
Chapter 13
Quantized Crystal Plasticity Modeling
of Nanocrystalline Metals

Lin Li and Peter M. Anderson

13.1 Introduction

Nanocrystalline (NC) metals are often defined as polycrystalline metals with
an average grain size less than 100 nm. Their appealing mechanical properties
make them promising structural materials. Compared to coarse-grained (CG)
counterparts, NC metals exhibit: (1) ultrahigh yield and fracture strength; (2) an
extended elastic–plastic transition regime; (3) large recoverable plastic deformation;
(4) high strain-rate sensitivity; and (5) limited ductility due to strain localization
[1–3]. These unique features pertain to the physics of deformation that emerge
as grain size decreases below �100 nm [4–6]. First, the plastic flow shifts from
multiple to single dislocation slip. In stark contrast to CG metals, intragranular
dislocation activities—including the operation of dislocation sources (e.g., Frank-
Read) as well as dislocation multiplication and intersection—are highly prohibited.
Instead, dislocations in NC metals tend to nucleate at grain boundaries (GBs) and
traverse entire grains without impediment until they are absorbed into GBs. GB sites
therefore act as sources and sinks for dislocations. If the grain size is refined below
10–20 nm, GB accommodation mechanisms (e.g., GB sliding and rotation) become
more important and begin to control plastic flow [7, 8].

This chapter presents a quantized crystal plasticity (QCP) model that connects
emerging deformation physics with the unique mechanical properties of NC metal
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in the grain size regime between 20 and 100 nm, where single dislocation slip
controls the plastic flow [9–12]. Notably, the QCP model adopts a discrete/quantized
constitutive flow rule associated with a single dislocation slip event in a nano
grain. The flow rule is implemented for a NC assembly within the framework
of crystal plasticity. By calibrating the model to measurements of aggregate flow
strength and internal stress within subpopulations of grains, we infer that the
critical resolved shear stress (CRSS) for quantized slip is heterogeneous from one
grain to another. The CRSS distribution is skewed (asymmetric) so that a larger
fraction of low-strength grains is balanced by a smaller fraction of high-strength
grains. Further, the CRSS of a grain depends on the grain size but not grain
orientation. In Sect. 13.2 to follow, the QCP model is developed. In Sect. 13.3, the
model is calibrated and validated under monotonic and cyclic mechanical loadings.
In Sect. 13.4, the evolution of lattice strain with deformation in NC metals is
explored by capturing the deformation footprints in in-situ X-ray diffraction tests.
Section 13.5 summarizes the key aspects and motivates areas of future development.

13.2 Model Development

13.2.1 Dislocation Depinning from Grain Boundaries

Atomic simulations have provided considerable insight into the deformation mech-
anisms in NC metals [5, 13–15]. One of the emerging deformation processes is
the nucleation and propagation of dislocations from grain boundaries [5]. In this
process, dislocations often become pinned at GB ledges as they propagate across
the grain. Thus, the rate-limiting process is the depinning of the dislocations and
the characteristic length scale is the spacing between boundary pinning points. A
molecular dynamics (MD) simulation of three-dimensional NC Al with an averaged
grain size �12 nm was performed at a constant strain rate 1 � 108 s�1 and at a
constant temperature 300 K. The simulated sample consisted of 100 grains, and
periodic boundary conditions were applied to all the three directions. The embedded
atom model potential for Al of Mishin et al. [16] was used, it has an unstable-to-
stable stacking fault energy ratio close to unity, so that the nucleation of trailing
partial dislocations after the leading partial dislocation can be observed within
the time frame of the MD simulation. The simulated results were analyzed in
terms of grain-averaged shear produced by dislocation slip and the grain-averaged
resolved shear stress during deformation [17]. Figure 13.1a–c illustrates three
crucial snapshots from the MD simulations and Fig. 13.1d shows the corresponding
evolution of resolved shear stress and strain within a grain, measured on a grain-
averaged basis. A full dislocation loop is observed to persist in a pinned, embryonic
state for 25 ps (Fig. 13.1a) until the grain-averaged stress � reaches a critical value
(Fig. 13.1b). The full dislocation then depins from the GB obstacles and sweeps
across the grain (Figs. 13.1b, c). The grain-averaged shear �* then increments by a
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Fig. 13.1 Molecular dynamics simulations of a cross section of an FCC Al crystal. With
increasing applied deformation, a perfect dislocation consisting of two partials depins from a
GB ledge [17]. (a–c) Shows a cut through a selected grain with the atoms colored according to
their local crystallographic order. Atoms with an FCC environment are colored in grey, those with
HCP are red, others with coordination D 12 are green, and those with coordination ¤ 12 are blue.
(d) Shows the corresponding evolution of grain-averaged shear �* and resolved shear stress � .
Reprinted figure from [17] with permission from Elsevier

discrete amount and the resolved shear stress � simultaneously drops abruptly due
to load shedding (Fig. 13.1d).

The grain-averaged analysis obtained from MD simulations highlights the
quantized/discrete jumps in grain-averaged resolved shear stress and strain in
nanoscale grains. Furthermore, the distribution of the depinning stress (CRSS)
controls the onset of avalanches consisting of numerous quantized slip events. A
statistical analysis of dislocation slip processes reveals a broad CRSS distribution
that peaks between 600 and 700 MPa. Slip processes are seldom observed in a
grain if the average resolved shear stresses in the grain is <500 MPa [17]. These
MD observations of dislocation slip in nano grains motivate our meso-scale, QCP
model. It is noteworthy that the MD simulations have the limits of grain sizes and
the deformation strain rates that would be comparable to experimentally relevant
values. The QCP model, therefore, adopts the quantized and stochastic single
dislocation slip features, performs simulations at meso-scale level, and calibrates
the characteristics of quantized slip with experimental measurements.
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13.2.2 A Constitutive Model for Quantized Dislocation Slip
in Nanoscale Grains

The QCP model employs a conventional crystal plasticity formulization [18, 19],
the details of which can be found in Chap. 3. We augment the conventional crystal
plasticity such that the increments in plastic shear strain take on discrete/quantized
values and increase in magnitude as grain size decreases to the nanoscale. In this
section, the detailed development of the QCP model and its implementation into the
finite element method (FEM) are described.

