ln 2 , (7)

d(k) = 2
√
k + 2(1 − ln 2)/

√
k : k > ln 2 , (8)

It corresponds to the length of the r(q) curve in theLorentz geometry,where distances
are measured according to the metric (Eq.3).
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5 Simulation Results and Analysis

In order to test the above discussed theoretical predictions, Monte Carlo simulations
of the boarding process have been performed in the simple model with k = 1, out-
lined in the beginning of this section. The longest blocking sequences have been
determined according to the definitions given in Sect. 2. These sequences, extracted
from three different simulation runs with N = 107 passengers (left), as well as from
one simulation run with N = 108 passengers (right) are shown in Fig. 1.

Aswe can see, the amplitude of randomdeviations from the theoretical asymptotic
curve is still rather large for N = 107. These deviations are remarkably smaller for
N = 108. It confirms the expected convergence to the analytical solution (Eqs. 5–6)
at N → ∞.

It is interesting to note that the fluctuations around the geodesic within q0(k) ≤
q ≤ 1 are remarkably larger in magnitude than those within 0 ≤ q ≤ q0(k), where
the theoretical curve follows the lower border of the q − r square. On the other hand,
the fluctuations in the latter region have larger influence on the total boarding time.
Indeed, the geodesic maximises the boarding time and, therefore, a small deviation
from it in the form of δ · f (q), where δ → 0, produces a deviation of order O

(
δ2

)
in the boarding time tb. To the contrary, such a deviation from the lower border of
the q − r square produces a fluctuation of order O (δ) in tb.

In fact, there is a phase transition in the behaviour of the boarding process at
k = ln 2, if the parameter k is varied. In the case of point-like passengers, k → 0,
the geodesic is just the diagonal q = r . Moreover, the deviations of longest blocking
sequences from the diagonal is described by the Tracy–Widom distribution, yielding
the correction-to-scaling exponent θ = 1/3, which remains valid for k < ln 2. This
exponent has to be changed to a smaller value at k > ln 2 due to the fluctuations
in the longest blocking sequences (seen in Fig. 1) within 0 ≤ q ≤ q0(k) [1], which
emerge as soon as k exceeds the critical value ln 2.
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Fig. 1 The analytical curve representing the longest blocking sequences in the asymptotic
limit N → ∞ at k = 1, given by Eqs. 5–6. The point of departure from border q0 = 1 − ln 2 =
0.30685 . . . is marked by a circle. The fluctuating curves represent the longest blocking sequences,
extracted from 3 different simulation runs with N = 107 passengers (left) and from one simulation
run with 108 passengers (right)
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In viewof this fact, it is important to refineour previous estimations of the exponent
θ in [6].As alreadymentioned inSect. 1, the number of passengers N = 216 = 65536,
considered in [6], might be still too small for an accurate estimation of the exponent
θ . Indeed, even at N = 107 the deviations from the theoretical asymptotic behav-
iour in Fig. 1 are rather large. A numerical estimation of θ from the data for much
larger number of passengers (e. g., N = 109) is a challenge for further simulations,
which eventually should be based on a faster algorithm of finding longest blocking
sequences.

While the scaling of the mean boarding time 〈tb〉 is described by the exponent
α = 1/2, its variance var(tb) = 〈t2b 〉 − 〈tb〉2 is described by another exponent γ , i.e.
var(tb) ∝ N γ holds at N → ∞. An idea has been proposed in [11], that the exponents
γ and θ obey the scaling relation

γ = 1 − 2θ . (9)

Here, we propose a way, which is different from that one in [11], to obtain such a
scaling relation. First we note that the variance can be written as

var(tb) = 〈
(tb − 〈tb〉)2

〉
. (10)

Furthermore, the typical values of tb are smaller than the theoretical asymptotic mean
value 〈tb〉as = d(k)

√
N , where d(k) is given by Eqs. 7–8. It is consistent with the

fact that 〈tb〉as corresponds to the blocking curve of maximal length (according to the
Lorenz metric), so that fluctuations, illustrated in Fig. 1, typically lead to a smaller
value of tb. On the other hand, tb can be quite close to 〈tb〉as . It can be seen from the
probability distribution for boarding times P(tb), illustrated in Fig. 2.

The probability distribution is shifted below 〈tb〉as in such a way that 〈tb〉as −
〈tb〉 is comparable with the width of the distribution. It implies that | tb − 〈tb〉 |
is comparable with 〈tb〉as − 〈tb〉 for typical random realisations of the boarding
process. Moreover, 〈tb〉as − 〈tb〉 scales asymptotically as ∝ Nα−θ according to
〈tb〉 = cNα

(
1 + O

(
N−θ

))
at N → ∞.Hence, typical values of (tb − 〈tb〉)2 inEq.10
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Fig. 2 The probability distribution P(tb) of the boarding time tb for the model with N = 215

passengers. Themean boarding time 〈tb〉 = 453.91 (dashed line) and the asymptotic mean boarding
time 〈tb〉as = 473.13 (dotted line), corresponding to Eqs. 7–8, are indicated by vertical straight lines
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are comparable with N 2(α−θ) for any large enough N . Consequently, var(tb) scales
as ∝ N 2(α−θ) at N → ∞, i.e. the scaling relation

γ = 2(α − θ) (11)

holds according to this consideration. Since we have α = 1/2, the scaling relation
(Eq.11) reduces to (Eq.9). The actual consideration is sufficiently general, so that
this scaling relation is expected to hold both at k ≤ ln 2 and k > ln 2.

6 Concluding Remarks

In the current study, a simple airplane boarding model, introduced earlier by Frette
andHemmer, has been investigated from different new aspects. In particular, we have
focused on the study of blocking relations between the passengers and longest block-
ing sequences viaMonte Carlo simulations and analysis with an aim to test the known
theoretical results. We have tackled an important question about the phase transition
in the behaviour of the boarding process in a generalised model at a certain value
of the control parameter k. It is related to some change in the correction-to-scaling
exponent θ . Furthermore, we have provided new arguments for the existence of cer-
tain universal scaling relation (Eq.9 or 11) between the exponents, describing the
power-law behaviour of the model. Fluctuations in the longest blocking sequences,
discussed throughout the paper, allow us to put these phenomena in a general frame-
work of stochastic transport in complex systems [12, 13].
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Collective Dynamics and Motility of Soft
Elliptical Particles

Ruben van Drongelen and Timon Idema

Abstract Swarming behaviour is abundant in nature. Over many different length
scales, in for example herds, flocking birds and swimming bacteria, roughly identical
individuals interact locally to achieve group behaviour. The similarities between
these examples suggests the existence of a general underlying principle. We propose
here a local interaction model for self-propelling, elliptical particles that results in
collective motion. Any particle interacts with its neighbours only, experiences noise
on its orientation and pushes inwards if it is in the outer layer of the group. Initially,
alignment between particles is the result of steric repulsion. We observe two types of
group behaviour. The first type is a migrating group, where particles in the bulk are
aligned over large length scales, but do not rearrange. The second type has very little
net motion. The elliptical particles form smaller regions of aligned and antialigned
particles, effectively cancelling the net motion of the group. Finally, we compare the
group behaviour of elliptical particles to circular ones and investigate the importance
of polar alignment.We conclude that polar alignment is a requirement for large-scale
collective dynamics, like collective migration and rotation.

