
Chapter 14
Kinetic Monte Carlo Modeling
of Nanomechanics in Amorphous Systems

Eric R. Homer, Lin Li, and Christopher A. Schuh

14.1 Introduction

Modeling the nanomechanics of amorphous systems presents a unique challenge as
a result of the disparate time and length scales and diverse modes of deformation
exhibited by this class of materials [1, 2]. At high temperatures, amorphous systems
exhibit homogeneous deformation that follows Newtonian and non-Newtonian flow
laws. At low temperatures, deformation is localized into shear bands with nanometer
scale thickness but which can extend over hundreds of micrometers. Interestingly,
a single fundamental unit of deformation is hypothesized to underlie these diverse
modes of deformation. This fundamental unit of deformation is known as the shear
transformation zone or STZ, and is characterized by the transient motion of several
dozen atoms that deform inelastically in response to an applied shear stress [3].
The STZ is illustrated in Fig. 14.1 where the final state has been sheared by an
increment of shear strain �o. The two modes of deformation are then expected to
be comprised of either the uncorrelated activation of STZs uniformly distributed
throughout the sample—in the case of homogeneous deformation—or of highly
correlated activation of STZs in a localized band—in the case of inhomogeneous
deformation [4].
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Fig. 14.1 Shear transformation zone (STZ), which represents the response of a collection of atoms
to an applied shear stress. The final state of the atoms has been sheared from the initial state by a
plastic strain of �o. Figure adapted with permission from [29]

Modeling this behavior is difficult because STZ activations in these cases can
occur over several decades of strain rate. Furthermore, simultaneously capturing
the length scale of nanometer shear band thickness and micrometer shear band slip
is challenging. To truly resolve the nature of deformation within these materials,
the mechanics must be modeled using a combination of modeling approaches
[2]. Atomistic simulations are critical in resolving the mechanics associated with
individual STZ activations as well the nature of STZ–STZ interactions [5, 6].
Unfortunately, the time and length scale limitations of atomistic simulations pre-
clude simulating the behaviors of these materials at engineering time and length
scales [2]. Continuum approaches, on the other hand, provide the ability to model
deformation at engineering scales and provide ideal comparison to experiments
[7–10]. However, the continuum approach is limited by its constitutive laws, which
are often changed to accommodate the different modes of deformation [8, 9]. This
can lead to the possibility of incorrectly capturing the deformation physics. As a
result, modeling the behavior across the entire spectrum is best enabled by the
addition of an intermediate or mesoscale technique [2]. Mesoscale techniques focus
on capturing the physics that bridge the time and length scales between atomistic
and continuum methods [11].

14.2 Mesoscale Modeling

The key to a mesoscale modeling technique that successfully bridges the time and
length scales of interest is to adopt elements that accurately capture the physics
associated with the fundamental events. In the mesoscale model adopted here, we
employ two separate elements that individually bridge the time and length scales
associated with deformation in amorphous systems. The kinetic Monte Carlo (kMC)
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algorithm is adopted to bridge the time scales, while a coarse-graining technique is
utilized to bridge the length scales. It is noted, however, that there are a variety of
mesoscale approaches that can be adopted [11, 12].

14.2.1 Coarse-Graining

The technique of coarse-graining involves the identification of features of a given
process such as a cluster of atoms, an entire crystal of atoms, or region of material,
and then treating the cluster, crystal, or region as a single unit. Atomic interactions,
vibrations, defects, molecular interactions, and various other phenomena that do
not play a governing role in the process of interest can either be ignored or their
contributions can be incorporated into the constitutive law that governs the coarse-
grained region. For example, polymer or protein modeling often treats the molecules
or different clusters of atoms as different individual units [12]. This is efficient
because the individual atomic interactions no longer need to be considered, and
the net interaction between the clusters of atoms can be accommodated with a
constitutive law. The result of coarse-graining is that one can model larger systems
sizes more efficiently while ensuring that there is little loss in accurate physical
interactions between the coarse-grained regions.

14.2.2 The kMC Algorithm

The kMC algorithm is an adaptation of the well-known Monte Carlo technique.
The Monte Carlo technique uses probability distribution functions to sample the
phase space of systems in equilibrium states. That is, in these algorithms, a system
is examined for many different equilibrium configurations it can adopt and the
system is moved into states that have higher probability of existence based on
the equilibrium energy. The probability distribution most frequently used is the
Maxwell–Boltzmann distribution

p .Ei/ D exp .�Ei=kBT/ =� (14.1)

where Ei is the energy of the system in configuration i, kB is Boltzmann’s constant,
T is the temperature in Kelvin, and � is the partition function, which is defined as

� D
X

i

exp .�Ei=kBT/: (14.2)

In this definition, the probabilities of all the states sum to one.
Consider the following system with five possible configurations, whose energetic

landscape is illustrated in Fig. 14.2. If the system starts in state 3 at low temperature,
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Fig. 14.2 Energetic landscape with various equilibrium states and transition states identified

it has the highest probability of visiting state 5, although it will visit all states
according to the probabilities calculated by Eq. (14.1). Whether a different state
can be accessed is dependent only on the change in energy between the equilibrium
states, and the magnitude of the energy barrier separating the two states is irrelevant.
MC algorithms can even transition to states that are not adjacent (state 1 directly to
state 5) and time is not accounted for because the time to overcome the transition
state barriers is not considered.