Large-deformation kinematics are incorporated into the constitutive framework
because these discrete events can impart plastic strain increments �1 %. Following
[20], an infinitesimal vector dX in an undeformed (reference) configuration is
distorted into a vector dx D FdX in a deformed configuration. Here, the deformation
gradient

F D F�Fp (13.1)

is multiplicatively decomposed into an elastic part F* and a plastic part Fp. The
elastic strain is defined as

E� D 1
2

n
F�T

F� � I
o

(13.2)

The stress at a material point is given by

T� D CE� (13.3)

Here, C is the fourth-order elasticity tensor for a grain. For FCC materials, there are
only three independent constants and they are traditionally denoted by C11, C12, and
C44 within the cubic crystal basis. T* is the symmetric Piola-Kirchhoff stress, which
is the work conjugate to E*. It is related to the Cauchy stress T by

T� D det
�
F��F��1

TF��T
(13.4)

The time evolution equation for Fp is given by flow rule

:

F
p D LpFp (13.5)

with

Lp D
X
’

:
”
’

S’
0 ; S’

0 D s’0 ˝ m’
0 (13.6)

http://dx.doi.org/10.1007/978-3-319-33480-6_3
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The orthonormal vector pairs (s’0 , m˛
0 ) define the respective slip direction and slip

plane normal for slip system ˛. For FCC materials, S’
0 is chosen to be 1 of the 12

h110i/f111g slip systems. The shear rate
:
�

˛
is determined by a constitutive relation

of the form
:
�

˛ Db:�˛ �
�˛; �˛

c

�
, where the resolved shear stress �˛ is determined by

�˛ D s’0 �
�

F�T
F�T��m’

0 (13.7)

and �˛
c is the CRSS for a slip event. An initial assumption is that �˛

c at a material
point is the same for all 12 slip systems and remains constant with deformation
(denoted by � c for brevity).

The discrete jumps in shear strain as a result of dislocation depinning from GBs
observed in the MD simulations (ref. to Fig. 13.2a) can be rationalized in terms of
the grain-averaged increment in plastic strain. In particular, the discrete/quantized
shear increment � target associated with a single dislocation gliding on slip system ˛

across a grain with grain size d can be expressed as

��˛ D �target D Asb

Vg
D g

b

d
(13.8)

where b is the Burger vector magnitude of the dislocation, As is the cross sectional
area of the slip plane, Vg is volume of the grain, and g is a geometric factor. In
principle, � target depends on the specific glide plane and the grain shape. These
factors are incorporated into g. For example, g D 1.5 for a center-cut glide plane
within a spherical grain and g D 1.2 for the maximum cross sectional area of a
cubic grain with edge length d. Furthermore, when multiple slip events occur on
slip system ˛, the accumulated shear strain takes on a quantized value of � target,
given as

�˛ D q�target (13.9)

The coefficient q D 1, 2, etc., is an integer that characterizes the quantized plastic
state.

The discrete or quantized nature of slip in Eq. (13.8) is implemented via a
modification to conventional kinetic flow law proposed by Peirce et al. [21]. In
particular, the rate of plastic shear strain on the 12 FCC h110i/f111g slip systems is
specified by

:
�

˛ D
8<
:

:
�0

ˇ̌
ˇ̌ �˛

R�c

ˇ̌
ˇ̌
1=m

sign .�˛/ inactive slip
:
�0sign .�˛/ active slip

(13.10)

where
:
�0 is the local reference shear rate of slip. The inactive slip condition on slip

system ˛ applies when j�˛j < �c. Equation (13.10) differs from a standard flow
law formalism in that a coefficient R has been inserted to reinforce a numerically
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inactive condition and also � c remains constant with deformation. The coefficient
R is determined such that if an inactive slip condition applies, then

:
�

˛
< 10�20 :

�0

so that grains deform primarily by anisotropic elasticity. For instance, if the power-
law exponent m D 0.1 is chosen, then the numerically inactive condition is satisfied
by selecting R � 100, which approximates the value of � c expressed in MPa, i.e.,
R D � c/MPa. The use of the modified power function with R and m can avoid a
numerical issue when

:
�

˛
transitions upon activation of a quantized slip event. The

active slip condition for slip system ˛ applies if the condition j�˛j � �c is met. It
prevails until the grain-averaged resolved shear strain �˛ achieves the quantized
amount, � target�sign(�˛), even if load shedding from the deforming grain causes
j�˛j < �c to occur before �˛ reaches the target value. A propagation condition
is imposed to ensure that �˛ on the active slip system does not change sign during a
slip event. During the active condition,

ˇ̌ :
�

˛ ˇ̌ D :
�0, where

:
�0 > 10

:
"global is required

to ensure that the increment in macroscopic strain on the polycrystal is negligible
during the course of a local slip event.

13.2.3 Statistical Distribution of Critical Stress
of Quantized Slips

In addition to quantized plasticity, the QCP model adopts a grain-to-grain variation
in the CRSS � c at which a quantized plastic event is triggered. Such a variation is
suggested by the MD simulation results [17], in which a very broad distribution of
grain-level critical stress is observed in the simulated nanocrystals. In principle, � c

depends on numerous factors including the detailed structure of the bounding GBs,
the orientation of slip planes to the GBs, elastic anisotropy, and the accommodation
of incoming or outgoing dislocation content within GBs [5, 14, 17, 22]. In the
absence of a deterministic relationship between � c and GB structure, two types of
probability distribution functions for � c are explored. Type S is a normal distribution
with probability density

� .�cI �; �/ D 1

�
p

2�
exp

 
� .�c � �/2

2�2

!
(13.11)

where � is the mean value and �2 is the variance. Type A is a gamma distribution
with probability density

� .�cI k; 	; �min/ D .�c � �min/k�1 exp .� .�c � �min/ =	/


 .k/	 k
(13.12)

where k is a shape parameter, 	 is a scale parameter, and �min is a reference
value below which �(� c) D 0. The corresponding mean and variance are �min C k	

and k	2, respectively. These two types differ in skewness. The Type S normal
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distribution is symmetric about the mean value with skewness D 0 whereas the Type
A gamma distribution is asymmetric and positively skewed (i.e., the tail at larger � c

is longer than at smaller � c). The skewness of the gamma distribution is 2/k and
therefore the gamma distribution approaches a normal distribution as k increases.

