
Chapter 15
Nanomechanics of Ferroelectric Thin Films
and Heterostructures

Yulan Li, Shengyang Hu, and Long-Qing Chen

15.1 Ferroelectrics

Ferroelectricity was first observed by Valasek in 1920 in Rochelle salt [1].
Ferroelectricity refers to materials that possess a spontaneous electric polarization
along a unique crystallographic direction with the additional property that the
polarization can be reversed by the application of an external sufficiently strong
electric field. Ferroelectrics are a group of materials that posses the property of
ferroelectricity. The prefix ferro, meaning iron, was borrowed from ferromagnetism,
as they both exhibit hysteresis loops, although most ferroelectric materials do not
contain iron. Typically, materials only demonstrate ferroelectricity below a certain
phase transition temperature, called the Curie temperature, Tc, and are paraelectric
above this temperature. Ferroelectrics are very useful for devices and are used in
many different ways today such as ferroelectric capacitors, random-access memory
(RAM), and radio-frequency identification (RFID) cards.

Barium titanate (BaTiO3) is the most widely used ferroelectric material and
is a member of the perovskite family, which is based on the mineral CaTiO3.
BaTiO3 has its titanium ion occupying the octahedrally coordinated site and
the Ba ion in the 12-fold coordinated site in a high temperature Pm3m cubic
symmetry. The ferroelectric phase at room temperature is tetragonal with oxygen
and titanium ions shifting to produce a spontaneous polarization. As the temperature
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is reduced, BaTiO3 undergoes a series of ferroelectric–ferroelectric transitions from
tetragonal (P4mm) to orthorhombic (Bmm2), around 5 ıC, and a transition from
orthorhombic to rhombohedral (R3m) at around �80 ıC [2, 3]. Recent theoretical
and experimental studies showed that the ferroelectric transition temperatures and
polarization magnitudes of an epitaxial BaTiO3 thin film can be dramatically altered
by a substrate constraint [4–7]. For example, it was recently discovered that a 1.7 %
biaxial compressive strain on a (001)-oriented epitaxial BaTiO3 thin film could
increase its ferroelectric transition temperature to over 600 ıC [6]. The ferroelectric
transition between orthorhombic and rhombohedral phases at lower temperatures
can disappear under a sufficiently large biaxial tension strain [8].

When a ferroelectric transition occurs from its original cubic paraelectric state to
a tetragonal ferroelectric state, the spontaneous polarization can be parallel to one
of the h100i directions of the cubic crystallographic directions resulting in a total
of six tetragonal domains. Correspondingly, there are 12 possible domains in the
orthorhombic phase with the spontaneous polarizations parallel to one of the h110i
directions, and eight possible domains in rhombohedral phase with the spontaneous
polarization parallel to one of the h111i directions, respectively. A domain refers to
a region in the crystal that possesses the same polarization orientations. A typical
feature of ferroelectrics is the formation of domain structures when a paraelectric
phase is cooled through the ferroelectric transition temperature. The formation of
domain structures in ferroelectric materials occurs to accommodate the boundary
conditions imposed on the system thus to reduce the depolarization energy and
the elastic energy of the material system. The interface between two different
domains is called domain wall, which is a thin layer with a thickness usually of
only several nanometers. For a given temperature, the stable phases are determined
by the minimization of the bulk free energy. The bulk free energy density in the
absence of any constraint can be expanded as a polynomial of the components
Pi .i D 1; 2; 3/ of the polarization vector P D .P1; P2; P3/ known as the Landau–
Devonshire description [9–11]:
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(15.1)

where the coefficients ˛ij, ˛ijk, and ˛ijkl are constants. ˛1 is linearly depen-
dent on temperature (T) and obeys the Curie–Weiss law ˛1 D 1= .2"0�/ D
.T � T0/ = .2"0C/, where C is the Curie–Weiss constant, T0 is the Curie–Weiss
temperature, and "0 is the dielectric susceptibility of vacuum. For BaTiO3, these
coefficients can be found in Ref. [12] and are listed in Table 15.1. The energy
density of Eq. (15.1) with the given coefficients in Table 15.1 yields the transi-
tion temperatures Tc(Cubic$Tetragonal) D 125 ıC, Tc(Tetragonal$Orthorhombic) D 8 ıC, and
Tc(Orthorhombic$Rhombohedral) D �71 ıC for stress-free BaTiO3 single crystals. The
polarizations as a function of temperature obtained from minimizing Eq. (15.1) are
displayed in Fig. 15.1.