The kMC algorithm on the other hand is focused on the energy barriers
and transition states between individual states and tracks time evolution during
this process. The algorithm and the underlying transition state theory (TST) are
explained in detail by Voter in [13]. According to TST, a system can only transition
into adjacent states. The probability for transitioning between states is now based
on the energetic difference between the current equilibrium state and transition state
between the adjacent states. For a transition from state i to state j, this energetic
barrier works out to

�Ei!j D �Eij D Eij � Ei (14.3)

The transition rate k from state i to j is then given by the Arrhenius equation:

kij D � exp
���Eij=kBT

�
(14.4)

where � is the attempt frequency of the system to transition out of a given state.
For most atomic processes, � is related to the Debye frequency for the elements
involved. It is assumed that once the system moves from the equilibrium state to the
transition state, it will continue along its trajectory into the new equilibrium state.

As an example, consider again the system in Fig. 14.2, with the system starting
in state 3. Since the system can only transition from state 3 into state 2 or 4, the
two probabilities will be based on the energetic differences �E32 and �E34. Since
�E32 is smaller, the system is more likely to transition into state 2 than state 4.
Going further, getting to state 5 is less likely than getting to state 2 because the two
transitions required to get to state 5, �E34 and then �E45, are so much larger than
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the single transition required to get to state 2, �E23. This contrasts the MC results
that would suggest state 5 as the most likely state to be occupied. However, with
sufficient time and/or thermal energy, the kMC algorithm can and will visit state 5.

The kMC algorithm proceeds according to the following steps [14], which are
repeated for every transition:

1. Make a list of transition states, enumerated by the index j, out of the current equi-
librium state and calculate the rate for every transition kj. (Note that the current
equilibrium state is no longer listed as a subscript in this derivation.) Calculate the
cumulative transition rate kT and normalize each individual transition �j D kj=kT ,
such that the sum over the normalized transitions, �j, is equal to one.

2. Generate two random numbers, �1 and �2, uniformly on the interval (0,1].
3. Update the elapsed time of the simulation with the residence time in the current

configuration, calculated according to

�t D � ln �1=kT (14.5)

4. Select a single transition to implement by first calculating the partial cumulative
rate according to

Hj D
jX

nD1

�n (14.6)

and then use the random number, �2, to find the single transition i to implement,
which satisfies

Hi�1 < �2 � Hi: (14.7)

Note that when the transition events are listed in a successive fashion, �2 falls in
the subinterval �i in the list of normalized rates.

5. Move the system into the new state by implementing the transition selected in
the previous step.

6. Update any system calculations and return to step 1 to allow the system to evolve
again.

The kMC algorithm repeats the steps above for any desired number of transitions,
and allows the system to evolve by passing through transitions based on their
probability for occurring and tracking the elapsed time between transitions. The
kMC algorithm is powerful and has been used in numerous studies to investigate
diverse phenomena [15–21].

One important aspect of the kMC algorithm and TST is that detailed balance
must be obeyed. Essentially, detailed balance ensures that one is accurately sampling
the phase space of possible equilibrium states and their transition pathways for
microscopic reversibility. By definition, all processes at equilibrium must be
balanced. Voter [13] explains detailed balance as:
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For every pair of connected states i and j, the number of transitions per unit time (on average)
from i to j must equal the number of transitions per unit time from j to i. Because the
number of escapes per time from i to j is proportional to the population of state i [based
on MC probability of population] times the rate constant for escape from i to j, we have
p(Ei)�kij D p(Ej)�kji and the system is said to “obey detailed balance.”

This can also be viewed as ensuring that the energetic landscape between states
i and j be identical whether the system is transitioning from i to j or from j to i [4].
Additional discussion of detailed balance is available in referenced works [13, 22].

The kMC algorithm will provide an accurate model of a physical system
so long as the transition states available to the algorithm accurately model the
actual transition states of the physical system. A complete description of the kMC
algorithm and many features and requirements of the technique are discussed in
detail by Voter [13].

14.3 STZ Dynamics

To simulate the nanomechanics of amorphous systems, a mesoscale STZ dynamics
modeling framework has been developed. This framework is inspired by the work
of Bulatov and Argon [23–25], but extends the work in several ways. The method
centers on the STZ introduced in Sect. 14.1. Since the cluster of atoms in an STZ
consistently exhibit a transient shearing motion [5, 6, 26–28], it is possible to coarse-
grain a theoretical sample into a system of potential STZs. Then each potential STZ
has the ability to shear in the same manner as a cluster of atoms. This coarse-
graining enables more efficient sampling of larger system sizes, thereby fulfilling
one of the two improvements to modeling amorphous systems.

The second aspect of the STZ dynamics framework involves simulating longer
system times more efficiently. This is accomplished by considering the transient
STZ activation as a transition state between the initial and final equilibrium
configurations. Thus, TST and the kMC algorithm can be employed as long as
knowledge of the energetic landscape, including the transition states, is available.

14.3.1 STZ Coarse-Graining

In the present work, coarse-graining is accomplished by replacing the cluster of
atoms that represent a potential STZ with features of a finite element mesh. In
the development of the STZ dynamics framework, three criteria were identified as
critical to proper representation of an STZ using a finite element mesh [14, 29].
First, the coarse-grained representation should approximate the shape of an STZ,
which is generally believed to be roughly spherical. Second, since the STZ is a
transient event, the definition of any potential STZs should enable them to overlap.
The reason for this is that atoms would never be restricted to participate in only
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Fig. 14.3 Coarse-graining of an STZ using features of a finite element mesh in (a) 2D and (b) 3D.
Figures adapted with permission from [14, 29]

one potential STZ. By defining them in a way that they overlap, any given element,
which represents smaller groups of atoms, can participate in multiple potential STZ
activations. Third, the coarse-grained STZ should accurately capture the expected
behavior of an STZ. In his original proposal of the STZ, Argon modeled the STZ
as an Eshelby inclusion [3]. As a result, analytical solutions can be utilized as a
reference against which to compare a given coarse-graining technique and ascertain
its accuracy [30, 31].