The stochastic nature of � c and its effect on the mechanical properties
(e.g., strength) of NC metals have been reported experimentally [23–26]. However,
the correlation with GB structure or GB network structure and the evolution with
deformation are open issues that require future investigation. In Sect. 13.4, the
relation between � c and grain orientation is investigated by calibrating �(� c) in the
QCP model to capture in-situ X-ray diffraction measurements in NC Ni.

13.2.4 Propagation Condition

A propagation condition for a slip event imposes a lower bound on � c or equiv-
alently an upper bound on � target. It is based on the physical requirement that the
resolved shear stress in a grain does not change sign during a slip event. The
purpose is to ensure sufficient stress to complete the expansion of the loop. An
Eshelby-inclusion analysis [27, 28] indicates that a transformation strain � target in
an ellipsoidal region will induce a stress drop

�� D c��Eshelby D �cM�targetI M D � � 7 � 5�

15 � .1 � �/
(13.13)

where � and � are the elastic shear modulus and Poisson’s ratio of a homogeneous,
isotropic-elastic medium, respectively. A parameter c is introduced to calibrate the
deviation of non-ellipsoidal region in an elastic anisotropic medium to the Eshelby
solution.

The propagation condition that the resolved shear stress of an active slip event
does not change sign can be applied to Eq. (13.13), given

�c � cM�target or equivalently; �target � �c=cM (13.14)

Upon implementation, the geometric prescription for � target (Eq. (13.8)) is gen-
erally applied for a given grain and slip plane geometry. Experimentally measured
stress–strain responses are used to parameterize � c distribution. Sometimes for small
grain sizes (e.g., d < 50 nm) in particular, the fitted � c distribution has a small
population (<20 %) that does not satisfy the propagation condition given in Eq.
(13.14). For such small populations, the value of � target is adjusted to satisfy Eq.
(13.14) using the prescribed value of � c. In practice, � target for a given grain is
specified by the minimum,

�target D min

�
�c

cM
; g

b

d

�
(13.15)
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Fig. 13.2 (a) A schematic representation of coarse-graining dislocation depinning in the QCP
model. (b) A finite element model of a polycrystal with 10 � 10 � 10 grains, each represented by
an 8-node brick element. Uniaxial tension is applied along the z-direction. Each grain is colored
according to Sz

max the maximum Schmid factor among the 12 FCC slip systems in that grain.
Numerical values are as shown in color bar

where � c is chosen from a statistical distribution following Eqs. (13.11) or (13.12).

13.2.5 QCP/FE Simulations

The QCP model is implemented in the commercial finite element (FE) packet
ABAQUS via a user defined material subroutine (UMAT) [29]. A three-dimensional
(3D) polycrystal is defined with N � N � N grains, each represented by an 8-
node, 3D cubic element (type D C3D8). A crystallographic orientation, CRSS � c

and quantized plastic strain jump � target are assigned to each grain. Figure 13.2b
shows a FE sample for N D 10 in which each grain (element) is colored according
to the maximum Schmid factor with respect to the loading axis among the 12
½h110i/f111g face-centered cubic (FCC) slip systems. A uniaxial strain rate

:
"global is

imposed via a constant displacement rate
:
uZ applied normal to the C Z (top) surface

while uZ D 0 is imposed on the �Z (bottom) surface. The tractions tX D tY D 0 are
imposed on these surfaces and the remaining ˙X and ˙Y surfaces are traction-free,
as shown in Fig. 13.2b.

13.3 Model Calibration

13.3.1 Quantized Jumps in Shear Strain and Stress

The QCP simulation results capture the quantized jumps in shear strain and stress
at grain level. Figure 13.3 shows the resolved shear strain �˛ and resolved shear
stress �˛ vs. global plastic strain "p

global, for a slip system with a moderate Schmid
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factor SZ
˛ D 0.465 at a material point in an interior grain. The grain takes different

quantized states of �˛ , and jumps from one state to another when the resolved
shear stress reaches a critical value. The black stepped (lower) trace shows that
�˛ jumps successively by � target (D4 � 10�3). The red (upper) trace confirms that
�˛ jumps when �˛ D � c (D500 MPa). During a jump by � target, �˛ monotonically
decreases, reaching a minimum at the completion of the jump. Subsequently, �˛

monotonically increases via elastic deformation as the applied macroscopic strain
increases. Occasionally, �˛ drops abruptly (arrow A) or deviates from linearity
(arrow A0), even though slip system ˛ is not active. This is a consequence of slip
events in adjoining grains or sometimes in the same grain. Quantized slip is therefore
predicted to generate violent redistributions of stress at the grain scale. This captures
the key features of dislocation slip and depinning processes as observed in MD
simulations.

