
Chapter 7
Principles of Coarse-Graining and Coupling
Using the Atom-to-Continuum Method

Reese E. Jones, Jeremy Templeton, and Jonathan Zimmerman

7.1 Introduction

Molecular dynamics (MD) and finite element (FE) simulation are both powerful,
widely applied methods in their own right. MD enables the study of the atomic
motion that underlies material deformation and failure mechanisms. It has been a
tool in understanding phenomena such as diffusion, energy transport, and fracture
at a fundamental level. In contrast, FE simulation of continuum processes uses
preconceived knowledge about mechanisms, in the form of constitutive models, to
predict the response of structures and devices that span from microns to meters. Just
as each method possesses unique strengths, they also have their limits. Typically,
MD cannot be used to simulate even microscopic devices due to computational
inefficiencies of resolving atomic motion at that scale, whereas FE relies heavily on
phenomenological constitutive models that may not encompass all the mechanisms
needed for predictive simulation.

To provide a tool to simulate and design nanoscale devices and nanostructured
materials, we have developed a suite of numerical methods that bring together
the best aspects of MD and FE. This coupling of methods enables us to capture
multiscale phenomena [1–3], reduce atomic data to connect with continuum theory
[4–7], simulate large systems with atomic detail and statistical characterization
[8, 9], and add physics not intrinsic to MD [10]. In general, the methods rely on
the fact that atomistic behavior is asymptotic to continuum, which is the basis
for Green–Kubo methods [3] for example, and that the scales at which the two
representations of materials become consistent are surprisingly short and small
[11, 12].
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In this chapter, we review our approaches for both coarse-graining (the averaging
of MD-level quantities to inform models used within FE) and coupling (concurrent
simulation at the MD and FE levels such that information is exchanged through
interface conditions) that have been implemented in the Atom-to-Continuum (AtC)
user module available with the widely used, large-scale molecular simulation code
LAMMPS [13]. As we will discuss, coupling generally involves four ingredients:
(a) consistent upscaling/coarse-graining of atomic data, (b) multiscale governing
balances connecting atomic and continuum representations, (c) consistent contin-
uum constitutive models, and (d) atomistic control schemes to effect the influence
of the continuum on the atomistic representation.

In the next section, Sect. 7.2, we will develop a means of coarse-graining of
atomic data into continuum fields that is consistent with accepted conservation laws.
Then, we will revisit (a) and cover (b)–(d) in Sect. 7.3. Finally, in Sect. 7.4 we will
show examples of both coarse-graining and coupling that demonstrate the utility
and versatility of these techniques. We refer the reader to Fig. 7.1 for a guide to the
notation and basic geometry used in this chapter.

t time
x current position
X reference position
u displacement
v velocity
q charge
ζ charge density
m mass
� mass density
ρ reference mass density
p momentum density
σσσ Cauchy stress
S first Piola-Kirchhoff stress
ςςς spatial heat flux
q referential heat flux
F potential energy
e total energy density
ε internal energy density
T temperature

Ω

Ω
MD

Ω
FE

Free
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Fig. 7.1 Notation used for physical properties and fields within this chapter. Atomic quantities
are indexed with Greek ˛ subscripts and nodal/continuum fields with Latin I subscripts and unless
explicitly noted ˛ ranges over the whole set of atoms A and I ranges over all nodes N . The
schematic shows the finite element ˝FE and molecular dynamic ˝MD regions comprising the
complete system ˝ D ˝FE [ ˝MD. The nodes and atoms that are free evolve according to their
own constitutive models reside in ˝FE and ˝MD, respectively, and those that are coupled to the
other paradigm reside in ˝MD and ˝FE, respectively
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7.2 Coarse Graining

Coarse-graining is the averaging of atomic-scale quantities in order to estimate fields
that have well-defined physical meaning at larger scales. These continuum fields can
be used to interpret atomistic data and construct constitutive models that guide FE
simulations, or to provide interface conditions for concurrent MD/FE simulations.
The development of expressions to calculate continuum fields from pointwise
atomistic information dates back to the late nineteenth century, when Clausius
[14] and Maxwell [15] developed the virial theorem (VT) to define the stress
applied to the bounding surface of a fixed volume containing interacting particles
at finite temperature. In 1950, Irving and Kirkwood [16] derived expressions for
local measures of stress and heat flux from microscopic/atomic densities for mass,
momentum and energy and the associated continuum balance equations.

Subsequent to these foundations, there have been many efforts to improve on
atomic-based definitions for stress [4, 17–38] and heat flux [35, 38]. We direct
the reader to [4, 35–37] for more complete discussions of these derivations.
Notable among these efforts is the work by Hardy and colleagues [21, 39, 40]
which replaced the Dirac delta employed by Irving and Kirkwood with a more
computationally amenable smooth, finite localization function to establish a self-
consistent manner of distributing discrete atomic contributions to thermomechanical
fields. Hardy’s original formulation is based on an Eulerian/spatial representation
where localization volumes are essentially control volumes fixed in space that matter
occupies at a particular time. Hence, as was the case for the expressions by Irving
and Kirkwood [16], Hardy’s expressions for (Cauchy) stress, � , and heat flux, &,
contain both potential and kinetic terms.

A Lagrangian/material frame representation affords an alternative approach
particularly suited to solids and tracking material motion from a continuum
perspective. In this case, the first Piola–Kirchhoff stress tensor S, the amount of
current force exerted on a unit area as measured in the reference configuration, is the
relevant stress measure. The material frame heat flux, q, has a similar definition and
has units of energy per time per unit reference area. Expressions to calculate S and
q have been developed by Andia et al. [29–32], and more recently by Zimmerman
et al. [36] who used a Hardy-like formalism.

In this section, we present a generalized weighted-residual formulation for
coarse-graining atomic data. We derive consistent fields from minimizing the L2

norm of the difference between an atomic-based description of a continuum field
variable and a representation using nodal variables and FE basis functions. We
compare this approach with expressions developed by Irving and Kirkwood, Hardy
and similar efforts found in the literature, and elucidate their connections as well as
their differences. Lastly, although becoming prominent in recent research [41, 42]
we do not cover the uncertainty quantification (UQ) aspects of parameter and
property estimation in this chapter nor give an extensive treatment of measuring
or coupling to the scale-dependent fluctuations intrinsic in MD [43].



226 R.E. Jones et al.

7.2.1 Formulation

As in [44], we take a least squares statement:

min
�I

Z
˝

k�� �
X

I

NI�Ik2 dV ()
X

J

�Z
˝

NINJ dV

�
�J D

Z
˝

NI� dV (7.1)

as starting point to relate, in this case, the mass density �� to its approximationP
I NI.x/�I.t/ with a basis fNI.x/g covering region ˝ � ˝MD filled with atoms.

This is a sub-case of the more general scenario shown in Fig. 7.1.
As in Irving and Kirkwood’s seminal work [16], we form microscopic densities,

e.g.,

��.x; t/ D
X

˛

m˛ı.x � x˛.t// (7.2)

in terms of atomic quantities, here m˛ is the mass of atom ˛, and ı is the Dirac delta
operator. Hence Eq. (7.1) becomes

X
J

�Z
˝

NINJ dV

�
„ ƒ‚ …

MIJ

�J D
X

˛

NI.x˛/m˛ D
X

˛

NI˛m˛ (7.3)

where NI˛ D NI.x˛/ is the basis evaluated at atomic positions. The solution of
Eq. (7.3) is the projection

�I D
X
J;˛

M�1
IJ NJ˛m˛ D

X
˛

�I˛m˛; (7.4)

given the mass matrix MIJ , and introduce the localization function �I DP
J M�1

IJ NJ , with �I˛ D �I.x˛/, which has units of inverse volume [45]. We
can reduce this projection to a restriction

�I �
X

˛

1

VI
NI˛m˛ D

X
˛

�I˛m˛ (7.5)

by row-sum lumping the mass matrix MIJ � P
J MIJ D R

˝
NI dV D VI using the

partition of unity property
P

I NI D 1 of the basis NI , which localizes the influence
of atomic data on specific nodes. In this case, �I˛ D NI˛=VI . In a similar fashion,
we can take the localization function to be a moving least squares (MLS) kernel [46]
like in Hardy’s work [21, 39, 47] so that �I˛ D �.xI � x˛/ with the normalizationR

˝
� dV D 1, or a reproducing kernel [48] which is polynomially complete. Using

either a projection (7.4), a restriction (7.5) or a moving least squares estimate to
obtain nodal values, the continuum field is then interpolated using the basis

�.x; t/ D
X

I

NI.x/�I.t/ D
X
I;˛

NI.x/�I.x˛.t//m˛: (7.6)
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Note that NI will always denote the chosen basis but the particular form of the
localization �I will depend on the appropriate mass matrix, which we will assume
is implicit in the context of particular �I .

