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Preface

Multiscale Materials Modeling for Nanomechanics is an interesting title for a book
as the terms “nanomechanics” and “multiscale modeling” have different definitions
and meaning to various scientific communities. Therefore, we feel it is important
to inform the reader up front of our thoughts on this topic and why we chose to
include the subjects discussed herein. We think of nanomechanics as the mechanics
that occur at the smallest length scales in materials, down to nanometers. Thus, the
study of nanomechanics should focus on materials where this regime of mechanics
dominates or controls behavior, usually when a governing length scale is below a
micron. In addition, it is our intent with a book on nanomechanics to focus equally
on the materials as on the mechanics, because they are intrinsically linked at these
size scales.

Multiscale modeling is also an intriguing term because of different ideas about
what multiscale modeling encompasses. One might immediately assume that a book
on multiscale modeling would focus on methods that couple scales or simulation
methodologies, such as continuum and atomistic methods. While this is certainly
part of multiscale modeling, this does leave out one other important way to conduct
multiscale modeling: information passing between scales. The former is called
concurrent multiscale modeling and the latter hierarchical multiscale modeling. In
this book, we will cover both types of multiscale modeling approaches providing
some breadth on the uses of the different types of multiscale modeling as applied to
the mechanics of materials and structures at the nanoscale.

Finally, we would like to point out that our intent in writing this book was to cover
arange of topics that span from fundamental methods to applications. The beginning
of the book covers fundamental techniques like atomistic simulations, dislocation
dynamics, continuum methods, and density functional theory calculations. These
chapters are meant to provide the reader with a broad perspective on computational
techniques that have been fundamental to materials modeling at various length and
time scales. However, we realize that for those who are a completely unfamiliar
with these techniques, the chapters in this book will provide a good introduction,
but more detailed books will likely be needed to master the techniques. The self-
containment of this book was sacrificed in order to allow for the later chapters of

vii



viii Preface

the book that provide examples of both concurrent and hierarchical applications of
multiscale modeling. We hope that the brevity of the first few chapters is accounted
for by the number and depth of the applications provided later.

With this in mind, the book is organized in three parts. The first part, which con-
tains Chaps. 1-4, covers what may be considered as fundamental or basic materials
modeling methods. These chapters introduce the methods of molecular simulations,
dislocation dynamics, continuum approximations, and electronic density functional
theory calculations. These methods provide some of the basic modeling approaches
that are used extensively in all of the chapters that follow and span from angstroms
to meters in length scale. The second part, Chaps.5-8, provides several more
recently developed methods that are scale bridging including both length and
time scales. The specific methods include the quasicontinuum method (Chap. 5),
accelerated molecular dynamics (Chap.6), the concurrent atomistic-continuum
method (Chap. 8), and the “atoms to continuum” method. Chapter 6 is the only
chapter that deals with time-scale bridging, while the rest of these chapters present
length-scale bridging techniques which can be largely classified as concurrent
multiscale techniques. It is important to note that there are many other length,
and time-scale bridging methods, but our intent is to provide a few here that have
been or can be used for modeling nanomechanics in materials. Chapters 9 and 10
provide methods to analyze and visualize the modeling results of particle systems
(e.g., molecular simulations). This is of particular importance because the analysis
and visualization of data are precisely what can be used to conduct more efficient
multiscale modeling, either through concurrent schemes or hierarchical methods.

The third part, covering Chaps. 11-17, provides case studies in the use of
multiscale materials modeling as applied to nanomechanics. The topics are diverse
in the problems and how they solve them. The chapters include the study of the
mechanical properties of nanowires and nanopillars made of metals by studying
dislocation nucleation (Chap. 12) or dislocation motion of preexisting dislocations
(Chap. 11) or their statistical nature in nano-grained materials using the quantized
crystal plasticity method (Chap.13). The rest of the chapters each deal with
the mechanics of different systems including amorphous materials (Chap. 14),
ferroelectric thin films (Chap. 15), silicon electrodes (Chap. 16), and thin liquid films
(Chap. 17).

Philadelphia, PA, USA Christopher R. Weinberger
Philadelphia, PA, USA Garritt J. Tucker
February 2016
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Chapter 1
Introduction to Atomistic Simulation Methods

Reese E. Jones, Christopher R. Weinberger, Shawn P. Coleman,
and Garritt J. Tucker

1.1 Introduction

Atomistic and molecular methods play a central role in multiscale modeling for
nanomechanics since the applicable length scales of atomistic methods span a few
to hundreds of nanometers. In fact, many of the applied research chapters presented
later in this book employ atomistic methods, either by directly coupling other
methods to atomistics, by creating information that is passed to or from atomistics,
or by using atomistics to directly investigate nano-mechanical phenomena.

In this chapter, we will introduce the basic principles of atomistic and molecular
modeling as applied to nanomechanics. It is worth pointing out that the terms
atomistic modeling, molecular modeling, and molecular dynamics are often used
interchangeably. Within this chapter, we consider atomistic and molecular modeling
as essentially the same concept, only distinguished by whether we are modeling
atoms or molecules; however, we reserve dynamics for a specific type of simulation,
notably the direct integration of the equation of motions, in contrast to molecular
statics which employs energy minimization.

Molecular simulation methods are generally more efficient than ab initio methods
mainly due to the fact that they describe atomic interactions empirically using
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classical mechanics. Thus, this class of methods are well suited for simulating
the structure and mechanical properties of materials at the length scales in the
nanoscale regime. For example, atomistic methods can be used effectively to study:
the mechanics of defects in materials and how they interact with the large number
of free surfaces in nanostructures, and the physics of phase transformation at the
nanoscale.

There are some important limitations of atomistic methods that should be noted
as well. As most atomistic methods use classical empirical potentials, they are
unable to directly investigate properties associated with the electronic structure of
materials such as band gaps, optical properties, and magnetism, and how these prop-
erties interact with nanostructures. Simulations using electronic structure theory,
such as density functional theory, are better suited to investigate these properties.
In addition, the accuracy of atomistic simulations is limited by the accuracy of
the interatomic potentials used. Classical atomistic methods are also limited both
in length and timescales due to numerical cost. The length scale associated with
atomistic simulations of condensed matter systems is often below 100 nm even for
large simulations. Simulations above this length scale, at the time of the writing
of this book, are prohibitively expensive on generally accessible computers. In
addition, the timescales for classical molecular dynamics simulations are generally
less than tens to hundreds of nanoseconds even for long simulations due to time-
steps on the order of femtoseconds that are needed to directly integrate the equations
of motion. Both length scale and timescale challenges can be addressed with
multiscale methods, some of which will be described in this book.

Molecular methods, in general, model a system of idealized particles that follow
the laws of classical mechanics. Two physically distinct strategies are used to evolve
the atoms in an atomistic simulation. The first method, molecular statics, attempts
to evolve the state to a local or global energy minimum based on external forces
and is discussed in Sect. 1.2. The second method, molecular dynamics, simulates the
dynamic trajectory of the atoms by directly integrating the equations of motion. This
method is discussed in Sect. 1.4. Section 1.5 describes the appropriate statistical
thermodynamics required to connect the ensemble of atoms to physical properties
in classical thermodynamics described at the continuum scale. All these methods
are predicated on empirical interatomic potentials, which characterizes the potential
energy of the system and hence the forces on all the atoms. These potentials
are discussed in detail in Sect. 1.6. The resulting system potential energy governs
the behavior of the system and hence both its equilibrium and non-equilibrium
properties. Finally, in Sect. 1.9 we give an overview how atomistic methods can
be used in modeling nanomechanics, as a prelude to the other chapters in this book,
as well as a discussion of the specific software that can be used to conduct molecular
simulations.



1 Introduction to Atomistic Simulation Methods 3
1.2 Molecular Statics

Molecular statics simulations seek to find minimum energy conformations,
transition states, and/or reaction pathways in atomic systems in the absence of
thermal vibrations. In classical atomistic simulations, this process starts with
constructing the potential energy surface for the system using an appropriate
interatomic potential. More details about interatomic potentials will be given in
Sect. 1.6; however, for now, one needs to know that the interatomic potential relates
the potential energy of the system to the atomic positions, i.e., ® = @(R) where
R = {x;} represents the positions of all the atoms (indexed by 7). A two-dimensional
model for a potential energy surface that resembles the contours of a physical
surface is shown in Fig. 1.1. While simple, this two-dimensional potential energy
surface illustrates common features that are often described by more complex
interatomic potentials in higher dimensions including many local energy minima
and transition states nearby a unique global minimum energy configuration.

A goal for molecular statics simulations is to gain further understanding of
the potential energy surface using knowledge of the interatomic potential and its
gradients. Given that the forces are the first derivatives of the system potential with
respect to atomic positions, minimum and maximum energy configurations occur
when the forces acting on all atoms are zero. The forces acting on each atom i are

fi=-V,® (L.1)
where the subscript x; denotes that the gradient is taken with respect to x; holding
all other atomic positions as fixed. Alternatively, we can define the total force vector

F as the gradient of the potential energy with respect to R:

F = —Vyo. (1.2)

Fig. 1.1 A representative two-dimensional potential energy surface
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I;
i

Fig. 1.2 Contour plot of the potential energy surface shown in Fig. 1.1 with an overlay of arrows
representing the forces. The contour plot shows the location of (A) global minima, (B) local
minima, (C) transition state, and (D) global maxima

Figure 1.2 shows a contour plot of the previous potential energy surface with forces
represented by arrows. When the atomic forces are equal to zero, the minimum
and maximum energy configuration occurs when the Hessian, i.e., the matrix of
second order derivatives with respect to the atomic positions H = VxVR®, is
strictly positive or negative definite, respectively. Transition states occur at atomic
configurations corresponding to saddle-points along the potential energy surface.
These saddle-points are located at unstable equilibrium states where the Hessian is
not positive nor negative definite and typically are at points where a few eigenvalues
of the Hessian are negative and the rest are positive. Reaction pathways describe
the minimum energy path along the potential energy surface between two adjacent
energy minima. All the aforementioned features are highlighted in Fig. 1.2. In the
following sections, common methods used to determine these features along the
potential energy surface are introduced and overall advantages and limitations of
molecular statics simulations are discussed. For much more detail on the algorithms
discussed herein, we suggest examining the texts by Leach [1] and Nocedal [2].

In the practical implementation of many molecular simulation codes, scaled
coordinates are used in place of real space coordinates. The use of scaled coordinates



1 Introduction to Atomistic Simulation Methods 5

is particularly advantageous when simulation domains are allowed to change shape,
such as in stress-controlled simulations discussed later, since the variations in the
coordinates of all the atoms are reduced to a few explicit parameters. In addition,
scaled coordinates are also important in the practical use of periodic boundary
conditions as they provide a convenient way to map atoms back to the simulation
domain as they move across box bounds.

Scaled coordinates are a set of fractional coordinates relative to the simulation
domain geometry and can be directly related to the real space coordinates through
the linear transformation:

X; = hS,’ (13)

where h is a 3 X 3 matrix that defines the three simulation direction vectors that span
the box and are not necessarily orthogonal. The volume of the simulation domain
is the determinant of h. Clearly, from Eq. (1.3), the simulation domain, which is
sometimes called the simulation box, can change its shape through h, which changes
the real space coordinates of the particles, x;.

1.2.1 Energy Minimization

Energy minimization, resulting in structure optimization, is one of the most
important tools in atomistic simulations, and is used to discover the zero temperature
stable structures of a system. During energy minimization, numerical algorithms
search for the set of atom coordinates, R, that minimize a defined objective function,
E, related to the potential energy of the system. In the case where the volume of the
simulation box and the number of atoms, N, are held constant, the objective function
is equal to the total potential energy of the system:

ER) = @(R). (1.4)

where @ is the interatomic potential. However, if the system box size is allowed to
change in order to achieve and maintain a targeted system stress &, the objective
function must also include terms that account for the strain energy introduced by
the changes in the system volume and shape. In this case, the objective function for
an energy minimization with box relaxation is the enthalpy:

ER) = O(R) +p(V = Vo) + Vo(& = 1) - &, 1.5)

Eq

derived by Parrinello and Rahman [3]. In the second term, which is due to work
done in changing the volume of the system V, p = tr¢ is the target pressure and
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Vo the volume of the stress-free reference configuration. The third term, E, is the
distortional strain energy that is associated with changing the box shape, but not its
volume and the strain & is defined as

€= ; ((hhgl)Thhg1 - I) (1.6)

with hy being the shape matrix h for the stress-free reference configuration of the
system.

Iterative algorithms, such as line search and damped dynamics-based methods,
are commonly used to find the atomic configuration that minimizes the associated
objective function. The robustness of these iterative techniques is ideal for the
complex, high-order potential energy surfaces common in atomistic simulations;
however, they do not guarantee convergence to a global minimum energy structure.
If a local energy minimum configuration is nearby the starting configuration, these
iterative minimization algorithms typically converge to this state instead (see [4] for
an in-depth exploration for the deformation of a nanowire). Techniques to uncover
the atomic configurations of global energy minima, such as direct Monte-Carlo
sampling and simulated annealing, sample many initial configurations or perturb
the simulation during these minimization processes in order to escape local energy
minima enroute to lower energy states. A selection of common energy minimization
methods are described in the following sections.

1.2.1.1 Line Search Minimization Methods

Line search minimization algorithms, such as steepest descent, conjugate gradient,
and Newton—Raphson methods, use one-dimensional searches along specified
search directions to optimize an objective function. In the context of molecular
statics these algorithms iteratively displace the atoms within a simulation in order
to find a lower energy state. During line search minimizations, the configuration of
the system Ry at iteration k is adjusted by o dy in order to reduce its energy via,

Rit1 = Ry + axdy (1.7)

where o is the step size and dy is the search direction. These parameters must
depend on the gradient of the minimization objective function in order to reduce
the system energy; however, the details are unique to each line search minimization
algorithm. In practice, line search minimizations will continue to adjust the atomic
coordinates until energy minimization criteria (Wolfe conditions) are met. Usually
the criterion is the sum of the atomic forces in the system is zero within a defined
numerical tolerance or the energy deviation from successive iterations is sufficiently
small.

The simplest of the line search algorithms is the method of steepest descent. In
this method, the search direction dy is equal to the negative gradient of the objective
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function. In the case where the simulation box does not change, the direction
of steepest descent is the force F. At each iteration, atoms are moved along the
search direction until a minimum in the objective function along this line has been
reached. At which point, if the defined energy minimization criteria are not met,
a subsequent line search is made along the new total force direction orthogonal to
the previous. This stepwise descent continues until the energy minimization criteria
are met. In general, the steepest descent method is extremely robust because it
relies only on the gradient of the objective function, E = @, for the minimization;
however, convergence near the minimum can be slow as this gradient approaches
zero. Convergence also slows using steepest descent methods as the path oscillates
near the energy minima due to the orthogonality of successive search directions.

The method of conjugate gradients is a second type of line search algorithm that
can avoid oscillations near the energy minima by choosing better search directions
based on knowledge from prior iterations. At each iteration, the search direction is
determined by

—VRE k=0
dpr =9 : (1.8)
—VREi+1 + Brr1de k>0

where B is an update parameter that scales the input from the previous search
direction. If 8 = 0, no input from the previous search direction is included and the
method reverts to steepest descent. In general, however, the method of conjugate
gradients chooses B such that each new search direction conjugates to all prior
directions. Conjugate directions are orthogonal with respect to the Hessian of the
potential, such that

dHd; = 0. (1.9)

There are several formulations of § that update the search direction to an
approximate conjugate direction (without computing the H directly), which exhibits
varying degrees of effectiveness. Two common f values used in conjugate gradient
energy minimization were developed by Fletcher and Reeves [5]:

. _ VRE VREt

= 1.10
ket VRE! VRE; (1.10)
and Polak and Ribiere [6]:
pr _ —VREL (=VRE1 + VREL) (1.11)
k1= .

VRE! VRE}

Figure 1.3 shows an example of the steepest descent and conjugate gradient
energy minimization methods using a portion of the potential energy surface
introduced previously. This example mimics the addition of an adatom onto a
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Steepest Descent Minimization

Conjugate Gradient Minimization

Fig. 1.3 Steepest descent and conjugate gradient minimization methods reduce the system energy
using a line search steps. The method of steepest descent is robust, but orthogonal line search
directions tend to slow convergence. Using conjugate gradient step directions can improve
convergence

surface at an unfavorable site, but near the minimum energy configuration. The
lines in the figure trace the energy minimization steps used by each line search
method. Both minimization methods eventually relax the position of the adatom to
the minimum energy configuration; however, the orthogonal directions used in the
steepest descent method increase the number of steps required to reach the energy
minima as compared to the energy conjugate directions of the conjugate gradient
method.

Newton—Raphson methods are a third type of line search energy minimization
that adds even more complexity in order to gain even better convergence rates.
Newton—Raphson methods also consider the second order gradient, the Hessian
H = VRVRE, of the energy minimization objective function, E, when choosing
the appropriate step size and direction during minimization. The Hessian gives
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information regarding the curvature of the potential energy surface and implicitly
creates a local second order approximation of the system energy. Newton—Raphson
methods use the inverse of the Hessian matrix applied to the current forces as search
direction. Using the Hessian, Newton—Raphson methods generally converge to the
energy minimized configuration quadratically and hence more quickly than steepest
descent and conjugate gradient methods, which are linear; however, the increased
convergence efficiency comes with the high computational cost for computing the
Hessian and its inverse.

1.2.1.2 Damped Dynamics Minimization Methods

Damped dynamics minimization methods such as the quickmin [7] and fast inertial
relaxation engine [8] use time integration schemes driven by the same atomic forces
governing the line search methods to move the atoms to a lower energy state. These
integration schemes, e.g., the velocity Verlet algorithm, are also used in molecular
dynamics simulation (discussed in Sect. 1.4) in order to update the atomic velocities
and positions by solving the equations of motion. However, unlike molecular
dynamics simulations, the motion of the atoms under these methods does not resolve
high-frequency thermal vibrations. To enable rapid convergence, these methods add
damping parameters to modify the velocity terms in the equations of motion driven
by internal forces due to the gradient of the interatomic potential. In addition, both
methods are capable of rapidly adjusting the course of the energy minimization in
order to avoid higher energy configurations. In some cases, energy convergence of
these methods has been shown to be on par or quicker than traditional line search
methods, e.g., steepest descent and conjugate gradient; thus, making these valuable
alternative methods for energy minimization.

1.2.2 Transition States and Reaction Pathways

Transition state and reaction pathway (minimum energy path) calculations are
another important class of molecular statics simulations for understanding the rate of
conformational transformations that occur at the atomic level, for example, during
diffusion events or chemical reactions. These events can sometimes be explored
directly using molecular dynamics; however, often the rate of transformation can be
much slower than what can be observed through direct simulation. For slow events,
knowledge of the transition state and the reaction pathway can be incorporated
into transition state theory in order to determine the rate of the event spanning a
long time frame. There are several algorithms to find transition states and reaction
pathways; all of which rely upon energy minimization computations as discussed in
the previous sections.

Transition state and reaction pathway calculations are most commonly deter-
mined by modeling a set of connected conformations or images. The images detail a
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Fig. 1.4 Nudged elastic band method relaxes a series of connected images to find the reaction
pathway (minimum energy path) between two minima. The white outline and gray spheres indicate
the initial and minimized set of images, respectively

series of conformational states between two known energy states in order to model
the reaction pathway. Typically, the initial series of images connecting the two states
is constructed as a linear interpolation between the points in configurational space;
however, in some cases more careful attention is needed. For example, if the atomic
configurations within an image created by this linear interpolation become too close
or even overlap, one might choose to add a repulsive force to push these initial
atomic configurations into a lower energy, spread out arrangement before starting a
transition state and reaction pathway calculation.

Nudged elastic band (NEB) [9, 10] is one of the most common methods for
determining transition states and reaction pathways. NEB methods connect each
image with a set of springs to drive the collection of images toward the minimum
energy path. Figure 1.4 illustrates an example NEB calculation between two minima
on the potential energy surface introduced previously. During NEB, spring forces
act only parallel to the vector connecting adjacent images, while the forces defined
by the potential within each image are projected perpendicularly from this vector.
Mathematically, the NEB force on each image j can be represented by
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FYE® = Fl 4 F, (1.12)

If 7, is the unit vector tangent to the springs connecting each state and R; is the set
of atom coordinates within the image, the parallel force due to the spring, Fjl.| is

F} = k(|Rs1 —R)| - R —Ri-i]) 7, (1.13)

where k is the chosen NEB spring constant. The perpendicular force FIJ' is evaluated
from the potential @ as ‘

Fi = VRO(R)) — (VRP(R) - 7)) 7. (1.14)

The orthogonal projection of these forces decouples the minimization of the
individual image from the minimization of the path itself and ensures that the spring
forces do not effect the relaxation of the images.

Often NEB calculations do not relax a single image directly at the transition
state configuration; instead a pair of images may straddle each side saddle-point
along the potential energy surface. In these cases, climbing image NEB [11] can
be invoked to find a better approximation of the transition state along the reaction
pathway. Climbing image NEB determines the transition state configuration by
finding the highest energy configuration along the computed reaction pathway.
After performing a traditional NEB calculation, climbing image NEB systematically
searches for the transition state using the highest energy image. During this search,
the spring forces on this one image are turned off so that it is constrained only
by forces computed using the potential. To make the image climb to a higher
energy state along the previously computed minimum energy path, the potential
forces aligned with the minimum energy path are inverted. Climbing image NEB
calculations have shown to substantially improve predictions in transition state
conformation and energies, especially when using a limited number of images.

1.3 Boundary Conditions

Different boundary conditions, e.g., fixed, free, or periodic, can be imposed on the
simulation boxes which encase atomistic simulations. These boundary conditions
represent specific interactions with the surrounding environment and allow one
to model different phenomena. If necessary, one can specify a unique boundary
condition to the different faces of the simulation box.

Fixed boundary conditions are the simplest but most restrictive conditions. The
normal faces associated with the fixed boundary directions are exposed to an infinite
vacuum, the dimensions along the fixed direction are not allowed to change, and any
atoms that pass this dimension are lost from the system. Fixed boundary conditions,
effected by the addition of layers of atoms with prescribed motion, are used often
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when mechanically loading a system. The related free (shrink-wrapped) boundary
conditions also expose the associated boundary surface to an infinite vacuum.
However, the atoms are allowed to move freely in the specified direction, thus
emulating a free surface. The dimensions of simulation box are adjusted to always
provide a bounding box of the deforming system.

On the other hand, periodic boundary conditions do not create free surfaces.
These boundary conditions, introduced by Born and von Kéarmén in 1912 [12],
mimic an infinite set of systems while modeling a finite collection of atoms.
Fully periodic boundary conditions can be thought of as being constructed from
33 — 1 replicated simulation cells (in three-dimensions) surrounding a primary
simulation box. The atom positions within each replica are identical after making
appropriate adjustments for the periodic length defined by the dimensions of the
primary simulation box. Atom velocities within each cell are also identical among
the replicas and atom motion across replica boundaries results in corresponding
motion of atoms across the mirrored boundaries.

1.4 Molecular Dynamics

Molecular dynamics (MD), as mentioned in the introduction, is based on the direct
integration of Newton’s law with forces f; derived from the potential energy @ as:

f; = —V,® (R) (1.15)

and hence the particles in an atomistic system simulated with MD behave classically.
So, in contrast to molecular statics where the atomic positions R = {x;} are solved
via an energy minimization process, the atomic positions in MD evolve according to:

mi =1, (1.16)

given the atomic masses m; as well as initial positions {x;(0)} and velocities {v;(0)}.

In its simplest application, MD is a simulation of the dynamics of particles in
classical force field; however, applications of MD where the intent is to reproduce
the statistics of a large number of atoms with connections to continuum quantities
through statistical mechanics are where the deep value of MD appears. These
connections are often better made if we consider the particles following either
Hamilton’s equations of motion or Lagrange’s equations of motion based on a phase
space composed of positions and momenta or positions and velocities, respectively.
The set of positions R = {x;} and momenta Q = {p, = m;x;} of the atoms
i = 1...N as they evolve with time ¢ describe the state of the system in this
high-dimensional phase space (see Fig. 1.5 for an illustration of an atomic trajectory
through phase space). The Hamiltonian .7 is the phase function, i.e., a function of
R and Q, equal to the total energy of the system E; and, in the case the system is
closed, is simply the sum of the potential and kinetic energy:
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Fig. 1.5 The constant energy trajectory in phase space of a single atom in many atom system

A = #R,Q) = ®R) + K(Q) (1.17)

In general, the kinetic energy K has the quadratic form

N
1
K=)_ PP (1.18)
i=1

With a Hamiltonian, the dynamics are simply:

R = Vo7 (1.19)
Q=-—Vp# (1.20)
If the system evolves according to Hamilton’s equations of motion, then the volume

occupied by the system in phase space remains constant over time. Furthermore, if
the system is isolated, the Hamiltonian and total energy are conserved.

1.4.1 Time Integrators

Newton’s law, Eq.(1.16), or alternately Hamilton’s equations, Egs.(1.19) and
(1.20), are systems of ordinary differential equations (ODEs) and hence their
basic properties can be analyzed with general methods such as using 7 as a
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Lyapunov function to determine stability. Symplectic integrators [13], in particular,
are designed to preserve the basic properties of Hamiltonian system, such as
incompressibility of flows in phase space as well as conservation of the total
energy in a closed system. These integrators still have errors associated with their
trajectories but these errors are considered more acceptable, in that individual atom
trajectories may deviate from the true trajectories, but the system properties should
be accurately represented due to the conservation properties of these methods. In
particular, unlike other integration schemes that may have better truncation/short-
time errors, symplectic integrators due to their representation of the underlying
Hamiltonian of the system have bounded errors and hence long time stability.
The integrators commonly used in MD are

» Verlet, which is simple, explicit, symplectic, and second order accurate [14];

* Runge—Kutta, which is a higher-order accurate multi-step method that can be
made symplectic [15];

* Gear, another higher-order accurate method based on backward differences but
is not symplectic;

* SHAKE [16, 17] condenses stiff bonds with high-frequency vibrations into
constraints; and

* rRESPA [18], which handles multiple timescales hierarchically.

Generally, these integrators are explicit, in that the updates only involve previously
calculated {x;, p;} making them relatively cheap but the tradeoff is that they are
conditional stable.

This raises the important question, how do we select an appropriate time-step?
Loosely speaking, in the sense of the Nyquist frequency criterion, the time-step of

the integrator must be much less than the period of highest frequency At < 1/w.
The Einstein frequency, w = \/ V""IZ_"" d), for atom i, is the frequency of an atom
oscillating in a potential well with the rest of the atoms being fixed, is typically
the highest frequency in the spectrum. Alternatively, the phonon density of states
(DOS) gives information regarding all of the frequencies available in the system,
an example of which is shown in Fig. 1.6. For this case, we can see the largest
frequency is roughly 16 THz, which corresponds to a period of 62 femtoseconds (fs).
Given that for many materials, the maximum frequency is of this order magnitude,
typically time-steps are on the order of 1fs. An alternative and popular method to
evaluate time-steps size is to use a closed system and evaluate the conservation of
energy to establish a sufficiently small time-step. However, testing is required and

light atoms with stiff bonds require smaller time-steps, such as in hydrocarbons.

1.4.1.1 Verlet

The most commonly used time integration algorithm, Verlet, is just three steps
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Fig. 1.6 The phonon density of states of Si

1
2m
Riy1 =R + AtV (1.21)

Vj+1/2 = Vj + Al‘Fj

1
Vit1 =Vitip+ , ArFjp

where the subscript j denotes the time-step, V. = {v;} and, here, m; = m for
simplicity. Note: (a) the positions, and hence the forces, are updated with the
velocity mid-step i + 1/2, and (b) there are two velocity updates, the first is explicit
and the second is implicit and yet there are no linear systems to solve. To see the
(short-time) accuracy of the method, add the Taylor series for the positions:

t2 A
&H=&+Awﬁdwm+3!&+mmﬁ (1.22)
t2 l‘3 .
Rj_l = Rj—Ath+ 2m Fj— 3 Bj"‘ﬁ(At ) (1.23)

the third order terms involving B(R, V) cancel, to obtain

2

At
F, + 0(ArY) (1.24)
e

Ri+1 =2R;—Rj- + iy

which is why the scheme is also named the central difference scheme. The
velocities, being derivatives of the positions, are only accurate up to &(A#?).

We can also investigate the ability of the Verlet algorithm to conserve momentum
and energy. From Eq. (1.21) we can obtain
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1
mVjrr = mV;+ At (Fj1 + ) (1.25)

which when summed over all the atoms shows that the total momentum does not
change for an isolated system where the forces sum to zero. To examine energy
conservation, first assume linear forces F = —KR with K = K" and }_,K;; = 0.
Now the change in energy over a time-step is

AE =Ej1 —E;=R-KAR+V-mAV (1.26)

where V is the average V = }(Vi41+V)) and AV is the difference AV = V; 4| —V;.
Substitute

- 1A4
AR = AtV — AF (1.27)
4 m
1-
AV =At F (1.28)
m
to obtain
_ _ o _ 1 AP
AE:AtR-KV+AtV-F++R-K(—4 AF) (1.29)
m
1 A2 - 1 A2
= 4 m FAF:_S m (Fj+1'Fj+1—Fj'Fj)

So energy is not preserved exactly step-to-step. Exact energy conserving algorithms
can be constructed [13]; however, in practice, the stability limit for the time-step
of the Verlet algorithm also gives satisfactory energy conservation in most cases.
Moreover, due to Verlet being a symplectic integrator, it preserves a non-canonical
Hamiltonian that shadows the traditional one, Eq. (1.17).

1.4.1.2 SHAKE

In order not to suffer from time-step restrictions associated with stiff (typically
covalent) bonds, the SHAKE integration algorithm treats them as geometric con-
straints. There are two standard ways of handling distance constraints: generalized
coordinates for the remaining degrees of freedom or Lagrange multipliers. SHAKE
uses the latter. For example, for a set # of pairwise constraints for bond length

Ix;i|> = ¢; ije B (1.30)
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where x;; = x; — X;, SHAKE forms an amended Verlet update for the positions
A
+ *
X =X AiiXi 1.31
i i + m; Zj: gy ( )

where x* is the Verlet update, Eq.(1.21). The second term in Eq.(1.31) is the
gradient of the set of constraints with respect to x; times the multiplier A;. The
multipliers {1} are solved for using the constraints applied to the new positions xi+.

2

x; +At2( )ijx,, ={; (1.32)

These equations are quadratic in A; but the SHAKE algorithm ignores the quadratic
terms and relaxes the linear equations using a Gauss—Siedel procedure.

1.4.2 Ensembles and Thermostats

Now that means of creating stable, accurate trajectories have been established, we
can turn to using these trajectories to compute quantities of interest. In traditional
MD, ensembles represent macroscopic conditions for which numerous atomic states
of the system are probable. For example:

e NVE is an ensemble with constant number, volume, and energy. This is the
micro-canonical ensemble of an isolated system.

e NVT is an ensemble with constant number, volume, and temperature, i.e., the
canonical ensemble of a system in contact with a thermal reservoir.

e NPT is a constant number, pressure, and temperature ensemble.

* NPH is a constant number, pressure, and enthalpy ensemble,

* uPT is the constant chemical potential, pressure, temperature, and grand canon-
ical ensemble (which is difficult to simulate in MD).

In a practical sense, these ensembles represent conserved quantities that act as
constraints on the dynamics, e.g., NVE: {R(?),Q(¢) | 77 (R,Q) = E} where E
is a constant. Many integration algorithms are designed to preserve energy (and
momentum) but typically additional control algorithms are needed to maintain
consistency of the dynamics of any given system with a desired macroscopic state
such as constant temperature.

In particular, the NVT ensemble is represented by the Maxwell-Boltzmann
distribution

(1.33)

pdf(R, Q) x exp (—%(R’ Q))

kgT



18 R.E. Jones et al.

where kp is Boltzmann’s constant. The proportionality constant (normalization
factor) for this probability density function (PDF) is called the partition function,

1 (R, Q)
P = NI / exp (— T ) dRdQ (1.34)

and is related to the volume occupied in phase space. Here, N is the number of atoms
in the system and 4 is Planck’s constant.

To estimate, for example, the pressure of a material at a specific temperature, we
need to form an average over all the possible states in the relevant ensemble. An
ensemble average is a probability weighted average of a phase function A:

(A) = / A(R, Q) pdf(R, Q) dRAQ (1.35)

and represents the expected value of A. The connection between expected values
of macroscopic observables and samples from atomic trajectories is, generally
speaking, ergodicity. Ergodicity is tantamount to the assumption that long time
averages equal ensemble averages

A= lim ! / TA(R(t),Q(t))dt: (A) (1.36)
>0 T Jo

For this to be true the trajectory of the system (R(¢), Q(7)) must traverse phase
space with the probability corresponding to the PDF. In certain systems ergodicity
can be proven but it generally assumed for all but degenerate systems. The concept
of ergodicity is the main link between the trajectories that MD can produce and
observable, macroscale properties that we want to predict.

In order to produce trajectories consistent with a given temperature (in an NVT
ensemble, for instance) and hence predict material properties at finite temperature,
a thermostat is used in addition to the basic time integration scheme. Thermostats
are time integration schemes that control the dynamics so that the temperature 7 is
conserved (instead of energy E). Popular thermostats include: Nosé—Hoover, which
is deterministic and has the property that time averages equal ensemble averages;
Langevin, which uses a stochastic force and the fluctuation—dissipation theorem
to generate Brownian dynamics and emulate momentum-exchanging collisions
of atoms with fictitious reservoir atoms; Gaussian isokinetic, which employs a
Lagrange multiplier to enforce the temperature constraint and only generates the
NVT ensemble in the thermodynamic (large system size) limit; and rescale, which
is a very simple method where velocities are rescaled to enforce a constraint on K,
but does not generate the NVT ensemble. As illustrated in Fig. 1.7, the thermostat
does indeed affect the phase space dynamics; it samples a larger volume of phase
space than a corresponding constant energy simulation.

The need for a thermostat to control temperature begs the question: what is
temperature at the atomic scale? This is not a trivial question but one that can
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Fig. 1.7 Trajectories of an atom in an NVE and an NVT environment

be answered using statistical thermodynamics. Thermodynamics relates the heat
capacity pc, temperature 7, and the average energy of the system:

pcT = (E) = (K) + (P) (1.37)
In equilibrium, equipartition of energy implies that
(K) = (@) (1.38)

(assuming a harmonic solid, see [19] for the more general statements). The Dulong—
Petit law pc = 3kpN/V relates the heat capacity and the Boltzmann constant, i.e.,
each atom has a heat capacity of 3kp, for a classical system. The result is the kinetic
definition for temperature

3kpTV = 2(K) (1.39)

Note that K(r) fluctuates and the central limit theorem implies that the variance of
this fluctuation is proportional to 1/N.

With a computable definition of temperature in hand, the Nosé—Hoover thermo-
stat uses feedback control and an extended system with Lagrangian (the Legendre
transform of the Hamiltonian .77):
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( ZmLHV,HZ) o+ ms — kgTN; log(s) (1.40)

where s is a control/reservoir variable, my is its associ%ted mass, Ny = 3N + 1
is the number of degrees of freedom in the system, and 7 is the target temperature
[20], [21, Sect. 6.2], [22, Appendix B]. The equations of motion for the atoms can be

derived from the Lagrangian, assuming the forces on the atoms are ff = —V, @, as:
. « S
m;v; = fi — m;v; (141)
S
2 7 5
v“ = illVi — kgTN, + my 1.42
mgSs Ei m||vi| BTNy |s+m i ( )

which conserves the Hamiltonian
1 5\? .
H =K+ D+ 2mJ — kgTNylog(s) (1.43)
s :

Since s is finite, (§) — 0; so

d - 1
<dthTNf 10g(s)> = <S Zi:mi||vi”2> (1.44)

In most implementations, the thermostat is reformulated so

I’l’l,"",’ = f;k — /\m,-v,- (145)

. 1T
A= (T—l) (1.46)

but in this version time ¢ does not correspond to physical time. Also, the character-

ms(s)

Wik T is function of the parameter m, and the

istic period of fluctuation 7 = 2.7t\/

particular system dynamics.

In addition to being deterministic, the Nosé—Hoover thermostat has the important
property that its partition function (marginalized over s) is the partition function
of the canonical ensemble. This means that sampling Nosé—Hoover dynamics
uniformly in ¢ should result in the NVT ensemble average.

To effect dynamics consistent with the NPT ensemble, a Nosé—Hoover-like
barostat can be formulated where the volume of the system V is also controlled
in order to obtain a target pressure P:
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. 1, 5 o2V
m;v; = V1/3 fi —m (S + 3V) Vi (147)

o2

§=" 4 85 (1.48)
s my

. sV 8v )

i = 1.49
s Tamy® (1.49)

where the ensemble constraints are

gs = 2V23K — kgTN; (1.50)

gy = 2VPK + V'3 fy - x; — 3PV (1.51)

i<j

(Recognize the virial in the second constraint.) For the full stress ensemble, the
system box needs also to change shape [23], as shown in Sect. 1.2.

1.4.3 Initial Conditions and Replicas

Now that we have introduced ensembles, we can discuss appropriate initial condi-
tions to start the dynamics. Typically, the atomic positions in solid systems are taken
to be perfect (zero temperature) lattice sites since determining more appropriate
initial conditions for the positions consistent with the ensemble’s distribution is
exceedingly difficult. Given that the kinetic energy is quadratic in the velocities,
the initial velocities can be sampled from the Boltzmann distribution appropriate
for a desired temperature (which defines the variance of Gaussian-like Boltzmann
distribution). Since the chosen initial positions are extremely improbable, and the
initial dynamics describe a relaxation to a set of equilibrium states where both {x;}
and {p;} are consistent with the Boltzmann distribution based on the potential and
kinetic energies. As shown in Fig. 1.8, this results in a net transfer of energy from
the kinetic energy to the potential energy. It is interesting to note that kinetic energy
relaxes to half its initial value and the potential energy is approximately equal to
the kinetic energy, roughly satisfying the equipartition theorem due to the small
displacements solid state atoms make in a room temperature environment. On a
practical note, even using a thermostat, starting the system with twice the desired
temperature can expedite the thermal equilibration process.

With the thermostats and barostats we have introduced, molecular dynamics
can now be used to compute the trajectory of a large number of atoms whose
time average will approach a continuum value. For example, the temperature can
be related to the average of the kinetic energy, which can be sampled directly
in molecular dynamics. However, using a single large system or running a single
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Fig. 1.8 Relaxation of a small Lennard-Jones system that is initially a perfect face centered cubic
crystal with a Gaussian distribution of velocities

system for a sufficiently long time to reduce statistical errors is often impractical.
Instead it is common practice to combine time averages of independent systems
constructed from the probability distribution associated with the ensemble of choice.
These replica systems are typically generated by sampling velocities from the
appropriate distribution (and then allowing relaxation).

As an illustration of why ensemble averaging through replicas can result in
more accurate and efficient averages, take the phase average of a harmonic function
(cos(r)) = 0 as a simple surrogate for an atomic trajectory or system fluctuation,
via: (a) one long run

sin(7)
nt

(sin(w?)) = nlt /Om cos(?) dt =

or (b) n short runs with random initial conditions (and hence phases ¢y )
. 1 & [7 1 . .
(sin(w?)) = Z cos(t + ¢y) dt = Z sin(t + ¢y) — sin(¢y) (1.52)
nt a=1 0 nr a=1

With one long run the average will suffer from reinforcement of the phase error
(aka n perfectly correlated phase errors), whereas with the same dynamics with
initial conditions taken from the appropriate distribution the average benefits from
cancellation of errors (de-phasing).

In summary, given the interatomic forces, the molecular dynamics method results
in a set of non-linear ODEs that can be numerically integrated to reproduce the
trajectory of all the atoms in the system. The presence of coupled non-linear ODEs
requires the construction of stable and accurate time integrators and preference is
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given to symplectic integrators that preserve the symmetry and hence properties
of the Hamiltonian. In MD, simulating just the Hamilton’s equations of motion
in an isolated system only samples from the micro-canonical ensemble, which is
usually not of interest. To simulate the more interesting ensembles, such as the
canonical ensemble, either thermostats or barostats or both must be introduced to
control temperature and pressure, respectively. The thermostats and barostats alter
the equations of motion and thus the Hamiltonian itself. Once we are assured that
the dynamics of the simulation are consistent with the ensemble of interest, material
properties can be predicted via time and/or ensemble averages of the appropriate
atomic quantities. Many of the atomic level representations of these quantities will
be discussed in detail in the next section.

1.5 Observables, Properties, and Continuum Fields

As we have discussed, material properties can be calculated from molecular statics
and dynamics simulations using well-designed potentials and atomic structure.
These quantities range from static to dynamic, and from equilibrium to non-
equilibrium properties. For example, surface energies, defect energies, enthalpies
of formation of crystal structures, mass densities, structure functions like the
radial distribution function, heat capacities, elastic constants, and viscosity and
thermal conductivity are regularly computed with now standard methods. However,
since electrons are not treated explicitly, electronic, magnetic, and many properties
involving charge transfer cannot be computed directly (see density function theory
and other ab initio methods), but computing ionic conductivity of liquids is possible.

1.5.1 Equilibrium Properties

To begin, the mass density, p, of a system with volume V is simply
! > (1.53)
= m; .
P Ve

where the mass of atom i is m;. For an NVT system p = ]gm,-; however, for an NPT
system p = p(P, T) is non-trivial since V = V(P, T).

Another density-like quantity, the heat capacity is given by the Dulong—Petit law
that states that pc = 3k31§ for classical systems. The heat capacity can also be
calculated from the variance of fluctuations in the energy £

OB (EY) —(E)?
Toarl,T (1.54)
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using a derivation based on the partition function. (The idea of material properties
being related to fluctuations will come up again in the following discussion of
Green—Kubo methods.)

At low temperatures, MD still treats particle motion classically, which results in a
failure in its ability to predict quantum effects on lattice vibrations and incorrect low
temperature heat capacities. To correct for this, the internal energy of the phonons
(lattice vibrations) can be modeled as a collection of harmonic oscillators

h
B Z exp ( ha)kwl;/iBT) 7 Z/kBTG(“)) ¢(w) D(w) do (1.55)
’ »

where the first sum is over wave- Vectors k and polarizations p. The (normalized)

energy of oscillator is e€(w) = k ‘-, the Bose-Einstein distribution is ¢(e) =

(exp (¢) — 1)~!, and pde ~ ¢ Ddw. This requires an accurate description of the
DOS, D(w), which can be obtained from molecular statics or molecular dynamics
methods (see Fig. 1.6). The DOS, i.e., the density of phonons in any given interval
of frequency as determined by the dispersion relation w(k), is typically estimated
from the Fourier transform of the velocity auto-correlation .7 (¢)

D(w) = /oo y(t) cos(wt) dt = /oo (v(0) - v(2)) cos(wt) dt (1.56)
0 0
where

Ay(a Ar) = (v(0) - v(a Ar)) = Zv,(a AN -vil(e 4+ B) A (1.57)

and is usually normalized by (v(0) - v(0)) so that 2% (0) = 1. Here, N is the number
of atoms, N, is the number of time samples, and we use the time invariance of
the product, i.e., stationary statistics (the joint probability of v(s) and v(s + 7)
does not change with time s). Notice that this is essentially the Wiener—Khinchin
theorem relating spectral density to the auto-correlation. Finally, using the chain

__ 0e 0
rule ? o = o7 0 leads to

€*(w) exp (e(w))
Z / (oxp (€(@)) — 1)? L D(0) do (1.58)

An example of this calculation for silicon is shown in Fig. 1.9.
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Fig. 1.9 Heat capacity of Si per atom normalized by 3k as a function of temperature in multiples
of the Debye temperature computed using the DOS given in Fig. 1.6

1.5.2 Transport Properties

The properties discussed so far have been properties of equilibrium systems.
Equilibrium processes are characterized as having zero average dissipative fluxes
and the relevant statistics, such as the energy or temperature and average structural
properties, are steady. Many properties of interest, however, are related to transport
and, hence, to non-equilibrium but potentially steady processes. In these processes,
system level fluxes of mass, charge, energy, etc., are not zero on average. So what
is a flux in general? It is a field conjugate to a generalized coordinate through a
thermodynamic potential, e.g., consider the Helmholtz free energy V. Its rate

U= alI/F =PF (1.59)
- OF ‘

can be written in terms of the rate-of-deformation tensor, F, the kinematic variable,
and P is the (first Piola—Kirchhoff) stress, the flux of momentum. Similarly, we can
define the heat flux q by its conjugacy with temperature 7" through the entropy S:

S—aSX—V ! (1.60)
“axt TV )1 '

Unlike the stress, the heat flux q is a dissipative flux i.e., one that directly contributes
to entropy production [24].

To make the proper microscopic definition of the various fluxes, Irving and
Kirkwood [25] made a correspondence between Newton’s law for the atoms and
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the Euler balances of mass, momentum, and energy for a continuum. For instance,
in this formalism, the mass density field is defined as:

p(x.1) =Y miAXi(t) — x) (1.61)

since this definition satisfies the balance of mass

0
Btp—i-V'(pv) =0 (1.62)
with velocity
P(x, 1)
v(x, 1) = (1.63)
®0= pen
and momentum density
p(x.1) =Y mvi( AXi(1) —X) (1.64)

Here, A(x) is a smoothing kernel with some regularity properties that enable coarse-
graining point-wise atomic data into continuous fields.
To see the connection, start with the time derivative of the momentum density p

p = Z m,-"f,-A(X,- — X) — m,-v,-VXA(X,- — X) Vi (165)

After using Newton’s law f; = m;v; this can be written as:

p = ZfiA(Xi — X) +miv; @ V,'VXA(X,' — X) . (166)

1

Defining B(x,y) by —(x; — X;) - VB(X; — X, X; — X) = A(X;) — A(X;) the momentum
balance becomes

i (1.67)

+ Zm,-v,- R V;,A(X; — x):| =V-.o
where we can identify the stress o after specializing to pair forces f; = ) i f; and

f;j = —fj;. For the whole system occupying a region with volume V, the stress is
given by



1 Introduction to Atomistic Simulation Methods 27

1 1
o = VZ mv; ® v; + sz:f,-j@)x,-j (168)

i

(this is essentially the formula for the virial and corresponds to the Cauchy stress),
and heat flux by

1
a=, Z (pl+0o])vi (1.69)
where the potential energy ¢; = 1\1/] qu&(r,-j) is partitioned per atom (not per

bond which would be more natural). In the expression for q, Eq. (1.69), the first,
convective, term tends to dominate in fluids, whereas the second, non-convective,
term tends to dominate in solids. These formulas for macroscopic observables in
terms of atomic data can now be used in estimating transport coefficients such as
elastic moduli and thermal conductivities with molecular simulation.

To make the macroscale-microscale connection for transport and dissipative
processes, first acknowledge that macroscale laws do apply in aggregate at the
atomic scale but there can be strong size effects. One of the foundations of
this observation is the Onsager regression hypothesis (1931) which states: the
equilibrium fluctuations in a phase variable are governed by the same transport
coefficients as is the relaxation of that same phase variable to equilibrium. In other
words, the decay of an equilibrium fluctuation is indistinguishable from that of
a (small) external perturbation. We will see that Green—Kubo theory makes this
discovery computable.

As an example of the macro—micro connection take Fick’s law as a model of the
flux in concentration as a function of its gradient

J=-DvVc (1.70)

This is an example of linear response where the flux is linearly related to the
(external) force. Fick’s law, together with the conservation of species

d
vJ=0 1.71
atc+ J , (L.71)

gives the usual diffusion equation

;;C = DV?c (1.72)
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The question is: can we determine the diffusion coefficient D from MD? Take the
governing conservation partial differential equation (PDE) Eq. (1.72) and multiply
by the initial conditions and ensemble average:

<c(0, 0) - g c(x, t)> = (c(0, 0) - DV2¢(x, t))
! (1.73)

aat,gz(x, 1) = DV>o/(x, 1)

So the correlation o7 (X, t) satisfies the PDE, which is a general result [26]. Next,
recognize that the Green’s function

1y -
G(x,1) = ( \/4nDt) exp (—ZD’;) (1.74)

for the PDE is such that G ~ .o and the transport coefficient D is embedded in both
which hints at the underpinnings of the Green—Kubo method.
There are three main types of methods for determining transport properties:

* Analytical, which usually involves derivatives of potential and idealized struc-
ture. These methods can be complex or tedious and have limited applicability
due to strong assumptions.

* Direct, which is based on a macroscale analogue. They usually involve non-
equilibrium with unphysically large gradients and large systems. Variants include
the Miiller-Plathe for thermal conductivity [27].

* Green—Kubo, which employs equilibrium fluctuations and small systems. (There
are non-equilibrium variants such as Evans’ method and SLLOD [28].) The main
issue with these methods is that the noise/errors inherent in the estimates must be
handled correctly.

1.5.2.1 Analytical Methods

First, let us examine a practical and common method of computing the elastic
constants of a crystal. We can define the elastic constants as derivatives of the
internal energy with respect to the deformation gradient: B = VgP = VgVy®,
where P is the first Piola—Kirchhoff stress measure. If we assume that the potential
energy is a simple pair potential, then @ = Zi¢j¢(rzji) where r; = |x; — x;|. To
employ the Cauchy—Born rule we assume a homogeneous (local) deformation from
a perfect lattice reference x; = FX; so that stress is given by:

j —Y 1
P:VFCP: VZFUXU@XU: VZfU@X"j (175)
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which is basically identical to a referential form of the virial. The elastic constants
can also be calculated directly:

B = VFVFCD = VuVu(p VFll VFll (176)

1 ” (]5/ X; Xl‘ X; Xl‘
_2V21:(¢ r,-)”gr,-®r,-®r,-®r,-
+1¢/8ijei® X Re®
T T i
where we have simplified the notation by assuming all positions X; are relative to a
central atom at the origin and r; = || X{]|.

The zero temperature Cauchy—Born rule can be extended to finite temperatures
using the same harmonic oscillator model discussed in the context of the heat
capacity. Since the stress at finite temperature is derived from the Helmholtz free
energy, ¥ = & — T8, the added difficulty arises in evaluating the entropy S. The
necessary entropy S can be constructed via the (linearized) bond stiffness matrix

1 P
D; = (1.77)
’ \/mimj aXiBXj

embedded in Eq. (1.76), so that

w— o4 BN, h 3«/dt]D) (1.78)
= v og keT e . .

where detD = [[; w;. With this expression the stress and elastic constants can be
derived via the first and second derivatives of ¥ with respect to deformation gradient
F at constant 7.

1.5.2.2 Direct Methods

In contrast to purely analytical methods, direct methods employ simulation of an
atomistic analogue of a continuum test, e.g. a tensile test. The basic issue is how
to set up and support a gradient and therefore a measurable flux via boundary
conditions which mimic the external environment.

One of the simplest direct methods is used to extract elastic constants. By
imposing a deformation gradient, F, to the boundary of the cell allowing the
cell to relax or thermalize depending on desired temperature and measure the
full system stress or energy. If the atoms were to be held fixed this essentially
enforces the Cauchy—Born rule; however, the atoms should be allowed to relax to
their equilibrium positions, especially for complex lattices which can have internal
relaxation modes. If the stress is measured, finite difference perturbations about a
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desired strain and temperature state are used to extract the relevant elastic constants.
Typically, both stretches and shear strains need to be imposed to obtain the full
matrix of elastic moduli. Likewise, if the energy is measured enough perturbations
of the base configuration need to be constructed to evaluate the quadratic variation
of the energy with respect to the deformation gradient, after which the necessary
derivatives can be taken analytically. While it is conceivable to use the energy
variation at finite temperature, the Helmholtz free energy as opposed to the potential
energy must be evaluated, which is not immediately available (see the quasi-
harmonic model from the previous section). In this case, the elastic constants must
be extracted from the fluctuations of the system at equilibrium [29].

As an illustrative example, consider the direct determination of the bulk modulus
K, which is the constant of proportionality between the pressure p = é tro and
the dilational strain p = Ktre ~ K AVV for a material behaving linearly. To obtain
this elastic constant we simply stretch the periodic box equally in all directions and
take the derivative of the resulting pressure—volume curve at any particular volume
strain.

The direct determination of thermal conductivity « is more involved than
estimating elastic constants since an inhomogeneous, non-equilibrium state must
be set-up. In this case, a steady-state temperature gradient must be supported by
injecting energy in a hot region and extracting the same amount from a cold region
via: (a) rescaling velocities to achieve kinetic energy fluxes, (b) a thermostat to attain
constant temperature regions, or (¢) swapping hot atoms for cold ones. Once a region
with a linear temperature profile is established the conductivity can be estimated
by the ratio of the energy flux needed to support the gradient and the temperature
gradient. Unfortunately there are strong size effects due to the fact that the reservoir
regions are comparable in size with the regions used to determine the temperature
gradient. The usual remedy is to perform the extrapolation of i Vs i to the bulk
limit of a sequence of simulations of increasing size L using Matthiesen’s rule. This
rule assumes that the system behavior is due to independent scattering mechanisms
related to phonon interactions in the test region, e.g., Umklapp processes, and the
artificial reservoir-test transition region [30].

1.5.2.3 Green—Kubo Methods

Finally, we examine methods to determine non-equilibrium transport properties
from correlations of phase variables from equilibrium atomic systems. To begin, let
us consider a well-known example of how the fluctuations of a system are connected
to continuum transport properties. Einstein derived a relationship between the
diffusion constant for a single particle in a fluid and its mean squared displacement

(r?) = 3(x(0) - x(0)):

0

3t<r2) =D/r2Vch= ZD/V'XCd"Z 6D (1.79)
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via integration by parts and a normalized concentration f cdV = 1. Using this
Einstein relation and x = fot v dt, the constant D can be connected to a correlation:

6D = lim § (r*) (1.80)
t—00 Ot
a t t t
= lim / / v(ty) - v(tr) dtydt; = lim / v(0) - v(s) ds
t—00 Ot 0 Jo =00 [

using the symmetry and time invariance of the correlation v(z;) - v(#;). (Note the
limit is necessary to eliminate a 1 — tt‘ factor that is significant at short times.)

The Green—Kubo method provides similar estimates to those derived via Einstein
relations but is more generally applicable. As we have seen in Eq. (1.73) the auto-
correlation function .« satisfies same PDE as phase variable v. Based on this, Evans
[26] derives the general Green—Kubo relation as:

=0 = [ 0O (181)

where L is the linear response of the generic flux J to the external force F, using the
fluctuation and central limit theorems. Notice the flux auto-correlation (J(0)J(s))
must decay in a reasonable amount of time to obtain an estimate, see Fig. 1.10 for
a typical well-behaved flux correlation. For instance, the self-diffusion constant D
can be calculated from the auto-correlation of atomic velocities:

CORRELATION

TIME

Fig. 1.10 The normalized thermal flux correlation of a liquid system showing the typical decay to
statistical noise around zero
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1 [ 1 QX &
D=, /0 (v(0) ® V(1)) dr WA, ; ,; ; vi(kAs) ® vi((k + j)As) As
‘ (1.82)
where N is the number of time samples used for averaging, N, is the number of
time samples between zero and the maximum time correlations, N, is the number of
atoms sampled and averaged, and As is the sample interval. Specific Green—Kubo
formulas exist for most transport coefficients, e.g. viscosity,

Vv

v =
kgT

/0 (s(0)® 5(1) dr. (1.83)

where ¢ is a vector of off-diagonal components of stress, and thermal conductivity

V o0
K= kT2 /0 (q(0) ® q(1)) dt . (1.84)

where q is the heat flux (whose thermodynamic affinity is } thus the additional
factor of 1/T).

In conclusion, with a well-verified potential and appropriate atomic structure, we
can use molecular dynamics to predict a variety of static and transport properties via
a variety of methods with distinct advantages. For further reading see the texts by:
Allen and Tildesley [31], Evans and Morriss [26], and Frenkel and Smit [22].

1.6 Interatomic Potentials

Up to this point, we have neglected giving the specifics of the form of the interatomic
potential. As mentioned earlier, interatomic potentials are one of the most important
components of molecular simulations since they determine the system behavior.
In fact, an appropriately constructed simulation can be meaningless if the chosen
interatomic potential does not describe the physics of interest. Thus, the selection of
the interatomic models must be done with care. In this section, we describe some of
the basics of interatomic models including their form, the materials systems which
they are believed to be appropriate, as well as some of the limitations of these types
of models in simulating certain properties.