13.3.2 Grain Size Effect on Strength

Plastic strengthening with decreasing grain size emerges as a consequence of
quantized slip and the associated propagation condition. Figure 13.4a displays the
evolution of resolved shear strain �’ for discrete values of � target. The corresponding
traces of �˛ vs. "p

global for � target D 1 � 10�4 and 6 � 10�3 are shown in Fig. 13.4b, c,
respectively. The stress redistribution in �˛ is more violent for the larger � target case.
In particular, the stress drop �� due to a quantized slip event increases as � target

increases. Figure 13.4d shows that �� increases linearly with � target with a slope of
65 GPa. This is consistent with the Eshelby solution (Eq. (13.13)) with c D 1.6,
� D 76 GPa, and ¤ D 0.31 for Ni. Since � target is linearly dependent on 1/grain
size (Eq. (13.15)), �� therefore scales as 1/grain size. In the limit of large grain
size, both � target and �� diminish and the QCP model reverts to a conventional,
elastic-perfectly plastic crystal plasticity model. In the limit of small grain size, the
propagation condition requires that � c � �� . Combining Eqs. (13.8) and (13.13),

Fig. 13.3 The “quantized”
evolution of local shear strain
and the associated violent
stress redistribution in shear
stress at a material point of an
interior grain with
� target D 4 � 10�3 and
� c D 500 MPa. The elastic
constants of Ni are used.
Figure reproduced from [9]
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Fig. 13.4 (a) Evolution of plastic shear strain �˛ at a material point in an interior grain with
various values of � target and � c D 500 MPa. The corresponding evolution of resolved shear stress
�˛ for � target D 1 � 10�4 and 6 � 10�3 are shown in (b, c), respectively. (d) The stress drop after a
quantized slip �� vs. � target. The resulting linear relationship follows the prediction of Eq. (13.13),
with c D 1.6, � D 76 GPa, and ¤ D 0.31 for Ni. Figure (a–c) reproduced from [9]

we obtain

�c.min/ D cM�target D c’� � 7 � 5�

15 � .1 � �/

b

d
(13.16)

where c D 1.6, M D 40 GPa, and c0 D 1.92 for Ni. This is the origin of source
strengthening with decreasing grain size in the QCP model. The resultant 1/d
relationship differs from the 1/d½ dependence in the Hall–Petch relationship for
conventional polycrystals [30, 31].

13.3.3 Extended Micro-Plasticity in NC Metals

The QCP model requires a valid distribution �(� c), and this can be achieved by
fitting the experimental tensile stress–strain response for various average grain
sizes. A particular goal is to reproduce the extended experimental micro-plastic
regime, which is hypothesized to represent the percolation of quantized slip events
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throughout the polycrystal, from soft to hard grains. The extended regime is
quantified by "p(trans), the elastic–plastic transition strain over which the flow stress
increases from an initial value �0 to approximately 95 % of the plateau stress �plateau.
"p(trans) � 0.2 % for polycrystals with a conventional average grain size but it can
approach 1 % for NC metals and exhibit apparent strain hardening under tension in
this regime [32–34].

Figure 13.5a displays the fitted QCP simulation results for grain size d D 50,
150, 300 nm along with the experimental data for electro-deposited Ni from
[35]. Two candidate distributions are considered for �(� c): a normal distribution
(Fig. 13.5b, Eq. (13.11)) and a gamma distribution with the shape factor k D 1
(Fig. 13.5c, Eq. (13.12)) and k D 2 (Eq. (13.12)). The quantities to be calibrated
(e.g., � c(min), � c(mean)) are estimated from the experimental values of initial yield
stress �0 and saturated flow stress �plateau. Iterative QCP simulations are performed
to determine the values of � c(min) and � c(mean) that produce the best match to the
data in Fig. 13.5a. The gamma distribution with k D 1 captures the gradual elastic-
to-plastic transition, with "p(trans) D 0.7 % for d D 50 nm. These distributions are
asymmetric and are denoted by “Type A” in Fig. 13.5a. In contrast, the normal
distributions are symmetric and denoted by “Type S.” They predict too small a
transition, with "p(trans) D 0.08 % for d D 50 nm. The fitting process is detailed in
[9] and the material and computational parameters are summarized in Table 13.1.

Figure 13.5c–e shows the gamma, k D 1 (Type A) �(� c) distributions that best
fit the experimental data for various grain sizes. Both the mean value and standard
deviation in � c increase with decreasing grain size. This reflects that yield in NC
metals is very heterogeneous on a grain-to-grain scale. Moreover, the � c distribution
becomes more asymmetric/skewed with decreasing grain size. In the limit of larger
grain size, on the other hand, a gamma distribution with either k D 1 and k D 2
captures the experimental stress–strain data for d D 300 nm.

The QCP simulations predict that deformation is more localized as grain size
decreases. Figure 13.6 shows the fraction (fslipped) of grains with at least one slip
event as a function of applied macro strain, as predicted by the calibrated QCP
simulations. At smaller grain size (d D 50 nm), fslipped increases gradually, indicating
that plastic flow percolates gradually through the polycrystal. This produces the
extended micro-plastic regime in Fig. 13.5a. At larger grain size (d D 300 nm),
fslipped is predicted to increase more rapidly with applied strain, consistent with more
conventional crystal plasticity models. Compared to metals with a conventional
grain size, NC metals accommodate global strain with larger local plastic strain
events that are distributed among fewer grains; in other words, plastic deformation
in NC metals tends to localize in fewer grains. For example, fslipped at 0.2 % strain is
�40 % for d D 50 nm but �80 % for d D 300 nm. Thus, a conventional 0.2 % macro
plastic strain can capture fully plastic flow at larger grain size (d D 300 nm) but not
at smaller grain size (d D 50 nm) [32–34].
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Fig. 13.5 (a) The simulated
stress–strain responses for
various grain sizes, along
with the experimental data
adopted from [35]. (b) A
Type S (symmetric normal)
distribution for d D 50 nm.
(c–e) The best-fit Type A
(asymmetric gamma, with
k D 1) distributions for
d D 50 nm, 150 nm and
300 nm, respectively. Figure
reproduced from [9]
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13.3.4 Enhanced Plastic Recovery