Two characteristic sizes have been introduced into our formulation: (a) the nodal
spacing of the mesh used (i.e., the scale of the basis NI � 3

p
VI), which dictates

the spatial refinement of our coarse-grained field, and (b) the size of the region
over which averaging is performed at each node (i.e., the scale of �I). These
two length-scales are independent, but typically the averaging region is taken to
be commensurate with the mesh spacing for convenience. This practice becomes
problematic in certain cases. For example, the anticipation of large gradients may
require a fine mesh; however, too fine a mesh will result in nodal averages that
depend on only a few atoms. Conversely, too coarse a mesh will result in averages
that are limited in their spatial variation. Alternatively, one can separate these two
length-scales, using a larger size for atomic averaging and a smaller one for mesh
definition,1 as we demonstrate in the example presented in Sect. 7.4.1. Instead of
a completely empirical approach, the asymptotic analysis of Ulz et al. can be
employed to balance smoothness and resolution of the estimate [49].

Taking the (partial) time derivative of Eq. (7.1)

X
J

�Z
˝

NINJ dV

�
@

@t
�J D �

X
˛

r xNI˛ � m˛v˛ (7.7)

using the short-hand

@

@t
NI˛.t/ D @

@t
NI.xI � x˛.t// D �r xNI˛ � v˛ (7.8)

for the application of the necessary chain rule, we see the estimates are consistent
with the usual continuum Eulerian/spatial mass balance

@

@t
�I C r x � pI D P�I C �Irx � vI D 0 (7.9)

at the nodes. Here we introduce the material time derivative P� D @
@t� C r x� � v of �

and the linear momentum density field p D �v. This approach gives an explicit
sense of scale at which the estimated fields are consistent with the appropriate
balance in contrast with MLS/Hardy approach [21] where at any point

@�

@t
D @

@t

X
˛

�.x � x.t//m˛ D �
X

˛

r x�.x � x.t// � m˛v˛ D �r x � p (7.10)

1This choice has similarities with the Bubnov–Galerkin weighted residual where the weight space
and primary field have different bases.
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The Lagrangian mass balance is trivially satisfied by

� D
X

I

NI.X/�I D
X
I;˛

NI�I.X˛/m˛ (7.11)

since P�I D 0.
A further generalization is to introduce time averaging by revisiting the micro-

scopic density Eq. (7.2)

��.x; t/ D
X

˛

hm˛ı.x � x˛.t//i (7.12)

using a causal time-filter

f .t/ �
Z t

�1
f .s/w.t � s/ ds: (7.13)

The kernel w.t/ must asymptote to zero as t ! �1 sufficiently fast for the
integral to converge, which, in conjunction with the properties of the convolution
operator (7.13),2 results in this time-average having the commutation property

@

@t
hf i D

�
@

@t
f

�
: (7.14)

Thus, the time derivative of Eq. (7.1) becomes

X
J

�Z
˝

NINJ dV

�
@

@t
�J D @

@t

*X
˛

NI˛m˛

+
D
*X

˛

@

@t
NI˛m˛

+
(7.15)

D �
*X

˛

rxNI˛ � m˛v˛

+
D �rx �

*X
˛

NI˛m˛v˛

+

and hence the time averaged definition of � also satisfies the (weak) mass balance.
Given the extent of the kernel into the past, which allows the filter to be invertible,
means of initializing the causal filter with consistent initial conditions at some finite

2Using Leibniz’s rule and w.t/ D 08t > 0:

@

@t
hf i D @

@t

Z t

�1

f .s/w.t � s/ ds D � @

@t

Z t

�1

f .t � s/w.s/ ds

D �
Z t

�1

@

@t
f .t � s/w.s/ ds � �.0/w.t/ D �

Z t

�1

@

@t
f .t � s/w.s/ ds D

�
@

@t
f

�

for t > 0.
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time are necessary [9]. With an exponential filter, w.t/ D 1
�

exp
�

t
�

�
, the ordinary

differential equation (ODE)

d

dt
hf i D 1

�
.f � hf i/ (7.16)

can be used to update the filtered value hf i. Similarly the ODE

d

dt
hhf ii D 1

�

�
.f � hf i/2 � hhf ii

	
(7.17)

can be used to apply a variance estimator hhf ii with this particular kernel.

7.2.2 Atomic Data

Now that we have examined the example of mass density we can develop other
consistent field estimators. For example, the expression for linear momentum
density akin to Eq. (7.6),

p.x; t/ D
X
I;˛

NI.x/�I˛m˛v˛.t/; (7.18)

can be used together with the spatial version of the momentum balance,

@

@t
p D r x �



� � 1

�
p ˝ p

�
; (7.19)

to derive the expression for the Cauchy stress � . Starting from the left-hand side of
Eq. (7.19), at the nodes we obtain

@

@t
pI D

X
I;˛

@

@t
.�I˛m˛v˛/ D

X
I;˛



�I˛f˛ C m˛v˛

@�I˛

@t

�

D
X
I;˛;ˇ

�I˛f˛ˇ �
X
I;˛

m˛rx�I˛ � v˛ ˝ v˛

D 1

2

X
I;˛;ˇ

�
�I˛f˛ˇ � �Iˇf˛ˇ

� � r x �
X
I;˛

m˛v˛ ˝ v˛�I˛;

(7.20)

where f˛ˇ is the portion of the total force on atom ˛ due to atom ˇ, such that f˛ DP
ˇ f˛ˇ . As in Hardy’s work [21, 47], we introduce the bond function

BI˛ˇ �
Z 1

0

�I.�x˛ˇ C xˇ � xI/d�; (7.21)
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such that

�r xBI˛ˇ � x˛ˇ D �I˛ � �Iˇ; (7.22)

where x˛ˇ � x˛ � xˇ. By combining Eqs. (7.19), (7.20), and (7.22), we arrive at an
expression for the Cauchy stress field,

� .x; t/ D �1

2

X
I;˛;ˇ

f˛ˇ ˝ x˛ˇBI˛ˇNI.x/ �
X
I;˛

m˛w˛ ˝ w˛�I˛NI.x/; (7.23)

where we define a relative atomic velocity

w˛ D v˛ �
X

I

�I˛vI � v˛ � 1

VI

X
I

NI˛vI: (7.24)

As in [45], the projection form of Eq. (7.24) decouples the large-scale kinetic energy
from the fine-scale, whereas, for the restriction form, this decomposition is only
approximate.