15 Nanomechanics of Ferroelectric Thin Films and Heterostructures 471

Table 15.1 Coefficients of
Landau–Devonshire
description of Eq. (15.1) for
BaTiO3 where T is
temperature in ıC

Coefficients Values Units

˛1 4.124 � 105 (T � 115) C�2m2N
˛11 �2.097 � 108 C�4m6N
˛12 7.974 � 108 C�4m6N
˛111 1.294 � 109 C�6m10N
˛112 �1.950 � 109 C�6m10N
˛123 �2.500 � 109 C�6m10N
˛1111 3.863 � 1010 C�8m14N
˛1112 2.529 � 1010 C�8m14N
˛1122 1.637 � 1010 C�8m14N
˛1123 1.367 � 1010 C�8m14N

Fig. 15.1 Polarizations
versus temperature in BaTiO3

single crystal under
stress-free condition, where
P D jPj, P D .0; 0; PT/ in
tetragonal phase,
P D .PO; 0; PO/ in
orthorhombic phase,
P D .PR; PR; PR/ in
rhombohedral phase [12]

15.2 Nanomechanics of Ferroelectric Thin Films

As all ferroelectric phase transitions are accompanied by a change in their prototypic
crystal structure, the lattice parameters and phase stability in ferroelectrics could
be drastically changed by external constraints. For example, when a ferroelectric
thin film is constrained by a substrate (Fig. 15.2), the strains inside the film can
significantly affect both the ferroelectric transition temperature and the domain
configuration.

The structural changes associated with ferroelectric phase transition can be
described by stress-free strains (also called eigenstrains or spontaneous strains)
"0

ij. In rectangular coordinate x D .x1; x2; x3/, these strains are related to the
polarization as:

"0
ij D qijklPkPl; (15.2)

where qijkl are the electrostrictive coefficients, which are usually measured experi-
mentally. For a cubic crystal material, Eq. (15.2) degenerates to
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Fig. 15.2 Schematic
illustrations of a thin film
coherently constrained by a
very thick substrate and
transition from paraelectric to
ferroelectric with changes of
polarization directions and
crystal structures. hf refers to
the film thickness

where Qij are the electrostrictive coefficients in Voigt notation. If we assume
that the interfaces between ferroelectric domains developed during a ferroelectric
phase transition and that the interface between the film and the substrate are
coherent, elastic strains eij will be generated during the phase transition in order
to accommodate the structural changes. They are given by

eij D "ij � "0
ij; i; j D 1; 2; 3; (15.4)

where "ij are the total strains. The corresponding elastic strain energy density can be
expressed as
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where cijkl is the elastic stiffness tensor. Summation convention for repeated indices
is employed and Latin letters i, j, k, l take on values of 1,2,3. For a cubic anisotropic
material, elastic strain energy density can be written as
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(15.6)

where C11, C12, and C44 are the elastic stiffness components in Voigt notation. By
expanding Eq. (15.6), we have
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where,
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It can be seen that the presence of the strains and the elastic energy alters the
coefficients of the polarization polynomial of Eq. (15.1), thus changes both the Curie
temperature and polarization direction as well as the relative volume fractions of
different domains when multiple domains coexist.

In order to calculate the strain field in a constrained film, small strains are
assumed such that linear elasticity can be employed. The associated stresses � ij

obey the Hooke’s law,

�ij D cijklekl D cijkl
�
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�
: (15.9)

For a cubic anisotropic material, the stresses can be expanded as
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(15.10)

The stresses satisfy mechanical equilibrium which can be expressed as

�ij;j D @�ij=@xj D 0; .i D 1; 2; 3/ ; (15.11)

in the absence of body forces. Moreover, these stresses are required to satisfy any
appropriate traction boundary conditions imposed on the studied film. If we consider
a film with a stress-free surface, this means

�i3jfilm-surfaceW x3Dhf
D 0 .i D 1; 2; 3/ ; (15.12)

when the x3-axis is perpendicular to the film plane, as shown in Fig. 15.2.
If the thin film is coherent with the substrate, then the total strain field in the

thin film is controlled by the thick substrate. For example, for a cubic substrate
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of lattice parameter, as, and a thin film with a stress-free lattice parameter, af , the
corresponding in-plane strains, "˛ˇ .˛; ˇ D 1; 2/, are given by

"11 D "22 D as � af

as
D e0; "12 D 0: (15.13)

In the following we will show how to solve the strains and stresses as well as the
elastic energy for a film containing different domain structures.