The interatomic potential describes the potential energy of the system and is
generally assumed to be a function of the interatomic positions only, i.e., & =
@({x;}) = @(R), where x; are the positions of the atoms, in order to be compatible
with Hamiltonian dynamics. Ultimately, @(R) is best described (implicitly) by
quantum mechanical calculations. For example, the use of density functional theory
(DFT) and tight-binding (TB) methods can be used to both evaluate the potential
energy and its derivatives. In the sense of classical molecular dynamics, one must
assume that the electrons move sufficiently fast (they typically do in common
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states of matter) such that they reach their ground state much faster than the
timescale of the motion of the nucleus, and thus we can evaluate the potential energy
and forces corresponding to the ground state of the electrons. This is the Born—
Oppenheimer approximation and is useful in establishing what is typically called
ab initio molecular dynamics. The drawback of this approach is computational
cost. DFT and TB can be very expensive, allowing the simulations of hundreds
(DFT) to possibly thousands (TB) of atoms on modern computer architectures,
but not the hundreds of thousands to millions of atoms required to model most
nanostructures. Thus, there is a need to describe the interatomic interactions in a
more approximate and efficient manner. This method, sometimes called empirical
potential modeling, differs from the purely ab-initio approach in that interatomic
interaction is usually constructed with functional forms based on theory, intuition,
and fits to both experimental and ab-initio data. The functional forms are often
chosen to be also numerically expedient at the cost of some of the underlying
physical motivation.

In this section, we will continue to use the notation where Latin indices will
denote the atoms. We will also use Greek letters to denote Cartesian components
so that & € [x,y, z]. Also note that we do not specifically call out atom types in the
interatomic interactions. This is implied through the interaction between the atom
numbers i, j, etc.; however, in practice, the atom types must be specified.

1.6.1 Pair Potentials

Pair potentials were first introduced as a means to model molecular systems, initially
with an emphasis on fluids but this approach has been widely used to model solids
as well. With a pair potential the potential energy can be written solely as a function
of the (pairwise) distance between the atoms:

N
DR) = > ¢(ry) (1.85)
i<j

where r; = |X; — X;|.

1.6.1.1 Lennard-Jones

The most common pair potential is the Lennard-Jones potential [32], which in its
most general attractive—repulsive form is

A B
o(r) = o (1.86)

rﬂ
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Fig. 1.11 (a) A comparison of the two classical pair potentials: the 12-6 Lennard Jones potential
and the Morse potential. The potential parameters were selected so that they have the same
minimum energy value and separation distance as well as the same curvature. These potentials are
then compared with a pure harmonic potential, highlighting the anharmonic parts of the potentials.
One thing that is important to note is that the two potentials are very similar over a wide range
of separations, making the differences between the Morse and Lennard-Jones often minimal.
However, the Morse potential is more flexible as the curvature can be changed while holding the
location and value of the minimum fixed, which cannot be done with the 12-6 Lennard Jones. (b)
The energy-separation curve for an N, molecule computed using density functional theory and fit
using a Morse potential. The parameters are D = 10.36¢eV, ry = 1.127 A, and a = 2.7 A™!

where typically A,B > 0 and m > n > 4 was proposed by Lennard-Jones [32].
One particular form of this potential has become well established, which is called
the 12-6 form of the potential:

o o
P(r) = e (r12 - rﬁ) (1.87)
where € and o are fitting parameters with units of energy and length, respectively.
The potential has a minimum of —e that occurs at 21/64 and hence ¢ is referred
to as the well-depth. The parameter o determines the equilibrium lattice spacing. A
plot of the potential normalized such that € = 1 and o = 2!/¢ is shown in Fig. 1.11.
It is interesting to note that Lennard-Jones introduced the potential as a model for
the interaction of molecules in a gas, which is where the potential has its most use.
However, this and other pair potentials are often the base for constructing more
complicated many-body potentials and thus understanding this potential does have
practical value beyond modeling gases.

1.6.1.2 Morse

In the study of the binding between two molecules in a gas, such as the O-O bond in
oxygen, Morse introduced an empirical formula for the binding energy between two



1 Introduction to Atomistic Simulation Methods 35

molecules. Similar to the Lennard-Jones potential, the Morse form is the difference
of two exponentials with different decay rates:

¢(r) = D [exp (=2a(r — o)) — 2 exp (—a(r — ro))]

where D is the binding energy (minimum) at a distance r = ry and the value a
defines the curvature for the potential well.

Figure 1.11a shows a comparison of the Morse and Lennard-Jones pair potentials
where the energy minimum and equilibrium separation were chosen to be the same
for each potential. The Morse potential was further confined to have the same
curvature as the Lennard-Jones potential at the equilibrium separation distance.
If comparing the two, it is important to match the curvature because it sets the
vibrational frequency of diatomic molecules in the bonded state. We can see that the
two potentials match very closely within this range and the discrepancy becomes
larger at larger atomic separations, although these large equilibrium separations are
of less physical importance. Also plotted in Fig. 1.11b is a harmonic potential that
also matches the three chosen parameters: minimum energy, equilibrium separation,
and curvature. The harmonic potential differs significantly from both the Lennard-
Jones and Morse potentials, most significantly by the fact that it does not have a
finite cohesive energy.

Finally, to show that the Morse potential does a good job of replicating the pair
potential of diatomic molecules, we computed the energy of an N, molecule as a
function of separation distance using density functional theory, see Fig. 1.11b. The
Morse potential was fit to the data using a simple scheme. The bonding energy and
the equilibrium spacing were chosen to match the as-computed data directly and the
free parameter a was selected to match the rest of the data as closely as possible.
Overall the fit is good; however, improvement can probably be made with full non-
linear regression, allowing all the unknowns to be adjustable.

1.6.2 Coulombic Potentials

Another classic pair potential is the interaction between two charged ions which can
be represented using the classic Coulombic interaction potential:

1 iqj
V(r;) = 1.88
(VJ) 47ep Zj: |ri _ l'j| ( )

where g; is the charge on ion i and €y is the permittivity of free space. Note that
there are no free parameters in this interaction unless a permittivity other than
€0 is used to model a background dielectric and the interaction, by itself, only
represents the behavior of well-separated atoms since at some distance repulsive
forces will dominate. Typically in the modeling of covalent materials like polymers
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and biomolecules the Coulomb potential added to the Lennard-Jones potential to
capture both long-range charge—charge and short-range van der Waals effects (see
CHARMM [33], AMBER [34], and related parameterizations).

In classical electrostatics, this interaction energy can be easily evaluated but it is
problematic in molecular systems, especially those that are conducted with periodic
boundary conditions. First, due to the summation, it is important to realize that
the energy will only have a finite value if the system under periodic boundaries
is charge neutral. Second, because of the long-ranged nature of the 1/r interaction,
the energy will be slow to converge and will do so conditionally, i.e., the value
it converges to will depend on the way the interaction energies are summed over
the periodic images. Thus, a number of ways have been introduced to evaluate the
absolutely convergent Coulomb sum and to do it efficiently. The classic method is
the Ewald sum [35], which splits the electrostatic interaction into a long-ranged
and short-ranged potentials where the short-ranged interactions are summed in
real space and converge rapidly. The long-range interactions are converted into
reciprocal space and summed, where they also converge rapidly. The sum of the
two converge absolutely and efficiently in ¢'(N*/?) operations as compared to the
O(N?) required for the direct sum. More efficient forms of the Ewald sum have
been formulated which utilize a fast-Fourier transform in the particle mesh Ewald
(PME) and particle-particle particle-mesh Ewald sum (PPPM) [36], which scale as
O(NInN).

1.6.2.1 Advantages and Disadvantages of Pair Potentials

An advantage of pair potentials is that they are relatively inexpensive. The potential
energy is summed over just pairs of atoms, as opposed to triplets or local groups,
which make the sum particularly fast. Despite this numerical advantage, pair
potentials can have a number of drawbacks. One of the classic drawbacks of pair
potentials is their inability to correctly represent the three independent elastic
constants in a cubic crystals: Cyj, Ciz, and Cy4. Pair potentials predict that the
Cauchy pressure, C,, = Cip — Cys, is zero and Poisson’s ratio is exactly 1/4. It is
interesting to note that Cj; &~ Cu4 in noble gas crystals at low pressures, suggesting
that pair potentials may be appropriate for these materials in the solid state. In
fact, Gilman has provided some fits of the Lennard-Jones potential to the noble
gas crystals [37]. However, the Cauchy pressure of most other cubic materials such
as metals and ceramics is not zero. Thus, interactions beyond simple pair potentials
are needed to accurately model most materials in the solid state.

1.6.3 The Embedded Atom Method

Since pair potentials can be insufficient to model real materials in the solid state,
there has been extensive work in developing accurate and expedient many-body
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potentials. One of the most widely used is the embedded atom method (EAM) and
its related forms. The EAM potential has the form:

=3 "¢(ry)+ Y Flp) (1.89)

i<j i

where ¢ (r) is a pair potential that describes pairwise interaction between two atoms
and F(p) is the energy required to embed an atom at site with an electron density
p. The surrounding atoms contribute to the electron density at the site i, p;, in a
pairwise fashion:

pi=Y_f(ry) (1.90)
J#i

This form requires the formulation of three different functions: ¢(r), F(p), and
f(r). The interatomic potential becomes many body in nature due to the complex
form of the embedding function F(p). However, the EAM, due to its basis in
pairwise functions, is relatively computationally efficient. First, the electron density
at each atom is computed via the pairwise form. Then, the potential energy can be
computed from the pair potential and the embedding function making the cost only
moderately more expensive than pure pair potentials; and, the many-body nature
of the interactions eliminate the many of the obvious drawbacks of pair potentials
including the zero Cauchy pressure.

1.6.4 Extensions of the EAM Formalism

The EAM formulation works well in metals where directional effects of the bonding
are minimal. This gives rise to some problems with BCC metals where the crystal
is typically stabilized by directional bonding. This, in conjunction with the desire to
model mixed covalent and metallic bonding, has lead numerous authors to present
extensions to the EAM framework. Two particular formulations which we will
discuss here have gained some use in the wider literature.

The first and by far the most popular extension of the EAM method is the
modified EAM (MEAM) [38—40]. The purpose of this generalization was to include
directional bonding and provide a general framework where both metals and
ceramics could be modeled. The MEAM is similar to the EAM in that the energy
of an atom can be formulated as a sum of pairwise interactions and an embedding
function. However, in the MEAM formalism a multibody screening function, S;; is
introduced that allows atoms between the bonded atoms to screen their interaction.
Thus, the potential energy of an atom can be written as:

d = ZS,;,d)(rzji) + ZF(Pi)

i<j i

pi = Zf("ij)

i
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Another alteration of the EAM method is the angular dependent potential
(ADP) [41, 42] to include some aspects of covalent bonding in intermetallics, which
has also been extended to include BCC metals. The potential within the ADP
formalism can be written as:

b = Z¢(rij)+ ZF(Pi) + ; Z(M?)z + ; Z(A?ﬁ)z_ é Z”zz

i<j i i iof
pi =y _fry) =y ulry)rs
J#i i#j
e D () AR S Yo
i#j a

where the Latin indices refer to the atom indices and the Greek indices refer to
Cartesian components. Typically, the functions #(r) and w(r) are simple tabulated
functions and behave similarly to that of the standard EAM, making the ADP just
slightly slower than the EAM. The p and A functions can be thought of as dipole and
quadruple functions that penalize the energy for deviations from cubic symmetry
and introduce an angular component in the potential.

In practice, the ADP potential behaves similarly to the EAM, its angular term is
generally weak and contributes to the energy only when an atom is perturbed from
a non-centrosymmetric position. The functions in the ADP can be tabulated just
like EAM and the computations are nearly as fast. However, it is unclear how much
better the ADP is in modeling metals with angular dependence in their bonding as
it has been applied to a limited number of systems.

In comparison, the MEAM formalism is able to represent both covalent and
metallic systems. One of the potential advantages of the MEAM framework is
that with the development of single component potentials, cross-potentials can be
created with a small number of parameters. This has allowed a great number of
authors to create binary compounds that include both metallic and covalent materials
like gold-silicon [43] and iron—carbon [44, 45] systems.

Despite the general formula given MEAM above, its general implementation
follows a methodology that is different from the EAM. The MEAM formula-
tion typically specifies an equation of state, relating the cohesive energy to the
equilibrium lattice constant, bulk modulus, and cohesive energy. It also assumes
specific functional forms of the embedding function and electron density functions.
These three analytical functions can then be used to numerically determine the
pair interaction function ¢. This is in contrast to the way the EAM is usually
parameterized with the pair function and electron density functions being specified
and the embedding function either being specified or determined by fitting the values
to an equation of state. The result is a set of functions that are typically tabulated
and read into computer codes with splines being used to interpolate between values.
There are certainly exceptions to these rules of thumb. Notably, the reference-less
MEAM was introduced as a tabulated form of the MEAM where the pair function
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and embedding function are tabulated and read into computer codes in similar
fashion to EAM. One of the large drawbacks of MEAM is that it can be nearly
an order of magnitude more expensive than the EAM method.

1.6.5 Other Many-Body Functions

To model covalent bonded materials, more sophisticated many-body functions are
needed. The Stillinger—Weber potential was introduced as a simple 3-body potential
to model semiconducting materials, notably silicon [46]. The intent of the three body
term was to penalize deviations from the 104° bond angle in tetrahedrally bonded
materials. This potential has the form:

D= "a(ry)+ DY barij. rixs Oy)

i<j i i k>j

D\ Pij O\ 4i ..
$a(ry) = Ae [B,.,- (“’) - (U’) }exp(,,. _UZ,..U..)
ij ij ij ijOij

2
¢3 (rij, Fik Gyk) = Aijkeijk [COS Gijk — COS Qijk,O]

Vij Vik
exp exp
rij — 4ij0ij Tik — AikOik

The two-body term is a generalized Lennard-Jones potential with and exponential
cutoff function. The three-body term is simply an energy penally for deviation from
a specified bond angle. The simplicity of this many-body potential is appealing
and it has been used extensively to model semiconductors. Parameterizations for
Si [46-48], Ge [48, 49], group III-V semiconductors [S0-55], and MoS; [56] exist
in the open literature.

One of the most popular potentials is a simple bond-order potential (BOP).
There is a general framework for this type of potential and it goes by many names
including the analytic BOP [57, 58], the Tersoff potential [59-61], or Abell-Tersoff
potential [62]. While a careful study of the literature would suggest these potentials
are all perhaps slightly different, we can combine them into one class of BOPs by
writing the potential energy as:

D = ch(rij) [A exp(—Air) — b;B exp(—kzr)]

i<j

the function f; is a cutoff function that makes the potential short-ranged and b;; is
the bond function which controls how much a third atom k affects the bond between
atoms i and j. The two exponential functions look similar to the Morse potential but
provide even more flexibility in selecting the parameters. A very general framework
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for this class of bond-order functions is utilized by large atomistic massively parallel
simulator (LAMMPS) [63] which allows for the general use of these functions as:

1
by = (1+ "¢ ™

i =Y felra)g(O) exp [A% (ry — r)™"]
ki j

2 c?
9 = Vi 1 -
8(0) = vii ( T e [d2 + (cos 6 — cos 90)2])

The Tersoff type potentials have been used extensively to model covalently
bonded materials as well as materials with mixed metallic-covalent bonding.
Tersoff originally parameterized his potential for silicon [59, 64] and Brenner
parameterized a well-known carbon potential [65]. However, a large number of
parameterizations have arisen for this type of potential. There are numerous param-
eterizations for group IVA elements including silicon [66], carbon, germanium [61],
gallium-nitride [58, 67], gallium-arsenide [57, 67], silicon-carbon [61, 68-70],
silicon-nitride [71], silicon-oxygen [72], tungsten-carbon-hydrogen [73, 74], iron-
carbon [75, 76], platinum-carbon [57], zinc-oxygen [77], gold [78], among many
others.

Another popular, more expensive and accurate bond-order type potential are the
BOPs introduced by Pettifor [79-81]. There can be some confusion as the Tersoff
type potentials are sometimes referred to as analytic BOPs, while Pettifor’s original
papers also use the term analytic BOPs. It is therefore useful to call the former
potentials “Tersoff”” and the latter BOP and avoid the use of “analytic bond-order
potentials” altogether. We refer the interested reader to the ideas behind BOPs
to a number of reviews on the subject [82-84]. These BOPs have been used to
model hydro-carbons [85], semiconductors [86—88, 88], and BCC transition metals
[73, 89-91].

1.6.6 Ionic Many-Body Potentials

In the section on pair potentials, the idea of Coulombic potentials was introduced.
These potentials are key for modeling materials where ionic bonding is important;
however, they lack the ability to describe the angular bonding present in mixed
ionic-covalent (i.e., polar covalent) materials. To address this issue, it is quite
possible to mix fix-charged pair potentials to capture the ionic nature of the bonding
and use a many-body potential to capture the angular dependent nature of the
bonding.

These types of many-body potentials are sufficient for modeling oxides as long
as the composition does not change and the oxidation state of the atoms remains
the same. However, in many materials the charge state of the ions should be change



1 Introduction to Atomistic Simulation Methods 41

as the atoms interact. The oxidation of aluminum is a classical example of such a
process where nominally charge-free aluminum comes into contact with elemental
oxygen, which bonds with the aluminum forming amorphous aluminum oxide.

This has created the need for variable charge potentials where the charge is
able to evolve in the simulations. In molecular dynamics simulations, the charge is
typically assumed to equilibrate instantaneously at each classical MD time-step to
minimize the total Coulombic potential energy. Thus, a charge equilibration step
must be taken in between each ionic step in which the positions of the atoms
are updated, which can increase the cost of performing the molecular dynamics
simulations substantially.

One set of potentials that can be grouped together are the Yasukawa and
the charge optimized many body (COMB) type potentials. These potentials use
modified form of the Tersoff potential to describe the many-body nature of the
intermolecular forces and a variable charge model of the charge on the ions.
Yasukawa originally introduced these potentials to model oxides. As an extension of
the Yasukawa potentials, the first generation COMB potentials were introduced to
improve upon the Yasukawa potentials with parameterizations of the Si—O systems
and Al-O systems. The potentials have been further improved to more accurately
model the host metal structure by incorporating bond-bending terms to capture
stacking fault energies. A newer form of the potentials, called COMB3, have
emerged and the parameterizations for the original COMB and COMB3 are being
created for a number of oxides including Al-O, Si-O, Ti—O, Mg—O and more exotic
compounds like Ti-N.

An alternative variable charge anybody potential that is used extensively is the
reactive force field (REAX) potentials. The REAX type potentials are a very general
potential designed to be applicable to many systems and is therefore the most
complicated potential discussed here. The potential was originally developed by van
Duin et al. to describe bonding in hydro-carbons [92], but is has been subsequently
extended to model a wide range of solid state materials [93-97].

1.7 Available Software and Potentials

There is a wide variety of codes available to construct atomistic/molecular con-
figurations or structures, perform atomistic simulations, as well as visualize and
post-process molecular simulations. Furthermore, as the interatomic potential is
crucial for a successful atomistic simulation, there are a number of available
potentials in various databases. Here, we provide the reader with an overview of
the available software, codes, and potentials that are commonly used in atomistic
and molecular simulations. This overview is by no means exhaustive.

To begin an atomistic or molecular simulation, an initial or starting configu-
ration of the material or structure of interest is required. Many researchers opt
to create their own starting atomic or molecular configurations using in-house
programs that are not publicly distributed. However, many common molecular
simulation codes can successfully construct some starting structures. Among those
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are LAMMPS [98], visual molecular dynamics (VMD) [99], Avogadro [100],
and GROMACS [101, 102] (among many others). In addition to the starting
configuration, one or more interatomic potentials must also be chosen.

The use of interatomic potentials requires accessing both the parameters for
the potential itself and a code that has implemented the specific interatomic form.
LAMMPS [98], which is distributed freely by Sandia National Laboratories, is a
widely used molecular dynamics code that has a large majority of the potentials
discussed here. It has the capability to implement all of the empirical potentials
discussed in this chapter with full capability except for the BOP potentials as
LAMMPS has not implemented a form that can handle bonding of the transition
metals. EAM potentials in LAMMPS are read in as tables as described on the
LAMMPS website [63] and generally does not provide the ability to use analytic
EAM potentials. The freely available LAMMPS distribution has a large number
of potential files included with the simulation package including COMB, REAX,
EAM, Tersoff and Stillinger—Weber, amongst others.

One of the difficulties many users faces is getting parametrizations of the
potentials in the literature. This is particularly challenging when one notes the
frequencies of typographical errors in data in published manuscripts. This difficulty
is compounded by the fact that many potential developers frequently need to update
their parameterizations and thus published values may not be up to date and it
becomes a challenge for users of interatomic models to keep up to date with
developers. This has created the need to store and disseminate interatomic models
and there are now a few locations where potentials can be found. First, the National
Institute for Standards and Technology has a program underway for cataloguing
and distributing interatomic models where users can readily download parameters
for interatomic models [103, 104] (http://www.ctcms.nist.gov/potentials/). Another
resource that is available for obtaining interatomic model parameterizations as well
as testing them is through the knowledge base of interatomic models (KIM) [105,
106] (http://openkim.org/). In addition, we direct the reader to the EAM param-
eterizations at the website http://sites.google.com/site/eampotentials/. In addition,
one of the developers of REAX, Adri van Duin, distributes parameterizations of the
potentials he develops. These parameterizations and files can be obtained by directly
contacting his research group (http://www.engr.psu.edu/adri/).

There is a growing list of available molecular simulation codes or software
available. LAMMPS [98] is one of the most widely used codes to conduct atomistic
and molecular modeling [63]. This simulation software is widely used by the
community especially in the simulation of condensed matter. However, it has the
capability to also model polymers and other soft matter. It has a large number of
contributors from both government laboratories and academic institutions. It can
conduct both molecular dynamics and molecular statics and includes accelerated
MD techniques and methods to find minimum energy paths. One advantage of
LAMMPS is its ability to be easily modified or extended to encompass capabilities
not included in the standard release. That said, the LAMMPS software package
includes a large collection of capabilities to model and analyze a variety of systems.

There are a number of other molecular dynamics codes that are open-source and
freely available. IMD [107, 108], The ITAP Molecular Dynamics Program [109],
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is a freely distributed and can handle a number of potentials and thermodynamic
ensembles and is intended to simulate condensed matter. Many of the other widely
used MD codes target primarily soft matter simulations, especially biological
systems. Two worth noting are NAMD [110] (http://www.ks.uiuc.edu/research/
namd/) and GROMACS [101, 102] (http://www.gromacs.org/).

After successfully performing an atomistic simulation or modeling approach, the
results can be extracted and presented in a number of useful formats. For example,
data files containing the thermodynamic output or simulation information, such as
stress—strain or energy—volume, can be obtained, but one of the more useful outputs
of an atomistic simulation is the atomic data files. Usually, the atomic data files
contain information about each atom in the simulation (such as position, energy,
bonds, etc.) and the simulation cell at a given time-step of the simulation. Most
atomistic simulations software that is publicly available allows a user to specify the
time intervals for output of the atomic configuration data. There is a large variety
in the types of information that can be included for each atom in these files based
on the user’s need. Furthermore, many researchers have developed post-processing
algorithms for calculating a myriad of additional atomic information not directly
output from the simulation software.

One of the most common visualization tools for molecular dynamics simulations
is VMD [99], especially for soft materials. Developed within the Theoretical
and Computational Biophysics Group at the University of Illinois at Urbana-
Champaign, VMD was first applied to biomolecular systems, but has since expanded
greatly for use into other atomistic research areas, such as nanomechanics of
crystalline systems. VMD is capable of dealing with large atomistic datasets
from a variety of standard file formats and is able to output professional quality
images in a large array of formats. It also has extra features for data analysis,
GPU-accelerated computing, and constructing common atomistic structures, such
as carbon nanotubes and graphene. Another publicly available visualization tool
is Paraview [111, 112]. Developed through a collaborative effort by Kitware,
Advanced Simulation and Computing, Sandia National Laboratories, Los Alamos
National Laboratories, and Army Research Laboratories, Paraview provides users
with an open-source data analysis and visualization tool that is also designed to
run on multiple platforms. Large datasets and the ability to deal with a variety of
file formats including finite element data also make Paraview a beneficial tool for
the atomistic simulation community. AtomEye [113] is another publicly available
software that has been leveraged extensively within the materials nanomechanics
community. Developed for quick visualization and analysis, AtomEye has success-
fully incorporated many useful abilities and features that make it valuable to any
atomistic simulation researcher. AtomEye utilizes fast rendering capabilities and
can read in some of the more common file formats from atomistic simulations. More
recently, researchers within the nanomechanics community have been using Open
Visualization Tool (OVITO) [114].
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1.8 Atomistic Simulation Analysis and Visualization

For researchers in the nanomechanics community, a variety of defects are commonly
studied or encountered in atomistic simulations. In the study of defects in materials,
the dimensionality of the defect is used to help separate and identify the various
types of defects. For example, there are zero-dimensional defects (e.g., point defects
such as vacancies and interstitials), one-dimensional defects (e.g., dislocations),
two-dimensional defects (e.g., grain boundaries, twins, and other interfaces), and
three-dimensional defects (e.g., embedded particles and voids). As defects are
paramount in material behavior, correctly identifying and quantifying the role of
defects is important. In the discussion below and shown in Fig. 1.12, we use one
of the previously mentioned visualization software (OVITO) [114] to illustrate how
a grain boundary and a dislocation can be identified and visualized from atomistic
simulations using different scalar methods. The different methods or metrics that
will be used to identify the defects are atomic potential energy, centrosymmetry, and
the common neighbor analysis (CNA) method. Atomic potential energy is calcu-
lated directly from atomic positions and the interatomic potential, centrosymmetry
provides insight into the symmetry of the atomic neighborhood around each atom,
and the CNA method classifies different crystalline structures with integer values
(e.g., FCC is 1, HCP is 2, and non-12 coordinated atoms are 5). Please refer to the
chapters on atomistic simulation analysis and visualization for further discussion on
these scalar metrics and their usefulness.

As shown in Fig. 1.12, scalar metrics can be useful for identifying various defects
and different metrics provide different information about the defect or structure.
In Fig. 1.12a—c, a grain boundary is shown where atoms are colored according to
(a) potential energy, (b) centrosymmetry, and (c) the CNA method. Notice how
each metric provides various levels of structural or energetic information about the
atoms, and that the perfect FCC lattice away from the grain boundary is clearly
delineated from the atoms in the grain boundary. This is true for a dislocation as
well, as shown in Fig. 1.12d—f. In this case, a perfect dislocation emitted from a
triple junction in nanocrystalline copper has dissociated into two partial dislocations
bounding a short stacking fault. The stacking fault is clearly identified using the
CNA method in Fig. 1.12f as the HCP atomic region (light blue), where the two
bounding partial dislocations are identified at non-12 coordinated (red). In addition
to these commonly used metrics, additional metrics can also be calculated for each
atom based on a local neighborhood calculation to provide estimates of deformation,
rotation, and strain fields, see chapter on continuum metrics. Other methods to
extract more precise information about defects are available, see chapter on analysis
strategies.
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Fig. 1.12 (a)—(c) A X5 (210) grain boundary in copper where atoms are colored according to
(a) energy, (b) centrosymmetry, and (c¢) CNA. (d)—(f) A dislocation within a nanograined copper
structure where atoms are colored according to (d) energy, (e) centrosymmetry, and (f) CNA
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1.9 Summary and Applications

In this chapter, we have presented some of the basics of atomistic simulations.
Notably, we have discussed both molecular statics, which involves searching for
extrema on a potential energy landscape, as well as molecular dynamics, which
directly integrates the equations of motion such that the atoms sample phase space
in order to reproduce the statistical averages associated with the corresponding
thermodynamics ensemble. We have investigated how the information obtained
in molecular dynamics can be connected to thermodynamic quantities at the
macroscale as well as how to visualize and analyze atomic level data. However, due
size limitations for this volume, it is not possible to cover all aspects of atomistic
simulation and we have necessarily skipped many important topics which the reader
can find in more detailed books dedicated to atomistic modeling [21, 22, 31]. In the
rest of this section, we will point out some other atomistic-based methods that we
have omitted in the preliminary sections of this chapter. Then we highlight some of
the uses of atomistic modeling in nanomechanics and comment on how atomistics
fit into multiscale modeling in terms of connections with other length scales. Finally,
we provide a short overview of some of the available software and codes to perform
atomistic simulations.

1.9.1 Applications to Nanomechanics

As mentioned in the introduction to this chapter, atomistic methods are poised to
play a key role in simulating the mechanics of materials at the nanoscale since
the length-scales of atomistics, which range from angstroms to about a hundred
nanometers, covers the length scales of interest in nanomechanics. Here, we will
attempt to point out a few areas where atomistics have been used to simulate
nanomechanics. We note from the onset that this list will necessarily be incomplete
and probably will miss some important application areas, but such oversights cannot
be avoided.

Atomistic simulations have been and continue to be used extensively to investi-
gate the mechanics of nanowires and nanowhiskers [115, 116]. These nanostructures
are usually less than 100 nm in diameter and have a large aspect ratio, i.e., the ratio
of the length to diameter. Nanowires have been proposed to be used in a number
of applications including nano-electromechanical systems. Atomistic simulations
have been used to investigate the mechanics of semiconductor, metallic as well as
insulating nanowires. Similar to nanowires, the mechanics of nanoparticles have
also been investigated extensively using direct atomistic methods. Nanoparticles
can be viewed as crystals that are of nanoscale size (less than 100 nm) with similar
dimensions in all directions. Atomistics have been useful in describing both the
mechanical and structural properties of nanoparticles.

Recently, the mechanical behavior of nanoporous metallic foams has also been
studied using atomistics. These foam nanostructures are composed of both solid
ligaments and ligament junctions, in addition to the open pores. Often, the pores
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are not isolated and form a bicontinuous topology. In particular, the role of
nanostructure and surfaces on the strength and mechanics has been highlighted
with recent atomistic efforts [117]. In related studies, the interaction of nanoporous
metal-organic frameworks with fluids has been evaluated with grand canonical
(open system) molecular dynamics, see, e.g., [118].

Atomistic simulations have also been used to investigate the nanoscale origins of
fracture [119] and plasticity [120] in general. Atomistics can be used to investigate
dislocation nucleation, see Chap. 12, or dislocation mobility for use in discrete
dislocation dynamics, see Chap. 2. In addition, atomistics can be used to directly
investigate dislocation core effects as well as dislocation interactions. Similarly,
atomistic methods can be used to investigate the local stress fields around cracks
or how they respond to applied stress intensity factors.

Grain boundaries in metallic materials have received significant attention from
the atomistic simulation community. Many of these studies have focused on high-
lighting the nanomechanics of grain boundaries under various loading conditions
and as a function of structure and composition in a variety of systems. Atomistic
simulations have proven to be a valuable tool to study and potentially predict inter-
facial mechanics at the nanoscale. Furthermore, the stability and thermodynamic
properties of grain boundaries have also been investigated with atomistics.

Finally, we will point out where atomistic methods are used in this book.
Chapters 5 (Quasicontinuum), and 8 all present methods in which an atomistic
domain is directly coupled with a continuum region which helps extend the size
of the atomistic region beyond the nanoscale. Chapter 6 also presents a review of
accelerated timescale methods applied to atomistic simulations. Chapter 10 presents
methods to visualize data from atomistic methods as well as identify atomistic
structures and Chap.9 describes a method to analyze atomistic data and extract
continuum metrics. Chapter 12 uses atomistics to model dislocation nucleation in
nanowires and Chap. 13 uses atomistics as the basis for deriving a new quantum
crystal plasticity model. Chapter 16 uses atomistics to investigate the fundamentals
of the lithiation if nanoscale silicon and Chap. 17 uses atomistics to investigate the
properties of thin liquid films at the nanoscale.
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Chapter 2
Fundamentals of Dislocation Dynamics
Simulations

Ryan B. Sills, William P. Kuykendall, Amin Aghaei, and Wei Cai

2.1 Overview

When crystalline solids undergo plastic deformation, line defects known as disloca-
tions move, multiply, and react with one another. The overall mechanical properties
of the crystal in this plastic regime are governed by these dislocation processes.
Dislocation dynamics (DD) is a modeling approach that aims to simulate the motion
and interaction of these dislocation lines to gain insights concerning the mechanical
properties of the material.

Dislocation lines are defects whose core widths are at the scale of the crystal
lattice. The length scale over which dislocation structures evolve is, however, many
orders of magnitude larger than the interatomic distance. A classical example is the
formation of dislocation cells; at moderate to large amounts of plastic deformation,
dislocation networks are known to form cellular structures, with an average cell
size on the order of 1 um (see Fig.2.1a). Hence, any model which hopes to
inform our understanding of bulk plastic deformation—for example, understanding
the temperature dependence of the stress—strain curves shown in Fig. 2.1b—must
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Fig. 2.1 Examples of dislocation plasticity. (a) Cellular dislocation structure in single crystal
copper after tensile loading in the [1 1 1] direction at —90°C and (b) stress—strain curves for single
crystal copper at various temperatures. Reproduced from [48] with permission from Elsevier

simulate a material volume above this length scale. Using an atomistic approach
would require the simulation of more than 10'* atoms, a simulation size which is
prohibitively expensive even for the most modern computational tools. This gap in
scale necessitates a new model at the so-called mesoscale: dislocation dynamics.

The idea behind the DD approach is that because plastic deformation is domi-
nated by the motion and interaction of dislocation lines, one only needs to consider
the dislocation lines, rather than the locations of all of the atoms, to understand the
plastic behavior of a material. Taking such an approach enables simulations with
length scales of 10 um and time scales of 1 ms. As with all mesoscale approaches,
DD requires the input of multiple physical models to describe the various behaviors
of the dislocation lines, meaning that much information must be provided either
from experiments or more fundamental models. Unlike other mesoscale models of
plasticity which consider the dislocation density in terms of a homogenized field, in
DD dislocation lines are treated explicitly so that individual dislocation—dislocation
interactions can be properly captured.

Much of the theory that feeds into the models that describe the dislocation lines
has been established for many decades, as has the concept of DD itself [34, 53].
However, only recently have large-scale simulations been made possible with the
inception of modern computational tools. Despite these many advances, DD remains
a challenging tool to use, often requiring hundreds of computer cores for a single
simulation of a short duration of physical time relative to experiments.

The remainder of the chapter will be organized as follows. First, in Sect.2.2 we
will discuss the basic features of the DD formulation. In Sect.2.3, we will then
discuss how to run a DD simulation all the way from inputs to outputs, and show
a few examples. Section 2.4 will discuss DD’s place in the hierarchy of material
models. Finally, Sect. 2.5 will present topics of current research and challenges that
the DD community need to overcome to enable more widespread use of the tool.
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2.2 Fundamentals

In order to simulate the motion and interaction of dislocation lines, a number of
algorithms, rules, and procedures have been developed. In this section, we break
these features into two groups. First, we discuss the most basic ingredients necessary
to conduct a DD simulation: how driving forces are exerted on dislocations (2.2.2.1),
how to determine dislocation velocities given these forces (2.2.2.2), discretization
and adaptive remeshing of the dislocation lines (2.2.2.3), time integration of the
equations of motion (2.2.2.4), and how dislocations can collide and react (2.2.2.5).
We will then introduce more advanced aspects of DD simulations: how to handle
dislocation junctions and intersections (2.2.3.1), different types of boundary condi-
tions (2.2.3.2), how screw dislocations can change their glide plane through cross-
slip (2.2.3.3), and a brief discussion of two-dimensional DD simulations (2.2.3.4).
These features are presented in the flowchart shown in Fig. 2.3. We begin, however,
with a discussion of the overall problem formulation.

2.2.1 Problem Formulation

The basic idea behind DD is to embed the physics of dislocations into a set of
governing equations that can be solved for the positions of a network of dislocation
lines, given an initial dislocation configuration, boundary conditions, and loading
conditions. The positions of the lines are described by the vector r(s, ), where s
is a scalar parameter dictating the location along the lines, as shown in Fig.2.2a,
and ¢ denotes time. Because we seek a tool that can obtain a solution in arbitrary
settings (e.g., many dislocation lines loaded multiaxially), we will need to discretize
our system in both space and time, and employ numerical methods to solve the
governing equations. Figure 2.2b shows an example of discretization in space.

As we will discuss, many things can exert forces on dislocations. These forces
can be broken into drag forces, which resist dislocation motion, and driving forces,
which promote it. Additionally, dislocation lines are known to have effective
masses, giving rise to inertial forces [51]. In many crystalline materials under a
broad range of conditions, however, drag forces intrinsic to the crystal lattice are
orders of magnitude larger than the inertial forces, making dislocation motion over-
damped [51]. This means that in the overall equations of motion, we can neglect
inertial terms altogether, and simply require that the total driving force balance the
total drag force, i.e.,

Z Fdrag (Vv S) + Z Fdrive(s) =0 (2.1)
where v is the dislocation velocity

(s, 1)
V=

o 2.2)
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r i(t)
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Fig. 2.2 Position of a pair of dislocation loops at time ¢. (a) Continuous representation described
by position vector r as a function of parameter s. (b) Discrete representation using node-based
discretization (see Sect. 2.2.2.3) described by position vectors of nodes r;

and the summations are over all drag and driving force contributions. Usually, in
dislocation dynamics, Eq. (2.1) can be explicitly solved for v and restated as

v = M(F™ 2.3)

drive

where F% . [r(s), 0ext,...] = D Fasive is the total driving force as a function of
parameter s, dependent upon the dislocation position r(s), the externally applied
stress 0 .x, and any other features which exert driving forces. The function M(-),
which provides the velocity given a total driving force, is called the mobility law.

The final governing equation of motion can be written as

ar(s,
r(ast t) = g [I'(S), oexta . ] ’ (24)

where g = M (Ffﬁ‘ive [r(s), Oexts - - .]) is an operator which computes the velocity

v(s) from a given dislocation structure r(s) and loading condition.

2.2.2 Basic Features

A flowchart depicting the major steps in a DD simulation is presented in Fig.2.3.
We will now discuss each of these steps in turn.
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Fig. 2.3 Flowchart showing
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2.2.2.1 Driving Forces

Many features of crystalline solids can apply driving forces to dislocation lines.
These forces can be divided into two categories: forces arising from local stress
fields (Peach—Koehler forces) and forces due to dislocation self interaction.

To determine the driving force exerted on a dislocation by a stress field o (s)
applied at position s, the Peach—Koehler expression is commonly used. It gives that
the force per unit length, F (s), is [42]

F(s) = (0 (s)-b) x & (s), (2.5)
where b is the Burgers vector of the dislocation and & (s) is the direction of the

dislocation line at s (which varies with position for curved dislocations). Hence,
any feature of a crystalline solid that results in a stress field can exert forces on
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dislocations. The most common sources of stress in dislocation dynamics simula-
tions are applied stresses due to loading of the simulation cell and stresses from other
dislocations, which decay as 1/r, where r is the distance from the dislocation [1].
The latter means that to determine the total force on a dislocation segment, we must
consider the force exerted by every other segment in the simulation cell. This gives
rise to an &'(N?) computation if all pair-wise interactions are computed explicitly (N
is the number of segments), and makes DD difficult to implement efficiently. Other
possible origins of stress include solute atoms, precipitates or inclusions, and free
surfaces or secondary phase boundaries. The material system of interest will decide
which of these must be considered.

With nanomaterials, free surface effects are especially important, since the small
specimen size means every dislocation is near a free surface. For this reason, we will
briefly discuss the nature of forces generated by free surfaces. In elasticity theory, for
simplicity, stress expressions for dislocations are usually derived in a homogeneous,
infinite medium. When these expressions are then used in finite media, they result
in nonzero traction forces at the surfaces, violating the traction-free boundary
condition at the surfaces. To correct this, a set of so-called image tractions must
be applied to the surface. These image tractions render the surface traction-free, but
additionally produce their own image stress field, which can also exert forces on
dislocations. Thus, the problem of a finite solid requires that the image stresses be
determined for the given geometry and distribution of dislocations; this generally
has to be done numerically, and we defer further discussion of image solvers
(which compute the image field) to Sect. 2.2.3.2. We will discuss an example with a
cylindrical specimen in Sect. 2.3.5.

The above discussion applies to forces arising externally from the dislocation
line. In addition to these effects, the dislocation line can exert a force on itself. This
self-force can be thought of as resulting from the energy of the dislocation line, and
has two contributions. The first contribution is elastic, and can be computed using
a number of approaches, such as the non-singular theory of dislocations [15]. The
second contribution is due to nonlinear interatomic interactions at the dislocation
core, and we shall refer to it as the core force. Core forces can influence the
dislocation line in two ways. First, the core force will try to reduce the length of
the dislocation line, since the total core energy scales with the line length. Second,
because the core energy varies with line character (i.e., edge and screw dislocations
have different energies), the core force will exert a torque on the line, trying to
rotate it into its orientation of lowest energy. One approach for determining the core
force is to derive it from the core energy. The core energy per unit length, E., of
a dislocation line can be calculated using atomistic or first-principles methods as
a function of the character angle 8 (the angle between the Burgers vector and line
direction). Alternatively, it is common in DD simulations to use an approximate
analytical model to describe the core energy. For example, in the deWit and Koehler
model [25] the core energy varies as

E.(0) = &b (1 b in?o + cos? 9) (2.6)
v
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where v is Poisson’s ratio, b is the magnitude of the Burgers vector, and & is a
parameter that controls the magnitude of the core energy; this is the same way
the line energy varies according to elasticity theory for an isotropic solid. Often
& is approximated as & &~ o, where u is the shear modulus and « is a material
parameter in the range 0.1 — 0.5 [45]. Given this function E.(6), the core force
can be determined using a number of approaches. Our preference is to calculate the
core force after the dislocation lines have been discretized, and hence we postpone
further discussion of core forces until Sect. 2.2.2.3.

2.2.2.2 Mobility Laws

As we discussed in Sect.2.2.1, mobility laws serve as constitutive equations in
dislocation dynamics simulations, relating the total driving force per unit length
acting on a dislocation line to its velocity. Since the movement of a dislocation
is strongly material dependent, mobility laws must be constructed with a specific
material system in mind [9, 14]. The mobility of a dislocation line is commonly
dependent upon the dislocation character, direction of motion, the crystallographic
plane on which the dislocation can move conservatively—known as the glide
plane—and the temperature. The goal of a mobility law is to express these
dependencies in terms of an explicit function for the velocity given a total driving
force per unit length. Usually, this means determining the drag force exerted by the
crystal lattice on a dislocation. In this section we explain how mobility laws can be
obtained, and provide an example of a mobility law for face-centered cubic (FCC)
crystals.

Linear mobility laws are commonly used. The viscous drag forces experienced
by dislocations in crystalline solids, due, for instance, to phonon dispersion, are
often proportional to the dislocation velocity [45]. Hence, a linear mobility model
can be written as

M(F) = 2 (s) - Fid(s), 2.7)

where Z(s) is a drag coefficient tensor (with dimensions [mass]/([length][time]))
and is strongly material dependent. The components of Z(s) account for the various
features affecting the dislocation drag coefficient. If more than one mechanism
exerts linear drag on a dislocation, the net drag coefficient is the sum of the drag
coefficients for each mechanism.

As an example of a linear mobility law, we consider the case of FCC crystals
(using the same model as [12]). Excluding the possibility of cross-slip (to be
discussed separately in Sect.2.2.3.3), dislocations in FCC metals are confined to
glide on {111} planes; climb motion out of the glide plane requires the diffusion
of vacancies into or out of the core, and is generally negligible at temperatures less
than one-third of the melting point [42]. This glide confinement is a reflection of the
dissociated core structure in FCC metals. The glide constraint can be enforced by
setting the components of % coupled to out-of-plane motion to very large values.
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This can lead to an ill-conditioned system, however, and it is numerically easier to
project out climb motion by simply zeroing the velocity components in the direction
of the glide plane normal; we will represent motion within the glide plane with the
superscript 8. Additionally, we often find with FCC metals that the drag coefficient
is isotropic with respect to dislocation character (screw versus edge). Therefore, we
can write the FCC mobility law as

v=v:= Fg, (2.8)
B

where B is the isotropic drag coefficient and is typically between 10~ and 10~*
Pas for FCC metals [52]. With other materials, such as body-centered cubic (BCC)
crystals, the drag coefficient is not isotropic and the glide constraint is not as strictly
obeyed (for screw or near-screw dislocations), so that % will have to take a more
complex form [12].

In many settings, a linear mobility law is inappropriate. For example, at low-
to-moderate temperatures with BCC metals, the motion of screw dislocations is
a thermally activated process; it occurs by the formation and movement of so-
called kink pairs in the dislocation line. In this case, thermal activation theory
should be used [52], which generally leads to a nonlinear mobility law. Nonlinear
mobility laws have also been proposed to incorporate material effects besides lattice
friction. For instance, solute atoms are known to exert drag forces on dislocations.
A number of researchers have proposed nonlinear mobility laws that incorporate
these effects [62, 95], and DD simulations have been conducted by approximating
solute drag as a constant “back stress” which is subtracted from the driving
force [69] (i.e., a ramp function mobility law).

2.2.2.3 Line Discretization and Remeshing

To employ numerical methods, we need to discretize the dislocation lines so that
the overall dislocation structure is characterized by a set of nodes (or segments) and
a data structure defining the connectivity between them. Discretization allows us
to focus on a finite number of degrees of freedom (DOF), rather than an infinite
number of points along the dislocation lines. Since dislocation lines can change
their shape significantly during a simulation, and the total length of dislocation
lines often increases, we also need to implement remeshing algorithms to modify
the discretization when necessary. Dislocation lines can be discretized in a number
of ways. Across the major DD codes, there are two general approaches to line
discretization: lattice-based discretization and node-based discretization. Here we
will discuss both. Major features of the two approaches are shown in Fig. 2.4.

In the Ilattice-based approach (used in the codes microMegas [24] and
TRIDIS [103]), a grid of computational points, i.e., a lattice, often with a simple
cubic structure of spacing a, is predefined throughout the simulation cell. Based on
the structure of this lattice, a finite set of dislocation orientations is then selected
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Fig. 2.4 Schematic depictions of (a,b) lattice-based and (c) node-based discretization. (a) The
lattice grid used to define the segment directions t; and movement directions d;. (b) Remeshing
when a segment exceeds twice the average length /, and response of pivot nodes after a time step
At is taken. (c) Nodes are inserted (bullseye nodes) when [ > [, or A > Ap.y, and removed
(unfilled circles) when ! < [, or A < A, with the area shrinking (dA/dt < 0)

and only these orientations are considered, as shown in Fig. 2.4a. These orientations
define a unique set of straight line segments used to represent the dislocation lines
(denoted as t; in Fig. 2.4a). Dislocation motion is only considered in the direction
orthogonal to each of these orientations (denoted as d; in Fig.2.4a). In this way,
the segments are the degrees of freedom of the model. As the dislocation structure
evolves, two different configurations of the dislocation lines are considered. The
actual configuration is stored as the segments move continuously through space.
When computing interaction forces and considering dislocation junctions, however,
the actual configuration is projected onto the nearest set of lattice grid points in
order to simplify the computations. Remeshing proceeds by dividing segments
into smaller segments connected by “pivot segments” based on the user-specified
average segment length, /. The pivot segments initially have zero-length and extend
along the direction set by the motion of their neighbors, allowing segments of
new orientations to form, as depicted in Fig.2.4b. In the lattice-based approach,
the fidelity of the discretization is controlled by the spacing of the lattice grid, a,
the number of line orientations allowed, and by the specified average dislocation
segment length, /.

With the node-based approach, dislocation lines are discretized according to
a set of nodes and shape functions that connect the nodes, with the simplest
case being linear shape functions that result in straight line segments. In this
approach, any dislocation orientation is allowed and dislocation segments can move



62 R.B. Sills et al.

in any direction (consistent with their mobility law). In contrast to lattice-based
discretization, in the node-based approach the nodes are the fundamental degrees of
freedom. Only a single dislocation configuration is considered at a given time; the
same configuration which is evolved in time is used for force calculations. Node-
based codes have been written using linear segments (MDDP [64], NUMODIS [73],
ParaDiS [5], PARANOID [89]) and cubic splines (PDD [35]) to connect the nodes.
Given the greater versatility of the node-based approach, a larger set of remesh rules
must be specified. For example, in ParaDiS two criteria are used for remeshing:
segment lengths and the area enclosed by adjacent segments [9]. Both minimum
(Zmin, Amin) and maximum (Inax, Amax) Values are specified for each, and nodes are
added or removed to bring the dislocation structure into compliance with these
ranges (see Fig.2.4c).

In order to evolve the dislocation structure, we need to compute the forces
acting on the segments or nodes. Generally, the forces per unit length discussed in
Sect. 2.2.2.1 vary with position along the lines. To get the total force acting on node
or segment i, we need to integrate the force along the line. In this respect, lattice-
based and node-based discretization differ slightly. With lattice-based models, since
the segments are the fundamental degrees of freedom, we need to calculate the total
force acting on a segment with the line integral

f; = /C | F(s)dL(s) 2.9)

where C; denotes segment i. Note that a lower case f denotes a force, and an upper
case F denotes a force per unit length. Node-based codes, on the other hand, require
the total force acting on the nodes. This is determined in terms of the line shape
function NV (s) which describes the contribution to node i from segment j as

/= / N/(5)F(s)dL(s). (2.10)
Gj

For example, with linear segment j connecting nodes i and &, N{ (s) = swheres =0
at node k and s = 1 at node i. The total force on node i is then the sum of the
contributions from each of the segments it is attached to:

f,=> f. 2.11)
J

These expressions are valid if the force per unit length acting along the line
is known. However, in the case of the core force, determining the force per unit
length is not very straightforward. Instead, it is easier to derive the force acting on a
segment or node directly from the core energy per unit length expression, E.(6) [9].
Given E.(0), we can compute the total core energy E.q. for a given discretized
dislocation structure by summing the contribution from each segment, and then find



2 Fundamentals of Dislocation Dynamics Simulations 63

the corresponding nodal or segment forces with

g = e (2.12)
Bri

where r; is the position vector of node or segment j.

Summing the Peach—Koehler and self-force contributions gives us the total force
acting on a node or segment. However, mobility laws are usually written in terms
of the force per unit length acting on the line. The force per unit length needed to
evaluate the mobility law can be determined with

fi
I

where . is a line length that depends on the discretization method. For the lattice-
based approach, .%; is simply the length of segment i, .%; = I;. With node-based
discretization, the following approximation' is commonly used: .%; = Y, lx/2,
where [ is the length of the segment connecting nodes i and k and the summation
is over all nodes k connected to node i.

Now we have discretized the dislocation structure, and discussed the calculation
of driving forces and subsequent velocity determination through the mobility law.
Next we need to focus on evolving the positions of the nodes or segments, and the
underlying dislocation structure they represent, in time.

F;, = (2.13)

2.2.2.4 Time Integration

As shown in Sect. 2.2.1, dislocation line motion is governed by a partial differential
equation (PDE) in time (Eq.2.4). After discretizing the dislocation lines, we can
write this governing equation in terms of the motion of the nodes or segments,
converting the PDE into a coupled system of N ordinary differential equations
(ODEs). For example, in the nodal representation we have

dl'i
dt

where r; is the 3 x 1 position vector of node i and brackets denote the set of all
nodes. In DD, we solve these ODEs using time integration, an approach where the
solution is found over a series of sequential time steps. Many methods exist for
time integrating coupled systems of ODEs, and in this section we discuss a few
in the context of DD. In the following, for clarity we will assume {rj} is the only
argument of g(+).

The simplest time integration scheme is the forward Euler method, which has the
following form:

=g ({rj}. oex...) (2.14)

! A more rigorous definition can be written in terms of the line shape functions [9, 35].



64 R.B. Sills et al.

it =1k 4 Arg, ({r]k}) ) (2.15)

Superscripts denote the time step number and At is the time step size. In this scheme
we assume that the nodes maintain their current velocities over the duration of
the time step, and update their positions accordingly. The forward Euler method is
commonly used in DD simulations. One issue with this approach is that the error it
introduces is unknown (without additional numerical methods). All time integration
schemes introduce error and we must ensure this error does not overwhelm the
solution. A simple method that provides an error estimate is the Heun method:

gt =rf+ Arg; ({rf}) (2.16a)
At

i =+ D [e () e ({5 (2.16b)

e = max ||Irf ;| — | (2.16¢)

Eq.(2.16a) is the forward Euler “predictor” and Eq.(2.16b) is the trapezoidal
method “corrector.” The corrector can be applied arbitrarily many times using a
fixed-point iteration, with the second subscript denoting the iterate number, until
the error estimate of Eq.(2.16c) falls below some user-specified tolerance. If the
solution does not converge in a prespecified number of iterations, the time step must
be reduced and the method applied anew. Note that in addition to providing an error
estimate, the Heun method is globally second order accurate, meaning the solution
converges as ¢ (At?), whereas the forward Euler method is only first order accurate,
O'(At). The Heun method is the default time integrator in ParaDiS.

Time integration turns out to be a challenging problem in DD, and is an active
area of research. We defer discussion of more advanced topics, such as implicit time
integration and subcycling, to Sect. 2.5.

2.2.2.5 Dislocation Collisions

When dislocation lines collide, they can react and form junctions or annihilate.
The resulting junction formation and annihilation events can significantly influence
the evolution of the dislocation structure. Hence, detecting and handling collision
events reliably is important. To detect the collision of dislocation lines, a number
of approaches have been developed. The simplest is a proximity-based algorithm,
which assumes two lines have collided if they come within a user-defined minimum
distance of each other. This approach can miss collisions, however, if dislocation
lines are displaced too far in a time step. More advanced algorithms can safeguard
against missing collisions [96]. Once a collision is detected, the appropriate
topological changes must be made. The conservation of the Burgers vector must be
invoked to determine the Burgers vectors of resulting segments. For instance, if two
segments with opposite Burgers vectors collide they will annihilate with each other.
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Fig. 2.5 Schematic showing the process of dislocation line collision, the zipping of a junction,
subsequent unzipping, and then final dissolution after the dislocations cut each other. The cutting
results in the formation of a jog and a kink

2.2.3 Additional Aspects

The fundamentals presented in Sect. 2.2.2 provide the basic toolset necessary to run
a simple DD simulation. For example, the Frank—Read source simulations presented
in Sect.2.3.5.1 can be conducted using these methods. More advanced simulations
require additional details, some of which are presented in this section.

2.2.3.1 Junctions and Dislocation Intersections

The discussion of dislocation collisions in Sect.2.2.2.5 does not consider how to
handle the formation and dissolution of dislocation junctions; we will elaborate
these details here. When two dislocation lines moving in different planes collide,
one of two things may occur. They may cut through each other and continue their
motion, potentially producing Burgers-vector-sized steps on the lines known as jogs
or kinks (depending on whether they are out of or within the glide planes, see
Fig.2.5). Or, they may zip together and react to annihilate or form a junction. Even
if a junction does form, it may be ripped apart if a large enough force is applied, and
the lines may cut each other and continue on as if the junction had never existed; this
process is depicted in Fig.2.5. Accurately capturing these behaviors is important
because sessile (immobile) junctions (often referred to as locks) and dislocation
intersections are thought to play vital roles in work hardening.

Considering this process in the context of DD, there are (at least) three different
steps that need to be considered. First, the collision of dislocation lines needs to be
detected, the result of which is a point junction between the two lines. The resulting
point junction can then either zip together and form a proper junction, or split apart
and possibly produce jogs and/or kinks. In some codes, the lines never formally
react, and instead simply approach each other closely and align parallel to each
other when forming a junction [24]. If the lines do formally react, the code must
be able to detect whether the formation of a junction is favorable. This is typically
done by applying an energy criterion to ensure that the system moves towards a
state that maximizes its dissipation rate. Common examples include approximations
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based on line energy arguments [108], tests to see if the involved lines are moving
apart [90], and the principle of maximum dissipation [9], which approximates the
dissipation rate as the dot product of the nodal force with the velocity and seeks to
maximize it. If it is decided that the point junction should instead split in such a
way that lines cut each other, there may be an energy barrier inhibiting this split due
to, for example, the formation of jogs. This barrier can be accounted for in terms
of a splitting rate through the use of thermal activation theory (see Sect. 2.2.3.3), or
athermally in terms of a junction strength dictating the minimum stress that must be
applied for the split to occur. As an example for the latter scheme, Kubin et al. [54]
have developed the following law to determine the strength of a junction:

7 = (2.17)

where  is the shear modulus, /, is the length of the dislocation arms surrounding
the junction, and S is a material constant that must be determined from experiments
or atomistic simulations. If a cutting event like this does occur, the resulting jogs
can influence the mobility of the dislocation lines [42]. However, most DD codes do
not account for the presence of jogs.

