
Intersection Cuts for Bilevel Optimization

Matteo Fischetti1(B), Ivana Ljubić2, Michele Monaci1, and Markus Sinnl3

1 DEI, University of Padua, Padua, Italy
{matteo.fischetti,michele.monaci}@unipd.it

2 ESSEC Business School of Paris, Cergy-Pontoise, France
ivana.ljubic@essec.edu

3 ISOR, University of Vienna, Vienna, Austria
markus.sinnl@univie.ac.at

Abstract. The exact solution of bilevel optimization problems is a very
challenging task that received more and more attention in recent years, as
witnessed by the flourishing recent literature on this topic. In this paper
we present ideas and algorithms to solve to proven optimality generic
Mixed-Integer Bilevel Linear Programs (MIBLP’s) where all constraints
are linear, and some/all variables are required to take integer values.
In doing so, we look for a general-purpose approach applicable to any
MIBLP (under mild conditions), rather than ad-hoc methods for specific
cases. Our approach concentrates on minimal additions required to con-
vert an effective branch-and-cut MILP exact code into a valid MIBLP
solver, thus inheriting the wide arsenal of MILP tools (cuts, branching
rules, heuristics) available in modern solvers.

1 Introduction

A general bilevel optimization problem is defined as

min
x∈Rn1 ,y∈Rn2

F (x, y) (1)

G(x, y) ≤ 0 (2)
y ∈ arg min

y′∈Rn2
{f(x, y′) : g(x, y′) ≤ 0 }, (3)

where F, f : R
n1+n2 → R, G : R

n1+n2 → R
m1 , and g : R

n1+n2 → R
m2 . Let

n = n1 + n2 denote the total number of decision variables.
We will refer to F (x, y) and G(x, y) ≤ 0 as the leader objective function

and constraints, respectively, and to (3) as the follower subproblem. In case the
follower subproblem has multiple optimal solutions, we assume that one with
minimum leader cost among those with G(x, y) ≤ 0 is chosen—i.e. we consider
the optimistic version of bilevel optimization.

By defining the follower value function for a given x ∈ R
n1

Φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0 }, (4)

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 77–88, 2016.
DOI: 10.1007/978-3-319-33461-5 7

78 M. Fischetti et al.

one can restate the bilevel optimization problem as follows:

min F (x, y) (5)
G(x, y) ≤ 0 (6)
g(x, y) ≤ 0 (7)
(x, y) ∈ R

n (8)
f(x, y) ≤ Φ(x). (9)

Note that the above optimization problem would be hard (both theoretically and
in practice) even if one would assume convexity of F,G, f and g (which would
imply that of Φ), due to the intrinsic nonconvexity of (9).

Dropping condition (9) leads the so-called High Point Relaxation (HPR). As
customary in the bilevel context, we assume that HPR is feasible and bounded,
and that the minimization problem in (4) is bounded for each feasible solution of
HPR—while its feasibility follows directly from the definition of HPR. As HPR
contains all the follower constraints, any HPR solution (x, y) satisfies f(x, y) ≥
Φ(x), hence (9) actually implies f(x, y) = Φ(x, y).

A point (x, y) ∈ R
n will be called bilevel infeasible if it violates (9). A point

(x, y) ∈ R
n will be called bilevel feasible if it is satisfies all constraints (6)–(9).

2 Literature Overview

In this paper we will mainly focus on Mixed-Integer Bilevel Linear Programs
(MIBLP’s) where some/all variables are required to be integer, and all HPR
constraints (plus objective function) are linear.

The first generic branch-and-bound approach to the MIBLP’s has been given
in [7], where the authors propose to solve HPR embedded into a branch-and-
bound scheme and basically enumerate bilevel feasible solutions. Recently, [4,5]
proposed a sound branch-and-cut approach that builds upon the ideas from
[7] and cuts off integer bilevel infeasible solutions, by adding cuts that exploit
the integrality property of the leader and the follower variables. The authors
provide an open-source MIBLP solver MibS [8]. More recently, [3] again propose
to embed HPR into a branch-and-bound tree, bilevel infeasible solutions being
cut off by adding a continuous follower subproblem into HPR, each time a new
bilevel infeasible solution is detected. Continuous follower subproblems are then
reformulated using KKT conditions and linearized in a standard way. Another
generic approach for MIBLP’s is a branch-and-sandwich method in [6], where the
authors propose novel ideas for deriving lower and upper bounds of the follower’s
value function.