Following these criteria, techniques for coarse-graining STZs onto 2D and 3D
finite element meshes were identified. In 2D, the technique involves the identifi-
cation of a node and all surrounding elements or an element and all surrounding
elements to represent a single STZ. This is illustrated in Fig. 14.3a for a 2D
mesh that shows an element-centered, coarse-grained STZ. In 3D, a node and all
surrounding elements are used to represent a single STZ, which is illustrated in
Fig. 14.3b. These coarse-graining techniques have been shown to satisfy the three
criteria stated above. Namely, the shapes are roughly equiaxed, potential STZs
overlap, and as shown in published work, the error between the finite element
solution and Eshelby inclusions solution is small [14, 29].

The use of finite elements builds on the previous work by Bulatov and Argon in
an important way. In their original work, Bulatov and Argon employed a rigid lattice
STZ model, which could track stress and strain but not displacement [23]. In the
STZ dynamics modeling framework, the finite element mesh enables the framework
to track displacement and deformation in addition to stress and strain. Additionally,



448 E.R. Homer et al.

the lattice model did not allow STZs to overlap, whereas the finite element mesh
does allow this.

14.3.2 kMC Implementation

The implementation of the kMC algorithm in the STZ dynamics framework follows
all the steps defined in Sect. 14.2.2 with one important addition. In selecting a single
event, one must not only pick the STZ that will shear but also the direction of shear.
In the original 2D model of Bulatov and Argon, each potential STZ had the ability
to shear in one of six directions [23]. This simplified the number of transition events
that had to be considered for each iteration of the kMC algorithm. However, just
as atoms are not restricted to participate in only one possible STZ event, STZs are
not restricted to shear in only six possible directions. In 2D, an STZ should be able
to shear in any direction in a plane. In 3D, an STZ should be able to shear in any
unique combination of shear planes and shear directions within that plane.

While it is relatively trivial to shear an STZ in any direction, enumerating and
calculating the transition rates for all these directions is more challenging. We first
begin with the calculation of the rate for an STZ to shear in one direction. The STZ
activation rate is defined as

:
s D vo exp

�
��G

kBT

�
(14.8)

where the prefactor �o is of the order of the Debye frequency, �G is the activation
energy barrier, and kBT is the thermal energy of the system.

In order to calculate the activation energy barrier for a given transition, one
must have knowledge of the transition itself. Methods such as the nudged-elastic
band [32] or the activation–relaxation technique [33, 34] can be used in atomistic
simulations to find the exact activation energy barrier from any given equilibrium
state. One can then use Monte Carlo techniques to evolve the system as in
[35]. However, these atomistic energy barrier search methods are computationally
intensive and do not readily translate to mesoscale models. Since we desire to have
a catalog with a large number of transitions, we favor another approach.

More traditional approaches to determining the energy in mesoscale systems will
follow three steps: (1) calculate the energy, EI , at the initial equilibrium state, (2)
move the system to and calculate the energy, EF, in the final state, and (3) add
a predefined barrier height, �F, to the intermediate energy, which is the average
energy of the initial and final equilibrium states. This is illustrated in Fig. 14.4a, b.
Unfortunately, this approach is time consuming because one must move the system
to all of the possible final equilibrium states in order to calculate the transition state.

In their model, Bulatov and Argon [23] exploited the fact that the Eshelby
approach results in a quadratic solution to the strain energy for shearing an STZ,
illustrated in Fig. 14.4 as a dashed line. This quadratic solution can be used to
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Fig. 14.4 (a) Representation of the two states before and after the activation of an STZ. Illustration
of the energy landscape and the method of identifying the activated state of an STZ in a (b)
traditional kMC model where the activation energy, �G, is obtained by adding the fixed energy
barrier �F to the average of the initial and final states and (c) the energy landscape for the model
proposed by Bulatov and Argon [23] where �G is obtained by adding �F to the projection of the
slope (equal to the local shear stress) at the initial and final states. The variation in energy between
the two states is given by dashed line and is the same in both (b) and (c). Figure reproduced with
permission from [4]

predict the energy in the final state, but rather than calculate that final state energy,
Bulatov and Argon simply extrapolate from the initial state, using the slope at that
point, to the midpoint of the transition and then add the fixed barrier height, �F.
Figure 14.4 accentuates the energy difference between the traditional approach and
that of Bulatov and Argon for pedagogical purposes, but in actuality the difference
in barrier height between the two methods is very small [4, 23]. Furthermore, the
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method of Bulatov and Argon has the benefit of not having to calculate the energy
of the final equilibrium state, which results in significant computational savings. A
more detailed explanation of the calculations, including the important requirement
of detailed balance, is discussed in [4].

Using the model of Bulatov and Argon, we can then define the activation energy
barrier as

�G D �F � 1

2
� � �o � �o (14.9)

where � is the local shear stress and �o is the volume of an STZ. Argon developed
a model for �F [3], which is given as

�F D
�

7 � 5v

30 .1 � v/
� 2 .1 C v/

9 .1 � v/
ˇ2 C 1

2�o
� b�

	.T/

�
� 	.T/ � �2

o � �o (14.10)

where the three terms in the brackets define the strain energy associated with
shearing of the STZ, the strain energy associated with a temporary dilatation of
the STZ to allow the atoms to rearrange, and the frictional energy associated with
the free shearing of the atoms over one another. In Eq. (14.10), � is Poisson’s ratio,
ˇ is a ratio of shear to dilatation (usually taken as 1),b� is the peak interatomic shear
resistance between atoms, and 	(T) is the temperature-dependent shear modulus.

Since we are interested in calculating the range of barriers associated with
shearing an STZ in any direction in 2D and 3D, the shear stress associated with
each unique shear direction must be identified and enumerated.