An asymmetric �(� c) distribution for NC metals is also supported by cyclic stress–
strain data, in which an enhanced plastic recovery is usually observed [36–39].
The QCP model predicts reversible plastic strain to occur when NC metals are
unloaded [10]. This arises when backward (or reverse) quantized slips occur in
grains in which the resolved shear stress reverses sign and reaches a critical value
� c,b for backward slip. Figure 13.7 shows the evolution of �˛ and �˛ on slip
system ˛ at a material point within a grain during macroscopic cyclic loading of
a polycrystal. Here, � target D 6 � 10�3

, � c D 428.4 MPa, and � c,b D 228.4 MPa. The
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Fig. 13.6 The predicted fraction of slipped grains vs. macroscopic strain during a tension test, for
various grain sizes. The QCP simulations use the best-fit Type A distributions in Fig. 13.5. Figure
reproduced from [9]

Fig. 13.7 Predictions of
local shear strain �˛ (lower
curve) and local resolved
shear stress �˛ on a specific
slip system ˛ in an interior
grain, as a function of time
during a tension test. The
applied global strain rate
reverses sign at 5 and 10 s.
Figure reproduced from [10]

smaller magnitude of � c,b signifies the case in which the pinning strength to reverse
a quantized slip event is smaller than that for the initial forward event. For instance,
deposition of the dislocation loop into a grain boundary could be energetically
unfavorable, so that there is a driving force to reverse the process. During the first
loading period, � c is reached twice so that the quantized slip number q increases
from 0 to 1 and then 1 to 2. During the first unloading period, �� c,b is reached twice
so that q decreases from 2 to 1 and then 1 to 0. During the second loading period,
two forward events also occur and they produce q D 2.
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Fig. 13.8 (a) Predicted
cyclic stress-plastic strain
response of NC metals with
d D 50 nm at large strain,
using the Type A (asymmetric
gamma, k D 1) and Type S
(symmetric normal)
distributions �(� c) shown in
Fig. 13.5. Figure reproduced
from [10]

Figure 13.8 shows that the calibrated asymmetric (Type A) distribution for
d D 50 nm can predict comparable values of hysteretic strain to experiments, where
"p(hyst) D 0.9 % results when the macro stress is cycled from 0 to � D 1200 MPa. A
proviso is that the cyclic stress is applied after straining the NC metal into the fully
plastic regime (>2.5 %). In contrast, the calibrated symmetric (Type S) distribution
predicts negligible width ("p(hyst) � 0). A physical explanation is that the asymmetric
distribution produces a relatively large fraction of weaker (smaller � c) grains and
a relatively small fraction of stronger grains. The weaker grains produce a large
number of forward events during loading and redistribute internal stress to the
stronger grains. During unloading, the stronger grains unload elastically and attempt
to restore the polycrystal to the original shape. This drives reverse slip events in the
weaker grains.

13.4 Model Application to Lattice Strain Evolution in NC Ni

In this section, we apply the QCP model to investigate the evolution of lattice
strains measured by in-situ X-ray diffraction and understand its dependence on grain
size. In particular, in-situ X-ray diffraction experiments show that the evolution
of residual lattice strain during interrupted uniaxial tension is different for NC vs.
coarse-grained (CG) metals [11, 40–43]. The QCP model is applied to identify and
understand the conditions to reproduce the experimental diffraction data, including
the shift in the position and width of various hhkli diffraction peaks after tensile
elongation to various macroscopic strains. The QCP simulations are able to link
these X-ray diffraction “footprints” to the violent redistribution of stress at the inter-
granular scale, the dependence on grain size, the critical stress distribution �(� c), and
the prior deformation history that precedes the tensile test. The capacity to capture
the lattice strain evolution of NC metals provides a robust test of the QCP model.
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Fig. 13.9 (a) The change in residual lattice strain in CG Cu along the transverse direction,
as a function of plastic strain (adapted from [44]). These trends can be rationalized from (b)
the accumulation of a larger axial plastic strain in soft grains under axial tension and (c) the
development of axial compression and transverse tension in soft grains after unloading. Figure
reproduced from [11]

13.4.1 Lattice Strain Evolution in CG vs. NC Ni

For many coarse-grained, elastically anisotropic FCC metals, tensile elongation
will shift diffraction peaks due to the deformation anisotropy. In particular, the
residual lattice strain along h200i transverse directions increases while that along
h220i transverse directions decreases as the imposed tensile elongation is increased.
Figure 13.9 confirms these trends for CG Cu [44]. An explanation is that the
“family” of FCC grains with a h200i transverse direction has a smaller yield strength
in uniaxial tension, on average, while the corresponding h220i family has a larger
yield strength on average. The transverse h200i family of grains is therefore soft
and accumulates a larger-than-average axial plastic strain during tensile loading
(Fig. 13.9b). Upon unloading, the h200i family is overextended plastically and thus
tends to have a compressive axial stress and tensile transverse stress. Therefore, the
transverse strain for the h200i family tends to increase. The reverse is true for the
hard h220i family (Fig. 13.9c).

NC FCC metals do not follow this CG trend. Instead, the measured hhkli families
have been reported to exhibit all tensile shifts [42], all compressive shifts [41], or
remain unchanged [40]. The varied results were interpreted in terms of a crossover
from intragranular slip for larger grains to GB-mediated mechanisms for NC metals.
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Fig. 13.10 (a) A schematic of the in situ X-ray tensile setup. (b) A three-dimensional finite
element model of a polycrystal with 10 � 10 � 10 grains, each represented by an 8-node brick
element. Uniaxial loading/unloading is applied along the Z-direction. Each grain is colored
according to the maximum Schmid factor (Sz,mx) among the 12 FCC slip systems with respect
to the loading direction. Numerical values are shown in the color legend. (c) An example of a
h200i diffraction group, for which the diffraction vector satisfies lg

h200i

� Z D 0. Figure reproduced
from [11]

An alternative view is supported by the application of the QCP model to capture the
lattice strain evolution for NC and ultrafine grained (UFG) Ni.