As this is usually the case with intersection cuts for MILPs, our IC’s for
MIBLP’s also use disjunctive arguments. Disjunctive cuts in connection to bilevel
linear programming have been investigated in [1], where the continuous follower
subproblem is reformulated using KKT conditions, and disjunctive cuts are used
to enforce complementary slackness conditions.

Intersection Cuts for Bilevel Optimization 79

3 Bilevel-Free Sets

The following result is valid for generic bilevel problems and was implicit in some
early references (including [9]) where it was only used as a guide for branching.

Lemma 1. For any ŷ ∈ R
n2 , the set

S(ŷ) = {(x, y) ∈ R
n : f(x, y) ≥ f(x, ŷ), g(x, ŷ) ≤ 0} (10)

does not contain any bilevel feasible point in its interior.

Proof. It is enough to prove that no bilevel feasible (x, y) exists such that f(x, y)
> f(x, ŷ) and g(x, ŷ) < 0. We will in fact prove a tighter result where the latter
condition is replaced by g(x, ŷ) ≤ 0, as this will be required in the proof of the
next theorem. Indeed, for any bilevel feasible solution (x, y) with g(x, ŷ) ≤ 0,
one has f(x, y) ≤ Φ(x) = miny′{f(x, y′) : g(x, y′) ≤ 0} ≤ f(x, ŷ).

In some relevant settings, the above result can be strengthened to obtain the
following enlarged bilevel-free set.

Theorem 1. Assume that g(x, y) is integer for all HPR solutions (x, y). Then,
for any ŷ ∈ R

n2 , the extended set

S+(ŷ) = {(x, y) ∈ R
n : f(x, y) ≥ f(x, ŷ), g(x, ŷ) ≤ 1} (11)

does not contain any bilevel feasible point in its interior, where 1 denotes a vector
of all ones.

Proof. To be in the interior of S+(ŷ), a bilevel feasible (x, y) should satisfy f(x, y)
> f(x, ŷ) and g(x, ŷ) < 1. By assumption, the latter condition can be replaced
by g(x, ŷ) ≤ 0, hence the claim follows from the proof of previous lemma.

As far as we know, the above result is new. In spite of its simplicity, it will play
a fundamental role in our solution method.

4 Mixed-Integer Bilevel Linear Programming

In the remaining part of the paper we will focus on the case where some/all
variables are required to be integer, and all HPR constraints (plus objective
function) are linear. This leads to the following Mixed-Integer Bilevel Linear
Program (MIBLP):

min F (x, y) (12)
G(x, y) ≤ 0 (13)
g(x, y) ≤ 0 (14)
(x, y) ∈ R

n (15)
f(x, y) ≤ Φ(x) (16)

xj integer, ∀j ∈ J1 (17)
yj integer, ∀j ∈ J2, (18)

80 M. Fischetti et al.

where F,G, f, g are now assumed to be affine functions, sets J1 ⊆ {1, · · · , n1} and
J2 ⊆ {1, · · · , n2} identify the (possibly empty) indices of the integer-constrained
variables in x and y, respectively, and the value function reads

Φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0, yj ∈ Z ∀j ∈ J2}. (19)

Dropping (16) leads to the HPR, which is a MILP in this setting. Dropping
integrality conditions as well leads to the LP relaxation of HPR, namely (12)–
(15), an LP which will be denoted by HPR.

Our main goal is to solve the above MIBLP by using a standard simplex-based
branch-and-cut algorithm where the hard constraint (16) is enforced, on the fly,
by adding cutting planes. The minimal requisite for the correctness of such an
approach is the ability of cutting any vertex, say (x∗, y∗), of HPR which satisfies
the integrality requirements (17) and (18) but is bilevel infeasible because

f(x∗, y∗) > Φ(x∗), (20)

thus preventing a wrong update of the incumbent. To this end, we will propose
a novel application of Balas’ intersection cuts [2] in the MIBLP context.

5 A New Family of Cuts for MIBLP

Intersection cuts (IC’s) for a given (x∗, y∗) require the definition of two sets:
(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions, and
(2) a convex set S∗ that contains (x∗, y∗) but no bilevel feasible solutions in its
interior. The reader is referred to [2] for technical details.