A similar manipulation of the material-frame momentum density expression,

p.X; t/ D
X
I;˛

NI.X/m˛v˛�I˛; (7.25)

where �I˛ D �I.X˛/, within a material-frame momentum balance

Pp D rX � S; (7.26)

produces an expression for the first Piola–Kirchhoff stress,

S.X; t/ D �1

2

X
I;˛;ˇ

f˛ˇ.t/ ˝ X˛ˇBI˛ˇNI.X/: (7.27)

A similar exercise can be done with the balance of energy, as shown in [35] and
[36], by starting with a definition of nodal energy density,

�IeI D
X

˛



1

2m˛

p˛ � p˛ C �˛

�
�I˛; (7.28)

where �e.x; t/ D P
I NI.x/�I.t/eI.t/. Here, we have partitioned the total

potential energy ˚ into separate contributions from each atom, �˛ , such that
˚ D P

˛ �˛ . (For pair potentials �˛ is simply �˛ D 1
2

P
ˇ �˛ˇ .) We require a

direct relation between f˛ˇ and these individual atomic energies, specifically: f˛ˇ

� �
n

@�˛

@r˛ˇ
C @�ˇ

@r˛ˇ

o
x˛ˇ

r˛ˇ
, where r˛ˇ D jjx˛ˇjj. Also, although energy density is
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a primary field, i.e. is a conserved quantity associated with a balance law, we
approximate �e to conform to the more common convention of a per mass energy
density. Using these expressions and relations within the Eulerian energy balance,

�
@e

@t
D r x � .� � v � �ev � &/ (7.29)

enables derivation of an expression for the heat flux3 &,

& D �
X
I;˛;ˇ



@�ˇ

@r˛ˇ

x˛ˇ

r˛ˇ

� w˛

�
x˛ˇBI˛ˇNI.x/ C

X
I;˛



1

2
m˛w˛ � w˛ C �˛

�
�I˛NI.x/:

(7.30)
For the Lagrangian energy balance,

�Pe D S W PF � rX � q; (7.31)

the resulting reference frame heat flux is

q D �
X
I;˛;ˇ



@�ˇ

@r˛ˇ

x˛ˇ

r˛ˇ

� w˛

�
X˛ˇBI˛ˇNI.X/ : (7.32)

Given the fundamental definitions of mass � and momentum density p, we can
define the velocity field v such that �v D p. In our L2 formalism:

Z
˝

NI�v dV D
Z

˝

NIp dV H) (7.33)

Z
˝

NI

X
J;˛

m˛ı.x � x˛/NJ dV vJ D
Z

˝

NI.x/
X

˛

m˛vı.x � x˛/ dV H)
X
J;˛

ŒNI˛m˛NJ˛� vJ D
X

˛

NI˛m˛vI

however, we choose to simply take the nodal velocities to be: vI � pI=�I, and
interpolate these values with the basis NI . The corresponding displacement for node
I is defined as

uI D 1

�I

X
I˛

�I˛m˛u˛ D 1

�I

X
I˛

�I˛m˛ .x˛ � X˛/ (7.34)

3The term
@�ˇ

@r˛ˇ

x˛ˇ

r˛ˇ
cannot be replaced with �f˛ˇ , as is often done in the literature. This issue was

examined by Admal and Tadmor [38], who determined that doing so also requires replacing w˛

with the average relative velocities of both atoms ˛ and ˇ, and modifying the internal energy
density with an extra term that involves the difference between the velocities of the two atoms.
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given reference configuration fX˛g. While this relation is exact for a Lagrangian
analysis (as P�I˛ D 0), with an Eulerian description an additional term involving
v˛ breaks the correspondence between the displacement and its time-derivative,
velocity. The displacement gradient H D rXu, directly related to the deformation
gradient F � rXx D I C H, can be derived via the basis

H D
X

I

uI ˝ rXNI: (7.35)

We can also define an expression for temperature T using the kinetic definition
based on the principle of equipartition of energy [50, Sect. 6.4]:

3kBT D 2

N

NX
˛D1

˝
k0̨ ˛ (7.36)

i.e., an ensemble’s internal energy equals twice its average fluctuating kinetic energy
k0̨ .4 Along the lines of the derivation for the velocity vI , Eq. (7.33), we use Eq. (7.36)
to obtain a temperature field

X
J;˛

ŒNI˛3kBNJ˛� TJ D
X

˛

NI˛ m˛w˛ � w˛„ ƒ‚ …
2k0

˛

: (7.37)

which we restrict to

TI D 1

3kB
P

˛ NI˛

X
˛

NI˛m˛w˛ � w˛ D 1

3kB

X
˛

�I˛m˛w˛ � w˛: (7.38)

Our coarse-graining methodology can also be applied to diffusion/ionic con-
duction phenomena [3]. We start with the per-species mass density field akin to
Eq. (7.6):

�
.a/
I D

X
˛2A .a/

m˛�I˛ (7.39)

and associated flux

J.a/
I D

X
˛2A .a/

m˛v˛�I˛ (7.40)

4In statistical mechanics, temperature is defined in terms of the amount of phase space a system
visits. We need to employ ‘the “local equilibrium” and ergodic assumptions’ in order to make the
temperature a field variable and feasible to compute. We assume that the strict definition and ours
coincide in the limit of large averaging volumes and long averaging times.
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where A .a/ is the group of atoms that are of species a. Then the electrical current
density I0 is the flux of ionic charge q˛

I0 D
X
J;˛

q˛v˛�J˛NJ D
X

a

zaJa (7.41)

D � z v C
X

a

z.a/J.a/

„ ƒ‚ …
I

split into convective, �zv, and diffusive, I, components. Here z.a/ D q.a/=m.a/ is the
valence of species a and

�z D
X

a

�.a/z.a/ D
X
J;˛

q˛�J˛NJ (7.42)

is the total charge density. The diffusive ionic flux I satisfies the conservation
equation

�Pz C r x � I D 0 (7.43)

by virtue of each of the species satisfying their respective mass conservation
equations at the nodes and the fact that z.a/ is constant:

�PzI D d

dt

X
˛

q˛�I˛ D �
X

˛

q˛rx�I˛ � .v˛ � v/

D �r x �
"X

˛

q˛ .v˛ � v/ �I˛

#
D �rx � I

(7.44)

It is important to note that the material time derivative of the charge density Pz is with
respect to the barycentric velocity v of the fluid [3].

7.2.3 Molecular Data

One can extend this same coarse-graining procedure to properties of molecular
materials. As one such example, we consider electrical charge and the continuum
quantities of electric field E, electric displacement, D, and polarization vector,
P. As discussed in [51], polarization quantifies the density of dipole moments
in a dielectric material. Dipole moments can either be induced, as in non-polar
molecules, or permanent, in polar molecules such as water. Here, we briefly develop
expressions for E, D, and P using our upscaling formalism.
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The (microscopic) electrostatic balance considering only atomic point charges is

�0r x � E D �z� ; (7.45)

where �0 is the vacuum permittivity and �z is the microscopic charge density. The
total charge density, �z, is given by the summation of both free charges, q˛, over the
group Af of ions and charges on atoms, qˇm, belonging to molecules m:

�z� D
X

˛

q˛ı.x � x˛/ D
X

˛2Af

q˛ı.x � x˛/ C
X
m;ˇ

qˇmı.x � .xm C xˇm//: (7.46)

Following our coarse-graining methodology and employing a Taylor series expan-
sion for the molecular charges around their (center-of-mass) coordinates xm

�0

Z
˝

NIrxE dV D
X

˛2Af

NI˛q˛ C
X

m;ˇ2Mn

NImqˇm (7.47)

C rx �
2
4 X

m;ˇ2Mn



�xˇmNIm C 1

2Š
xˇm ˝ xˇm � rxNIm C : : :

�
qˇm

3
5

„ ƒ‚ …
P

:

where we recognize the polarization vector P contains contributions from molec-
ular dipole,

P
ˇ2Mm

qˇmxˇm; quadrupole, 1
2Š

P
ˇ2Mm

qˇmxˇm ˝ xˇm; and higher
moments. An integral form of the macroscopic Maxwell’s equation result in rx �D D
	 ; after defining D D �0E C P, the electric displacement vector, and the coarse-
grained charge related to the macroscopic free-charge density [51]

	I D
X

˛2Af

NI˛q˛ C
X

m;ˇ2Mn

NImqˇm : (7.48)

For molecules that are charge neutral, 	I reduces to
P

I˛2Af
NI˛q˛.

Also, as noted in [51], the accuracy of P depends on the order of the polynomial
used for the coarse-graining function. For example, if one uses a constant coarse-
graining function, then only the dipole moments can be recovered. Likewise, if the
basis is linear in x, then the quadrupole moments may be computed. Lastly, the same
methodology can be used to extract other quantities; for instance, by replacing the
charge q˛ in the expression for P in Eq. (7.47) with the mass m˛ the moments of
inertia can be extracted.