13.4.2 QCP/FE Simulations of In Situ X-ray Diffraction

A combined experimental and modeling effort is made to unveil the deformation
mechanisms that lead to the unique NC lattice strain evolution. The experimental
measurements of NC lattice strain were obtained by in situ X-ray diffraction per-
formed at the Swiss Light Source (Paul Scherrer Institute (PSI), Switzerland) [45].
Figure 13.10a illustrates the experimental diffraction geometry. Three millimeter
dogbone-shaped specimens with a cross section of 200 � 200 
m2 were loaded in
tension along the axial (Z) direction at various strain rates 1 � 10�4 � 1 � 10�3 s�1

[43]. During testing, an incident X-ray beam along the X direction diffracted and
the corresponding diffracted intensities were measured in various directions in
the X–Y (transverse) plane, giving the diffraction vector and corresponding lattice
strain along transverse hhkli directions. Residual lattice strains were measured after
unloading at several points along a stress–strain curve (Fig. 13.11a). Average values
were derived from the change in peak position before straining. Electro-deposited
NC Ni with a number-averaged grain size d � 30 nm and a minor out-of-plane 200
texture was investigated.

The QCP model is used to mimic the experimental lattice strains by calculating
the elastic strains of subgroup grains that satisfy the diffraction condition. Fig-
ure 13.10b shows a QCP/FE model setup with a 10 � 10 � 10 array of 3D cubic finite



430 L. Li and P.M. Anderson

0.3 0 500 1000 1500 2000 2500

poly
111
200
220

311

poly
111
200
220

311

0.35

a b

0.4 0.50.45
Sz,mx

ρ(
S

z,
m

x)

ρ(
τ c

) 
(M

P
a-1

)

τc (MPa)

NC

UFG

Fig. 13.11 Grain-to-grain probability densities (a) �(Sz,mx) for the maximum Schmid factor and
(b) �(� c) for critical resolved shear stress to activate a slip event. Both are shown for the overall
polycrystal and for various hhkli families. �(� c) is shown for the ultrafine grain (UFG) and
nanocrystalline (NC) cases (see Table 13.2 for details). Figure reproduced from [11]

elements (type D C3D8), where each element represents one grain with a particular
crystallographic orientation, CRSS � c, and a quantized plastic strain jump � target

that can occur on any of the 12 h110i/f111g FCC slip systems. Uniaxial loading and
unloading is imposed along the Z direction at a nominal strain rate of 10�3s�1.
A transverse hhkli diffraction family consists of grains with plane normal lhhkli
perpendicular to the loading axis, similar to the experimental diffraction geometry.
In practice, a 2ı tolerance in lhhkli is allowed to reflect the experimental conditions.
Figure 13.10c displays a transverse h200i diffraction family of grains that have a
h200i plane normal satisfying the diffraction condition (i.e., lg<200> � Z D 0.) in the
QCP/FE simulations. In the simulations, lh200i can lie in any direction in the X–
Y plane by assuming that the virtual incident beam can come from any in-plane
direction. This increases the grain statistics in the relatively small (1000 grain)
simulations.

Two grain sizes are investigated: d D 30 nm (NC Ni) and d D 100 nm (UFG Ni).
Grain orientations are randomly assigned among the 1000 grains. Figure 13.11a
shows the resulting grain-to-grain probability distributions �(Sz,mx) for the max-
imum Schmid factor among the 12 slip systems, assuming a polycrystal with
random texture. The average value for all grains is Sz;mx;poly D 0:45, but a larger
value Sz;mx;h200i D 0:47 is obtained for transverse h200i grains and a smaller
value Sz;mx;h220i D 0:41 is obtained for transverse h220i grains. The remaining
h311i and h111i families have intermediate values with Sz;mx;h311i � Sz;mx;poly and
Sz;mx;h111i � Sz;mx;poly.

Figure 13.11b compares two candidate distributions �(� c) for the critical shear
stress: a relatively narrow one that will be identified with UFG material and a
relatively wide, asymmetric one to be identified with NC material. As noted, the
asymmetric �(� c) distribution for NC material signifies a large fraction of soft
grains that are balanced by a small fraction of hard grains. The �(� c) distributions
are applied randomly, independent of grain orientation. This is consistent with
the concept that the pinning strength is independent of grain orientation. The
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simulations may impose a plastic prestrain "p(pre) prior to the uniaxial tensile test.
The prestrain imposes a pre-existing residual lattice strain, which is known to be
high in NC metals. These simulation parameters are summarized in Table 13.2.

Key output quantities are the macroscopic uniaxial stress-plastic strain response
(� � "p) for loading, unloading, and reloading, as well as the lattice strain ehhkli,i

for each grain i in an hhkli family. The latter is obtained by first computing the
components eij(c) of the elastic strain in terms of the Cauchy stress components � ij(c)

and the anisotropic elastic moduli Cijkl(c)

eij.c/ D C�1
ijkl�kl.c/; �kl.c/ D Qkm�mn.g/Qln (13.17)

The first equation expresses all quantities in the crystal basis. The second equation
determines � ij(c) in terms of the stress components � kl(g) in the fixed global basis and
the transformation matrix Qkm between the crystal and global bases. Values of Cijkl(c)

for Ni are provided in Table 13.2. The lattice strain along the unit normal lhhkli(c) to
fhklg planes is then

ehhkli D lhhkli.c/ � e.c/ � lhhkli.c/ (13.18)

Finally, the average and deviation in transverse lattice strain among the number nhhkli
of grains with a transverse hhkli direction are given by

ehhkli D 1
nhkl

nhklX
iD1

ehhklii

shhkli D
 

1
nhkl�1

nhklX
iD1

�
ehhklii � ehhkli

�
2

!1=2 (13.19)

The small sample statistics inherent in 1000 grain simulations are addressed by
averaging the results for e<hkl> and shhkli over five instantiations with the same �(� c)
and �(Sz,mx,hhkli).