As customary in mixed-integer programming, IC’s are generated for vertices
(x∗, y∗) of an LP relaxation of the problem to be solved, so a suitable cone is
just the corner polyhedron associated with the corresponding optimal basis. All
relevant information in this cone is readily available in the “optimal tableau”
and requires no additional computational effort.

As to the convex set S∗, we propose to use the set defined in Lemma 1 (or,
better, in Theorem 1 if applicable) by choosing

ŷ = arg min
y

{f(x∗, y) : g(x∗, y) ≤ 0, yj ∈ Z ∀j ∈ J2} (21)

(assuming this problem is not unbounded). Indeed, such a set S∗ does not contain
any bilevel feasible point in its interior, as required, while (x∗, y∗) ∈ S∗ because
of (20) and Φ(x∗) = f(x∗, ŷ) by definition. Note that ŷ is well defined when
(x∗, y∗) is a solution of HPR, and that S∗ is a convex polyhedron in the MIBLP
case.

However, an important property is stillmissing, namely, (x∗, y∗)must belong to
the interior of S∗ if we want to generate a violated intersection cut. This is always
the case for MILBP’s for which S∗ is the extended set defined as in Theorem 1.
This includes problems with all-integer follower where J2 = {1, · · · , n2}, all g-
coefficients are integer, and j ∈ J1 for all xj ’s appearing with nonzero coefficient in
some follower constraint.

Intersection Cuts for Bilevel Optimization 81

A relevant consequence of the above discussion is that, at least in the all-
integer follower case, an exact branch-and-cut MIBLP solver can be obtained
from a MILP solver by just adding a separation function for IC’s based on the
extended set S+(ŷ) defined by (11) and (21). Indeed, observe that an exact
MIBLP solver can be obtained by applying a general-purpose simplex-based
MILP solver to HPR. To avoid the incumbent be updated with bilevel infeasible
solutions, it is enough to cut any HPR solution (x∗, y∗) with f(x∗, y∗) > Φ(x∗).
Without loss of generality, by disabling internal MILP heuristics, we can assume
that (x∗, y∗) is a vertex of the current HPR so we can always cut it by an (locally-
valid) IC as, by definition, (x∗, y∗) is in the interior of the extended S+(ŷ) when
ŷ is defined as in (21). In addition, assuming that all leader’s variables x are
integer and bounded, the number of HPR solutions to cut is finite, so a finite
number of branching nodes (and hence of IC’s) will be generated, i.e., the method
converges in a finite number of iterations.

In the heuristic attempt of producing violated IC’s for a generic vertex
(x∗, y∗) of the HPR polyhedron, one could also consider the following alternative
definition of the point ŷ that defines the bilevel-free set S+(ŷ):

(ŷ, d̂) = arg max
y,d

{d : f(x∗, y) + ϕ d ≤ f(x∗, y∗),

g(x∗, y) + γd ≤ 1, yj ∈ Z ∀j ∈ J2}, (22)

where ϕ ∈ R+ and γ ∈ R
m2
+ are suitable normalization factors, e.g., the Euclid-

ean norm of the corresponding left-hand-side coefficient vectors. The rationale
of this definition is that one wants to detect a bilevel-free set S(ŷ) whose closest
face to (x∗, y∗) has a maximum distance from it.

Example. Figure 1 illustrates the application of IC’s on an example given in [7],
which is frequently used in the literature:

min
x∈Z

−x − 10y (23)

y ∈ arg min
y′∈Z

{ y′ : (24)

−25x + 20y′ ≤ 30 (25)
x + 2y′ ≤ 10 (26)
2x − y′ ≤ 15 (27)

2x + 10y′ ≥ 15 }. (28)

In this all-integer example, there are 8 bilevel feasible points (depicted as
crossed squares in Fig. 1), and the optimal bilevel solution is (2, 2). The drawn
polytope corresponds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Lemma 1 with ŷ
defined as in (21). After solving the first HPR, the point A = (2, 4) is found.
This point is bilevel infeasible, as for x∗ = 2 we have f(x∗, y∗) = y∗ = 4 while