1 Introduction

Many organisms do not just live by themselves. They live in groups. Such groups
consist of hundreds to hundreds of thousands of roughly identical individuals. Exam-
ples range overmany length scales: herds ofmammals, flocks of birds [2] and schools
of fish [1, 11], insects [3], and amoebae [9, 12] and bacteria [4]. In all cases, the
collective behaviour of the group is the result of interactions between individuals
that are close together. Especially on the smallest scale, clusters can reach pack-
ing fractions approaching unity. As a general rule, individuals have little knowledge
about the dynamics of the group. Still, the behaviour of the group as a whole is
obviously important to every individual in it. Therefore, we want to understand how
rules between neighbouring individuals govern the group behaviour.
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Swarming dynamics are a highly nonlinear result of specific local interactions,
as can be seen by simulating group dynamics based on simple rules for individuals.
For example, the well-known Vicsek model describes a flock of birds as a collection
of self-propelled point particles with fixed speed, an interaction that aligns an indi-
vidual’s direction of flight to the velocity of its neighbours, and orientational noise
[13, 14]. To prevent the swarm from falling apart, Vicsek et al. originally used unreal-
istic periodic boundary conditions. Variations of the Vicsek model add a long-range
attraction potential or confine the particles by a fixed boundary [5, 7]. Recently, we
showed that a system can provide its own boundary by imposing a local outsiders-
want-in rule [6]. Particles on the boundary will turn towards the group and push
inwards, until they are part of the bulk again. In that work we focussed on circular
particles. Here we extend our results by investigating the effect of anisotropy on the
local alignment, and ultimately, the group dynamics.

We model collective dynamics of elliptical particles in viscous environments. In
the model, particles repel each other if they overlap, propel themselves along their
major axis, experience noise on this direction and push themselves inwards if they
are on the outside. All of these are local interactions. We find that the resulting
clusters are either collectively aligned without internal dynamics, or dynamic with
only local alignment and no net motion. These results are in contrast with our earlier
work on circular particles with polar alignment, which do exhibit global collective
dynamics. We also carry out two types of control simulations to investigate if polar
alignment, or the geometry of the particles, is responsible for collectively dynamic
systems. Our results show that clusters perform collective migration and rotation
once we add a polar alignment rule, whereas clusters of circular particles with a
two-way alignment will always break up. Indeed, for birds and fish, polar alignment
is a clearly visible feature. Cells of the social amoebae Dictyostelium discoideum
align their velocities and the resulting cluster exhibits collective migration, as well
as rotation [15]. TheMyxococcus xanthus bacteria align through steric interactions,
and use velocity reversals to achieve collective migration [10, 16]. In contrast, large
groups of whirligig beetles, that align in an apolar way, exhibit no net motion.

2 Model

We consider N identical, self-propelling ellipses with aspect ratio γ = 2 : 1 and
minor axis σ0.We denote the position of the centre of ellipse i by ri and its orientation
by ψi , such that ψi is the angle between the major axis and the positive x̂-axis. Parti-
cles propel themselves along their major axis. They are subjected to a viscous drag.
We consider the overdamped limit where particles have negligible inertia. Since they
mostly move along the direction of self-propulsion, we can approximate our equa-
tions ofmotion from the expressions for the linear and angular drag on disks, reported
in Landau and Lifshitz [8]. The drag force and torque on particle i are given by

Fi = 16

3
ησ0vi ≡ ζvi and Ti = πηRγ σ 2

0 ωi ≡ μωi . (1)
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In these definitions for ζ and μ, η and ηR are the translational and rotational viscosi-
ties, and vi and ωi are the linear and angular velocity of particle i .

Overlapping particles experience a soft, harmonic, repulsive force, which we
model by a modified Gay–Berne potential. The potential, in accordance with the
work of Zeravcic et al. [17] on the jamming of soft ellipsoidal particles, is given by

V (ri j , σi j ) =
{

1
2k

(
σi j − ri j

)2
for ri j ≤ σi j

0 for ri j > σi j
, (2)

where k is the spring constant, and ri j = |r j − ri | is the distance between the centres
of ellipse i and j . The range parameter σi j indicates howmuch two particles overlap.
This parameter depends on the relative position of particle i to j , ri j , and their
respective orientations ψi and ψ j . The range parameter is defined by

σi j = σ0

[
1 − χ

2

(
(r̂i j · ûi + r̂i j · û j )

2

1 + χ ûi · û j
+ (r̂i j · ûi − r̂i j · û j )

2

1 − χ ûi · û j

)]−1/2

. (3)

The vector ûi = cos(ψi )x̂ + sin(ψi )ŷ corresponds to the major axis of ellipse i and
r̂i j is the unit vector pointing from i to j . The dimensionless parameter χ = γ 2−1

γ 2+1
depends on the aspect ratio γ of the particles. In general, the corresponding force
is not along r̂i j (see Fig. 1a). Consequently, there is also a torque that leads to local
alignment. The force and torque on particle i are the total derivatives of the potential:

Fi = − d

dri j
V (ri j , σi j )r̂i j and Ti = − d

dψi
V (ri j , σi j ). (4)

Following Vicsek et al. [13], we model self-propelled particles with a constant
self-propulsion force and noise on the direction. These interactions are described by

Fi = Fselfûi and Ti = Tnoiseξi , (5)

(a) (b) (c)

Fig. 1 Schematic view of the forces. The repulsive force between particles i and j causes torques
on both particles (a). Explanation of the outsiders-want-in rule. The particle at the bottom identifies
itself as a boundary particle by measuring the maximum angular separation between any pair of
consecutive neighbours. If this angle exceeds the critical value θc, the particle turns inwards and
exerts an additional force to squeeze in (b). The torque exerted on particle j as a function of its
orientation for different alignment rules. The steric alignment torque when particle j is located
directly above i with orientation ψi = 0, is shown in red. The torques resulting from the polar
alignment rule and the two-way alignment rule are in green and blue, respectively (c)
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with Fself and Tnoise the strength of self-propulsion and noise, respectively, and ξi is a
random number drawn from the set {−1, 1} at each time step. Finally, we use a local
boundary term to prevent the system of particles from falling apart. This eliminates
the necessity of a geometrical confinement or attraction between particles on either
short or long range. To find out if a particle is on the boundary, it measures the largest
angle between consecutive neighbours, θmax,i (see also Fig. 1b). If this angle is larger
than the critical value θc, this particle will exert an extra force and torque to return
to the cluster. The additional force and torque are

Fi = (
θmax,i − θc

)
Finûi , and Ti = TinΔθi , (6)

respectively. Again, the strength of these interactions are Fin for the force and Tin for
the torque. The torque is proportional to Δθi , the angle between the orientation ψ̂ i
and the inward direction defined by the exterior bisector of angle θmax,i .

Wemake our variables dimensionless for the purpose of our computer simulation.
Wefix the length scale by imposingσ0 = 1.The characteristic time scale for repulsion
is given by τ = ζ/k.We set the time scale and force scale with τ = k = 1 and denote
the duration of one simulation step by Δt . Every other interaction X in our model
also has a characteristic time scale τX . The strength of the other interactions X will
be denoted by λX = τ/τX . Hence we have (i) for the noise, λn = ζT 2

noiseΔt/(2kμ2),
(ii) for the additional inwards force, λF = 2Fin/(kσ0), (iii) for the additional inwards
torque, λT = ζTin/(kμ), and (iv) for the self-propulsion λs = 2Fself/(kσ0). Further-
more we fixed μ = 1, θc = 0.9π , λF = 0.16 and λT = 0.1.

Themodel described above consists of finite self-propelled particleswith repulsive
overlapping interactions. We apply a local boundary term, where particles on the
boundary of the cluster push inwards, to keep the cluster together. Both the finite
size and the local boundary rule are different from those of the Vicsekmodel. Finally,
in contrast with the Vicsek model, any alignment in the system is the result of steric
interactions between the anisotropic particles, instead of being hard-coded into the
model. Consequently, ours is the simplest possible model for generating collective
behaviour without confinement and long-range interactions.

3 Results and Discussion

The ellipses are self-propelling agents, which makes them polar particles, even
though the potential is periodic in the angles ψi and ψ j with a period of π instead
of 2π . Therefore, we use the order parameter φ = 1

N

∣∣∑
i ûi

∣∣, identical to the Vicsek
order parameter, to classify the different types of behaviour that we observe.