14.3.2.1 STZ Activation Rate in 2D

In 2D, the shear stress for each unique shear direction around a circle can easily be
evaluated using a Mohr’s circle construct. Using this construct, the magnitude and
sign of the shear stress along any given direction of the circle is equal to

� D �max sin .
/ (14.11)

where 
 is the angle to the stress state with stress � , which is measured relative to
the stress state with the highest principal stress. One can then integrate all shear
directions by integrating 
 over the interval [0ı,360ı). By combining Eqs. (14.8),
(14.9), and (14.11), the integral STZ activation rate becomes

:
s D vo

2�
� exp

�
� �F

kBT

�
�
Z 2�

0

exp

�
�max � sin .
/ � �o � �o

2kBT

�
d
 (14.12)

which evaluates to a modified Bessel function of the first kind, of order zero
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:
s D vo

2�
� exp

�
� �F

kBT

�
� Io

�
�max � �o � �o

2kBT

�
: (14.13)

This particular form of the STZ activation rate is convenient because the analytical
solution gives the rate for shearing an STZ in any direction in two dimensions
with only one function evaluation. This integral rate is evaluated for each STZ
and utilized in the steps listed in Sect. 14.2.2. Upon selection of a given STZ for
activation, the angle of shear is selected for that particular STZ by numerically
evaluating the integral equation up to the fraction of overlap by the random number
on that state. This angle selection is explained in more detail in [14]. Fortunately,
the method can provide the STZ for activation and the angle of shear with the single
random number �2.

14.3.2.2 STZ Activation Rate in 3D

The evaluation of the STZ activation rate in 3D is more complex than the 2D case
due to the larger set of possible shear planes and shear directions, as well as the need
to only evaluate unique combinations of shear planes and directions. In a generalized
form the integral activation rate can be defined as

:
s D vo � exp

�
� �F

kBT

�
�
•

g2G

exp

�
� .�; g/ � �o � �o

2kBT

�
dg (14.14)

where g is the orientation of any shear plane–shear direction combination belonging
to the set G of all unique combinations of shear planes and shear directions. The
integral is three-dimensional because the specific orientation of a shear plane and
shear direction requires three parameters. The shear stress of that orientation g is
defined as � (� , g) to denote the fact that the triaxial stress state that exists in a given
STZ must be transformed by g to obtain the shear stress for that given shear plane
and shear direction. Due to the complexity of this calculation, the details are not
discussed here but are available in [29]. In short, these details describe the process
for defining all unique combinations of shear planes and directions, and note that no
analytical solution to the integral in Eq. (14.14) could be found. However, interesting
trends indicating the equation’s sole dependence on the deviatoric stress, as well
as symmetries in similar stress states, lead to an efficient solution. The integral is
numerically evaluated and tabulated for rapid recall during the modeling process
while maintaining an error less than 0.01 %.

In a similar fashion to the 2D case, the integral STZ activation rates are used
to run the kMC algorithm and select an STZ for activation. Once again, the shear
plane and direction for the selected STZ are chosen by numerically integrating the
rate equation until the magnitude of overlap of the random number �2 on the interval
of the selected STZ is matched.
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Table 14.1 Material properties commonly employed by the STZ dynamics framework

Property/variable Symbol and value

Temperature-dependent shear modulus 	.T/ D �0:004
�
GPa K�1

	 � T C 37 ŒGPa

Poisson’s ratio � D 0.352
Debye temperature 
D D 327 K
Fixed activation energy barrier �F.T/ D 0:822 � 10�29

�
J Pa�1

	 � 	.T/

STZ volume �o D 2.0 nm3

STZ strain �o D 0.1

14.3.3 Overall STZ Dynamics Framework

The STZ dynamics modeling approach incorporates the coarse-graining techniques
and kMC algorithm evaluations of the STZ activation rates into an overall frame-
work. The application of the framework to a given modeling problem requires
that several steps be followed. First, a 2D or 3D finite element mesh is defined
to match the geometry of the model material being simulated. Second, potential
STZs are mapped onto the finite element mesh based on the technique determined
according to the criteria discussed in Sect. 14.3.1. Third, the finite element mesh
is assigned the set of material properties that will influence the material model and
the kMC algorithm. In the present work, this limited set of properties is discussed
in the following paragraph. Fourth, implement the kMC algorithm and repeat the
following steps: (1) determine which STZ should be selected for activation, and
which shearing angle should be applied, based on the current system state. (2) Apply
plastic (Eigen) strains to the elements belonging to the STZ according to the selected
shearing angle. (3) Use finite element analysis to determine the response of the
system to the applied plastic strains. (4) Update the current system state, including
stress, strain, and any functional material properties, to reflect the response to STZ
activation. These last four steps involving the kMC algorithm are repeated many
times in succession to determine the evolution of the system.

Due to the fact that the kMC algorithm determines and applies the plastic strains,
the finite element analysis solver determines the elastic response of the system to
the applied plastic strain, requiring only the use of a linear elastic solver.

The material properties and simulation variables used by many of the published
STZ dynamics papers are listed in Table 14.1. This list is intentionally kept short
to simplify the model and variables simply for the purpose of obtaining an intended
response. The attempt frequency �o is taken as the Debye frequency, which can be
calculated from the Debye temperature 
D. The variables 	(T), �, and 
D are values
for the commonly studied Vitreloy 1 with composition Zr41.2Ti13.8Cu12.5Ni10Be22.5,
and are obtained from [36], [36], and [37], respectively. Rather than using the
complex form of the fixed barrier height in Eq. (14.10), we reduce �F to a simple
functional form that is dependent upon the shear modulus. The STZ volume is in
the range commonly reported in the literature [1, 38, 39] and the STZ strain is equal
to the commonly accepted value [1].
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14.3.4 Adaptations of the STZ Dynamics Framework

Since its original inception, the STZ dynamics framework has been adapted for
different implementations and purposes.