82 M. Fischetti et al.

Φ(x∗) = 2. From (21) we compute ŷ = 2 and the intersection cut derived from
the associated S(ŷ) is depicted in Fig. 1(a). In the next iteration, the optimal
HPR solution moves to B = (6, 2). Again, for x∗ = 6, f(x∗, y∗) = y∗ = 2 while
Φ(x∗) = 1. So we compute ŷ = 1 and generate the IC induced by the associated
S(ŷ), namely 2x + 11y ≤ 27 (cf. Fig. 1(b)). In the next iteration, the fractional
point C = (5/2, 2) is found and ŷ = 1 is again computed. In this case, C is not
in the interior of S(ŷ) so we cannot generate an IC cut from C but we should
proceed and optimize HPR to integrality by using standard MILP tools such as
MILP cuts or branching. This produces the optimal HPR solution (2, 2) which
is bilevel feasible and hence optimal.

We next apply the definition of the enlarged bilevel-free set from Theorem1
(whose assumption is fulfilled) with ŷ defined again as in (21); see Fig. 1(c) and
(d). After the first iteration, the point A = (2, 4) is cut off by a slightly larger
S+(ŷ = 2), but with the same IC as before (y ≤ 2). After the second iteration,
from the bilevel infeasible point B = (6, 2) we derive a larger set S+(ŷ = 1) and
a stronger IC (x + 6y ≤ 14). In the third iteration, solution D = (2, 2) is found
which is the optimal bilevel solution, so no branching at all is required in this
example.

6 Informed No-Good Cuts

A known drawback of IC’s is their dependency on the LP basis associated with
the point to cut, which can create cut accumulation in the LP relaxation and
hence shallow cuts and numerical issues. Moreover, IC’s are not directly applica-
ble if the point to cut is not a vertex of a certain LP relaxation of the problem
at hand, as it happens e.g. when it is computed by the internal MILP heuristics.

We next describe a general-purpose variant of IC’s whose derivation does not
require any LP basis and is based on the well-known interpretation of IC’s as
disjunctive cuts. It turns out that the resulting inequality is valid and violated
by any bilevel infeasible solution of HPR in the relevant special case where all x
and y variables are binary.

Suppose we are given a point ξ∗ = (x∗, y∗) ∈ R
n and a polyhedron S∗ =

{ξ ∈ R
n : αT

i ξ ≤ αi0, i = 1, · · · , k} whose interior contains ξ∗ but no feasible
points. Assume that variable-bound constraints l ≤ ξ ≤ u are present, where
some entries of l or u can be −∞ or +∞, respectively. Given ξ∗, define L :=
{j : ξ∗

j − lj ≤ uj − ξ∗
j } and U := {1, · · · , n} \ L and the corresponding linear

mapping ξ 	→ ξ ∈ R
n with ξj := ξj − lj for j ∈ L, and ξj := uj − ξj for j ∈ U

(variable shift and complement).
By assumption, any feasible point ξ must satisfy the disjunction

k∨

i=1

{ ξ ∈ R
n :

n∑

j=1

αijξj ≥ αi0 }, (29)

whereas ξ∗ violates all the above inequalities. Now, each term of (29) can be
rewritten in terms of ξ as

Intersection Cuts for Bilevel Optimization 83

1 2 3 4 5 6 7 8

(a)
x

1

2

3

4

y

A

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

y ≤ 2

1 2 3 4 5 6 7 8

(b)
x

1

2

3

4

y

B
x x

x

x

x

x

x

x

x

x

x x 2x+ 11y ≤ 27

1 2 3 4 5 6 7 8

(c)
x

1

2

3

4

y

A

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

y ≤ 2

1 2 3 4 5 6 7 8

(d)
x

1

2

3

4

y

B
x x

x

x

x

x

x

x

x

x

x x x+ 6y ≤ 14

Fig. 1. Illustration of the effect of alternative intersection cuts for a notorious example
from [7]. Shaded regions correspond to the bilevel-free sets for which the cut is derived.

n∑

j=1

αij ξj ≥ βi := αi0 −
∑

j∈L

αij lj −
∑

j∈U

αijuj , (30)

with αij := αij if j ∈ L, αij = −αij otherwise. If βi > 0 for all i = 1, · · · , k, one
can normalize the above inequalities to get

∑n
j=1(αij/βi) ξj ≥ 1 and derive the

valid disjunctive cut in the ξ space

n∑

j=1

γjξj ≥ 1, (31)

where γj := max{αij/βi : i = 1, · · · , k}, and then one can transform it back to
the ξ space in the obvious way. It is easy to see that, in case ξ∗

j ∈ {lj , uj} for

84 M. Fischetti et al.

all j = 1, · · · , n, the above cut is indeed valid (because β > 0) and obviously
violated as ξ

∗
= 0. In all other cases, the above cut separation is just heuristic.