3.1 Steady State Behaviour of Elliptical Particles

We investigated the effect of self-propulsion strength and orientational noise on the
behaviour of the cluster.We found twodistinct types of behaviour,whichwewill label
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(a) (b) (c)

Fig. 2 Typical snapshots. Jammed configuration (a). Random configuration (b). Overlay of the
velocity field of the random configuration shown in b (c)

(a) (b)

Fig. 3 State diagrams. On the vertical axis we increase the self-propulsion speed of the particles,
and on the horizontal axiswe increase the effective alignment between them.We drew dashed lines
between states that are topologically different. The symbols are shown in Fig. 2 for steric alignment
and Fig. 4 for polar alignment, with their phenotypes. Elliptical particles that align through steric
repulsion (a). Elliptical particles with the polar alignment rule introduced in Sect. 3.3 (b)

‘jammed’ and ‘random’. In the jammed state, particles do not rearrange (see Fig. 2a).
The order parameter φ is constant in time for periods longer than 5% of the total
simulation length and the trajectory of the average position of all particles consists of
straight lines or arcs of constant curvature. In the random state the particles swim in
small streams contained inside a ring constituted of inward facing boundary particles
(see Fig. 2b, c). Particles enter the boundary where the streams hit the boundary.
Once they are classified as boundary particles, they turn around and remain part of
the boundary until they find a spot where they can enter the bulk again. We observe
no global alignment and the value of the order parameter is very low. In short, this
state has a mixing dynamics with alignment on short length scales. As a result, the
centre of mass of the entire cluster exhibits no net motion.

Not surprisingly, the jammed state occurs when the orientational noise on the par-
ticles is low (see Fig. 3a). Introducing increasingly more noise at low or intermediate
self-propulsion speeds gradually leads to the random state. For these states to be
stable, the self-propulsion speed cannot be too high. A high self-propulsion speed
always leads to break-ups into multiple small clusters.
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3.2 Motility of Clusters of Circular Versus Elliptical Particles

In earlier work [6], we found that clusters of circular particles with a polar alignment
rule exhibit four main types of behaviour: clusters that break up (type 1), jammed
clusters with strong alignment (type 2), dynamical clusters where particles rotate
collectively around a common centre (type 3), and dynamical clusters that migrate
collectively (type 4). For the last type, the local alignment results in a global prefer-
ence for the orientation of the particles. This direction corresponds to the direction
of movement of the cluster, which performs a random walk over time.

3.3 Effects of Polar Alignment and Shape on Collective
Dynamics

In contrast to polar circular particles, that display dynamic, collective behaviour of
rotating and migrating clusters, we find that clusters of elliptical particles do not
achieve global, collective behaviour. This drastic change can only be caused by
two factors. First, the geometry of the particles changes the way the particles can
arrange in a cluster. Second, we also disposed of the polar alignment rule. After
all, the Gay–Berne potential aligns our particles as well, eliminating the need to put
alignment in the system as a separate rule. However, this potential also antialigns
the particles. To determine which effect is responsible for collective behaviour, we
tested two different scenarios. In the first, we replaced the steric alignment interac-
tion with a polar alignment rule. Consider for example orientations of i and j that
differ by an angle ψi j , such that ûi · û j = cos(ψi j ), then the torque on particle i is
Ti = Talignψi j . The amplitude of this interaction is Talign and we set the strength of
the alignment interaction with λa = ζTalign/(kμ). The second scenario we tested
has a two-way alignment, similar to the torque which resulted from the modified
Gay–Berne potential, but now for circular particles. For ellipses, the torque depends
in a very non-trivial way on the positions of both particles and their orientations. It
is impossible to generalise the steric alignment to a two-way alignment for circles.
Instead, we choose an alignment torque analogous to the polar alignment rule, but
with two stable states, aligned and antialigned. In Fig. 1c, we plot the torque exerted
on particle j as a function of its orientation ψ j . The two-way alignment torque is a
good approximation to the steric alignment torque for elliptical particles when par-
ticle j is located exactly to the side of particle i . In both cases we fixed λn = 0.003,
λF = 0.06, and λT = 0.3 in simulations.

The results of the first scenario are shown in Figs. 3b and 4.We retrievemany of the
observed types of behaviourwe saw for circleswhenwe reinstate the polar alignment.
We find a collective migration state (see Fig. 4b) and a collective rotation state (see
Fig. 4c). For collective migration, the location of the orientational defect dictates the
movement. When the defect is near the centre of the cluster, the movement will be
very slow. In Fig. 4a,we see that the order parameter for this case isφ ≈ 0.We call this
specific type of behaviour centro-centric. This state is different from a jammed state
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(a) (b) (c)

Fig. 4 Typical snapshots of the simulation for ellipses with polar alignment. Alignment towards
the centre (a). Collective migration (b). Rotation (c)

because we still observe rearrangements and small variations in the order parameter.
For higher speeds the defect moves to the edge. At the highest self-propulsion speed
we simulated, a small rotation centre forms in the place of the defect. The collective
movement is still in the direction of this rotation centre and is ultimately responsible
for a random walk of the cluster. In all cases, the order parameter is significantly
lower (φ � 0.3) than it was for circles (φ > 0.3). Consequently, the absolute speed
of the cluster is lower as well.

In agreement with clusters of circular particles, clusters of elliptical particles
will rotate for low values of the alignment parameter (see Figs. 3b and4c). There
is a clear difference between rotating and migrating clusters phenotypically. The
distinction between centro-centric and actual migration is not as clear. Rather than a
sharp boundary between the two types of behaviour, we observe a gradual change,
where the order parameter monotonically increases with the alignment and the self-
propulsion parameter, λa and λs , respectively. Compared to steric alignment, the
cluster can still break up, but only for large λs (not shown in the state diagram).
Similarly, the polar alignment system will jam only for large λa .

Surprisingly, the two-way alignment rule applied to circular particles (scenario 2)
made the steady state behaviour unstable. In all cases, the cluster broke up into mul-
tiple clusters. There are two reasons why circular particles with two-way alignment
are different from elliptical particles with a steric two-way alignment. First, steric
alignment still allows for alignment mismatches. For very little overlap, the exerted
torque will also be small. The anisotropic nature of the particles will create overlap
with other particles until all torques are balanced. The result will look like Fig. 2a, b,
where we observe mismatches that are stable. Circular particles do not create overlap
when they rotate, and will therefore always align. Second, the two-way alignment
also makes particles turn towards the boundary. If there are more particles pushing
out towards the boundary than boundary particles pushing in, the boundary will be
pushed out. This will cause the cluster to break up.

4 Conclusion

Anisotropic particles do not automatically swarm with an outsiders-want-in rule.
Without polar alignment clusters will break up easily. In addition, for low self-



612 R. van Drongelen and T. Idema

propulsion speeds the particles may be jammed into a configuration with a long
correlation length for alignment, or they only align locally such that the netmovement
of the cluster effectively averages out. Clusters collectively migrate or rotate when
particles align their self-propulsion direction. The elongated shape of the particles
decreases the value of the order parameter compared to migrating clusters of circular
particles. Consequently, clusters of elliptical particles do not move quite as fast as
their circular counterparts. Our model suggests that locally interacting organisms
in viscous environments, i.e. unicellular organisms and cells, need to communicate
their orientation to collectively move.
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Capacity Estimation Method of a Waterway
Intersection

Xavier Bellsolà Olba, Winnie Daamen, Tiedo Vellinga
and Serge P. Hoogendoorn

Abstract The growth of maritime transportation leads to more crowded and inten-
sively used waterways. This research presents a method to estimate the capacity of
a waterway intersection. An analogy between roads and waterways is used and the
conflict technique is applied to a waterway intersection. The flows in each direc-
tion and their conflicting movements lead to the capacity calculation. Data analysis
provides insight into vessel behaviour in an intersection. Moreover, the value of the
method has been proven with a case study. This is a generic method that can be
applied in any waterway intersection based on the conflicts between the different
sailing directions in the intersection and the flow shares inferred from empirical data
or predictions. Its application can improve traffic management strategies or traffic
rules in waterway intersections.

1 Introduction

Maritime transportation is growing and waterways have to handle larger vessels and
greater traffic flows. Thus, waterway intersections become intensively used andmore
crowded for navigation. Port authorities are concerned about the maximum vessel
traffic flow that their network and intersections can accommodate, so the central
question in this research is: “How can we determine the capacity of a waterway
intersection?”. Although extensive research to assess risks in ports and waterways
has already been performed, there is no existing method to estimate the capacity of
waterway intersections.
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The capacity definition for a waterway intersection, which is different from a
whole port, has been recently discussed [1]. This definition, similar to the previ-
ously used capacity definition for approach channels [8], considers the capacity as:
“the maximum flow to be handled by a given cross section or location satisfying
the requirements on navigation and safety level”. The number of ships passing the
intersection through cross sections in each direction can be compared to the current
situation, and it gives insight into the level of utilisation of the intersection.