2.2.3.2 Boundary Conditions

As with any initial-boundary value problem, the boundary conditions (BCs) need to
be stated in order to have a well-defined problem. The specific form of the BCs is
dictated by the geometry of interest. The types of BCs used in DD simulations can
be categorized into three groups as shown in Fig. 2.6: (a) infinite BCs, (b) periodic
BCs, and (c) heterogeneous BCs.
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Fig. 2.6 Schematic depictions of different types of boundary conditions. (a) Infinite BCs, (b)
periodic BCs, and heterogeneous BCs with (¢) a free standing film with in-plane periodic BCs and
(d) a bimaterial interface in an infinite medium. For simplicity, the dislocations are represented by
the perpendicular symbol, even though the figure refers to 3D DD simulations



2 Fundamentals of Dislocation Dynamics Simulations 67

Infinite BCs (Fig.2.6a) are the simplest, and correspond to the simulated
dislocation lines being embedded in an infinite medium. Enforcement of an infinite
BC in any coordinate direction requires simply that we allow dislocations to move
an arbitrary distance along that axis. The stress expressions for dislocation lines (and
even other defects) are known for an isotropic, homogeneous, infinite medium, so
they may be implemented readily.

While infinite BCs provide a reasonable model for the behavior of dislocation
lines far from free surfaces (i.e., in the bulk), it is computationally infeasible to
keep track of all dislocation lines in an infinite medium that has a finite average
dislocation density. This makes infinite BCs primarily useful for idealized test cases.
Periodic BCs, in contrast, mimic an infinite medium while allowing for a nonzero
average dislocation density. With periodic BCs, the simulation cell represents a so-
called supercell which is repeated in all directions ad infinitum—Fig. 2.6b depicts
this idea for a 2D geometry. The replicas surrounding the main simulation cell are
called images. Periodic BCs provide a model for the simulation of bulk metals,
where the material element being simulated is in the middle of a specimen many
times larger than the cell. Any dislocation configuration or pattern, however, whose
characteristic length scale is larger than the supercell cannot be captured with
periodic BCs. To enforce periodic BCs, the total stress field due to every dislocation
line in each of the infinite number of periodic images must be computed to determine
the driving forces. In practice, only a finite number of images is considered,
however, care must be taken to ensure the resulting stress field is well defined (due
to conditional convergence [13, 55]). When a dislocation line crosses the supercell
boundary, its next image over will enter the supercell from the opposing boundary.
See [9] for a more detailed discussion of periodic boundary conditions.

The final type of boundary condition we will discuss applies to a much broader
class of problems. In the case of a heterogeneous BC (Fig. 2.6¢c), some feature of
the geometry breaks the homogeneity of the domain. Common examples are free
surfaces, with geometries like cylinders, thin films, and half spaces, and bimaterial
interfaces, as in the case of a layered material. As was discussed in Sect.2.2.2.1,
since analytic stress expressions generally only apply to an infinite, homogeneous
medium, a corrective image stress field must be determined. Image stress solvers
have been developed using the finite element method [100, 103, 108, 110], Fourier
methods [32, 105, 107], and boundary element methods [26], as well as various
other methods [29, 41, 49] to solve for the image field.

As a final note, we point out that these BCs can be combined. For instance, we
may simulate a freestanding thin film [107] by employing periodic BCs in one or
two coordinate directions and free surface BCs in the others (Fig. 2.6¢).

2.2.3.3 Cross-Slip

Conservative dislocation motion occurs when no atomic diffusion is required and is
termed dislocation glide. Nonconservative motion, on the other hand, requires the
diffusion of vacancies and is referred to as dislocation climb. Assuming a dislocation
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only moves by conservative glide (i.e., no climb), it is confined to motion within
the plane that contains both its Burgers vector and its line direction—this defines
its glide plane. In the case of a screw dislocation, because the Burgers vector is
parallel to the dislocation line, a unique glide plane cannot be defined. In principle, a
screw dislocation can glide in any plane that contains its Burgers vector. Most of the
time, however, dislocations prefer to glide along a few families of crystallographic
planes that minimize their core energy, and this sets the slip systems for that metal.
For instance, in FCC metals dislocations usually glide in {111} planes, giving
each screw dislocation two viable glide planes. The process of a screw dislocation
changing from one glide plane to another is called cross-slip. Cross-slip is thought
to be an important feature of dislocation motion, and in this section we will briefly
outline the key aspects relevant to DD.

Cross-slip is known to be a thermally activated process [79]. This means that
there is an energy barrier associated with its occurrence, and this barrier can be
overcome by thermal fluctuations. The rate at which a thermally activated event
occurs can be approximated with an Arrhenius-type relationship [51]:

E
R = vpexp (—k "T) (2.18)
B

where R is the rate in number of events per unit time, E}, is the energy barrier, kg is
Boltzmann’s constant, 7 is the absolute temperature, and vy is the attempt frequency.
Often, the attempt frequency is approximated as vo = vp(L/Ly), where vp is the
Debye frequency, L is the length of the dislocation segment, and Ly is a reference
length. Thus, in order to determine the cross-slip rate at a specified temperature, one
needs to know the energy barrier and the attempt frequency. Atomistic simulations
have commonly been used to determine these quantities, often finding that the
energy barrier is sensitive to the local stress state (see Sect. 2.4.1).

Using thermal activation theory, cross-slip can be implemented in DD as follows.
We test for cross-slip events once during each time step. We loop over all dislocation
lines, looking for segments that are of screw character. If a screw segment is found,
the energy barrier is calculated based on the local stress state at that segment,
with which the cross-slip rate can be determined using Eq. (2.18). The cross-slip
probability is then simply RA¢, where At is the time step size. We then select a
random number ¢ uniformly distributed in [0,1], and cross-slip occurs if RAt > .
The most difficult aspect of implementing this model is determining how the energy
barrier depends on the local conditions (e.g., stress, local dislocation configuration,
etc.).

2.2.3.4 2-Dimensional Dislocation Dynamics
As we have shown, fully three-dimensional dislocation dynamics simulations are

complex and computationally expensive. Consequentially, many researchers have
sought to develop dislocation dynamics in two-dimensions [3, 8, 18, 21, 37, 39,
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72,93, 100, 111]. In two-dimensional dislocation dynamics (2DDD), dislocations
are assumed to be infinitely long and straight, so that they can be represented by
point objects in the plane perpendicular to the dislocation line; this approximation
greatly reduces the number of degrees of freedom and removes the need to track the
complex topology present in three dimensions. 2DDD codes run much faster and
can achieve much larger amounts of plastic deformation than 3D codes. However,
these advantages are offset by the limited subset of problems that can be faithfully
represented in two-dimensions (e.g., fatigue problems where dislocations are often
long and straight). Because many physical phenomena are absent in the 2D picture,
additional physics, such as sources for multiplication and obstacles [8, 16, 100],
must be added. While many important contributions to DD have been made in a 2D
setting, we will not elaborate on 2DDD further.

2.3 Running a DD Simulation

Over the past several decades, DD has been utilized to study a range of problems
in crystal plasticity. While the specific details surrounding each of these simulations
vary, they all share a number of basic ingredients. In this section we will briefly
discuss each of these ingredients, and then provide several case studies.

2.3.1 Types of Simulations

DD simulations can be categorized into two groups: (1) small-scale—those inter-
ested in the interactions and behavior of one or a few dislocation lines and (2)
large-scale—simulations examining the collective behavior of many dislocations.
Examples of small-scale simulations include the simulation of intersecting dislo-
cation lines, junction formation, and junction dissolution [58, 60]; the interaction
of dislocations with precipitates [80] and solutes [17, 69]; and the interaction of
dislocations with free surfaces [49, 98, 106]. Simulations of large-scale collective
behavior generally involve simulating the stress—strain response of a material, with
examples including work hardening in bulk metals [5, 11, 22, 96], the plasticity of
micropillars [2, 19, 88, 106, 109], and plasticity during nanoindentation [30, 103].
Details below will be presented in terms of the two simulation types.

2.3.2 DD Codes

There are currently about a dozen 3D dislocation dynamics codes in use. Here we
will briefly discuss some of their differences to aid the user in making a selection.
See [28], [52], or [78] for additional reviews of DD codes.
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As discussed in Sect.2.2.2.3, DD codes can be categorized as either lattice-
based or node-based. In practice, each of these discretization schemes has its own
advantages and disadvantages in terms of accuracy, computing efficiency, simplicity,
and flexibility. A strength of lattice-based simulations is that force calculations
and tracking of dislocation intersections are simplified, since only a finite set of
dislocation configurations (dictated by the lattice) are considered [24, 52].

With the node-based scheme, since dislocation segments can take any arbitrary
orientation, dislocation lines tend to be smoother. In contrast, with lattice-based
DD, the angles between neighboring segments remain unchanged regardless of how
much the lattice or segment length is refined.

microMegas [24, 65] and TRIDIS [99, 103] are two examples of lattice-based
DD codes dedicated to the 3D DD simulations of crystalline solids. microMegas,
an open source code written mainly in Fortran, utilizes a base of eight line vectors
per slip system, for describing dislocation lines in FCC, BCC, and HCP crystals, in
addition to a few mineral materials. TRIDIS, suitable for the study of the mechanical
response of FCC and BCC metals and alloys, is a parallel code that uses four line
vectors per slip system and has been coupled to the finite element code CAST3M.

There are many node-based codes available and we briefly discuss a few.
Parametric dislocation dynamics (PDD) is the only code which uses curved (cubic)
dislocation segments [35, 77]; it was recently made open-source and renamed
mechanics of defect evolution library (MODEL) [67, 77]. Multiscale dislocation
dynamics plasticity (MDDP) [64] is a hybrid code coupling dislocation dynamics,
continuum finite elements, and heat transfer models. Its DD code was originally
named micro3d and was later implemented in MDDP. PARANOID [89] is a DD
code suitable for DD simulations of thin films, strained layers, and bulk metals and
semiconductors. Parallel dislocation simulator (ParaDiS) [5, 76] is an open-source,
massively parallel DD code that has mobility laws implemented for FCC and BCC
crystals incorporating glide and climb. NUMODIS [73] is a recently developed
open-source, parallelized code, with features for simulations of polycrystals and
polyphases.

2.3.3 Input Specification

Usually, DD simulations are controlled through two (or more) different input files.
The control file specifies the parameters of the simulation. These include the
material properties (elastic constants, drag coefficients, etc.), the loading conditions
(strain rate, stress state, etc.), the numerical parameters (time step size, remeshing
parameters, etc.), and output controls (e.g., what output to generate and how
frequently). The structure file specifies the initial dislocation configuration and the
geometry of the simulation cell or boundaries. This generally requires specifying
where nodes are located, how segments connect the nodes, and what their Burgers
vectors are. In the next section we will discuss how to select the necessary
parameters and design a DD simulation.
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2.3.4 Designing a Simulation
2.3.4.1 Initial Configuration

The initial dislocation configuration will be dependent upon the type of simulation.
In small-scale settings, generally a few initially straight lines are used, and the
dislocation character angle is often varied to see the different effects. The specific
goals of the simulation will decide the initial geometry.

In large-scale simulations, initial configuration selection is more complex [71].
Usually, the initial configuration is intended to emulate a specific material state,
for example, an annealed or cold-worked metal. The DD simulation would then
predict the response of a material in such a state to the chosen loading. However, the
full three-dimensional detail of dislocation structures in materials is generally not
known; this means the initial configuration will have to be approximated somehow.
Often, the following procedure is used. First, a simulation cell is populated with a
chosen initial density of straight dislocation lines, usually randomly oriented and
positioned. Then, the simulation cell is allowed to relax—equilibrate under zero
imposed stress—until the dislocation structure reaches a meta-stable configuration.
Once relaxed, the configuration may be used for further simulations.

2.3.4.2 Loads and Boundary Conditions

As with most solid mechanics simulations (and experiments), there are two common
types of loadings in DD: stress-controlled and strain-controlled. Under stress-
control, often referred to as creep loading, the applied stress is specified and the
dislocation lines simply respond to the Peach-Kochler forces resulting from the
applied stress and the stress fields of other dislocations. The stress state may be
constant or vary in time.

Under strain-control, usually a strain rate tensor, €; is specified and the resulting
stress state must be calculated as follows. The total strain at any time 7 is

€9 (r) = / &;(A)dA. (2.19)
0

When ¢;; is a constant, the result is simply 6}]9‘(t) = t¢;. Using the procedure
discussed in Sect.2.3.4.3, the plastic strain due to the motion of the dislocation
lines at time ¢, 6; (1), can be determined. The elastic strain is then efil (n = 6}]9‘ () —
eg(t) (assuming infinitesimal deformations), which is related to the stress through
Hooke’s law. For an isotropic linear elastic material with Lamé constants A and p

(the shear modulus), they are related by

0y = A8y + 2pue] (2.20)
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where §; is the Kronecker delta and el = é(efj}c + 63 + 62) is the hydrostatic
elastic strain. At each time step, the increments of total strain and plastic strain are
computed, and then the stress state is updated according to Eq. (2.20).

The two loading conditions can also be combined. For instance, in the commonly
used uniaxial tension loading condition, a normal strain rate is imposed along the
loading direction while all other stress components are set to zero. In this case,
assuming the imposed uniaxial strain rate is €,, the externally applied stress state at
any point in time is simply 0., = E(té,, — €x(f)), where E is the Young’s modulus.

As discussed in Sect.2.2.3.2, the boundary conditions will depend on the
problem of interest. Periodic BCs are used to simulate bulk material response. Often
infinite BCs are used when we are interested in the behavior of a few isolated
dislocation lines. When running simulations under periodic boundary conditions,
the size of the simulation cell is an important feature of the simulation; any
dislocation structure whose length scale is larger than the simulation cell width
cannot be accurately represented. Furthermore, if the cell is too small the interaction
between a dislocation and its own periodic image can yield artificial behaviors.

2.3.4.3 Outputs

With DD, the positions of all the dislocation lines are known at each time step. This
means that specific features of the dislocation structure can be extracted directly.
For instance, we can determine how common a particular type of junction is or
how predominant different line orientations are (e.g., edge versus screw). Often, it
is useful to express features of the dislocation structure in terms of their density, p,
the dislocation line length per unit volume (in units of [length]~?). For example, a
dislocation structure could be characterized in terms of the densities of the different
slip systems. The density of a dislocation population can be computed by simply
summing the length of all relevant segments and dividing by the simulation volume.

An important output for DD simulations is the plastic strain; it is needed for
computing the stress state under strain-control (discussed in Sect.2.3.4.2). In DD
simulations, plastic deformation is produced by the motion of the dislocation lines.
The area swept out by a dislocation segment in a time step is proportional to the
plastic strain produced in the crystal according to the relation [4]

bil’lj + bjni

A 2.21
g O 221

p_
SGU—

where §A is the area swept out by the dislocation segment during its motion, §2 is
the simulation volume, b is the burgers vector, and n is the slip plane normal. The
total plastic strain produced in a time step is the summation of Eq.(2.21) over all
dislocation segments.
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2.3.4.4 Solution Convergence

As with any numerical simulation technique, it is important to ensure that the errors
introduced by our discretizations in space and time are sufficiently small so that
the solution converges. In DD, this means ensuring the time step and dislocation
segments are small enough.

Two approaches have been used in DD to confirm that the time step size is ade-
quately small. The first was discussed in Sect.2.2.2.4, and involves approximating
the truncation error of the time integrator, and selecting the time step size so that
it falls below a user-specified tolerance. Another approach is to limit the time step
size so that the dislocation structure does not change too much from step to step.
This usually involves specifying a maximum displacement and/or rotation allowed
for any dislocation segment during a time step, and limiting the time step so they
are obeyed. While this approach does not directly control the error of the solution,
it is commonly used and generally accepted.

Spatial discretization error is dictated by how well the discretized structure
approximates the actual smooth structure of interest. The goal of the remeshing
algorithms discussed in Sect. 2.2.2.3 is to provide a means for controlling the quality
of the discretization. The remeshing algorithm operates according to the chosen
remeshing parameters—the maximum and minimum segment lengths and areas. As
these parameters are reduced, the discretization becomes more and more refined,
and the discretization error is reduced. A refined structure is more accurate, but is
also more computationally expensive. This is also true when choosing the shape of
the dislocation segments. The cubic segments used in PDD better reproduce smooth
dislocation structures, but at the cost of increased computational complexity. The
user must decide where his or her simulation falls in the trade-off between speed
and accuracy.

2.3.5 Example Simulations

Here we present three case studies showing the basics of running a DD simulation.
First, we determine the activation stress of a Frank—Read source using the lattice-
based code microMegas and the node-based code ParaDiS. Second, we examine
the activation of a single-arm source in a micropillar using ParaDiS. Finally, we
show results from a few simple work hardening simulations using ParaDiS. All
simulations use the material properties for nickel at 7 = 300 K, which are given in
Table 2.1, and the FCC mobility law presented in Sect. 2.2.2.2.

2.3.5.1 Case Study 1: Activation Stress of a Frank—Read Source

The Frank—Read source is a canonical case study in dislocation theory, showing
how a single dislocation can multiply indefinitely by simply gliding in its slip
plane under an applied shear stress [45]. A Frank—Read source can be modeled
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Table 2.1 Parameters for nickel at 7 = 300 K used in DD simulations in all case studies

microMegas ParaDiS
Property Name Value  Unit Name Value Unit
Shear modulus (1) ModuleGO 76.0 GPa shearModulus 76e9 Pa
Poisson’s ratio (v) DPOISS 0.31 - pois 0.31 -
Burgers vector (b) VecBurgers 2.49 A burgMag 2.49e-10 m
Core energy - Ecore 6.05¢9  Pa
parameter®
Drag coefficient (B) Coef visqueux 1.6le-5 Pas MobEdge 62,1120 (Pas)™!
or Mobility (M) MobScrew 62,112.0 (Pas)~!
Core radius (r.) - rc 1.0 b
Error tolerance - rTol 2.0 b
Reference scale Echelle 6.75 - -
Time step size deltato le-12 s Variable based on rTol
Line tension type ~ LINTEN 4 (Mohles) -

Unspecified parameters were set to their default values. The mobility or drag coefficients are
obtained from atomistic simulations [75]

2In ParaDiS, the core energy parameter Ecore controls the scaling of the core energy in the same
way the & parameter does in Eq. (2.6) (hence it has units of Pa). The Ecore value used here leads

. . ub,-z
to a core energy per unit length which scales as ', ',

vector of segment i.

where b; is the magnitude of the Burgers

by considering a straight dislocation line of length L lying in its slip plane that is
pinned at both ends. These pinning points could represent intersections with forest
dislocations, impurities, obstacles, or any number of other pinning sites that occur in
real metals. A force per unit length of tb (b is the magnitude of the Burgers vector)
will be experienced by the dislocation line when a shear stress with magnitude
is applied, which in turn causes the line to bow out. As 7 increases, the radius of
curvature decreases until the shear stress reaches t,., the activation stress. Figure
2.7a and e shows the configuration when t = 7, from simulations in microMegas
and ParaDiS, respectively. At stresses above .y, the line is able to bow around
completely and partially annihilate with itself, as shown in (b,c) and (f,g). This
process produces a new dislocation loop, shown in (d) and (h), which is free to
continue expanding. The objective of this case study is to determine the activation
stress for the Frank—Read source.

For these simulations, we choose a line direction of [1 12] and a Burgers vector
of jz[l 10], corresponding to an edge dislocation in an FCC metal with glide

plane normal (111). The x-, y-, and z-axes of the coordinate system are along
the [100], [010], and [00 1] directions, respectively. The end nodes are flagged
as immobile (velocities set to zero). Simulations were run under stress-control, with
oyy applied to produce a resolved shear stress on the glide plane of 7, and all other
stress components were set to zero. By slowly increasing the applied stress with
increments of At = 0.5 MPa and monitoring for activation, we can determine the
activation stress to within £A7/2. To detect activation, we can simply watch for
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a b c d

Fig. 2.7 Snapshots from Frank—Read source simulations using (a—d) microMegas with L/l = 2.4
and (e-h) ParaDiS with L/l,x = 2.4, where L = 0.596 |um (24000) is the distance between the
pinning points. ParaDiS graphics made with AtomEye [59]

whether activation occurs, or examine the plastic strain as a function of time—the
plastic strain will plateau if the source is not activated. This is by no means the
only possible approach for computing the activation stress, and strain-control or a
combination of stress- and strain-control (like with microMegas deformation mode
6) could also be used.

The coarseness of the representation of the Frank—Read source will affect the
activation stress. As the segment length is reduced, the activation stress should
reach a converged value. Figure 2.8a shows the effect of the segment length on the
activation stress with source length L = 0.596 wm (24000) in both codes. It is clear
from the figure that the solution converges as smaller segments are used in both
codes, and large segment lengths overestimate (in ParaDiS) or underestimate (in
microMegas) the activation stress by up to 10 % in the parameter space considered
here.

We can also study the effect of the source length, L, on the activation stress.
Figure 2.8b shows the results for L ranging from 0.298 to 1.79 pwm (12005 to 7200b)
when L/I = L/ln.x = 10. The activation stresses estimated by the two codes differ
by at most 2.2 % for all source lengths tested here. Also provided is the fit utilized
by Foreman [31] of the form 7,y = [(Aub)/(4wL)]In(L/r.) where r, is the core
radius, with A = 1.2, close to unity as Foreman found for an edge source.

2.3.5.2 Case Study 2: Spiral-Arm Source Activation in a Cylinder

In nanomaterials, the small specimen size allows spiral-arm or single-arm sources
to operate. This type of source is similar to a Frank—Read source, except that only
one end of the source is pinned in place; the rest of the source is free to rotate about
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Fig. 2.8 (a) Activation stress 7, of an edge Frank—Read source with L = 0.596 um (2400D) as
a function of the inverse of the segment length. The maximum segment length in ParaDiS and
microMegas is, respectively, controlled by maxSeg (ln.) and Ldis (/). Error bars show the
inaccuracy caused by At, the stress increment used. (b) Activation stress 7,¢ as a function of the
source length with L/l = L/l,,x = 10. Error bars include the differences between microMegas
and ParaDiS as well. See text for explanation of Foreman fit

the pinning point under an applied stress. The result is a spiral-shaped dislocation
line generating plastic strain with each revolution.

We here study the behavior of a single-arm source in a cylindrical specimen of
radius R oriented along the [0 0 1] direction, imitating a source in a micropillar. For
our source geometry, we choose a screw dislocation in an FCC metal with Burgers
vector and line direction [0 1 1] and glide plane normal (11 1) that has a Lomer
jog at its mid point. The Lomer jog is a section of dislocation with line direction
[0 1 1] which is out of the glide plane and treated as sessile in our simulation; in this
way, the jog provides the pinning points for the source. Lomer jogs can form during
plastic deformation when dislocations react and are often thought to act as immobile
locks. We choose a jog height of 0.141 pm (566b) for all simulations.

The simulation geometry is shown in Fig.2.9. Initially, the arms are straight
(Fig.2.9a). Under an applied compressive stress o, the source will begin to rotate.
Once again, the application of a stress greater than the activation stress o, is
necessary for the source to activate and rotate freely about the jog. Figure 2.9b shows
the configuration at activation when R = 0.37 wm (1500b). For this case study, we
will again examine the activation stress, but now focusing on the effects of the free
surface. The same procedure with stress-control taking steps of Ac = 0.5MPa
is employed. We use ParaDiS to simulate the activation process, with a Fourier-
based image stress solver [105]. A fast Fourier transform is used over a uniform
grid on the surface of the cylinder to determine the image stress field. As with the
discretization length, this grid spacing must be small enough to achieve a convergent
solution. Periodic boundary conditions are used at either end of the cylinder, with a
cell height of 6R, which gives us an approximately square n x n grid. The maximum
segment length was set to /,x = 2R/15.
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Fig. 2.9 Snapshots and results from single-arm source simulations using ParaDiS. (a) Initial
configuration. (b) Configuration slightly below the activation stress when R = 0.37 um (15005).
(c) Convergence of the activation stress as the number of grid points used for image stress
calculation, n, is increased, with R = 0.37 um (1500b). (d) Activation stress as a function of
the cylinder radius. See text for the definition of Foreman fit. Graphics made with AtomEye [59]

First we examine the convergence behavior of the image stress solver. Figure
2.9c shows how the activation stress varies with the number of grid points.
We see that about a 40 x 40 grid is required to achieve a converged result. Figure
2.9d demonstrates the dependence of the activation stress on the cylinder radius in
the range R = 0.124-1.24 um (500b-5000b) using n = 50 for the image stress
calculation. At the larger radii, the activation stress again follows the Foreman
behavior with A = 2.15 (using R in place of L), however, the smaller cylinders
yield slightly higher values than the Foreman estimate.

2.3.5.3 Case Study 3: Bulk Plasticity Simulation

During plastic deformation the dislocation density tends to increase, causing the
material to strengthen. This behavior is called work-hardening or strain-hardening.
The study of work hardening is a key research area ripe for DD simulations. We
close out this section with a few work hardening simulations.

For our work hardening simulations we use ParaDiS with a 10 x 10 x 10 pm
simulation cell, imposing periodic boundary conditions in all directions. No cross-
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Fig. 2.10 Snapshots of work-hardening simulation performed on nickel at 300 K. (a) Initial
configuration, (b) after relaxation, (c) dislocation microstructure at 0.5 % strain with [00 1]
uniaxial loading. Graphics made with AtomEye [59]
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Fig. 2.11 Stress—strain and dislocation density-strain curves for the different loading directions

slip was allowed. The remesh parameter /,,,x (maxSeg) was set to 1.25 wm (50005)
(other remesh parameters were set to defaults). We start with 50 straight dislocation
lines with a 60° character angle, random {1 1 1}-type glide plane, and random
(110)-type Burgers vector, as depicted in Fig.2.10a, and then allow the system
to relax under zero applied stress until it has reached the equilibrium configuration
shown in Fig. 2.10b.

We study the response of the system under uniaxial tension with a constant strain
rate of 10°s™! applied in the [00 1] and [102] directions. A recently developed
subcycling-based time integrator was used [96], with simulations run for 40 and
7.2h on a single CPU for [001] and [102] loading, respectively. The resulting
dislocation configuration after a total strain of 0.5 % in the [0 0 1] direction is shown
in Fig.2.10c. Figure 2.11 shows the evolution of stress and dislocation density
with respect to total strain. The initial yield strengths are similar for both loading
directions. However for the [00 1] loading the crystal hardens with plastic strain
as the dislocation density increases. In comparison, the flow stress and dislocation
density remain relatively unchanged for the [1 0 2] loading.
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2.4 Relation to Models at Other Length/Time Scales

Dislocation dynamics is just one of many tools that can be used to study the
deformation behavior of materials. As this book demonstrates, these various models
can be organized into a hierarchy that spans many orders of magnitude in both
length and time scale. It is important to understand where a given model falls in this
hierarchy, so that its connections to other models can be assessed. As discussed in
the introduction, DD simulations are generally run at the length scale of about 0.1—
10 wm and at time scales in the range of 1 s to 1 ms, depending on the material. In
this section, we will briefly discuss how DD relates to other material models, and
examine a few examples of information propagation from one length/time scale to
another.

2.4.1 Lower Scale Models

By its nature as a mesoscale modeling approach, DD requires numerous inputs
that describe the physical behavior of dislocation lines. Elasticity and dislocation
theory provide much of the information needed to define these models (e.g., Peach—
Koehler forces, stress fields of dislocations, etc.). However, certain basic features
of the behavior of dislocations are simply out of reach of these types of continuum
models. A common example is the dislocation core. Many aspects of a dislocation’s
behavior are controlled by the structure at the dislocation core. Because the core is
composed of a small number of atoms that are displaced far from their equilibrium
positions, continuum models are often highly inaccurate. Where these models fail,
experiments can be used to inform dislocation physics. However, it is usually
challenging to extract information on individual dislocations from experiments.

Atomistic simulations, on the other hand, are well suited to informing DD
models. Because the atomistic approach is closer to a “first principles” model, it
can be used to study the fundamentals of dislocation physics. Atomistic simulations
of one or a few dislocations can be conducted to study basic behaviors with different
geometries, loading conditions, and temperature regimes, and this information can
be included in the DD framework. Thus, we can think of DD as a model occupying
the next larger length/time scale tier above atomistics. Common examples of the
transfer of information from atomistic to DD include:

* Dislocation mobilities—This can be in the form of drag coefficients [36, 75, 8§3]
or energy barriers [36, 38, 74, 83].

* Core energies—The core energy affects a number of features, including the core
force (as discussed in Sect.2.2.2.1). Core energy calculations have been carried
out for a number of materials [10, 104, 114].

e Strength of junctions—In addition to using the scaling law discussed in
Sect. 2.2.3.1, junction strengths can be calculated directly [10, 40].
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e Cross-slip rate—Usually, this is calculated in the form of an energy barrier
(as discussed in Sect.2.2.3.3). Examples include the effects of different stress
components [47, 56], intersection with forest dislocations [85], the presence of
jogs [87, 102], and nucleation at the surface [86]. Many of these results have been
incorporated in DD simulations [46].

2.4.2 Higher Scale Models

In the same way that MD can provide inputs for DD simulations, many researchers
hope to use DD as a tool for informing higher length/time scale models. For
example, a model residing at a larger length/time scale than DD is crystal plasticity
(CP). In CP’s continuum approach, constitutive laws are defined in terms of
phenomenological models based on densities of different dislocation populations
(e.g., forest and mobile dislocations). These dislocation densities are tracked at the
continuum scale and dictate the loading response of each material element. DD can
be used to develop the models which describe the relationship between dislocation
densities, stress, and strain, thereby informing CP models.

An example of this transfer of information is the calculation of interaction
coefficients in the Taylor hardening model. The generalized Taylor hardening law is
commonly used in CP simulations, and states that the flow stress on slip system i is

J

where the summation is over all slip systems j, p; is the dislocation density of slip
system j, and a;; is a matrix of interaction coefficients between the slip systems. The
interaction coefficients can be determined using specialized DD simulations that
target a specific pair of slip systems. These calculations have been performed for
FCC metals [23, 61] and «-iron [81], and have been used to inform CP models [91].

2.4.3 Concurrently Modeling Across Scales

The approaches we have discussed so far involve passing information between
modeling approaches using independently conducted simulations. However, it
is also possible to transfer information between simulations as they both run
concurrently. This approach may be useful in a number of settings. One example
is if we are only interested in atomistic resolution over a small part of the domain,
such as at the tip of a crack or beneath an indenter. Since atomistic resolution is not
needed far from these regions where events such as dislocation nucleation are not
occurring, we wish to represent the rest of the domain with a less expensive, higher
scale model like DD. The atomistic and DD simulations would then be coupled at
their mutual boundaries.



2 Fundamentals of Dislocation Dynamics Simulations 81

Such an approach has been implemented by Shilkrot et al. [92] in two-dimensions
with the coupled atomistic and discrete dislocation (CADD) method for solving
plasticity problems. In the CADD approach, the computational domain is divided
up into atomistic and continuum regions; molecular dynamics is used in the
atomistic region and 2D dislocation dynamics in the continuum domain [20]. For
any concurrent modeling approach, the most challenging aspect is coupling the
models at their shared domain boundaries. For instance, with CADD the code must
detect when dislocations transmit between the domains. CADD has been used to
study nanoindentation [66, 92, 93] as well as fracture and void growth [93].

2.5 Challenges and Current Research Topics

Here we will briefly list and introduce a few active research topics in the DD
community. Some of the issues driving this research are purely mathematical or
numerical in nature—for example, the fact that dislocation interactions cannot be
calculated analytically in anisotropic elasticity. Other issues stem from the difficulty
of accurately representing atomic-scale phenomena in a mesoscopic framework—
for example, accounting for effects of the dislocation core structure. The following
list is by no means comprehensive:

» Time integration—Efficiently time integrating the equations of motion in DD,
i.e., taking a large time step with minimal computational expense, is a chal-
lenging but necessary task. Recent work examined implicit time integration
methods [33, 43, 94] and time step subcycling [94, 96]. While larger time steps
can be achieved with implicit methods, the additional computational cost makes
performance gains less significant [33]. With subcycling, it has been shown that
100-fold speed-ups can be achieved [96].

 Elastic anisotropy—Most single crystals exhibit anisotropy in their elastic behav-
ior, and yet most DD codes use isotropic elasticity to calculate the interactions
between dislocation segments. This is because the analytic expressions for
the stress fields of dislocations in anisotropic media are not known, and their
numerical calculation is very expensive [112]. An approximate method was
recently developed that utilizes spherical harmonics to estimate the interaction
forces between dislocations [6]. With this approach, the computational cost can
be adjusted according to the desired accuracy of the approximation.

* Kinematics—DD simulations are usually run under the assumption of infinites-
imal deformations, so that the displacement field surrounding each dislocation
is ignored. There are, however, instances where these displacements are known
to be important. For instance, a symmetric tilt boundary can be thought of as
a vertical array of edge dislocations; however, if the displacement fields of the
dislocations are ignored then there is no tilt across the boundary. In addition
to this effect, as dislocations move through a crystal, they alter the alignment
of the crystallographic planes, i.e., they shift the connectivity of the planes of
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atoms. This means two dislocations which are not coplanar initially may have
their planes intersected by a series of dislocations which shift them onto the
same plane [57]. This effect is related to the fact that when dislocations cut each
other, jogs and/or kinks are produced. Incorporation of these effects in DD is
challenging.

Core effects—Some features of dislocation behavior are very sensitive to the
nature of the core structure. These behaviors are challenging to capture in a
framework that smears out all of these details into a simple line object. In
some instances, certain features of the core can be included in the formulation
presented above, for example, when constructing the mobility law or determining
the stress dependence of the cross-slip rate. Sometimes explicit treatment of
the core structure is important. For instance, FCC metals with low stacking
fault energies have dislocations which are disassociated into Shockley partial
dislocations that can be separated by 10s of nm. This can significantly influence
the dislocation structures that develop. An approach for incorporating these
effects in ParaDiS has been developed [63] .

Point defects—Dislocations interact in a number of ways with point defects such
as vacancies and solute atoms. These defects arise quite readily through material
processing, alloying, and contamination, and give rise to many phenomena
in dislocation physics. For example, solute atoms can accumulate on disloca-
tions, forming so-called Cottrell atmospheres, which can slow down dislocation
motion. Additionally, at high temperatures, dislocations are known to move
out of their glide planes (climb) by consuming or producing vacancies. Some
models have been developed to account for solutes [17, 69] and vacancy-driven
climb[7, 70], however only a limited set of geometries have been considered.
Inclusions and precipitates—The interactions of dislocations with inclusions and
precipitates give rise to important phenomena such as precipitation hardening and
kinematic hardening (Orowan looping). A number of researchers have conducted
simulations examining the interaction of dislocations with a few precipitates
in simplified settings [50, 68, 80, 84, 97], in addition to a few examples of
large-scale simulations [44, 82, 101]. DD models describing the behavior of a
dislocation as it cuts through a precipitate are still lacking.

Grain boundaries—Most DD codes are only capable of simulating single crys-
tals, whereas most structural materials are polycrystalline. The grain boundaries
separating the individual grains of polycrystals can interact with dislocations
in complex ways. Grain boundaries can both absorb and emit dislocations. A
grain often experiences “misfit” stresses imposed by the surrounding grains
during deformation, which can exert forces on dislocations. Dislocations can
also transmit across grain boundaries, from one grain to another. As discussed in
Chap. 11, DD simulations have been run with simplified grain and twin boundary
models [27, 113], but a robust DD model for polycrystals still requires further
development.
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Chapter 3
Continuum Approximations

Joseph E. Bishop and Hojun Lim

3.1 Introduction

In continuum mechanics, instead of using discrete sums to assemble forces and
assess equilibrium, as in molecular dynamics or dislocation dynamics, one instead
uses the machinery of differential and integral calculus to cast Newton’s second law
in the form of a set of partial-differential equations, the solution of which gives
the equilibrium configuration of the entire collection of discrete entities. While
seemingly inapplicable to nanoscale structures, the use of continuum mechanics
at the nanoscale is still a useful approximation with careful consideration of the
assumptions inherent in the theory and with the inclusion of scale-dependent
physical phenomena such as surface effects, microstructural effects, and nonlocal
phenomena. The current literature on these generalized continuum theories is large
and ever growing. Our goal in this chapter is to give a brief introduction to
continuum mechanics with a focus on nanomechanics and how the classical theory
can be modified to include phenomena such as surface effects and microstructural
effects. Numerous references are given to more detailed expositions.

Section 3.2 begins with a brief review of classical continuum mechanics, an
overview of micromorphic continuum formulations, and concludes with a discus-
sion of continuum formulations that include an explicit surface stress. This section
is also helpful in understanding the quasi-continuum method presented in Chap. 5
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of this book. At the center of continuum mechanics is homogenization theory which
provides a mathematically elegant and rigorous framework for replacing a discrete
collection of interacting entities by an equivalent homogenous continuum with
effective material properties. Furthermore, given the continuum approximation of
the system, homogenization theory provides a method for recovering the solution
of the original discrete or heterogeneous system. These concepts are discussed
in Sect. 3.3. Continuum approaches to modeling crystal-plasticity are discussed in
Sect. 3.4. These continuum crystal-plasticity models explicitly incorporate descrip-
tions of the active slip systems and hardening phenomena at the crystal scale.

Errors in a continuum approximation to a discrete system are unavoidable
whenever the introduced length scales are comparable to the length scale of
the discrete system. Generalized continuum theories may be able to reproduce
qualitatively correct physical phenomenon, such as a surface effect or optical-branch
phonon dispersion curves, but the accuracy of the continuum theory must be judged
with respect to the true behavior of the original discrete system. Two simple one-
dimensional examples are given in the Appendix to demonstrate errors induced in a
continuum approximation of a discrete system.

There are several excellent books available that include detailed discussions,
examples, and tutorials for many of the concepts presented in this chapter. The
book “Applied Mechanics of Solids” by Bower [19] gives a thorough yet accessible
coverage of numerous topics in solid mechanics including continuum mechanics,
constitutive modeling at the crystalline scale, and the finite-element method. The
book “Nonlinear Continuum Mechanics for Finite Element Analysis” by Bonet and
Woods [18] gives an introduction to tensor analysis, large deformation continuum
mechanics, inelastic constitutive modeling, and nonlinear finite-element analysis.
The book “Nonlinear Finite Elements for Continua and Structures” by Beyltschko
et al. [15] thoroughly covers these topics and contains a chapter on disloca-
tion density-based crystal-plasticity. The book “Crystal Plasticity Finite Element
Methods in Materials Science and Engineering” by Roters et al. [127] gives an intro-
duction to continuum mechanics, the finite-element method, homogenization, and
presents numerous concepts in crystal-plasticity. The book “Practical Multiscaling”
by Fish [50] covers numerous topics in homogenization and multiscale modeling.

3.2 Continuum Approximations

The continuum approximation is a mathematical idealization for modeling the
collective response, or state, of discrete systems. The continuum approximation
is extremely efficient. The very large number of degrees of freedom required
to describe the complete state of a macroscale discrete system, for example,
an Avogadro’s number, is instead approximated using differential, integral, and
functional calculus. Mathematically, the vector space of real numbers (also called
the continuum) is used to represent the physical domain of the system. The
mathematical continuum is continuous (no gaps) and infinitely divisible. Spatial
fields, such as displacement and stress, are then defined on this continuum using
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familiar notions of a function. Finite differences and finite sums within the physical
system are approximated with function derivatives and integrals, respectively. The
approximation of a discrete system using differential and integral calculus is,
operationally, the dual of approximating a continuous mathematical model using
finite differences and finite sums; errors induced in the former are similar to the
errors induced in the latter.

The classical continuum theory [90] does not contain an intrinsic length scale.
One ramification for solid mechanics is that, for a given boundary-value problem,
the stress and strain fields do not change when the physical dimensions change.
The classic example from solid mechanics is that of a “hole in a plate.” For
the case of a homogeneous isotropic linear-elastic continuum, an infinite plate
containing a circular hole subjected to far field uniaxial tension has a maximum
stress around the hole that is exactly three times larger than the far field stress [146].
In the classical continuum theory, this stress ratio is independent of the size of
the hole; a meter-sized hole for a geotechnical application gives the same stress
concentration as a nanometer-sized hole in a nanotechnology application. This
result is nonphysical. For a physical material, there is always an intrinsic length
scale, for example, either the atomic spacing, size of a unit cell, or grain size for a
polycrystalline material. When the size of the hole approaches these intrinsic length
scales, the assumptions inherent in the continuum formulation are increasingly
in error [40, 61, 101]. This error is clearly seen in the wave-propagation/phonon
dispersion curves. The classical theory predicts no dispersion, while a discrete
system will display a very complex dispersion response including both acoustical
and optical branches [26, 27, 31].

Furthermore, classical continuum theory does not predict the existence of a
surface effect. Surface effects, including edge and vertex effects, arise in atomic
systems fundamentally due to the difference in the coordination number of atoms
near the surface versus atoms in the interior and due to long-range atomic forces
beyond nearest-neighbor interactions. These in turn lead to differences in the
charge distributions, bond lengths, and bond angles near the surface versus the
interior [67, 113, 114, 152]. Manifestations of the surface effect include surface
tension in liquids as well as surface and interfacial stresses in solids [23, 57—
60, 108, 130]. Surface effects can produce exotic physical behavior of both liquids
and solids, such as capillarity, adsorption, and adhesion [24, 67]. Surface and
interface stresses can also modify the local and far field deformations of nanoscale
structures [40, 61, 96, 100, 131, 134]. Homogenization theory of periodic media
also predicts the existence of a surface effect due to the difference in material
confinement at the surface as compared to the interior [11, 39, 41]. This will be
discussed in Sect. 3.3.

Several physically motivated generalizations to classical continuum theory have
been proposed that introduce both a physical length scale and surface effects. These
include the micromorphic theory of Mindlin [102] and Eringen [45, 48, 55, 140], the
nonlocal theories [46, 47, 78] including peridynamics [136—138], and surface-stress
formulations of Gurtin [57-60]. The micromorphic theory introduces additional
microstructural degrees of freedom within a unit cell that result in a strain-gradient
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effect in the governing equilibrium equations. The classical theory is reproduced
when the size of unit cell is reduced to zero, or in the long wave-length limit.
Nonlocal theory has its foundations in the long-range interactions of interatomic
forces. These theories posit that the constitutive response at a material point is
dependent on the state in a nonlocal region around the point, unlike in classical
theories. Strain-gradient theories can be viewed as special cases of the nonlocal
formulations [3, 120, 124]. Homogenization theory of periodic media also predicts
the existence of strain-gradient effects whenever the unit cell is finite [30, 139, 149,
154]. This will be discussed in Sect. 3.3.

It is important to keep in mind that these generalized continuum theories are
still only approximations of the original discrete system. Errors in a continuum
approximation to a discrete system are unavoidable whenever the introduced length
scales are comparable to the length scale of the discrete system. The generalized
theories may be able to reproduced qualitatively correct physical phenomenon, such
as a surface effect or optical-branch phonon dispersion curves, but the accuracy of
the continuum theory must be judged with respect to the true behavior of the original
discrete system. For example, the surface effect may occur only over a few atomic
spacings normal to the surface, while the governing equilibrium equations are still in
the form of partial-differential equations. Examples are presented in the Appendix
in order to demonstrate errors in the continuum approximation.

The classical theory of continuum mechanics is very briefly reviewed in
Sect.3.2.1. The micromorphic theories are briefly presented in Sect.3.2.2. The
surface-stress formulations are briefly presented in Sect. 3.2.3. The nonlocal theories
are summarized in Sect. 3.2.4.

3.2.1 Classical Theory

There are many excellent texts on classical continuum mechanics [18, 19, 64, 83,
90]. In this section we give a very brief overview of the standard theory. We use
primarily index notation, but also use vector notation for clarity when needed. Thus,
x; represents the three components (i = 1,2, 3) of the vector x. The summation
convention of repeated indices within a product or quotient will also be used, for
example, x;x; = x1x1 + X2x2 + X3X3.

Consider the motion of a body % with interior domain §2 and boundary I”
subjected to a body force b; per unit volume and applied surface tractions #;. A
Lagrangian description of the motion of % is used. The current position of a material
point is given by x;, and the original position is given by X;. The displacement field
is given by u; = x; — X;. Since the spatial position of a material point is a function
of it’s original position x;(X;), we can define the (material) derivative of the current
position with respect to the original position, dx;/0X;. This vector derivative is called
the deformation gradient, denoted by Fj;, and is one of the primary quantities used
in continuum solid mechanics to describe the deformation of the body (kinematics).
In terms of displacement,
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Fy = dui/0X; + 6 . 3.1)

where §;; is the Kronecker delta with §; = 1 if i = jand §; = 0 if i # j. From the
deformation gradient, one can define measures of strain, for example, engineering
strain, logarithmic strain, and Green strain [ 18]. For example, the Green strain tensor
Ej; (also called the Lagrangian strain tensor) is defined as [18]

1
Ej=, (FuFy — 8;) - (3.2)

The physical interpretation of Ej; may be obtained by noting that it describes how
the inner product between two infinitesimal material vectors, dX; and dX,, change
under deformation to dx; and dx;, respectively,

1
) (dx; - dx, —dX; - dX;) = dX; -EdX; . (3.3)

For the special case of dX; = dX; = dX, and consequently dx; = dx, = dx,
Eq. (3.3) becomes

1
5 (dP —dL*) = dX-EdX , (3.4)
where (dl)? = dx - dx and (dL)*> = dX - dX. Dividing by (dL)? gives the scalar
version (uniaxial) of the Green strain,

di? —dL? _ dX EdX—N EN = N;E;N (3.5)
2(dL)?*  dL dL S ‘

where N is a unit material vector in the direction of dX. The full inner-product
version given in Eq. (3.3) indicates that the strain tensor E contains both shear and
normal strains, presented here in a large deformation formulation.

In order to describe the kinetics of the material, we need to derive both measures
of stress and the constitutive relations between stress and strain. In the context of
hyperelasticity, one posits a potential energy function W of the strain tensor,

W=W(E). (3.6)

Certain restrictions are placed on W to obtain a constitutive model that is indepen-
dent of the observer (objectivity) and to obtain a stable material. A stress tensor
S, called the second Piola—Kirchhoff stress, is defined to be work conjugate to the
derivative of W with respect to the strain E,

S; = 3.7
) o 3.7)

so that
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dW =S : dE = S;dE;; . (3.8)

In many macroscale constitutive models, phenomenological formulations are devel-
oped for specific classes of materials such as those for plasticity and viscoplasticity
(polycrystalline metals) [74, 83, 87, 111], hyperelasticity and viscoelasticity (poly-
mers) [29], pressure dependent plasticity (porous materials) [5, 19]. These models
use various internal-state variables to phenomenologically model physical effects
such as dislocation slip, dislocation density, porosity, and damage. Through these
constitutive models, the stress measure is related to the entire history of deformation.
Constitutive models also exist at the single-crystal level [127]. Section 3.4 gives an
overview of continuum crystal-plasticity modeling.
In the special case of small-deformation linear elasticity,

Sij = CijuEn (3.9)

where Cjjy is the fourth-order elasticity stiffness tensor with 3* = 81 components.
For the special case of infinitesimal displacements, the various stress and strain
measures are equivalent, and it is common to express the linear relation between
stress and strain in Eq. (3.9) using the Cauchy stress oy, or true stress (introduced
below), and the infinitesimal strain tensor, €,

0ij = Ciju€n (3.10)

where
!
In this special case, the potential energy function can be expressed as

W= ;e,-jC,-jkzekl . (312)
Since W is a scalar, it follows that Cyjy = Cyy;; (major symmetry) thus reducing
the number of independent material constants to 36. Further, the symmetry of the
tensors o;; and €; require that Cj; = Cjiy and Cyjiy = Cyy (minor symmetry),
respectively, thus reducing the number of independent elastic constants to 21 for
a fully anisotropic crystal. Depending on the crystal symmetry, the number of
independent elastic constants is further reduced: triclinic (13), orthotropic (9), ...,
cubic (3). For the special case in which the material has no preferred orientation, an
isotropic material, the number of independent elastic constants is 2 (e.g., the bulk
and shear moduli, or Young’s modulus and Poisson’s ratio).
Physically, the energy stored in the material or body is related to the deformations
of the atomic and molecular bonds. For nanoscale structures, this fact can be
used to define W as a function of the history of E using the Cauchy—-Born
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approximation [44, 135, 141, 142]. Interestingly, this approach can also reproduce
surface effects [113, 114]. This will be described in more detail in Sect. 3.2.3.

Using Newton’s second law, equilibrium of the body % may be expressed in
terms of the divergence of the Cauchy stress tensor in the spatial frame [18],

doyi/0x; + b = pii; , (3.13)

where ii; denotes the second derivative of u; with respect to time, and p is the mass
density. This set of equilibrium equations can also be cast in terms of other stress
tensors, the choice of which is chosen for convenience, using relations such as o;; =
JVFySuFy, where J = det(Fy) [18].

The surface tractions, both normal and shear, are related to the Cauchy stress
tensor by the relation

1, = ojn; , (3.14)

where n; is the unit vector normal to the surface. This relation may be derived using
Cauchy’s tetrahedron [18], for example.

The field equations of classical continuum mechanics can be solved using a
variety of numerical methods including the finite-element method [15, 18] and
the boundary-element method [14]. Numerous commercial and research-based
nonlinear finite-element solvers are available including Comsol [34], Abaqus [1],
and Ansys [6].

3.2.2 Micromorphic Theories

The micromorphic theories of Eringen [45, 48, 55, 140] and Mindlin [102] introduce
additional microstructural degrees of freedom within a unit cell or “micro-volume.”
The continuum is now thought of as a continuous collection of deformable cells or
particles. The size of this unit cell introduces a length scale into the continuum
theory. Each cell is free to deform and create a “micro-strain” in addition to
the classical macro-strain. The effects of these additional microstructural degrees
of freedom include strain-gradient effects, higher-order stresses, surface and size
effects, and optical branches of the phonon dispersion curves [26, 27, 56, 102].
Malvern [90] integrates these generalized continuum formulations within his book
on continuum mechanics.

Chen et al. [25, 28] give an overview of the hierarchy of generalized continua
starting at the most general case with the micromorphic theory of Eringen [45, 48,
140]. With the assumption of infinitesimal linear-elastic deformations, this theory
reduces to Mindlin’s microstructure theory [102]. With the additional assumption
that the unit cells are rigid, and thus ignoring internal motion within a cell, the
theory reduces to the micropolar theory [48]. With the additional assumption that
the orientations of the unit cells are fixed, the theory reduces to Cosserat theory [35].



96 J.E. Bishop and H. Lim

With the additional assumption that the micro-motion is equal to the macro-motion,
the theory reduces to the couple-stress theory [101, 105, 147, 148]. The classical
continuum theory is reproduced when the size of unit cell is reduced to zero or in the
long wave-length limit. In general, these formulations can be categorized as “strain-
gradient” continuum theories [51, 103, 104, 119]. Various researchers have used
these formulations to regularize softening and localization phenomena [92, 93, 150].

In Mindlin’s microstructure theory [102], additional deformation modes, called
micro-displacements and micro-deformations, are introduced as shown in Fig.3.1.
The macroscopic displacement field is given by u; = x; — X; as usual. A micro-
displacement u; is defined as u, = x] — X/ where X] and x| are the reference
and current positions of a material point within the micro-volume, referred to
axes parallel to those of X; and whose origin moves with displacement u; (see
Fig.3.1). With the assumption of infinitesimal displacements for both the macro-
and micro-displacements, x; &~ X; and x; ~ X!. The displacement gradient within
the micro-medium is given by

Vi = Ouj/0x; (3.15)

where ;; is called the micro-deformation. In Mindlin’s theory, ¥;; is taken to be
constant within the micro-volume so that

uj’- =Xy, (3.16)

but v;; is allowed to vary with position in the macroscale so that ¥; = v;;(x). The
macro-gradient of the micro-deformation y;; is given by

Xije = 0/ 0x; . (3.17)
The relative deformation y;; is defined as
Vi = Ou;/0x; — 3u;/3x]’- = Ou;/0x; — Yy . (3.18)

The usual infinitesimal strain tensor €; is defined in Eq.(3.11). Note that while
€;j is symmetric, y¥; and y;; are not in general symmetric or minor-symmetric,
respectively.

The potential energy function per unit macro-volume is posited to be of the form

W = Wi(ey. vij, Xijk) - (3.19)

The following stress tensors'

Xik [102],

are defined to be work conjugate to €;, y;, and

'Note that the use of the symbols ¢ and 7 is reversed from that of Mindlin [102] to be consistent
with our use of o for the Cauchy stress given in Sect. 3.2.1.
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where oy is interpreted as the Cauchy stress tensor, t;; is the relative stress tensor,
and i is the double stress tensor. The twenty-seven components of (i represent
double-forces per unit area. Example components of 1 are shown in Fig. 3.1. Note
that while o is symmetric, 7; and w;; are not in general symmetric or minor-
symmetric, respectively.

Developing expressions for the kinetic energy and using Hamilton’s principle
results in the following twelve equations of motion [102]:

3oy + 1)/ 0xi + bj = pii; (3.21a)
1 .
Wijksi +Tjk + P = 3/0/d12j¢lk ; (3.21b)
with twelve traction boundary conditions,

i = (05 + ) ni (3.22a)
Ty = pyrni - (3.22b)

Here, p’ is the mass of the micro-material per unit macro-volume, dj is a unit-cell
moment-of-inertia tensor, @y is a double-force per unit volume, and Tj is a double-
force per unit area [102].

Similar to the expression for W for the classical continuum formulation,
Eq. (3.12), the potential energy of a microstructural continuum is taken to be a
quadratic function of the forty-two variables €, y;;, and i,

1 1 1
W= Zéijcijkzekl + 5 ViiBijiyu + 2XijkAijklmnlen (3.23a)
+ YiiDijgimXiim + XijFijkim€im + ViiGijri€n - (3.23b)
The constitutive equations are then,
0ij = Ciipg€pq + GpqijVpg + FparijXpar (3.24a)
Tjj = Giququ + quij)/pq + Diqur)(pqr (3.24b)
Wik = Fijtpq€pq + DpqijkVpg + Aijkpgr Xpar - (3.24¢)

As noted by Mindlin [102], only 903 of these 1764 coefficients are independent due
to the symmetry of €;; and the scalar property of W. Still, this number is vastly larger
than 21 independent elastic constants for a fully anisotropic classical linear-elastic
continuum described in Sect.3.2.1. Even for an idealized isotropic microstructural
medium, there are 18 independent coefficients [102].

A general three-dimensional finite-element implementation of the micromorphic
continuum theory is ongoing within the Tahoe Development Project [143].
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3.2.3 Surface Stress

For nanoscale structures, surface-to-volume ratios are relatively large, and surface
effects can become significant [23, 40, 59, 134, 152]. Surface effects, including edge
and vertex effects, arise in atomic systems fundamentally due to the difference in
the coordination number of atoms near the surface versus atoms in the interior and
due to long-range atomic forces beyond nearest-neighbor interactions. These in turn
lead to differences in the charge distributions, bond lengths, and bond angles near
the surface versus the interior [67].

Gurtin et al. [57-59] have developed a general continuum theory for elastic
material surfaces and material interfaces. For solids, the concepts of surface tension,
surface stress, and surface energy are distinctly different and cannot be used
interchangeably. Only for liquids are all three the same [67]. (Chap. 17 of this book
discusses surface-tension effects in thin liquid films.) For the special case of small
deformations, these three quantities are related via the equation® [67],

o'=0T + or , (3.25)
de’

where ¢* is the surface-stress tensor, o is the surface tension, I® is the identity tensor
for surfaces, I"(€®) is the deformation-dependent surface energy, and €® is surface-
strain tensor. Each tensor in this equation is defined in the surface manifold and has
2 x 2 components. For the idealized case of an isotropic material (surface and bulk)
the following equilibrium and constitutive equations hold. For the bulk material, the
equilibrium equations are the same as those given in Sect. 3.2.1, Eq. (3.13), but with
the constitutive equations, Eq. (3.10), specialized for an isotropic material,

dive® =0 (3.26a)

0" =2/1€® + A Tr(e®) 1", (3.26b)

where o is the Cauchy stress in the bulk material, € is the infinitesimal strain
tensor in the bulk, div(-) is the bulk divergence operator, A and p are the Lame’
constants, Tr(-) is the trace operator, and IP is the three-dimensional identity tensor.
Equilibrium of the surface of the material, or interface between two materials, is
given by [59, 134],

0 = [o® - n] + div,o® (3.27a)
o’ =0clF +2(u’ —0)e + (A +0) Tr(e®) I*, (3.27b)

2In this section, we use vector notation to simplify the representation of surface tensors.
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Fig. 3.2 The x-component of the displacement vector after the relaxation of a cube as calculated
by (a) surface Cauchy—Born method and (b) molecular statics simulation (Reproduced with
permission from [114])

where divg(+) is the surface divergence operator, A® and u* are the surface Lamé
constants, and the square brackets in Eq. (3.27a) represent the jump in the quantity
across the interface.