(1) Single tetragonal c-domain
When a ferroelectric film contains only a single tetragonal c-domain (a

domain whose polarization is normal to the film), the polarization in such a
case has the form P D .0; 0; Ps/, where Ps is the value of the spontaneous
polarization. The stress-free strain caused by the polarization is given by "0

11 D
Q12P2

s ; "0
22 D Q12P2

s ; "0
33 D Q11P2

s ; "0
23 D 0; "0

13 D 0; "0
12 D 0.

Because it is a single domain film, the corresponding stresses and strains
are constants over the whole film. Therefore, the mechanical equilibrium
Eq. (15.11) is satisfied automatically. The boundary condition (15.12) at the
film surface requires �13 D 2C44"13 D 0, �23 D 2C44"23 D 0, �33 D
C12

�
"11 � Q12P2

s

� C C12

�
"22 � Q12P2

s

� C C11

�
"33 � Q11P2

s

� D 0, and the
boundary condition (15.13) from the substrate makes "12 D "12 D 0 and
"11 D "22 D "11 D "22 D e0. Therefore, we have "13 D 0, "23 D 0, and

"33 D .C11Q11C2C12Q12/P2
s �2C12e0

C11
. Thus, the corresponding elastic energy density

becomes

felastic=c D .C11 � C12/ .C11 C 2C12/
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e0 � Q12P2

s
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: (15.14)

At given substrate constraint strain (e0) and temperature (T), the value of
the polarization (Ps) can be obtained by minimizing the total energy of the film
with respect to the polarization. The total energy density is the sum of the elastic
energy in Eq. (15.14) and the bulk free energy density in Eq. (15.1) with P1 D
P2 D 0, P3 D Ps, i.e.,

fc-domain .Ps/ D .˛1 C a3/ P2
s C .˛11 C a33/ P4

s C ˛111P6
s C ˛1111P8

s C a0;

(15.15)

where,
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(15.16)

Therefore, the polarization, Ps, can be obtained by solving @fc-domain .Ps/ =@Ps.
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Fig. 15.3 In-plane strain (e0) and polarization (P D Ps) versus temperature in the (001) BaTiO3

films commensurately grown on (110) GdScO3 and DyScO3 substrates, respectively

Experimentally, single crystal BaTiO3 thin films were successfully grown
on (110) GdScO3 and (110) DyScO3 single-crystal substrates by both reactive
molecular beam epitaxy (MBE) and pulsed-laser deposition (PLD) with in
situ high-pressure reflection high-energy electron diffraction [6]. These films
are epitaxial, purely c-axis oriented, and fully coherent with the substrates
without any resolvable lattice relaxation. The in-plane and out-of-plane lattice
parameters of the films and substrates as a function of temperature were mea-
sured with a variable-temperature four-circle X-ray diffractometer equipped
with a two-dimensional area detector with an angular resolution of �0.02ı.
From these measurements, the corresponding substrate constraint strain, e0, is
calculated and plotted in Fig. 15.3. For the constraint strain at the associated
temperature, the corresponding spontaneous polarization can be calculated and
is plotted in the same figure. In the calculations, the elastic constants and
electrostrictive coefficients used were C11 D 1.78 � 1011, C12 D 0.964 � 1011,
C44 D 1.22 � 1011 (Nm�2), Q11 D 0.10, Q12 D �0.034, Q44 D 0.029 (C�2m4) [7,
13–15], and the coefficients of Landau–Devonshire description of Eq. (15.1)
were from Table 15.1. Comparing with the tetragonal phase in Fig. 15.1, both
the ferroelectric transition temperature, Tc, and spontaneous polarization, Ps,
changed significantly.

(2) Arbitrary single domain
For a film with a single phase of an arbitrary polarization P D .P1; P2; P3/,

the film boundary conditions of Eqs. (15.12) and (15.13) yield: "12D0,
"11D"22De0, "23DQ44P2P3, "13DQ44P1P3, "33D C11Q12CC12.Q11CQ12/
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with a3, a33, and a0 given in Eq. (15.16), and
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(15.18)

Obviously, with the addition of elastic energy of (15.17) into (15.1), the ferro-
electric transition temperature and the polarization values and directions can be
alerted notably when e0 is large [5]. However, some single phases with arbitrary
polarizations cannot fully accommodate the equal biaxial stress. Nevertheless,
single crystals with polarizations normal to the film can always accommodate
any equal biaxial strain. Thus, if ferroelectrics are assumed to always form
single domains, the results could be inaccurate resulting in incorrect predictions
of phase diagrams of the ferroelectric material as a function of temperature and
constraint strain [5].