13.4.3 Lattice Strain Evolution of NC Ni

Six features are reported from the in situ X-ray diffraction-tensile tests for NC
Ni (d D 30 nm). Figure 13.12a shows the experimental stress vs. plastic strain
response. It is characterized by (I) a large elastic–plastic transition strain ("p(trans)

�1 %) and (II) a large hysteretic strain ("p(hyst) �0.2 %) from unloading–reloading.
Figure 13.12b shows the change in average transverse residual lattice strain
(�e<hkl>) relative to the beginning of the tensile test. The error bars indicate the
standard deviation, based on 100 spectra at each unloaded state. The characteristic
trends include: (III) nearly constant average residual lattice strain at smaller plastic
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Fig. 13.12 Comparison between in situ X-ray diffraction measurements (a–c) vs. QCP simulation
results (d–f) for NC and UFG Ni. (a, d) The stress-plastic strain (� � "p) responses. (b, e) Change
in transverse residual lattice strain �ē

hhkli vs. axial plastic strain "p. (c, f) Change in standard
deviation in residual transverse lattice strain �s

hhkli vs. axial plastic strain "p. The experimental
UFG data are adopted from [40]. The simulation parameters are shown in Table 13.2. Figure
reproduced from [11]

strain (up to "p � 0.6 %); and (IV) CG-like trends at larger strain that are similar to
but weaker than for UFG and CG counterparts (i.e., �eh200i > 0, �eh220i < 0, and
�eh111i � �eh311i � 0) [44]. In contrast, the UFG response in Fig. 13.12b (e.g.,
d D 100 nm) has no constant region; rather, the residual lattice strains change at the
onset of plastic deformation [40]. Figure 13.12c shows the corresponding evolution
in lattice strain deviation shhkli for different diffraction families. Features include:
(V) an initial dip at small strain and (VI) a monotonic increase in peak width at
larger strain (at least for h311i and h111i). In contrast, the experimental peak widths
for UFG Ni [46] and CG Cu [47] show no perceptible dip; rather, they gradually
increase to a saturation value.

Figure 13.12d–f shows the corresponding QCP simulation results. A comparison
of Fig. 13.12a, d shows that the QCP simulations for NC Ni (d D 30 nm) can
capture the experimental � � "p features (I, II) provided the wide, asymmetric �(� c)
distribution (Case NC, Fig. 13.11b) is used. Furthermore, the same distribution is
used for all grain orientations and diffraction groups. An axial plastic prestrain
("p(pre) D �0.5 %) is imposed prior to the tensile test. This plastic prestrain is needed
to capture the experimental trends in lattice strain in Fig. 13.12b, c. The simulations
can also capture the experimental � � "p response for UFG Ni by Cheng et al. [40] if
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the more narrow �(� c) distribution that is also shifted to smaller values (Case UFG,
Fig. 13.11b) is used. In this case, � target (D0.3 %, Table 13.2) is smaller, as dictated
by Eq. (13.15). The same prestrain ("p(pre) D �0.5 %) is used for comparison.

A comparison of Fig. 13.12b, e demonstrates that the QCP simulations (NC
30 nm) capture the experimental diffraction footprints well: the nearly constant
average residual lattice strain region (III) and the CG-like trends at larger strain
(IV) are reproduced. The QCP simulations for UFG Ni (d D 100 nm) do not predict
a constant residual lattice strain region, similar to the experimental trends. They
predict UFG material to display CG-like trends at smaller strain and larger overall
shifts at larger strain relative to NC material. Figure 13.12c, f shows that the QCP
simulations (NC 30 nm) qualitatively capture the experimentally observed trends in
lattice strain deviation (obtained from peak broadening) vs. imposed plastic strain.
This includes the initial dip at a small strain (V) and the monotonic increase in peak
width at larger strain (VI). In contrast, the QCP simulations for UFG Ni show a
negligible dip at a small strain, similar to experiments.

Some of the experimental NC features are not captured. For instance, the
experimental h200i trace in Fig. 13.12b remains flat after the dip but the simulations
predict an increase. Also, the ordering of the hhkli curves at large strain is different.
We have shown that this discrepancy can be reduced when the same magnitude of
axial plastic prestrain (�0.5 %) is imposed by applying biaxial transverse tension
rather than the axial compression in the present examples [11]. This highlights
the sensitivity of the mechanical and diffraction footprints to plastic prestrain. It
also offers an explanation for the variation in experimental lattice strains in NC
metals as discussed earlier and as reported in [40–42]. Overall, the comparison
of experimental (Fig. 13.12c) vs. simulated (Fig. 13.12f) values of lattice strain
deviation is essentially qualitative in nature. In particular, the simulations account
primarily for the distribution of internal stress arising from grain-to-grain variations
in � c and orientation whereas the experimental measurements capture additional
contributions to stress from dislocations and other defects. This will have an effect
on both the magnitude of the dip and the ordering of the hhkli curves. Unfortunately,
current theoretical models are not able to deconvolute all of these contributions.

13.4.4 A Physical View Based on Stress Redistribution

The QCP simulations provide a physical view of NC deformation in terms of the
stress redistribution and criticality associated with intragranular slip. Figure 13.13a
shows the evolution in residual lattice strain as averaged over the family of all
transverse h200i grains, the plastically soft (� c < � c) subgroup in this family, and
the plastically hard (� c > � c) subgroup (� c D the polycrystalline average). Prior to
tensile testing, at "p D 0, these subgroups have oppositely signed lattice strains. This
arises from the axial pre-compression (�0.5 %), which creates residual compressive
slip events in soft grains, leaving the soft subgroup in transverse compression and
the hard subgroup in transverse tension (Fig. 13.13b). These residual slip events are
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Fig. 13.13 (a) QCP simulations of residual transverse lattice strain e
h200i

vs. macroscopic plastic
strain "p for the entire transverse h200i family of grains as well as the plastically soft vs. hard
subsets in this family. (b–d) Colored insets of the residual axial stress �Z in the transverse h200i
family at "p D 0, 0.5 %, and 3.5 %, respectively. q D # of residual slip events in a grain. See
Table 13.2 for simulation parameters. Figure reproduced from [11]

removed during the initial stages of the tension test, creating a tensile shift in the
soft subgroup and a compressive shift in the hard one. At "p � 0.5 %, the average
transverse residual lattice strains ēh200i for the subgroups converge (Fig. 13.13a) and
the corresponding average over the entire h200i family reaches a shallow minimum
(Fig. 13.13c). This corresponds to a minimum in the deviation in residual transverse
lattice strain (Fig. 13.13b).