Determining the surface material constants in this continuum formulation is
nontrivial [59, 67, 100] and somewhat ill-defined. (For example, how thick is the
surface or interface?) At the nanoscale, when the surface effects are most prominent,
the surface material constants are expected to depend on the orientation of the
surface with respect to the underlying crystal lattice. Determining the material
constants for all possible orientations of a surface is a daunting prospect. For these
reasons, computational approaches based on the Cauchy—Born approximation have
been pursued to model surface effects [113, 114]. In this approach, the surface
and bulk strain energies are calculated directly using interatomic potentials, and
the constitutive response is obtained using Eq. (3.7). The continuum displacement
field is obtained by minimizing the total potential energy. An example from Park
et al. [114] is shown in Fig.3.2. This approach has the further advantage of
incorporating edge and vertex effects that depend on the included angle of the
intersecting surfaces and edges, respectively. This “quasi-continuum” approach to
modeling nanoscale structures is described in detail in Chap. 5 of this book.

3.2.4 Nonlocal Theories

Nonlocal continuum theories were introduced by Kroner [78] in order to account
for the long-range interactions present in atomic systems. These theories were later
studied and further developed by Eringen [46, 47]. The relations between nonlocal
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theories and strain-gradient theories have been studied by several authors [2, 3, 120,
123, 124]. Nonlocal theories have been used to model nanoscale structures [7, 118,
151], and have been applied to macroscale systems in order to regularize strain-
softening behavior [69, 120]. In Eringen’s nonlocal theory, the nonlocal stress tensor
o (x) is related to the local (fictitious) stress tensor s(x) through an integral relation
of the form

o(x) = /VA(X,X/)S(X’) dv’, (3.28)

where A(x,x’) is a scalar valued attenuation function or influence function, and
s(x) is related to the local strain via the classical relation given by Eq.(3.10),
s(x) = C : e(x). The attenuation function is typically defined to be nonzero
only within a certain radius R of the given point x so that A(x,x’) = 0 when
|Ix" — x|| > R. The attenuation function must be modified near the boundary of the
domain to ensure certain consistency requirements in representing constant fields.
This boundary effect in nonlocal models may be physically desired depending on
the physical system being modeled.

An alternate nonlocal continuum formulation, called peridynamics, has been
proposed by Silling [136-138]. In this formulation, the concept of strain is avoided
all together in favor of generalized bonds connecting two disconnected points within
a domain.

/ fw' —u,x' —x)dV' +b = pui, (3.29)
%

where u is the displacement vector, p is the mass density, b is the body force per
unit volume, and f represents the force density per unit volume. This bond-based
formulation has been generalized to the so-called state-based formulation [138]
that allows for very general material behavior. Applications of peridynamics to the
upscaling of molecular dynamics have been studied by Seleson et al. [125] with
recent applications to nanomechanics [17, 42]. The peridynamic theory now has
been extensively developed [49, 137]. Peridynamics has been implemented in the
open-source massively parallel software LAMMPS [80, 115, 116].

3.3 Homogenization Theory

Homogenization is the mathematical process of replacing a heterogeneous material
with a fictitious homogeneous material whose macroscopic response, in an energetic
sense, is equal to that of the true heterogeneous material. The material properties
of the fictitious homogeneous material are called the effective properties [65].
Homogenization is fundamental to continuum mechanics, since all materials are
heterogeneous or discrete at some length scale and require homogenization in
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order to apply continuum principles at a higher length scale. There are several
texts that cover homogenization theory for various physics and to various levels
of mathematical rigor [16, 30, 50, 68, 95, 110, 117, 133]. The theory is well
developed for materials with periodic microstructure using perturbation theory
and the mathematical concepts of strong and weak convergence. The theory has
been extended to random microstructures by Papanicolaou and Varadhan [112]
using probabilistic definitions of convergence. Section 3.3.1 gives an overview
of the two-scale asymptotic homogenization process for linear-elastic periodic
microstructures. This mathematical approach is well developed, and leads to the
concepts of higher-order stresses or “hyperstresses.” Section 3.3.2 discusses the
mathematical concepts of strong and weak convergence. Section 3.3.3 presents
a three-dimensional homogenization example. The homogenization results of this
example are compared to direct numerical simulations (DNS) of the heterogeneous
microstructure. Section 3.3.4 discusses the concept of computational homogeniza-
tion. Additionally, Sect. 3.3.4 discusses the fast Fourier transform (FFT) method for
efficiently solving the unit-cell problem, in both the linear and nonlinear regimes.

Mean-field homogenization techniques such as the self-consistent method [106]
do not attempt to directly model the exact field of a heterogeneous microstructure,
but instead focus on modeling the response of a single inclusion within an
approximately homogeneous continuum. Mean-field methods are not discussed
here, but are covered in detail by Nemat-Nasser and Hori [110] along with other
topics in the theory of composite materials.

3.3.1 Method of Two-Scale Asymptotic Expansion

Tran et al. [149] give a succinct yet detailed presentation of the two-scale asymptotic
homogenization process for linear-elastic periodic microstructures. Their notation
and presentation is followed here. Let L represent the length scale of the macro-
structure. Let / represent the length scale of the unit cell. The ratio € = I/L of the two
length scales is assumed to be less than 1, but not necessarily infinitesimally small.
The existence of the small parameter € suggests the use of perturbation theory [63].
A new “fast” oscillating variable is introduced as y = x/I which gives the position
within an individual cell. The displacement field is now considered as a function of
the two variables x and y so that u = u(x,y). The displacement field is expanded in
a power series in €,

u(x,y) = w'(x.y) +eu'(x,y) + €w’(x,y) + -, (3.30)

where the fields u'(x,y), i=1,2,3,...are periodic with period /. This expansion
is then substituted into Eqgs. (3.10) and (3.13). By equating terms with the same
power of €, a hierarchy of cell problems for the quantities u’(x,y), u'(x.y),
u’(x,y), etc., is obtained. It transpires that u’(x,y) is only a function of x. With
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u’(x,y) = U(x), it can be shown that U(x) = ‘1, fv u(x,y)dV where V is the
volume of a unit cell. U(x) is then interpreted as the displacement of the centroid of
the unit cell [149].

The total displacement field u(x, y) can now be written as

u(x,y) = Ux) + e)(l(y) Ex) + szz(y) Gx)+ -, (3.31)

where x(y),i = 1,2, 3,... are called localization tensors and are obtained through
the solution of the hierarchy of cell problems [149]. Here, E(x) is interpreted as the
macroscopic strain tensor with

E(x) = / €(x,y)dv, (3.32)
v

and G(x) is interpreted as the non-dimensional gradient of macroscopic strain,
G(x) = LVE(x). The additional terms in Eq. (3.31) consist of products of higher-
order strain-gradients and localization tensors.

Tran et al. [149] were able to derive a generalization of the classical Hill-Mandel
lemma,

! /a(x, y) i €(x,y)dV=XY(x):EX) 4+ T(x):-VEX) +---, (3.33)
Vv

where X (x) is interpreted as the macroscopic stress, and T(x) is the “first hyper-
stress.” The additional terms in Eq. (3.33) consist of products of hyperstresses and
higher-order strain gradients. It can be shown that

1
v o av = 2500 = Tt + - (334)
4
The macroscopic balance equation is given by [149]
(%) = Typp(x) + -+ B; =0, (3.35)

where B; = ‘1/ fv bi(x,y) dV is the cell-averaged body force.
In the limit as ¢ — O or negligible strain gradients, VE(x) — 0, the hyperstresses
are zero, and the classical homogenization results are recovered,

1
v /Va(x, y) i €(x,y)dV = Y(x) : E(x), (3.36a)

1 / 0;(x,y)dV = Xj(x), (3.36b)
vy

T (X) +Bi=0. (3.36¢)
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The homogenized material properties relating the macroscopic stress Xj; to
macroscopic strain Ej;, as well as relating the hyperstresses to the strain gradients
(e.g., Tjjx to Ejx), are obtained from the unit-cell problems described previously.
These are described by Tran et al. [149]. For first-order homogenization theory
(e — 0), the cell problem is given by

031(y) = 0, (3.37a)
03i(y) = Cij(Yeu(y) + pi(y), (3.37b)
cly) = L /oy + w0, B30
u;(y) periodic, ‘1/ /V wi(y)dV = 0. (3.37d)

where p;;(y) is a polarization tensor given by p;;(y) = Cjju(y)Ew, and Ey; is constant
over the unit cell. By applying unit values of Ej; for each of the components, the
homogenized stiffness tensor can be obtained. More complex polarization tensors
and body forces arise for the higher-order cell problems. Because of the periodic
boundary conditions, an efficient solution of this unit-cell problem can be obtained
through the use of the FFT as described in Sect. 3.3.4. These results can be extended
to the nonlinear regime using “computational homogenization” as described in
Sect.3.3.4.

As with atomic systems, the confinement of the unit cell at the surface of a body is
different than a unit cell that is positioned within the bulk. In particular, at the surface
the unit cell does not experience periodic boundary conditions. Thus, a surface
effect will result when comparing unit-cell averages obtained from homogenization
and unit-cell averages obtained from direct numerical calculations of the full
heterogeneous material. This will be demonstrated in the example presented in
Sect.3.3.3.

3.3.2 Convergence: Strong and Weak

One of the main mathematical results of homogenization theory is that in the limit
as € — 0 the displacement solution of the macroscopic governing field equation
containing the heterogeneous material converges strongly to the displacement solu-
tion of the macroscopic field equation containing the homogenized material [30].
Furthermore, in the limit as ¢ — 0 the strain (stress) field of the macroscopic
field equation containing the heterogeneous material converges weakly to the
strain (stress) field of the macroscopic field equation containing the homogenized
material [30].
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Recall that a sequence of functions (u,),n = 1,2, 3, ..., withu, € 2 converges
strongly to u € L? if

lim |lu, —u|| =0, (3.38)
n—>oo
and converges weakly if

lim (u,,v) = (u,v) VYvel?. (3.39)

n—>oQ
Here L? represents the space of square-integrable functions, (i, v) represents the L2
inner product, and |ju| = \/ (u, u) is the norm induced by the inner product.

For an example illustrating strong and weak convergence, consider a one-
dimensional continuous bar of length L with variable elastic modulus, E(x), given by

E(x) = Eo(1 4+ asin(2nnx/L)) x€[0,L] n=1,2,3, (3.40)

where a € [0, 1) is a parameter that governs the degree of inhomogeneity. For this
problem, the spatial period or unit cell is [ = L/n (cf. example problems given in the
Appendix). For a one-dimensional bar, the governing equations given in Sect. 3.2.1
reduce to the following ordinary differential equation:

4 Eo®™) = o 3.41
dx((x)dx)_’ (3.41)

where © = u(x) is the uniaxial displacement along the bar. This equation may
be integrated analytically using displacement boundary conditions #(0) = 0 and
u(L) = uy to give the exact displacement field,

o= [ (50 )t ()
(342)

with derivative (longitudinal strain) given by

du _ */_1 o (3.43)
dx L1+ asinQnrx/L)

In Eq. (3.42), the function | - | is the floor function, and the inverse tangent functions
are understood to give principal values. These functions are plotted in Fig.3.3 for
a =0.9andn = 5,10, 20. The displacement field of the homogenized beam, uo(x),
is given simply by

uo(x) = uoi , (3.44)
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Fig. 3.3 Example of both strong (fop row) and weak convergence (bottom row) using a one-
dimensional continuous bar of length L with periodic elastic modulus given by Eq. (3.40). The
exact displacement field is given by Eq. (3.42), and is shown here for the cases (a) n = 5, (b)
n =10, (¢) n = 20 (top row), witha = 0.9 and u = u/uy, x = x/L. This displacement converges
strongly to the displacement field u(x) = x as n — 0o. However, the exact displacement derivative
(strain), given by Eq. (3.43), converges only weakly to the derivative of the homogenized solution
du/dx = 1 as n — 00 (bottom row)

with constant derivative

d 0
et (3.45)
dx L

These functions are also plotted in Fig.3.3. It can be proven that u(x) converges
strongly to u® as n — oo, which is clear via inspection of Fig.3.3. What is less
clear, but still true, is that du/dx converges weakly to du®/dx as n — oo.

It is instructive to verify the equivalency of the total energy stored using the two
descriptions of the bar, direct and homogenized. For this one-dimensional example,
the energy density given by Eq. (3.12) reduces to

1 du\?
W= 2E(x) (dx) , (3.46)

where E(x) is given by Eq. (3.40) and du/dx is given by Eq. (3.43). The total stored
energy in the bar Wiy, is then
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Uuo 2 L 1
Eo(1 —d? d
ol —a )(L) /0 1 + asinRnmx/L) *

Eov/1 —az(LZ))zL. (3.47a)

For the homogenized bar, the effective modulus E° is simply the harmonic mean of
the modulus within the unit cell® [30],

1 1/’ 1 y 1/1 1 J
= X = X
ES 1)y Ex) 1 Jo Eo(1 4+ asin(2rx/l))

11 > 1 1 1
_ / = . (3.48a)
Ey2m Jo 14 asin(§) Eo /1 —a?
Thus,
E'=E\W1—a?. (3.49)

The energy density of the homogenized bar W? is given by

1 (du®\>
wl= E° , 3.50
2 ( dx ) ( )

where E° is given by Eq. (3.49) and du®/dx is given by Eq. (3.45). The total stored

energy in the homogenized bar W? , is then

L 1 2
W‘(‘)""ﬂ:/o W0 dx = WOL = ZEO«/I—aZ(MLO) L, (3.51)

which is identical to Wiy, given by Eq. (3.47a), as required.

3.3.3 Homogenization Example

For a homogenization example, consider the unit cell shown in Fig. 3.4a. This unit
cell is a cube partitioned into nine subvolumes. In the center of the unit cell is a
truncated octahedron. The remaining eight parts are the corners of the cube not
contained in the truncated octahedron. We take each subvolume of the cube to be a
crystal of stainless steel 304L (y-Fe). The FCC crystal structure of y-Fe (austenite)
possesses cubic elastic symmetry with a relatively large anisotropy ratio A, with

3This simple relation does not hold in higher-dimensional problems.
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Fig. 3.4 (a) Example unit
cell consisting of nine
subvolumes. The center
subvolume is a truncated
octahedron. (b) Conformal
hexahedral finite-element
mesh of the unit cell

Table 3.1 Cubic elast'icity Material  Cj, Cir Cus A

constants for 304L stainless AL 204 | 126.2

steel (y-Fe) [81] (units are 30 04.6 1377 62 38

GPa) a-Fe 231.4 1347 1164 24
Al 107.3 609 283 1.2
Cu 1684 1214 754 32

The anisotropy ratio A = 2Cy4/(Cy; —
C)») is also given. For an isotropic mate-
rial, A = 1. Several other cubic metals are
given for comparison [19]

A = 2C44/(Cyy — C12) = 3.8, where Cyj, Cjp, and Cyy are the cubic elastic
constants. For an isotropic material, A = 1. The values of these constants are
given in Table 3.1 for austenite [81] along with several other cubic materials for
comparison [19]. The relatively large anisotropy ratio of austenite should produce
more pronounced surface and strain-gradient effects within a macroscale structure
containing finite microstructure.

The orientation of each crystal (subvolume) within the unit cell is chosen such
that the homogenized (first-order) material properties of the unit cell are orthotropic.
For the truncated octahedron subvolume, the crystal aligns with the axes of the unit
cell. For each corner subvolume, one axis of the crystal is in a (111) direction. The
second axis is in a (110} direction.

The homogenized elastic constants (first-order) are obtained by solving the
boundary-value problem defined in Eq. (3.37). The polyhedral algorithm within the
Cubit meshing tool [36] was used to create a hexahedral mesh of each subvolume
as shown in Fig.3.4b. The finite-element mesh of the unit cell contained 832
hexahedral elements. Results were insensitive to further mesh refinement. The
homogenized material properties are E; = E, = 1.15737 x 10°, E3 = 0.980940 x
105, M2 = 5.01817 x 104, M13 = MU23 = 5.89234 x 104, Va1 = 026924, V31 =
vy, = 0.38072, where E;, u;, v, i,j = 1,2, 3 are the orthotropic Young’s moduli,
shear moduli, and Poisson’s ratios, respectively. Note there is some additional
symmetry present, since there are only six independent elastic constants whereas
a fully orthotropic material has nine independent elastic constants. Additionally,
recall that for an orthotropic material, vj; = 2 Vo1, Vi3 = g V31, and vz = % V3.
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a l b l c l
Fig. 3.5 Aggregates of the unit cell shown in Fig.3.4: (a) 4 x4 x4, (b) §x8x8,(c) 16 X 16X 16
(The color of each subvolume with the unit cell is arbitrary)

2.0
2 ) l.Oi
N 0.0
Fig. 3.6 Stress component oy; resulting from the application of a uniform unit traction on the two
surfaces normal to the [100] direction of the crystal structures shown in Fig.3.5. (a) 4 X 4 x 4,
(b) 8 x 8 x 8, (¢) 16 x 16 x 16. Note the apparent surface effects near the two planes on which
the tractions are applied. For this simple loading case, the stress field resulting from the use of the

homogenized material properties is o1; = 1 with all other components identically zero. On the
interior, the stress field is approximately periodic

Note that E;/FE; = 1.17986. Thus, the unit cell exhibits a significantly smaller
(homogenized) anisotropy than the individual cubic crystals.

Now consider the 4 x 4 x 4, 8 x 8 x 8, and 16 x 16 x 16 aggregates of unit
cells as shown in Fig.3.5. A uniform traction of unit value is applied to the two
surfaces normal to the [100] direction. The resulting stress field is shown in Fig. 3.6
(component o). For this simple loading case, the stress field resulting from the
use of the homogenized material properties is o;; = 1 with all other components
identically zero. Note the apparent surface effects near the two planes on which
the tractions are applied. Also, the surface effect does not disappear as the size of
the unit cell gets smaller relative to the overall aggregate size. The stress field at the
surface consistently deviates from that of the interior. In the interior, the stress field
is approximately periodic.

In order to introduce macroscale strain gradients, consider the boundary-value
problem of a linear-elastic prismatic beam of length L and rectangular cross-section
of width 2a and height 2b as shown in Fig. 3.7a. The beam is fixed (weakly) on the
end x3 = L, and subjected to a transverse shear force F in the negative x,-direction
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Fig. 3.7 (a) Prismatic beam of length L and rectangular cross-section of width 2a and height 2b.
(b) Beam consisting of 16 X 16 X 32 unit cells shown in Fig. 3.4. For this case, 2a = 2b = 1,
L=2

at the opposite end x3 = 0. At any cross-section of the beam

b a b a
/ / 032 dx1 de =F and / / 033X dx1 de = FX3 s (3.52)
—bJ—a —bJ—a

so that the beam transmits a constant shear force on each cross-section, and the
bending moment about the x;-axis increases linearly from zero at x3 = 0 to FL at
x3 = L. The transverse faces are traction free. For an isotropic material, Barber [12]
gives the exact Cauchy stress field as

o011 =021 =02 =0 (3.53a)
F
033 = I X2X3 (3.53b)
F2d®> v i =n" . ( / )sinh(nnxz/a) (3.53¢)
031 = sin(nmw 53¢
T I 4 ot n? /s cosh(nmb/a)

1 2 I1+4+v 6 cosh(nmb/a)
(3.534d)

Fb»—x3 F 332-a® 2a> K (—1)" h
o1 = X3 v xj—as az Z( 2) cos(nﬂxl/a)cos (nmxy/a)
= n

where v is Poisson’s ratio, and I = 4ab’/3 is the second moment-of-area about the
x1-axis. An analysis of the derivation of this stress field shows that the solution also
holds for the special case of an orthotropic material with the additional symmetries
E, = E5, u13 = W23, and v3; = v3,. This is precisely the case for the unit cell
considered in this example. The only modification required of Eq.(3.53) is to let
V — V31 = V3).

Figure 3.7 shows a beam consisting of 16 x 16 x 32 unit cells. For this case,
2a = 2b = 1,L = 2,and I/L = 1/16. The total size of the finite-element mesh
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Fig. 3.8 (a) Von Mises stress field of the heterogeneous beam shown in Fig. 3.7. The beam is fixed
(weakly) on the end x3 = L, and subjected to a transverse shear force in the negative x,-direction
at the opposite end x3 = 0. (b) Von Mises stress field of the same beam but instead using the
homogenized material properties (The deformed shape is shown greatly magnified)

0.2
o.li
0.0
Fig. 3.9 (a) Magnitude of the cell-averaged Cauchy stress tensor for the heterogeneous beam. (b)

Magnitude of the cell-averaged Cauchy stress tensor for the homogeneous beam. (¢) Magnitude of
the difference in the cell-averaged Cauchy stress tensors

is then 832 x 8192 a 6.8 million. Tractions are applied on the surfaces x3 = 0
and x; = L according to Eq. (3.53). The resulting Von Mises stress field is shown
in Fig.3.8a. The Von Mises stress field of the same beam, but instead using the
homogenized unit-cell material properties, is shown in Fig. 3.8b.

To investigate the accuracy of homogenization solution for this example, we
consider the average of the stress tensor over the unit cell according to Eq. (3.34)
for both the DNS results and the homogenization results (H). Any difference can
be attributed to either surface effects or hyperstresses. Figure 3.9a, b gives the
Euclidean magnitude ||{o;;)v|| of the cell-averaged Cauchy stress tensor for the both
the DNS results and the homogenization results, respectively, where

1
(oi)v = v / o;(x,y)dv, (3.54)
14

and V represents the volume of the unit cell. Figure 3.9c shows the magnitude of the
difference of the cell-averaged Cauchy stress, ||(0;™%)y — (o}!)v||. The difference
is about 2 %.
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3.3.4 Computational Homogenization

Typically, the solution of the cell problem given by Eq. (3.37) requires a numerical
approximation in all but the simplest cases, as was demonstrated in Sect. 3.3.3. For
linear materials, the cell problem is only solved once to obtain the homogenized
material properties. These homogenized material properties can then be used in
any boundary-value problem consistent with the assumptions of the homogeniza-
tion. For inelastic problems, the deformation of the unit cell is typically history
dependent, and thus cannot be homogenized a priori in general. Instead, the
homogenization step must be performed concurrently during the simulation of the
macroscale problem [75]. Within a finite-element framework, each macroscale finite
element has a unit cell (or RVE) embedded within each integration point. For
the displacement-based finite-element method, the host code sends an increment
of deformation to the material model, and the material model sends back an
increment of stress. This concurrent-multiscale process is sometimes referred to
as “computational homogenization,” or (FE)? (finite element squared), since a
finite-element model is active at the macroscale and at the microscale (unit cell).
This computational approach is analogous to the local quasi-continuum method
discussed within Chap. 6 of this book. Fish [50] has developed a general-purpose
multiscale software [94] that includes several computational homogenization capa-
bilities.

For first-order homogenization, the main assumption is the presence of a scale
separation between the microscale and macroscale, [/L <« 1, where now the
macroscopic length scale L should take into account strain gradients as well.
The assumption of a scale separation and small strain gradients typically breaks
down when the material localizes, such as when shear-banding and fracture occur.
The range of applicability of computational homogenization can be extended by
including strain-gradient effects (higher-order homogenization theory) [32, 33, 54,
76, 149].

While the unit-cell problem defined by Eq. (3.37) can be solved using standard
numerical techniques, such as the finite-element method, a very efficient numerical
algorithm has been developed by Moulinec and Suquet [107] based on the FFT.
This approach transforms the set of partial-differential equations with periodic
boundary conditions into a convolution-based integral equation that can be solved
using fixed-point iteration in Fourier space. The FFT method for solving the unit-
cell problem has proven effective for both linear and nonlinear computational
homogenization [97, 98, 107]. Eisenlohr et al. [43] have compared the finite-element
solution of the unit-cell problem to the FFT method for polycrystals in the large
deformation regime. Massively parallel implementations of the FFT algorithm exist
in three dimensions [122] as well as GPU implementations [99].

To set up the FFT-based fixed-point iteration algorithm, the concept of a linear
homogeneous reference medium with stiffness tensor Cy is introduced, along with
the polarization stress T defined by

T(y) =0(y) —Co: e(y) = (C(y) = Cyp) : €(y) . (3.55)
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Equation (3.37) can be cast in the form of the periodic Lippmann—Schwinger
equation,

€(y) = —/VFo(y,y’) c1(y)dy +E, (3.56)

where I((y,y’) is a fourth-order tensor related to the Green’s function of the
homogeneous reference medium [109], and here E represents a constant strain
over the unit cell. Taking the Fourier transform of Eq.(3.56) turns the nonlocal
convolution in real space into a local product in Fourier space,

e()=—To(&):#(&) forall £ #£0 (3.57a)
¢0)=E, (3.57b)

where & is the spatial frequency vector. In Fourier space, r o0(&) is given explicitly by

= Sk + 01k + SiEiki + 8y&ii Ao+ o Ei§iELE
Fu(e) = - . (358
i (&) R oo +200) 11 O

where Ao and p are the Lame coefficients of the reference medium, and §;; is the
Kronecker delta.

Since the polarization stress defined in Eq. (3.55) is a function of the unknown
strain field €(x), an iterative solution of Eq. (3.57) can be obtained using the fixed-
point scheme

et &) =—To(E):2(¢) i=01.2,.... (3.59)

The steps in this algorithm are shown in Fig.3.10. The convergence test in the
algorithm measures the deviation from equilibrium (divergence of stress equal to
zero) within a given tolerance. Note that the algorithm does not involve the solution
of a matrix equation. According to Banach’s fixed-point theorem [77], the fixed-
point iteration converges to a unique solution if the operator implicit in Eq. (3.56)
is a contraction. This condition has been studied extensively, and can be assured
under certain restrictions for Ay and po [98]. The number of iterations required for
convergence scales with the ratio of maximum and minimum contrasts in the elastic
moduli. For a nonlinear material, only step 6 needs to be modified to return the
stress for the given value of strain. For a history-dependent material, an incremental
version of the algorithm is used [43].

The development of numerical schemes that accelerate the basic FFT algorithm
is an active area of research. Recent improvements include using a periodic Green’s
operator instead of one based on an infinite medium [20, 21, 70, 98, 156].
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Initialization : y)=E, forall yeV
C(y):e%y), forall yeV

a’(y)
Iteration i +1: with e’ and o known

T(y)=0'(y) = Co:€'(y)
() = F(r'(y)

convergence test

ETLE) = —To(¢) : 7'(€) forall §£0, &7(0)=E
M) =F 1 EeM©)
o (y) =Cly) e (y)

S ok W

Fig. 3.10 Iterative FFT algorithm for solving the homogenization unit-cell problem given by
Eq. (3.37) [107]. . represents the FFT (in 3D), and .# ! represents the inverse FFT (in 3D).
The convergence test measures the deviation from equilibrium

3.4 Crystal-Plasticity Models

In many macroscale constitutive models, phenomenological formulations are devel-
oped for specific classes of materials such as those for plasticity and viscoplasticity
(polycrystalline metals) [74, 83, 87, 111], hyperelasticity and viscoelasticity (poly-
mers) [29], and pressure dependent plasticity (porous materials) [5, 19]. These
models use various internal-state variables to phenomenologically model physical
effects such as dislocation slip, dislocation density, porosity, and damage. Through
these constitutive models, the stress is related to the entire history of deformation.
Constitutive models also exist that describe the deformation of the grain or single-
crystal scale in metals by incorporating homogenization of discrete dislocation
slip events [127]. These constitutive models are generally referred to as “crystal
plasticity” (CP) models. Some CP models use dislocation densities explicitly as
internal-state variables, and thus incorporate additional length scales [15]. In this
section, crystal-plasticity models based on a continuum approximation will be
discussed as one class of inelastic continuum model.

3.4.1 Background

Crystal-plasticity models are based on single-crystal plastic deformation via dislo-
cation motion through a crystal lattice on specific slip systems. The applied stress
is resolved onto predefined slip systems to accommodate plastic deformation of
each grain or crystal. Figure 3.11 illustrates the Schmid law, T = o cos A cos ¢,
that defines the relationship between the shear stress t resolved on the slip plane
and the uniaxial applied stress 0. Here, ¢ is the angle between the slip plane with
normal n and the loading axis, and A is the angle between the slip direction m and
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Fig. 3.11 Schematics of the O Applied stress
Schmid law. The resolved
shear stress 7 is described by

the applied stress o, cosine of \—I—/
the angle ¢ between the
slip-plane normal n and the Slipplane (Il l
loading axis, and cosine of normal ¢ l A B4 m
the angle A between the slip Slip
direction m and the loading direction
axis T=0cosAcoso |

|

I

R RN

the loading axis. For the case of arbitrary loading, t can be represented using a
contraction between the Schmid tensor, P = 1/2(m ® n 4+ n ® m), and the applied
stress tensor, 0.

With some simplifying assumptions of the interactions between grains, single-
crystal constitutive equations can be used to directly approximate the response
of a polycrystal. Classical polycrystal plasticity models (texture models) assume
simplified interactions between grains, e.g., the same stress state [132] or strain
state [145] for each crystal. However, these models ignore intergranular compati-
bility and equilibrium, respectively. Recently, crystal-plasticity constitutive models
implemented within nonlinear displacement-based finite-element (FEM) codes
enforce compatibility strongly and equilibrium weakly. In addition to solving the
equilibrium equations, the advantages of crystal-plasticity FEM (CP-FEM) include
the ability to handle irregular shaped domains, complex boundary conditions,
and multiple material phases. Furthermore, high performance computers enable
simulations of polycrystalline domains on macroscopic length scales, i.e., having
millions of grains. Polycrystalline simulations using CP-FEM can provide mechan-
ical properties of the polycrystalline body with consideration of microstructural
effects such as texture evolution (crystal orientations), multi-phases, defects (voids
and dislocations), and grain morphology (shapes and sizes).

The basic assumptions used in conventional crystal-plasticity models are (1)
the deformation gradient can be decomposed into elastic and plastic parts, and
(2) plastic deformation occurs by dislocation slip on the predefined slip systems.
Thus, conventional crystal-plasticity models ignore other deformation mechanisms
such as cross slip, climb, dislocation twinning, grain-boundary sliding, and non-
Schmid yield behavior. More sophisticated models have been developed to capture
these effects [71, 86, 89]. In this section, the most widely adopted crystal-plasticity
formulation by Peirce et al. [121] is outlined.
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3.4.2 Model Formulations

Crystal-plasticity models generally adopt a multiplicative decomposition of the
deformation gradient F into elastic F¢ and plastic FP parts [62, 82, 121, 126],

F=FF. (3.60)

As the crystal deforms, the lattice is rotated and elastically stretched and sheared
according to F¢. The plastic deformation gradient FP is calculated from the crystal
slip as [9]:

FP =1+ y°si®n. (3.61)

where y® is the amount of slip in « slip system, s§ and ng are the unit vectors in
the slip direction and slip-plane normal direction on the « slip system in the original
configuration, respectively, and I is the identity tensor. The slip systems for different
crystal structures, FCC and BCC, are given in Table 3.2.

The velocity gradient in the current configuration, L = dv/0x, can be written as

L=FF'!=L°+Lr, (3.62)

Table 3.2 Slip systems for different crystal structures

o Slipsystem o  Slipsystem o«  Slipsystem o  Slip system
Twelve FCC slip systems
1 (01D)[111] 4  (0ID)[111]
2 (Tonfi11] 5 (10D[I11]
3 (110)[111] 6  (110)[111]
Twenty four {110} BCC slip systems
OID[111] 7 (OID[II1] 13 (011)[
aon[i] 8 Jdon[I1] 14 (101
atoyit] 9 d10y[11] 15 (@110)]
aon[ii] 10 @oH[I1] 16 (101)[
[
[

] 10 (OID[111]
11 (101)[111]
1 12 110)[111]

O 0
~ N~
— =1
— O =
S = =i
= o —
—_— —=
— =1 =
[ QN -
et |t |t |

1 19 (OID[111]
] 20 (10D[111]
1 21 (110)[111]
1 22 @oD[I11]

OID[I11] 11 (O1D[I1] 17 (O1D[11]]

A10)[111] 12 A10)[111] 18 (110)[111]

Twenty four {112} BCC slip systems

23 (01D)[111]
24 (110)[111]

AN N AW N =

1 iy 7 A1) 13 Q1[I 19 (112)[11]
2 QD[] 8 @RID[II] 14 @ID[II] 20 QID[111]
3 (12D[11] 9 (I2D[111] 15 (A2D[11] 21 (12D)[11]]
4 11[111] 10 AI1Q)[I1] 16 (112)[111] 22 A1)[111]
5 (2p[i1] 11 A2D[I1] 17 (2D 23 12D)[111]
6 (ID[I11] 12 @ID[II1] 18 QID[TI] 24 QID[111]
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where L® and LP are elastic and plastic parts of the velocity gradient, respectively,
and are given by

L°=F (F)~! and LP=FF° (F")~!(F°) . (3.63)
The plastic part of the velocity gradient LP is given as [121]

LP =) s ®@n . (3.64)
o

where p“ is the slip rate on the « slip system.

The critical aspect of single-crystal constitutive equations is formulating how the
slip rate is related to the applied stress. The most widely used form for a viscoplastic
formulation is based on the power-law function [66, 126],

- 1/m
a>=am(g) sign(z) | (3.65)

where y, is the reference shear rate, m is the rate sensitivity, and g is the slip
resistance. Alternatively, the slip rate can be modeled using a thermal activation
form given by Ma et al. [89].

Y = Yoexp [_kQT (1 — ;)} sign(z) , (3.66)

where Q is the activation enthalpy, k is the Boltzmann constant, and T is tem-
perature. This form is useful when the crystal slip exhibits large temperature
dependence, e.g., for body-centered cubic (BCC) crystal structure.

The slip resistance g represents strain hardening. There are different models
for g, e.g., isotropic hardening, slip-based hardening, or dislocation density-based
hardening. Classical isotropic hardening models generally assume that all slip
systems harden equally as a function of plastic strain [88]. Slip-based hardening
models are also widely used in crystal-plasticity models, and have been used to
successfully predict texture and anisotropic behaviors in polycrystals [72, 91].
In slip-based hardening models, the strain hardening term is related to the slip
increment on all slip systems through the relation [8],

g = hy. (3.67)
B

Here, h*f is the hardening matrix that relates hardening on one slip system to
other active slip systems. Different hardening matrices that account for anisotropy
and dislocation—dislocation interactions have been proposed [13, 38, 52, 79]. The
widely used form that successfully predicts stress—strain behavior of polycrystals is
as follows [22]:

ﬂ a
hP = gy (1 _8 ) . (3.68)

s
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Here, hg is the initial hardening rate, g, is the saturated flow stress, and a is
the hardening exponent. q*# is a hardening matrix that determines the self to
latent hardening ratios. The diagonal terms of q‘)‘ﬁ, denoted by gseir, describe self-
hardening while the non-diagonal terms denoted by ¢y, describe the latent hardening
effect. The values gs;f = 1 and gj,; = 1.4 are commonly used in polycrystalline
simulations [10, 91, 121].

The dislocation density-based Taylor hardening law is represented as follows
[144]:

g=Aub [> pP. (3.69)
B=1

where A is a material constant, p is the shear modulus, b is the Burger’s vector
(magnitude), and pf is the dislocation density on slip system f. The evolution of
dislocation density for the « slip system is obtained by a standard phenomenological
equation [73],

24
P =\ | Do 0P —rap® |19 (3.70)
=1

where k| and k, are hardening parameters representing generation and annihilation
of dislocations, respectively, and ultimately determine the shape of the stress—strain
curve.

Other variations of crystal-plasticity models include different types of time
integration schemes, e.g., implicit or explicit, as well as rate independent models.
Crystal-plasticity constitutive models can be implemented within the standard finite-
element formulation [127]. This is commonly done in commercial software such as
ABAQUS [1] and ANSYS [6], as well as more specialized finite-element software
such as ALBANY [4], DAMASK [37, 129], and ZEBULON [155].

3.4.3 CP and Nanomechanics

One of the strengths of the crystal-plasticity model is that it can accommodate
microstructure in simulations and provides realistic length and time scales. Modern
CP-FEM has been modified and applied to various micro- to grain-scale prob-
lems [128]:

» Texture evolution, plastic anisotropy

* Nonlocal formulations, grain boundary mechanics, grain size effects
e Metal forming, deep drawing, springback

* Surface roughening, ridging, roping.

* Damage and fracture, fatigue, void growth
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* Micromechanics: nanoindentation, micropillar testing

* Creep, high temperature deformation, diffusion mechanisms

* Deformation twinning, martensitic transformation, shape memory, phase trans-
formation, recrystallization

There are two main limitations in applying conventional CP models directly to
nanoscale materials. First, as grain sizes are reduced to nanometer sizes in nanocrys-
talline materials, the assumption of a continuous dislocation density becomes
increasingly suspect. Second, many experiments and lower length-scale simulation
results show that conventional dislocation plasticity in non-nanocrystalline metals
breaks down in nanoscale materials. For example, discrete dislocation grain-
boundary interactions and grain boundary sliding become significant deformation
mechanisms at this scale. Note that conventional CP models do not properly
incorporate these effects. To overcome these limitations, advanced CP models
have appeared in the literature [53, 84, 85, 153]. They either use quantized slip
or incorporate grain boundary effects to capture deformation mechanisms at the
nanoscale. More detailed description of the quantized crystal-plasticity (QCP)
model is discussed in Chap. 13.

3.5 Conclusions

In this chapter, we have briefly reviewed continuum mechanics, homogenization
theory, computational homogenization, and constitutive modeling including crystal-
plasticity. Our review of continuum mechanics included an overview of micromor-
phic and nonlocal theories as well as continuum formulations that include an explicit
surface stress. At the center of continuum mechanics is homogenization theory
which provides a mathematically elegant and rigorous framework for replacing a
discrete collection of interacting entities by an equivalent homogenous continuum
with effective material properties. Numerous references to much more detailed
expositions on these topics were provided throughout the chapter.

Errors in a continuum approximation to a discrete system are unavoidable
whenever the introduced length scales are comparable to the length scale of
the discrete system. Generalized continuum theories may be able to reproduce
qualitatively correct physical phenomenon, such as a surface effect or optical-branch
phonon dispersion curves, but the accuracy of the continuum theory must be judged
with respect to the true behavior of the original discrete system.
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Appendix
Example: Error in the Continuum Approximation

Discrete systems have an inherent length scale governed fundamentally by the
interaction distance between entities. The accuracy of the continuum approximation
depends critically on the size of the structure compared to the size of this intrinsic
length scale. To illustrate the continuum approximation of a discrete system and
its accuracy, consider a simple one-dimensional chain of N atoms of total initial
length L with initial atomic spacing ! subjected to a body force F per atom as
shown in Fig.3.12a. The initial position X; of each atom is given by X; = [- I,
I1=0,1,2,3,...,N with Xy = L. For simplicity, we take the interatomic potential
to be harmonic with spring constant K, pair-wise additive, with only nearest-
neighbor interactions.

The forces between the atoms are linear with respect to the relative displacements
so that

K(MN — LtN_l) =F (3713)
K(uy—1 — uy—s) = 2F (3.71b)
K(M] — u1_1) = F(N—I + 1) (3710)
K(u1 — ug) = FN (3.71d)
B
b

Fig. 3.12 (a) One-dimensional chain of atoms of total initial length L with initial atomic spacing
I subjected to a body force F' per atom. The initial position X; of each atom is given by X; = [ - 1,
1 =0,1,2,3,...,N with Xy = L. The interatomic forces are governed by local interactions and
a spring constant K. (b) One-dimensional chain of atoms with nonlocal interatomic forces. The
nearest-neighbor spring constant is K, and next-nearest spring constant is K,
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where u; is the displacement of atom / with ug = 0. Since this set of equations
telescopes starting with u; = FN/K, we have

F ! F 1
MIZK[[.N_;(J_D}:KI:I.N—zl(I—l):|. (3.72)

Since N = L/l and I = X;/I, we can write Eq. (3.72) as

(F/DL* | X, I 1 (X\>
= 1 — . 3.73
“= x| L\ ") 2\t (5.75)
Note that the natural length-scale ratio for this problem is //L.
To obtain the continuum version of this problem, we first use Eq. (3.13) reduced
to the one-dimensional form, along with a linear-elastic constitutive model, oy, =

Edu/dX. This results in the following equation for the continuum displacement field
in a one-dimensional bar,

Y L =0 (3.74)
dx \"dX - ‘

where f is the body force per unit length along the bar, and k is the cross-sectional
stiffness. The solution to this equilibrium equation with the boundary condition

u(0) = 0 is given by
21 x 1 (x\’
u(X) :fi [L - (L) ] . (3.75)

Note that there is no intrinsic length scale in this continuum solution. If we identify
k= K-land F = f-1, then Eq. (3.73) converges to Eq. (3.75) in the limit as //L — 0.
The absolute error in the continuum approximation is given by,

2 .
er = |u(Xp) — u| =fi (}z) (ZZL) (3.76)

This error is proportional to the length-scale ratio //L. Also, the error varies linearly
along the chain, from ¢p = 0 at Xy = 0 to a maximum value at Xy = 0. Thus, in the
limit of infinitesimally small intrinsic length scale, the discrete solution converges
to the continuum solution.

The normalized displacement solution for the discrete atom chain, given by
Eq.(3.73) with it = u/(FL?/KI?), is shown in Fig. 3.13a as a function of normalized
initial position, X =X /L, for several values of the length-scale ratio //L. The
continuum approximation for the displacement field, given by Eq.(3.75), is also
shown. The error in the continuum approximation, given by Eq. (3.76) with e =
|u — uy|, is shown in Fig. 3.13b, and is seen to approach zero as //L — 0. Only for
[/L < 0.02 (N = 50) is the maximum error less than 2 % of the peak displacement.
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Fig. 3.13 (a) Normalized displacement & as a function of normalized initial position X of a one-
dimensional chain of atoms subjected to a uniform body force and fixed at the end X = 0
for various values of the ratio of atom spacing to total initial chain length, //L. The continuum
approximation is also shown. (b) Normalized error in the continuum approximation. Only for
[/L < 0.02 (N = 50) is the maximum error less than 2 % of the peak displacement

Example: Absence of a Surface Effect in Classical
Continuum Mechanics

Discrete systems can also display surface effects that are not present in classical
continuum theories. To illustrate the continuum approximation of a discrete system
and its accuracy, consider a simple one-dimensional chain of N atoms of total initial
length L with initial atomic spacing [ subjected to a body force F' per atom as
shown in Fig.3.12b. The initial position X; of each atom is given by X; = [ -1,
1=0,1,2,3,...,N with Xy = L. We take the interatomic potential to be harmonic,
pair-wise additive, with both nearest-neighbor interactions with spring constant K7,
and nonlocal interactions with spring constant K,. Note that the atoms at the end of
the chain experience a distinctly different force environment than those atoms in the
interior of the chain due to the number of interacting neighbors.

The forces between the atoms are linear with respect to the relative displacements
so that

Ki(uy —un—1) + Ko(uy —uy—) = F  (3.77a)
—Ki(uy —uy—1) + Ki(un—1 — uy—2) + Kr(uy—1 —un—3) = F (3.77b)
—K>(uy — un—2) — Ki(uy—1 — un—2) + K1 (uy—> — un—3)

+ Ky(uy— —un—4) = F (3.77¢)
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—Ko(upo — up) — Ky (g1 —up) + Ky (up — up—1) + Ko(uy —up—2) = F (3.77d)

—Ky(uz —uy) — Ki(up —uy) + Ki(uy —ug) = F (3.77¢)

where u; is the displacement of atom I with uy = 0. This system of equations results
in a matrix equation Ku = F where K is N x N banded matrix of the Toeplitz type
and can be solved using standard methods.

The normalized displacement solution for the discrete atom chain with u =
u/(FL?/K;[?) is shown in Fig.3.14a as a function of normalized initial position,
X=X /L, for several values of the length-scale ratio //L. For this example, we
have chosen K, = 0.5K;. In order to use the continuum approximation given by
Eq. (3.75), we must first define an effective spring stiffness, Ke¢. To this end, we
isolate a unit cell of length 2/ surrounding one interior atom. Within each cell, there
are two K springs acting in series thus contributing a value of ;K 1 to Ketr. There is
a full K, spring acting in parallel thus contributing a value of K, to K.¢. There are
also two K, springs that effectively act in parallel to the unit cell, thus contributing
avalue of J K> + ) K, t0 Kegr. Thus, Kegg = ) Ky + 2Kz, and k = Ko - (21). Also, the
effective force per unit length is f = 2F/2] = F/I. The continuum approximation

a b
0.3 0.06
I/L=0.1 I/L=0.1
0.05 0.05
0.25 0.02 0.05 0.02
continuum
02 0.04 - surface effect RO
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U 0.15 e

1

"

\ 1
0.034 ,/ \ : ‘\
/! ! : ‘\
II ! ' ‘
0.1 4 0.02 ! | l
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' : \ 1
[ ' I
1 ! \ :
0.05 0.01/ /] \ I
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Fig. 3.14 Illustration of the surface effect for a one-dimensional discrete chain of atoms subjected
to a body force F applied to each atom. The atoms are connected to their nearest neighbors by
linear springs with spring constant K, and to their next-nearest neighbors by linear springs with
spring constant K. The chain is fixed at X = 0. The total initial length of the chain is L, and
the atomic spacing is / so that the number of atoms N = L/I. (a) Normalized displacement,
= u/(FL* /K1), plotted as a function of the normalized initial position, X = X/L. Results are
shown for //L = 0.1, 0.05, 0.02 (N = 10, 20, 50, respectively) with K, = 0.5K;. The continuum
approximation, //L — 0, is also shown with u = u/(fL?/k) where f = F/I, and k = K, . (b)
Error in the continuum approximation with e = |u — i;|
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for the displacement field is also shown in Fig.3.14a. There is some noticeable
surface effect on the atoms near the ends of the chain, particularly near X = 0.
This effect is more noticeable if we plot the error in the continuum approximation,
e = |ii—ii|, as shown in Fig. 3.14b. Notice that the surface effect near X = 0 affects
several atoms. The surface effect is absent in the chosen continuum approximation.

Acknowledgements Sandia National Laboratories is a multi-program laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

References

—

. ABAQUS, http://www.3ds.com/products-services/simulia/products/abaqus/ (2015)

2. E. Aifantis, Update on a class of gradient theories. Mech. Mater. 35(3-6), 259-280 (2003)

3. E. Aifantis, On the gradient approach — relation to Eringen’s nonlocal theory. Int. J. Eng. Sci.
49(12), 1367-1377 (2011)

4. ALBANY, https://github.com/gahansen/Albany (2015)

5. A. Anandarajah, Computational Methods in Elasticity and Plasticity: Solids and Porous
Media (Springer, New York, 2010)

6. ANSYS, http://www.ansys.com (2015)

7. B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of
carbon nanotubes and graphenes. Comput. Mater. Sci. 51(1), 303-313 (2012)

8. R.J. Asaro, Geometrical effects in the inhomogeneous deformation of ductile single crystals.
Acta. Metall. 27, 445 (1979)

9. RJ. Asaro, Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23, 1-115 (1983)

10. R.J. Asaro, A. Needleman, Texture development and strain hardening in rate dependent
polycrystals. Acta Metall. 33, 923-953 (1985)

11.J. Auriault, G. Bonnet, Surface effects in composite materials: two simple examples. Int. J.
Eng. Sci. 25(3), 307-323 (1987)

12. J. Barber, Elasticity (Springer, New York, 2010)

13. J.L. Bassani, T.Y. Wu, Latent hardening in single crystals II. Analytical characterization and
predictions. Proc. R. Soc. Lond. A. 435, 21-41 (1991)

14. G. Beer, I. Smit, C. Duenser, The Boundary Element Method with Programming (Springer,
Wien, 2008)

15. T. Belytschko, W. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and
Structures, 2nd edn. (Wiley, London, 2014)

16. A. Bensoussan, J. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures
(American Mathematical Society, Providence, 2011)

17. F. Bobaru, Influence of van der Waals forces on increasing the strength and toughness in
dynamic fracture of nanofibre networks: a peridynamic approach. Model. Simul. Mater. Sci.
Eng. 15(5), 397417 (2007)

18. J. Bonet, R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn.
(Cambridge University Press, Cambridge, 2008)

19. A. Bower, Applied Mechanics of Solids (CRC, New York, 2010)

20. S. Brisard, L. Dormieux, FFT-based methods for the mechanics of composites: a general
variational framework. Comput. Mater. Sci. 49(3), 663-671 (2010)

21. S. Brisard, L. Dormieux, Combining Galerkin approximation techniques with the principle of

Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization

of composites. Comput. Methods Appl. Mech. Eng. 217-220, 197-212 (2012)


http://www.3ds.com/products-services/simulia/products/abaqus/
https://github.com/gahansen/Albany
http://www.ansys.com

3 Continuum Approximations 125

22

23
24

25.
26.
217.
28.
29.
30.
31
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44,
45.

46.
47.
48.

49.
50.
51.
52.

53.

. S.B. Brown, K.H. Kim, L. Anand, An internal variable constitutive model for hot working of
metals. Int. J. Plast. 5, 95-130 (1989)

. H. Butt, M. Kappl, Surface and Interfacial Forces, 3rd edn. (Wiley-VCH, Weinheim, 2010)

. H. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, 3rd edn. (Wiley-VCH,

Weinheim, 2013)

Y. Chen, J. Lee, Connecting molecular dynamics to micromorphic theory. (I). Instantaneous

and averaged mechanical variables. Phys. A Stat. Mech. Appl. 322, 359-376 (2003)

Y. Chen, J. Lee, Determining material constants in micromorphic theory through phonon

dispersion relations. Int. J. Eng. Sci. 41(8), 871-886 (2003)

Y. Chen, J. Lee, A. Eskandarian, Examining the physical foundation of continuum theories

from the viewpoint of phonon dispersion relation. Int. J. Eng. Sci. 41(1), 61-83 (2003)

Y. Chen, J. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum

theories. Int. J. Solids Struct. 41(8), 2085-2097 (2004)

R. Christensen, Theory of Viscoelasticity: An Introduction, 2nd edn. (Academic, New York,

1982)

D. Cioranescu, P. Donato, An Introduction to Homogenization (Oxford University Press,

Oxford, 1999)

A. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications

(Springer, New York, 2003)

E. Coenen, V. Kouznetsova, M. Geers, Enabling microstructure-based damage and localiza-

tion analyses and upscaling. Model. Simul. Mater. Sci. Eng. 19(7), 074,008 (2011)

E. Coenen, V. Kouznetsova, M. Geers, Novel boundary conditions for strain localization

analyses in microstructural volume elements. Int. J. Numer. Methods Eng. 90(1), 1-21 (2012)

COMSOL Multiphysics, http://www.comsol.com (2015)

E. Cosserat, Theorie des Corps Deformable (Hermann, Paris, 1909)

CUBIT Geometry and Meshing Toolkit, https://cubit.sandia.gov (2012)

DAMASK, http://damask.mpie.de (2015)

B. Devincre, L. Kubin, Scale transitions in crystal plasticity by dislocation dynamics

simulations. C. R. Phys. 11, 274-284 (2010)

F. Devries, H. Dumontet, G. Duvaut, F. Lene, Homogenization and damage for composite

structures. Int. J. Numer. Methods Eng. 27, 285-298 (1989)

R. Dingreville, J. Qu, M. Cherkaoui, Surface free energy and its effect on the elastic behavior

of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827-1854 (2005)

H. Dumontet, Study of a boundary layer problem in elastic composite materials. Math. Model.

Numer. Anal. 20(2), 265-286 (1987)

M. Duzzi, M. Zaccariotto, U. Galvanetto, Application of peridynamic theory to nanocompos-

ite materials. Adv. Mater. Res. 1016, 4448 (2014)

P. Eisenlohr, M. Diehl, R. Lebenshohn, F. Roters, A spectral method solution to crystal elasto-

viscoplasticity at finite strains. Int. J. Plast. 46, 37-53 (2013)

J. Ericksen, On the Cauchy-Born rule. Math. Mech. Solids 13, 199-200 (2008)

A. Eringen, Microcontinuum Field Theories I: Foundations and Solids (Springer, New York,
1999)

A. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

A. Eringen, D. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233-248 (1972)

A. Eringen, E. Suhubi, Nonlinear theory of simple microelastic solids — I. Int. J. Eng. Sci.

2(2), 189-203 (1964)

E. Eringen, E. Oterkus, Peridynamic Theory and its Applications (Springer, New York, 2014)

J. Fish, Practical Multiscaling (Wiley, Chichester, 2014)

N. Fleck, J. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295-361 (1997)

P. Franciosi, A. Zaoui, Multislip in F.C.C crystals: a theoretical approach compared with

experimental data. Acta Metall. 30, 1627 (1982)

H. Fu, D.J. Benson, M.A. Meyers, Computational description of nanocrystalline deformation

based on crystal plasticity. Acta Mater. 52, 4413-4425 (2004)


 http://www.comsol.com
https://cubit.sandia.gov
http://damask.mpie.de

126

54

55

56.

57.

58

59.
60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.
81.

J.E. Bishop and H. Lim

. M. Geers, V. Kouznetsova, W. Brekelmans, Multi-scale computational homogenization:
trends and challenges. J. Comput. Appl. Math. 234(7), 2175-2182 (2010)

. P. Germain, The method of virtual power in continuum mechanics. part 2: microstructure.

SIAM J. Appl. Math. 25(3), 556-575 (1973)

S. Gonella, M. Greene, W. Liu, Characterization of heterogeneous solids via wave methods

in computational microelasticity. J. Mech. Phys. Solids 59, 959-974 (2011)

M. Gurtin, A. Murdoch, Addenda to our paper a continuum theory of elastic material surfaces.

Arch. Ration. Mech. Anal. 59(4), 389-390 (1975)

. M. Gurtin, A. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech.

Anal. 57(4), 291-323 (1975)

M. Gurtin, A. Murdoch, Surface stress in solids. Int. J. Solids Struct. 14, 431-440 (1978)

M. Gurtin, J. Weissmuller, F. Larche, A general theory of curved deformable interfaces in

solids at equilibrium. Philos. Mag. A 78(5), 1093-1109 (1998)

L. He, Z. Li, Impact of surface stress on stress concentration. Int. J. Solids Struct. 43, 6208—

6219 (2006)

R. Hill, J.R. Rice, Constitutive analysis of elastic plastic crystals at arbitrary strain. J. Mech.

Phys. Solids 20, 401-413 (1972)

M. Holmes, Introduction to Perturbation Methods, 2nd edn. (Springer, New York, 2013)

G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley,

New York, 2000)

C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies. J.

Mech. Phys. Solids 38(6), 813-841 (1990)

J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials.

Proc. R. Soc. Lond. A 348, 101-127 (1976)

H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of

mesoscopic structures. Surf. Sci. Rep. 29, 193-263 (1997)

V. Jikov, S. Kozlov, O. Oleinik, Homogenization of Differential Operators and Integral

Functionals (Springer, New York, 1994)

M. Jirdsek, Nonlocal models for damage and fracture: comparison of approaches. Int. J. Solids

Struct. 35(31-32), 4133-4145 (1998)

M. Kabel, D. Merkert, M. Schneider, Use of composite voxels in FFT-based homogenization.

Comput. Methods Appl. Mech. Eng. 294, 168-188 (2015)

S.R. Kalidindi, Incorporation of deformation twinning in crystal plasticity models. J. Mech.

Phys. Solids 46, 267-290 (1998)

S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk

deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537 (1992)

U.F. Kocks, Laws for work-hardening and low-temperature creep. ASME J. Eng. Mater. Tech.