(3) Twinned tetragonal domains
The phase transition from paraelectric to ferroelectric can lead to the

formation of a twin domain structure, i.e., a structure consisting of two kinds
of domains. In order to form a twin domain structure, the polarizations in the
twin domains must have a specific relationship. For example, the tetragonal
phase a1 : (Ps, 0, 0)/a2 : (0, Ps, 0) can form a twin structure as shown in Fig. 15.4.
This twin domain structure has domain walls orthogonal to the film/substrate
interface and orientated along the f110g planes of the prototypic cubic phase.
The strain and stress distributions in the twin structure are calculated below.

In the twin structure shown in Fig. 15.4, the equilibrium volume fractions
of a1 : (Ps, 0, 0) and a2 : (0, Ps, 0) are equal to each other and the spontaneous
polarization Ps has the same magnitude in the two domains. The corresponding
elastic energy density is calculated as

Fig. 15.4 (a) Schematic illustration of a twin tetragonal a1/a2 structure; (b) A domain structure of
twinned a1/a2 tetragonal phases obtained in a BaTiO3 film
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felastic=a1a2 D 1
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where the factor ½ represents the volume fraction of one of the twin domains.
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At the interface between the two domains, i.e., at the plane of (110) shown
in Fig. 15.4a, the associated stresses and strains are continuous across the
interface, i.e.,
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The stresses �
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ij and �
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ij are related to strains "
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ij through Eq. (15.10)
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corresponding elastic energy density is of the expression:

felastic=a1a2 D .C11 � C12/ .C11 C 2C12/
��2e0 C P2

s .Q11 C Q12/
�2

4C11

: (15.23)

It will be seen later in Sect. 15.4 that such a tetragonal a1 : (Ps, 0, 0)/a2 :
(0, Ps, 0) twin structure can be stabilized under tensile strain e0 at relative higher
temperature.
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Fig. 15.5 (a) Schematic illustration of a twin orthorhombic O1/O2 structure; (b) A domain
structure of twinned O1/O2 orthorhombic phases obtained in a BaTiO3 film

(4) Twinned orthorhombic domains
The twin structure shown in Fig. 15.5 also exists for the orthorhombic

phases O1 W
�

Ps=
p

2; Ps=
p

2; 0
�

and O2 W
�

Ps=
p

2; �Ps=
p

2; 0
�

. This

twinned structure has domain walls orthogonal to the film/substrate interface
but orientated along the (100) or (010) planes of the prototypic cubic phase. In
such a structure, the equilibrium volume fractions of O1-domain and O2-domain
are also equal to each other and the spontaneous polarization Ps has the same
magnitude in the two domains.

The corresponding elastic energy density can be evaluated by

felastic=O1O2 D 1

2
felastic=O1 C 1

2
felastic=O2 : (15.24)

In domain O1 W
�

Ps=
p

2; Ps=
p

2; 0
�

, the corresponding strains and stresses

are f"O1

11 , "
O1

22 , "
O1

33 , "
O1

23 , "
O1

13 , "
O1

12 g and f�O1

11 , �
O1

22 , �
O1

33 , �
O1

23 , �
O1

13 , �
O1

12 g, respec-

tively. Similarly, in domain O2 W
�

Ps=
p

2; �Ps=
p

2; 0
�

, the corresponding

strains and stresses are f"O2

11 , "
O2

22 , "
O2

33 , "
O2

23 , "
O2

13 , "
O2

12 g and f�O2

11 , �
O2

22 , �
O2

33 , �
O2

23 ,
�

O2

13 , �
O2

12 g, respectively. They are required to satisfy the film surface stress-free
boundary condition and substrate constraint condition:

1

2
�

O1

33 C 1

2
�

O2

33 D 0;
1

2
�

O1

13 C 1

2
�

O2

13 D 0;
1

2
�

O1

23 C 1

2
�

O2

23 D 0; (15.25)

1

2
"

O1

11 C 1

2
"

O2

11 D e0;
1

2
"

O1

22 C 1

2
"

O2

22 D e0;
1

2
"

O1

12 C 1

2
"

O2

12 D 0: (15.26)

At the interface between the two domains, the associated stresses and strains
are required to be continuous, i.e.,

�
O1

11 D�
O2

11 ; �
O1

12 D�
O2

12 ; �
O1

13 D�
O2

13 ; "
O1

22 D"
O2

22 ; "
O1

33 D"
O2

33 ; "
O1

23 D"
O2

23 :

(15.27)
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The solutions of Eqs. (15.25)–(15.27) are