The objective of this research is to develop a method to estimate the capacity of
any waterway intersection. A feasible analogy with road traffic at intersections is
used to develop the method. Moreover, Automatic Identification System (AIS) data
from an intersection in the Port of Rotterdam is used to validate the method, with a
real case study.

The paper starts with a literature review on road intersection theories (Sect. 2).
Based on the previous section, a capacity estimation method is developed (Sect. 3).
Section4 presents theAutomatic Identification System (AIS) used in vessels. Insights
from the AIS data analysis are presented in Sect. 5. The results are presented (Sect. 6)
and the document ends with conclusions.

2 Literature Review

Only few research on marine traffic congestion of a whole port has been performed
[2, 11]. However, the capacity of an intersection is not influenced by the waiting
times or service times that form the basis of these methodologies. As previously
introduced, its capacity is determined by the maximum flow that can be sustained by
the infrastructure.

Previous research on unsignalised road intersections presented two methods, the
gap-acceptance theory [10] and the conflict technique [3]. The first one is based on
the definition of a minimum critical gap between vehicles. The driver of the vehicle
without priority will accept the gap between vehicles to enter the intersection if the
offered gap is larger than his critical gap. However, this method has some drawbacks
[4]. The determination of the critical gap is difficult and its estimation is a source of
uncertainty. Moreover, this theory will not work well if drivers do not comply with
the rules of priority. The second method simplifies the intersection capacity analysis,
considering the different flows in each direction and the interaction between them. A
total of 28 movements are allowed in a road intersection (vehicles, pedestrians and
bicycles) and the conflicting movements can be identified with a conflict matrix. The
probability that the intersection is not blocked can be calculated and the capacity of
the road intersection is obtained.

3 Capacity Estimation Method

Waterway intersections are similar to unsignalised road intersections, but due to
the drawbacks, introduced in the previous section, the gap-acceptance theory is not
considered. An analogy between road and maritime traffic, using conflict technique,
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is considered as the base to develop a capacity estimation method for waterway
intersections.

There are several differences between roads and waterways, as vessels adapt their
speed and they do not break or stop in or upstream of an intersection. Moreover, in
this approach, all vessels are assumed to have the same priority, no right way priority
as in roads, and there is only one waterway user type with high variety in vessel
types, with a total of 12 movements. If a vessel is occupying the intersection, no
other vessel is allowed to enter. In reality specific vessels might have priority over
all the rest, just being allowed to sail alone. Since this situation would reduce the
resulting capacity, no specific priorities are considered.

The method is built considering the existence of a minimum safety time clearance
to be kept by one vessel from its predecessor, that can be defined as safe headway
(hs). Previous research considered the safe vessel braking distance (ds) as 4 times
the vessel length [5, 6]. For sailing in confined waters, ds is considered to be 3 times
the vessel length. Using the vessel safe distance (ds,i ) and the corresponding speed
(vi ), the safe headway for each individual ship (hs,n) can be calculated as follows:

hs,n = ds,i/(vi × 60) (1)

The probability that stream i occupies the intersection (Ps,i ) can be obtained
multiplying the maximum traffic volume in stream i (qi ) and the time that a vessel
occupies the intersection (ts,i ) (see Eq. (1)). ts,i is obtained considering an average
speed for all ships and the specific distance to cover by each direction inside the
intersection.

Ps,i = qi × ts,i (2)

A conflict matrix identifying all movements that, according to the clearance time,
cannot occur simultaneously, is used to define the conflict factor between two streams
(Ai j ) (0 if no conflict or 1 if conflict). Then, the probability of conflict (Pc) can be
calculated as the sum of the probability of occupying the intersection by stream i,
multiplied by the sum of probabilities that another stream occupies the intersection
times Ai j :

Pc =
∑

i

⎛
⎝Ps,i ×

∑
j �=i

Ps, j × Ai j

⎞
⎠ (3)

The method assumes no overtaking between ships in the intersection. Thus, the
mean value of all hs,i can be used to calculate the maximum flow in one direction
(q1D):

q1D = 1/(hs,mean × 60) (4)

Finally, the capacity of the intersection (C) can be calculated as follows:

C = [1 + (1 − Pc)] × q1D (5)
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4 Automatic Identification System (AIS)

The Automatic Identification System (AIS) was developed by The International
Association of Marine Aids to Navigation and Lighthouse Authorities (IALA). AIS
is an autonomous and continuous broadcast system, operating in the VHF maritime
mobile band [7]. AIS allows automatic exchange of shipboard information from the
vessel sensors, including static, dynamic and voyage related data between one vessel
and another and between a vessel and the shore stations (see Fig. 1). AIS tracking
devices are compulsory since December 1, 2014. The requirement applies to both
commercial and recreational navigation on the Rhine canal with a ship of 20 metres
or more and also for small professional vessels operating with their own drive [9].

The principal functions of AIS, indicated by IALA [7], are

• Information exchange between vessels within VHF range of each other, increasing
situational awareness and safety.

• Information exchange between a vessel and a shore station, such as a Vessel Traffic
Service (VTS), to improve traffic management in congested waterways.

• Automatic reporting in areas of mandatory and voluntary reporting.

The most relevant information included in the AIS messages is summarised in
Fig. 1. In this table, the information obtained from radar data is also shown.

AIS has different practical applications, such as collision avoidance, vessel traffic
services (VTS), maritime security, aids to navigation, search and rescue or accident
investigation. Thus, the use of AIS or radar data for research provides the opportu-
nity to develop statistical analysis of accidents, vessel behaviour, etc., which can be
performed under different circumstances, including weather, time of the day or year,
among others.

Fig. 1 Details on AIS system (left) and AIS and radar information (right)



Capacity Estimation Method of a Waterway Intersection 617

5 Dataset and Research Area

A dataset from the T junction between two waterways, Oude Maas and Hartelkanaal
(see Fig. 2), which was provided by the Port of Rotterdam Authority, is used in this
research. The chosen intersection is one of the busiest in the Port of Rotterdam.

The dataset contains 7days of information of both AIS and radar data. The Port of
Rotterdam has radar stations all along their waterways, which is really useful in this
case since not all the inland vessels are AIS-equipped. The total amount of ships just
from AIS data would be underestimated. The dataset contains all the signals with
Radar data, but only 62% of these signals have AIS details. For this reason, the radar
data has been used for the analysis. The differences in the dynamic variables (speed,
latitude, longitude, etc.) are minimum between AIS and radar data. In specific cases
there are large differences that might be due to problems with the AIS or the radar
signal. As introduced in the previous section, Fig. 1 shows the differences in content
between AIS and radar data.

The minimum interval between consecutive signals from a vessel is 5 s, for both
AIS and radar, and the dataset has almost half a million messages recorded from
5209 different vessels. These vessels might make repeated visits during the period
in different days or times of the day. Each record consists of a coordinate point in
the area and the tracks are obtained by joining each of these points for each vessel.

From the whole dataset, almost 70% of the messages are from moored vessels,
which leaves 3395 vessel individual tracks. 66% of these trips have a whole track
going from one of the entrances of the intersection to another one (see Fig. 3a).
The rest of the data are partial tracks with few signals and do not provide enough
information for their analysis.

Correlations between vessel dimensions and their speeds or headways might be
expected in vessel navigation in a port. However, the data revealed that no corre-

Fig. 2 Research area (Port of Rotterdam)
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Fig. 3 Waterways intersection map: vessel paths (a); traffic shares (b)

lation exists between speed or headway (passing time interval with respect to the
predecessor) and length or breadth of the vessels. The assumption in the estimation
method, previously introduced, which considered an average speed for all vessels to
calculate the intersection occupation time, can be accepted.