7.3 Coupling

As mentioned in the introduction, Sect. 7.1, in this section we will develop the
basis for atom-to-continuum coupling simulation: (a) consistent upscaling/coarse-
graining of the atomic state, (b) multiscale governing balances, (c) consistent
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continuum surrogate models, and (d) atomistic control schemes. In Sect. 7.2 we have
covered the first ingredient in detail which stands as useful tool in it own right. In
this section we will discuss the remaining components of a fully coupled multiscale
algorithm where ˝FE ¤ ; and there is an interface, @˝FE \ @˝MD, between the FE
and MD regions.

Before developing the coupling methodology, we provide a brief overview
of atomistic-to-continuum multiscale methods. This field is particularly rich in
mechanical coupling schemes, and the interested reader is referred to the review
article by Miller and Tadmor [52] for a more detailed description of the many
strategies as well as references. Apparently the idea of using a coupled finite element
model of material to alleviate the computational burden of computing atomic
trajectories in regions that are expected to behave in a continuum fashion goes
back to the early work of Kohlhoff et al. [53, 54]. Kohlhoff’s application to fracture
became one of the primary motivating examples for MD/FE mechanical coupling.
Motivated by the same application, Tadmor, Ortiz et al. developed one of the most
long-lived coupling algorithms: the quasicontinuum (QC) method [55]. Unlike in a
strict domain-decomposition, QC takes the particles in the computation to transition
between atoms driven by the interatomic potential and finite element nodes obeying
a corresponding Cauchy–Born rule [56, 57]. In this method where primarily atomic
domains transition to continuum, the particles become more widely spaced to reduce
the burden of resolving all the atoms. Broughton et al. [58] derived a three-method
algorithm based on hand-shaking regions, localized domains in which information
is exchanged between different models which overlap in them, like in Kohlhoff’s
scheme, which combined tight-binding, MD, and FE. For each scale of exchange,
a modified energy functional was derived incorporating contributions from both
components. Another popular method is the bridging scale method of Wagner and
Liu [45]. Their approach employs a hybrid Lagrangian incorporating the energy
from both the atomic and continuum. Galerkin projection is used to partition the
resulting forces and stresses between the two systems. Klein and Zimmerman [59]
replaced standard finite elements with MLS and reproducing kernel bases for the
continuum fields and to enable the multiscale information propagation, but also
introduced a Cauchy–Born surrogate model for the continuum corrected near the
boundary.

Since a continuum is an incomplete representation of an atomic system, other
coupling methodologies use uncertainty quantification to exchange information
between the two domains. In some cases, the goal is finding optimally consistent
parameters for continuum closures using MD data [3, 60, 61]. In other cases, new
closure model forms have been identified using MD samples to estimate a stochastic
representation. This strategy has been employed in both off-line [62] and on-line
[63] modes based on concurrency of the MD and continuum simulations.
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7.3.1 Atomic Regulators

To effect the information transfer from continuum region to the atomistic system
necessary for concurrent coupling, we have developed a variety of control/regulation
strategies akin to the isokinetic thermostat [64] applied to a field of target values
instead of a single system temperature. Both our method and the isokinetic ther-
mostat are based on Gauss’s principle of least constraint (GLC). In our application,
GLC takes the form

min
f˛

max
�I

 
1

2

X
˛

kf˛ � f�̨k2 �
X

I

�I PgI

!

„ ƒ‚ …
J

; (7.49)

where f�̨ � �@x˛ ˚ are the unconstrained forces on atoms, gI are the constraints
dependent on atomic data, and �I are the associated Lagrange multipliers. It is clear
from Eq. (7.49) that the principle is designed so that the Lagrange multipliers do the
least work on the system necessary to enforce, the constraints. Also, note that the
derivative of the constraint PgI is enforced not the constraint itself gI . Our constraints
gI can be flux balances or field matching conditions analogous to Neumann or
Dirichlet interface conditions and take the general form

gI D
X

˛

NI˛a˛ � AI D 0; (7.50)

where a˛ D a.x˛; v˛/ is a phase function corresponding to the nodal/continuum
quantity AI .

The (first order) optimality conditions arising from the extremization of the
functional J in Eq. (7.49) recover the derivative of the constraint:

@�I J D PgI D
X

˛

NI˛ Pa˛ � PAI D
X

˛

NI˛ .@x˛ a˛ � v˛ C @v˛ a˛ � Pv˛/ � PAI D 0; (7.51)

assuming a Lagrangian description ( PNI˛ D 0), and the condition:

@f˛ J D f˛ C@x˛ ˚ �
X

I

�INI˛ @f˛ Pa˛ D f˛ C@x˛ ˚ �
X

I

�INI˛ m˛@v˛ a˛ D 0; (7.52)

where we have used m˛@f˛ D @Pv˛
from Newton’s law: m˛ Pv˛ D f˛. We can rearrange

Eq. (7.52) into an augmented form of Newton’s law

m˛ Pv˛ D f˛ D �@x˛ ˚ C
X

I

�INI˛ m˛@v˛ a˛

„ ƒ‚ …
f�˛

(7.53)
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which when we substitute it into the constraint, Eq. (7.51), gives a means of solving
for �I :

X
J;˛

�
NI˛

�
m˛k@v˛ a˛k2

�
NJ˛


�J D PAI �

X
˛

NI˛ .@x˛ a˛ � v˛ � @v˛ a˛ � @x˛ ˚/ :

(7.54)
Now that we have a solution for �I , it is worth re-examining the structure of

the problem. With the constraints gI posed at nodes of the finite element mesh, the
term

P
I �INI˛ is the interpolation of the nodal field � at the location of atom ˛.

This is the conduit for propagation of continuum information in the form of a flux
balance or field consistency to the atoms. Meanwhile, @v˛ a˛ is strictly an atomic
quantity and, as will be shown in detail, is related to conserved quantities. Hence,
the correction f�

˛ to the total force on the atom f˛ is a mixed-scale term incorporating
aspects of both the small and large scales present in the problem and will introduce
a correlation at the atomic level on the length-scale of the element size.

In our coupling schemes there are two instances of the nature of the constraint
which are mutually exclusive at any particular node, like classical Dirichlet and
Neumann conditions. For the first case of using the GLC framework to effect
consistency between atomic data and a continuum field, we recognize the constraint

X
˛

NI˛ m˛ Pv˛„ƒ‚…
Pa˛

D
X

J

MA
IJ PpJ

„ ƒ‚ …
PAI

; (7.55)

as an expression for the dynamics for a coarse-grained quantity, e.g. momentum.
In general we apply MA

IJ , the mass matrix over the atomic domain associated with
quantity A, to obviate the need for applying a projection to the atomic information,
i.e., the left-hand side of Eq. (7.55). On the other hand, in the case of enforcing a
flux balance on the interface of the FE and MD regions, we tie the rate of change of
a conserved quantity to the normal component of the associated flux, for instance

X
˛

NI˛f˛ D
Z

@˝FE

NI� � dA: (7.56)

This form is derivable from partitioning the global balance of the appropriate flux,
see [10, 44] for more details.

These atomistic analogs of Dirichlet and Neumann boundary conditions can be
applied simultaneously on disjoint sets of nodes. However, a consequence of our
least squares formulation is that � is, in general, non-zero throughout the domain. As
a result, � peaks at the MD-FE interface where the constraints are initially violated
by uncorrected velocities and decays in an oscillatory fashion further into the MD
domain. If this behavior is not desired, it is possible to localize � near the MD
boundary, but the method of localization is constraint-dependent. For the case of
field-based constraints, Eq. (7.55), nodal �I’s are only defined at nodes where the
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constraint is imposed. The cost of this change is that the effect of the GLC affects
the atomic domain an element away from the MD/FE boundary. Localization of
the flux-based GLC approaches results in a similar effect, but results from row-sum
lumping the matrix in Eq. (7.54) such that the global conservation balance is still
respected [9]. Constraints involving time filtering can also be posed [44], and the
formulation presented here is compatible with complex geometries, albeit at the
cost of extra computational expense when localization is used [9].

Lastly, given that GLC derived regulators only control the derivative of the
desired constraint it is necessary to set up initial conditions consistent with
constraint. Unlike in the traditional FE framework, MD simulations typically need
to be conditioned from some unlikely/unphysical state, e.g. a perfect lattice, to
a representative sample of the desired ensemble. We find it is expedient to use
a version of the velocity rescaling algorithm sometimes used as a thermostat to
prepare an initial state for the subsequent dynamics controlled by GLC regulation.
With X

˛

NI˛a˛ D AI; (7.57)

we can pick a˛ to be either the momentum m˛v˛ or the kinetic energy 1
2
m˛v˛ � v˛.