Inequality (31) will be called Informed No-Good (ING) cut as it can be viewed
as a strengthening of the following no-good cut often used for bilevel problems
with all-binary variables—and in many other Constraint Programming (CP) and
Mathematical Programming (MP) contexts:

∑

j∈L

ξj +
∑

j∈U

(1 − ξj) ≥ 1. (32)

The cut above corresponds to the very generic choice

S∗ = {ξ ∈ R
n : ξj ≤ 1∀j ∈ L, 1 − ξj ≤ 1∀j ∈ U}

and is violated by ξ∗ but is satisfied by any other binary point, hence resulting
into a very weak cut. To the best our knowledge, ING cuts are new; they will
hopefully be useful in other CP and MP contexts.

7 Preliminary Computational Results

To evaluate the performance of our new cuts, we embedded them within the
general-purpose MILP solver IBM ILOG Cplex 12.6.2 using callbacks, resulting
into a branch-and-cut (B&C) MIBLP approach. Internal Cplex’s heuristics as
well preprocessing have been deactivated in all experiments. IC separation is
applied at the root node on all LP solutions (in the so-called usercut callback),
while for the remaining nodes it is only applied to integer solutions (lazycut
callback). For fractional solutions, IC’s whose normalized violation is too small
are just skipped. All generated cuts are treated as local cuts (even if no-good
and ING cuts would be globally valid) as this reduces the node LP size and
significantly improves node throughput. To improve the quality of IC cuts, the
bilevel-free set is enlarged by removing all its defining inequalities αT (x, y) ≤ α0

(say) such that imposing the reverse condition αT (x, y) ≥ α0 would trivially
lead to an infeasible HPR relaxation due to the current bounds on the x and y
variables (this step turns out to be very important for the success of our method).
More implementation details will be given in the full paper.

We first compared our code with the one in [3] on the testbed proposed
therein. All such instances turned out to be very easy, both for our approach
and for MibS. More precisely, each instance could be solved in less than a sec-
ond by our code and in at most 3 s by MibS, i.e., both codes were 2–3 orders
of magnitude faster than the one in [3]. Therefore we addressed more difficult
instances, obtained according to the following procedure.

We took a familiar testbed (MILPLIB 3.0) that contains instances that are
easily solvable by modern MILP solvers (except instance seymour which is very
hard even as a MILP). As we planned to also run the open-source MIBLP solver
MibS [8] to check our code, we skipped all instances involving equations or con-
tinuous variables, as well as those involving noninteger coefficients—all the above

Intersection Cuts for Bilevel Optimization 85

cases being not supported by the current release of MibS. This produced a set
of 10 basic 0–1 MILP instances, that we converted into bilevel problems by
labeling the first Y % (rounded up) variables as y’s, and the remaining ones as
x’s. In our test, we considered the three cases with Y ∈ {10, 50, 90} leading
to instances named name-0.1.mps, name-0.5.mps, and name-0.9.mps, respec-
tively. All constraints in the resulting model belong to the follower subproblem,
as MibS cannot handle leader-specific constraints G(x, y) ≤ 0, while the objective
function is used as the leader’s objective F (x, y). Finally, the follower’s objective
is defined as f(x, y) = −F (x, y).