6 Case Study Results

In order to validate the applicability of the estimation method presented in Sect. 3,
it has been applied in the research intersection and the results are presented in this
section.

First, the safe headway is calculated for each vessel (hs,i ) and it is compared to
the actual one (hi ). More than 95% of hi are higher than hs,i , and some of the lower
ones occur due to overtaking situations. Based on this, the authors consider hs to be
a suitable variable to calculate the vessel flow.

The method assumes a unique speed for all vessels to calculate hs,i . Due to the
heterogeneous traffic flow and their variety of speeds, even during peak times, the
flow is considered to be heterogeneous. Hence, a vessel speed of 8 knots is used,
based on the average speed results from the data, to calculate hs,i . Then, hs,mean is
obtained as the average of all the individual hs,i , which is equal to 1.20min. By using
hs,mean in Eq. (4), q1D equals 49.9 vessels per hour (ves/h). This value is based on the
assumption of regular vessel arrivals, but in reality the arrival is mostly stochastic and
uncontrolled. However, in case of considering stochastic arrivals, q1D would result in
a lower value and the resulting capacity would be underestimated. Figure3a shows
the possible movements from each direction. This helps to identify the conflicting
movements between directions and to build a conflict matrix for this intersection (see
Table 1). The traffic shares for each direction, obtained from the dataset, are shown
in Fig. 3b.
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Table 1 Conflict matrix

The time that a vessel is occupying the intersection is calculated based on the
following conditions. The intersection length is defined for each direction, according
to Fig. 3a, and the space occupied from a conflicting vessel is considered to be half
of this length. Since no differences in speed regarding the direction exist, a speed
of 8 knots is considered to calculate ts,i . Considering this occupation time and the
different shares per direction, the flows and conflict probabilities for each direction
are obtained (see Table 2). Pc is obtained from the sum of all Pc,i and equals 0.59.
Finally, the resulting capacity of the studied intersection (C) is 70.2 ves/h.

In order to assess the validity of the capacity obtained, it can be compared with
the maximum observed vessel flow, which can be calculated from empirical data
using a 6min interval of time. For this interval, there are several maximum flows of
6 vessels, except one peak of 7, but this can be considered an outlier result due to
the interval boundaries. With that, the maximum flow is 70 ves/h. This result is close
to the value obtained with the estimation method and suggests the feasibility of the
method.

Another indicator to assess the reliability of the obtained result is the total number
of vessels that can be found at the same time instant inside the research area. The
dataset reveals that, for the week of data, the maximum amount of vessels present is
10 and the estimation method results in 10.9 vessels, on average. Based on experts
opinion from the Port of Rotterdam Authority, the peak times in this intersection
might not allow more vessels at the same time, which proves that the estimated
capacity is a useful threshold.

Table 2 Probability of conflict per direction

Direction Share (%) q [ves/h] ts,i [min] Ps,i Pc,i

NS 20 10.1 1.52 0.26 0.15

NW 11 5.6 0.74 0.07 0.03

SN 20 10.0 1.52 0.25 0.08

SW 19 9.2 1.41 0.21 0.15

WN 10 5.0 1.38 0.11 0.10

WS 20 10.1 1.16 0.20 0.07
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7 Conclusion

A generic method to estimate waterway intersection capacity has been developed.
The background of this method is the conflict technique, previously developed for
road traffic. An analogy between road and waterway traffic helps to develop the
method that identifies the conflicting interactions between vessel movements that
occur in an intersection. The result of the method provides the maximum amount of
vessels passing the intersection in a time period, e.g. an hour, assuming that we have
a perfect and independent arrival of vessels.

The case study shows that the current maximum vessel flow is almost the same
as the capacity calculated with the method, which proves the validity of the method.
Hence, the estimated value can be used to assess and improve current traffic man-
agement strategies or some traffic rules, looking for a traffic optimisation in the
intersection.

In future work, the capacity of other port intersections will be estimated in order to
assure the usefulness of the method and its generic applicability. Weather conditions
as current or wind effects will also be considered in further research.
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Granular Flow to a Blast Iron Ore Furnace:
Influence of Particle Size Distribution on
Segregation of a Mixture

Dingena Schott, Wouter Vreeburg, Carmen Molhoek
and Gabriel Lodewijks

Abstract The infeed ofThe material in a blast furnace isThe composed of a mix-
tureThe of three different materials: sinter, iron ore pellets and coke. They are each
very different in shape, size and mechanical properties and likely this promotes seg-
regation, an unwanted effect. However up till now it is not clear to what extent the
Particle Size Distribution (PSD) of each of the three components affects the homo-
geneity. This work aims to assess the influence of particle size distributions of the
individual components on the homogeneity of the infeed material by Discrete Ele-
ment Model (DEM) Simulations. It can be concluded that modelling the PSD of
the individual components is not required to model the tendency to segregate of
the mixture of iron ore pellets, sinter and coke. Representing each of the materials
by its mean particle size d50 reduces the number of particles and simulation time
drastically without compromising the simulation results of the used material models.

1 Introduction

In the steel making process raw materials such as ores and additives are fed into a
blast furnace. For an optimum performance of a blast furnace the homogeneity of
the infeed material is important to ensure constant chemical reactions. This means
that segregation is an unwanted effect.

A schematic of a blast furnace of Tata Steel is shown in Fig. 1. In the stockhouse
a mixture of three materials (sinter, pellets and coke) is charged into a skip hoist,
which is elevated and emptied into one of the top bins. From the top bins the mixture
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Fig. 1 Schematic for feeding the blast furnace for steel making (source Tata Steel)

is fed into the furnace with a rotating chute, to equally spread the materials in the
oven as much as possible. It is generally known and well described in literature (e.g.
[5]) that segregation is likely to occur when a mixture of different sized components
with different densities is in movement.

Here, segregation can occur at several process steps such as during hoisting of the
skips (vibratory segregation), feeding of the top bins and blast furnace (trajectory
segregation and percolation segregation). The three different materials (sinter, pellets
and coke) are very different in shape, size and mechanical properties and likely to
promote segregation. However, up to now it is not clear to what extent the Particle
Size Distribution (PSD) of each of the three products affects the homogeneity.

Therefore, this work aims to assess the influence of Particle Size Distributions
of the individual components on the homogeneity of the infeed material. For this
purpose a Discrete ElementModel was built as it allows tomodel individual particles
with different properties representing different materials. After calibration of the
material properties for each individual material the effect of the PSD on segregation
is assessed.

2 Material Properties

The materials that are used in this research are sinter, iron ore pellets and coke. As
can be seen from Fig. 2, the surface roughness of the materials is different as well
as the shape. The mean particle sizes, the PSD and densities differ as well. The
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Fig. 2 The materials: sinter [1] (a); Iron ore pellets [6] (b); Coke [2] (c)

Table 1 Averaged measured angle of repose (95% confidence interval)

Sinter Pellets Coke Mix

No. of tests 5 5 7 4

Angle of repose 21.8 20.1 25.0 18.4

mean particle diameter (d50) is 12.8mm for sinter, 11.1mm for iron ore pellets and
22.1mm for coke.

The angle of repose (AoR) of each of the materials was tested with a laboratory
set-up. The test was also performed on the mix of material that is fed in the blast
furnace with a ratio of sinter:pellets:coke of 10:20:1 ton. For every material a number
of tests were performed to achieve an interval that contains, within a 95% confidence
interval, the true mean (Table1).

3 Discrete Element Method (DEM) Model

A model of the laboratory set-up was made to simulate the performed laboratory
tests and to calibrate the materials.

3.1 Particle Modelling

To model the particle–particle interaction and the particle–geometry interaction the
Hertz-Mindlin contact model with RVD was used in EDEM®Academic 2.6.1.

For sinter and coke particles an irregular shape is chosen (Fig. 3), while iron ore
pellets were modelled as a sphere as they are roughly spherical in reality. Due to the
use of irregular shaped particles the rolling friction does not play an important role in
simulations and can be eliminated in the calibration simulations for sinter and coke.
The maximum diameter of these particles is set equal to their respective d50.