To affect the change in a˛ through v�̨ D p
p

s˛v˛ where p is the power of v˛ in a˛,
we construct the scaling field sI interpolated to the atoms s˛ D P

I NI˛sI , which has
the solution X

J;˛

ŒNI˛a˛NJ˛� sJ D AI: (7.58)

7.3.2 Mechanical Coupling

We now turn to the specific problem of mechanical coupling. In this case, the
corresponding conserved quantities are atomic momentum m˛v˛ and continuum
momentum density p D �v. Using a Lagrangian description and the least-squares
formalism introduced in Sect. 7.2.1:

X
J

�Z
˝

NI�NJ dV

�
vJ D

Z
˝FE

NI�v dV C
X

˛

NI˛m˛v˛ ; (7.59)

we can solve for the velocity v, instead of the momentum density p, since the mass
density field � is known and constant. A consistent decomposition of the left-hand
side integral results in

X
J

"Z
˝FE

NI�NJ dV C
X

˛

NI˛m˛NJ˛

#

„ ƒ‚ …
MV

IJ

vJ D
Z

˝FE

NI�v dV C
X

˛

NI˛m˛v˛ (7.60)
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using an atomic definition of mass density �˛ D m˛

V˛
based on a consistent atomic

volume/quadrature weight V˛ such that
R

˝MD
dV D P

˛ V˛ . In the case of Eulerian
frame equations, the shape function NI˛ is now a function of time which reproduces
the advective/convective fluxes; however, the atomic volume remains unknown but
can be approximated by representing the atomic volume as a prolongation of a
FE field consistent with

R
˝MD

dV D P
˛ NI˛VI without modifying the governing

equations. Hence, the dynamical equation governing the continuum velocity is

X
J

"Z
˝FE

NI�NJ dV C
X

˛

NI˛m˛NJ˛

#
PvJ D

Z
˝FE

NIrX � S dV C
X

˛

NI˛f˛ (7.61)

after substituting the balance of linear momentum, Eq. (7.26), for the nodes, and
Newton’s law for the atoms. Before moving on to the influence of atomic control
forces, several observations can be made. First, Eq. (7.61) is entirely consistent with
either the finite element momentum equation or coarse-grained atomic momentum,
Eq. (7.18), in the event only one type of region is present. Second, information
propagates from the atomic system to the finite element region through the coarse-
grained atomic force (the complementary flow of information was described in the
previous section, Sect. 7.3.1).

To perform a coupled simulation, a final ingredient is required: a surrogate model
for the interatomic-potential [65, 66] in the continuum region. Closures such as this
are necessary in all continuum mechanics to account for the physics associated with
the missing degrees of freedom and atomic interactions; in the present context they
are assumed to be accurate for a limited regime of the possible atomic motion,
e.g. nearly homogeneous deformation. It is important to note that the degree of
consistency between the continuum closure and the true contributions from the
atoms will impact the accuracy and sometimes the stability of the method. The
Cauchy–Born model derived directly from the interatomic potential and the lattice
[67, 68] and thermal models inferred from MD [61, 62] are examples of surrogate
models particularly suited to MD/FE coupling.

For illustration of the present case, we introduce an elastic surrogate model which
assumes a linear relationship between the stress tensor, S, and (infinitesimal) strain:

S.X/ � C W rXu.x/ � C W
X

I

uIrXNI ; (7.62)

with the fourth order elasticity tensor C. After substituting this constitutive relation-
ship into (7.61) and integrating by parts, we arrive at

X
J

"Z
˝FE

NI�NJ dV C
X

˛

NI˛m˛NJ˛

#
PvJ D �

X
J

�Z
˝FE

rXNI C W rXNJ

�
dV uJ

C
Z

@˝FE

NIS � dA C
X

˛

NI˛f˛;

(7.63)
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which is completely prescribed except for the stress at the interface between the
atomic and continuum domains, which we will address presently.

In order to couple the entire system, the continuum state must also influence
the atoms. We accomplish this by using the constraint formalisms outlined in
Sect. 7.3.1. The MD and FE sub-systems can be coupled either strongly by
constraining the atomic forces based on the continuum velocity or weakly by using
the continuum stress. Strong coupling uses the constraint:

X
˛

NI˛f˛ D
X
J;˛

ŒNI˛m˛NJ˛� PvJ : (7.64)

Then Eq. (7.54) becomes

X
J;˛

ŒNI˛NJ˛� �J D
X
J;˛

ŒNI˛m˛NJ˛� PvJ C
X

˛

NI˛@x˛ ˚: (7.65)

Similarly, weak coupling is derived using conservation of momentum for the total
system,

X
˛

f˛ D �
Z

@˝FE

S � dA; (7.66)

which after partitioning using the basis functions NI implies

X
˛

NIf�
˛ D �

Z
@˝FE

NIS � dA: (7.67)

The equation for � is then

X
J;˛

ŒNI˛NJ˛� �J D �
Z

@˝FE

NIS � dA: (7.68)

The last step in the derivation involves eliminating the unknown boundary flux in
Eq. (7.63) by equating it with the force arising from the constraint, resulting in

X
J

"Z
˝FE

NI�NJ dV C
X

˛

NI˛m˛NJ˛

#
PvJ

D �
X

J

�Z
˝FE

rXNI C W rXNJ dV

�
uJ �

X
˛

NI˛@x˛ ˚: (7.69)

In either case, the atomic dynamics result from

m˛ Pv˛ D �@x˛ ˚ C
X

I

NI˛�I: (7.70)
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In many practical calculations, a layer of ghost atoms outside ˝MD is used to
exert forces to keep the unconstrained atoms within ˝MD, refer to Fig. 7.1. The
locations of the ghost atoms can be tied to the continuum displacement field,
but in this case the forces the ghost atoms exert on the other atoms must be
incorporated into the momentum conservation constraint. An alternative is simply
to set the boundary stress based on the forces exerted by the ghost atoms, which also
conserves momentum.

In fact there are a variety of means of coupling the atomistic and continuum
motions and forces, but not all are inherently stable [69]. In particular, coupling
the continuum to the atomistic flux, for instance the virial in mechanical coupling,
generally leads to instabilities. Another issue that has received considerable atten-
tion [45] is how to handle the waves that are supported in the atomic region but
cannot be transmitted to the continuum region due to the inherent mismatch in the
dispersion characteristics of the two representations. Typically they are selectively
damped out of the system [70] which violates overall energy conservation. This is
another aspect of the incompleteness of the finite element representation.

7.3.3 Thermal Coupling

We now examine thermal coupling. With the definition of atomic temperature,
Eq. (7.37), in hand, the least squares minimization procedure from Sect. 7.2.1 can
be used to construct a finite element temperature field:

X
J

�Z
˝

NI�cNI dV

�
TJ D

Z
˝FE

NI�cT dV C
X

˛

NI˛m˛w˛ � w˛ (7.71)

where the total fluctuating energy consistent with Eq. (7.37) appears on the right-
hand side. The expression is a form of conservation of energy in absence of
mechanical work, and hence we can reduce w˛ to v˛ and use a Lagrangian
description of the material. Similar to the partition of the right-hand side into
continuum and atomic domains, the left-hand side can be decomposed as

X
J

"Z
˝FE

NI�cNJ dV C 3kB

X
˛

NI˛NJ˛

#

„ ƒ‚ …
MT

IJ

TJ D
Z

˝FE

NI�cT dV C
X

˛

NI˛m˛v˛ � v˛

(7.72)
using the Dulong–Petit law [71, Chap. 22] for the heat capacity

�c D 3kB

V˛

(7.73)
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of a classical solid material in conjunction with atomic quadrature weights V˛. For
a system without a continuum region, this equation reduces to a projection of the
temperature as in Eq. (7.37).