In Table 1, we use MibS to assess the computational difficulty of the instances
we generated. The table also reports results for our basic B&C code (with IC’s
but not ING cuts) when run in single-thread mode and with internal Cplex cuts
disabled. Note that the two solvers cannot be compared directly, as they are
based on a different underlying MILP code, namely: Cplex for our code, and
COIN-OR (BLIS) plus Cplex for MibS. For both codes, we report in Table 1 the
following values: the best obtained upper bound (UB), the best obtained lower
bound (LB), the final percentage gap (%gap) calculated as (UB - LB) / UB ×
100. Computing times (t.[s]) are wall-clock seconds on an Intel Xeon E5-2670v2
@ 2.5 Ghz computer with 12 GB ram. The timelimit was set to 600 s as larger
values produced memory issues for some instances where the number of tree
nodes is very large. If the time-limit was reached, this is notified as “TL” in
the time column. These results clearly indicate that we managed to generate a
testbed which is sufficiently challenging for state-of-the-art MIBLP solvers.

Table 2 compares four settings for our code: (1) only no-good cuts are gen-
erated, (2) only ING cuts are generated, (3) only IC’s are generated, and (4)
IC’s are generated for fractional solutions at root node, while only ING cuts
generated for integer ones. Note that all settings lead to an exact method as all
instances in our testbed are pure binary. All versions were run in 4-thread oppor-
tunistic mode, without disabling internal Cplex cuts, on a Intel Xeon E3-1220V2
quadcore PC @ 3.10 GHz with 16 GB of RAM. Setting (1) is intended to assess
the difficulty of the created data set for a method built on top of Cplex, but
using the most basic MIBLP cuts (no-good). Setting (2) is intended to measure
the performance improvement obtained by replacing generic no-good cuts with
bilevel-specific ING cuts, while the impact of IC’s is addressed in setting (3).
Finally, setting (4) combines IC’s and ING cuts to limit the negative effect of
cut accumulation in the LP basis.

For each of the four setting and for each instance, in Table 2 we report the
same information as in Table 1, plus the overall number of branch-and-bound
nodes (#nodes).

The influence of IC’s to the performance of the B&C can be measured by
comparing the quality of lower bounds of the setting (3), with the settings (1) and
(2). In 14, respectively 11 cases, the LBs obtained by IC’s are strictly stronger
than those obtained by pure no-good and ING cuts, respectively. The quality of
lower bounds when IC’s are combined with ING cuts remains roughly the same
across all instances. As expected, the setting (1) exhibits the worst performance
with 22 instances remaining unsolved within the given time-limit. ING cuts
perform better (in particular considering the quality of lower bounds), but still

86 M. Fischetti et al.

Table 1. Instance difficulty when using two different MIBLP solvers

name Mibs B&C with IC’s

UB LB %gap t.[s] UB LB %gap t.[s]