First, the framework has been adapted for contact mechanics in finite element
analysis to simulate nanoindentation [40]. In fact, the use of a finite element mesh
and finite element analysis solver enables just about any set of boundary conditions
regularly used in finite element analysis to be incorporated into the STZ dynamics
framework.

Second, the kMC algorithm has been modified for specific scenarios to suppress
the selection of a transition when that transition occurs on irrelevant time scales.
This is crucial since standard kMC is designed to implement any transition selected
by the algorithm no matter the elapsed time. Since stresses (and STZ activation
rates) can vary by large magnitudes during nanoindentation or other testing
conditions, this modified-kMC algorithm suppresses events that would occur on
time scales greater than a predetermined maximum allowed time step. This ensures
that stress and other conditions cannot change by a radical amount before being
updated. In a given iteration, the modified-kMC algorithm determines the elapsed
time before activating an STZ. If that elapsed time is larger than the maximum time,
the STZ activation (plasticity) is suppressed and the system increments time by the
maximum allowed time. If the elapsed time is smaller than the maximum time, the
STZ activation (plasticity) is implemented and the system increments time by the
amount suggested by the algorithm. In both cases, the elastic response of the system
and all variables (stress, loading, displacement, etc.) are updated at the end of the
step and the algorithm repeats with the updated values. In each iteration, an STZ
may or may not activate, but the system can never evolve so rapidly that unphysical
activations occur.

Third, state variables have been incorporated in some cases to account for the fact
that the evolution of stress and strain cannot retain important information about the
evolution of the structure. Free volume has been established as an important state
variable for amorphous materials, so some implementations of the STZ dynamics
framework track this state variable and adjust the material model to account for the
current state of the structure at any given state.

Fourth, composite materials, such as metallic glass matrix (MGM) composites,
have been simulated by partitioning the finite element mesh into two or more phases.
Each element in the mesh is assigned a phase and the finite element solver uses the
material model for that phase when that element is evaluated.

These various adaptations demonstrate the flexibility provided by the STZ
dynamics framework, though other adaptations are certainly possible.
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14.4 Applications of the STZ Dynamics Framework

Modeling amorphous materials using the kMC algorithm in the STZ dynamics
framework provides an opportunity to study many different aspects of their nanome-
chanical behavior. In the following sections, we demonstrate: (1) how the framework
can be used to study the various modes of deformation and understand the overall
behavior of the model, (2) how thermomechanical processing can be investigated
and how state variables are critical to capturing the evolution of the system, (3) how
one can gain insight into the physics that control the nanomechanical behaviors of
shear banding, (4) how mechanical contacts can be studied using the STZ dynamics
modeling framework to gain insight into nanoindentation experiments on metallic
glasses, and (5) how microstructural factors in MGM composites influence their
mechanical properties.

14.4.1 General Behaviors

As noted in the introduction, amorphous materials exhibit homogeneous deforma-
tion at high temperatures and inhomogeneous deformation at low temperatures.
To test the STZ dynamics framework, a model metallic glass with no preexisting
distribution of stress and strain was subjected to two scenarios: high temperature
(near Tg), intermediate stress and low temperature, high stress. Model responses for
these two scenarios are shown in Fig. 14.5 for both 2D and 3D implementations.
As can be seen, the first case exhibited the expected homogeneous deformation
and STZs activated uniformly throughout the simulation cell. In the second case,
the STZs localized the plastic strain into a shear band to give the expected
inhomogeneous deformation.

Metallic glasses are expected to follow very specific rheological behaviors at
higher temperatures. While the results are not shown here, both the 2D and 3D
simulations closely follow the constitutive laws that are frequently used to fit
experimental data.

To investigate the model responses over a range of conditions, we construct
deformation maps for simulation cells subjected to a range of applied stresses at
various temperatures. The deformation maps are illustrated for both 2D and 3D
in Fig. 14.6. The steady-state strain rate is measured from each simulation and
contours of constant strain rate are overlaid on the map for rates ranging form 10�10

to 1 s�1. Simulations that had strain rates slower than 10�10 s�1 are deemed to be
“elastic” and marked with an “�” as the deformation would be too slow to observe in
experiments. Local values of the strain rate sensitivity are presented according to the
shading inside each data point. As the stress is increased, the strain rate sensitivity
decreases from unity (Newtonian flow), and trends toward zero (non-Newtonian
flow). Finally, the regions of homogenous and inhomogeneous deformation are
shaded. The 3D simulations are further broken down into shear banding versus
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Fig. 14.5 High and low temperature representative responses of the STZ dynamics framework.
The high temperature response is shown in (a) 2D and (c) 3D while the low temperature response
is shown in (b) 2D and (d) 3D. Figures adapted with permission from [14, 29]

necking. This ability to distinguish between shear banding and necking is possible
in the case of the 3D simulations because they were subjected to tension (3D) rather
than pure shear (2D). These maps compare favorably with experimental deformation
maps [1], in that they capture the basic features of amorphous deformation.

This match between experimental and simulated deformation maps is a testament
to the strength of a mesoscale model that successfully coarse-grains a process and
determines the transition states that control the evolution of the system.
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Fig. 14.6 Deformation maps for Vitreloy 1 constructed from data obtained by loading (a) 2D and
(b) 3D model geometries over a range of loads and temperatures. The 2D simulations are subjected
to pure shear while the 3D simulations are subjected to uniaxial tension. The colored lines
represent contours of different steady-state strain rates, where strain rates slower than 10�10 s�1

are considered to be elastic and are marked with an “�.” Other data points are shaded according
to their respective strain rate sensitivity as indicated by the color bar below the map. Further
regions marked as Newtonian (lightly shaded) and non-Newtonian are differentiated in the 2D
map. The regions of homogeneous and inhomogeneous deformation are distinguished. In 3D this
is further divided into samples which exhibit shear banding versus necking. Figures reproduced
with permission from [14, 29]

14.4.2 Thermomechanical Processing and Free Volume

It is well known that the deformation behavior of an amorphous metal is sensitive
to its processing history. Slowly quenched and well-annealed glasses show more
serrated flow than quickly quenched glasses of the same composition [1, 2, 41].
As such, one desired capability of the STZ dynamics framework is to simulate
thermomechanical processing and capture the effects of that processing history in
subsequent deformation.