The particle properties were chosen based on used values in previous research,
available documentation and based on experience of the authors. The sliding friction
coefficient is calibrated using a laboratory test set-up described in the next section.
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Fig. 3 Shapes of the
particles: irregular particle
shape for coke and
sinter (a); spherical particle
representing iron ore pellets
(b)

3.2 Test Set-Up

The laboratory tests were performed in a hard plastic cylinder, with a circular hole
in the flat bottom where the material is flows through after two doors blocking the
funnel are opened at high speed and the material drops in another cylindrical box
(Fig. 4). The linear rotation speed (30 rad/s), its duration (0.1 s) and total rotation
(3 rad) are chosen such that the material is first settled before the doors open at 0.8 s.
The total simulation time was 4s. The Poisson ratio of the set-up was chosen as
0.3, the shear modulus 70 GPa and the material density as 1500kg/m3. Based on
experience, these properties have negligible influence on the results.

Calibration was performed by measuring the angle of repose of the individual
materials and the mixture in the lower bin, both in the laboratory set-up and in the
simulation package EDEM®Academic 2.6.1 (Fig. 4). The mixture is created with
the ratio 20:10:1 for iron ore pellets, sinter and coke on a mass basis, as in practice.

The final sliding friction coefficients were 0.45 (iron ore pellets), 0.3 (sinter), 0.2
(coke) and 0.1 (mixture, interaction between components). For these values good
matches between the angle of repose found in experiments (Table1) and simulations
with a percent error <3% were obtained.

Fig. 4 Experimental set-up
with example calibration
results (right). DEM model
of the experimental set-up
for determining the angle of
repose (a), sinter (b), coke
(c), iron ore pellets (d),
mixture (e)
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Fig. 5 Segregation test set-up Asymmetric filling of the cone (a); start of flow towards receiving
box (b); cone build up in receiving box (c)

4 Segregation Test Set-Up

The set-up for testing the difference in segregation of the mixture with and without
PSD consists of a rectangular box and a cone (Fig. 5). The materials enter the cone
asymmetric to create movement and to promote segregation. The dimensions of the
box are 500 × 150 × 400mm (width× depth× height). The simulated time is 3 s.

Both mixes (with and without PSD) are created with the ratio sinter, iron ore
pellets and coke as 10:20:1.

4.1 Material Mix—Without PSD

The simulations without PSD have 6kg of sinter, 12kg of iron ore pellets and 0.6kg
of coke as the total created mass in EDEM. The particles were modelled according to
the mean particle size as specified in Table1. The total number of generated particles
was 7000 and computational time of these simulations without PSD was around
20min.

4.2 Material Mix—with PSD

The given particle size distributions contained a PSD of 6–8 intervals. Using the
whole range of particle size in the simulations will lead to unacceptable long com-
putational times. The cause is mainly the simulation grid size which relates to the
smallest particle size. To keep the computation times acceptable the PSD were con-
verted to 4 sizes of the material for all three materials while the d50 was kept the
same.
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In addition, to decrease the computational time further, the amount of material
was limited to 5kg of sinter, 10kg of pellets and 0.5kg of coke. The total number of
generated particles was 22500, and the computational time of the simulations with
PSD rose from 20min to 10–12h. As said this rise is caused by the smallest particle
size and the number of particles in the simulation.

4.3 Analysis Method

Existing mixing indices focus mostly on binary mixtures [3] and triangular diagrams
[4] are generally used for determining chemical components and not for a weight
based prescribed mixing ratio as is the case within this work. Therefore, a custom
made approach was developed to analyse the results.

The receiving box is equippedwith a grid of 8 × 3 × 7 (width× depth× height)
bins (Fig. 6). From these bins the composition of the mixture was extracted and
compared with the initial mixing ratio of 10:20:1. The figure illustrates percolation
segregation: the largest particles (coke) will remain on top of the slope whilst the
smaller particles fill the voids while moving down the slope.

The masses in each bin are exported to Excel2010. When dividing the mass of
sinter, iron ore and coke by the mass of coke in that particular box, the ratio of the
materials in that box is obtained. When dividing these obtained ratios by the ratio in
which the material enters the simulation (10:20:1), it can be seen which material is
over populating the bin, which material is not or if the mixture is good. For example:
when an end-ratio of 1:1:1 is obtained, the mixture is perfect. When an end-ratio of
2:1:1 is obtained there is twice as much sinter in that bin.

It is also possible to obtain a ratio of for example 10:10:1, indicating there is 10
times as much iron ore and 10 times as much sinter. There is no overpopulation from
one material, only a low presence of another. In this research it is chosen to treat this
too as a ‘good’ mixture.

When there is no coke present in a bin, the amount of iron ore is divided by sinter
and multiplied by 10. For sinter the other way around: sinter / iron ore × 20. This

Fig. 6 Receiving box after settlement ofmaterials: grid bins in receiving box for analysing purposes
(a); examples of results, showing mixture or predominant components (b)
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gives the ratio compared to each other. When only one material is present, the ratio
will be for example 0:1:0.

If the mixture is within the set limit of the prescribed mixture ratio the bin colours
yellow, otherwise it shows which material dominates the bin (Fig. 6 right). This was
done for each of the 3 slices in depth direction and each simulation was repeated
4 times. From the visualisation the percentage of bins with dominant presence of
materials was calculated. In absence of a definition for ‘goodmixture’ two definitions
were used for the ratio sinter, iron ore pellets and coke: (1) awide range 5..20:10..40:1
and (2) narrow range 8..12:16..24:1.

5 Results

The results of modelling a mixture of coke, sinter and iron ore with or without their
respective particle size distributions is shown in Figs. 7 and 8. The figures show the
mean values of 12 data points with their 95% confidence intervals for two different
‘good mixture’ definitions.

When using the narrow range definition there seems to be an effect of including
the PSD when looking at the mixture (first bars), as the average of the 12 data points
is 9% lower. However looking at the dominance of individual components this is not
significant as the confidence intervals overlap.

As expected a wider range for the definition of ‘good mixture’ leads to a higher
percentage of bins in which the mixture can be called ‘good’. This is because it is
more unlikely for an individual component to dominate a cell. The average values
of the mixture modelled with and without PSD differ 9%, however the confidence
intervals do overlap, and a significant effect of modelling the PSD cannot be shown.

It can be concluded that, with the given model, the results of modelling the indi-
vidual components with PSD are not significantly different from modelling without
PSD, i.e. mono sized particles with their respective d50.

Fig. 7 Percentage of bins
with predominant presence
of materials as a result of
modelling with and without
PSD, for the narrow ‘good
mixture’ definition
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Fig. 8 Percentage of bins
with predominant presence
of materials as a result of
modelling with and without
PSD, for the wide ‘good
mixture’ definition

6 Conclusion

Modelling the PSD of the individual components is not required to model the ten-
dency to segregate of the mixture of iron ore pellets, sinter and coke. Representing
each of the materials by its mean particle size d50 reduces the number of particles
and simulation time drastically without compromising the simulation results of the
used material models.

Further work should include (1) recalibration of thematerial model with PSD, and
then analyse the effect once more, (2) studying the effect of the full range of PSD,
including the smallest real size particles, (3) studying the effect of the domain size
and (4) influence of wall material parameters. To be sure the DEMmodel accurately
represents segregation of this mixture in practice validation is required. However this
model can be used for a first investigation of the material behaviour, settlement and
segregation in a blast furnace.
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Two-Channel Partially Coupled Exclusion
Process with Mutually Interactive Langmuir
Kinetics

Arvind Kumar Gupta

Abstract In this work, we investigate an open system comprised of two-parallel
TASEP under partially asymmetric coupling conditions incorporating the mutual
interaction with the surrounding environment through Langmuir Kinetics in both the
channels. Motivated by the recent finding on clustering of motor proteins on micro-
tubules, the attachment and detachment rates are assumed to be dependent on the
state of the neighbouring sites. Under the mean-field assumption, the hydrodynamic
equations representing the evolution of particle density is studied and steady-state
phase diagrams are obtained. The effect of mutually interactive Langmuir Kinetics
(MILK) on the phase diagram is discussed for two different situations. For symmetric
MILK, the topological structure of the phase diagram remains preserved; while for
the antisymmetric MILK, significant changes are observed in the qualitative nature
of phase diagram. Monte Carlo simulations are performed to validate the theoretical
findings.