fast0507-0.1 − 173 100.00 TL 12553 173 98.62 TL

fast0507-0.5 − 173 100.00 TL 61503 174 99.72 TL

fast0507-0.9 − 173 100.00 TL 109916 109916 0.00 7

lseu-0.1 1120 1120 0.00 4 1120 1120 0.00 2

lseu-0.5 2400 1205 49.79 TL 2263 1235 45.43 TL

lseu-0.9 5838 1171 79.94 TL 5838 1275 78.75 TL

p0033-0.1 3089 3089 0.00 0 3089 3089 0.00 0

p0033-0.5 3095 3095 0.00 0 3095 3095 0.00 0

p0033-0.9 4679 4679 0.00 90 4679 4679 0.00 3

p0201-0.1 12615 7859 37.70 TL 12465 7931 36.37 TL

p0201-0.5 14220 7832 44.92 TL 13910 7925 43.03 TL

p0201-0.9 15025 7809 48.03 TL 15025 7925 47.25 TL

p0282-0.1 261188 258435 1.05 TL 260781 260067 0.27 TL

p0282-0.5 276338 258432 6.48 TL 272659 259331 4.89 TL

p0282-0.9 724572 258427 64.33 TL 636846 284519 55.32 TL

p0548-0.1 − 317 100.00 TL 10982 8691 20.86 TL

p0548-0.5 − 317 100.00 TL 22450 8620 61.60 TL

p0548-0.9 − 317 100.00 TL 48959 8694 82.24 TL

p2756-0.1 − 2691 100.00 TL 12765 2734 78.58 TL

p2756-0.5 − 2691 100.00 TL 23976 2723 88.64 TL

p2756-0.9 − 2691 100.00 TL 35867 2733 92.38 TL

seymour-0.1 − 407 100.00 TL 480 407 15.21 TL

seymour-0.5 − 407 100.00 TL 823 408 50.43 TL

seymour-0.9 − 407 100.00 TL 1251 1251 0.00 2

stein27-0.1 18 18 0.00 0 18 18 0.00 1

stein27-0.5 19 19 0.00 7 19 19 0.00 3

stein27-0.9 24 20 16.67 TL 24 24 0.00 0

stein45-0.1 30 30 0.00 103 30 30 0.00 32

stein45-0.5 33 31 6.06 TL 32 32 0.00 205

stein45-0.9 40 31 22.50 TL 40 40 0.00 0

with 20 instances remaining unsolved. Both settings with IC’s and IC’s with ING
cuts manage to solve 12 instances to optimality. The number of enumerated
branch-and-bound nodes varies strongly between the instances, even between
those being derived from the same MIPLIB source. This indicates that, despite
the fact that some instances are derived from the identical HPR formulation,
the difficulty is mainly determined by the structure of the follower subproblem.