In the initial implementation of the STZ dynamics framework, processing history
was captured only through the redistribution of stress and strain. As a result,
when models with different processing history were tested, shear banding was not
observed. The activation of STZs during thermal processing created a distribution of
stress and strain whose magnitude was of the same order as the stress from an STZ
activation attempting to form a shear band. As a result of this low signal-to-noise
ratio, homogeneous deformation is observed even at low temperatures and high
stresses in models that have been thermally processed [14].

To solve this problem, a state variable has been added to the STZ dynamics
modeling framework [55]. The purpose of this state variable is to capture the
evolution of the structure beyond the redistribution of stress and strain when an
STZ is activated. One could choose from a range of state variables, such as atomic
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stress and strains, topological or chemical order, etc., but the state variable of “free
volume” has been widely adopted in such a way that it incorporates these effects
indirectly [42–44].

In fact, in Argon’s original definition of the STZ, he includes free volume as a
state variable to capture the structural evolution of the system. In the free volume
adaptation of the STZ dynamics framework, excess free volume, fv, is defined as a
normalized quantity where fv D 0 corresponds to no excess free volume above the
average polyhedral volume V* in a dense random hard sphere glass, while fv D 1
is an upper bound corresponding to a state where an STZ can be activated without
accumulating extra free volume [2].

Since excess free volume influences the energy barrier for activation, the fixed
barrier is redefined as

�FSTZ .fv/ D �Fshear C �Fv0 � gstz .fv/ (14.15)

where �Fshear captures the strain energy associated with shear (not dependent upon
excess free volume) and �Fv0 captures the strain energy associated with dilatation
and friction of the atoms sliding over each other (dependent upon excess free
volume). Equation (14.15) essentially alters Eq. (14.10) by making the first term in
the bracket of Eq. (14.10) equal to �Fshear, which is not dependent on the magnitude
of excess free volume, and makes the last two terms in the bracket of Eq. (14.10)
equal to �Fv0, since these are dependent upon the magnitude of excess free volume.
In fact, �Fv0 is smaller when greater excess free volume exists since the STZ will
need to dilate less and the friction will be lowered. This change in the energy is
captured by the function gstz, which lowers the activation energy barrier as the excess
free volume is increased.

Following a given STZ activation, the excess free volume within the activated
STZ is increased since it is believed that the atoms are not able immediately return
to the original magnitude of excess free volume.

In this model however, a competing process to the activation of STZs is
introduced. This competing process is the diffusive rearrangement (and destruction)
of excess free volume. As atoms are constantly vibrating, their thermal energy
enables diffusive rearrangements that would enable a given region of material to
lower its excess free volume. The rate of diffusive rearrangement is given as

:
sD D .1 � fv/ vD exp

�
��GD .fv/

kBT

�
(14.16)

where �GD(fv) is the activation energy barrier for diffusive rearrangement, which
is dependent upon the current magnitude of excess free volume. Higher excess
free volume has a lower energy barrier than lower excess free volume because it
is farther from its equilibrium state. The quantity (1 � fv) reflects a decrease of
available atomic sites for free volume diffusion as fv increases. The prefactor �D

for the diffusive rearrangements is once again of the order of the Debye frequency.
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In this free volume STZ dynamics framework, these diffusive rearrangement
events are listed in the catalog of possible events. At any given kMC step, the
system can activate an STZ or diffusely rearrange excess free volume. With this
addition, the model retains information about its processing history beyond the
simple redistribution of stress and strain.

The high temperature rheological behavior with the excess free volume state
variable conforms to the Vogel–Fulcher–Tammann (VFT) relationship for viscosity.
This is a nontrivial result because the model does not contain the input parameters
to the VFT relationship; the behavior is an emergent result from the two competing
processes.

At low temperatures, the excess free volume state variable enables the simulation
to localize even in the presence of a preexisting stress and strain distribution. This
can be seen in Fig. 14.7 where both the plastic strain and excess free volume
is plotted for several snapshots. Here it can be seen that the excess free volume
accumulates ahead of the formation of the shear band.

The excess free volume model has also been used to study the transient
response of deformation, specifically the stress overshoot common in homogeneous
deformation at high temperatures as well as the suppression of free volume anni-
hilation at low temperatures [45]. The excess free volume provides an opportunity
to observe the evolution of the structure during deformation and provides unique
insight in this mesoscale model.

Fig. 14.7 (a) The shear strain and excess free volume fv vs. time data of a cooled structure
deformed at 300 K and 2 GPa shear load. (b–e) correspond to the snapshots at different times
during the creep test. For each time, the physical deformation along with the magnitude of STZ
strain and fv are displayed; additionally, a plot with the 1D profile of STZ strain and fv distributions
along the vertical direction of the deformed sample is provided. Figure reproduced with permission
from [55]
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14.4.3 Correlations Between STZ Activations and Shear
Banding

While a state variable such as free volume can capture the effects of processing or
the evolution of the structure, we find that studying STZ behaviors in the absence of
preexisting stress distributions also provides significant insight into the correlations
between STZs.