To reach the final form of the governing equation, we take the time derivative of
Eq. (7.72):

X
J

"Z
˝FE

NI�cNJ dV C 3kB

X
˛

NI˛NJ˛

#
PTJ D

Z
˝FE

NIr � q dV C 2
X

˛

NI˛v˛ � f˛:

(7.74)

Into this balance for the finite element temperature field we substitute Fourier’s law
for the referential heat flux

q.X/ � ��rXT D ��
X

I

TIrXNI ; (7.75)

as a constitutive relationship for the heat flux q where � is the thermal conductivity
tensor. (Note that Fourier’s law is not always an accurate surrogate model at small
scales, see, e.g., [61].) Integrating the continuum right-hand side term of Eq. (7.74)
by parts completes the derivation of the multiscale balance:

X
J

"Z
˝FE

NI�cNJ dV C 3kB

X
˛

NI˛NJ˛

#
PTJ D

X
J

�Z
˝FE

rNI � �rNJ dV

�
TJ

C
Z

@˝FE

NIq � dA C 2
X

˛

NI˛v˛ � f˛:

(7.76)

Now coupling can be imposed via constraints on the atomic force in the
framework in Sect. 7.3.1. To maintain the consistency of the coarse-grained atomic
temperature and the finite element temperature, their time derivatives are con-
strained to match using Eq. (7.50):

2
X

˛

NI˛v˛ � f˛ D 3kB

X
J;˛

NI˛NJ˛
PTJ : (7.77)

In this case, the equation for the Lagrange multipliers, Eq. (7.54), becomes

X
J;˛

ŒNI˛v˛ � v˛NJ˛� �J D 3kB

2

X
J;˛

ŒNI˛NJ˛� PTJ C
X

˛

NI˛@x˛ ˚ � v˛: (7.78)

To conserve energy in the exchange between the continuum and atomic domains,
the finite element boundary flux

Z
@˝FE

NIq � dA D �2
X

˛

NI˛v˛ � f�
˛ (7.79)
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is equated to the power due to the constraint force f�
˛ from GLC. The governing

equations for the FE and MD sub-systems are

X
J

"Z
˝FE

NI�cNJ dV C 3kB

X
˛

NI˛NJ˛

#
PTJ (7.80)

D
X

J

�Z
˝FE

rNI � �rNJ dV

�
TJ � 2

X
˛

NI˛v˛ � @x˛ ˚;

m˛ Pv˛ D �@x˛ ˚ C 2v˛

X
I

NI˛�I: (7.81)

When flux-based coupling is desired, conservation of energy is used to derive the
constraint:

@x˛ ˚ � v˛ C f˛ � v˛ D f�
˛ � v˛ D �

X
I

Z
@˝FE

NIq � dA; (7.82)

resulting in the governing equation for the Lagrange multipliers:

X
J;˛

ŒNI˛NJ˛v˛� �J D �
Z

@˝FE

NIq � dA; (7.83)

when partitioned akin to Eq. (7.56), see [44]. However, in this case the flux is
overcompensated for by our equipartition assumption, 3kBT D m˛hv˛ � v˛i , so
the governing equations are

X
J

"Z
˝FE

NI�cNJ dV C 3kB

X
˛

NI˛NJ˛

#
PTJ (7.84)

D
X

J

�Z
˝FE

rNI � �rNJ dV

�
TJ � 2

X
˛

NI˛@x˛ ˚ � v˛ C
X

˛

NI˛v˛ � f�
˛;

m˛ Pv˛ D �@x˛ ˚ C v˛

X
I

NI˛�I: (7.85)

Lastly, the required finite element heat fluxes can be computed using face-based
quadrature schemes if the domain boundary aligns with the finite element faces, or
using an approximate L2 projection of the heat flux [44]. As a final comment, the
thermostat force in the augmented Newton’s equation (7.85) is of the recognizable
velocity drag form common to many thermostats including the Langevin thermostat
[72] but without the random force from the Mori–Zwanzig formalism.
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7.3.4 Thermomechanical Coupling

The primary difference in developing a framework for thermomechanical coupling
from the separate mechanical and thermal coupling we developed in the previous
two sections is that the atomic momentum and temperature are no longer indepen-
dent. The multiscale momentum balance (7.61) for the velocity is unchanged, but
to derive the equation for temperature, we must start with the rate of change of the
total energy:

X
J

�Z
˝

NI�NJ dV

�
PeJ D

Z
˝FE

NI .� P" C �v � Pv/ dV C
X

˛

NI˛ .m˛ Pv˛ C @x˛ ˚/ � v˛ :

(7.86)

We assume the total energy density e is the sum of internal energy density ", which
has thermal and elastic components, and coarse-scale kinetic energy5

�Pe D � P� C �v � Pv D �c PT C S � rXv C �v � Pv (7.87)

We can reduce Eq. (7.86) to

X
J

Z
˝

NI�NJ dV P"J D
Z

˝FE

NI� P" dV �
Z

˝MD

NI�v � Pv dV

C
X

˛

NI˛ .m˛ Pv˛ C @x˛ ˚/ � v˛ (7.88)

D
Z

˝FE

NI� P" dV

C
X

˛

NI˛
�
m˛v˛ � Pv˛ �

X
J

NJ˛�JvJ � PvJV˛

„ ƒ‚ …
Pk0

˛

C@x˛ ˚ � v˛

�

using the atomic quadrature based on weights V˛ and making the particular
definition of the fluctuating kinetic energy k0̨ . Note that our use of inexact
projections/restrictions leads to k0̨ not being identified with our previous definition
of the thermal energy 1

2
m˛w˛ � w˛ from Sect. 7.2. Using Eq. (7.61), the coupled

multi-scale equations for the nodal velocities, vI and temperatures, TI are

MV
IJ PvJ D �

Z
˝FE

rXNI � S dV C
Z

@˝FE

NIS � dA C
X

˛

NI˛f˛; (7.89)

5This a common assumption that neglects, for example, interactions between the thermal and the
coarse-scale mechanical energy related to thermal expansion at the macro-scale.
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MT
IJ

PTJ D �
Z

˝FE

rXNI � q dV C
Z

@˝FE

NIq � dA

C
X

˛

NI˛
�Pk0̨ C @x˛ ˚ � v˛

�
: (7.90)

As in the previous two sections, we need surrogate models for the first Piola–
Kirchhoff stress S and referential heat flux q. A good model for the former is the
Cauchy–Born model based on a quasi-harmonic free energy detailed in [68].

To form the appropriate constraints, we begin with the global conservation of
momentum and (total) energy:

d

dt

 X
˛

m˛v˛ C
Z

˝FE

p dV

!
D
X

˛

f˛ C
Z

@˝FE

S dA D
Z

@˝

S dA (7.91)

d

dt

 X
˛

m˛e˛ C
Z

˝FE
�e dV

!
D
X

˛

.f˛ C @x˛ ˚/ � v˛ C
Z

@˝FE

.v � S � q/ � dA

D
Z

@˝

.v � S � q/ � dA (7.92)

which we reduce and partition to form:

gV
I D

X
˛

NI˛f˛ �
Z

@˝n@˝FE

NIS dA D 0 (7.93)

gT
I D

X
˛

NI˛ .f˛ C @x˛ ˚/ � v˛ �
Z

@˝n@˝FE

NI .v � S � q/ � dA D 0 (7.94)

As previously discussed, the augmented force in the MD component is f˛ D
�@x˛ ˚ C f�

˛ where in this case f�
˛ takes the form

f�
˛ D �

X
I

NI
�
�V

I C �T
I v˛

�
; (7.95)

with a vector �V
I and scalar �T

I Lagrange multipliers similar to system-wide
momentum and temperature control found in [73]. This modified force is substituted
into each constraint to obtain the following block symmetric system of equations for
�V

I and �T
I :

X
J;˛

ŒNI˛NJ˛��V
I C

X
J;˛

ŒNI˛v˛NJ˛��T
J D �

X
˛

NI˛@x˛ ˚ �
Z

@˝MD

NIS dA

(7.96)

X
J;˛

ŒNI˛v˛NJ˛� � �V
I C

X
J;˛

ŒNI˛v˛ � v˛NJ˛��T
J D �

Z
@˝n@˝FE

NI .v � S � q/ � dA

(7.97)
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7.4 Examples

In this section we demonstrate the utility of the methods we have developed
with selected applications of the coarse-graining, Sect. 7.2, and coupling, Sect. 7.3,
methodologies.