98, 76-85 (1976)

U. Kocks, C. Tome, H. Wenk (eds.), Texture and Anisotropy: Preferred Orientations in

Polycrystals and Their Effect on Material Properties (Cambridge University Press, New York,
1998)

V. Kouznetsova, W. Brekelmans, F. Baaijens, An approach to micro-macro modeling of

heterogeneous materials. Comput. Mech. 27(1), 37-48 (2001)

V. Kouznetsova, M. Geers, W. Brekelmans, Multi-scale constitutive modelling of hetero-

geneous materials with a gradient-enhanced computational homogenization scheme. Int. J.

Numer. Methods Eng. 54(8), 1235-1260 (2002)

E. Kreysig, Introductory Functional Analysis with Applications (Wiley, New York, 1978)

E. Kroner, Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct.

3(5), 731-742 (1967)

L. Kubin, B. Devincre, T. Hoc, Modeling dislocation storage rates and mean free paths in

face-centered cubic crystals. Acta Mater. 56, 6040-6049 (2008)

LAMMPS, Molecular dynamics simulator. http://lammps.sandia.gov (2015)

H. Ledbetter, Monocrystal-polycrystal elastic constants of a stainless steel. Phys. Status Solidi

A 85(1), 89-96 (1984)


 http://lammps.sandia.gov

3 Continuum Approximations 127

82
83

84

85.

86.

87.
88.
89.
90.
91.
92.
93.

94.
95.

96.

97.

98.

99.

100.

101.
102.

103.

104.

105.

106.

107.

. E.H. Lee, Elastic-plastic deformation at finite strains. Appl. Mech. 36, 1-6 (1969)

. J. Lemaitre, J. Chaboche, Mechanics of Solid Materials (Cambridge University Press,
Cambridge, 1990)

. L. Li, PM. Anderson, M.G. Lee, E. Bitzek, P. Derlet, H.V. Swygenhoven, The stress-strain

response of nanocrystalline metals: A quantized crystal plasticity approach. Acta Mater. 57,

812-822 (2009)

L. Li, M.G. Lee, PM. Anderson, Critical strengths for slip events in nanocrystalline metals:

predictions of quantized crystal plasticity simulations. Metall. Mater. Trans. A Phys. Metall.

Mater. Sci. 42, 3875-3882 (2011)

H. Lim, C.R. Weinberger, C.C. Battaile, T.E. Buchheit, Application of generalized non-

Schmid yield law to low temperature plasticity in BCC transition metals. Model. Simul.

Mater. Sci. Eng. 21, 045,015 (2013)

J. Lubliner, Plasticity Theory (Macmillan Publishing Company, New York, 1990)

P. Ludwik, Element der Technologischen Mechanik (Springer, New York, 1909)

A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive law for BCC materials

in crystal plasticity FEM. Comp. Mat. Sci. 39, 91-95 (2007)

L. Malvern, Introduction to the Mechanics of a Continuous Medium (Prentice-Hall, Engle-

wood Cliffs, 1969)

K.K. Mathur, P.R. Dawson, On modeling the development of crystallographic texture in bulk

forming processes. Int. J. Plast. 5, 67-94 (1989)

C. McVeigh, W. Liu, Linking microstructure and properties through a predictive multiresolu-

tion continuum. Comput. Methods Appl. Mech. Eng. 197, 3268-3290 (2008)

C. McVeigh, W. Liu, Multiresolution continuum modeling of micro-void assisted dynamic

adiabatic shear band propagation. J. Mech. Phys. Solids 58, 187-205 (2010)

MDS: Multiscale Design Systems, http://multiscale.biz (2015)

C. Mei, B. Vernescu, Homogenization Methods for Multiscale Mechanics, 2nd edn. (World

Scientific, New York, 2010)

C. Mi, D. Kouris, Nanoparticles under the influence of surface/interface elasticity. J. Mech.

Mater. Struct. 1(4), 763-791 (2006)

J. Michel, H. Moulinec, P. Suquet, Effective properties of composite materials with periodic

microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172(1-4),
109-143 (1999)

J. Michel, H. Moulinec, P. Suquet, Comparison of three accelerated FFT-based schemes for

computing the mechanical response of composite materials. Int. J. Numer. Methods Eng. 97,

960-985 (2014)

B. Mihaila, M. Knezevic, A. Cardenas, Three orders of magnitude improved efficiency with

high-performance spectral crystal plasticity on GPU platforms. Int. J. Numer. Methods Eng.

(2014)

R. Miller, V. Shenoy, Size-dependent elastic properties of nanosized structural elements.

Nanotechnology 11, 139-147 (2000)

R. Mindlin, Influence of couple-stresses on stress concentrations. Exp. Mech. 3(1), 1-7 (1963)

R. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51-78

(1964)

R. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids

Struct. 1, 417-438 (1965)

R. Mindlin, N. Eshel, On first strain-gradient theories in linear elasticity. Int. J. Solids Struct.

4, 109-124 (1968)

R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech.

Anal. 11(1), 415-448 (1962)

T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with

misfitting inclusions. Acta Metall. 21(5), 571-574 (1973)

H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear

composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157(1-2),

69-94 (1998)


 http://multiscale.biz

128

108.
109.
110.

111.
112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.
131.
132.
133.

134.

135.

J.E. Bishop and H. Lim

P. Muller, A. Saul, Elastic effects on surface physics. Surf. Sci. Rep. 54, 157-258 (2004)

T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, The Hague, 1982)
S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials,
2nd edn. (Elsevier, Amsterdam, 1999)

A. Nowick, B. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York,1972)
G. Papanicolaou, S. Varadhan, Boundary value problems with rapidly oscillating random
coefficients. Colloquia Math. Soc. J’anos Bolyai 27, 835-873 (1979)

H. Park, P. Klein, A surface cauchy-born analysis of surface stress effects on metallic
nanowires. Physical Review B 75, 085,408:1-9 (2007)

H. Park, P. Klein, G. Wagner, A surface cauchy-born model for nanoscale materials. Int. J.
Numer. Methods Eng. 68, 1072-1095 (2006)

M. Parks, R. Lehoucq, S. Plimpton, S. Silling, Implementing peridynamics within a molecular
dynamics code. Comput. Phys. Commun. 179(11), 777-783 (2008)

M. Parks, S. Plimpton, R. Lehoucq, S. Silling, Peridynamics with LAMMPS: a user guide.
Technical Report, SAND 2008-1035, Sandia National Laboratories (2008). http://www.
sandia.gov/~mlparks

G. Pavliotis, A. Stuart, Multiscale Methods: Averaging and Homogenization (Springer, New
York, 2008)

J. Peddieson, G. Buchanan, R. McNitt, Application of nonlocal continuum models to
nanotechnology. Int. J. Eng. Sci. 41(3-5), 305-312 (2003)

R. Peerlings, N. Fleck, Computational evaluation of strain gradient elasticity constants. Int. J.
Multiscale Comput. Eng. 2(4), 599-619 (2004)

R. Peerlings, M. Geers, R. de Borst, W. Brekelmans, A critical comparison of nonlocal and
gradient-enhanced softening continua. Int. J. Solids Struct. 38(44-45), 7723-7746 (2001)

D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation
in ductile single crystals. Acta Metall. 30, 1087-1119 (1982)

D. Pekurovsky, P3DFFT: A framework for parallel computations of Fourier transforms in
three dimensions. SIAM J. Sci. Comput. 34(4), C192-C209 (2012)

C. Polizzotto, Nonlocal elasticity and related variational principles. Int. J. Solids Struct.
38(42-43), 7359-7380 (2001)

C. Polizzotto, Unified thermodynamic framework for nonlocal/gradient continuum theories.
Eur. J. Mech. A. Solids 22(5), 651-668 (2003)

P. Seleson, M. Parks, M. Gunzburger, R. Lehoucq, Peridynamics as an upscaling of molecular
dynamics. Multiscale Model. Simul. 8(1), 204-227 (2009)

J.R. Rice, Inelastic constitutive relations for solids, an internal-variable theory and its
application to metal plasticity. J. Mech. Phys. Solids 19, 443-455 (1971)

F. Roters, P. Eisenlohr, T. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods in
Materials Science and Engineering (Wiley-VCH, Berlin, 2010)

F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of
constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity
finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152-1211
(2010)

F. Roters, P. Eisenlohr, C. Kords, D. Tjahjanto, M. Diehl, D. Raabe, DAMASK: the
Diisseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE
based or a spectral numerical solver. Proc. IUTAM 3, 3-10 (2012)

A. Rusanov, Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111-239 (2005)

A. Rusanov, Surface thermodynamics of cracks. Surf. Sci. Rep. 67, 117-140 (2012)

G. Sachs, Ableitung einer fliessbedingung. Z. Ver. Dtsch. Ing. 72, 734-736 (1928)

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Lecture Notes in
Physics, vol. 127 (Springer, New York, 1980)

P. Sharma, S. Ganti, Size-dependent Eshelby’s tensor for embedded nano-inclusions incorpo-
rating surface/interface energies. J. Appl. Mech. 71, 663-671 (2004)

V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips, M. Ortiz, An adaptive finite element
approach to atomic-scale mechanics—the quasicontinuum method. J. Mech. Phys. Solids 47,
611-642 (1999)


http://www.sandia.gov/~mlparks
http://www.sandia.gov/~mlparks

3 Continuum Approximations 129

136.

137.

138.

139.

140.

141.

142.

143.
144.

145.
146.
147.
148.

149.

150.

151.

152.

153.

154.

155.
156.

S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J.
Mech. Phys. Solids 48(1), 175-201 (2000)

S. Silling, R. Lehoucq, Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 74—-164
(2010)

S. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive
modeling. J. Elast. 88(2), 151-184 (2007)

V. Smyshlyaev, K. Cherednichenko, On rigorous derivation of strain gradient effects in the
overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48, 1325-1357
(2000)

E. Suhubi, A. Eringen, Nonlinear theory of simple microelastic solids — II. Int. J. Eng. Sci.
2(4), 389404 (1964)

E. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag.
A 73(6), 1529-1563 (1996)

E. Tadmor, G. Smith, N. Bernstein, E. Kaxiras, Quasicontinuum analysis of defects in solids.
Phys. Rev. B 59(1), 235-245 (1999)

Tahoe Development Project, http://tahoe.sourceforge.net (2015)

G.I. Taylor, The mechanism of plastic deformation of crystals. Part 1. Theoretical. Proc. R.
Soc. A 165, 362-387 (1934)

G.I. Taylor, Plastic strain in metals. J. Inst. Metals 62, 307-324 (1938)

S. Timoshenko, J. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1987)
R. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385414
(1962)

R. Toupin, Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85-112
(1964)

T. Tran, V. Monchiet, G. Bonnet, A micromechanics-based approach for the derivation of
constitutive elastic coefficients of strain-gradient media. Int. J. Solids Struct. 49(5), 783-792
(2012)

F. Vernerey, W. Liu, B. Moran, Multi-scale micromorphic theory for hierarchical materials. J.
Mech. Phys. Solids 55, 2603-2651 (2007)

Q. Wang, K. Liew, Application of nonlocal continuum mechanics to static analysis of micro-
and nano-structures. Phys. Lett. A 363(3), 236242 (2007)

J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, T. Wang, Surface stress
effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52-82 (2011)
D.H. Warner, J.F. Molinari, A semi-discrete and non-local crystal plasticity model for
nanocrystalline metals. Scr. Mater. 54, 1397-1402 (2006)

X. Yuan, Y. Tomita, T. Andou, A micromechanical approach of nonlocal modeling for media
with periodic microstructures. Mech. Res. Commun. 35(1-2), 126-133 (2008)

ZEBULON, http://www.nwnumerics.com/Zebulon/ (2015)

J. Zeman, J. Vondiejc, J. Novak, I. Marek, Accelerating a FFT-based solver for numerical
homogenization of periodic media by conjugate gradients. J. Comput. Phys. 229(21), 8065—
8071 (2010)


 http://tahoe.sourceforge.net
http://www.nwnumerics.com/Zebulon/

Chapter 4

Density Functional Theory Methods

for Computing and Predicting Mechanical
Properties

Niranjan V. Ilawe, Marc N. Cercy Groulx, and Bryan M. Wong

4.1 Introduction

Over the past few decades, tremendous progress has been made in the development
of computational methods for predicting the properties of materials. At the heart
of this progress is density functional theory (DFT) [13, 17, 31, 39, 65], one of
the most powerful and efficient computational modeling techniques for predicting
electronic properties in chemistry, physics, and material science. Prior to the
introduction of DFT in the 1960s [31, 39] the only obvious method for obtaining
the electronic energies of materials required a direct solution of the many-body
Schrodinger equation [62]. While the Schrodinger equation provides a rigorous
path for predicting the electronic properties of any material system, analytical
solutions for realistic systems having more than one interacting electron are out
of reach. Moreover, since the Schrodinger equation is inherently a many-body
formalism (3N spatial coordinates for N strongly interacting electrons), numerically
accurate solutions of multi-electron systems are also impractical. Instead of the
full 3N-dimensional Schrédinger equation, DFT recasts the electronic problem into
a simpler yet mathematically equivalent 3-dimensional theory of non-interacting
electrons (cf. Fig.4.1). The exact form of this electron density, p (= n(r)), hinges
on the mathematical form of the exchange-correlation functional, Ex.[n(r)], which is
crucial for providing accurate and efficient solutions to the many-body Schrodinger
equation. Unfortunately, the exact form of the exchange-correlation functional
is currently unknown, and all modern DFT functionals invoke various degrees
of approximation. Starting with the pioneering work of Perdew and co-workers
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Fig. 4.1 All of the electronic properties of a system can be rigorously obtained by a direct
solution of the 3N-dimensional Schrodinger equation (left). DFT (right) provides a more tractable
(but formally equivalent) approach for solving the same many-body electron problem. Adapted
from [46]

[3,4, 51, 54], a hierarchy of approximate functionals [52] has been developed over
the past three decades. The following sections in this book chapter focus on a
specific set of four DFT families: the local density approximation (LDA) [39],
generalized gradient approximation (GGA) [55], DFT-D [24], and DFT-vdW [30]
methods. Our motivation in this chapter is not to provide a detailed, comprehensive
review of exchange-correlation functionals; rather, we have chosen this specific
family of functionals because of their direct relevance to mechanical and structural
properties of materials currently studied by our group. In particular, to illustrate the
use of these first-principles methods, we focus on two specific mechanical systems:
palladium-hydride materials and spiropyran-based mechanochromic polymers, both
of which pose unique challenges to electronic structure methods. To provide the
necessary background for understanding these mechanical systems, we first give a
brief summary of each of the four representative DFT methods while specifically
highlighting both the advantages and disadvantages of these individual functional
classes. Next, we explore how these four DFT methods can be utilized to predict
important mechanical properties such as cohesive energies, maximum strength,
stress—strain properties, and mechanochromic effects. We conclude this chapter with
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a detailed analysis of the different functional families and highlight the relevance
of each method for predicting the diverse mechanical properties of these material
systems.

4.2 Density Functional Theory

Hohenberg and Kohn [31] established that the total electron density, p, completely
(and exactly) determines all of the ground-state properties of an N-electron system.
Hence, knowledge of the electron density (p) implies knowledge of the wave
function (up to a phase factor) and all other observables. The density functional
approach can be succinctly summarized as follows:

P = Vext = ¥(r1,12,...,ry) = everything! 4.1)

In other words, the electron density, p, uniquely determines the external potential,
Vex, Which has a one-to-one correspondence with a unique wavefunction, ¥, that
allows us to access all known properties of the system. This, however, is not enough;
for the theory to be self-contained we require a variational principle. Consider the
multi-electron Schrédinger equation:

h? 2
Z (_Zme Vlz + Vext(ri)) + Z N lp(l'l,l'z, C.. ,l'N)

i=1 -

i<jp b
= Elp(l'l, r,..., I‘N) (42)

where the first term in the square brackets is the kinetic energy operator, and the third
term is the inter-electronic repulsion. The first and the last term in the Hamiltonian,
which do not involve the external potential, can be cast as a density functional for
the total kinetic and Coulombic interaction energy:

F(p) = T(p) + Vee(p) 4.3)

A straightforward application of the variational principle gives

F(p/) + / Vextp/ dr > F(p) + / Vextpdr = Ep 4.4)

where p’ is not the p corresponding to vey, but to some other external potential,
and Ej is the exact ground-state energy. Thus, the Hohenburg—Kohn variational
principle permits a solution of the Schrédinger equation for non-degenerate ground
states by variationally minimizing the functional F(p). Though the functionals 7'(p)
and V,.(p) formally exist, an exact mathematical form for these density-dependent
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quantities is not currently known. Kohn and Sham [39] made critical progress in this
area by mapping the full interacting system onto a fictitious non-interacting system
where the electrons move in an effective “Kohn—Sham” single-particle potential.
Within the Kohn—Sham approach, the kinetic energy for the non-interacting system
retains a familiar form,

To(p) = —; 22/ W (r;) V2 (r;) dr 4.5)

where, for simplicity, we assume spin-neutral systems. The non-interacting Coulom-
bic interaction energy, J(p), in the Kohn—Sham approach was also approximated as
the classical Coulomb self-energy,

1 p(ri)p(rz)
e =, / / L drdr (4.6)

Kohn and Sham called the error made by these approximations, the exchange-
correlation energy Ex.:

Ex.(p) = T(p) + Vxc(p) — To(p) — J(p) 4.7

The Kohn—-Sham total energy functional hence becomes

E(p) = To(p) + / Vewpdr + J(p) + Exe(p) 4.8)

This decomposition is noteworthy since 7y and J for the non-interacting system
are given by known expressions, and the “unknown” functional, Ex., is a relatively
small part of the total energy. It is important to mention at this point that since
To and J depend explicitly on p, the Kohn—Sham equations must be solved
iteratively to self-consistency. Several computational schemes exist for obtaining
self-consistent solutions, ranging from simple under-relaxation techniques [42]
to advanced extrapolation approaches [58]. In addition, Perdew and co-workers
further showed that the exchange-correlation energy can further be decomposed
as Ex. = E, + E., where E; is due to the Pauli principle (exchange energy) and
E. is due to electron correlations. Given the exact exchange-correlation functional,
one can, in principle, compute the exact density and total energy of any interacting
electronic system. However, the accuracy and efficiency of such solutions hinges on
approximations to the exchange-correlation functional, Ex.(p), which we discuss in
the following section.
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4.3 Exchange-Correlation Functionals

4.3.1 The Local Density Approximation

During the formative stages of DFT, the LDA was one of the first approaches
for approximating the exchange-correlation energy in bulk solids [39]. Unlike
many of the other functionals discussed in this chapter, the LDA approach is
unique in that it only relies on the local value of the electron density in three-
dimensional space (as opposed to derivatives or nonlocal integrals of the density).
In order to provide practical solutions to the many-body problem, the LDA method
approximates the system as a homogeneous electron gas (i.e., a jellium model).
Within these approximations, the exchange-correlation energy (Ex. = Eyx + E.)
is relatively simple, with the exchange term, E,, having an analytic solution,
since the per-volume exchange energy of the homogenous electron gas in known
exactly [27, 50]. Numerous different approximations exist for the correlation term,
E., and several of them have been parameterized and fitted from quantum Monte
Carlo calculations [8, 18]. Despite their simplicity, LDA methods are surprisingly
accurate, particularly in systems characterized by a slow variation in electron
density, such as homogenous solid metals. In these systems where the LDA method
is applicable, the predicted bond lengths, bond angles, and vibrational frequencies
are comparable to experimental values within a few percent. However, many
realistic materials are strongly inhomogeneous, and the resulting parameterization
in the LDA approach can lead to serious inaccuracies in predicted properties. For
example, LDA methods tend to overestimate the cohesive energies and, therefore,
bond strengths of most solids. In terms of electronic properties, the band gaps in
semiconductors and insulators are seriously underestimated by LDA functionals.
Over the years, subsequent improvements have been made to LDA methods in an
attempt to correct some of these problems [53, 54, 69, 69]; however, substantial
improvements require the implementation of additional variables (and constraints)
to address the issues of inhomogeneous electron densities.

4.3.2 The Generalized Gradient Approximation

The GGA improves on many of the weaknesses in LDA by incorporating additional
constraints and terms that account for the inhomogeneities of the electron density.
Unlike the LDA approach, GGA methods utilize both the electron density and
gradients of the density to approximate the true exchange-correlation potential.
These additional constraints allow GGA methods to outperform LDA in predicting
cohesive energies, bulk moduli, energy barriers, and structural energy differences
of atoms. Moreover, the incorporation of gradients in the electron density par-
tially corrects the energetic overbinding in LDA functionals, while also making
improvements on both bond lengths and angles. Numerous approaches exist for
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incorporating gradients of the electron density to generate new GGA functionals.
Perdew and co-workers strongly advocate an approach where GGA terms are
constructed by only adding parameters that satisfy certain exact constraints of
the exchange-correlation potential. A few of the most common functionals in this
family are PW91 [56], PBE [55] and more recently RPBE [29], AMOS5 [45],
and PBEsol [57]. In contrast, Becke and co-workers have popularized alternative
approaches to constructing functionals by fitting unknown terms to experimental
data and high-level calculated atomic and molecular properties. The BLYP [4] GGA
falls into this family of exchange-correlation functionals and is one of the most
commonly used GGA methods in quantum chemistry. It is important to mention that
although GGA methods (in general) improve on many of the deficiencies inherent
to the LDA approach, they still fail to account for van der Waals interactions [63]
and accurate predictions of electronic bandgaps [63]. These shortcomings arise from
the inability of GGA methods to account for nonlocal exchange effects as well as
their failure to compensate for electron self-interaction effects. One approach to
remedy these effects is to construct hybrid and/or range-separated functionals that
mix a portion of nonlocal Hartree—-Fock exchange with an appropriately modified
GGA. These hybrid or range-separated functionals are seldom used for predicting
mechanical properties of large systems and, consequently, are out of scope for this
chapter on structural properties.

4.3.3 DFT-D

In order to accurately predict the structural and mechanical properties of large
nanosystems and solid structures, it is necessary to go beyond conventional GGA
approaches and explicitly account for van der Waals interactions [24]. Van der Waals
or dispersion interactions are attractive forces due to electron correlation effects
that arise from instantaneous fluctuating charge distributions between material
surfaces [37]. While it is obvious that dispersion interactions play a significant
role in materials characterized by noncovalent interactions (i.e., molecular aggre-
gates [19, 33, 72]), graphene-based systems [32, 36], nanotube aggregates [70], and
layered materials [71], we give several examples in Sect. 4.3 showing that dispersion
interactions still play a dominant role in covalently bonded solid structures, partic-
ularly for predicting cohesive energies and maximum strength. A relatively simple
way to modify GGA exchange-correlation functionals for dispersion interactions is
to explicitly add the attractive C¢/R® van der Waals term for all atomic pairs. This
pragmatic approach was first suggested by the Scoles group to correct Hartree—
Fock energies for dispersion effects [30]. The same approach can also be used to
correct DFT methods, and these corrections are collectively referred to as DFT-D
methods in the scientific literature. There are several variants of DFT-D, and they
are further classified according to updated derivations of the empirical dispersion
coefficients [15, 20, 22]. For example, several of the next-generation DFT-D family
of functionals are already implemented in software packages as DFT-D2 and
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DFT-D3 methods. The DFT-D2 and DFT-D3 methods are based on the approaches
suggested by Grimme [23, 24] and have already been successfully used in both
molecular and solid-state applications. Within the DFT-D2 approach, an empirical
atomic pairwise dispersion correction is added to the Kohn—Sham portion of the
total energy (EKS-DFT) as

Eprr—p = Exs—prr + Edisp 4.9)
where Eg;p is given by
Nal_l Nal C
6,1
Edlsp = —S¢ Z Z Zfddmp(le g) g (4.10)
i=1 j=i+1 g l/g

The summation is over all atom pairs i and j, and over all g lattice vectors with
the exclusion of the i = j contribution when g = 0 (this restriction prevents atomic
self-interaction in the reference cell). The parameter is the dispersion coefficient
for atom pairs i and j, calculated as the geometric mean of the atomic dispersion
coefficients. The s¢ parameter is an empirical scaling factor specific to the adopted
DFT method (s¢ = 0.75 for PBE), and R;; , is the interatomic distance between atom
i in the reference cell and j in the neighboring cell at distance . In order to avoid
near-singularities for small interatomic distances, fiamp 1S @ damping function that
effectively re-scales interatomic forces to minimize interactions within the bonding
distance R;; ;. These additive approaches do not incur significant computational cost
over conventional DFT calculations; however, they generally require the use of
relatively large basis set to ensure accurate results. A significant improvement
over the DFT-D2 method is the DFT-D3 scheme, which is characterized by higher
accuracy, a broader range of applicability, and less empiricism compared to the DFT-
D2 method. The D3 correction scheme by Grimme et al. [24] uses the following
form of the dispersion correction

Na—1 Ny

Edisp - Z Z Zfd6(R11g) 6U +fd8(R1]g)R8U (411)
’Ig y.8

i=1 j=i+1 g

where f;3 and are eighth-order damping functions and dispersion coefficients,
respectively, for the additional repulsive potential. However, unlike the DFT-D2
method, the dispersion coefficients are geometry dependent and are adjusted as a
function of the local geometry around atoms i and j. In the original DFT-D3 method,
the f; ¢ and f; g damping functions (and thus E;,) were constructed to approach zero
when R;; = 0. A critical disadvantage of this zero-damping approach is that at small
and medium distances, the atoms experience repulsive forces leading to even longer
interatomic distances than those obtained without dispersion corrections [25]. As a
practical solution for this counter-intuitive observation, Becke and Johnson [5, 35]
proposed the DFT-D3(BJ) method which contains modified expressions for f; ¢ and
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Jas that lead to a constant contribution of Eg;g, to the total energy when R;; = 0. The
DFT-D3(BJ) method produces improved results for nonbonded distances/energies
[25], and we use this variant of the D3 damping function throughout this work.
Within the same family of empirically constructed dispersion methods is the DFT-
TS method proposed by Tkatchenko and Scheffler [61, 66], which has also been
previously applied to molecular solids [40]. While the expression for the dispersion
correction in DFT-TS is identical to the DFT-D2 method (Eq. (4.10)), the important
distinction is that the dispersion coefficients and damping function in DFT-TS are
explicitly dependent on the charge-density. As such, the DFT-TS method takes into
account van der Waals interactions due to the local chemical environment by directly
calculating the polarizability, dispersion coefficients, and atomic radii from their
free-atomic values [66].

4.3.4 vdW-DFT

As discussed in the previous section, the dispersion coefficients in conventional
DFT-D methods are empirically derived and, therefore, limited in their accuracy
and reliability for general systems. In order to generalize the DFT-D methods
to account for the surrounding electronic environment, a natural approach is to
explicitly incorporate van der Waals correlation effects directly into the exchange-
correlation kernel. The vdW-DF methods proposed by Dion et al. [12] incorporate
these dispersion forces by evaluating nonlocal double real space integrals of the
electron density to account for these correlation effects. In order to reduce the
computational effort to evaluate these nonlocal integrals, the numerical algorithms
suggested by Roman-Perez and Soler [60] are often used to transform these real
space integrals to reciprocal space. In addition to the original vdW-DF method by
Dion et al. [12], there have been several additional improvements including a revised
vdW-DF2 approach [41] as well as the “opt” family of functionals [38] (optPBE-
vdW, optB88-vdW, and optB86b-vdW). In all of these nonlocal vdW functionals,
the exchange-correlation energy, Ex., takes the form

Ey = ESO* + EEPA + EY (4.12)
where ES9A is the GGA exchange energy, E-P* accounts for the local correlation
energy within the LDA, and E™ is the nonlocal correlation energy. An important
distinguishing characteristic of these nonlocal vdW functionals (compared to the
DFT-D approaches) is that they directly incorporate van der Waals effects explicitly
in the exchange-correlation kernel as a nonlocal double real space integral of the
electron density without assuming a priori an analytic form for the dispersion
interaction. For additional information on these nonlocal-vdW correlation methods,
the interested reader is encouraged to review the publications of Langreth and
Lundqvist [12], as well as related work by the Michaelides group [38].
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4.4 DFT Predictions of Mechanical Properties
in Palladium-Hydride Systems

We now shift our focus to a few applications of the above-discussed DFT methods
on practical calculations and predictions of mechanical properties. Within this
section, we give a summary of our research on the mechanical properties of
palladium-hydride materials. This particular material system was chosen to high-
light the importance of carefully choosing appropriate DFT methods for accurately
characterizing these systems [34]. In this context, over the past 7 years our group
has focused on the development and use of both DFT and molecular dynamics
methods for characterizing palladium-based materials. Our motivation stems from
the widespread use of palladium in enabling technological advancements for both
catalytic and hydrogen-storage applications. By far, the largest usage of palladium
resides in catalytic converters within the auto industry and their use as catalytic
materials in the agrochemical, pharmaceutical, and materials-based sectors [14, 67].
Within the hydrogen-storage and production industries, palladium is widely used in
membrane reactors for the production of high-purity hydrogen [64], and palladium-
based alloys are actively used in new fuel cell technologies as replacements for
costly platinum-based alloys [1].

At room temperature, pure palladium reacts with both molecular and atomic
hydrogen to form various palladium-hydride (PdH,) stoichiometries [43]. As shown
in Fig. 4.2, these metal-hydride materials are formed when hydrogen atoms become
embedded into various interstitial sites within the metal lattice [28, 74]. Since the
hydrogen absorption process in palladium is reversible [26], there is significant
interest in using palladium-based alloys for large-scale storage of hydrogen and
their isotopes. While there has been considerable work in examining the equi-
librium hydrogen-storage properties of palladium, practical applications of these
materials are still limited by their intrinsic dynamical embrittlement caused by
the growth of gaseous bubbles in the lattice. In particular, several experimental
and computational studies have shown that palladium-hydride materials containing
large amounts of hydrogen are more susceptible to brittle fracture than their pure
metallic counterparts [2]. In order to fully characterize these complex materials, it is
necessary to carry out detailed predictions of both their static and dynamic structural
properties to understand the limitations of first-principle-based methods for these
processes. Specifically, we focus on the implications of using dispersion-corrected
DFT methods for predicting the mechanical properties of various PdH, materials
to serve as guidance for experiment and also as benchmarks for constructing new
Pd-H MD potentials.

Although most work on dispersion-corrected methods have focused on predicting
properties of molecular systems at equilibrium (i.e., structures and energies at a
global minimum), there has been significantly less work on understanding the
performance of these methods for systems far from equilibrium. In particular,
there is mounting evidence in the scientific literature demonstrating the impor-
tance of including non-equilibrium geometries and energies to construct new
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Fig. 4.2 Unit cells for
various PdH, stoichiometries
where x = (a) 0, (b) 0.25, (¢)
0.50, (d) 0.75, and (e) 1.00.
The large orange spheres
represent Pd atoms and the
small purple spheres denote
the placement of H atoms

dispersion-corrected DFT methods that are globally accurate [21, 44]. While there
has been increased effort to incorporate these effects in molecular systems, we
are not aware of any prior studies using dispersion-based DFT methods for bulk
solids far from equilibrium (i.e., strained up to their maximum tensile strength). To
bridge this knowledge gap, we carry out an extensive series of DFT calculations
on both equilibrium (optimized geometries and cohesive energies) as well as non-
equilibrium properties (stress—strain relationships and maximum tensile strength)
in various PdH, systems. We demonstrate that dispersion effects play a vital role in
these complex solids and, most importantly, we show that some dispersion-corrected
functionals can give spurious, qualitatively incorrect results for structural properties
of solids far from equilibrium. We give a detailed analysis of both the static and
dynamical properties predicted by the various DFT methods, and we discuss the
implications of using these methods in developing new DFT parameterizations and
fitted MD potentials for these materials.
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4.4.1 Lattice Constants and Cohesive Energies

For all of the calculations in this work, we used a locally modified version of the
VASP code for calculating the ideal tensile strength along arbitrary crystallographic
directions (described further in Section 4.4.2). A planewave energy cutoff of 500 eV
was used in conjunction with a dense 15 x 15 x 15 Monkhorst-Pack grid for
sampling the Brillouin zone. All calculations utilized projected augmented wave
pseudopotentials, and a Gaussian smearing scheme with a 0.2eV width was used
to describe the partial occupancies for all the Pd-based solids. Before proceeding to
an analysis of non-equilibrium stress—strain properties in the various PdH, systems,
it is necessary to first characterize the static properties of these solids. While the
static properties of pure Pd are well known, the lattice constants, bulk moduli, and
cohesive energies of the other palladium-hydride systems are not well characterized.
To serve as benchmarks for our survey of various DFT methods, we calculated the
lattice constants and bulk moduli of pure Pd and compared their predicted values
against experiment (corrected for zero-point energy effects) [10]. The predicted
lattice constant and bulk moduli for Pd is presented in Table 4.1, and the relative
errors between the predicted and experimental values are summarized in Fig. 4.3a.

As shown in Fig. 4.3a, LDA slightly underestimates the lattice constant for pure
Pd. This error is not surprising, as bond lengths in LDA are typically underestimated
due to the simplistic homogenous electron gas approximation within the LDA
exchange-correlation potential. The second-generation vdW-DF2 functional by
Langreth and co-workers significantly overestimates the lattice constant compared
to all of the tested methods. This error in the vdW-DF2 functional is consistent with
the previous study by Klimes et al. [38] which found that vdW-DF2 has average
relative errors of 2.6 % in the lattice constants for various solids. The semilocal PBE
functional also overestimates the lattice constant, although the error is surprisingly
not as severe as the vdW-DF2 predictions. The PBE-D2, PBE-D3(BJ), PBE-TS, and
the nonlocal optB86b-vdW functionals give the best agreement to experiment, with
the PBE-D2 and PBE-D3(BJ) functionals only performing marginally better than
PBE-TS and optB86b-vdW.

Ta;’llf ﬁ(‘l L;t?cfe constar}l)t; Lattice constant (A) Bulk modulus (GPa)

Zg prelzlic tI:(;)bl; lva(;irofl).l I;rle)FT Pure Pd error (%) Pure Pd error (%)

methods LDA 3.839 0.92 223 14.6
PBE 3.946 1.84 167 14.4
PBE-D2 3.890 0.39 164 16.1
PBE-D3(BJ) 3.890 0.39 188 34
PBE-TS 3.917 1.07 183 6.4
vdW-DF2 4.095 5.68 119 38.9
optB86b-vdW  3.903 0.73 183 6.3

The experimental lattice constant and bulk modulus for Pd is
3.875 A and 195 GPa, respectively [10]
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Fig. 4.3 (a) Lattice
constants, (b) bulk moduli,
and (c) cohesive energies of
pure palladium predicted by
various DFT methods
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Table 4.2 Cohesive energies (in eV) for various PdH, stoichiome-
tries as predicted by various DFT methods

PdHy, PdHo,s PdHoso PdHo7s PdHjgo

LDA 5.036 4.606 4.328 4.130 3.974
PBE 3.728 3.459 3.284 3.156 3.051
PBE-D2 4.354  3.969 3.721 3.544 3.403
PBE-D3(BJ)  4.383 4.001 3.754 3.575 3.432
PBE-TS 3.993  3.689 3.491 3.349 3.233
vdW-DF2 3.169 2.976 2.849 2.754 2.674

optB86b-vdW  4.208 3.879 3.668 3.516 3.394
The experimental cohesive energy for pure PdHy is 3.92eV [10]

To complement the lattice constant calculations described previously, we also
calculated the cohesive energies (defined as the energy required for separating the
condensed material into isolated free atoms) of all the various PdH, systems using
the expression:

Econesive = npaEpd + nuEy — Epan (413)

where, npqg is the number of palladium atoms in the PdH, system, Epq is the energy of
an isolated palladium atom, ny is the number of hydrogen atoms in the PdH,. system,
Epy is the energy of an isolated hydrogen atom, and Epqy, is the total electronic
energy of the total PdH, system. Based on its definition, the cohesive energy
provides an indirect measure of the stability of the material (with larger positive
values indicating more stability) relative to the atomic elements. The calculated
cohesive energies are presented in Table 4.2, and the relative difference between
the predicted and experimental values for pure Pd is summarized in Fig. 4.3b. The
experimental cohesive energy for pure Pd, corrected for zero-point energy effects,
is 3.92 eV as obtained from [10].

Figure 4.3b provides a complementary viewpoint of chemical bonding in com-
parison to the lattice constants plotted in Fig.4.3a. In particular, Fig.4.3b shows
an opposite trend in the lattice constant compared to Fig.4.3a. DFT methods
that predict a smaller lattice constant also yield a higher cohesive energy (i.e.,
stronger bonding) and vice-versa. As such, the trends in the cohesive energy
can be rationalized using the same arguments previously discussed for the lattice
constant. For example, Fig.4.3b shows that LDA significantly overestimates the
cohesive energy for Pd, which is consistent with the small lattice constant pre-
dicted by LDA in Fig.4.3a. Interestingly, the vdW-DF2 functional underestimates
the cohesive energy with a similar magnitude as the overestimation by LDA.
This error in the vdW-DF2 functional is also consistent with the previous analyses
by Klimes et al. [38] which found that vdW-DF2 has quite large relative errors
of —15.9 % in the atomization energies for various solids. These large errors have
been observed in many other systems [9, 38, 59] and can be attributed to the
steep behavior of the vdw-DF2 functional which at short distances is still too
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repulsive [47]. Both the PBE-D2 and PBE-D3(BJ) functionals overestimate the
cohesive energy, although the error is not as severe as the LDA predictions. The
PBE, PBE-TS, and the nonlocal vdW-optB86b functionals give the best agreement
to experiment, with PBE slightly underestimating the cohesive energy compared to
PBE-TS and vdW-optB86b. Finally, Fig. 4.4 summarizes the cohesive energy trends
of the remaining PdH, systems (x = 0, 0.25, 0.50, 0.75, and 1.00; cf. Fig.4.2) for
all the various DFT methods. Again, we have chosen these specific stoichiometries
based on our previous molecular dynamics study of thermodynamically stable PdH,
configurations for these materials [28, 74]. While there are distinct differences
between the magnitudes of the cohesive energies, it is important to mention that
all DFT methods predict that the cohesive energy in the PdH, systems decreases
as the percentage of H in the metal-hydride lattice increases. These observations,
coupled with our previous discussion of cohesive energies, corroborate the effects
of embrittlement due to the presence of hydrogen in these materials.

4.4.2 Stress—Strain Relationships

With the static equilibrium properties now fully characterized for each of the DFT
methods, we turn our attention to non-equilibrium stress—strain effects. For uniaxial
tensile strain, we calculated the tensile stress, o, using the expression

1 OE

= e e (4.14)

where € is the imposed tensile strain, E is the total electronic energy, and V(¢) is
the volume at the imposed tensile strain €. The stress—strain curves were obtained
by first starting with the fully relaxed geometry and subsequently applying a fixed
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tensile stress by elongating the crystal along a specified loading axis (described
further below). The VASP source code was modified to perform constrained
relaxations in the directions perpendicular to the elongation axis to minimize
the other 5 components of the stress tensor and to ensure uniaxial loading. This
important modification allows us to (1) account for the Poisson ratio of the material
by relaxing the lattice constants in the directions perpendicular to the applied stress
and (2) simultaneously allow for relaxation of the atomic positions in the material. In
order to obtain smooth plots of the tensile stress as a function of strain, we calculated
these relaxed energies by varying € from 0.00 to 0.60 in increments of 0.01 (i.e.,
1 % strain). We thus obtained the electronic energy E as a function of € which we
then fitted to a piecewise polynomial form of a cubic spline interpolant. The first
derivative of this piecewise polynomial was then evaluated numerically to obtain
smooth values of the tensile strength as a function of €, as required in Eq. (4.2).
We carried out all of our tensile strength calculations by applying a uniaxial tensile
strain along the 3 individual crystalline directions ([100], [110], and [111]) for each
of the different PdH, stoichiometries in Fig.4.2. It is worth noting that while the
tensile strength calculations along the [100] direction can be carried out using the
primitive unit cells depicted in Fig. 4.2, the tensile strengths for the other [110] and
[111] directions require the use of larger supercells. It is also worth mentioning that
our present study on stress—strain properties for the various PdH, stoichiometries
comprises an immense number of DFT calculations, specifically, a total of 6,300
separate DFT relaxations (= 60 strain values x 5 different PdH, stoichiometries x
7 different DFT methods x 3 crystalline directions). Figures 4.5 and 4.6 compare
the stress—strain curves among the 5 different DFT methods for the [100] and [111]
crystalline directions. We omit plots of the [110] stress—strain curve in the main
text since the stress—strain properties along the [110] direction are known to exhibit
qualitatively different characteristics. Specifically, it is well known in the literature
that while bond breaking occurs for [100] and [111] strains in face-centered cubic
metals, tension in the [110] direction leads to a phase transformation (Morris et al.,
2003). As a result, for pure Pd this phase transformation results in a compressive
stress in the pulling direction, leading to a counter-intuitive result. These complex
phase transformations are tangential to our analyses of DFT methods, and we do
not discuss the [110] stress—strain relationships further (plots of the [110] stress—
strain curves, however, are included in the Supporting Information in [34] for
completeness).

For the LDA, PBE, PBE-D3(BJ), PBE-TS, vdW-DF2, and optB86b-vdW meth-
ods only, the plots depicted in Figs.4.5 and 4.6 are characteristic of stress—strain
curves of most metallic solids [6]. Specifically at small strains, the stress—strain
curves exhibit a nearly linear behavior up to a maximum stress; as the strain is
increased even further past this point, a more gradual decrease in the stress is
observed. This maximum along the stress—strain curve is known as the ideal tensile
strength of the material [6], which is the last state just prior to the onset of instability
in the crystal lattice. Mathematically, the ideal tensile strength also corresponds to
the inflection point in the total energy-strain curve (3°E/de> = do/de = 0) and
represents the maximum load that the material can sustain without undergoing the
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Fig. 4.5 Stress—strain curves in PdH, for x = (a) 0, (b) 0.25, (c) 0.50, (d) 0.75, and (e) 1.00 along
the [100] crystal axis

instability of necking, which leads inevitably to fracture. While the stress—strain
curves for LDA, PBE, PBE-D3(BJ), PBE-TS, vdW-DF2, and optB86b-vdW appear
reasonable, we find that the stress—strain relations predicted by the empirically
constructed DFT-D2 method are extremely anomalous. Specifically, for both the
[100] and [111] directions (as well as for all 5 PdH,, stoichiometries), the PBE-D2
functional predicts the ideal strength to occur at € values that are nearly twice as
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large compared to the other DFT methods. Take, for example, all the [100] stress—
strain curves shown in Fig. 4.5: the PBE-D2 method predicts the maximum stress
to occur at € ~ 0.5 whereas all the other DFT methods produce a maximum near
€ ~ 0.3 instead. The [111] stress—strain curves in Fig. 4.6 show similar anomalous
results: the PBE-D2 method yields a maximum stress at € ~ 0.4 instead of the
€ ~ 0.25 value predicted by all the other functionals. To put these anomalous
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Table 4.3 Maximum strengths (in GPa) for various PdH, stoichiometries as pre-
dicted by various DFT methods for tensile strain in the [100] crystal direction

LDA PBE PBE-D3(BJ) PBE-TS vdW-DF2 optB86b-vdW

PdH,  22.77 17.39 20.82 1834 11.09 19.52
PdH,s 20.85 1542 19.10 16.32 9.14 17.53
PdH,s 18.84 13.62 17.36 14.48 7.31 15.65
PdHy-s 1631 11.51 15.02 12.36 5.35 13.25
PdH,, 1325 8.93 12.37 9.87 3.36 10.70

stress values into perspective, recent tensile strength experiments on palladium
(Dillon et al. [11]) place the maximum stress at € values no larger than 0.2. We
also performed simple benchmark tests on other materials (and pseudopotentials)
and obtained similar anomalous results from the DFT-D2 method. As such, the
results described in this work are expected to apply to a broad range of materials,
and we expect the DFT-D2 method to predict strain values that are unphysically
too large as well as stress—strain curves that are qualitatively different than any
of the other functionals. It is interesting to mention that for small strain values,
0.0 < € < 0.2 (regimes where DFT-D2 is still valid), we observe the following
trends in the computed stress for both Figs.4.5 and 4.6: vdw-DF2 ~ PBE-D2 <
PBE ~ PBE-TS ~ optB86b-vdW < PBE-D3(BJ) < LDA. These general trends
can be rationalized using the same arguments discussed previously for the cohesive
energies. For example, LDA overestimates bond strengths and cohesive energies
and, therefore, predicts the largest stress among the DFT methods (within the
0.0 < € < 0.2 range). The optB86b-vdW method lies between the PBE and LDA
curves since the non-empirical vdW correlation effects added to the base optB86b
functional corrects for the lower stress values predicted by the pure PBE GGA.
The PBE-D3(BJ) and PBE-TS stress—strain curves yield slightly larger and smaller
stresses, respectively, than the optB86b-vdW functional, which also reflects their
trends in the cohesive energy. As mentioned previously, the second-generation vdW-
DF2 functional significantly underestimates cohesive energies among the tested
DFT methods and, therefore, predicts the lowest stress for small strain values. The
maximum ideal tensile strengths are presented in Table 4.3 and summarized in
Fig.4.7. The ideal tensile strengths obtained from PBE-D2 are not tabulated since
this functional produces unphysical results, as discussed previously. However, it
is worth noting that the maximum ideal strength decreases as the proportion of
hydrogen in the palladium system increases. These observations confirm recent
experiments that show metal-hydrides are more prone to failure than their pure
counterparts [11], and that their maximum tensile strength is inversely proportional
to the amount of hydrogen present in the crystal lattice.

Returning to the anomalous stress—strain curves predicted by PBE-D2, it is some-
what surprising that even the simplest functionals (LDA and PBE) yield results that
are much more realistic than the improved dispersion-corrected DFT-D2 method.
We attribute these anomalous results to the (geometry-independent) dispersion
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various DFT methods

coefficients and simple damping functions that are inherent to the empirical DFT-D2
method. To test these claims further, we also carried out DFT-D3(BJ) and DFT-
TS single-point energies on top of the previously optimized DFT-D2 geometries.
Interestingly, we found that both the DFT-D3(BJ) and DFT-TS single-point energy
stress—strain curves were nearly identical to their corresponding relaxed-strain
curves already shown in Figs.4.5 and 4.6. Consequently, the anomalous DFT-D2
stress—strain curves are not the result of abnormal DFT-D2 structural optimizations
or unusual deformations of the solid; rather, the electronic energies predicted by
the empirical DFT-D2 method itself give strain energies that are unphysically
too large. As the C¢ dispersion energies in DFT-D2 are constructed from simple
estimates of atomic ionization potentials and static dipole polarizabilities, this
simplistic approach is expected to fail in much more complex environments in
solids, particularly configurations that are far from equilibrium. It is interesting to
note that the atomic values for C¢ in DFT-D2, DFT-D3, and DFT-TS are 428, 609,
and 158 a.u., respectively, whereas the bulk values for C¢ in DFT-D3 and DFT-TS
are correspondingly 266 and 174 a.u. (the atomic and bulk values for Cg are the
same in DFT-D2). Moreover, while it is well known that DFT-D2 has a tendency
to overestimate the binding energies of isolated molecules in the gas phase [7], we
are not aware of any previous studies on highly non-equilibrium properties of bulk
solids. In contrast, the PBE-D3(BJ), PBE-TS, and optB86b-vdW functionals take
into account van der Waals effects in a less empirical fashion than the pairwise
interactions in DFT-D2. All of the former functionals account for screening effects



150 N.V. Ilawe et al.

that are particularly important in metals, thereby restoring the qualitatively correct
stress—strain trends shown in Figs. 4.5 and 4.6.

4.5 DFT Predictions of Dynamical Properties
in Mechanochromic Materials

In the last section of this chapter on DFT methods and selected applications,
we present recent work by our group on predicting the mechanical properties of
mechanochromic polymers. In mechanochromic systems, an observable optical
response (i.e., a chromic shift) occurs through a dynamic shift in a mechanical
property. These mechanochromic materials have recently garnered immense interest
as next-generation sensors since they naturally respond to external mechanical
deformation by design. Over the past several years, our group has explored the use
of both DFT and time-dependent DFT (TD-DFT) to understand and characterize
spiropyran-embedded polymers for use in sensors and actuators. The spiropyran
polymer system is an intriguing example of a mechanochromic material since
the photochromic response in these systems results from a dynamic coupling
between photoexcitation and mechanical deformation. Upon exposure to UV light,
the spiropyran undergoes a reversible photochemical rearrangement that leads to
a dramatic color change in the material. Similarly, this color change can also be
triggered by mechanical deformation of the spiropyran-embedded polymer, which is
shown dramatically in Fig. 4.8. First-principles DFT calculations play an important
role in characterizing these systems since they provide mechanistic insight into
properties that can be further fine-tuned to enhance the mechanochromic response
of these materials. We give a brief discussion of the computational methods that
our group has utilized for these mechanochromic materials, and we conclude with a
summary of properties and trends obtained by our analysis.

Fig. 4.8 Photo series displaying mechanochromism in a spiropyran-embedded polymer as it is
deformed to failure. From [49]
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In order to predict and understand the dynamic properties of this spiropyran
system, both DFT and TD-DFT must be utilized to capture the coupled mechanical
and optical properties of this system. Because the applied stress on poly (e-
caprolactone) creates an optical transition in the material (cf. Fig.4.8), it is
necessary to choose a DFT functional that accurately captures this optical process.
To this end, all DFT calculations were performed using a range-separated LC-
BLYP functional (discussed briefly in Section 4.3.2) which incorporates an exact
—1/r exchange energy dependence at large inter-electronic distances [49]. First, to
simulate an applied stress, the initial equilibrium geometry for a closed spiropyran
unit tethered with pendant poly(e-caprolactone) polymer chains was optimized
with DFT. Starting with this equilibrium geometry, an applied external stress was
obtained by gradually increasing the distance between the two terminal methyl
groups (denoted by arrows in Fig.4.9a) in small increments of 0.1 A up to a final
molecular elongation of 60 %. Throughout this entire procedure, all of the other
unconstrained internal coordinates were fully optimized in order to minimize the
total strain energy. The resulting energy curve is depicted in Fig. 4.9b, which shows
a monotonic increase in energy as the polymer is stretched until an abrupt transition
occurs at 39 % elongation. At this transition point, the C-O spiro bond suddenly
ruptures, and the energy sharply decreases from 2.7 to 1.6eV as the spiropyran has
now relaxed into the open charge-separated zwitterionic merocyanine form. It is
remarkable to point out that our DFT calculations naturally predict the C-O spiro
bond to be the weakest in the entire spiropyran polymer, even though we have not
constrained this particular bond-energy at all in our first-principles calculations.
After the weak C-O spiro bond has broken, the energy for elongations greater
than 39 % is associated with stretching the strong molecular bonds along the open
zwitterionic backbone.

Next, in parallel with the force-constrained DFT optimizations, we also carried
out excited-state calculations to understand the photochromic properties of the
nanoribbon-spiropyran polymer. As described in our previous work, reversible
photoswitching of a spiropyran-embedded polymer is experimentally realizable
since light of different wavelengths can initiate both the forward and reverse
isomerizations in these materials. In particular, real-time monitoring of a spiropyran-
polymer film gives a dramatic demonstration of a reversible cyclic response to
light irradiation [49]. In order to evaluate the photoresponse in this system, we
carried out several time-dependent DFT calculations at each of the force-constrained
polymer geometries. In Fig.4.9c, we plot the excitation wavelength having the
strongest absorption maximum along the mechanical deformation reaction path.
For molecular elongations less than 39 %, Fig.4.9c shows that it only absorbs in
the UV with a maximum absorbance at 250 nm. However, upon cleavage of the
weak C-O spiro bond, the stretched spiropyran structure shows a strong Sy — S
absorption maximum (450nm) that is significantly red-shifted due to the larger
conjugated m-electron system, confirming previous experimental observations of
a strong photochromic shift in the polymer. To further characterize this dramatic
change in electronic character, we also performed new calculations of the electric
dipole moment in Fig. 4.9d along the mechanical deformation reaction path. In the
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Fig. 4.9 (a) Molecular structure of a closed spiropyran unit tethered with pendant poly(e-
caprolactone) polymer chains. An external mechanical stress was applied across this polymer
unit by gradually increasing the distance between the methyl units (denoted by arrows) while
optimizing all other internal coordinates. (b) Force-constrained potential energy curve for
mechanochemical switching of the spiropyran system. A sharp transition between the spiropyran
and merocyanine forms occurs at 39 % elongation length. (¢) Absorption wavelength for pho-
tochromic switching of spiropyran. The unstretched spiropyran form absorbs in the UV (< 39 %
elongation), while the stretched system strongly absorbs in the visible (> 39 % elongation). (d)
Electric dipole moment as a function of molecular elongation. When the spiropyran polymer
is stretched, the dipole moment nearly doubles as the deformation proceeds towards complete
mechanical failure of the material

unstretched-spiropyran region, the calculated dipole moment has a value of 7.5D
that begins to change discontinuously in the same energy region where the C-O
spiro bond is broken and where the polymer begins to strongly absorb at 450 nm.
Beyond this transition point, the dipole moment almost doubles to a value of 11.5D
due to increasing polarization of the C-O bond as the polymer is stretched. Our
first-principles calculations give detailed mechanistic insight into this evolution of
the dipole moment, and they further predict the mechanical deformation of the
system to occur at 39 % elongation, or at the 250 nm/450 nm crossover point.



4 Density Functional Theory 153

4.6 Discussions and Conclusions

In summary, we have given a brief overview of various representative DFT methods
as well as presented practical applications for predicting various mechanical proper-
ties. While DFT offers a powerful capability for modeling these diverse properties,
the examples presented in this chapter highlight the extra care that must be taken
in choosing the appropriate functional for each application. In our first example on
palladium-hydride materials, we first carried out a series of calculations on static
properties, including lattice constants and cohesive energies, using representative
functionals within the LDA, GGA, DFT-D, and nonlocal vdW DFT families. For
these simple static properties, we find that dispersion interactions are not negligible
and still play a significant role even in these covalently bonded solid structures.
Specifically, both the empirically constructed PBE-D2, PBE-D3(BJ), and PBE-TS
methods and the nonlocal optB86-vdW dispersion-corrected functional give the best
agreement to the experimental lattice constants and cohesive energies. However,
the testing of DFT methods on static properties only gives limited information
for solid structures near equilibrium, and a more representative analysis requires
additional benchmarks on properties far from equilibrium. To further characterize
and thoroughly test the various DFT methods at these extreme conditions, we also
carried out extensive analyses of non-equilibrium properties including stress—strain
relationships and maximum tensile strengths. Among all the tested functionals,
we surprisingly found that the empirically constructed DFT-D2 method gives
stress—strain relationships that are extremely anomalous. Specifically, the PBE-D2
functional predicts the ideal strength to occur at € values that are nearly twice
as large compared to the other DFT methods. To the best of our knowledge, this
present study is the first to benchmark dispersion-corrected DFT methods on highly
non-equilibrium properties of bulk solids and also the first to report the anomalous
tensile strength results produced by DFT-D2 methods.

Our findings have important ramifications for both method development and
future parameterizations of structural properties in solids: (1) on a practical note,
we find that the next-generation dispersion-corrected methods (i.e., DFT-D3 and
DFT-TS) and the nonlocal optB86b-vdW method yield accurate results for both
equilibrium and non-equilibrium properties. While the DFT-D2 method gives accu-
rate results for lattice constants, bulk moduli, and cohesive energies, the stress—strain
curves predicted by DFT-D2 are extremely anomalous and physically incorrect
(the opposite is true for the nonlocal vdW-DF2 functional which gives reasonable
results for stress—strain properties but poor results for lattice constants, bulk moduli,
and cohesive energies). As such, we recommend usage of the PBE-D3(BJ), PBE-
TS, or optB86-vdW functionals for accurately computing both equilibrium and
non-equilibrium properties in bulk solids; (2) for future development of new
dispersion-corrected DFT functionals, we advocate the inclusion of simple tensile
strength benchmarks to ensure that anomalous stress—strain results are not produced.
There has already been prior work to include non-equilibrium molecular geometries
(in vacuum) to construct new dispersion-corrected DFT methods; however, the
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use of non-equilibrium solid-state structures has not been utilized. These non-
equilibrium tensile strength tests require relatively small unit cells, and a simple plot
of the stress—strain curve can be easily used as a diagnostic for testing the fidelity
of new dispersion-corrected functionals; and (3) most importantly, one should
proceed with caution in using DFT-D2 (and other coarse-grained parameterizations
obtained from DFT-D2) for computing material properties in extreme environments,
particularly for bulk solids. While the newer dispersion-corrected DFT-D3, DFT-
TS, and nonlocal vdW methods are now commonly used for molecular interactions,
the older DFT-D2 method is still widely employed for bulk solids, surfaces, and
condensed phase systems (a cursory keyword search for “DFT-D2” vs. “DFT-D3”
in the titles and abstracts of materials science journals in the Thomson Reuters Web
of Science yields 41 papers for DFT-D2 and only 12 papers for DFT-D3, during
the years 2010-2015). Moreover, there are still ongoing efforts in parameterizing
new molecular dynamics force fields and equation-of-state models from DFT-D2
benchmarks [16, 68, 73]. While these new force fields and models will give reliable
results for properties near equilibrium, one should proceed with caution in using
DFT-D2-parameterized methods for properties far from equilibrium (i.e., in extreme
stress—strain environments and irreversible phase transformations). For materials
under extreme stress/strain conditions, particularly for bulk solids as demonstrated
in this work, DFT-D2-based force fields may need to be re-examined or re-
parameterized.