Analysis of the 2D simulations discussed in Sect. 14.4.1 provides significant
insight into correlations between STZ activations and the activation energy barrier
distributions for the STZ activations [4]. Time-dependent radial distribution func-
tions (TRDFs) can be constructed to show how STZ activations are correlated in
both space and time. These TRDF functions indicate the likelihood of shearing an
STZ at a nearby position and after a certain number of steps relative to a given STZ
activation; magnitudes less than 1 are less likely to occur at a given position and
time than if it occurred randomly throughout the simulation cell, and magnitudes
greater than 1 are more likely to occur at a given position and time than if it occurred
randomly throughout the simulation cell.

Representative TRDFs for low temperature, high stress and high temperature,
high stress simulations are shown in Fig. 14.8. As can be seen in the figure, the
low temperature, high stress conditions correspond to the preference for nearest-
neighbor activations that is a maximum at the subsequent step and which decays
over time. Despite the decay, however, there remains a preference to activate
nearest-neighbor STZs in the region long after a given STZ is activated. This
correlated behavior is the source for the shear localization that underlies the
macroscopic shear bands that can be observed in experiments. Under conditions
of high temperature, high stress it can be seen that there is no noticeable correlation
between STZ activations. In other words, the additional thermal energy cancels
the effect of stress concentrations that might otherwise cause shear localization.
As a result, the STZ activations are uncorrelated, leading to uniform, random
activation throughout the simulation cell causing homogeneous deformation. These
distributions are representative of simulations that exhibited inhomogeneous and
homogeneous deformation in Fig. 14.6a, across the range of conditions studied.

In addition to the ability to study correlations between STZ activations, one can
study the formation of a shear band in detail [56]. Snapshots of a simulation cell
subjected to a constant strain rate, uniaxial tension test are shown in Fig. 14.9.
Analysis of the simulation indicates five different stages: (I) purely elastic, with
no STZ activity, (II) STZ clustering, where correlated STZ activations lead to the
formation of clusters, (III) growth following nucleation of a shear band, where all
STZ activity transitions from being distributed throughout the simulation cell to
being concentrated in the shear band, (IV) relaxation thickening, which is manifest
by the continued thickening of the shear band while the stress is still dropping even
after it has propagated across the simulation cell, and (V) flow thickening, which
is indicated by the continued thickening of a single shear band at a constant flow
stress. Most of the plastic strain is accumulated during prolonged flow thickening,



460 E.R. Homer et al.

Fig. 14.8 TRDFs of STZ activation, where the behaviors and their corresponding conditions are
(a) nearest-neighbor STZ activation: high stress and low temperature, and (b) independent STZ
activation: high stress and high temperature. The shading of all the surfaces uses the same color
scheme, permitting comparison of the magnitudes of the different trends. Figure reproduced with
permission from [4]

Fig. 14.9 Numbered snapshots of a model metallic glass at various times during a constant strain-
rate, uniaxial tensile simulation. Each snapshot includes a semitransparent top and side view of the
simulation cell. The evolution of the shear band is divided into four different stages following the
initial elastic response. The shear band initiates at one of multiple potential nucleation sites formed
during stage II. Once it achieves a critical state it exhibits a propagating shear front as it crosses
the sample during stage III. The front propagation is followed by thickening of the shear band in
stages IV and V, of which the majority of strain is accumulated during stage V. Figure reproduced
with permission from [56]

indicating that nucleation and initial propagation of a shear band are very brief. The
yield point matches a thermodynamic model for nucleation, and the work supports
evidence that once a shear band nucleates, there is very little that can be done to
stop it.

These types of studies demonstrate the strength of mesoscale models in elucidat-
ing the nanomechanics behind macroscopic processes. Some of these nanomechan-
ical phenomena would be difficult to observe by other techniques.
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14.4.4 Comparison with Experiments

Metallic glasses exhibit a broad range of interesting phenomena, one of which is
that they can exhibit nanoscale strengthening when they are cyclically loaded in the
elastic regime. This has been demonstrated in nanoindentation experiments where a
metallic glass subjected to elastic cycling, which would otherwise leave behind no
visible plastic deformation, shows a statistical increase in strength as a result of the
cycling [59]. Interestingly, the cyclic strengthening can only occur if the cycling is
of a sufficient magnitude, if the indenter is actually cycled (holding a constant load
of equal magnitude and time does not lead to strengthening), and the strengthening
saturates (one cannot cycle indefinitely to increase strength).

Since the cyclic loading is in the elastic regime, no structural changes can
be detected during the cycling. Thus, modeling is an ideal method to elucidate
the nanomechanics that cause the strengthening. The STZ dynamics framework
is adapted to include contact mechanics in the finite element analysis solver and
the modified-kMC algorithm is implemented due to the fact that the stress varies
significantly as the indentation load is increased from zero to the point of plastic
deformation [40].

Results from a simulation with monotonic loading are illustrated in Fig. 14.10.
The deviation from the purely elastic solution can be observed, as well as the
fact that a large region of the material exceeds the model yield point prior to the
activation of any STZs, which is consistent with theory [46]. The STZs form slip
lines early on but no distinct shear bands.

When subjected to cycling at different depths, the simulations indicate that
significant plasticity can occur under the indented region without being evident in
the load–displacement curve, the cyclic action leads to progressive STZ activity,
although there is an indication for saturation of that activity. In other words, the
simulations indicate that the energetics and time scales of STZ activity are plausible
as a mechanism to cause structural evolution that would be consistent with nanoscale
strengthening.