During this initial straining from "p D 0 to �0.5 %, the average ēh200i for the
entire h200i family is relatively constant (Fig. 13.13a). This signifies that during
initial straining, there is a net transfer of stress between the soft and hard subgroups
within the h200i family but not a net transfer of stress between the h200i and
other families. Beyond "p � 0.5 %, ēh200i for the soft and hard subgroups diverge
(Fig. 13.13a). This arises primarily from tensile slip events in the soft h200i
subgroup. The deviation in residual transverse lattice strain therefore increases
(Fig. 13.12f), yet there is little shift in the h200i peak position (Fig. 13.12e).
At "p > �1.5 %, ēh200i for the h200i family begins to increase, consistent with a
weak CG trend. Here, the soft h200i subgroup approaches a maximum tensile
shift as the grains within it achieve fully plastic flow. However, ēh200i for the
hard h200i subgroup reverses the trend and begins to increase (Fig. 13.13d). This
signifies the onset of a net redistribution in stress between the h200i and other
families at larger strain. In particular, plastically soft families with a larger average
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Schmid factor (e.g., h200i) tend to accumulate more plastic elongation during the
tensile test relative to plastically hard families (e.g., h220i). This transition from
stress redistribution within families at smaller strain to stress redistribution between
families at larger strain also occurs in other diffraction families [11].

If the grain size is increased into the UFG and CG regimes, the quantized
plasticity feature diminishes. Further, the number of dislocation nucleation sites
in grain interiors increases and the grain-to-grain distribution in � c is expected to
become more uniform (Fig. 13.11b). These changes diminish the hard vs. soft nature
of grains and therefore they reduce stress transfer within hhkli families and shrink
the region over which ēhhkli is constant. The grain-to-grain variation in Schmid factor
gains in importance so that the evolution of ēhhkli with strain is dominated by the
stress transfer between hhkli families, even during the early stages of the tensile test.
For example, the simulations (Fig. 13.12e) show that �ēh200i increases with grain
size—a trend that is consistent with Cheng et al. [40] and the experimental results
for �ēh200i in Fig. 13.12b.

The QCP model therefore reproduces the major footprints of the diffraction
experiments on NC and UFG Ni and several unique NC properties are rationalized
based on intragranular slip rather than GB-accommodation mechanisms. The
successful predictions hinge on the assumptions that plastic flow at the grain scale
is quantized and that the critical stress for slip takes on a spatially nonuniform,
asymmetric grain-to-grain distribution. The quantized slip results in violent stress
redistribution. The nonuniform critical stress distribution creates soft and hard grain
subgroups, so that a net stress redistribution occurs within each diffraction family at
smaller strain, and between diffraction families at larger strain.

13.5 Conclusions and Future Advances in QCP Modeling

The QCP model illustrates an extension of a conventional crystal plasticity model
to successfully capture several unique properties of NC metals. In particular, a new
constitutive flow rule is developed based on key observations from atomistic sim-
ulations of NC metals. As grain size decreases to the nanometer scale (�100 nm),
the QCP model predicts a transition from continuous and relatively homogenous
multiple-dislocation slip to quantized and highly heterogeneous single dislocation
slip within grains. This chapter concludes with some key observations about the
applications and further development of the model:

• A fit of the QCP model predictions to experimental data suggests that �(� c),
the grain-to-grain distribution of CRSS for a slip event, is highly positive and
skewed, with a larger fraction of relatively soft grains that is offset by an extended
tail of relatively hard grains. The present simulations assume that this distribution
does not change with plastic deformation and that specific grains retain the same
value of � c on all 12 FCC slip systems during deformation. Thus, advances in
the model might incorporate the evolution of �(� c) with strain, including the
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possibility that a slip event on a parent slip system in a specific grain changes
not only � c for a subsequent event on the same system, but also � c on other slip
systems in the same grain and in neighboring grains. The relative orientation of
neighboring grains could be incorporated. In principle, this information could
be mined from more fundamental dislocation dynamics studies of single and
polycrystalline samples [48, 49].

• The present QCP simulations assume that slip events are driven purely by
mechanical stress and that slip occurs instantaneously when the grain-averaged
resolved shear stress reaches a critical value. At present, the simulations do not
depend on the macroscopic strain rate because � c does not change with time and
the local strain rate associated with a slip event is assumed to be much larger than
the macroscopic rate. However, MD simulations suggest that the rate-limiting
process for slip events is controlled by the depinning of dislocations from GB
ledges [5, 50]. Advances in the model could include a thermally activated feature
and utilize transition rate theory with a stress-dependent activation barrier. The
strength of GB pinning sites could therefore incorporate a temporal component.

• As the grain size is reduced to <10–20 nm, GB-accommodation mechanisms will
be highly interwoven as to affect both the GB structure and stress distribution
within grains [8, 51]. Several crystalline-amorphous nanostructures/architectures
have been reported to achieve an exceptional combination of strength and ductil-
ity by balancing the contributions from dislocation slip and GB accommodation
[52, 53]. The QCP model can be modified in principle to capture the effects of
both processes by discretizing grains into more elements and incorporating GB
sliding [38, 54]. Thermodynamic state variables such as the degree of boundary
relaxation could be introduced to qualitatively capture the dependence of GB
pinning sites on GB-mediated processes.
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