In our final example on using DFT methods to predict mechanical properties, we
presented an application on mechanochromic systems. Using both force-constrained
DFT optimizations and time-dependent DFT, we show that first-principles calcula-
tions give detailed mechanistic insight into these mechanically activated processes.
Moreover, when compared to experiment, these calculations also give accurate
predictions of mechanical deformation in these complex systems. Looking forward,
it would be extremely interesting to postulate how one can further optimize
this hybrid system in future mechanochromic applications. As mentioned previ-
ously, while our DFT calculations were motivated from experimentally available
spiropyran materials, it is very likely that further modifications of the spiropyran
unit would lead to even larger mechanochromic effects. In particular, further
chemical functionalization via other strong electron donor or acceptor groups of
the spiropyran would further modulate the optical and mechanical couplings in this
system. We are currently using both DFT and time-dependent DFT to exploring
these options in parallel with experimental efforts to understand their effect on
the mechanical properties of spiropyran-based polymers. As a result, we anticipate
that the mechanochromic effects presented here are applicable to opto-mechanical
properties in other nanostructures, and first-principles DFT calculations can provide
further insight into these effects in other mechanically coupled systems of increasing
complexity.
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Chapter 5
The Quasicontinuum Method: Theory
and Applications

Dennis M. Kochmann and Jeffrey S. Amelang

5.1 Introduction

The state of the art in material modeling offers highly accurate methods for each
individual scale, from density functional theory (DFT) and molecular dynamics
(MD) at the lower scales all the way up to continuum theories and associated
computational tools for the macroscale and structural applications. Unfortunately,
a wide gap exists due to a lack of models applicable at the intermediate scales
(sometimes referred to as mesoscales). Here, the continuum hypothesis fails because
the discreteness of the atomic crystal becomes apparent, e.g., through the emergence
of size effects. At the same time, atomistic techniques tend to incur prohibitively
high computational expenses when reaching the scales of hundreds of nanometers
or microns. Mastering this gap between atomistics and the continuum is the key to
understanding a long list of diverse open problems. These include the mechanical
response of nanoporous or nanostructured (i.e., nanocrystalline or nanotwinned)
metals, the effective mechanical properties of nanometer- and micron-sized struc-
tures, devices and engineered (meta)materials, further the underlying mechanisms
leading to inelasticity and material failure, or heat and mass transfer in nanoscale
materials systems. Overall, there is urgent need for techniques that bridge across
length and time scales in order to accurately describe, to thoroughly understand,
and to reliably predict the mechanics and physics of solids (Fig.5.1).
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Fig. 5.1 Bridging across scales in crystalline solids: from the electronic structure all the way
up to the macroscale (including some of the prominent modeling and experimental techniques).
Abbreviations stand for Coupled Atomistic/Discrete-Dislocation (CADD), Density Functional
Theory (DFT), Digital Image Correlation (DIC), Electron Back-Scatter Diffraction (EBSD),
Electron Channelling Contrast Imaging (ECCI), and Scanning/Transmission Electron Microscopy
(SEM/TEM)

Over the decades, various methodologies have been developed to bridge across
scales. On the one hand, hierarchical schemes are the method of choice when a
clear separation of scales can be assumed. In this case, homogenization techniques
can extract the effective constitutive response at the macroscale from representative
simulations at the lower scales. Examples include multiple-level finite-element (FE)
analysis or FE" [30, 56, 70], as well as the homogenization of atomistic ensembles to
be used at the material-point level in macroscale FE simulations [15, 16, 62, 73]. By
contrast, concurrent scale-coupling methods avoid the aforementioned separation
of scales and instead integrate different constitutive descriptions into a single-scale
model by spatially separating domains treated, e.g., by first-principles, molecular
dynamics, discrete defect mechanics, and continuum theories. Prominent examples
comprise Coupled Atomistic/Discrete-Dislocation (CADD) models [17, 59, 74]
and AtoDis [13], furthermore the Bridging Domain Method (BDM) [12] and
Bridging Scale Decomposition [50], as well as Macroscopic, Atomistic, AB Initio
Dynamics (MAAD) [2, 14] which couples several scales. In such methods, a
key challenge arises from the necessity to pass information across interfaces
between different model domains. To pick out one example, CADD is an elegant
methodology which embeds a small MD domain into a larger region treated
by a Discrete Dislocation (DD) description. Here, the passing of lattice defects
across the interface between the two domains is a major challenge. In order to
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circumvent such difficulties, coarse-graining techniques apply the same lower-
scale constitutive description to the entire model but scale up in space and/or
in time. Classical examples include Coarse-Grained MD (CGMD) [69] as well
as the quasicontinuum (QC) method [82]. We note that, while upscaling in time
and in space are equally important, the primary focus here will be on spatial
coarse-graining, which is the main achievement of the QC approximation. Up-
scaling of atomistic simulations in the time domain has been investigated in the
context of MD simulations, see, e.g., [41, 89, 90], and can be added to a spatial
coarse-graining scheme such as the QC method. A particular QC formulation
(applicable to finite temperature) to study, e.g., long-term mass and heat transfer
phenomena was introduced recently [6, 88, 91]. The QC approximation relies
upon the crystalline structure and is ideally suited to carry out zero-temperature
calculations, as presented in the following. A variety of finite-temperature QC
extensions exist, see, e.g., [21, 27, 34, 45, 54, 69, 72, 85, 86], which can be applied
on top of the presented spatial coarse-graining strategies.

Spatial coarse-graining reduces the number of degrees of freedom by introducing
geometric constraints, thereby making the lower-scale accuracy efficiently available
for larger-scale simulations [37, 38, 78, 82]. Coarse-graining strategies offer a
number of advantages over domain-coupling methods: (1) the model is solely
based on the lower-scale constitutive laws and hence comes with superior accuracy
(in contrast to coupling methods, there is no need for a separate and oftentimes
empirical constitutive law in the continuum region); (2) the transition from fully
resolved to coarse-grained regions is seamless (no approximate hand-shake region
is required between different domains in general); (3) depending on the chosen
formulation, model adaptation techniques can efficiently reduce computational
complexity by tying full resolution to those regions where it is indeed required (such
as in the vicinity of lattice defects or cracks and voids).

The quasicontinuum method was introduced to bridge from atomistics to the
continuum by applying finite element interpolation schemes to atoms in a crystal
lattice [58, 65, 82]. This is achieved by three integral components: geometric
constraints (which interpolate lattice site positions from the positions of a reduced
set of representative atoms), summation rules or sampling rules (which avoid
the computation of thermodynamic quantities from the full atomistic ensemble),
and model adaptation schemes (which localize atomistic resolution and thereby
efficiently minimize the total number of degrees of freedom). To date, numerous
QC flavors have been developed which mainly differ in the choice of how the
aforementioned three aspects are realized. Despite their many differences, all QC-
based techniques share as a common basis the interpolation of atomic positions from
a set of representative atoms as the primary coarse-graining tool.

The family of QC methods has been applied to a wide range of problems of
scientific and technological interest such as studies of the interactions of lattice
defects in fcc and bee metals. Typical problems include nanoindentation [48, 51, 83],
interactions of lattice defects [35, 65, 76] or of defects with nanosized cracks [36,
68, 80] and nanovoids [6, 66, 98], or with individual interfaces [47, 97]. Beyond
metals, the developed modeling techniques can be extended, e.g., to ferroelectric
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materials and ionic crystals via electrostatic interactions [20] and multi-lattice
approaches [1, 22], further to non-equilibrium thermodynamics [45, 54, 69, 72, 88],
also to structural mechanics [7, 9] and two-dimensional materials [64, 92], and in
principle to any material system with crystalline order as long as a suitable position-
dependent interatomic potential is available.

In this chapter, we will review the common theoretical basis of the family of
QC methods, followed by the description of particular QC schemes and available
techniques. We then proceed to highlight past and recent applications and extensions
of the QC technique to study the mechanics and physics of solids and structures, and
we conclude by summarizing some open questions and challenges to be addressed
in the future or subject to ongoing research. Since such a book chapter cannot give
a full account of all related research, we focus on—in our view—important QC
advances and contributions and apologize if we have overlooked specific lines of
research. For a list of related publications, the interested reader is also referred to
the gcmethod.org website maintained by Tadmor and Miller [81].

5.2 The Quasicontinuum Method

The rich family of QC methods is united by the underlying concepts of (1) signifi-
cantly reducing the number of degrees of freedom by suitable interpolation schemes,
and (2) approximating the thermodynamic quantities of interest by summation or
sampling rules. Let us briefly outline those concepts before summarizing particular
applications and extensions of the QC method.

5.2.1 Representative Atoms and the Quasicontinuum
Approximation

In classical mechanics, an atomistic ensemble containing N atoms is uniquely
described by how their positions q = {q, ..., qy} and momentap = {pi,...,py}
with p; = m;q; evolve with time 7. Here and in the following, m; represents the
mass of atom i, and dots denote material time derivatives. Then, the ensemble’s
total Hamiltonian 7 is given by

N 12
H(@p) =) '2"”'1 4+ V(). (5.1)
i=1 !

where the first term accounts for the kinetic energy and the second term represents
the potential energy of the ensemble with V denoting a suitable atomic interaction
potential which we assume to depend on atomic positions only. The time evolution
of the system is governed by Hamilton’s equations, which yield Newton’s equations
of motion for all atomsi = 1,...,N,
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. %
mq; = fi(q) = Toq (@), (5.2)

where f;(q) represents the total (net) force acting on atom i. We note that V can, in
principle, depend on both positions p and momenta q (the latter may be necessary,
e.g., when using the quasiharmonic and other approximations for quasistatic finite-
temperature formulations without time discretization). For conciseness, we here
restrict ourselves to position-dependent potentials only; the extension to include
momenta is straightforward. As one of the cornerstones of the QC method, we
limit our analysis to crystalline solids in which the ground state atomic positions
coincide with sites of a regular lattice described by a set of Bravais vectors that
span the discrete periodic array of lattice sites. In most materials (including metals,
ceramics, and organic materials), the interaction potential usually allows for an
additive decomposition, i.e.

N
V(Q) = Ei(q) (5.3)

i=1

with E; being the energy of atom i. Some authors in the scientific literature have
preferred to distinguish between external and internal forces by introducing external
forces f; x; on all atoms i = 1,..., N so that

v
fi(q) = fiex(q) — 3, (@) (5.4)

U

Ideally (and in any reasonable physical system), such external forces are conser-
vative and derive from an external potential Vex(q) and we may combine internal
and external forces into a single potential, which is tacitly assumed in the following.
Examples of conservative external forces include gravitation, long-range Coulombic
interactions, or multi-body interactions such as during contact. For computational
convenience, the latter is oftentimes realized by introducing artificial potentials, see,
e.g., [40] for an effective external potential for spherical indenters.

Due to limitations of computational resources, it is generally not feasible to apply
the above framework to systems that are sufficiently large to simulate long-range
elastic effects, even for short-range interatomic potentials. However, except in the
vicinity of flaws and lattice defects such as cracks and dislocations, respectively, the
local environment of each atom in a crystal lattice is almost identical up to rigid
body motion. Therefore, the QC approximation replaces the full atomistic ensemble
by a reduced set of N, < N representative atoms (often referred to as repatoms for
short). This process is shown schematically in Fig. 5.2.

Let us denote the repatom positions by x(f) = {x;(?), ..., Xw,(?)}. The approx-
imate current positions qf’ and momenta pf.‘ of all atoms i = 1,...,N are now
obtained from interpolation, i.e. we have
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Fig. 5.2 Illustration of the QC methodology: identification of atoms of interest (e.g., high-
centrosymmetry lattice sites near a dislocation core), reduction to the set of repatoms (coarsening
the full atomic lattice by choosing a small set of representative atomic sites), and the interpolation
of atomic positions (blue in the small inset) from repatom positions (red) with an example repatom
distribution around a dislocation and a grain boundary in two dimensions

Np
G~q = ZNQ(X,) X, (5.5)
=1
and consequently
Np
pi Pl =mid! =mi Y Nu(X)) X (5.6)

a=1

N,(X;) is the shape function of repatom a evaluated at the position X; of lattice
site i in the undeformed (reference) configuration (analogously to shape functions
commonly used in the finite element method). As an essential feature, one usually
requires this coarse-graining scheme to locally recover the exact atomic ensemble
when all atoms are turned into repatoms; i.e., if every lattice site is a repatom, then
we should recover full atomistics exactly. In other words, in the atomistic limit we
require ; = X;. This in turn implies that shape functions should be chosen to satisfy
the Kronecker property, i.e., N,(Xp) = 8q forall 1 < a,b < N, with §; denoting
Kronecker’s delta (§; = 1 if i = j and O otherwise). This is the case, e.g., for
Lagrange interpolation functions (including affine interpolation), which ensure that
shape functions are 1 at their respective node and 0O at all other nodes.

By borrowing concepts from the finite element method, the above geometric
constraints within the original QC method [42, 71, 82] made use of an affine
interpolation on a Delaunay-triangulated mesh. More recent versions have explored
higher-order polynomial shape functions [46, 63] as well as meshless interpolations
using smoothed-particle approaches [94, 96] or local maximum-entropy shape
functions [43].

The introduction of the geometric constraints in (5.5) has reduced the total
number of independent degrees of freedom from d x N in d dimensions to
d x Nj,. Therefore, the approximate Hamiltonian .7 of the coarse-grained system,
now involving approximate atomic positions q" = {qﬁ’ e qf{,} and momenta
p' = {pﬁ’ e ,pf{,}, only depends on the positions and momenta of the repatoms
through (5.5):
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L [p)f?
A% %) =Y o+ V(q"). (5.7)
i=1

1

Instead of solving for the positions and momenta of all N lattice sites, the QC
approximation allows us to update only the positions and momenta of the N
repatoms, which requires to compute forces on repatoms. These are obtained from
the potential energy by differentiation, which yields the net force on repatom k:

B =—"" (q Zf”(q”)Nk(X) (5.8)
Jj=1
with
CONS IE:(q")
f(q") = - , 5.9
" (q") o Zl i (5.9)

the total force acting on atom j. It is important to note that, in an infinite Bravais
lattice (i.e., in a defect-free single-crystal in the absence of external loading or free
surfaces), the forces on all atoms vanish, i.e. we have ff.’(qh) = 0, so that the net
forces on all repatoms vanish as well (F;, = 0).

5.2.2 Summation Rules and Spurious Force Artifacts

Summation rules have become an integral ingredient of all QC methods (even
though they are sometimes not referred to as such). Although the above introduction
of repatoms has reduced the total number of degrees of freedom significantly from
d x N to d x N", the calculation of repatom forces still requires computing the
forces between all N atoms and their on average N;, neighbors located within each
atom’s radius of interaction. These (N x N,) operations become computationally
not feasible for realistically sized systems. We note that, in principle, summations
in (5.8) can be reduced to the support of the shape functions (i.e., to regions in
which Ni(X;) # 0) but even this is prohibitively expensive in regions of dilute
repatom concentrations. Therefore, summation rules or sampling rules have been
introduced to approximate the thermodynamic quantities of interest of the full
atomistic ensemble by those of a small set of carefully chosen lattice sites (in the
following referred to as sampling atoms), comparable to quadrature rules commonly
found in the finite element method.

QC summation rules have either approximated the energy of the system (so-
called energy-based QC) [5, 28] or the forces experienced by the repatoms (force-
based QC) [42]. Within each of those two categories, multiple versions have been
proposed. Here, we will first describe what is known as fully nonlocal energy-based
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and force-based QC formulations and then extract the original local/nonlocal QC
method as a special case of energy-based QC.

5.2.2.1 Energy-Based QC

In energy-based nonlocal QC formulations, the total Hamiltonian is approximated
by a weighted sum over a carefully selected set of sampling atoms (which do not
have to coincide with the repatoms introduced above). To this end, we replace the
sum over index i in (5.3) or (5.8) by a weighted sum over N; carefully-chosen
sampling atoms, see, e.g., [5, 28, 29]. Consequently, the total potential energy is
approximated by

N Ny
V@) =) E@) ~ V(") =) wiEu(d"), (5.10)

i=1 a=1

where w,, is the weight of sampling atom «. Physically, w, denotes the number of
lattice sites represented by sampling atom «.

The force experienced by repatom k is obtained by differentiation in analogy
to (5.8):

Ny N

N T(ah h
Fu(x) = _a\;(q ) _ “Swe Y aE"‘(f‘ ) Nu(X)), (5.11)

X
k a=1  j=1 j

Now, repatom force calculation has been reduced to O(N; x N,) operations
(accounting for the fact that the sum over j above effectively only involves N,
neighbors within the potential’s cutoff radius). The selection of sampling atoms and
the calculation of sampling atom weights aim for a compromise between maximum
accuracy (ideally Ny = N and w, = 1) and maximum efficiency (requiring Ny < N
and wy > 1).

In order to seamlessly bridge from atomistics to the continuum without differ-
entiating between atomistic and coarse-grained regions, the above summation rules
can be interpreted as a fully nonlocal QC approximation which treats the entire
simulation domain in the same fashion. Summation rules now differ by the choice of
(1) sampling atom locations and (2) sampling atom weights. Successful examples of
summation rules introduced previously include node-based cluster summation [42]
with sampling atoms located in clusters around repatoms, and quadrature-type
summation [33] with sampling atoms chosen nearest to Gaussian quadrature points
with or without the repatoms included as sampling atoms. Furthermore, element-
based summation rules have been introduced in the nonlocal QC context [33, 95]
and have demonstrated superior accuracy over traditional cluster-based summation
schemes [37]. Recently, a central summation rule was proposed in [11] as an ad-
hoc compromise between local and quadrature summation rules, which is similar in
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cluster rule quadrature rule “optimal” rules

local QC

nodal rule

Fig. 5.3 Illustration of popular summation rules with small open circles denoting lattice sites,
solid circles representing repatoms, and large open circles are sampling atoms (crossed circles
denote sampling atoms whose neighborhoods undergo affine deformations). Optimal summation
rules [5] are shown of first and second order (the gray sampling atoms only exist in the second-
order rule)

spirit and contained as a special case within the optimal summation rules recently
introduced in [5]. Figure 5.3 illustrates some of the most popular summation rules.

Many summation rules were introduced in an ad-hoc manner to mitigate
particular QC deficiencies (e.g., cluster rules were introduced to remove zero-energy
modes in force-based QC [42]) or by borrowing schemes from related models (e.g.,
finite element quadrature rules [33]). The recent optimal sampling rules [5] followed
from optimization and ensure small or vanishing force artifacts in large elements
while seamlessly bridging to full atomistics. Their new second-order scheme also
promises superior accuracy when modeling free surfaces and associated size effects
at the nanoscale [4].

5.2.2.2 Force Artifacts

Summation rules on the energy level not only reduce the computational complexity
but they also give rise to force artifacts, see, e.g., [5, 28] for reviews within the
energy-based context. By rewriting (5.11) without neighborhood truncations as

9 NoY o bE(q
Few) = — Z Z Fe (“ Nex) =3 (=3 we an(l;‘) Ne(X;).
s ' (5.12)

and comparing with (5.8), we see that the term in parentheses in (5.12) is not equal
to force fjh and hence does not vanish in general even if fjh = 0 for all atoms (unless
we choose all atoms to be sampling atoms, i.e., unless Ny = N and w, = 1). As a
consequence, the QC representation with energy-based summation rules shows what
is known as residual forces in the undeformed ground state which are non-physical.

In uniform QC meshes (i.e. uniform repatom spacings, uniform sampling atom
distribution, and a regular mesh), these residual forces indeed disappear due to
symmetry; specifically, the sum in parentheses in (5.12) cancels pairwise when
carrying out the full sum. Residual forces hence appear only in spatially non-
uniform meshes, see also [37] for a discussion. In general, one should differentiate
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between residual and spurious forces [5, 28]. Here, we use the term residual force to
denote force artifacts arising in the undeformed configuration. In an infinite crystal,
these can easily be identified by computing all forces in the undeformed ground
state. However, force errors vary nonlinearly with repatom positions. Therefore,
we speak of spurious forces when referring to force artifacts in the deformed
configuration. As shown, e.g., in [5], correcting for residual forces by subtracting
those as dead loads does not correct for spurious forces and can lead to even
larger errors in simulations. Indeed, in many scenarios this dead-load correction
is not easily possible since the undeformed ground state may contain, e.g., free
surfaces. In this case, the computed forces in the undeformed ground state contain
both force artifacts and physical forces. Thus, without running a fully atomistic
calculation for comparison, it is impossible to differentiate between residual force
artifacts and physical forces arising, e.g., due to surface relaxation [4]. Even though
residual and spurious forces are conservative in the energy-based scheme, they are
non-physical and can drive the coarse-grained system into incorrect equilibrium
states. Special correction schemes have been devised which effectively reduce or
remove the impact of force artifacts, see, e.g., the ghost force correction techniques
in [71, 75]. However, such schemes require a special algorithmic treatment at the
interface between full resolution and coarse-grained regions, which may create
computational difficulties and, most importantly, requires the notion of an interface.

Based on mathematical analyses, further energy-based schemes have been
developed, which blend atomistics and coarse-grained descriptions by a special
formulation of the potential energy or the repatom forces. Here, an interfacial
domain between full resolution and coarse regions is introduced, in which the
thermodynamic quantities of interest are taken as weighted averages of the exact
atomistic and the approximate coarse-grained ones [49, 53]. Such a formulation
offers clear advantages, including the avoidance of force artifacts. It also requires the
definition of an interface region, which may be disadvantageous in a fully nonlocal
QC formulation with automatic model adaption since no notion of such interfaces
may exist strictly [5].

5.2.2.3 Force-Based QC

In order to avoid force artifacts, force-based summation rules were introduced
in [42]. These do not approximate the Hamiltonian but the repatom forces explicitly.
Ergo, the summation rule is applied directly to the repatom forces in (5.8), viz.

N Ny
Fx) =) #@)NX) ~ Fu® =) wefi(qhVN(Xo).  (5.13)
a=1

i=1

As a consequence, this force-based formulation does not produce residual forces
because f” (q") = 0 in an undeformed infinite crystal. The same holds true for an
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infinite crystal that is affinely deformed: for reasons of symmetry the repatom forces
cancel, and spurious force artifacts are effectively suppressed.

Yet, this approximation gives rise to a new problem: the force-based method
is non-conservative; hence, there is no potential from which repatom forces
derive. This has a number of drawbacks, as discussed, e.g., in [28, 37, 57].
In quasistatic problems, the non-conservative framework may lead to slow numer-
ical convergence, cause numerical instability, or converge to non-physical equilib-
rium states, see, e.g., the analyses in [24-26, 52, 61]. Furthermore, for dynamic
or finite-temperature scenarios, a QC approximation using force-based summation
rules cannot be used to simulate systems in the microcanonical ensemble (where
the system’s energy is to be conserved; other ensembles may, of course, be used).
Finally, repatom masses, required for dynamic simulations, are not uniquely defined
because there is no effective kinetic energy potential when using force-based
summation rules (see also Sect. 5.2.2.5 below). In contrast, energy-based summation
rules lead to conservative forces and to strictly symmetric stiffness matrices with
only the six admissible zero eigenvalues [28]. Moreover, the proper convergence of
energy-based QC techniques was shown recently for harmonic lattices [29].

5.2.2.4 Local/Nonlocal QC

The original QC method of [82] uses affine interpolation within elements and may
be regarded as a special energy-based QC scheme, in which atomistic and coarse-
grained regions are spatially separated. In the atomistic region and its immediate
vicinity, the full atomistic description is applied and one solves the discrete (static)
equations of motion for each atom and approximations thereof near the interface
(nonlocal QC). In the coarse-grained region, a particular element-based summation
rule is employed (local QC): for each element, the energy is approximated by
assuming an affine deformation of all atomic neighborhoods within the element,
so that one Cauchy Born-type sampling atom per element is sufficient and the
total potential energy is the weighted sum over all such element energies. This
concept has been applied successfully to a myriad of examples, primarily in two
dimensions (or in 2.5D by assuming periodicity along the third dimension). Since
the element-based summation rule in the nonlocal coarse region produces no force
artifacts [5], force artifacts here only appear at the interface between atomistic and
coarse-grained regions and have traditionally been called ghost forces [58, 71]. For
a comprehensive comparison of this technique with other atomistic-to-continuum-
coupling techniques, see [57]. Figure 5.4 schematically illustrates the concepts of
local/nonlocal and fully nonlocal QC.

5.2.2.5 Repatom Masses

Besides repatom forces, energy-based summation rules provide consistent repatom
masses, as mentioned above. When approximated by the QC interpolation scheme,
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Fig. 5.4 Schematic view of the local/nonlocal (left) and fully nonlocal (right) QC formulations.
The shown nonlocal scheme uses a node-based cluster summation rule. The inset on the right
illustrates the affine interpolation of atomic positions from repatoms, which is the same in both
formulations

the total kinetic energy of an atomic ensemble becomes

| L N 2
5 Zmi @ = ) Zmi ZNa(Xi) X4
i=1 i=1 a=1

(5.14)

1 Np N N
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where the term in parentheses may be interpreted as the components M". of a
consistent mass matrix M". In avoidance of solving a global system during time
stepping, one often resorts to mass lumping in order to diagonalize M". Applying
the energy-based summation rule to the total Hamiltonian (and thus to the kinetic
energy) yields a consistent approximation of the kinetic energy with mass matrix
components

N N;
M=) miNaX)Ne(X))  ~ M=) wymy No(Xp) Ne(Xp).  (5.15)

i=1 b=1
In case of mass matrix lumping, the equations of motion of all repatoms now become
il % = Fi(x), (5.16)

which can be solved by (explicit or implicit) finite difference schemes. The calcula-
tion of repatom masses is of importance not only for dynamic QC simulations, but
it is also relevant in quasistatic finite-temperature QC formulations.
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5.2.2.6 Example: Embedded Atom Method

The QC approximation outlined above is sufficiently general to model the perfor-
mance of most types of crystalline solids, as long as their potential energy can be
represented as a function of atomic positions. Let us exemplify the general concept
by a frequently used family of interatomic potentials for metals (which has also
been used most frequently in conjunction with the QC method). The embedded
atom method (EAM) [19] defines the interatomic potential energy of a collection of
N atoms by

1
E(@ =, ) @0y +F(p).  pi=) fry). (5.17)
J#i J#i

The pair potential @(r;) represents the energy due to electrostatic interactions
between atom i and its neighbor j, whose distance r;; is the norm of the distance
vector r;j = q; — ;. p; denotes an effective electron density sensed by atom i due to
its neighboring atoms. f(r;) is the electron density at site i due to atom j as a function
of their distance r;;. .% (p;) accounts for the energy release upon embedding atom i
into the local electron density p;. From (5.2), the exact force f; acting on atom & is
obtained by differentiation, viz.

N
fi(q) = Z o (q) - Z [@'(ry) + {7 (o) + T (o)} f (rig) ] ;kj
i=1 Jjeny(k) ki

(5.18)

Since most (non-ionic) potentials are short-range (in particular those for metals), one

can efficiently truncate the above summations to include only neighboring atoms

within the radius of interaction (n;(i) denotes the set of neighbors within the sphere

of interaction of atom i). Introducing the QC approximation along with an energy-

based summation rule now specifies the approximate repatom force as

h
Fi(x) = Zwa > [ ' (rh) + F' (o) f (7 )} i [Ne(Xa) — Ne(X))] .
Jj€ny (@) ”‘/

(5.19)

which completes the coarse-grained description required for QC simulations. Note
that, as discussed above, repatom forces (5.19) are prone to produce residual and
spurious force artifacts in non-uniform QC meshes.

5.2.2.7 Adaptive Refinement

One of the general strengths of the QC method is its suitability for adaptive model
refinement. This is particularly useful when there is no a-priori knowledge about
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where within a simulation domain atomistic resolution will be required during the
course of a simulation. For example, when studying defect mechanisms near a crack
tip or around a pre-existing lattice defect, it may be sufficient to restrict full atomistic
resolution to regions in the immediate vicinity of those microstructural features
and efficiently coarsen away from those. However, when investigating many-defect
interactions or when the exact crack path during ductile failure is unknown, it is
beneficial to make use of automatic model adaptation. By locally refining elements
down to the full atomistic limit, full resolution can effectively be tied to evolving
defects in an efficient manner. In the fully nonlocal QC method [5], this transition is
truly seamless as there is no conceptual differentiation between atomistic and coarse
domains. In the local/nonlocal QC method as well as in blended QC formulations
the transition is equally possible but may require a special algorithmic treatment.

Mesh refinement requires two central ingredients: a criterion for refinement and
a geometric refinement algorithm. The former can be realized on the element level,
e.g., by checking invariants of the deformation gradient within each element and
comparing those to a threshold for refinement [42]. Alternatively, one can introduce
criteria based on repatoms or sampling atoms, e.g., by checking the energy or the
centrosymmetry of repatoms or sampling atoms and comparing those to refinement
thresholds. The most common geometric tool is element bisection; however, a
large variety of tools exist and these are generally tied to the specifically chosen
interpolation scheme.

Unlike in the finite element method, mesh adaptation within the QC method
is challenging since element vertices, at least in the most common implementa-
tions, are restricted to sites of the underlying Bravais lattice (this ensures that
full atomistics is recovered upon ultimate refinement). The resulting constrained
mesh generation and adaptation has been discussed in detail, e.g. in [3]. While
mesh refinement is technically challenging but conceptually straightforward, mesh
coarsening presents a bigger challenge. Meshless formulations [43, 94, 96] appear
promising but have not reached sufficient maturity for large-scale simulations.

5.2.3 Features and Extensions

The QC methods described above have been applied to a variety of scenarios
which go beyond the traditional problem of quasistatic equilibration at zero-
temperature. In particular, QC extensions have been proposed in order to describe
phase transformations and deformation twinning, finite temperature, atomic-level
heat and mass transfer, or ionic interactions such as in ferroelectrics. In addition,
the basic concept of the QC method has been applied to coarse-grain discrete
mechanical systems beyond atomistics. Here, we give a brief (non-exhaustive)
summary of such special QC features and extensions.
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5.2.3.1 Multilattices

The original (local) QC approximation applies an affine interpolation to all lattice
site positions within each element in the coarse domain, which results in affine
neighborhood changes within elements (the same applies to the optimal summation
rules within fully nonlocal QC). By using Cauchy—Born (CB) kinematics, one can
account for relative shifts within the crystalline unit cells such as those occurring
during domain switching in ferroelectrics or during solid-state phase transitions
and deformation twinning. The CB rule is thus used in coarse-grained regions to
relate atomic motion to continuum deformation gradients. In order to avoid failure
of the CB kinematics, such a multilattice QC formulation has been augmented with
a phonon stability analysis which detects instability and identifies the minimum
required periodic cell size for subsequent simulations. This augmented approach
has been referred to as Cascading Cauchy—Born Kinematics [23, 77)] and has been
applied, among others, to ferroelectrics [84] and shape-memory alloys [23].

5.2.3.2 Finite Temperature and Dynamics

Going from zero to finite temperature within the QC framework is a challenge
that has resulted in various approximate descriptions but has not been resolved
entirely. In contrast to full atomistics, the physical behavior of continua is generally
governed by thermodynamic state variables such as temperature and by thermo-
dynamic quantities such as the free energy. Therefore, many finite-temperature
QC frameworks have constructed an effective, temperature-dependent free energy
potential; for example, see [27, 34, 45, 54, 72, 85, 86]. Dynamic simulations of
finite-temperature and non-equilibrium processes raise additional questions. Here,
we discuss a few representative finite-temperature QC formulations (often referred
to as hotQC techniques); for reviews, see also [44, 85, 87, 88] and the references
therein, to name but a few.

Within the local/nonlocal QC framework, finite-temperature has often been
enforced in different ways in the atomistic and the continuum regions, see, e.g., [85].
While in the atomistic region a thermostat can be used to maintain a constant
temperature, an effective, temperature-dependent free energy is formulated in the
coarse domain, e.g., based on the quasiharmonic approximation [85]. For quasistatic
equilibrium calculations, the dynamic atomistic ensemble is then embedded into the
static continuum description of the coarse-grained model. Alternatively, in dynamic
hotQC simulations of this type, all repatoms (including those in both regions) evolve
dynamically. The quasiharmonic approximation was shown to be well suited to
describe, e.g., the volumetric lattice expansion at moderate temperatures (where the
phonon-based model serves as a leading-order approximation). Drawbacks include
the inaccuracy observed at elevated temperature levels. Computational drawbacks in
terms of instability or technical difficulties may arise from the necessity to compute
up to third-order derivatives of the interatomic potentials. These must hence be
sufficiently smooth but often derive from piece-wise polynomials or tabulated values
in reality.
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Temperature and dynamics are intimately tied within any framework based on
atomistics. In principle, the zero-temperature QC schemes described in previous
sections can easily be expanded into dynamic calculations by accounting for
inertial effects and solving the dynamic equations of motion instead of their
static counterparts. In non-uniform QC meshes, however, this inevitably leads to
the reflection and refraction of waves at mesh interfaces and within non-uniform
regions. While such numerical artifacts may be of limited concern within, e.g., the
finite element method, they become problematic in the present atomistic scenario,
since atomic vibrations imply heat. For example, when high-frequency, short-
wavelength signals cannot propagate into the coarse region, the fully refined region
will trap high-frequency motion, which leads to artificial heating of the atomistic
region and thus to non-physical simulation artifacts. Dynamic finite-temperature
QC techniques hence face the challenge of removing such artifacts.

Any dynamic atomistic simulation must cope with the small time steps on the
order of femtoseconds, which are required for numerical stability of the explicit
finite difference schemes. This, of course, also applies to QC. In general, techniques
developed for the acceleration of MD can also be applied to the above QC
framework. One such example, hyperQC [41] borrows concepts of the original
hyperdynamics method [89] and accelerates atomistic calculations by energetically
favoring rare events through the modification of the potential energy landscape. This
approach was reported as promising in simple benchmark calculations [41].

As a further example, finite-temperature QC has been realized by the aid of
Langevin thermostats [54, 87]. Here, the QC approximation is applied within the
framework of dissipative Lagrangian mechanics with a viscous term that expends
the thermal energy introduced by a Langevin thermostat through a random force
at the repatom level. In a nutshell, the repatoms can be pictured as an ensemble
of nodes suspended in a viscous medium which represents the neglected degrees
of freedom. The effect of this medium is approximated by frictional drag on
the repatoms as well as random fluctuations from the thermal motion of solvent
particles. As a consequence, high-frequency modes (i.e., phonons) not transmitted
across mesh interfaces are dampened out by the imposed thermostat in order to
sample stable canonical ensemble trajectories. This method is anharmonic and was
used to study non-equilibrium, thermally activated processes. Unfortunately, the
reduced phonon spectra in the coarse-grained domains result in an underestimation
of thermal properties such as thermal expansion. For a thorough discussion, see [87].

In contrast to the above finite-temperature QC formulations which interpret con-
tinuum thermodynamic quantities as atomistic time averages, one may alternatively
assume ergodicity and take advantage of averages in phase space. This forms the
basis of the maximum-entropy hotQC formulation [44, 45, 87]. By recourse to
mean-field theory and statistical mechanics, this hotQC approach is based on the
assumption of maximizing the atomistic ensemble’s entropy. To this end, repatoms
are equipped with an additional degree of freedom which describes their mean
vibrational frequency and which must be solved for in addition to the repatom
positions at a given constant temperature of the system. This approach seamlessly
bridges across scales and does not conceptually differentiate between atomistic and
continuum domains. As described in the following section, this concept has also
been extended to account for heat and mass transfer [66, 88].
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5.2.3.3 Heat and Mass Transfer

The aforementioned maximum-entropy framework has been applied to study not
only finite-temperature equilibrium mechanics but has also been extended to
describe non-equilibrium heat and mass transfer in coarse-grained crystals. As
explained above, the motion of each atom can be decomposed into high-frequency
oscillations (i.e., heat) and its mean path (slow, long-term motion). The principle
of maximum entropy along with variational mean-field theory provides the tools
to apply this concept to the QC method by providing governing equations for
the repatom positions as well as their vibrational frequencies [45, 87, 88]. In
addition, the same framework is suitable to describe multi-species systems by
equipping repatoms with additional degrees of freedom that represent the local
chemical composition. For an atomistic ensemble, this yields an effective total
Hamiltonian [66, 87, 88]

X (il
{"‘ - (V)@ p.w.x)
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3kB 2 g ] 9;’ E k 108 Xik

where (-) denotes the phase-space average to be computed, e.g., by numerical
quadrature; the associated probability distribution and partition function are avail-
able in closed form [88]. N, kg, and # are the total number of atoms, Boltzmann’s
and Planck’s constants, respectively. w; represents the vibrational frequency of atom
i, and 6; is its absolute temperature. In addition to obtaining Hamilton’s equations of
motion for the mean positions q(7) and momenta p(z) of all N atoms, minimization
of the above Hamiltonian also yields the vibrational frequencies w; as functions of
temperature. In order to describe n different species, x; denotes the effective molar
fraction of species k at atomic site i (i.e., for full atomistics it is either 1 or 0, in the
coarse-grained context it will assume any value x;; € [0; 1]). m; is an effective atomic
mass. In addition to interpolating (mean) atomic positions and momenta as in the
traditional QC method, one now equips repatoms with vibrational frequencies and
molar fractions as independent degrees of freedom to be interpolated: (q, p, @, x).
While governing equations for atomic positions follow directly, the modeling of
heat and mass transfer requires (empirical) relations for atomic-level mass and heat
exchange to complement the above framework [88].

We note that the evaluation of the above Hamiltonian requires effective inter-
atomic potentials for many-body ensembles with known average molar fractions x;.
Possible choices include empirical EAM potentials [31, 39] and related lower-bound
approximations [88] as well as DFT-informed EAM potentials [67, 93].
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5.2.3.4 Ionic Crystals

ITonic interactions, such as those arising, e.g., in solid electrolytes or in complex
oxide ferroelectric crystals, present an additional challenge for the QC method
because atomic interactions cease to be short-range. The QC summation or sampling
rules take advantage of short-range interatomic potentials which admit the local
evaluation of thermodynamic quantities of interest, ideally at the element level.
When long-range interactions gain importance, that concept no longer applies and
new effective summation schemes must be developed such as those reported in [55].

5.2.3.5 Beyond Atomistics

The QC approximation is a powerful tool whose application is not necessarily
restricted to atomistic lattices. In general, any periodic array of interacting nodes
can be coarsened by a continuum description which interpolates the full set of
nodal positions from a small set of representative nodes. Therefore, since its original
development for coarse-grained atomistics, the QC method has been extended and
applied to various other fields.

As an example at even lower length scales, coarse-grained formulations of
Density Functional Theory have been reported [32, 79], which considerably speed
up electronic calculations. While the key concepts here appertain to the particular
formulation of quantum mechanics based on electron densities, the coarse-graining
of the set of atomic nuclei may be achieved by recourse to the QC method.

As a further example at larger scales, the QC method can also be applied at the
meso- and macroscales in order to coarse-grain periodic structures such as truss or
fiber networks. Here, interatomic potentials are replaced by the discrete interactions
of truss members or fibers, and the collective response of large networks is again
approximated by the selection of representative nodes and suitable interpolation
schemes. This methodology was applied to truss lattices [7, 9, 10] and electronic
textiles [8]. As a complication, nodal interactions in those examples are not
necessarily elastic, so that internal variables must be introduced to account for path
dependence in the nodal interactions and dissipative potentials can be introduced
based on the virtual power theorem or variational constitutive updates. Figure 5.5
shows a schematic of the coarse-graining of truss lattices as well as the simulated
failure of a coarse-grained periodic truss structure loaded in three-point bending.
Detailed results will be shown in Sect. 5.3.3.

5.2.4 Codes

A variety of QC codes are currently being used around the world, most of which
are owned and maintained by individual research groups. The most prominent
and freely available simulation software is the Fortran-based code developed
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Fig. 5.5 Schematic view of a coarse-grained truss network undergoing indentation (/eft; shown
are truss members, nodes, representative nodes, and example sampling truss members within one
element) and the simulation result of a truss lattice fracturing during three-point bending (right,
color-coded by the axial stress within truss members which are modeled as elastic-plastic)

and maintained by Tadmor et al. [81]. This framework is currently restricted to
2.5D simulations and has been used successfully for numerous studies of defect
interactions and interface mechanics at the nanoscale [81]. The code is available
through the website [81], which also includes a list of references to examples
and applications. High-performance codes for 3D QC simulations exist primarily
within academic research groups; these include, among others, those of M. Ortiz,
P. Ariza, I. Romero et al. (hotQC), J. Knap, J. Marian, and others (force-based QC),
E. Tadmor et al. (the 3D extension of [81]), and the authors (fully nonlocal 2D and
3D QQC). This is, of course, a non-exhaustive summary of current codes.

5.3 Applications

It is a difficult task to summarize all applications of the QC method to date;
for a thorough overview, the interested reader is referred to the QC references
found in [81]. Without claiming completeness, the following topics have attracted
significant interest in the QC community (for references, see [81]):

¢ size effects and deformation mechanisms during nanoindentation,

¢ nanoscale contact and friction, nanoscale scratching and cutting processes,

* interactions between dislocations and grain boundaries (GBs), GB mechanisms,

¢ phase transformations and deformation twinning, shape-memory alloys,

* fracture and damage in fcc/bce metals and the brittle-to-ductile transition,

¢ void and cavity growth at zero and finite temperature,

¢ deformation and failure mechanisms in single-, bi-, and polycrystals, in particular
the mechanics of nanocrystalline solids,

 crystalline sheets and rods, including graphene and carbon nanotubes,

 ferroelectrics and polarization switching,

¢ electronic textile, fiber networks and truss structures.
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In the following sections, we will highlight specific applications of the QC
method applied to fcc metals and truss structures. The benchmark examples have
been simulated by the authors’ fully nonlocal, massively parallel 3D QC code.

5.3.1 Nanoindentation

Nanoindentation is one of the most classical examples that has been studied by the
QC method since its inception due to the relatively simple problem setup and the rich
inelastic deformation mechanisms that can be observed. Oftentimes, the indenter is
conveniently modeled by an external potential [40], which avoids the handling of
contact and the presence of two materials.

As an illustrative example of the nonlocal QC method, Fig.5.6 shows the
results of a virtual indentation test into single-crystalline pure copper with a
spherical indenter of radius 5nm up to a maximum indentation depth of 3 nm.

Fig. 5.6 Nanoindentation into a Cu single-crystal: (a)—(d) show the distribution of repatoms in
blue (bottom left panels) as well as color-coded by centrosymmetry (top left panels), the sampling
atoms of the first- and second-order summation rules of [5] (shown in red and green, respectively, in
the bottom right panels), and the mesh (top right panels). (e)—(h) are zooms of (a)—(d) illustrating
the sampling atom centrosymmetry. (i) shows the force-indentation curve (force in eV/A)
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All nanoindentation simulations were performed at an indentation rate of 7.8 - 108
at zero temperature, using an extended Finnis—Sinclair potential [18]. For ease of
visualization, this example is restricted to two dimensions. Of course, this scenario
could easily be simulated by MD but we deliberately present simple scenarios first
for purposes of detail visualization. The four panels in Fig.5.6a—d illustrate the
distribution of repatoms and sampling atoms along with the QC mesh. Automatic
mesh adaptation leads to local refinement underneath the indenter and around lattice
defects. The latter are visualized by plotting the centrosymmetry parameter [40] of
sampling atoms (which agree with lattice sites in the fully resolved regions).

Figure 5.7 shows analogous results obtained from a pyramidal indenter penetrat-
ing into the same Cu single-crystal. As before, full atomistic resolution is restricted
to those regions where it is indeed required: underneath the indenter as well as in
the vicinity of lattice defects. Figure 5.7c, d shows the spreading of dislocations
into the crystal after emission from the indenter, resulting in full resolution in the
wake of the dislocations. The remainder of the simulation domain remains coarse-
grained, thus allowing for efficient simulations having significantly fewer degrees
of freedom than full atomistic calculations. As before, the distribution of repatoms
and sampling atoms is shown along with the QC mesh.

The curves of load vs. indentation depth for both cases of spherical and pyramidal
indenters in two dimensions are summarized in Fig. 5.8. As can be expected from
experiments, results demonstrate broad hysteresis loops stemming from incipient
plasticity underneath the indenters. Data also show pronounced size effects in case
of the spherical indenter as well as clear geometrical effects for the (self-similar)
pyramidal indenters.

Figures 5.9 and 5.10 show 3D nanoindentation simulations with spherical and
pyramidal indenters, respectively. Both graphics show results for Cu single-crystals
modeled by an EAM potential [18]. The spherical indenter has a radius of 40nm
and results are shown up to an indentation depth of 3 nm; the pyramidal indenter
has an angle of 65.3° against the vertical axis and a maximum indentation depth
of 5nm. Via the centrosymmetry parameter, lattice defects have been identified and
highlighted (for better visibility, only those atoms are shown which contribute to
lattice defects as identified by a higher centrosymmetry parameter).

As shown in these examples, the QC method efficiently reduces computational
complexity by assigning full atomistic resolution where it is indeed required
(underneath the indenter and near defects). While full resolution provides locally the
same accuracy of molecular statics or dynamics, the QC approximation efficiently
coarse-grains the remainder of the model domain, thereby allowing for simulations
of significantly larger sample sizes. Similarly, by placing grain or twin boundaries
as well as cavities and pre-existing defects in the crystal underneath the indenter, the
QC method has been used to study defect interactions (again, the interested reader
is referred to [81] for a full list of references).
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Fig. 5.8 Load vs. indentation depth for spherical indenters (of radii 5, 7.5, 10, 15, 20, 30,
and 40nm) and pyramidal indenters (of different pyramidal angles) in 2D for a (100) single-
crystalline Cu, sample

~ W

Fig. 5.9 QC Simulation of 3D nanoindentation with a spherical indenter (radius 40nm) into
single-crystalline (100) Cu up to a penetration depth of about 3 nm, for details see [5]

5.3.2 Surface Effects

Surface effects play an important role in the mechanics of nanoscale structures and
devices. At those small scales, the abundance of free surfaces and the associated
high surface-to-volume ratios give rise to—both elastic and plastic—size effects.
Using the QC approximation near free surfaces introduces errors because (1) the
associated interpolation of atomic positions may prevent surface relaxation and (2)
as a consequence of the chosen summation rule, atoms below the surface may be
represented by those on the surface and vice versa. The fully nonlocal QC method
combined with the second-order summation rules of [5] reduces the errors near
free surfaces and therefore has been utilized extensively to model deformation
mechanisms near free surfaces, see, e.g., [4].

As an example, consider a thin single-crystalline plate (thickness 12nm) with
a cylindrical hole, which is being pulled uniaxially at remote locations far away
from the hole. Near the hole, full atomistic resolution is required to capture defect
mechanisms, but MD simulations are too expensive to model large plates. Common
MD solutions focus on a small plate instead and either apply periodic boundary
conditions (which introduces artifacts due to void interactions) or apply the remote
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Fig. 5.10 QC simulation of 3D nanoindentation with a pyramidal indenter (angle of 65.3° against
the vertical axis) into single-crystalline (100) Cu up to a penetration depth of about 5 nm

a b [

Fig. 5.11 QC simulation of dislocations emitted from cylindrical holes in thin films of single-
crystalline Cu (hole radii are 1.5 and 4.5 nm in the top and bottom graphics, respectively) at strains
of (a) 1.40 %, (b) 1.63 %, (¢) 1.88 %, (d) 2.13 % and (e) 1.33 %, (f) 1.50 %, (g) 1.73 %, (h) 1.93 %

boundary conditions directly (which also introduces artifacts due to edge effects).
Here, we use full atomistic resolution near the hole and efficiently coarsen the
remaining simulation domain. By using the second-order summation rule of [4],
the coarsening has no noticeable impact on the representation of the free surface.
Figure 5.11 illustrates the microstructural evolution for hole radii of 1.5 and 4.5 nm.
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Dislocations are emitted from the hole at a critical strain level (which increases as
the hole radius decreases); the particular dislocation structures are constrained by
the free surfaces at the top and bottom.

5.3.3 Truss Networks

As discussed above, the QC method applies not only to atomic lattices but can
also form the basis for the coarse-graining of discrete structural lattices, as long
as a thermodynamic potential is available which depends on nodal degrees of
freedom. For elastic loading, the potential follows from the strain energy stored
within structural components. When individual truss members are loaded beyond
the elastic limit, extensions of classical QC are required in order to introduce internal
variables and account for such effects as plastic flow, or truss member contact and
friction. For such scenarios, effective potentials can be defined, e.g., by using the
virtual power theorem [7, 9, 10]. Alternatively, variational constitutive updates [60]
can be exploited to introduce effective incremental potentials, as will be shown
here for a truss network. For simplicity, we restrict our study to elastic-plastic bars
which undergo only nonlinear stretching deformation and large rotations (but do not
deform in bending).

Let us briefly review the constitutive model for elastic-plastic trusses used in
the following example. Consider a truss structure consisting of two-node bars
having undeformed lengths L; and deformed lengths r; = |r;| = |q; — g
with nodal positions q; (i = 1,...,N). The total strain of each bar is given by
e = (rj — Lij)/L;. By using variational constitutive updates [60], we can introduce
an effective potential for elastic-plastic bars. To this end, we choose as history
variables 8;; (the plastic strain) and el'ﬁ (the accumulated plastic strain) for each bar,
and we update these history variables at each converged load step # as in classical
computational plasticity. In linearized strains, the elastic response of each bar is
characterized by 0 = E(e —¢,,) with axial stress o and Young’s modulus E. Further,
assume that the full elastic-plastic stress-strain response is piecewise linear; i.e.,
under monotonic loading, the bar will first yield at a stress 7y followed by linear
hardening with a slope of 2EH/(E + 2H) with some hardening modulus H. Thus,
for monotonic loading, we assume

E if < E,
P L if &</ (5.21)
10+ 2H/(E 4+ 2H)(Ee — 19), if &> 1©/E,

and the analysis for non-monotonic loading can be carried out analogously. This
model can be cast into an effective potential using variational constitutive updates
as follows.

Let us discretize the time response into time steps Af and define the stress and
strain at time " = n - At as ¢” and &” (the internal variables follow analogously).



184 D.M. Kochmann and J.S. Amelang

After each load increment, we must determine the new internal variables

et =g+ Ay, ot =+ |Agy). (5.22)

Assume an elastic-plastic effective energy density is given by

Ag,
At |’
(5.23)
where the first term represents the elastic energy at the new load step n + 1, the
second term represents linear plastic hardening with hardening modulus H, and the
final term defines dissipation in a rate-independent manner (7o is again the yield
stress, and At = t,,+1 — 1, > 0 is taken as a constant time increment). The potential
energy of a bar with cross-section A and length L;; is now the above energy density
multiplied by the bar volume AL;;. Using the theory of [60], an effective potential
energy of the bar can be defined as

n n n E n n 2 n 2
W(e"t!, Agyieh. en) = ) ["! — (&) + Agy))] +H (&) + |Ag,|)" + At 1o
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One can easily show that this potential recovers the above elastic-plastic bar model
as follows. Minimization can be carried out analytically for this simple case.
In particular, the stationarity condition yields the kinetic rule of plastic flow:

ow

one = F ("' —&n — Agy) + 2H () + | Agy|) + osign Ag, = 0. (5.25)
&p

Consider first the case of Ag, > 0, which leads to

E (" — ") — (1o + 2He"
Ae, = ( p) -~ (@ ” S 0. (5.26)
E+2H

Analogously, for Ag, < 0 we have

E ("t — &) + (19 + 2He"
( ") + (w0 p)<0

Ag, =
E+2H

(5.27)

If none of the two inequalities is satisfied, the bar deforms elastically and Ag, = 0.
The stress in the bar connecting nodes i and j at the new step ¢ is thus given by

optt = E (" — [eh, + Aepy)) (5.28)

and the corresponding axial bar force is f;; = Ao;;. Note that for monotonic loading
this recovers (5.21). In other words, the above elastic-plastic model can be cast
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into the effective potential (5.24). Finally, a failure criterion can be included by
defining a critical stress o, or &, and removing bars whose stress or strain reaches
the maximum allowable value.

The total Hamiltonian of the truss structure with nodal positionsq ={qy, ..., qy}
and momenta p = {p;, ..., py} becomes
SR
A=Y 00+ V(g ey (5.29)
i=1 ! i=1 jeE€ (i)

where we assumed that the mass of each bar is lumped to its nodes, so m; represents
the total mass of node i. %(i) denotes the star of each node, i.e. the set of all adjacent
nodes connected to node i through a bar. As the structure of (5.29) is identical to that
of atomistics, cf. (5.1), the QC method can be applied in the very same manner as
described above for atomistic ensembles, including summation/sampling rules as
well as adaptive remeshing. We note that the sums in (5.29) only involve nearest-
neighbor interactions, which is why no force artifacts are expected from node-based
summation rules as well as from those of [5], even in non-uniform meshes (as long
as elements are sufficiently large).

As an example of this approach, we show simulation results for a three-point
bending test of a periodic truss lattice with an initial notch. For small numbers of
truss members, such simulations can efficiently be run with full resolution (i.e.,
modeling each truss member as a bar element). Advances in additive manufacturing
over the past decade have continuously pushed the frontiers of fabricating micron-
and nanometer-sized truss structures. This has resulted in periodic and hierarchical
truss lattices with an unprecedented architectural design space of (meta)material
properties. As a consequence, modeling techniques are required that can efficiently
predict deformation and failure mechanisms in truss structures containing millions
or billions of individual truss members. The 3D three-point bending scenario
of Fig.5.12 is one such example, where the QC method reduces computational
complexity by efficient coarse-graining of the bar network (bars are assumed to be
monolithic and slender, undergoing the stretching-dominated elastic-plastic model
described above with a failure strain of 10 %). Loads are applied by three cylindrical
indenter potentials. To account for manufacturing imperfections and to induce local
failure, we vary the elastic modulus of all truss members by a Gaussian distribution
(with a standard deviation of 50 % of the nominal truss stiffness). Figure 5.12
compares the simulated truss deformation and stress distribution before and after
crack propagation. (a) and (b) demonstrate schematically the coarse-grained nodes,
whereas (c) through (f) illustrate the advancing crack front in the fully resolved
region. Like in the atomistic examples in the previous sections, the QC method
allows us to efficiently model large periodic systems with locally full resolution
where needed.

Of course, this is only an instructive example. Truss members may be subject to
flexural deformation, nodes may contribute to deformation mechanisms, and during
truss compression one commonly observes buckling and densification accompanied
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Fig. 5.12 Failure of a periodic 3D truss network under three-point bending; color-code indicates
stresses within truss members (in order to account for imperfections and stress concentrations;
stresses scaled to maximum). (a) and (b) visualize the representative nodes in the coarse-grained
QC description (full resolution around the notch and coarsening away from the notch; the three
indenters are shown as blue balls). (c/e) and (d/f) show, respectively, the deformed structure with

its stress distribution before and after the crack has advanced
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by truss member contact and friction. Model extensions for such effects have been
proposed recently and are subject to ongoing research, see, e.g., [7, 9, 10].