"
O1

11 D "
O2

11 D e0; "
O1

12 D �"
O2

12 D 1
2
Q44P2

s "
O1

13 D "
O2

13 D 0;

"
O1

23 D"
O2

23 D0; "
O1

22 D"
O2

22 De0; "
O1

33 D"
O2

3 D � C12

C11

�
2e0� .Q11CQ12/ P2

s

� CQ12P2
s ;

(15.28)

since "
0O1

11 D 1
2

.Q11CQ12/ P2
s ; "

0O1

22 D 1
2

.Q11CQ12/ P2
s ; "

0O1

33 DQ12P2
s ; "

0O1

23 D0;

"
0O1

13 D0; "
0O1

12 D 1
2
Q44P2

s , and "
0O2

11 D 1
2

.Q11 C Q12/ P2
s ; "

0O2

22 D 1
2

.Q11 C Q12/

P2
s ; "

0O2

33 D Q12P2
s ; "

0O2

23 D 0; "
0O2

13 D 0; "
0O2

12 D � 1
2
Q44P2

s . Therefore, we have

felastic=O1O2D
.C11�C12/ .C11C2C12/

4C11

h
.Q11CQ12/

2P4
s �4e0 .Q11CQ12/ P2

s C4e2
0

i

(15.29)

We will see later in Sect. 15.4 that such an orthorhombic O1W
�

Ps=
p

2; Ps=
p

2; 0
�

and O2 W
�

Ps=
p

2; �Ps=
p

2; 0
�

twin structure can be stabilized under larger

tensile strain e0 at quite a range of temperature down to 0 K.
In addition to the two kinds of twin domain structures discussed above,

Koukhar et al. have considered more twin domain structures in their work [16].
It should be borne in mind, however, that not all these considered twin structures
can completely accommodate with the equal biaxial in-plane constraint and not
all domain walls lie along the f100g or f110g planes. For example, the twin
domain structures, either c/a1/ or c/a2/, cannot exist alone to accommodate
the equal biaxial substrate constraint. Their combination, i.e., c/a1/a2 domain
structures can be stabilized under certain constraints and temperatures. This
will be seen from Sect. 15.4 of ferroelectric domain heterostructure.

(5) Heterostructure case
In the general case, the domain shapes and domain wall configurations in

constrained films can be much more complicated than we have seen so far. For
the general case, the internal strains and stresses cannot be solved analytically.
They have to be solved numerically.

Consider a ferroelectric thin film grown on a substrate. Below the Curie
temperature such that a ferroelectric transition occurs and a spontaneous polar-
ization P D .P1; P2; P3/ exists. However, the polarization is not homogeneous
over the film but spatially dependent, i.e., P(x). Since the proper ferroelectric
phase transition involves structural change, a relation of Eqs. (15.2) or (15.3)
between spontaneous or stress-free strains and spontaneous polarization is
employed.

In order to consider the constraint strains on the ferroelectric film from its
underlying substrate, the total strain of the film is separated into two parts. One
part is a homogeneous strain "ij that is the same for each point of the film. The
other part is a heterogeneous strain, �ij(x). Therefore,
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"ij .x/ D "ij C �ij .x/ : (15.30)

We let "˛ˇ .˛; ˇ D 1; 2/ represent the macroscopic shape deformation of the

film in the film plane. This means that
•

V

�˛ˇ .x/ dV D 0, .˛; ˇ D 1; 2/. For

a thin film grown coherently on a thick substrate, the macroscopic deformation
of the film in the film plane is totally controlled by the sufficiently thick
substrate. Equation (15.13) gives the corresponding "˛ˇ .˛; ˇ D 1; 2/ for the
case of a film with cubic crystal structure grown coherently on a substrate of
cubic crystal structure. The macroscopic deformation of the film along the
x3 direction is determined by both the substrate constraint and the domain
structure in the film. Since at film surface, the stress-free condition requires
�i3

ˇ
ˇ
film-surfaceW x3Dhf D 0, i.e., ci3kl

�
"kl C �kl � "0

kl

� ˇ
ˇ
film-surfaceW x3Dhf D 0, we

choose the quantity "i3 .i D 1; 2; 3/ in such a way that makes ci3kl"kl D 0. Then
the stress-free of the film top surface becomes

ci3kl
�
�kl � "0

kl

� ˇ
ˇ
film-surfaceW x3Dhf D 0: (15.31)

However, it needs to be pointed out that "i3 .i D 1; 2; 3/ employed here is only
part of the total deformation of the film.