7.4.1 Inclusion

With this example we demonstrate the utility and versatility of our coarse-graining
methods by examining the simple case of insertion of an oversized inclusion within
a constrained lattice. Figure 7.2a shows the face-centered cubic (fcc) gold lattice
20 � 20 unit cells on a side and 3 unit cells thick in the out-of-plane direction (4800
atoms, lattice parameter of 4.08 Å). Periodic boundary conditions are used in all
directions. We employ a Lennard-Jones [74, 75] pair potential smoothly truncated
at distance of about 5.46 Å. We expand the center region of 4 � 4 unit cells by 0.5 %
and hold the atoms in this inclusion region fixed, while the outer material is allowed
to relax via energy minimization.

Figure 7.2a shows the atomic displacement magnitudes, with the largest displace-
ments occurring at the inclusion corners. Figure 7.2b shows the coarse-graining of
these displacements onto a 10 � 10 element mesh that overlays the atomic system.
Here, we use the mesh’s own interpolation function as the coarse-graining operator.
The resulting displacement field has similar features to the atomic one, albeit with a
noticeably lower peak magnitude.

Figures 7.2c–e illustrates the use of a localization kernel at each node to coarse-
grain the atomic displacements, where the kernel differs from the mesh interpolation
function NI . Here, we use a quartic polynomial that depends on the radial distance
from the node’s position, with its maximum value at the node and smoothly reaching
zero at a distance just over the cutoff of the potential, 6 Å (as recommended in [4]).
Comparing Fig. 7.2b and Fig. 7.2c, which use the same 10 � 10 mesh, we observe
that the field coarseness remains the same, but the peak value is somewhat higher for
the kernel-averaged system. Figures 7.2d, e reveal how use of a successively refined
mesh (20 � 20 and 40 � 40, respectively) improves the resolution and fidelity of the
coarse-grained field.

This comparison shows the advantage of using independent localization kernels
for coarse-graining—in fact the kernel size could vary throughout the domain and
be tied to atomic density or field gradients. Use of kernels enables the calculation of
robust averages and continuous fields that correspond to the local continuum limits
[49] for an arbitrary degree of mesh resolution. In contrast, exclusive use of the
mesh’s interpolation function would produce either a field with converged values
but coarse features (for a mesh with large element size), or one with fine features
but spatially fluctuating, non-converged values (for a mesh with small element size).
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Fig. 7.2 Displacement magnitude, kuk, for insertion of an oversized inclusion in fcc gold. (a)
Atoms colored by atomic displacements. (b) Coarse-graining on a 10�10 mesh using interpolation
functions. (c)–(e) Coarse-graining using localization kernels on 10�10, 20�20 and 40�40 meshes.
Here, kuk ranges from 0 (blue) to 0.05 Å for the atomic system, or 0.037 Å for the coarse-grained
systems (red)

We also used our coarse-graining methods to calculate the continuum stress fields
for this inclusion problem. Figure 7.3 shows the � 11 and � 12 fields using the finely
resolved 40 � 40 mesh with localization kernels. The resulting fields are smoothly
varying and appear to be consistent with expectations of continuum mechanics.

7.4.2 J-Integral

Coarse-graining methods enable the use of continuum fields to estimate other
metrics defined within continuum theory, e.g. configurational forces. Based on the
seminal work by Eshelby [76] and developed in the context of fracture mechanics
by Rice [77], the J-integral is a path independent contour or surface integral (in
two- or three-dimensions, respectively) that measures the energetic driving force on
a defect. The J-integral is commonly used in numerical simulations of continuum
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Fig. 7.3 (a) � 11 and (b) � 12 for insertion of an oversized inclusion in fcc gold. Coarse-graining
is performed using localization kernels on a 40 � 40 mesh. Stress values range from �0:59 to
3.71 GPa for � 11 and from �0:85 to 0.85 GPa for � 12 (blue-to-red)

mechanical deformation, such as the finite element method, to indicate when a
critical loading state has been achieved that will result in crack propagation.

Jones and Zimmerman [5] discussed past efforts to estimate the J-integral at
the atomic scale, and proposed use of the coarse-graining methods covered in this
chapter as a means to ensure consistency with linear elastic fracture mechanics
(LEFM), and to preserve the path independence of the J-integral. In that work, the
J-integral expression for a isothermal, equilibrium material is given as

J D
Z

@˝

�
WI � HTS

�
dA; (7.98)

where W is the material frame internal energy density, and H and S have already
been defined as the displacement gradient and 1st Piola–Kirchhoff stress fields,
respectively. In [5], it was shown that W and S exhibited thermodynamic consistency
(i.e., S D @W=@F), thereby ensuring that the J-integral around a closed region with
a smooth motion is zero and consequently that J is path independent for arbitrary
contours around regions that contain singularities such as crack tips.

Figure 7.4a shows the S22 stress field for a single crack in a cylinder composed of
the same LJ gold used in the inclusion example. Here, displacements are imposed
on atoms within an outer annulus of the cylinder in accordance with the LEFM
solution for a mode I loaded crack tip. Details about this simulation are given in [5].
We note that this stress field contains the same characteristic pattern as predicted
by the LEFM solution. Figure 7.4b plots the J-integral for a square contour that
encircles the crack tip (shown clearly in Fig. 7.4a) as a function of the square of the
applied stress intensity factor, KI . In LEFM theory, J1 for this configuration should
be proportional to K2

I , as shown by the straight, black line in the figure. We see
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Fig. 7.4 (a) The S22 stress (units in bars) from a coarse-grained estimate. A contour loop and the
FE interpolation grid are also shown. (b) The calculated J-integral for the single crack configuration
showing path independence. J-integral values are normalized by twice the surface energy of the
Lennard-Jones system and the loading parameter KI by the corresponding critical value KIc

that for a set of concentric loops of varying size, our estimation follows this trend
up to the point when crack propagation begins, J1 D 2
 , thereby confirming path
independence of the J-integral. Discrepancies from exact linearity may be due to
the anisotropic and non-linear aspects of the LJ potential, as well as the non-ideal
aspects of the crack face geometry. We also observe that for a loop that does not
enclose the crack tip singularity (loop 0), J1 D 0, as expected.

In [6], this approach was expanded to treat systems at a finite (i.e., non-zero)
temperature. In this case, the J-integral is given by the expression

J D
Z

@˝

�
‰I � FTS

�
dA; (7.99)

where ‰ is the Helmholtz free energy density, a function of both deformation
gradient F and temperature T. At finite temperature, ‰ has contributions from both
internal (strain) energy and entropy [68]. In [6], this entropic term was determined
by a local harmonic (LH) approximation that requires calculation of a simplified
dynamical matrix that neglects coupling between atoms. Details on this method are
given in [6], along with an analysis that shows the LH approximation to closely
correspond with a more exact calculation of free energy using thermodynamic
integration up to significant temperatures (. 400 K) for substantial amounts of
uniaxial and volumetric strains. Application of Eq. (7.99) to the single crack tip
geometry showed that although the J1 dependence on applied stress intensity factor
changes slightly due to thermal stresses that arise in the heated system, path
independence at a given temperature is maintained [6].
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7.4.3 Polarization Field of a Double Layer

The methods presented in this chapter can be used to investigate inhomogeneous
and anisotropic phenomena which occur at the atomic scale. An interesting example
is the electric double layer, in which an ionic solution covers a charged surface,
resulting in a screening layer of oppositely charged ions attracted from the solution.
Double layers are important in many applications, ranging from electrokinetic flows
in micro- and nano-fluidic devices to energy storage devices including batteries and
super-capacitors. Despite their ubiquity, they are still poorly understood because
experimentally it is difficult to resolve the length-scales over which they develop,
and the configuration for realistic systems is too complex for a purely theoretical
treatment. However, molecular dynamics studies [2, 78–80] have provided insights
into double layer structure, and the coarse-graining theories for atoms and molecules
enable a deeper understanding of the important physics.