5.4 Summary and Open Challenges

We have reviewed the fundamental concepts as well as a variety of extensions of the
traditional quasicontinuum (QC) method for concurrent scale-coupling simulations
with a focus on coarse-grained atomistics. This technique is solely based on
interatomic potentials without the need for further empirical or phenomenological
constitutive relations. Coarse-graining is achieved through the selection of repre-
sentative atoms (and the interpolation of atomic positions from the set of repatoms),
the introduction of sampling or summation rules (to approximate thermodynamic
quantities based on a small set of sampling atoms and associated weights), and
model adaptation schemes (to restrict full atomistic resolution to those regions
where it is indeed beneficial). For each of those three QC pillars, a multitude
of variations have been proposed and implemented. Important extensions of the
method include multilattices, finite temperature, mass and heat transfer, long-range
and dissipative interactions, to name but a few of those discussed in this chapter. It is
important to note that the focus here has been on the QC method as a computational
tool to facilitate scale-bridging simulations; as such, we have emphasized modeling
concepts and applications rather than the mathematical proofs of convergence or
stability (the interested reader is referred to the rich literature in this field of research,
see, e.g., [29] and the references therein as well as the website [81]). Among
all existing QC flavors, we have chosen a fully nonlocal QC formulation for our
simulation examples to demonstrate its application to crystal plasticity and periodic
truss networks.

Although the QC method was established almost two decades ago, many
challenges have remained and new ones have aroused. These include, among
others:

* Adaptive coarsening: adaptive model refinement may be geometrically chal-
lenging in practice but it is conceptually sound, ultimately turning all lattice
sites into repatoms and sampling atoms and thus recovering (locally) molecular
dynamics or statics. Model coarsening, by contrast, is challenging conceptually
and a key open problem in many QC research codes due to the Lagrangian
formulation. Overcoming this difficulty will allow to efficiently coarsen the
model by removing full resolution (e.g., in the wake of a traveling lattice
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defect which leaves behind a perfect crystal that is now fully resolved). Without
adaptive model coarsening, simulations will accumulate atomistic resolution and
ultimately turn large portions of the model domain into full MD, thus producing
prohibitive computational expenses.

* Large-scale simulations: the number of existing massively parallel, distributed-
memory QC implementations is small for a variety of reasons, especially in three
dimensions. This limits the size of domains that can be simulated.

* Dynamics is a perpetual problem of the QC method. Non-uniform meshes result
in wave reflections and wave refraction, which affects phonon motion and thereby
corrupts heat propagation within the solid. For these reasons, dynamic QC
simulations call for new approaches. Several finite-temperature QC formulations
have aimed at overcoming some of the associated problems, but those generally
come with phenomenological or simplifying assumptions.

* Mass and heat transfer is intimately tied to the long-term dynamics of a (coarse-
grained) atomistic ensemble. Recent progress [88] has enabled the computational
treatment via statistical mechanics combined with mean-field theory, yet such
approaches require constitutive relations for heat and mass transfer at the atomic
scale or effective transport equations, and they have not been explored widely.

* Potentials: every atomistic simulation stands and falls by the accuracy and
reliability of its interatomic potentials. Unlike MD, QC may require conceptual
extensions when it comes to, e.g., long-range interactions or interaction potentials
that not only depend on the positions of the atomic nuclei.

* Surfaces play a crucial role in small-scale structures and devices and most QC
variants do not properly account for free surfaces (misrepresenting or not at all
accounting for surface relaxation). Improved surface representations are hence
an open area of research, see, e.g., [4] for a recent discussion.

e Structures: rather recently, the QC approximation has been applied to truss
and fiber networks where new challenges arise due to the complex interaction
mechanisms (including, e.g., plasticity, failure, or contact). This branch of the
QC family is still in its early stages with many promising applications.

* Imperfections: The QC method assumes perfect periodicity of the underlying
(crystal or truss) lattice. When geometric imperfections play a dominant role
(such as in many nano- and microscale truss networks), new extensions may be
required to account for random or systematic variations within the arrangement
of representative nodes, all the way to non-periodic or irregular systems.

Of course, this can only serve as a short excerpt of the long list of open challenges
associated with the family of QC methods and as an open playground for those
interested in scale-bridging simulations.
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Chapter 6
A Review of Enhanced Sampling Approaches
for Accelerated Molecular Dynamics

Pratyush Tiwary and Axel van de Walle

6.1 Introduction

Molecular dynamics (MD) simulations have been a tool of widespread use over
the last several decades, with applications in materials science, chemistry, biology,
geology, and several other fields [1]. These simulations provide a direct insight into
the temporal evolution of molecular systems along with a full atomistic resolution.
Especially with the advent of easily available parallel computing resources, one
can now deal with fairly large system sizes—often well into the range of a few
million atoms [2], which is nearly the length scale relevant for several practical
nanoscience applications. However, in spite of such massively parallel resources,
MD still has an analogous and often debilitating timescale problem. MD is restricted
to integration timesteps of a few femtoseconds, which can be partially mitigated by
multiple timestep algorithms [3]. However, it is not yet routinely feasible to go into
the millisecond regime and beyond for any system with more than a few thousand
atoms. Unlike space, time is sequential, and this makes the timescale problem less
amenable to raw parallelization.

Both the cause and several proposed solutions of the timescale problem are
embedded in the observation that for many interesting systems, the energy landscape
is characterized by numerous metastable states separated by large kinetic barriers.
Crossing these barriers to visit new states becomes a rare event, relative to the
mandatory few femtosecond integration timestep of MD. As such, a large number
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of so-called enhanced sampling approaches have been proposed over the last two
decades, that allow one to accelerate the dynamics of the system and access much
longer timescales [4—6].

In this review, we will describe the theoretical underpinnings and practical
implementations of several such methods. We begin by providing a broad summary
of the theoretical prerequisites for the methods (Sect.6.2). In Sect. 6.3, we will
describe the methods themselves—how they work, why they work, and notes of
caution. For each method, Sect. 6.3 also gives examples of typical applications and
enlists the available software resources for using these. Due to practical length
constraints, we have naturally not been able to cover all available methods. This
is not because they are not important or useful, and we have tried to at least mention
these methods and provide related references for the interested reader. This review
is restricted to acceleration of classical MD, wherein there are no electronic degrees
of freedom. An analogous and even more severe timescale problem pertains to ab
initio MD methods, but that is beyond the scope of this review. We do, however,
mention in the respective applications (Section 6.3) if a particular method can be
used for the acceleration of ab initio MD.

A natural question that might be asked at this point is why another review?
Indeed there are several excellent reviews for enhanced sampling approaches for
accelerated molecular dynamics, for instance, see [4, 5, 7, 8]. This review should
complement these references, and be unique due to the following reasons:

1. This review describes diverse methods developed from the vantages of potential
energy surface, free energy surface, and other varied viewpoints. These view-
points have developed independently and in different scientific communities.
Having access to them in one review should be of use from a general intellectual
purpose, as well as for interdisciplinary applications where a creative use of more
than one method might be called for.

2. Any enhanced sampling method essentially involves one or more theoretical
approximations. A key intention of the authors of this review is to highlight
the various such approximations underlying the different methods in a compact,
accessible, and theoretically sound manner. For this reason, a decent fraction of
this review summarizes relevant theoretical concepts in a self-contained manner.

3. Last but not the least, this review also provides a handy list of applications and
available software resources.

Through these we hope that the reader will have a range of methods at his or her
disposal, and armed with a good theoretical understanding of their individual pros
and cons, pick the methods most suited and relevant for the application at hand.

6.2 Theoretical Prerequisites

The challenge of accelerating molecular dynamics has been addressed over the last
few decades by building on a wide base of theoretical ideas, primarily coming
from equilibrium statistical mechanics [9, 10]. In this section we will broadly cover
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these various theoretical prerequisites, occasionally leaning more on the side of
giving intuition to the reader than on being rigorous. References such as [8, 11]
are suggested for more rigorous descriptions.

6.2.1 Rare Events, Separation of Timescales, and Markovianity

Throughout this review we will consider a system comprising N atoms in 2dN-
dimensional phase space, with dimensionality d = 1 to 3, and N anywhere in
between 1 to a few millions. Starting from a given configuration, MD simulation
involves evolving the system under numerical integration of Newton’s laws of
motion at a temperature T or equivalently inverse temperature § = k;T, under
the action of a given classical force-field or interatomic potential. The temperature
is enforced in practice by the presence of a thermostat. In addition to constant
(within fluctuations) temperature, the simulation could be under constant volume
V or constant pressure P conditions. These are, respectively, referred to as NVT and
NPT ensembles. The methods in this review are applicable to both of these, and
possibly other ensembles as well.

Our interest lies in processes that typically occur at timescales much longer
than the vibration period of individual atoms, the latter typically equaling a few
femtoseconds. This is to be contrasted with the timescale of the process one is
interested in studying, say nucleation of a dislocation or coalescence of vacancies,
which is typically much slower than even microseconds or milliseconds. While each
degree of freedom of the system constantly undergoes fluctuations with an average
thermal energy of ;kBT, only very rarely do the fluctuations get concentrated in the
specific modes required for the particular event to happen. Thus, an event that might
be routinely seen and studied in the experimentalist’s laboratory becomes in practice
a rare event for the molecular dynamics simulator [4].

Closely related to the notion of rare events are the twin concepts of timescale
separation and Markovianity.

By timescale separation, we mean that there exists a spectrum of timescales
which can be clearly demarcated into distinct non-overlapping regimes. In more
intuitive terms, timescale separation means that the system is undergoing motion on
a landscape characterized by deep basins (Fig. 6.1), and decorrelation of dynamical
variables in each basin occurs much faster compared to the typical basin escape
times. Thus, there is a molecular relaxation timescale T, a typical basin escape
time 7., and one has 7,0 <K .

By Markovianity, we mean that before the system leaves a stable basin, it has lost
memory of how it got in there in the first place. This is reasonable because systems
of many interacting particles exhibit strong sensitivity to initial conditions [12, 13].
As a result, imperceptible changes in initial conditions prior to and soon after
entering the basin (e.g., due to numerical noise in the thermostatting) quickly lead
to diverging trajectories within the basin, thus making the system’s precise state,
within the basin, effectively random after the molecular relaxation time has elapsed.
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Fig. 6.1 A schematic 1-d energy landscape where the x-axis denotes some reaction coordinate and
y-axis is the energy. R, TS, and P stand for reactant, transition state, and product, respectively. Here
the depth of either basin is much larger than k3T or the typical fluctuation in the energy associated
with the coordinate x. As such, moving from basin R to P becomes a rare event, and only very
occasionally the system visits the TS region

As such, if one maps the system’s trajectory into a list of states it visits, then it makes
sense to talk of a unique state-to-state timescale that can be characterized solely by
two inputs: the identities of the state being exit and of the state being entered. Most,
if not all, of the methods discussed in this review exploit this timescale separation
and Markovianity in one way or the other. Checking whether these two are actually
followed also provides an excellent criterion to assess reliability of the enhanced
sampling method at hand.

6.2.2 Potential and Free Energy Surfaces

In the previous subsection we mentioned the notion of a landscape or a surface
characterized by deep basins. Now we will make this notion slightly more rigorous.

One way to characterize this landscape could be using coordinates R from the
full 3N-dimensional configuration space (i.e., all atomic coordinates) and looking
at the total potential energy U(R) of the system. A constant energy surface in
this space is known as a potential energy surface (PES). Such surfaces have been
extensively and successfully used for relatively small systems, and especially at
rather low temperatures [14]. At sufficiently low temperatures and small system
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sizes, accelerating molecular dynamics becomes closely related to identifying
relevant saddle points on the PES that the system must cross while moving from
one basin to another. Numerous effective techniques exist for this purpose [15-17],
some of which we will tangentially mention in Sect. 6.3.1.

Often, one does not have the luxury of working with small system sizes, and
then it becomes prohibitively expensive computationally to characterize or work
with the PES. For high-dimensional systems, the PES contains far too many saddle
points, and many of them are irrelevant to the dynamics one is interested in
studying [18]. Or, it could be that the simulation temperature is high enough that
it is more appropriate and effective to describe the large number of states visited
via an entropic description rather than an exhaustive enumeration of states that a
PES description would require [14]. One can still work around the PES, however,
separate approximations (see HTST [4, 19] in Sect.6.2.4, for example) are then
needed to calculate the appropriate entropic corrections.

Instead of focusing on PES, one alternative strategy then (but not the only
strategy) is to look at a low-dimensional free energy surface (FES), defined as a
function of a small number of the so-called collective variables s = {si,..., sk}
where k < N. These collective variables (CVs) represent “interesting” degrees of
freedom or “reaction coordinates”. In general, they may be more than simple linear
projections—they can be complex nonlinear function of all atomic coordinates [20].
In terms of the potential energy U(R), the free energy F(s) is defined by:

F(s)=—B'In / dRS(s — s(R))e PU® (6.1)

This definition differs from the conventional Helmholtz free energy [9] solely by
the term &(s — s(R)), which picks out the region of phase space associated with a
specific value of s of the collective variable. Integrating without the term §(s — s(R))
in Eq. (6.1) would naturally yield the total Helmholtz free energy of the system.

In analogy with the PES description, one now looks at basins in the FES, which
is low-dimensional by construction and thus easier to handle. Furthermore, since the
free energy as per Eq. (6.1) has temperature built in, one expects to be able to deal
with entropic effects in an explicit way. Many methods on calculating and using
FES to accelerate dynamics will be discussed in Sect. 6.3.

However, in computer simulations as in life, there is no free lunch [1]. The
reduction in dimensionality by switching from PES to FES is closely linked to a
judicious choice of a small number of effective collective variables, and often also
to a priori knowledge of all possible existing and relevant deep stable basins in the
system. Take note that knowledge of stable basins is in general a weaker requirement
than knowledge of escape pathways. We will revisit in Sect. 6.3.2.2 as to what makes
the choice of a CV good or bad, and how does one identify good CVs.
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6.2.3 Transition States and Transition State Ensemble

Now we have at our disposal the notion of a landscape, either in potential energy
or free energy space, comprising deep stable basins separated by high barriers or
transition states (TS) [14, 18, 21]. In this section, we will clarify what exactly do we
mean by a transition state.

On a PES, a transition state is synonymous to a saddle point on the 3N-
dimensional surface. That is, points at which the quantity U(R) is at a maximum
with respect to small displacements in few select k number of directions, and
minimum for all others (see Fig. 6.2). Such a saddle point is called as a k-th order
saddle point. At such a point, the Hessian matrix H of the potential energy U(R),
given by H;; = 3%3%_, will have k negative eigenvalues [14]. These saddle points
correspond to the lowest energy reaction path that connects two stable states. Very
efficient and widely used techniques are available for identifying any order saddle
points in high-dimensional PES [15-17].

On a FES, in principle one could again define the TS as a saddle point on the
low-dimensional surface defined in terms of CVs. However, one faces at least two
problems in proceeding this way. Unlike U(R), F(s(R)) as defined in Eq. (6.1) is
not known a priori, and specialized techniques need to be used to get F(s(R)) to
begin with, before calculating the saddle points (though there are recent exceptions,
see, e.g., [22, 23]). This significantly reduces the appeal of using saddle points to
characterize the TS on a FES.

The second problem is more generic, and pertains to the sufficiency of using
saddle points to characterize the TS on either the PES or FES. The very reason we
are interested in knowing the TS is because it marks the bottleneck in configuration

Fig. 6.2 A schematic 2-d energy landscape (energy increases from blue to red) projected in two-
dimensions. The saddle point is marked by an asterisk. Note that at the saddle point, movement in
the direction indicated by the solid line either way would lead to the energy decreasing, while
movement in the direction indicated by the dashed line either way would lead to the energy
increasing. Since there is only one direction in which the energy decreases, this is called a 1st
order saddle point
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space that the rare, successful trajectories must squeeze through while escaping a
stable basin. These are the so-called reactive trajectories. While it is true that reactive
trajectories will indeed pass through a region near the saddle point, at any finite
temperature there will be a distribution of trajectories that do not go through the
actual saddle but around it [21], especially when the saddle is defined in terms of
low-dimensional collective variables. Conflating the concept of a saddle point with
the TS could thus have non-trivial errors in how one makes use of any TS based
theory (Sect. 6.2.4). Approximations such as harmonic transition state theory (TST)
[4, 19] which we describe in Sect. 6.2.4 attempt to negate this error by considering
a harmonic region around the saddle, and in this way introduce a distribution of
transition states.

Another alternative to thinking in terms of saddle points is to directly work
with the “transition state ensemble” (TSE) [18, 21]. Instead of taking a static 0
temperature view, one now defines this ensemble as the collection of points from
which the system has equal probability of going into the reactant or the product
basin, if one was to launch from these points a large number of MD trajectories
with randomized momenta at temperature 7. The saddle point is just one member
of this more general ensemble.

6.2.4 Rate Constants Through Transition State Theory

In majority of the methods considered in the review, a central concept is the use of
rate constants calculated through TST or variants thereof. We will now explain the
basics of this theory, referring the interested reader to reviews such as [11, 24] for
more rigorous and detailed expositions.

Again consider the two states R and P (standing without loss of generality for
reactant and product) marked in Fig. 6.1, along with a transition state region TS
separating them. Note that in view of the discussion in previous Sect.6.2.3, the
region TS has a finite volume associated with it. Also note the unidimensional
reaction coordinate x that we use to demarcate various regions, which takes the value
0 when in TS. TST [11, 24, 25] assumes that there exists a steady-state probability
of finding the system in any of the locations R, P, or TS. That is, if one was to
run a long MD trajectory thermostatted at temperature T, then one could define
numbers Zg, Zp, and Zts such that log Zz, log Zp, and log Zys are proportional
to the probabilities of finding the system in those respective regions. Here, for any
region £2, Zg, is the partition function for the system confined to that region defined
asZg = [, dRe FU®,

TST then states that the rate k of escaping from R to P is proportional to the
relative flux crossing through the TS region per unit time [4, 11]:

Z
kTST = WK s (62)
ZR
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Here w is a normalization constant detailed in [11, 24]. k is the so-called
transmission coefficient [11, 24], accounting for the fact that not every trajectory
that crosses over from R to P through TS is necessarily a reactive trajectory. That
is, a certain fraction of such trajectories might actually quickly recross the TS and
then settle back in the region R. If one assumes that the mass m of the reaction
coordinate (see [11] for a rigorous definition) is constant over the region TS, then
Eq.(6.2) reduces to a simple average:

—BU(x
k:K\/ 2 (Bx)e PV ©3)
ﬂmIB (e_ﬂU(X))R

where § is the Dirac delta function that is summed only when x = 0 or equivalently
x isin TS (Fig. 6.1). Angular brackets with subscript R denote averaging only when
the system is in R. This amounts to calculating the probability of the system being in
the region TS relative to the total probability of being in the region comprising both
R and TS, multiplied by the recrossing correction . There exist ways to explicitly
calculate « [26, 27], but most often researchers either assume it to be 1, or assume
that it depends only on the properties of the TS. Equation (6.3) will be the most
general form of TST that we will use in this review.

To end this section, we introduce common simplifications of TST that some (but
not all) of the methods use. First we set k = 1. Then, we assume that the TS is a
1-st order saddle point (see Sect. 6.2.3), and that the basin minimum in region R or P
can be well described with a harmonic approximation. Thus the Hessian introduced
earlier will have (a) in the saddle region, 3N — 1 positive and 1 negative eigenvalues,
and (b) in the basin minima, 3N positive eigenvalues. Collectively we call these as
{v%} and {vR}, respectively, with corresponding dimensionalities 3N — 1 and 3N.
We denote the potential energy difference between the minimum and the saddle
point as E,, the so-called activation energy. Then the harmonic TST (HTST) rate is
given by [4, 19]:

11 ¢ PEa (6.4)

Some of the methods reviewed in Sec. 6.3 rely heavily on the use of Eq. (6.4).

6.3 Selected Methods: Theory, Applications, and Software
Resources

Now that we have covered the key underlying theoretical concepts, in this section we
will get to the heart of the matter, i.e., the enhanced sampling methods themselves.
Given the obvious importance of the timescale problem in fairly diverse fields, it is
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no surprise that over the last nearly three decades a whole plethora of methods have
been proposed [4, 5, 7, 8]. This often leads to confusion for a prospective user of
accelerated molecular dynamics, who might find themselves wondering as to which
method to pick from the very many available. One of the objectives of this section is
to create a brief manual of sorts where the user can browse through various available
methods and the respective underlying theoretical assumptions, and ascertain which
is the method best suited for the application at hand. We would like to point out that
there are yet more methods available in addition to the ones described here [23, 28—
32]. We hope that a basic understanding of the theory behind the ones discussed
here will make the user well equipped to critically ascertain the advantages and
shortcomings of any other methods they come across.

There is no one best way to classify these methods. In fact, there is no real need
to even classify the methods, except that a classification might help the user find his
coordinates better when he comes across a new method not discussed in this review.
Here we choose to categorize them on the basis of whether the method is

1. based around the PES, and involves calculation of saddle points/transition states
a priori or “on the fly”

2. based around the FES, and thus requires a priori identification of suitable low-
dimensional collective variables

3. neither of the above two. While the above two classes invoke TST directly or
indirectly, this third class comprises methods that completely bypass the use of
TST in any form.

For every method, we outline the key underlying idea, and a broad sense of the
assumptions one should be willing to make if using the particular method. For each
method, we also provide a brief overview of its applications, restricting our attention
to nanomaterials and nanomechanics. We also enlist for each method the software
resources available in public domain that we are aware of. Please note that while
we have tried our best to be inclusive, we could still have missed on some methods
and applications, as is always a possibility in a review of this breadth but with space
constraints.

6.3.1 Potential Energy Surface Based Methods
6.3.1.1 Hyperdynamics

Theory The hyperdynamics method [33, 34] is a popular and well-established
method that offers an elegant and practical way to increase the rate of infrequent
events. It consists of adding a potential energy bias that makes the potential
wells, in which the system normally remains trapped for extended periods, less
deep. A timescale correction is also evaluated in terms of the bias potential. The
hyperdynamics method, especially with the advent of a variety of easy to implement
biasing forms [35-37], has seen several compelling applications over the past years
(see section Applications).
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In this approach, the potential energy V(R) is modified by a pre-determined
bias potential AV(R) > 0, where R as usual denotes the full set of microscopic
coordinates in 3N-dimensional configuration space. This bias potential should
ideally be such that the deep basins in the PES are lifted but the saddle points
are left untouched. Assuming that such an ideal bias potential can be constructed,
then the system is more likely to escape from deep basins without getting trapped.
Furthermore, since the saddle points have been left untouched, the relative escape
rates for the various escape mechanisms from any states are left untouched. As
such, the system moves correctly from one stable state to another at an accelerated
pace, but preserving the distribution of the state-to-state sequence. By making use
of Eq.(6.2), and again, only if the bias has not corrupted the TS, the accelerated
time can be quantified and easily computed through the following relation [33, 34]:

Taccelerated = EJ(;]AIMDeﬂAV(R(tj)) (65)
where n is the number of MD steps (each of duration Afyp) that have been carried
out till a certain point. Often, one uses the term acceleration factor or boost to
denote the ratio of the net accelerated time and MD time. Thus under the application
of bias, a time evolution of A#yp in the MD routine is corrected using the simple
relation above, and the user advances the true time by AtvpePAV RO This estimate
of faccelerated Unfortunately can sometimes be noisy in practice, especially if the bias
AV is too strong, because it is obtained as the average of an exponential term which
can vary by orders of magnitude [35].

Through the years a range of bias potentials have been designed to meet the
requirements for hyperdynamics: namely, no bias in the TS region and high boost
without much computational overhead in calculating the bias. In its original form
[33, 34] , hyperdynamics involved constructing a Hessian based bias potential, with
some clever techniques to replace an expensive full Hessian calculation with a
simple optimization problem (reminiscent of the one later used as a key step of
the well-known dimer method [17], a technique for saddle point search described
in Sect. 6.3.1.3). Independently from hyperdynamics, Grubmueller proposed the
“conformational flooding” approach where multi-variate Gaussians depending on
local population density were used to form the bias potential inside the stable basins
[38]. Several groups also proposed using the potential energy itself as a parameter
to define the bias potential, i.e., the bias AV(r) = AV{U(r)} where U(r) is the
system’s potential energy [36, 37]. This specific implementation has been given the
somewhat confusing name of accelerated molecular dynamics (aMD) [36]. When
it comes to obtaining accelerated timescales, many of these bias potentials have,
however, been limited in applicability to relatively low-dimensional systems (less
than around a few hundred atoms). This has primarily been due to the difficulties
of designing a bias potential that gives a high boost yet meets the stringent
requirements of going to zero in transition states [4].

Currently, one of the most popular and robust biasing forms is that of the bond-
boost method, originally proposed by Fichthorn and co-workers [35]. This is a good
bias potential for systems in which the dynamics is governed by bond breaking
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and forming events. In such systems, transitions between states will be correlated
with large distortions of one or more bonds. This forms the central inspiration for
the bond-boost method. The bias potential is controlled by the maximal fractional
change € among all bond lengths in the system, and the bias essentially smoothly
goes to 0 as soon as € exceeds a cut-off €, which is to be set by the user.

Most applications of hyperdynamics so far have been restricted to the range of
up to a thousand atoms or so. Roughly put, the reason for this is that as the system
size increases, it becomes increasingly difficult to design a bias potential that gives
high boost, yet also leaves transition states unperturbed [4, 39]. Very recently, a
local hyperdynamics method has been proposed in an effort to overcome system size
limitations [40]. In this method, the force on each atom is obtained by differentiating
a local bias energy that depends only on the coordinates of atoms within a small
range of this atom. Intuitively, this scheme breaks down a large system into a large
number of small systems, each of which can then be sped up significantly. A unique
aspect of this approach is that different parts of the system must continuously adjust
the magnitudes of their boost potentials to ensure that all parts share the same boost
factor on average through the use of the so-called boostostat. This, in turn, requires
the boost factor estimates to be well converged. Another recently proposed variation
on hyperdynamics that could ascend length scale issues involves coupling it with the
popular quasicontinuum (QC) method. This coupled implementation has been given
the name of “hyper-QC” [41].

One practical concern that can arise in using hyperdynamics is when the system
is externally driven—say by the application of a tensile load or a magnetic field.
If under the application of this external time-dependent perturbation the PES and
the saddle themselves are getting affected, then the bias potential must be designed
to take this into account. Another obvious concern in using hyperdynamics type
methods for driven systems is that the timescale evolution per Eq. (6.5) is choppy,
and strictly speaking correct only in the very long time limit. As such, one has to
be very careful in application of a driving force that in turn depends on a correct
evaluation of the accelerated time.

Later in this section we will also see how using the popular technique metady-
namics [5, 42, 43] one can switch focus to the FES instead of PES, and design
hyperdynamics-inspired bias potentials for systems where the stable states are
known a priori.

Applications Hyperdynamics so far has been quite successful in modeling accel-
erated dynamics of solid state metallic systems [7]. These include bulk and surface
diffusion, adatom ripening [44], desorption of organic molecules from graphitic
substrates [45], dislocation nucleation [46], and heteroepitaxial growth [47]. A key
issue in hyperdynamics is the choice of bias potential, and evidently most of the
applications of hyperdynamics to solid state metallic systems have been through the
bond-boost potential [35].

Software Resources Most applications of hyperdynamics have been performed
through patches not publicly released. However, hyperdynamics can apparently now
be performed through the recently developed EON package [48], developed and
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maintained by the Henkelman group at UT Austin. In principle, hyperdynamics
can also be performed by using a fixed bias set up through the plugin software
PLUMED, which can be patched with a large number of MD routines such as
LAMMPS, GROMACS, NAMD, etc. [49, 50]. At the time of writing of this review,
the group of Art Voter and collaborators at Los Alamos was about to release a public
version of software named AMDF implementing bond-boost hyperdynamics [7].

6.3.1.2 Temperature Accelerated Dynamics

Theory This is a method that involves performing dynamics at an elevated
temperature to estimate dynamics at a specified lower temperature of interest. This
approach does not require a bias potential as in hyperdynamics, but it makes the
additional approximation of harmonic TST [51] (see Eq. (6.4)). The central idea is
to let the system evolve at a higher temperature, causing transitions to occur more
rapidly and, through this, derive information about the evolution of the system at the
lower temperature of interest.

To obtain the correct transition rates at the lower temperature of interest, the rates
obtained at high temperature need to be extrapolated back to the lower temperature.
This is done by assuming that the rates follow an Arrhenius-type dependence on
the temperature given by HTST through Eq. (6.4). However, in addition to having
assumed the validity of HTST, one has to be careful that the most commonly
occurring transition at high temperatures might not be the preferred transition at
the actual low temperature of interest, since rates for different events do not change
by the same factor when changing the temperature. As such it is not sufficient to get
one escape event at high temperature. One needs to get several of these, and build a
whole catalog of prospective transitions that could happen. After sufficiently many
escape events at higher temperature are identified, the algorithm involves calculating
the saddle point energy and frequency (assuming first order saddles only) for each
escape event [16], to go into Eq.(6.4). This knowledge is needed for the correct
extrapolation of the rates. Once the rates have been mapped into a collection of much
longer estimated times in the low temperature system, the event with the shortest
escape time at the low temperature is taken to be the correction transition from the
current basin, and the clock is correspondingly advanced.

In order to estimate the energy barrier and saddle frequency for each event,
the temperature accelerated dynamics (TAD) method typically invokes the double-
ended saddle point method called “Nudged Elastic Band (NEB)” [16], which needs
both the starting and ending states between which the saddle point is to be found.
Since the high temperature escape event gives information on both the starting and
the ending states, this is not a problem. The NEB replica runs can efficiently be
carried out on parallel processors. Recent developments [52, 53] have also made it
possible to use TAD in principle for much larger systems than previously possible.

We would like to point out two possible concerns, that while avoidable in many
cases, one should always be aware of while using TAD:
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1. one needs to be careful in deciding when “sufficiently many” events have been
observed at the higher temperature. Reference [4] provides a formal numerical
test for this, and we refer the interested reader to the same.

2. anharmonicity in the transition states, especially if a very high temperature is
used for acceleration purposes, could lead to an uncontrollable and unquantifiable
error in the timescales obtained from the use of Eq. (6.4).

Applications TAD has seen several convincing applications over the years. TAD
has been demonstrated to be very effective for studying grain boundary assisted
annealing of defects in radiation damage [54]. An MD/TAD combined procedure
has been used to model thin-film growth of Ag and Cu on Ag(100) [55]. Other
applications for which TAD has proven effective include crystal growth [56], defect
diffusion on oxide surfaces [57], the diffusion of interstitial clusters in Si [58], and
defect diffusion in plutonium [59].

Software Resources The software LAMMPS provides a functionality for perform-
ing TAD simulations [60], though it is apparently still under development. A code
implementing TAD can be directly obtained upon request from the authors of the
method [51]. TAD is also implemented in the DLPOLY code [61].

6.3.1.3 Kinetic Monte Carlo and on-the-Fly KMC

Theory The kinetic Monte Carlo (or KMC) method [4, 62] is a fairly simple and
useful technique that generates a sequence of configurations and the times at which
transitions occur between these configurations. It relies on all of the following
assumptions:

1. One knows all the possible stable states that a system can exist in.

2. For each of these states, one knows all possible exit pathways and their respective
rates.

3. All these processes are independent and memoryless (i.e., the escape times follow
independent Poisson distributions).

Given these assumptions, KMC generates a state-to-state sequence and an
associated timescale that has the same statistical distribution as the real system.
The algorithm can be roughly summarized as follows [62].

One starts in a certain state, which for KMC means a set of atomic positions,
typically constrained to be on a lattice throughout the course of the simulation
(though recent developments make it possible to do KMC without lattice constraints
[39, 63]). Velocities do not play any role in KMC. One has at his disposal a list of
possible transition events from this state, out of which any one escape path is chosen
randomly. The key is in how to implement this random selection of escape path. In
a nutshell, each path is weighted by its rate constant (which is known a priori); thus,
the probability of selecting one path out of the very many available paths is simply
proportional to its respective rate constant. The system is then moved to the state
dictated by the chosen path. Right at this point, the system’s clock is incremented in
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a way consistent with the average time for escape from the just-exited state, with the
averaging carried over all possible exit paths. Thus note that the time increment has
nothing to do with which path was actually selected. The process is then repeated
for the new state.

Typically the rates for all escape events are computed before starting the
simulation, with the use of HTST, along with either classical interatomic potentials
or first-principles calculations. This way one builds a catalog of states and rates.
Strictly speaking, one could get the catalog of rates without invoking TST but that
is at least not common practice, mainly due to the potentially large size of the catalog
of possible transitions.

The most important restriction of this approach is that one has to know all
possible escape events and rates in advance. The key charm of the KMC protocol is
that if the rate catalog is complete, the state-to-state dynamical evolution predicted
by KMC is exact. However, if the rate catalog is incomplete, there is no known way
to quantify the error the incompleteness could have induced in the dynamics. In
KMC as well one has to be careful with driven systems, where the PES, hence the
transition states and consequently the rate catalog could be changing as a function
of time.

The reliance on a priori knowledge of transitions can become rather prohibitive
in many cases, such as highly disordered solids or biomolecular systems. On this
note, several workers have been recently making efforts to design algorithms that
can predict transition pathways on-the-fly as the simulation progresses, such as the
adaptive KMC method and the activation relaxation technique [39, 63—65]. In these
methods, one builds the rate catalog as the simulation progresses. Several groups
have proposed variants of this idea. One universal feature is the use of some sort
of single-ended saddle point search method such as the dimer method [17] (as
contrasted to NEB [16] which is a double-ended method that we mentioned in
Sect. 6.3.1.2). Thus, in any given state, one uses saddle point search techniques of
the type that do not require the final state to be known [15, 17]. These searches can be
carried out independently on parallel computers, which is one of the main appeals
of such adaptive methods. Through these searches one builds a catalog of saddle
points and the states that can be reached through them. As the simulation progresses
this catalog becomes increasingly accurate. However, at any given point there is no
guarantee that all relevant saddles have been found. If the search is systematically
missing any of the saddles, there is no known way to quantify that. Nevertheless,
this can be a very powerful way of exploring the configuration space if not much is
known a priori about the system.

Applications Plain KMC has been applied to an immense number of problems,
practically in all aspects of nanomaterials [62]. Adaptive KMC methods as well are
seeing an increasingly large number of applications—most of which are not directly
tractable through normal KMC. A class of examples would be disordered materials
such as amorphous semiconductors, glasses, and polymers where it is not possible to
construct a rate table beforehand [66—69]. Even here though, one cannot be hundred
percent sure that all possible transitions have been identified. It is also worth noting
that adaptive KMC type methods have been successfully applied for accelerating
the timescales of not just classical but also ab initio calculations [70].
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Software Resources KMC itself generally does not require more than a few lines
of code, and thus is mostly done through private implementations. The hard part is
generation of the rate table, for which one has to use classical or ab initio transition
state methods. A good resource for these is the VASP TST module maintained
by the Henkelman group. One can also use the SPPARKS (Stochastic Parallel
PARticle Kinetic Simulator) package maintained by Sandia Labs, which is a parallel
Monte Carlo code for on-lattice and off-lattice models. Adaptive or on-the-fly KMC
methods are, however, far more serious, since they are coupled with classical MD
or ab initio calculations. These can be performed through the EON package (for
the adaptive KMC flavor) [48], or through the software packages available at the
Mousseau group website (for the kinetic activation relaxation technique flavor).

6.3.1.4 k-Dynamics

Theory k-dynamics is a recently proposed accelerated dynamics method [71]
that involves following forward and backward trajectories from a hypersurface
separating a reactant state from its associated product states. The method proceeds
by re-initiating trajectories from the hypersurface until one is found that leads to
a product without recrossing back to the reactant state. The simulation is then
resumed, considering the newly visited product state as the reactant state. In spite
of its name, the method actually does not involve an explicit calculation of the
transmission coefficient « in Eq.(6.2). Instead, the success rate of the transition
is estimated numerically by repeated simulated trajectories which do not need
to be initiated from the transition surface intersecting the saddle point of the
transition. The method, however, relies on its user to properly specify an appropriate
hypersurface that can demarcate reactant, product, and transition state regions as
well as to specify a numerical scheme to generate Boltzmann-distributed starting
points on this hypersurface. It is also somewhat agnostic regarding how the boost
factor or the actual timescale is to be computed. One benefit of xk-dynamics is that
correct state-to-state trajectories themselves could be obtained at a computational
cost much lower than obtaining the associated timescales.

Applications «-dynamics was found to work well in study of FCC adatom ripening
and island growth [71].

6.3.1.5 SISYPHUS

Theory SISYPHUS (stochastic iterations to strengthen yield of path hopping over
upper states) is a recent mixed Monte Carlo-MD method for accessing extended
timescales in atomistic simulations [72, 73]. The key idea is that each time the
system enters a stable basin, it will be well thermalized and decorrelated before
it leaves this basin and commits itself to another basin. Thus, instead of following
the dynamics precisely inside the basins, quicker biased Monte Carlo (MC) runs,
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with biasing implemented through compensating repulsive potentials as function of
some collective variable, are used to decorrelate and thermalize the system inside
the basins and enhance the probability of escape.

More precisely, SISYPHUS proceeds by separating the configuration space into
basins, and transition regions between the basins, based on some general collective
variable ¥. The stable basins are defined as regions with ¥ < ¥, where ¥, is
a user-defined cut-off. Once the system enters the stable basins, then instead of
doing unbiased MD the algorithm switches to a biased MC run (called type A) that
quickly thermalizes the system within that basin. Once thermalized, the system is
brought back to the periphery of the basin, and launched outwards with a randomly
assigned velocity at the temperature T of interest [72, 73]. The transition regions
and any region outside the deep basins (i.e., states with ¥ > ¥,) are treated via
traditional MD.

In parallel to the decorrelation MC, a second MC routine (called type B) that
uses an efficient adiabatic switching based scheme estimates the time the true
unperturbed system would have spent inside the basins. Many such routines can be
launched on independent processors to come up with a quick estimate of the time-
correction, thus making efficient use of loosely coupled parallel computers. The
timescale correction is added to the molecular dynamics clock, and so one obtains
an accurate accelerated timescale.

SISYPHUS handles the issue of the transmission coefficient « is a way that is
akin to the parallel replica [74] (Sect.6.3.3.1) or to the x-dynamics method [71].
When the system enters a basin (¥ < ¥,.), the algorithm does not immediately
switch from MD to MC. Instead, one waits until the system’s correlation time t,
has elapsed before starting MC. This represents an effective way to ensure that
local equilibrium has been reached within the basin, so that TST (Eq.(6.2)) is
only used when it indeed applies. If the system exits the new product basin within
the correlation time, TST is not invoked, thus allowing a proper representation of
“ballistic” (instead of thermally activated) events. This scheme also automatically
guards against recrossing events. That is, any MD trajectories that come back to the
reactant region before 7, has elapsed and stay therein for an amount exceeding 7., do
not lead to either type of MC routine being launched.

SISYPHUS offers various advantages in terms of (1) excellent use of parallel
resources, (2) avoiding reliance on harmonic TST, and (3) avoiding the need to
enumerate all possible transition events. However, there is some sensitivity to the
choice of the variable ¥ and its cut-off value ¥,.. As in any other accelerated dynam-
ics method, the reconstructed timescale should ideally be verified by ascertaining
insensitivity of the accelerated dynamics to the details of the acceleration—in this
case possibly by redoing parts of the simulation for different ¥, values. For a poor
choice of ¥ , or for too aggressive of a choice of ¥, even for a carefully chosen ¥ ,
many sub-basins could coalesce into one basin, and the calculation of the timescale
correction through the second MC routine, while correct in the long time limit,
would be extremely slow in converging.

For solid state systems, Tiwary and van de Walle have proposed a modified bond-
distortion function for ¥, which they defined as a p-norm over the magnitudes of all
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the first neighbor bond distortions in the system [73]. For p — oo, this becomes
the bond-boost function we saw earlier in Sect.6.3.1.1 on Hyperdynamics [35].
By modulating the value of p, one obtains flexibility to switch between few bonds
distorting very sharply (p > 1) or several bonds collectively undergoing a small but
coordinated distortion (p < §8...12).

Applications SISYPHUS has been successfully applied to a range of problems
in nanomaterials and nanomechanics. For instance, in [72] the authors used
SISYPHUS to study source-controlled plasticity and deformation behavior in Au
nanopillars at strain rates of 10*/s and lower. SISYPHUS has also been used to
study vacancy diffusion in BCC Fe and Ta at a wide range of temperatures, and for
the study of adatom island ripening in FCC Al [73].

Software Resources A software package implementing SISYPHUS is available at
http://alum.mit.edu/www/avdw/sisyphus.html.

6.3.2 Free Energy Surface Based Methods
6.3.2.1 Umbrella Sampling

Theory Umbrella sampling [75] might very well be the grand daddy of some of
the methods considered in this review. While it is primarily aimed at recovering the
underlying FES as a function of some reaction coordinate, it can also be used to
obtain timescales. It was first suggested by Torrie and Valleau [75] in 1977, and
is essentially an instance of the importance sampling technique heavily used by
statisticians [76].

The focus here as well is on systems in which high energy barriers (much
larger than kgT) separate two or more regions of configuration space. Standard
unbiased MD will then suffer from poor sampling, as the barriers will rarely be
crossed. In umbrella sampling, the standard Boltzmann weighting for the sampling
is replaced by a potential chosen to partially negate the influence of the energy
barriers present. This artificial weight w(s) is chosen as a function of specific 1-d
or 2-d collective variables s, that force the system to sample a particular range of s
values. Average values for any thermodynamic property A calculated from a biased
umbrella sampling run performed in this manner can be transformed into unbiased
values by applying the formula:

(A
(A) = (0w (6.6)

where the subscript w denotes sampling under the non-Boltzmann biased distribu-
tion.

A typical umbrella sampling simulation actually comprises a series of harmonic
restraints along different s-values each in turn forcing the system to sample separate
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but overlapping regions of the s-space. Each simulation window can then be treated
with Eq. (6.6) to give the unbiased distribution for that window. It, however, remains
to combine the unbiased distributions from the various windows. For this, one
uses the weighted histogram analysis method [77] that patches the probability
distributions from the various windows in a self-consistent manner minimizing the
overall error.

Once one has the FES through this procedure, then there are two ways to get the
rates:

1. identify the transition state on the FES, and then use Eq. (6.2) to calculate the rate
[11, 78, 79]. Often this will involve the laborious calculation of the transmission
coefficient «. In principle, any sub-optimal choice of the TS can be corrected by
a corresponding calculation of k. But for a poor choice of the TS or if the TS is
intrinsically very broad, trajectories can recross the TS several times, which can
make « < 1 and hard to converge. Note that this will give an estimate of the rate
constant, but not actual dynamical trajectories themselves.

2. calculate the position-dependent diffusion coefficient along the chosen collective
variable, and then perform Brownian dynamics along this coordinate (see for
eg. [80]). We will not cover the details of how to calculate position-dependent
diffusion constant or performing Brownian dynamics in this review, and refer the
interested reader to articles such as [80-82] instead.

Applications Umbrella sampling has seen a large number of applications for
calculating static FESs, and subsequently, rate constants. For example, Ryu et al
used it to study the entropic effects in homogeneous dislocation nucleation, and
source-controlled plasticity in nanowires [79]. Buehler, van Duin, and other groups
have used it to study the nanomechanics of day-to-day materials such as hair,
feather, wool, etc., as well as novel materials such as nanotubes [83, 84].

Software Resources Umbrella sampling can be easily used through the plugin
software PLUMED [49], which can be interfaced with a large number of MD
routines such as LAMMPS, GROMACS, NAMD, etc. PLUMED also allows direct
use of pre-designed as well as custom-made collective variables.

6.3.2.2 Metadynamics

Theory Metadynamics is a well-established method for exploring complex FESs
by constructing a time-dependent bias potential. One first identifies a small subset
of relevant collective variables (CVs) [5, 42, 43, 85, 86]. To enhance the sampling
of regions of CV space that are rarely visited, a memory dependent bias potential is
constructed through the simulation as a function of these CVs. This bias is typically
in the form of repulsive Gaussians added wherever the system visits in the CV space.
Thus slowly the system starts to avoid the places where it has already visited. This
leads to a gradual enhancement of the fluctuations in the CVs, through which the
system is discouraged from getting trapped in the low free energy basins. At the
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end of a metadynamics run the probability distribution of any observable, whether
biased directly or not can be computed through a reweighting procedure [86]. This
easy reweighting functionality is one of the many features of metadynamics that has
made it a very popular method for calculation of FESs.

Recently, Tiwary and co-workers extended the scope of metadynamics by
showing how to extract unbiased rates from biased ones with minimal extra
computational burden [87]—and without explicitly calculating transition states or
performing Brownian dynamics on the FES. Their key idea was to use metadynam-
ics as a tool to construct on-the-fly the ideal bias potential needed for the validity of
Eq. (6.5). For this, they made the following two key assumptions:

1. the process being investigated is characterized by movements from one stable
state to another via dynamical bottlenecks that are rarely but quickly crossed.

2. while there is no need to know beforehand the precise nature or location of these
bottlenecks, one should have CVs that can distinguish between all stable basins
of relevance. Note that this is much less stringent a requirement than having to
know the true reaction coordinate [88], as the latter needs information not just
about stable states but also the pathway connecting them.

Under these two key assumptions, simply by making the bias deposition slower
than the time spent in dynamical bottlenecks, one can then keep the bottlenecks bias-
free throughout the course of the metadynamics run. This preserves the unbiased
sequence of state-to-state transitions and allows one to access the acceleration of
transition rates through Eq. (6.5). Note that this so-called infrequent metadynamics
procedure will work only for transitions that are rare but fast. Otherwise the bias
deposition might have to be made so infrequent that while the method still remains
correct, one will not have any computational gain.

In a successive work, a way was proposed to assess the reliability of the two
assumptions above [89]. This relies on the fact that the escape times from a long-
lived metastable state obey time-homogeneous Poisson statistics [90]. A statistical
analysis based on the Kolmogorov-Smirnov (KS) test can quantitatively assess how
precisely these assumptions are met [§9]. Any deviations from a time-homogeneous
Poisson fit signal that the reconstructed kinetics cannot be trusted. This can happen
because either the bias deposition was too frequent, leading to gradual corruption of
the transition state region, or the chosen CVs cannot resolve between some stable
basins.

The complexity of the problem is now shifted to point (2) above in the list
of assumptions: identification of CVs that distinguish between stable states. In
practice, one can start with a trial choice of CV, use it to explore the FES, and if the
corresponding transition statistics is not Poisson, then simply iterate upon improving
the CVs and repeating the simulations until a good Poisson fit is obtained.

Applications Metadynamics has seen a large number of applications for cal-
culating static FESs. In the context of nanomechanics, of special note is the
work done by Buehler and co-workers using metadynamics to study bioinspired
and natural mechanical systems—such as spider silk, biological glue secreted
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by marine animals, effect of carbon dioxide on ice crystals, and several other
applications [91, 92]. The very recent extension to obtain kinetic rate constants from
metadynamics has already been used to study stress-induced denaturation bubbles
in DNA [93], self-assembly and disassembly of nanostructures in the presence of
molecular solvent [94, 95], and liquid droplet nucleation rates.

Software Resources Metadynamics can be easily used through the plugin software
PLUMED [49], described in the Umbrella sampling section. The VASP [96]
electronic structure code also implements a flavor of metadynamics that allows it
to be used in ab initio MD.

6.3.3 Few Other Methods That Need Neither PES nor FES
6.3.3.1 Parallel Replica Dynamics

Theory This is probably the simplest of all accelerated dynamics methods with
minimal theoretical assumptions [74]. The key idea is that for a memoryless rare
event, running N copies of the same simulation, each starting from a properly
defined decorrelated starting state, makes it N times more likely to see an event
within a given time window than if one was to run only one simulation. We will see
shortly why the rare event should be memoryless.

One runs several replicas of the system in parallel while waiting for transition
from one stable state (which could be a deep free energy / potential energy basin)
to another to happen [74]. Each replica runs on a different processor. Once a
transition is recorded on some processor P, all the processors are stopped, and
the run is restarted by creating replicas of the state one obtained after transition
on the processor P. Before restarting the simulations, the replicas are decorrelated
for a small duration 7., which adds to the computational overhead of the process.
Of course, unlike the other methods discussed herein, this method only provides
a reduction in wall clock time but not a reduction in overall computational
requirements.

Now suppose that one was running parallel replica with N total processors, and
that the first transition event is seen when each of these processors individually
has covered molecular dynamics time equaling ¢. As derived in [74], if the rare
event is memoryless, i.e., if its time distribution follows Poisson statistics, then
the “accelerated time” is given by tN. Furthermore, again as shown in [74], if the
individual processors have different speeds and have covered different times, then
the accelerated time will be given by the sum of the individual molecular dynamics
times attained on the various processors.

Theoretically this algorithm achieves an enhancement in the timescale that is
linearly proportional to the number of replicas used. There are, however, problems
in using this technique for large systems (more than a few hundred atoms) where
transitions start becoming too frequent, thereby leading to prohibitively large
overhead time spent in decorrelation of the system. Another technical challenge
is in defining a “stable state” and detecting transitions out of these.
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However, it was recently demonstrated on a sound mathematical framework, that
even for arbitrarily defined stable states, the principle of parallel replica dynamics of
adding up simulation times is still correct, as long as the system before exit from any
state is decorrelated in it [90]. Thus, strictly speaking for any stable state definition,
there exists a decorrelation time #., such that parallel replica dynamics is correct
if (1) one decorrelates for time > ¢, in each replica, and (2) any trajectory that
leaves the stable state within 7. is simply restarted. Some rigorous bounds have been
provided on ¢., and one hopes to see this leading to further popularity of the method.

Applications Parallel replica dynamics has been successfully applied to a very
large number of difficult problems pertaining to the field of nanomechanics
and nanomaterials. These include the diffusion of H, in crystalline Cgg [97],
the pyrolysis of hexadecane [98], the diffusion of defects in plutonium [99],
the transformation of voids into stacking fault tetrahedra in FCC metals [100],
the stretching of carbon nanotubes [101], grain boundary sliding in Cu [102], the
fracture process of metals [103], and several other applications [7].

Software Resources The softwares LAMMPS [60] or EON [48] can be used to
provides parallel replica dynamics calculations.

6.3.3.2 Transition Path Sampling

Theory Transition path sampling (TPS) concerns the problem of calculating tran-
sition rates between two well-defined states at a temperature of interest [18, 104]. It
does not assume TST in any form, nor does it even assume that the transition event
is Poissonian.

TPS begins by considering a system with two known stable states A and B.
One needs to have order parameters that demarcate the two states, and a trial path
that connects the two states. Normally, this trial path is generated by running the
dynamics at an elevated temperature. Starting from this trial pathway, one performs
a Monte Carlo random walk in the space of paths. Given the initial path, TPS
generates new pathways by perturbing that path and then creating a new one. As
in any Monte Carlo scheme, the new pathway is accepted or rejected with a certain
probability. By iterating this procedure, one then generates an ensemble of transition
paths. All relevant information including the reaction mechanism, the transition
states, and the associated rate constants can then be extracted from the ensemble
[18].

The rate constants from TPS can be very accurate; however, the method itself
can be somewhat computationally demanding especially if (a) one has more than 2
stable states, or (b) there are multiple pathways joining the 2 states, such that the
pathways themselves are separated by high barriers. In the latter case, the typical
path generation algorithm of TPS might be inefficient, or be sensitive to the choice
of the initial trial path, but improvements on this are available. Methods such as
transition interface sampling [105], which we will not discuss here, have also been
proposed that build up on TPS to improve the rate calculation.
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Applications TPS has been used to study phase transformations in nanomaterials
under the effect of pressure, temperature, or some other driving force [106]. It can
be especially useful for nucleation studies [107, 108].

Software Resources The software LibTPS can be used to perform TPS calcula-
tions.

6.4 Summary and Outlook

While MD simulations have now without doubt become ubiquitous across disci-
plines, they continue to suffer from timescale limitations. However, over the last few
years a variety of enhanced sampling approaches have come up that mitigate this
timescale problem by providing access to accelerated dynamics and long timescales
often well beyond the microsecond and millisecond regimes. While it is clear that
there have been several striking applications of such approaches for accelerated
dynamics, one still would not call these mainstream. Most of these approaches
involve some sort of theoretical assumptions, and their use invariably requires the
user to be very cautious and aware of the assumptions—more so than the caution
needed in the use of an ordinary unbiased MD code. Thus, as is the case for
most simulation techniques, an effective and correct use of enhanced sampling is
contingent upon a good understanding and awareness of the involved theoretical
principles and approximations.

In this review, we have tried to consolidate the theoretical underpinnings,
methodological details, and typical applications of many of these enhanced sam-
pling approaches. Through this, we have attempted to create a fairly self-contained
introductory manual, where a prospective user with a specific application at hand,
can understand and judiciously select from various available approaches. Further-
more, by presenting together a range of approaches originally developed in different
sub-disciplines, this review might also serve as a useful vantage point for a method
developer interested in developing new, more generic methods for tackling problems
in interdisciplinary fields, especially at the confluence of nano- and biomaterials.
The field of enhanced sampling approaches for accelerated molecular dynamics is
now starting to come of age, and the authors hope that this review will facilitate
future applications and developments.
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Chapter 7
Principles of Coarse-Graining and Coupling
Using the Atom-to-Continuum Method

Reese E. Jones, Jeremy Templeton, and Jonathan Zimmerman

7.1 Introduction

Molecular dynamics (MD) and finite element (FE) simulation are both powerful,
widely applied methods in their own right. MD enables the study of the atomic
motion that underlies material deformation and failure mechanisms. It has been a
tool in understanding phenomena such as diffusion, energy transport, and fracture
at a fundamental level. In contrast, FE simulation of continuum processes uses
preconceived knowledge about mechanisms, in the form of constitutive models, to
predict the response of structures and devices that span from microns to meters. Just
as each method possesses unique strengths, they also have their limits. Typically,
MD cannot be used to simulate even microscopic devices due to computational
inefficiencies of resolving atomic motion at that scale, whereas FE relies heavily on
phenomenological constitutive models that may not encompass all the mechanisms
needed for predictive simulation.

To provide a tool to simulate and design nanoscale devices and nanostructured
materials, we have developed a suite of numerical methods that bring together
the best aspects of MD and FE. This coupling of methods enables us to capture
multiscale phenomena [1-3], reduce atomic data to connect with continuum theory
[4-7], simulate large systems with atomic detail and statistical characterization
[8, 9], and add physics not intrinsic to MD [10]. In general, the methods rely on
the fact that atomistic behavior is asymptotic to continuum, which is the basis
for Green—Kubo methods [3] for example, and that the scales at which the two
representations of materials become consistent are surprisingly short and small
[11,12].
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In this chapter, we review our approaches for both coarse-graining (the averaging
of MD-level quantities to inform models used within FE) and coupling (concurrent
simulation at the MD and FE levels such that information is exchanged through
interface conditions) that have been implemented in the Atom-to-Continuum (AtC)
user module available with the widely used, large-scale molecular simulation code
LAMMPS [13]. As we will discuss, coupling generally involves four ingredients:
(a) consistent upscaling/coarse-graining of atomic data, (b) multiscale governing
balances connecting atomic and continuum representations, (c) consistent contin-
uum constitutive models, and (d) atomistic control schemes to effect the influence
of the continuum on the atomistic representation.

In the next section, Sect.7.2, we will develop a means of coarse-graining of
atomic data into continuum fields that is consistent with accepted conservation laws.
Then, we will revisit (a) and cover (b)—(d) in Sect. 7.3. Finally, in Sect. 7.4 we will
show examples of both coarse-graining and coupling that demonstrate the utility
and versatility of these techniques. We refer the reader to Fig. 7.1 for a guide to the
notation and basic geometry used in this chapter.

time

current position

reference position
displacement

velocity

charge

charge density

mass (@)
mass density

reference mass density
momentum density
Cauchy stress

first Piola-Kirchhoff stress
spatial heat flux
referential heat flux
potential energy

total energy density
internal energy density
temperature

Q

MD

Free

Coupled

Q

FE

N0 R LN NAQT O I IR < S HH

Fig. 7.1 Notation used for physical properties and fields within this chapter. Atomic quantities
are indexed with Greek o subscripts and nodal/continuum fields with Latin / subscripts and unless
explicitly noted o ranges over the whole set of atoms ./ and [ ranges over all nodes .#". The
schematic shows the finite element £2pg and molecular dynamic §2yp regions comprising the
complete system §2 = §2pg U £2yp. The nodes and atoms that are free evolve according to their
own constitutive models reside in £2pg and $2)p, respectively, and those that are coupled to the
other paradigm reside in £2yp and $2gg, respectively
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7.2 Coarse Graining

Coarse-graining is the averaging of atomic-scale quantities in order to estimate fields
that have well-defined physical meaning at larger scales. These continuum fields can
be used to interpret atomistic data and construct constitutive models that guide FE
simulations, or to provide interface conditions for concurrent MD/FE simulations.
The development of expressions to calculate continuum fields from pointwise
atomistic information dates back to the late nineteenth century, when Clausius
[14] and Maxwell [15] developed the virial theorem (VT) to define the stress
applied to the bounding surface of a fixed volume containing interacting particles
at finite temperature. In 1950, Irving and Kirkwood [16] derived expressions for
local measures of stress and heat flux from microscopic/atomic densities for mass,
momentum and energy and the associated continuum balance equations.