Assuming that the displacement ui(x) is associated with the heterogeneous
strain, �ij(x), i.e.,

�ij .x/ D 1

2

�
ui;j .x/ C uj;i .x/

�
; (15.32)

the mechanical equilibrium equations can be rewritten as

cijkluk;lj .x/ D cijkl"
0
kl;j .x/ : (15.33)

And the film surface stress-free condition becomes

ci3kl
�
uk;l � "0

kl

� ˇ
ˇ
film-surfaceW x3Dhf D 0: (15.34)

Because the elastic perturbation resulting from the heterogeneous strain
disappears in the substrate far away from the film-substrate interface, one can
use the following condition:

ui jx3D�hs D 0 (15.35)

to replace the constraint of the substrate. In the equation, hs is the distance
from the film-substrate interface into the substrate, beyond which the elastic
deformation is ignored. Actually it was verified numerically that the domain
shapes practically do not change when hs exceeds about half of the film
thickness [17].
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After solving Eq. (15.33) under boundary conditions (15.34) and (15.35)
with given polarization distribution, the strain field "ij(x) can be calculated from
Eqs. (15.30) and (15.32). For the sake of simplicity, the elastic properties of the
film and the substrate are assumed to be the same although the elastic anisotropy
can be arbitrary. An efficient and accurate numerical method was proposed to
solve ui(x) from Eqs. (15.33)–(15.35) [17]. It converts a three-dimensional (3D)
problem into an out-of-plane one-dimensional (1D) problem by using the fast
Fourier transformation (FFT) and gives an analytical solution along the out-of-
plane direction. Thus the obtained solution is a semi-analytical solution which
satisfies the boundary condition (15.34) and (15.35) analytically.

Figure 15.6a illustrates the distribution of the displacement component u3(x)
on the top surface of a film with a given domain structure of Fig. 15.6b. The
domain structure of Fig. 15.6b is from a phase field simulation [17]. The
displacements were the solution of Eqs. (15.33)–(15.35) with the given domain
structure, i.e., the distribution of Pi .x/ .i D 1; 2; 3/. This shows that the wrinkly
surface reflects the domain morphology of the film. Since ferroelectric domain
sizes are on the order of nanometers, the displacements at the thin film free
surface are also on the order of nanometers or less.

15.3 Phase Field Method

To investigate the stability of ferroelectric phases and the details of the associated
ferroelectric domain structure in a thin film constrained by its underlying substrate,
the phase field method (PFM) is widely used [17–36] and is reviewed in detail by
Chen [37]. The PFM for ferroelectrics is based on the Landau–Devonshire theory of
phase transition and searched for the minimum energy state of the system using
the time-dependent Ginzburg–Landau (TDGL) evolution equation. The TDGL
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Fig. 15.6 (a) Displacement pattern of the x3 component u3 on the surface of the ferroelectric film
with domain structure of (b). In (b), the solid areas are tetragonal c-domains and the open areas
are tetragonal a1/a2-domains [17]
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equations in terms of the polarization components Pi(x) are

@Pi .x; t/

@t
D �L

ıF

ıPi .x; t/
; .i D 1; 2; 3/ ; (15.36)

where L is the kinetic coefficient, and F is the total free energy of the system.
ıF/ıPi(x, t) is the thermodynamic driving force for the spatial and temporal evolu-
tion of Pi(x, t). The total free energy of the system includes bulk free energy, elastic
energy, domain wall energy, and the depolarization energy. In order to distinguish
the impact of the substrate mechanical constraint on the domain structures of the
film, the depolarization energy considered in Ref. [19] is neglected here. Therefore,
the total energy is

F D
•

V

Œfbulk C felastic C fwall� dV; (15.37)

where the densities of bulk free energy and elastic energy are given in Eqs. (15.1)
and (15.5), respectively.

The domain wall energy is evaluated through the gradients of the polarization
field. For a general anisotropic system, the gradient energy density may be
calculated by

fwall D 1

2
gijklPi;jPk;l; (15.38)

where Pi;j D @Pi=@xj and gijkl are the gradient energy coefficients with the property
of gijkl D gklij. For a cubic system, this degenerates into

fwall D 1
2
G11

�
P2

1;1 C P2
2;2 C P2

3;3

� C G12

�
P1;1P2;2 C P2

2;2P2
3;3 C P1;1P3;3

�

C 1
2
G44

h
.P1;2 C P2;1/2 C .P2;3 C P3;2/

2 C .P1;3 C P3;1/2
i

C 1
2
G0

44

h
.P1;2 � P2;1/2 C .P2;3 � P3;2/

2 C .P1;3 � P3;1/
2
i

;