The nanoindentation simulation technique has also been used to detect the cause
of the fluctuations in strength values for a metallic glass, which are reported as
nanoscale strength distributions (NSDs) [57]. For example, in crystalline metals, the
well-ordered structure leads to very specific energetic values to initiate plasticity and
thermal excitations account for the fluctuations in the NSD. Amorphous metals on
the other hand have larger fluctuations in strength and they do not have well-ordered
structure, so any fluctuations could be due to structure or to thermal excitation.
To help answer this question, simulated nanoindentation using the STZ dynamics
framework is carried out on a model glass with a preexisting distribution of stress
and strain but with no excess free volume state variable. The model is indented at
the same position 10 times with different random number seeds to simulate thermal
fluctuations. The same model is also indented at ten different locations (where
the preexisting stress and strains are different) to simulate structural fluctuations.
Figure 14.11 shows the NSDs as a function of the normalized load at the first
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Fig. 14.10 Simulated nanoindentation results for monotonic loading. The graph shows the load–
displacement curve for a single monotonic indentation test, with results for a purely elastic contact
for comparison. Snapshots of the system during the simulation are provided below the graph as
marked by “A,” “B,” and “C.” The red contour on the snapshots shows the region of material that
has exceeded the model yield stress, while the gray regions denote the operation of STZs. Figure
reproduced with permission from [40]

Fig. 14.11 Nanoscale
strength distributions (NSDs)
for the glass simulated by
STZ dynamics. Here the first
plasticity is measured as the
point of the first STZ
activation for two sets of
simulations with different
fluctuations imposed. For
series 1, only thermal
fluctuations are different
among the tests in the series,
while for series 2, the
structure under the indenter
was different in each of the
ten cases. Figure reproduced
with permission from [57]

STZ activation. Here it can be seen that the structural fluctuations cause more
variation in load than the thermal fluctuations. In fact, the magnitude of the structural
fluctuations matches well with the experimental variation in load, indicating that the
structural fluctuations are the dominant source of variability in amorphous NSDs.
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This application of a mesoscale technique to investigate the nanomechanics of
experiments indicates the strong potential to elucidate phenomena that are difficult
to measure by experimental techniques.

14.4.5 Composites

Due to the limited ductility in bulk metallic glasses, MGM composites have emerged
as an attractive solution that retains most of the strength while providing significant
ductility. These MGM composites can be created either by crystallizing regions of
the material or by introducing a second phase during processing. The result is a
metallic glass matrix that surrounds crystalline inclusions.

Research has demonstrated that the length scales, volume fraction, and ductility
of the composite influence strength and ductility [47–54]. However, the exact
relationships between the various microstructural factors and the material properties
are not well understood.

The STZ dynamics framework can be adapted to allow two material models
to be simulated [58], just as discussed in Sect. 14.3.4. This is accomplished by
partitioning the mesh into the various phases and then directing the finite element
analysis solver to use the appropriate material model for the phase of a given finite
element. The STZ dynamics model is used for the amorphous matrix, while an
isotropic hardening metal plasticity model is used for the crystalline inclusions. The
kMC algorithm controls the time evolution of the system, though the metal plasticity
model is not time dependent.

An n-factorial design of experiments is used to study three factors that are known
to influence MGM composites: volume fraction of the crystalline phase, inclusion
size of the crystalline phase, and yield point of the crystalline phase relative to the
yield point of the amorphous matrix. High, low, and intermediate values of the
three factors are studied, and simulation examples from the high and low values
are provided in Fig. 14.12.

In Fig. 14.12 it can be seen that some combinations of the factors lead to
improved plasticity while others lead to improved strength. Explicit, statistically
significant functional forms for various dependent quantities, such as ductility, yield
point, etc., can be extracted from the design of experiments. The functional forms
of these dependent variables are in line with general expectations but demonstrate
that increased volume fraction of a second phase alone is insufficient to improve
ductility. The actual yield point of the second phase is critical to delocalizing the
strain and improving ductility. These functional forms can even be used in the design
and optimization of future MGM composites. The work also indicates different
ways by which the crystalline inclusions delocalize the strain.

This simple adaptation of the STZ dynamics framework to more complex com-
posites demonstrates the utility of a mesoscale framework to capture phenomena of
multiphase materials while retaining the necessary view of the nanomechanics that
control the behavior.
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Fig. 14.12 Snapshots of the plastic strain in representative MGM composite simulations for
different combinations of microstructural factors are shown. The microstructural factors and their
values are v volume fraction of the crystalline phase at 40 and 60 %, l length scale of the crystalline
inclusions at diameters of 20 and 30 nm, and r ratio of the crystalline yield point relative to the
glass yield point at values of 50 and 80 %. The snapshots show crystalline inclusions in gray,
glass plasticity in red, and crystalline plasticity in blue. Stress–strain curves are shown below
each treatment to show the model response and the variability due to replicate simulations. Figure
reproduced with permission from [58]
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14.5 Conclusions

The combination of the kMC algorithm and a coarse-grained approach provides
a useful framework with which to investigate the nanomechanical behavior of
amorphous systems. The coarse-graining enables collections of atoms, or STZs, to
be tracked rather than individual atoms and the kMC algorithm allows the shearing
of these STZs to be controlled by stochastic processes based on the energetics of
the system. The combination of these two features enables access to the relevant
time and length scales while preserving a microscopic view of the processes that
dominate the nanomechanical behavior.

As a result of the adaptability of the STZ dynamics framework, it has been
used to investigate amorphous metal behavior in a variety of conditions. The
modeling technique captures the overall deformation behaviors expected of a
metallic glass. The technique also provides insight into the correlations between
STZs and their formation into shear bands. The technique enables the study of
the structural evolution and processing history to be readily accessed via a free
volume state variable. Insight into nanoindentation experiments is possible through
contact mechanics adaptations of the technique. MGM composites can be modeled
through the combination of multiple materials models. It is expected that the STZ
dynamics framework will continue to be useful in the investigation of amorphous
metal behavior. In addition, the commonalities in deformation mechanics with other
amorphous systems provide opportunities to study their behaviors as well.

Finally, the combination of the kMC algorithm with coarse-graining techniques
has a wide range of possible applications outside amorphous systems or deformation
nanomechanics. These mesoscale modeling techniques can be applied in myriad
ways.
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