1 Introduction

Recently, non-equilibriumsystems involving particlesmovement in a preferred direc-
tion [12] have been comprehensively studied because of very rich dynamical and
steady-state behaviour [3]. In last few decades, the collective dynamics of intracel-
lular transport is studied by a paradigmatic model namely totally asymmetric simple
exclusion process (TASEP) [7], in which particles follow hard-core exclusion prin-
ciple with certain preassigned rules. A two-channel open TASEP has been found to
describe some complex non-equilibrium phenomena [10].

An important class of TASEP with particle attachment and detachment in bulk
(Langmuir Kinetics), having applications in intracellular transport [6], has gained
much attention. Single-channel TASEP coupled with LK [8] has been studied com-
prehensively, which shows significantly different dynamics in comparison to TASEP
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without LK. The outcomes of competition between boundary and bulk dynamics
result in features such as phase coexistence and localisation of shocks etc.

Recent experimental studies, also supported by simulation results, have shown
that motor proteins such as kinesin-1 interact with each other through short range
weak attractions [11]. To understand the important role of weakly interactive motor
proteins [1], two distinct methods viz. mean-field and modified cluster mean-field
approach [2] have been used with and without LK, respectively. Lately, Vuijk
et al. [13] has studied one-dimensional TASEP coupled to mutually interactive LK
(MILK) while hopping rates were kept unaffected.

There are various multi-channel transport processes such as vehicular traffic and
motor proteins [6]. In literature, two-lane TASEP with [4, 5] and without LK [10]
have been studied thoroughly, but the important aspect of mutual interaction is not
considered so far. The aim of this work is to explore the consequences of MILK on
two-channel asymmetrically coupled TASEP, in which particles can shift between
both the channels with unequal rates. The role of symmetry of interaction in LK on
the stationary dynamics of the system is explored.

2 Model Description

We define an open system of two identical and parallel 1-D lattice channels with N
sites, represented by A and B. Particles are inserted into the system under hard-core
exclusion principle which move unidirectionally to the right (Fig. 1).

The state of any site is defined by a discrete occupation number τi, j (i = 1, 2, . . . ,
N ); j = (A, B) which is either one (occupied site) or zero (vacant). At site i = 1,
a particle can enter into the system with rate α if τ1, j = 0 while at site i = L , a
particle can leave the system with rate β provided τL , j = 1. In the bulk (1 < i < N )
if τi, j = 0, a particle attaches to the site with attachment rate γ �ωa . On the other
hand if τi, j = 1, then particle firstly tries to leave the system with detachment rate

Fig. 1 Schematic diagram of the model. Crossed arrows indicate the forbidden transitions
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Fig. 2 Schematic diagram of mutually interactive Langmuir Kinetics (MILK)

δ�ωd . If fails to do so then it moves to the next site provided τi+1, j = 0. However, if
forward movement is also not possible then particle in channel A (lane B) shifts to
lane B (lane A) with rate ωA(ωB). The modified LK dynamics at site (i, j) depend
on the state of nearest-neighbouring sites as shown in Fig. 2. Here, the parameter �

is a non-negative integer which represents the strength of the modifying factors of
attachment/detachment rates.

The temporal evolution of bulk particle densities (1 < i < N ) in both the chan-
nels ( j = A, B) is given by the following master equation:

d〈τi, j 〉
dt

= 〈τi−1, j (1 − τi, j )〉 − 〈τi, j (1 − τi+1, j )〉 + ωa〈(1 − τi−1, j )(1 − τi, j )(1 − τi+1, j )〉
+ γωa〈(1 − τi, j )[(1 − τi+1, j )τi−1, j + (1 − τi−1, j )τi+1, j ]〉
+ γ 2ωa〈τi−1, j (1 − τi, j )τi+1, j 〉 − ωd 〈τi, j (1 − τi−1, j )(1 − τi+1, j )〉
− δωd 〈τi, j ((1 − τi−1, j )τi+1, j + (1 − τi+1, j )τi−1, j )〉
− δ2ωd 〈τi−1, j τi, j τi+1, j 〉 ∓ ωA〈τi,Aτi+1,A(1 − τi,B)〉
± ωB〈τi,Bτi+1,B(1 − τi,A)〉.

(1)
where 〈...〉 denotes the statistical average and last two terms on right hand side take
negative (positive) and positive (negative) sign for channel A(B). At boundaries
(i = 1, N ), particle densities evolve as:

d〈τ1, j 〉
dt

= α〈(1 − τ1, j )〉 − 〈τ1, j (1 − τ2, j )〉
d〈τN , j 〉

dt
= 〈τN−1, j (1 − τN , j )〉 − β〈τN , j 〉.

(2)

Firstly, we factorise correlations using mean-field approximation and then find
the continuum limit of model by coarse-graining the lattice with lattice constant
ε = 1/N and rescaling the time t ′ = t/N . To observe competing interplay between
boundary and bulk dynamics, we define Ωa = ωaN , Ωd = ωd N , ΩA = ωAN and
ΩB = ωBN . For a larger system size (i.e. N >> 1), we replace the discrete number
τi, j by a continuous variable ρ(x, t) ∈ [0, 1] with x = i/N and get the following
system for average densities after ignoring subscript i .
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∂

∂t ′

[
ρA

ρB

]
+ ∂

∂x

[− ε
2

∂ρA

∂x + ρA(1 − ρA)

− ε
2

∂ρB

∂x + ρB(1 − ρB)

]
=

⎡
⎢⎢⎣

Ωa(1 − ρA)(1 + ρA(δ − 1))2 − ΩdρA(1 + ρA(γ − 1))2

−ΩAρ
2
A(1 − ρB) + ΩBρ2

B(1 − ρA)

Ωa(1 − ρB)(1 + ρB(δ − 1))2 − ΩdρB(1 + ρB(γ − 1))2

+ΩAρ
2
A(1 − ρB) − ΩBρ2

B(1 − ρA).

⎤
⎥⎥⎦ (3)

Here, ρA and ρB represent the average density in channel A and channel B,
respectively, while the right hand side denotes the non-conservative terms formed by
the combination of lane changing transitions and MILK.

3 Phase Diagrams and Density Profiles

To examine the effect of MILK on the steady-state properties, we derive phase dia-
grams for two different cases by using the approach proposed in [5] restricting to a
special choice Ωa = Ωd . Firstly, in the symmetric case, attachment and detachment
rates are enhanced or reduced simultaneously and its effect on the phase diagram is
examined. The second case deals with the antisymmetric LK rates in which if attach-
ment rate is enhanced (reduced) then the detachment rate is reduced (enhanced)
by the same factor. The fully asymmetric coupling between the channels makes the
steady-state dynamics non-trivial in contrast to a symmetrically coupled two-channel
TASEP with LK which is similar to two independent single-channel TASEP with
LK [5]. MCS are performed to validate the results obtained from continuum mean-
field equations. To minimise the boundary effects, a lattice of size L = 1000 is used
and the simulations are carried out for 1010 time steps. Additionally, to ensure the
occurrence of a steady state, the first 5% steps are ignored and the densities are
computed by taking time averages over an interval of 10L .