(15.39)

where Gij are also called as the gradient energy coefficients and are related to gijkl

through Voigt notation, for instance, G11 D g1111.
The temporal evolution of the polarization fields is obtained by numerically

solving the TDGL Eq. (15.36). The semi-implicit Fourier spectral method for the
time-stepping and spatial discretization proposed in Ref. [38] gives more efficient
and accurate numerical solution for Eq. (15.36) so is recommended. Since the
strains, "ij(x), as well as the displacements, ui(x), are coupled with polarization
components, Pi(x), Eqs. (15.33)–(15.36) are solved iteratively. Once we have
solutions for the polarization components, their spatial distribution gives the detail
of a ferroelectric domain structure.
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15.4 Ferroelectric Domain Heterostructure

The ferroelectric domain structure in the film can be obtained by solving the
TDLG Eq. (15.36) and its coupling mechanical Eqs. (15.33)–(15.35) for a given
temperature (T) and mismatch strain (e0). Figure 15.7 illustrates some ferroelectric
domain structures obtained through solving Eqs. (15.33)–(15.36) for BaTiO3 films.
All the data points shown in Fig. 15.7 were obtained by starting from an initial
paraelectric state with small random perturbations. The data points simply represent
the type of domain structures that exist at the end of a sufficiently long simulation for
minimizing the total free energy. The various ferroelectric phases were determined
by the non-zero components of local polarization.

In obtaining the domain structures of Fig. 15.7, a model size of 128�x �
128�x � 36�x cubic grids was employed and periodic boundary conditions were
applied along the x1 and x2 axes. The thickness of the film is hf D 20�x so
P

�
x1; x2; x3 > hf

� D 0 is assumed. The region of the substrate allowed to deform
was set to be hs D 12�x as it was pointed out previously that little change in results
when hs exceeds about half of the film thickness. Isotropic domain wall energy was
assumed in Eq. (15.39) where G44 D G0

44 D G11=2, and G12 D 0. �x D p
G11=˛0

and �t D 1= .˛0L/ with ˛0 D j˛1jTD25ıC were utilized for the normalization of Eq.
(15.36).

It should be pointed out that the phase field simulations do not assume the
domain wall orientations a priori. All the stable phases and domain structure that
were determined under given temperature and substrate constraint strain were found

Fig. 15.7 Domain morphologies in BaTiO3 films as a function of temperature (T) and substrate
constraint strain (e0). Domain definitions and the corresponding polarizations: a1: (P1,0,0); a2:
(0,P1,0); c: (0,0,P3); O1: (P1,P1,0); O2: (P1,�P1,0); O3:(P1,0,P3); O4:(P1,0,�P3); O5: (0,P1,P3);
O6: (0,P1,�P3); R1: (�P1,�P1,P3); R2: (P1,�P1,P3). (a) tetragonal c-phase at T D 25 ıC and
e0 D �1.0 %; (b) tetragonal c-phase and a1/a2-phases at T D 75 ıC and e0 D 0.0; (c) tetragonal
a1/a2-phases at T D 75 ıC and e0 D 0.0; (d) phases O3/O4/O5 at T D �25 ıC and e0 D �0.05 %;
(e) phases O1/O2/O3/O4/O5/O6 at T D �25 ıC and e0 D 0.1 %; (f) phases O1/O2 at T D 25 ıC
and e0 D 1.0 %; (g) phases a1/a2/O1/O2 at T D 25 ıC and e0 D 0.25 %; (h) phases R1/R2 at
T D �100 ıC and e0 D 0.1 % [7]
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from the minimization of total energy, i.e., the TDLG Eq. (15.36). These solutions
were found by assigning small random numbers for Pi(x) at beginning to represent
an initial paraelectric state. It is seen that under larger tensile strains that the
polarization of ferroelectric phases is parallel to the film/substrate interface, either
along h100i or h110i direction depending on the temperature and the magnitude of
the strain. The corresponding domain structures are similar to either the a1/a2 twins
as shown in Fig. 15.7c, or the O1/O2 twins of Fig. 15.7f, or the mixture of a1/a2 twins
and O1/O2 twins shown in Fig. 15.7g. Under relative smaller strains the polarization
changes its orientation from h100i to h10�i then to h11�i as temperature decreases.
This sequence is similar to that in bulk single crystals but � is not always equal to 1
as in the bulk. The domain variants vary with the in-plane strain, e0, which is clearly
shown in Fig. 15.7a–c for the h100i orientated polarizations and in Fig. 15.7d–f for
the h10�i orientated polarizations. It is interesting to note that the domain structures
with h10�i orientated polarizations can be rather complicated: the domain walls
between different variants are not only along the f100g and f110g planes, i.e., the
crystallographically prominent walls with a fixed orientation, but also along the
so-called S-walls whose orientations depend on the magnitude of the polarization,
electrostrictive coefficients, and substrate constraint [39]. When the strain is small,
its effect on the orientation of orthorhombic domain walls can be ignored. In such a
case, the permissible domain walls are either f100g or f110g or f11�g planes with
� D 2Q44= .Q11 � Q12/ D 0:4403.