Subsequent to these foundations, there have been many efforts to improve on
atomic-based definitions for stress [4, 17-38] and heat flux [35, 38]. We direct
the reader to [4, 35-37] for more complete discussions of these derivations.
Notable among these efforts is the work by Hardy and colleagues [21, 39, 40]
which replaced the Dirac delta employed by Irving and Kirkwood with a more
computationally amenable smooth, finite localization function to establish a self-
consistent manner of distributing discrete atomic contributions to thermomechanical
fields. Hardy’s original formulation is based on an Eulerian/spatial representation
where localization volumes are essentially control volumes fixed in space that matter
occupies at a particular time. Hence, as was the case for the expressions by Irving
and Kirkwood [16], Hardy’s expressions for (Cauchy) stress, o, and heat flux, ¢,
contain both potential and kinetic terms.

A Lagrangian/material frame representation affords an alternative approach
particularly suited to solids and tracking material motion from a continuum
perspective. In this case, the first Piola—Kirchhoff stress tensor S, the amount of
current force exerted on a unit area as measured in the reference configuration, is the
relevant stress measure. The material frame heat flux, ¢, has a similar definition and
has units of energy per time per unit reference area. Expressions to calculate S and
q have been developed by Andia et al. [29-32], and more recently by Zimmerman
et al. [36] who used a Hardy-like formalism.

In this section, we present a generalized weighted-residual formulation for
coarse-graining atomic data. We derive consistent fields from minimizing the L?
norm of the difference between an atomic-based description of a continuum field
variable and a representation using nodal variables and FE basis functions. We
compare this approach with expressions developed by Irving and Kirkwood, Hardy
and similar efforts found in the literature, and elucidate their connections as well as
their differences. Lastly, although becoming prominent in recent research [41, 42]
we do not cover the uncertainty quantification (UQ) aspects of parameter and
property estimation in this chapter nor give an extensive treatment of measuring
or coupling to the scale-dependent fluctuations intrinsic in MD [43].
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7.2.1 Formulation

As in [44], we take a least squares statement:

min/ ||g*—ZN,g,||2dv<:>Z[/ N,N,dv} Q,:/N,gdv (7.1)
a Je 7 7 LJe 2

as starting point to relate, in this case, the mass density o* to its approximation
> Ni(x)os(¢) with a basis {N;(x)} covering region 2 = Qup filled with atoms.
This is a sub-case of the more general scenario shown in Fig. 7.1.

As in Irving and Kirkwood’s seminal work [16], we form microscopic densities,

e.g.,
0F(x,1) = ) mad(x — X, (1)) (7.2)

in terms of atomic quantities, here m,, is the mass of atom ¢, and § is the Dirac delta
operator. Hence Eq. (7.1) becomes

> [ /Q NNy dv} 01 =Y Ni(Xe)my =Y Nighy (7.3)
I - - o o

My
where N, = Nj(X,) is the basis evaluated at atomic positions. The solution of
Eq. (7.3) is the projection
o =Y My ' Nigmy =Y Arga, (7.4)
Jo o

given the mass matrix Mj;, and introduce the localization function A; =
> M,_JINJ, with A, = A;(Xy), which has units of inverse volume [45]. We
can reduce this projection to a restriction

or =~ Z ;INIama = Z Ay (7.5)
o o

by row-sum lumping the mass matrix My ~ ), My = f_Q N;dV = Vj using the
partition of unity property Y ", N; = 1 of the basis N;, which localizes the influence
of atomic data on specific nodes. In this case, Ay, = Nj,/V;. In a similar fashion,
we can take the localization function to be a moving least squares (MLS) kernel [46]
like in Hardy’s work [21, 39, 47] so that A;, = A(x; — X,,) with the normalization
f o AdV = 1, or a reproducing kernel [48] which is polynomially complete. Using
either a projection (7.4), a restriction (7.5) or a moving least squares estimate to
obtain nodal values, the continuum field is then interpolated using the basis

0%, 1) = D Ni(®)ar()) = D Ni(x) A (% (1)) e (7.6)
1

Lo
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Note that N; will always denote the chosen basis but the particular form of the
localization A; will depend on the appropriate mass matrix, which we will assume
is implicit in the context of particular A;.

Two characteristic sizes have been introduced into our formulation: (a) the nodal
spacing of the mesh used (i.e., the scale of the basis N; ~ /Vj), which dictates
the spatial refinement of our coarse-grained field, and (b) the size of the region
over which averaging is performed at each node (i.e., the scale of A;). These
two length-scales are independent, but typically the averaging region is taken to
be commensurate with the mesh spacing for convenience. This practice becomes
problematic in certain cases. For example, the anticipation of large gradients may
require a fine mesh; however, too fine a mesh will result in nodal averages that
depend on only a few atoms. Conversely, too coarse a mesh will result in averages
that are limited in their spatial variation. Alternatively, one can separate these two
length-scales, using a larger size for atomic averaging and a smaller one for mesh
definition,' as we demonstrate in the example presented in Sect.7.4.1. Instead of
a completely empirical approach, the asymptotic analysis of Ulz et al. can be
employed to balance smoothness and resolution of the estimate [49].

Taking the (partial) time derivative of Eq. (7.1)

d
ZJ: [ /Q NiN; dV} 5 =" Z VNig - MgV (7.7)

using the short-hand

d 0
atNIoc(t) = BtNI(XI —Xe(1)) = —VxNpg - Vg (7.8)

for the application of the necessary chain rule, we see the estimates are consistent
with the usual continuum Eulerian/spatial mass balance

0 )
3t91+vx'pI:QI+QIVx'VI:O (7.9)

at the nodes. Here we introduce the material time derivative 9 = g)tg + Vxo-vofp
and the linear momentum density field p = pv. This approach gives an explicit
sense of scale at which the estimated fields are consistent with the appropriate
balance in contrast with MLS/Hardy approach [21] where at any point

89_

9 gt Xa: Ax —x(2)my = — Xa: VAKX —X(1)) - mavy = —=Vy-p  (7.10)

I'This choice has similarities with the Bubnov—Galerkin weighted residual where the weight space
and primary field have different bases.
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The Lagrangian mass balance is trivially satisfied by

p= NiX)p =) NiAi(Xe)m (7.11)
1 La

since p; = 0.
A further generalization is to introduce time averaging by revisiting the micro-
scopic density Eq. (7.2)

0*(%.1) = Y (ma8(x — Xa (1)) (7.12)

o

using a causal time-filter

f@) = /_ fls)w(t — s)ds. (7.13)

The kernel w(f) must asymptote to zero as t — —oo sufficiently fast for the
integral to converge, which, in conjunction with the properties of the convolution
operator (7.13), results in this time-average having the commutation property

0

ot

() = <§tf>_ (7.14)

Thus, the time derivative of Eq. (7.1) becomes

[ [ wvsav] o= <2Nmma> E <Z aatNmma> (1.15)
- <Z VN - mava> = —Vyx- <Z Nlocmocvoc>

and hence the time averaged definition of p also satisfies the (weak) mass balance.
Given the extent of the kernel into the past, which allows the filter to be invertible,
means of initializing the causal filter with consistent initial conditions at some finite

2Using Leibniz’s rule and w(r) = 0Vt > 0:

Sn= [ e =) ds = - . [ =)

t

9
= —LOO atf(t— sw(s)ds — o(0)w(r) = —/

d d
atf(t —s)w(s)ds = <3tf>

fort > 0.
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time are necessary [9]. With an exponential filter, w(f) = i exp (i), the ordinary
differential equation (ODE)

d 1
o == (7.16)

can be used to update the filtered value (f). Similarly the ODE

d

_ 1 2
L= (c- =) (7.17)

can be used to apply a variance estimator ((f)) with this particular kernel.

7.2.2 Atomic Data

Now that we have examined the example of mass density we can develop other
consistent field estimators. For example, the expression for linear momentum
density akin to Eq. (7.6),

P(X. 1) =Y Ni(X)AsaiaVa(0). (7.18)
Lo

can be used together with the spatial version of the momentum balance,

d 1
P=Vx-(o— p®p), (7.19)
ot 0

to derive the expression for the Cauchy stress o . Starting from the left-hand side of
Eq. (7.19), at the nodes we obtain

3 3 aAloz
al‘pl = Z 9t (Alamava) = Z (Alotfa + my vy 9t )

Lo Ia
= Z Alafaﬂ - Z Mo VA - Vo @ Vg (7.20)
La.p Lo :
1
= 2 Z (Alozfaﬂ - Alﬂfaﬂ) — Vx- Zmava ® VoAla,
Lo, Lo

where fug is the portion of the total force on atom « due to atom S, such that f, =
> 8 fus. As in Hardy’s work [21, 47], we introduce the bond function

1
By = / A[(Axalg + xg — x;)dA, (7.21)
0
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such that
_VxBIaﬂ *Xop = Ay — Alﬁy (7.22)

where X, = X, — Xg. By combining Eqs. (7.19), (7.20), and (7.22), we arrive at an
expression for the Cauchy stress field,

1
O'(X, t) = _2 Z faﬂ & XaﬂBIaﬂNI(X) - Z MeWy @ Wy AIaNI(X)7 (7.23)
Lo, Lo

where we define a relative atomic velocity
1
Wy = Vg — 21: AV & Vg — v, XI:NM,. (7.24)

As in [45], the projection form of Eq. (7.24) decouples the large-scale kinetic energy
from the fine-scale, whereas, for the restriction form, this decomposition is only
approximate.

A similar manipulation of the material-frame momentum density expression,

pX.1) =Y Ni(X)moVaAra. (7.25)

Lo
where Ay, = A;(Xy), within a material-frame momentum balance
p=Vx-S, (7.26)

produces an expression for the first Piola—Kirchhoff stress,

1
SX.0) == > Fup(t) ® X BrapNi (X). (7.27)
Lo,

A similar exercise can be done with the balance of energy, as shown in [35] and
[36], by starting with a definition of nodal energy density,

1
oer =Yy ( oy P Pe ¢a) A (7.28)
o

o

where ge(x,1) = ) ;Ni(x)o/()e;(r). Here, we have partitioned the total
potential energy @ into separate contributions from each atom, ¢,, such that
® = ), ¢o. (For pair potentials ¢, is simply ¢, = ;Zﬁ ¢op.) We require a
direct relation between f,g and these individual atomic energies, specifically: fyg

= — {gi‘; + gi‘;} )::S, where rqg = |[Xqp||- Also, although energy density is
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a primary field, i.e. is a conserved quantity associated with a balance law, we
approximate pe to conform to the more common convention of a per mass energy
density. Using these expressions and relations within the Eulerian energy balance,

de
ot

enables derivation of an expression for the heat flux3 <,

0ds X, 1
c=-Y ( Pp Xap -wa) XapBropNi(%) + Y (zmawa Wy + ¢a) AreNy(x).
La

0. =Vy-(6-v—pev—c) (7.29)

Lap araﬁ Tap
. (7.30)
For the Lagrangian energy balance,
pe=S:F—Vx-q, (7.31)
the resulting reference frame heat flux is
g X
q=— ( P8 Xap wa) X BrapNi(X) . (7.32)
8ra5 Tap

Lo,

Given the fundamental definitions of mass p and momentum density p, we can
define the velocity field v such that ov = p. In our L? formalism:

/ NipvdV = / NpdV = (7.33)
2 2

/N[ZmQS(X—XQ)NJdVVJ:/N](X)Zmavg(x—xa)d‘/:
I?) 2 "

Jo

Z [N]amaNja] vy = ZN[amaV;
o

Jo

however, we choose to simply take the nodal velocities to be: v; = p;/o5, and
interpolate these values with the basis N;. The corresponding displacement for node
1 is defined as

1 1
w= > Agmau, = o > Aty (% — Xa) (7.34)
V(0] lo

3
3The term a:pt,; f“g
of T

examined by Admal and Tadmor [38], who determined that doing so also requires replacing w,
with the average relative velocities of both atoms « and B, and modifying the internal energy
density with an extra term that involves the difference between the velocities of the two atoms.

cannot be replaced with —f,4, as is often done in the literature. This issue was
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given reference configuration {X,}. While this relation is exact for a Lagrangian
analysis (as A, = 0), with an Eulerian description an additional term involving
vy breaks the correspondence between the displacement and its time-derivative,
velocity. The displacement gradient H = Vxu, directly related to the deformation
gradient F = Vxx = I 4+ H, can be derived via the basis

H=) u®VxN,. (7.35)
1

We can also define an expression for temperature 7" using the kinetic definition
based on the principle of equipartition of energy [50, Sect. 6.4]:

N

2 /
3T = > (k) (7.36)

a=1

i.e., an ensemble’s internal energy equals twice its average fluctuating kinetic energy
k.,.* Along the lines of the derivation for the velocity v, Eq. (7.33), we use Eq. (7.36)
to obtain a temperature field

Y IN3ksNsal ) = D Ni 1aWe - W - (7.37)
Jo o = -2\]:,- -
which we restrict to
T, ! > N, ! >oA (7.38)
= MyWy - Wy = Me Wy * Wy .
1 3kBZaNIa . loaMa Wa o 3kB . TaMog W o

Our coarse-graining methodology can also be applied to diffusion/ionic con-
duction phenomena [3]. We start with the per-species mass density field akin to
Eq. (7.6):

o = > maA (7.39)
a€gf (@)
and associated flux
J;a) = Z Mo Vo Al (7.40)
a€of (@

“In statistical mechanics, temperature is defined in terms of the amount of phase space a system
visits. We need to employ ‘the “local equilibrium” and ergodic assumptions’ in order to make the
temperature a field variable and feasible to compute. We assume that the strict definition and ours
coincide in the limit of large averaging volumes and long averaging times.
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where .o7(@ is the group of atoms that are of species a. Then the electrical current
density I is the flux of ionic charge g,

1= quValiaNs = ) 2uda (7.41)
Jo a

=0zv+ Zz(“)J(“)
a

N - =

I

split into convective, ozv, and diffusive, I, components. Here 7@ = ¢@/m@ is the
valence of species a and

0= 07 =" qulsel, (7.42)
a Jo

is the total charge density. The diffusive ionic flux I satisfies the conservation
equation

0i4 Vi I=0 (7.43)

by virtue of each of the species satisfying their respective mass conservation
equations at the nodes and the fact that z'® is constant:

. d
0z = dr ZW:CI&AM = - ZW:QanAIa : (Va - V)
(7.44)

—Vi - |:Z Go (Vo — V) Ala:| =—Vyx-1I

It is important to note that the material time derivative of the charge density 7 is with
respect to the barycentric velocity v of the fluid [3].

7.2.3 Molecular Data

One can extend this same coarse-graining procedure to properties of molecular
materials. As one such example, we consider electrical charge and the continuum
quantities of electric field E, electric displacement, D, and polarization vector,
P. As discussed in [51], polarization quantifies the density of dipole moments
in a dielectric material. Dipole moments can either be induced, as in non-polar
molecules, or permanent, in polar molecules such as water. Here, we briefly develop
expressions for E, D, and P using our upscaling formalism.
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The (microscopic) electrostatic balance considering only atomic point charges is
e Vx-E = p7*, (7.45)

where ¢ is the vacuum permittivity and pz is the microscopic charge density. The
total charge density, pz, is given by the summation of both free charges, ¢,, over the
group o7 of ions and charges on atoms, gg,,, belonging to molecules m:

ot = ZqQS(X —Xq) = Z Gab(X —Xg) + Z qpm(X — (X + Xgm)). (7.46)

acdly m.f

Following our coarse-graining methodology and employing a Taylor series expan-
sion for the molecular charges around their (center-of-mass) coordinates Xx,,

€ / NiV\EdV = " Nigga + ) Nindpm (7.47)
2 a€oly m,BE M,

1
+ V- Z (_Xﬂlem + Z,Xﬂm ® Xgm - VxNim + .. ) 4pm | -
m,pE M, ’

~ _—— -

P

where we recognize the polarization vector P contains contributions from molec-
ular dipole, > pe.a, 4pmXpm; quadrupole, 21! Zﬂe i, ApmXpm ® Xpm; and higher
moments. An integral form of the macroscopic Maxwell’s equation resultin Vy-D =
¢ , after defining D = ¢yE + P, the electric displacement vector, and the coarse-
grained charge related to the macroscopic free-charge density [51]

=Y Notat+ Y NinGpm- (7.48)

aE€aly m,BE M,

For molecules that are charge neutral, {; reduces to ) lacct; Nieqq-

Also, as noted in [51], the accuracy of P depends on the order of the polynomial
used for the coarse-graining function. For example, if one uses a constant coarse-
graining function, then only the dipole moments can be recovered. Likewise, if the
basis is linear in x, then the quadrupole moments may be computed. Lastly, the same
methodology can be used to extract other quantities; for instance, by replacing the
charge g, in the expression for P in Eq. (7.47) with the mass m, the moments of
inertia can be extracted.

7.3 Coupling

As mentioned in the introduction, Sect.7.1, in this section we will develop the
basis for atom-to-continuum coupling simulation: (a) consistent upscaling/coarse-
graining of the atomic state, (b) multiscale governing balances, (c) consistent



7 Coarse-Graining and Coupling Using AtC 235

continuum surrogate models, and (d) atomistic control schemes. In Sect. 7.2 we have
covered the first ingredient in detail which stands as useful tool in it own right. In
this section we will discuss the remaining components of a fully coupled multiscale
algorithm where £2pg # @ and there is an interface, 0£2gg N 0$2vp, between the FE
and MD regions.

Before developing the coupling methodology, we provide a brief overview
of atomistic-to-continuum multiscale methods. This field is particularly rich in
mechanical coupling schemes, and the interested reader is referred to the review
article by Miller and Tadmor [52] for a more detailed description of the many
strategies as well as references. Apparently the idea of using a coupled finite element
model of material to alleviate the computational burden of computing atomic
trajectories in regions that are expected to behave in a continuum fashion goes
back to the early work of Kohlhoff et al. [53, 54]. Kohlhoff’s application to fracture
became one of the primary motivating examples for MD/FE mechanical coupling.
Motivated by the same application, Tadmor, Ortiz et al. developed one of the most
long-lived coupling algorithms: the quasicontinuum (QC) method [55]. Unlike in a
strict domain-decomposition, QC takes the particles in the computation to transition
between atoms driven by the interatomic potential and finite element nodes obeying
a corresponding Cauchy—Born rule [56, 57]. In this method where primarily atomic
domains transition to continuum, the particles become more widely spaced to reduce
the burden of resolving all the atoms. Broughton et al. [58] derived a three-method
algorithm based on hand-shaking regions, localized domains in which information
is exchanged between different models which overlap in them, like in Kohlhoff’s
scheme, which combined tight-binding, MD, and FE. For each scale of exchange,
a modified energy functional was derived incorporating contributions from both
components. Another popular method is the bridging scale method of Wagner and
Liu [45]. Their approach employs a hybrid Lagrangian incorporating the energy
from both the atomic and continuum. Galerkin projection is used to partition the
resulting forces and stresses between the two systems. Klein and Zimmerman [59]
replaced standard finite elements with MLS and reproducing kernel bases for the
continuum fields and to enable the multiscale information propagation, but also
introduced a Cauchy-Born surrogate model for the continuum corrected near the
boundary.

Since a continuum is an incomplete representation of an atomic system, other
coupling methodologies use uncertainty quantification to exchange information
between the two domains. In some cases, the goal is finding optimally consistent
parameters for continuum closures using MD data [3, 60, 61]. In other cases, new
closure model forms have been identified using MD samples to estimate a stochastic
representation. This strategy has been employed in both off-line [62] and on-line
[63] modes based on concurrency of the MD and continuum simulations.
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7.3.1 Atomic Regulators

To effect the information transfer from continuum region to the atomistic system
necessary for concurrent coupling, we have developed a variety of control/regulation
strategies akin to the isokinetic thermostat [64] applied to a field of target values
instead of a single system temperature. Both our method and the isokinetic ther-
mostat are based on Gauss’s principle of least constraint (GLC). In our application,
GLC takes the form

min max ( Z £, —£5)1> — Zx,g,), (7.49)
1

- -
J
where f; = —0y, @ are the unconstrained forces on atoms, g; are the constraints

dependent on atomic data, and A; are the associated Lagrange multipliers. It is clear
from Eq. (7.49) that the principle is designed so that the Lagrange multipliers do the
least work on the system necessary to enforce, the constraints. Also, note that the
derivative of the constraint g; is enforced not the constraint itself g;. Our constraints
gr can be flux balances or field matching conditions analogous to Neumann or
Dirichlet interface conditions and take the general form

= Nita —A; =0, (7.50)

where a, = a(Xy, Vy) is a phase function corresponding to the nodal/continuum
quantity A;.

The (first order) optimality conditions arising from the extremization of the
functional J in Eq. (7.49) recover the derivative of the constraint:

0 =8 =) Niaba—Ar =Y Nig (D, e * Vo + Ov,a0 Vo) —A; = 0, (7.51)
o o

assuming a Lagrangian description (N;, = 0), and the condition:

O, J = fu+0x, @ =Y " AiNig O, dte = £+ 05, @ — Y AiNia Moy, aq = 0, (7.52)
1 1

where we have used m, 0y, = 95, from Newton’s law: m, v, = f,. We can rearrange
Eq. (7.52) into an augmented form of Newton’s law

MoV =T = =0y, ® + Y ANio o Dy, (7.53)

- -_— -

f;
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which when we substitute it into the constraint, Eq. (7.51), gives a means of solving
for A;:

Z [Nla (ma||3vuaa||2) Nla] Ay = AI - ZNIa (axuaa * Vo — avuaa . aXMCP) .
Jo o
(7.54)

Now that we have a solution for Ay, it is worth re-examining the structure of
the problem. With the constraints g; posed at nodes of the finite element mesh, the
term Z, AINp, is the interpolation of the nodal field A at the location of atom «.
This is the conduit for propagation of continuum information in the form of a flux
balance or field consistency to the atoms. Meanwhile, dy,a, is strictly an atomic
quantity and, as will be shown in detail, is related to conserved quantities. Hence,
the correction fé to the total force on the atom f,, is a mixed-scale term incorporating
aspects of both the small and large scales present in the problem and will introduce
a correlation at the atomic level on the length-scale of the element size.

In our coupling schemes there are two instances of the nature of the constraint
which are mutually exclusive at any particular node, like classical Dirichlet and
Neumann conditions. For the first case of using the GLC framework to effect
consistency between atomic data and a continuum field, we recognize the constraint

ZW:NIa Mg Vg = ZJ:M}AJI"J, (7.55)
Ar

as an expression for the dynamics for a coarse-grained quantity, e.g. momentum.
In general we apply M7,, the mass matrix over the atomic domain associated with
quantity A, to obviate the need for applying a projection to the atomic information,
i.e., the left-hand side of Eq.(7.55). On the other hand, in the case of enforcing a
flux balance on the interface of the FE and MD regions, we tie the rate of change of
a conserved quantity to the normal component of the associated flux, for instance

ZNmfa = Njo - dA. (7.56)
" 32

This form is derivable from partitioning the global balance of the appropriate flux,

see [10, 44] for more details.

These atomistic analogs of Dirichlet and Neumann boundary conditions can be
applied simultaneously on disjoint sets of nodes. However, a consequence of our
least squares formulation is that A is, in general, non-zero throughout the domain. As
a result, A peaks at the MD-FE interface where the constraints are initially violated
by uncorrected velocities and decays in an oscillatory fashion further into the MD
domain. If this behavior is not desired, it is possible to localize A near the MD
boundary, but the method of localization is constraint-dependent. For the case of
field-based constraints, Eq. (7.55), nodal A,’s are only defined at nodes where the
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constraint is imposed. The cost of this change is that the effect of the GLC affects
the atomic domain an element away from the MD/FE boundary. Localization of
the flux-based GLC approaches results in a similar effect, but results from row-sum
lumping the matrix in Eq. (7.54) such that the global conservation balance is still
respected [9]. Constraints involving time filtering can also be posed [44], and the
formulation presented here is compatible with complex geometries, albeit at the
cost of extra computational expense when localization is used [9].

Lastly, given that GLC derived regulators only control the derivative of the
desired constraint it is necessary to set up initial conditions consistent with
constraint. Unlike in the traditional FE framework, MD simulations typically need
to be conditioned from some unlikely/unphysical state, e.g. a perfect lattice, to
a representative sample of the desired ensemble. We find it is expedient to use
a version of the velocity rescaling algorithm sometimes used as a thermostat to
prepare an initial state for the subsequent dynamics controlled by GLC regulation.
With

> Nty = Ay, (7.57)
o

we can pick a, to be either the momentum m, v, or the kinetic energy ;ma Vo * Vg.
To affect the change in a, through v} = {/s« Vo Where p is the power of v, in aq,
we construct the scaling field s; interpolated to the atoms s, = ) 1 Nia S, which has
the solution

Y WNiaaNsa] s = Ar. (7.58)
Ja

7.3.2 Mechanical Coupling

We now turn to the specific problem of mechanical coupling. In this case, the
corresponding conserved quantities are atomic momentum m,V, and continuum
momentum density p = pv. Using a Lagrangian description and the least-squares
formalism introduced in Sect. 7.2.1:

> U NIpNJdV} v, = / NipvdV + > NigiaVa . (7.59)
7 Q2 Qrg o

we can solve for the velocity v, instead of the momentum density p, since the mass
density field p is known and constant. A consistent decomposition of the left-hand
side integral results in

> NipN;dV + Y NiamaNpe | Vo= | NipvdV+Y " NigmoVa (7.60)
7 2pp o Qre o
My,
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using an atomic definition of mass density p, = "'}Z based on a consistent atomic
volume/quadrature weight V,, such that [, o 4V = >+ Vo In the case of Eulerian
frame equations, the shape function Ny, is now a function of time which reproduces
the advective/convective fluxes; however, the atomic volume remains unknown but
can be approximated by representing the atomic volume as a prolongation of a
FE field consistent with |, o 4V = > Nio Vi without modifying the governing
equations. Hence, the dynamical equation governing the continuum velocity is

> [/ NipN; dV + ZNmmaNM] v, = NiVx-SdV+) " Nigfy (7.61)
7 2 « $QrE o

after substituting the balance of linear momentum, Eq. (7.26), for the nodes, and
Newton’s law for the atoms. Before moving on to the influence of atomic control
forces, several observations can be made. First, Eq. (7.61) is entirely consistent with
either the finite element momentum equation or coarse-grained atomic momentum,
Eq.(7.18), in the event only one type of region is present. Second, information
propagates from the atomic system to the finite element region through the coarse-
grained atomic force (the complementary flow of information was described in the
previous section, Sect. 7.3.1).

To perform a coupled simulation, a final ingredient is required: a surrogate model
for the interatomic-potential [65, 66] in the continuum region. Closures such as this
are necessary in all continuum mechanics to account for the physics associated with
the missing degrees of freedom and atomic interactions; in the present context they
are assumed to be accurate for a limited regime of the possible atomic motion,
e.g. nearly homogeneous deformation. It is important to note that the degree of
consistency between the continuum closure and the true contributions from the
atoms will impact the accuracy and sometimes the stability of the method. The
Cauchy—Born model derived directly from the interatomic potential and the lattice
[67, 68] and thermal models inferred from MD [61, 62] are examples of surrogate
models particularly suited to MD/FE coupling.

For illustration of the present case, we introduce an elastic surrogate model which
assumes a linear relationship between the stress tensor, S, and (infinitesimal) strain:

SX) ~ C: Vxux) =~ C: ZuIVXNI, (7.62)
I

with the fourth order elasticity tensor C. After substituting this constitutive relation-
ship into (7.61) and integrating by parts, we arrive at

Z / N]pdeV+ZN]amaN]a VJZ—Z[/ VxN;C: VxNJi| dVuy
7 $2pE P £2pE

J

+/ N/S-dA + > Niafa.
02FE o

(7.63)
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which is completely prescribed except for the stress at the interface between the
atomic and continuum domains, which we will address presently.

In order to couple the entire system, the continuum state must also influence
the atoms. We accomplish this by using the constraint formalisms outlined in
Sect.7.3.1. The MD and FE sub-systems can be coupled either strongly by
constraining the atomic forces based on the continuum velocity or weakly by using
the continuum stress. Strong coupling uses the constraint:

Z Nify = Z [NlocmocNJa] vy (7.64)
o Jo

Then Eq. (7.54) becomes

Z [N]O[NJ(X] A.J = Z [N]amaNja] ‘.71 + ZNMBXQ @ (765)

Ja Jo o

Similarly, weak coupling is derived using conservation of momentum for the total
system,

>t :—/ S - dA, (7.66)
« d

Q2rE

which after partitioning using the basis functions N; implies

D ONfy =— NS -dA. (7.67)
o 02FE
The equation for A is then
> [NiaNial Ay = — NS -dA. (7.68)
Ja 082rg

The last step in the derivation involves eliminating the unknown boundary flux in
Eq. (7.63) by equating it with the force arising from the constraint, resulting in

> [ / NipN; dV + ZNIamaNja] \Z
7 $QrE o

= — Z [/ VxN; C : VxN; dV:| u; — ZN,aax(yq)‘ (7.69)
7 2FE "
In either case, the atomic dynamics result from

MaVy = =05, ® + Y Nighr. (7.70)
1
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In many practical calculations, a layer of ghost atoms outside £2yp is used to
exert forces to keep the unconstrained atoms within §2yp, refer to Fig.7.1. The
locations of the ghost atoms can be tied to the continuum displacement field,
but in this case the forces the ghost atoms exert on the other atoms must be
incorporated into the momentum conservation constraint. An alternative is simply
to set the boundary stress based on the forces exerted by the ghost atoms, which also
conserves momentum.

In fact there are a variety of means of coupling the atomistic and continuum
motions and forces, but not all are inherently stable [69]. In particular, coupling
the continuum to the atomistic flux, for instance the virial in mechanical coupling,
generally leads to instabilities. Another issue that has received considerable atten-
tion [45] is how to handle the waves that are supported in the atomic region but
cannot be transmitted to the continuum region due to the inherent mismatch in the
dispersion characteristics of the two representations. Typically they are selectively
damped out of the system [70] which violates overall energy conservation. This is
another aspect of the incompleteness of the finite element representation.

7.3.3 Thermal Coupling

We now examine thermal coupling. With the definition of atomic temperature,
Eq. (7.37), in hand, the least squares minimization procedure from Sect.7.2.1 can
be used to construct a finite element temperature field:

> [/ NipcN; dV} T, = / NipeT dV + ) NighoWe - Wa (7.71)
7 2 Qrg o

where the total fluctuating energy consistent with Eq. (7.37) appears on the right-
hand side. The expression is a form of conservation of energy in absence of
mechanical work, and hence we can reduce w, to v, and use a Lagrangian
description of the material. Similar to the partition of the right-hand side into
continuum and atomic domains, the left-hand side can be decomposed as

> NipeN; dV + 3ks Y NigNyo | T) = / NipeT dV + Y " NiaMaVe - Va
7 2pp o 2re o
My
(7.72)
using the Dulong—Petit law [71, Chap. 22] for the heat capacity
3k
pc="7" (7.73)

Ve
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of a classical solid material in conjunction with atomic quadrature weights V,,. For
a system without a continuum region, this equation reduces to a projection of the
temperature as in Eq. (7.37).

To reach the final form of the governing equation, we take the time derivative of
Eq.(7.72):

Z NIpCNJdV—f‘?)kBZN[aNja Tj: N[V'qu—FZZN[aVa'fa.
J -QFE o -QFE o

(7.74)
Into this balance for the finite element temperature field we substitute Fourier’s law
for the referential heat flux

q(X) ~ —kVxT = —k Y _T;VxNi, (7.75)
1

as a constitutive relationship for the heat flux q where « is the thermal conductivity
tensor. (Note that Fourier’s law is not always an accurate surrogate model at small
scales, see, e.g., [61].) Integrating the continuum right-hand side term of Eq. (7.74)
by parts completes the derivation of the multiscale balance:

Z|: NIPCNJdV+3kBZNIaNJa:| TJ:Z[/
£2pE o J $

VN[ . ICVN] dV:| Tj
J

FE

+/ Niq-dA +2)  NigVe - fo.
JI82rg o
(7.76)

Now coupling can be imposed via constraints on the atomic force in the
framework in Sect.7.3.1. To maintain the consistency of the coarse-grained atomic
temperature and the finite element temperature, their time derivatives are con-
strained to match using Eq. (7.50):

2> NigVa - fa = 3ks Y _ NiaNsaT). (7.77)
o Jo

In this case, the equation for the Lagrange multipliers, Eq. (7.54), becomes

2

3k .
Z [Nlava : VaNJoc] /\J = ? Z [NIocNJoc] TJ + ZNIocaxu(p * Vg (778)
J,o Jo o

To conserve energy in the exchange between the continuum and atomic domains,
the finite element boundary flux

Niq-dA = =2 Zvaa - (7.79)
02FE o
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is equated to the power due to the constraint force f! from GLC. The governing
equations for the FE and MD sub-systems are

> / NipeN; dV + 3ks Y NiaNyo | Ty (7.80)
J S2pg o
=> [/ VN, -k VN, dv} T/ =2 NigVe - Oy, P,
7 2rg p

MoVa = —0y,® + 24 »_Niahr. (7.81)
1

When flux-based coupling is desired, conservation of energy is used to derive the
constraint:

0, @ Vo +Bo Vo =T vy == Niq-dA, (7.82)
7 Y082k

resulting in the governing equation for the Lagrange multipliers:

Y NNVl by =— | Niq-dA, (7.83)
J.a 082rg

when partitioned akin to Eq.(7.56), see [44]. However, in this case the flux is

overcompensated for by our equipartition assumption, 3kg7T = my (Vg + V4) , SO
the governing equations are

> [ / NipeN; AV + 3k ZN,QNM} 7 (7.84)
2rE o

J
Z[/ VN,-KVN,dV} T/ =2 Ny, ® Vo + Y _ NigVa - £},
7 Q2rg o o

MaVa = —0s,® + Vo ) _Niahr. (7.85)
1

Lastly, the required finite element heat fluxes can be computed using face-based
quadrature schemes if the domain boundary aligns with the finite element faces, or
using an approximate L? projection of the heat flux [44]. As a final comment, the
thermostat force in the augmented Newton’s equation (7.85) is of the recognizable
velocity drag form common to many thermostats including the Langevin thermostat
[72] but without the random force from the Mori—Zwanzig formalism.
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7.3.4 Thermomechanical Coupling

The primary difference in developing a framework for thermomechanical coupling
from the separate mechanical and thermal coupling we developed in the previous
two sections is that the atomic momentum and temperature are no longer indepen-
dent. The multiscale momentum balance (7.61) for the velocity is unchanged, but
to derive the equation for temperature, we must start with the rate of change of the
total energy:

Z [/ N],ONJdV:| é] = / N[ (,08 + ,OVV) dv + ZNM (ma\"a + Bxagb) Vo .
7 2 2FE a
(7.86)

We assume the total energy density e is the sum of internal energy density ¢, which
has thermal and elastic components, and coarse-scale kinetic energy?

pe=pé+pv-v=pcT+S-Vxy+ pv-v (7.87)

We can reduce Eq. (7.86) to

> / NipN;dV &, = NypédV — Nipv-vdV
7 /2 $2FE 2mp
+ ) Nig oV + 05, ®) - Vo (7.88)
= Nlpé dv
2rE
+ ZNM (mava Vg — ZNjaijj -V Vy +8xd(b . Va)
o J

K,

using the atomic quadrature based on weights V, and making the particular
definition of the fluctuating kinetic energy k. Note that our use of inexact
projections/restrictions leads to k/, not being identified with our previous definition
of the thermal energy ;mawa - Wy from Sect.7.2. Using Eq. (7.61), the coupled
multi-scale equations for the nodal velocities, v; and temperatures, 7; are

M)y, = —/QFE VxN; -SdV + /a N/S- dA + ) Niofa. (7.89)

2FE

5This a common assumption that neglects, for example, interactions between the thermal and the
coarse-scale mechanical energy related to thermal expansion at the macro-scale.
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MITJsz—/ VXN,-qdv+/ Niq- dA
S2FE 082FE

+ ) Nio (K, + 05, @ - Va) . (7.90)

As in the previous two sections, we need surrogate models for the first Piola—
Kirchhoff stress S and referential heat flux q. A good model for the former is the
Cauchy—Born model based on a quasi-harmonic free energy detailed in [68].

To form the appropriate constraints, we begin with the global conservation of
momentum and (total) energy:

y /
meVoe + | pdv] =) f +/ SdA:/ SdA (7.91)
dr (Za: T o ) Za: 7 Joam 092
d
I (Zmaea—i—/ pedV) :Z(fa—i—axucb)'va—i—/ (v-S—q)-dA
o 'QFE o 0

$2rg
:/ (v-S—q)-dA (7.92)
a2
which we reduce and partition to form:
g/ =) Nify— / N/SdA =0 (7.93)
> 92\052r

§ =Y N+ v~ [ NS-@-da=0 (799
- 92\02ks

As previously discussed, the augmented force in the MD component is f, =
—0x, P + fé where in this case fé takes the form

fr=—> N (A +A]va). (7.95)
1

with a vector AY and scalar A] Lagrange multipliers similar to system-wide
momentum and temperature control found in [73]. This modified force is substituted
into each constraint to obtain the following block symmetric system of equations for
A and AT

> [INieNsadA] + > INiaVaNralA) = = " Nigy, @ — N/SdA
J.o Ja [ 92y

(7.96)

Z [N]aVaNJa] . A‘Y —+ Z [N]aVa . VaNJa]Agﬂ = —/ N[ (V . S — q) . dA
Ja Ja 32\02pg

(7.97)
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7.4 Examples

In this section we demonstrate the utility of the methods we have developed
with selected applications of the coarse-graining, Sect. 7.2, and coupling, Sect. 7.3,
methodologies.

7.4.1 Inclusion

With this example we demonstrate the utility and versatility of our coarse-graining
methods by examining the simple case of insertion of an oversized inclusion within
a constrained lattice. Figure 7.2a shows the face-centered cubic (fcc) gold lattice
20 x 20 unit cells on a side and 3 unit cells thick in the out-of-plane direction (4800
atoms, lattice parameter of 4.08 A). Periodic boundary conditions are used in all
directions. We employ a Lennard-Jones [74, 75] pair potential smoothly truncated
at distance of about 5.46 A. We expand the center region of 4 x 4 unit cells by 0.5 %
and hold the atoms in this inclusion region fixed, while the outer material is allowed
to relax via energy minimization.

Figure 7.2a shows the atomic displacement magnitudes, with the largest displace-
ments occurring at the inclusion corners. Figure 7.2b shows the coarse-graining of
these displacements onto a 10 x 10 element mesh that overlays the atomic system.
Here, we use the mesh’s own interpolation function as the coarse-graining operator.
The resulting displacement field has similar features to the atomic one, albeit with a
noticeably lower peak magnitude.

Figures 7.2c—e illustrates the use of a localization kernel at each node to coarse-
grain the atomic displacements, where the kernel differs from the mesh interpolation
function N;. Here, we use a quartic polynomial that depends on the radial distance
from the node’s position, with its maximum value at the node and smoothly reaching
zero at a distance just over the cutoff of the potential, 6 A (as recommended in [4]).
Comparing Fig.7.2b and Fig. 7.2c, which use the same 10 x 10 mesh, we observe
that the field coarseness remains the same, but the peak value is somewhat higher for
the kernel-averaged system. Figures 7.2d, e reveal how use of a successively refined
mesh (20 x 20 and 40 x 40, respectively) improves the resolution and fidelity of the
coarse-grained field.

This comparison shows the advantage of using independent localization kernels
for coarse-graining—in fact the kernel size could vary throughout the domain and
be tied to atomic density or field gradients. Use of kernels enables the calculation of
robust averages and continuous fields that correspond to the local continuum limits
[49] for an arbitrary degree of mesh resolution. In contrast, exclusive use of the
mesh’s interpolation function would produce either a field with converged values
but coarse features (for a mesh with large element size), or one with fine features
but spatially fluctuating, non-converged values (for a mesh with small element size).
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atoms 10 x 10 10 x 10

20 x 20 40 x 40

Fig. 7.2 Displacement magnitude, ||u||, for insertion of an oversized inclusion in fcc gold. (a)
Atoms colored by atomic displacements. (b) Coarse-graining on a 10X 10 mesh using interpolation
functions. (c)—(e) Coarse-graining using localization kernels on 10x 10, 20x20 and 40X 40 meshes.
Here, ||u|| ranges from 0 (blue) to 0.05 A for the atomic system, or 0.037 A for the coarse-grained
systems (red)

We also used our coarse-graining methods to calculate the continuum stress fields
for this inclusion problem. Figure 7.3 shows the o1, and & |, fields using the finely
resolved 40 x 40 mesh with localization kernels. The resulting fields are smoothly
varying and appear to be consistent with expectations of continuum mechanics.

7.4.2 J-Integral

Coarse-graining methods enable the use of continuum fields to estimate other
metrics defined within continuum theory, e.g. configurational forces. Based on the
seminal work by Eshelby [76] and developed in the context of fracture mechanics
by Rice [77], the J-integral is a path independent contour or surface integral (in
two- or three-dimensions, respectively) that measures the energetic driving force on
a defect. The J-integral is commonly used in numerical simulations of continuum
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01 02

Fig. 7.3 (a) o) and (b) 0|, for insertion of an oversized inclusion in fcc gold. Coarse-graining
is performed using localization kernels on a 40 X 40 mesh. Stress values range from —0.59 to
3.71 GPa for o 1; and from —0.85 to 0.85 GPa for o1, (blue-to-red)

mechanical deformation, such as the finite element method, to indicate when a
critical loading state has been achieved that will result in crack propagation.

Jones and Zimmerman [5] discussed past efforts to estimate the J-integral at
the atomic scale, and proposed use of the coarse-graining methods covered in this
chapter as a means to ensure consistency with linear elastic fracture mechanics
(LEFM), and to preserve the path independence of the J-integral. In that work, the
J-integral expression for a isothermal, equilibrium material is given as

J- / (WI— HTS) dA. (7.98)
982

where W is the material frame internal energy density, and H and S have already
been defined as the displacement gradient and 1% Piola—Kirchhoff stress fields,
respectively. In [5], it was shown that W and S exhibited thermodynamic consistency
(i.e., S = dW/0F), thereby ensuring that the J-integral around a closed region with
a smooth motion is zero and consequently that J is path independent for arbitrary
contours around regions that contain singularities such as crack tips.

Figure 7.4a shows the Sy, stress field for a single crack in a cylinder composed of
the same LJ gold used in the inclusion example. Here, displacements are imposed
on atoms within an outer annulus of the cylinder in accordance with the LEFM
solution for a mode I loaded crack tip. Details about this simulation are given in [5].
We note that this stress field contains the same characteristic pattern as predicted
by the LEFM solution. Figure 7.4b plots the J-integral for a square contour that
encircles the crack tip (shown clearly in Fig. 7.4a) as a function of the square of the
applied stress intensity factor, K;. In LEFM theory, J; for this configuration should
be proportional to K?, as shown by the straight, black line in the figure. We see
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Fig. 7.4 (a) The S,; stress (units in bars) from a coarse-grained estimate. A contour loop and the
FE interpolation grid are also shown. (b) The calculated J-integral for the single crack configuration
showing path independence. J-integral values are normalized by twice the surface energy of the
Lennard-Jones system and the loading parameter K; by the corresponding critical value K.

that for a set of concentric loops of varying size, our estimation follows this trend
up to the point when crack propagation begins, J; = 2y, thereby confirming path
independence of the J-integral. Discrepancies from exact linearity may be due to
the anisotropic and non-linear aspects of the LJ potential, as well as the non-ideal
aspects of the crack face geometry. We also observe that for a loop that does not
enclose the crack tip singularity (loop 0), J; = 0, as expected.

In [6], this approach was expanded to treat systems at a finite (i.e., non-zero)
temperature. In this case, the J-integral is given by the expression

J= / (V1—F'S) dA, (7.99)
982

where W is the Helmholtz free energy density, a function of both deformation
gradient F and temperature 7. At finite temperature, W has contributions from both
internal (strain) energy and entropy [68]. In [6], this entropic term was determined
by a local harmonic (LH) approximation that requires calculation of a simplified
dynamical matrix that neglects coupling between atoms. Details on this method are
given in [6], along with an analysis that shows the LH approximation to closely
correspond with a more exact calculation of free energy using thermodynamic
integration up to significant temperatures (< 400K) for substantial amounts of
uniaxial and volumetric strains. Application of Eq.(7.99) to the single crack tip
geometry showed that although the J; dependence on applied stress intensity factor
changes slightly due to thermal stresses that arise in the heated system, path
independence at a given temperature is maintained [6].
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7.4.3 Polarization Field of a Double Layer

The methods presented in this chapter can be used to investigate inhomogeneous
and anisotropic phenomena which occur at the atomic scale. An interesting example
is the electric double layer, in which an ionic solution covers a charged surface,
resulting in a screening layer of oppositely charged ions attracted from the solution.
Double layers are important in many applications, ranging from electrokinetic flows
in micro- and nano-fluidic devices to energy storage devices including batteries and
super-capacitors. Despite their ubiquity, they are still poorly understood because
experimentally it is difficult to resolve the length-scales over which they develop,
and the configuration for realistic systems is too complex for a purely theoretical
treatment. However, molecular dynamics studies [2, 78-80] have provided insights
into double layer structure, and the coarse-graining theories for atoms and molecules
enable a deeper understanding of the important physics.

In this example, we model a box of salt water using molecular dynamics periodic
in two directions and constrained by a uniform force field in the third to mimic a
nano-channel geometry. A uniform electric field is also applied in this direction to
account for a potential drop across the channel. When this happens, a structured
layer of solvent and solute particles formed, followed slightly further from the wall
by a diffuse layer in which the solute remains at elevated concentrations but no
significant structure is present. Figure 7.5 shows this structure at the boundary.
Coarse-graining the atoms enables a continuum density field to be post-processed,
as shown in Fig. 7.6. The densities are important because they enable the calculation
of the electric field and electric potential throughout the domain. These quantities
allow us to determine the structure of the condensed layer, how far it extends away
from the boundary, and how much charge the double layer can store.

We can understand the double layer structure more deeply by quantifying its
electrical properties [51] using the methods outlined in Sect.7.2.3. Molecular
coarse-graining elucidates the degree to which the solvent is aligned with the electric
field. Figure 7.7 shows the strong polarization present in the structured layer to be
more than an order of magnitude greater than the bulk values. More importantly,
the polarization is beyond the level at which a constant relative permittivity is a
useful description, implying that the physics cannot be understood without appeal
to the atomic nature of matter. However, resolving the boundary region allows us

Fig. 7.5 Structure of ions and molecules near the boundary. Grey denotes oxygen, red hydrogen,
and green counter-ions. Reproduced from [79] with permission
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to determine over exactly what sub-domain is the atomic description necessary.
By comparing fields resulting from different coarse-graining length-scales, we can
identify continuum behavior where the field is independent of length-scale. And,
conversely, in regions where the length-scale is important, a continuum description
will be inadequate.

7.4.4 Surface Relaxation

Surface relaxation due to interatomic forces and lack of full coordination shells is
a phenomenon that can only be approximated in finite element simulation and not
in a fully predictive manner. In this demonstration we model the surface relaxation
of a cube of Ni nominally 38.72 A on a side both as a fully atomic system and a
mechanically coupled atomic/FE system. We use the embedded atom model (EAM)
potential [81-83] for the interatomic forces in Ni and either (a) the associated
Cauchy-Born model for the elastic stresses or (b) a cubic elastic model with C; =
261 GPa, C1, = 151 GPa, and C44 = 132 GPa.

The results from the all atom simulation in Fig.7.8a show significant dis-
placement as the cube relaxes from a perfect lattice arrangement. The maximum
displacements |u;], |uz] &~ 0.2A occur at the corners of the material. As can be
seen from Fig. 7.8b,c the coupled simulation with the Cauchy—Born and the signif-
icantly less computationally intensive cubic elastic surrogate models,® respectively,

all atoms Cauchy-Born cubic elastic

Fig. 7.8 Displacement in the x-direction: (a) all atoms, (b) CB coupled, (c) cubic elastic coupled.
Range = 0.2 A

5The cost of the molecular statics solution is proportional to the number of atoms times the number
of neighbors per atoms, while the cost of the Cauchy—Born solution is proportional to the number
of elements times the number of integration points per element times the number of neighbors
per atoms, while the cost of the Cauchy-Born cubic elastic solution is proportional to merely the
product of the number of elements and the number of integration points per element.
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Fig. 7.9 Metallic CNT embedded in an FE mesh showing phonon temperature near the beginning
of the heating phase, r = 10 ps. Reproduced from [10] with permission

reproduce the all atom displacement field with considerable fidelity. We attribute
this result to the fact that the coupled scheme preserves momentum and that in this
zero temperature simulation the field of displacements is smooth on the scale of the
mesh.

7.4.5 Laser Heating of a Carbon Nanotube

In this example a metallic (8,8) armchair carbon nanotube (CNT), 12.6 nm long,
is suspended by embedding its ends in solid graphite, see Fig.7.9 and [10], and
heated with a shaped laser pulse directly heating the CNT’s electron gas. We use the
Tersoff potential [84, 85] to model the CNT. The graphite substrate is modeled with
a continuum with the same thermal properties as the CNT. The exposed surface of
the reservoirs and the tube are insulated by the air so that no heat crosses those
boundaries and the remaining surfaces of the reservoirs are fixed at a constant
temperature of 300 K. The electronic heat capacity has a temperature dependency:
c. = y0, with y = 1.5J/m> K2, and the electronic heat conductivity k, = Lo0,
is estimated with the Franz—Wiedemann law with Lo = 2.443 x 1072 W/mK2. In
addition to temperature dependence of the electron heat capacity and conductivity,
the measured form of the electron—phonon exchange for CNTs [86] is highly non-
linear in temperature, g = h(f, — 6,)° with h = 3.7 x 10* W/m? K°. Also, the
fact that the CNT lattice is not space filling creates no algorithmic difficulties since
its contribution directly and fully determines the phonon temperature in the regions
where there are atoms. In these elements all the effects of the phonon constitutive
model are removed. To offset the larger fluctuations associated with basis functions
with few atoms in their support we employ a time-filter, with characteristic time-
scale = 0.01 ps.
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Fig. 7.10 Sequence of temperature (a) and electron temperature (b) profiles along the axis of the
CNT. Reproduced from [10] with permission

The electron system of the CNT interacts with a focused radiation source that
has a power input of 1.6 x 1072 exp(—(x} + x3)/(0.1 [nm])*) W/m>. We turn on
this localized source for 50 ps and then allow the system to relax. The sequence
of temperature profiles along the axis of the tube in Fig. 7.10 shows very localized
electron and relatively diffuse phonon temperatures in correspondence with their
diffusivities. These profiles through the axis of the CNT extend into FE regions
without atoms; in the reservoir regions, we see a distinct change in slope due to
the reservoirs’ higher thermal mass, especially for the phonons. As the experiments
[87] demonstrate, we expect mixed ballistic/diffusive transport in the CNT, which
is modeled entirely by the MD. This mixed harmonic/enharmonic transport must
transition to purely diffusive heat flux at the CNT-reservoir boundary, given the
nature of the coupling. The large scale oscillations that start to become apparent at
about + = 40ps in Fig.7.11 indicate that the input energy to electrons eventually
excites a strong fundamental mode resonance [88, 89] which can be directly
observed in Fig. 7.12.

7.5 Conclusion

We have presented the framework for the ATC methods available in LAMMPS
together with illustrative examples. In contrast to other coupling methods, ATC
has the distinct advantage of treating the full possibilities of thermal transport
at the nanoscale since its inception [45] and provides a generalized framework
of consistent multiscale balances, coarse graining, and control schemes that are
applicable to a wide range of multiphysics problems. In its present state of
development it is particularly suited to warm, slow processes like: predicting the
growth of large nanostructures via vapor deposition, simulating the steep gradation
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Fig. 7.11 Evolution of average temperatures of the two explicitly modeled reservoirs and the CNT.
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Fig. 7.12 Fundamental mode excited by focused irradiation. The atoms and the mesh are both
colored by the phonon temperature. Reproduced from [10] with permission

from an electrical double layer to a bulk fluid, and modeling the deformation of
polycrystalline materials with complex grain boundary structure. In general, the
method is appropriate for systems with characteristic sizes reaching micrometers
containing large regions of regular behavior interacting through structures requiring
atomic detail. We have laid the groundwork of treating the ubiquitous problem
of spurious wave reflection in the shock and dynamic regimes [70] in the ATC
framework but this topic has also been an area of intense development by other
researchers; see, for example, the review by Miller and Tadmor [90] and the seminal
paper by Wagner and Liu [45].

The scope of the theory presented and the particular version of the methodology
have not been presented elsewhere and we hope this chapter serves as a concise and
coherent overview of the work we have done in the upscaling and coupling arenas.
Full-fledged fluid coupling is notably absent from our exposition mainly due to the
complexity introduced by treating open systems.
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Chapter 8
Concurrent Atomistic-Continuum Simulation
of Defects in Polyatomic Ionic Materials

Shengfeng Yang and Youping Chen

8.1 Introduction

The dynamic interactions between defects in materials, such as dislocations, cracks,
and grain boundaries (GBs), play a crucial role in determining the properties of the
materials, including ductility, strength, toughness, and hardness [1, 2]. The dynamic
behavior of defects generally involves a wide range of length scales. For example,
not only does the dislocation-GB interaction depend on the structural details of the
GBs on the atomic-scale [3, 4] but the long-range fields of defects can also have a
significant effect on the interaction. To study the mechanisms of interaction between
defects in general and the interaction between defects and GBs in polycrystalline
materials in particular, concurrent multiscale methods are advantageous over fully
atomistic methods, as the size of the computational model can increase through
coarse-graining the regions away from critical regions such as GBs. As a result, the
long-range effect of defects can be considered, while the fine details of the structure
and the deformation of the critical regions can be retained.

In the past two decades, a large body of literature in science and engineering
has focused on the development of various multiscale computational tools [5-9],
with the hope of expanding the atomistic simulation-based predictive capability
from nanometers to microns. However, despite two decades of intense research
efforts, a general successful multiscale methodology has not been established. In
most existing concurrent multiscale methods, classical molecular dynamics (MD)
and the linear elasticity-based finite element (FE) method are directly combined.
Given that the linear elasticity of continua is the long wavelength limit of acoustic
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vibrations of lattice, the simulation of the dynamic behavior of polyatomic materials,
i.e., materials that have two or more atoms in the primitive unit cell, has been a
challenge for these combined MD/FE methods. Another challenge for the existing
multiscale method is to pass defects from the atomistic to the continuum region.
For example, to model polycrystalline materials, dislocations and cracks nucleated
from the atomic-scale GBs where MD is used need to be smoothly propagating into
the far field, where FE is usually employed for the crystalline grains. Such MD/FE
interfaces prevent defect-induced discontinuities passing from the atomic to the FE
region if no special numerical treatment is included.

To meet these challenges, a concurrent multiscale representation of general crys-
talline materials [10—14] has been formulated and a concurrent atomistic-continuum
(CAC) method based on the formulation has been developed [15-25]. In CAC, a
crystalline material is described in terms of continuously distributed lattice cells,
while, within each lattice cell, a group of discrete atoms is embedded. Such a two-
scale description of crystalline materials makes CAC applicable for the modeling
and simulation of polyatomic materials with concurrently coupled atomistic and
continuum descriptions even in the coarse-grained domain. In addition, building a
continuum field formulation of a complete set of balance equations with atomistic
information in the formulation ensures that both the atomistic and the continuum
domains are governed by the same set of governing equations. Such a unique feature
enables the coarse-grained simulation of defect dynamics in the continuum domain
as well as the smooth passage of defects from the atomic-scale to the coarse scale.

This chapter reviews the fundamentals of the CAC method and demonstrates
the