3.1 Case 1: Symmetric MILK

In the case of symmetric modified LK, we choose γ = δ = 1 + θ . Based on the con-
figuration of neighbouring sites, both attachment and detachment rates are modified
symmetrically. Since θ ≤ −1 leads to negative rates, we restrict to the case θ > −1.
For θ = −1, the well examined case of Ref. [4] can be retrieved. θ represents the
strength of the mutual interaction due to LK dynamics and θ > 0 enhances the LK
dynamics provided the neighbouring sites are occupied and vice versa. Figures3a–d
show the phase diagrams for different values of θ . Clearly, six distinct stationary
phases exist, viz. (LD, LD), (LD, S), (LD, HD), (S, S), (S, HD), and (HD, HD) for
θ = 0 (see Fig. 3a). As θ increases, the number of phases reduces form six to five
with a quick (slow) disappearance (shrinkage) of (HD, HD) ((LD, LD)) phase; while
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Fig. 3 Phase diagrams forΩA = 0.8,ΩB = 0.2 andΩd = 0.2 (a); θ = 0 (b); θ = 0.5 (c); θ = 2.0
(d); θ = −0.5. LD, HD and S denote Low Density, High Density and Shock phase, respectively

θ < 0 keeps the topology of the phase diagram intact. This is due to the higher prob-
ability of occupied neighbouring sites for higher θ which leads to more detachments
(attachments) in HD (LD) phase. The density profiles of different phases obtained
from continuum mean-field equations are found to be in good agreement with MCS
(except near the boundary layer due to the finite size effect) as shown in Fig. 4
with θ = 2.0. Importantly, the density profiles in both the channels, regardless of
the phase, approach to Langmuir isotherm as θ increases and ultimately we get i.e.
ρA = ρB = 1/2 as θ → ∞.

3.2 Case 2: Antisymmetric MILK

In the previous case, we studied the effect ofmodified LK rates inwhichMI enhanced
or reduced simultaneously the LK dynamics. This is in contrast to the attractive
interaction seen in kinesins-1 in an in vitro experiment [11]. In this case, the proposed
model is analysed to understand the coordination mechanism under the existence of
attractive interactions. The LK rates are modified in an antisymmetric manner where
the attachment (detachment) rate is enhanced (reduced) and vice versa. To do so,
we set γ = 1 + φ and δ = 1 − φ where φ ∈ [−1, 1] is a constant. Here, positive
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Fig. 4 Density profiles for θ = 2 corresponding to the phase diagram in Fig. 3c. The solid (dashed)
lines in red (blue) colour are the continuummean-field density profiles of channel A (B). The curves
marked with squares (circles) are the result of MCS for channel A (B)

(negative) values of φ represents the attractive (repulsive) interaction of the LK
dynamic.

Firstly, the role of attractive interactions on the phase diagram is investigated by
increasing the value of φ. For φ = 0, the system reduces to the one studied in [4]
with six distinct phases (see Fig. 3a). A small increase in the value of φ preserves
the topological structure of the phase diagram with only slight shifting in the phase
boundaries. The (LD, LD) phase shrinks and the (HD,HD) phase expands as there are
more attachment with increasing φ. At φ = 0.5, the topology of the phase diagram
changes significantly (see Fig. 5a). Interestingly, no new phase emerges and the phase
diagram consists of five phase having the same characteristics as that of φ = 0. The
(HD, HD) phase captures majority of the region in the phase diagram while the (LD,
HD) phase disappears completely. In Fig. 6a the density profiles for different phases
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Fig. 5 Phase diagrams for ΩA = 0.8,ΩB = 0.2 and Ωd = 0.2: φ = 0.5 (a) and φ = −0.5 (b)
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Fig. 6 Density profiles in various phases corresponding to the phase diagram in Fig. 5: φ = 0.5
(a–c); φ = −0.5 (d–e)

from continuummean field along with the Monte Carlo simulation results are shown
corresponding to the phase diagram in Fig. 5a.

Lastly, the case of negative φ is explored in Fig. 5b. Contrary to the case φ > 0,
as values of φ decreases, (LD, LD) phase enlarges and covers a major portion of the
phase diagram for φ = −0.5. Mainly, there are only four different stationary phases
(also present for φ = 0) in the phase diagram; while the topological structure of
the phase diagram is quite different as compared to the one for φ = 0. In general,
there is a good agreement between the analytical and simulation results except some
discrepancies for antisymmetric LK dynamics. There may be two reasons for such
discrepancies, the finite lattice size or the mean-field approximation. As reported in
Ref. [9] that the correlation due to mutual interactions (as in KLSmodel) may lead to
some mismatch in the results obtained from mean-field approximation with Monte
Carlo simulations.

4 Conclusion

We investigated a partially coupled two-channel TASEP model with MILK in both
the channels by modifying LK dynamics based on the configuration of nearest-
neighbouring sites. The steady-state properties of the system are examined using a
mean-field approximation in the continuum limit. Under the symmetric LKdynamics
in which both attachment and detachment rates increase or decrease simultaneously,
the topology of the phase diagram remains qualitatively similar to the one obtained
in the case of without mutual interaction. The only changes in the structure of the
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phase diagram found are the gradual shifting of the phase boundaries and the shrink-
age/expansion of various phases. The results of continuum mean-field equations
are validated with the Monte Carlo simulation. On varying the mutual interaction
betweenparticles in antisymmetric case,weobtain a very rich phase diagram inwhich
topology of the phase diagram changes significantly as compared to the symmetric
case.

Acknowledgements The author gratefully acknowledges the support from the Department of Sci-
ence and Technology (DST), Government of India.

References

1. Celis-Garza, D., Teimouri, H., Kolomeisky, A.B.: Correlations and symmetry of interactions
influence collective dynamics ofmolecularmotors. J. Stat.Mech. Theory Exp. 2015(4), P04013
(2015)

2. Chandel, S., Chaudhuri, A., Muhuri, S.: Collective transport of weakly interacting molecular
motors with langmuir kinetics. EPL (Europhys. Lett.) 110(1), 18002 (2015)

3. Chowdhury, D.: Stochastic mechano-chemical kinetics of molecular motors: a multidiscipli-
nary enterprise from a physicists perspective. Phys. Rep. 529(1), 1–197 (2013)

4. Dhiman, I., Gupta,A.K.: Effect of coupling strength on a two-lane partially asymmetric coupled
totally asymmetric simple exclusion processwith langmuir kinetics. Phys. Rev. E 90(1), 012114
(2014)

5. Gupta, A.K., Dhiman, I.: Asymmetric coupling in two-lane simple exclusion processes with
langmuir kinetics: Phase diagrams and boundary layers. Phys. Rev. E 89(2), 022131 (2014)

6. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunder-
land, MA (2001)

7. Parmeggiani, A., Franosch, T., Frey, E.: Phase coexistence in driven one-dimensional transport.
Phys. Rev. Lett. 90(8), 086601 (2003)

8. Parmeggiani, A., Franosch, T., Frey, E.: Totally asymmetric simple exclusion process with
langmuir kinetics. Phys. Rev. E 70(4), 046101 (2004)

9. Popkov, V., Rákos, A., Willmann, R.D., Kolomeisky, A.B., Schütz, G.M.: Localization of
shocks in driven diffusive systems without particle number conservation. Phys. Rev. E 67(6),
066117 (2003)

10. Pronina, E., Kolomeisky, A.B.: Two-channel totally asymmetric simple exclusion processes.
J. Phys. A Math. Gen. 37(42), 9907 (2004)

11. Roos, W.H., Campàs, O., Montel, F., Woehlke, G., Spatz, J.P., Bassereau, P., Cappello, G.:
Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions. Phys.
Biol. 5(4), 046004 (2008)

12. Schmittmann, B., Zia, R.: Driven diffusive systems. An introduction and recent developments.
Phys. Rep. 301(1), 45–64 (1998)

13. Vuijk, H., Rens, R., Vahabi, M., MacKintosh, F., Sharma, A.: Driven diffusive systems with
mutually interactive langmuir kinetics. Phys. Rev. E 91(3), 032143 (2015)



Author Index

A
Agarwal, Amit, 419
Ali, Yasir S., 27
Almeida, Paulo E.M., 137, 345
Alshehri, Abdullah, 353
Andresen, Erik, 249
Arif, Muhammad, 353
Axthelm, Rebekka, 233

B
Bandini, Stefania, 257, 273, 377
Bazior, Grzegorz, 305
Bellsolà Olba, Xavier, 613
Bernasconi, Nicolo, 369
Biedermann, Daniel H., 241, 321
Bierlaire, Michel, 43
Bode, Nikolai W.F., 81
Boltes, Maik, 3, 337
Borrmann, André, 209, 241, 321
Bosina, Ernst, 19
Braga, Henrique C., 137, 345
Büchel, Beda, 19
Bühling, Judith, 369
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