In this example, we model a box of salt water using molecular dynamics periodic
in two directions and constrained by a uniform force field in the third to mimic a
nano-channel geometry. A uniform electric field is also applied in this direction to
account for a potential drop across the channel. When this happens, a structured
layer of solvent and solute particles formed, followed slightly further from the wall
by a diffuse layer in which the solute remains at elevated concentrations but no
significant structure is present. Figure 7.5 shows this structure at the boundary.
Coarse-graining the atoms enables a continuum density field to be post-processed,
as shown in Fig. 7.6. The densities are important because they enable the calculation
of the electric field and electric potential throughout the domain. These quantities
allow us to determine the structure of the condensed layer, how far it extends away
from the boundary, and how much charge the double layer can store.

We can understand the double layer structure more deeply by quantifying its
electrical properties [51] using the methods outlined in Sect. 7.2.3. Molecular
coarse-graining elucidates the degree to which the solvent is aligned with the electric
field. Figure 7.7 shows the strong polarization present in the structured layer to be
more than an order of magnitude greater than the bulk values. More importantly,
the polarization is beyond the level at which a constant relative permittivity is a
useful description, implying that the physics cannot be understood without appeal
to the atomic nature of matter. However, resolving the boundary region allows us

Fig. 7.5 Structure of ions and molecules near the boundary. Grey denotes oxygen, red hydrogen,
and green counter-ions. Reproduced from [79] with permission
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Fig. 7.6 Fields obtained from nanochannel simulations: (a) densities associated with different
types of atoms using atomic coarse-graining, and (b) the electric field and electric potential from
Gauss’ law using the coarse-grained charge density. Reproduced from [79] with permission

Fig. 7.7 Polarization profile in a nanochannel: throughout the entire channel (a) and near the
boundary (b). Reproduced from [51] with permission
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to determine over exactly what sub-domain is the atomic description necessary.
By comparing fields resulting from different coarse-graining length-scales, we can
identify continuum behavior where the field is independent of length-scale. And,
conversely, in regions where the length-scale is important, a continuum description
will be inadequate.

7.4.4 Surface Relaxation

Surface relaxation due to interatomic forces and lack of full coordination shells is
a phenomenon that can only be approximated in finite element simulation and not
in a fully predictive manner. In this demonstration we model the surface relaxation
of a cube of Ni nominally 38.72 Å on a side both as a fully atomic system and a
mechanically coupled atomic/FE system. We use the embedded atom model (EAM)
potential [81–83] for the interatomic forces in Ni and either (a) the associated
Cauchy–Born model for the elastic stresses or (b) a cubic elastic model with C11 D
261 GPa, C12 D 151 GPa, and C44 D 132 GPa.

The results from the all atom simulation in Fig. 7.8a show significant dis-
placement as the cube relaxes from a perfect lattice arrangement. The maximum
displacements ju1j; ju2j � 0.2 Å occur at the corners of the material. As can be
seen from Fig. 7.8b,c the coupled simulation with the Cauchy–Born and the signif-
icantly less computationally intensive cubic elastic surrogate models,6 respectively,

Fig. 7.8 Displacement in the x-direction: (a) all atoms, (b) CB coupled, (c) cubic elastic coupled.
Range ˙ 0.2 Å

6The cost of the molecular statics solution is proportional to the number of atoms times the number
of neighbors per atoms, while the cost of the Cauchy–Born solution is proportional to the number
of elements times the number of integration points per element times the number of neighbors
per atoms, while the cost of the Cauchy-Born cubic elastic solution is proportional to merely the
product of the number of elements and the number of integration points per element.
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temperature
2.0e+02 4.0e+02 6.0e+02 8.0e+02 1.0e+03

Fig. 7.9 Metallic CNT embedded in an FE mesh showing phonon temperature near the beginning
of the heating phase, t D 10 ps. Reproduced from [10] with permission

reproduce the all atom displacement field with considerable fidelity. We attribute
this result to the fact that the coupled scheme preserves momentum and that in this
zero temperature simulation the field of displacements is smooth on the scale of the
mesh.

7.4.5 Laser Heating of a Carbon Nanotube

In this example a metallic (8,8) armchair carbon nanotube (CNT), 12.6 nm long,
is suspended by embedding its ends in solid graphite, see Fig. 7.9 and [10], and
heated with a shaped laser pulse directly heating the CNT’s electron gas. We use the
Tersoff potential [84, 85] to model the CNT. The graphite substrate is modeled with
a continuum with the same thermal properties as the CNT. The exposed surface of
the reservoirs and the tube are insulated by the air so that no heat crosses those
boundaries and the remaining surfaces of the reservoirs are fixed at a constant
temperature of 300 K. The electronic heat capacity has a temperature dependency:
ce D 
�e with 
 D 1:5 J/m3 K2, and the electronic heat conductivity ke D L��e

is estimated with the Franz–Wiedemann law with L� D 2:443 � 10�3 W/m K2. In
addition to temperature dependence of the electron heat capacity and conductivity,
the measured form of the electron–phonon exchange for CNTs [86] is highly non-
linear in temperature, g D h.�e � �p/5 with h D 3:7 � 104 W/m3 K5. Also, the
fact that the CNT lattice is not space filling creates no algorithmic difficulties since
its contribution directly and fully determines the phonon temperature in the regions
where there are atoms. In these elements all the effects of the phonon constitutive
model are removed. To offset the larger fluctuations associated with basis functions
with few atoms in their support we employ a time-filter, with characteristic time-
scale � D 0:01 ps.
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Fig. 7.10 Sequence of temperature (a) and electron temperature (b) profiles along the axis of the
CNT. Reproduced from [10] with permission

The electron system of the CNT interacts with a focused radiation source that
has a power input of 1:6 � 10�12 exp.�.x2

1 C x2
2/=.0:1 Œnm�/2/ W/m3. We turn on

this localized source for 50 ps and then allow the system to relax. The sequence
of temperature profiles along the axis of the tube in Fig. 7.10 shows very localized
electron and relatively diffuse phonon temperatures in correspondence with their
diffusivities. These profiles through the axis of the CNT extend into FE regions
without atoms; in the reservoir regions, we see a distinct change in slope due to
the reservoirs’ higher thermal mass, especially for the phonons. As the experiments
[87] demonstrate, we expect mixed ballistic/diffusive transport in the CNT, which
is modeled entirely by the MD. This mixed harmonic/enharmonic transport must
transition to purely diffusive heat flux at the CNT-reservoir boundary, given the
nature of the coupling. The large scale oscillations that start to become apparent at
about t D 40 ps in Fig. 7.11 indicate that the input energy to electrons eventually
excites a strong fundamental mode resonance [88, 89] which can be directly
observed in Fig. 7.12.

7.5 Conclusion

We have presented the framework for the ATC methods available in LAMMPS
together with illustrative examples. In contrast to other coupling methods, ATC
has the distinct advantage of treating the full possibilities of thermal transport
at the nanoscale since its inception [45] and provides a generalized framework
of consistent multiscale balances, coarse graining, and control schemes that are
applicable to a wide range of multiphysics problems. In its present state of
development it is particularly suited to warm, slow processes like: predicting the
growth of large nanostructures via vapor deposition, simulating the steep gradation
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Fig. 7.12 Fundamental mode excited by focused irradiation. The atoms and the mesh are both
colored by the phonon temperature. Reproduced from [10] with permission

from an electrical double layer to a bulk fluid, and modeling the deformation of
polycrystalline materials with complex grain boundary structure. In general, the
method is appropriate for systems with characteristic sizes reaching micrometers
containing large regions of regular behavior interacting through structures requiring
atomic detail. We have laid the groundwork of treating the ubiquitous problem
of spurious wave reflection in the shock and dynamic regimes [70] in the ATC
framework but this topic has also been an area of intense development by other
researchers; see, for example, the review by Miller and Tadmor [90] and the seminal
paper by Wagner and Liu [45].

The scope of the theory presented and the particular version of the methodology
have not been presented elsewhere and we hope this chapter serves as a concise and
coherent overview of the work we have done in the upscaling and coupling arenas.
Full-fledged fluid coupling is notably absent from our exposition mainly due to the
complexity introduced by treating open systems.
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