Based on the simulation results, a phase diagram, i.e., a representation of
stable ferroelectric phases and domain structures as a function of temperature
and strain, was constructed and is shown in Fig. 15.8. Under sufficiently large
compressive strains, the ferroelectric phase is of tetragonal symmetry with polar-
ization orthogonal to the film/substrate interface. Figure 15.7a is a typical domain
structure under large compressive strains, in which there are two types of c-domains
separated by 180ı domain walls. This result has been confirmed by experimental
measurements on BaTiO3 films commensurately grown on DyScO3 and GdScO3

substrates through reactive MBE and PLD, respectively [6]. Under sufficiently large
tensile strains, the ferroelectric phase is of orthorhombic symmetry with polarization
parallel to the film/substrate interface. Figure 15.7f is a typical domain structure
under large tensile strains. It is seen that from the phase diagram that under certain
ranges of strains, the ferroelectric phases with both symmetries P4mm and Bmm2
can be stable down all the way to 0 K without further transformation.

15.5 Summary

In summary, ferroelectrics and nanomechanics are coupled. Ferroelectric transitions
involve material crystal structure change. The domain structure in ferroelectric films
organizes or forms in a way to reduce the total free energy of the system and
accommodate the constraint imposed on the film by its underlying substrate. On the
other hand, the film ferroelectric properties are determined by its domain structure.
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Fig. 15.8 Phase diagram of BaTiO3 films as a function of temperature and substrate in-plane
strain. The scattered circles and squares denote the ferroelectric transition temperatures measured
from experiments on the BaTiO3 films commensurately grown on DyScO3 and GdScO3 substrates,
respectively [6]. The “�” indicates the locations of the domain structures shown in Fig. 15.7.
Each single phase has equivalent variants with polarization vectors of P D .0; 0; 0/ in TP; P D
.0; 0; ˙P3/ in TF; P D .˙P1; 0; 0//P D .0; ˙P1; 0/ in OF

1 ; P D .˙P1; ˙P1; 0//.˙P1; �P1; 0/

in OF
2 ; P D .˙P1; 0; ˙P3//.˙P1; 0; �P3//.0; ˙P1; ˙P3//.0; ˙P1; �P3/ in MF

1 ; P D
.˙P1; ˙P1; ˙P3//.˙P1; �P1; ˙P3//.˙P1; ˙P1; �P3//.˙P1; �P1; �P3/ in MF

2 [7]

Therefore, this coupling can be used to engineer ferroelectric material properties.
Such applications can be found in Refs. [6, 40–43].

This chapter presented methods for calculating strains and stresses in ferroelec-
tric thin films containing nanoscale heterogeneous domain structures. The effect of
strains on the ferroelectric transition temperature, stability of ferroelectric phases,
and the domain structure were demonstrated for BaTiO3 films. The PFM has been
proven a powerful numerical method in predicting the effect of substrate constraint
on the phase transitions and the details of domain structures in ferroelectrics
without any priori assumptions on the possible domain structure. In addition to
BaTiO3 films, phase field simulations have been applied to predicting ferroelectric
heterogeneous domain structures in PbTiO3 [17–19, 32, 44], PZT [21, 45–47],
SrTiO3 [48], BiFeO3 [49, 50], and SrBi2Nb2O9 [51] thin films and BaTiO3/SrTiO3

[52, 53], PZT/PZT [36], PbTiO3/BaTiO3 [54, 55] superlattices. In calculating
strain/stress distribution in thin films, homogeneous elastic properties in both the
film and the substrate were assumed in order to use a semi-analytical solution
for numerical accuracy and efficiency. This limitation, however, can be removed
by utilizing an efficient iteration method proposed by Hu and Chen [56]. If one
uses the concept of eigenstrains or stress-free strains, it is possible to consider the
effect of any arbitrary distribution of dislocations and defects on microstructure
evolution [57]. Very recently, efficient numerical methods for solving finite/large
deformation have been developed [58–60]. Unlike small deformation, the large
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deformation causes large strain gradient and/or localized deformation, which may
affect phase transition kinetics including second phase nucleation and transition
sequence, hence, the microstructure, material property, and response. With these
methods, the phase field model presented in this chapter can be extended to take
large deformation into account in ferroelectric phase transition.
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