Intersection Cuts for Bilevel Optimization 87

T
a
b
le

2
.
C

o
m

p
a
ri

so
n

o
f
d
iff

er
en

t
se

tt
in

g
s

o
f
o
u
r

B
&

C
a
p
p
ro

a
ch

.
n
a
m
e

N
o
-g

o
o
d

c
u
ts

o
n
ly

IN
G

c
u
ts

o
n
ly

IC
’s

o
n
ly

IC
’s

a
n
d

IN
G

c
u
ts

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

fa
st
0
5
0
7
-0

.1
1
2
5
4
7

1
7
3

9
8
.6
2

T
L

2
7
6
6

1
2
5
4
8

1
7
3

9
8
.6
2

T
L

1
1
k

1
2
5
5
0

1
7
3

9
8
.6
2

T
L

4
4
5
1

1
2
5
5
2

1
7
3

9
8
.6
2

T
L

5
3
7
1

fa
st
0
5
0
7
-0

.5
6
1
4
8
5

1
7
3

9
9
.7
2

T
L

2
6
9
9

6
1
4
8
5

1
7
3

9
9
.7
2

T
L

5
2
1
5

-
5
4
4
0

1
0
0
.0
0

T
L

3
3
k

-
5
4
4
0

1
0
0
.0
0

T
L

3
3
k

fa
st
0
5
0
7
-0

.9
1
0
9
9
2
8

1
7
3

9
9
.8
4

T
L

2
6
9
7

1
0
9
9
2
8

1
7
3

9
9
.8
4

T
L

8
6
4

1
0
9
9
1
6

1
0
9
9
1
6

0
.0
0

4
2

1
0
9
9
1
6

1
0
9
9
1
6

0
.0
0

4
2

ls
e
u
-0

.1
1
1
2
0

1
1
2
0

0
.0
0

0
3
8

1
1
2
0

1
1
2
0

0
.0
0

0
4
0

1
1
2
0

1
1
2
0

0
.0
0

0
3
9

1
1
2
0

1
1
2
0

0
.0
0

0
4
0

ls
e
u
-0

.5
2
3
1
4

1
2
1
9

4
7
.3
2

T
L

1
4
1
k

2
2
6
3

1
3
2
4

4
1
.4
9

T
L

1
M

2
2
6
3

1
3
1
8

4
1
.7
6

T
L

2
M

2
2
7
4

1
3
2
3

4
1
.8
2

T
L

1
M

ls
e
u
-0

.9
5
8
3
8

1
2
1
3

7
9
.2
2

T
L

1
2
8
k

5
8
3
8

1
3
5
5

7
6
.7
9

T
L

2
M

5
8
3
8

1
3
8
4

7
6
.2
9

T
L

2
M

5
8
3
8

1
3
8
5

7
6
.2
8

T
L

2
M

p
0
0
3
3
-0

.1
3
0
8
9

3
0
8
9

0
.0
0

0
2

3
0
8
9

3
0
8
9

0
.0
0

0
2

3
0
8
9

3
0
8
9

0
.0
0

0
2

3
0
8
9

3
0
8
9

0
.0
0

0
2

p
0
0
3
3
-0

.5
3
0
9
5

3
0
9
5

0
.0
0

0
4
2

3
0
9
5

3
0
9
5

0
.0
0

0
4
5

3
0
9
5

3
0
9
5

0
.0
0

0
4
1

3
0
9
5

3
0
9
5

0
.0
0

0
4
3

p
0
0
3
3
-0

.9
4
6
7
9

4
6
7
9

0
.0
0

9
1
1
k

4
6
7
9

4
6
7
9

0
.0
0

1
4
6
4
6

4
6
7
9

4
6
7
9

0
.0
0

1
4
0
7
1

4
6
7
9

4
6
7
9

0
.0
0

1
3
3
5
5

p
0
2
0
1
-0

.1
1
2
6
1
0

7
8
0
2

3
8
.1
3

T
L

1
2
6
k

1
2
4
9
5

7
9
1
5

3
6
.6
5

T
L

7
9
4
k

1
2
3
4
5

7
9
4
5

3
5
.6
4

T
L

9
4
4
k

1
2
3
4
5

7
9
2
2

3
5
.8
3

T
L

7
3
8
k

p
0
2
0
1
-0

.5
1
3
9
2
5

7
8
0
3

4
3
.9
6

T
L

1
1
7
k

1
3
9
1
0

7
9
3
2

4
2
.9
8

T
L

9
2
2
k

1
3
9
2
0

7
9
4
4

4
2
.9
3

T
L

1
M

1
3
8
5
0

7
9
4
5

4
2
.6
4

T
L

9
6
5
k

p
0
2
0
1
-0

.9
1
5
0
2
5

7
8
0
4

4
8
.0
6

T
L

1
1
5
k

1
5
0
2
5

7
9
2
5

4
7
.2
5

T
L

7
1
8
k

1
5
0
2
5

7
9
3
3

4
7
.2
0

T
L

7
2
2
k

1
5
0
2
5

7
9
2
7

4
7
.2
4

T
L

7
1
6
k

p
0
2
8
2
-0

.1
2
6
0
7
8
1

2
5
8
4
3
1

0
.9
0

T
L

1
0
2
k

2
6
0
7
8
1

2
5
8
4
4
8

0
.8
9

T
L

2
M

2
6
0
7
8
1

2
5
8
4
4
9

0
.8
9

T
L

3
M

2
6
0
7
8
1

2
5
8
4
4
8

0
.8
9

T
L

2
M

p
0
2
8
2
-0

.5
2
7
4
4
2
2

2
5
8
4
3
2

5
.8
3

T
L

1
2
0
k

2
7
4
4
2
2

2
5
8
4
4
7

5
.8
2

T
L

2
M

2
7
4
4
2
2

2
5
8
4
4
8

5
.8
2

T
L

3
M

2
7
4
4
2
2

2
5
8
4
4
7

5
.8
2

T
L

2
M

p
0
2
8
2
-0

.9
6
8
5
6
4
0

2
5
8
4
3
2

6
2
.3
1

T
L

1
2
4
k

6
3
8
2
4
3

2
5
8
4
4
6

5
9
.5
1

T
L

2
M

6
3
9
9
6
4

2
7
1
7
3
4

5
7
.5
4

T
L

1
5
M

6
4
4
1
1
3

2
7
1
7
3
4

5
7
.8
1

T
L

1
5
M

p
0
5
4
8
-0

.1
1
1
1
0
0

8
6
9
1

2
1
.7
0

T
L

1
2
3
k

1
1
1
0
0

8
6
9
1

2
1
.7
0

T
L

3
6
5
k

1
1
3
4
8

8
6
9
1

2
3
.4
1

T
L

1
M

1
1
3
4
8

8
6
9
1

2
3
.4
1

T
L

4
9
4
k

p
0
5
4
8
-0

.5
2
2
0
8
3

8
6
9
1

6
0
.6
4

T
L

6
4
k

2
2
0
7
8

8
6
9
1

6
0
.6
4

T
L

7
6
k

2
2
0
8
3

8
6
9
1

6
0
.6
4

T
L

7
4
k

2
2
0
8
3

8
6
9
1

6
0
.6
4

T
L

7
0
k

p
0
5
4
8
-0

.9
5
0
1
6
2

8
6
9
1

8
2
.6
7

T
L

1
0
3
k

5
0
1
6
2

8
6
9
1

8
2
.6
7

T
L

2
2
0
k

5
0
2
5
3

9
1
4
7

8
1
.8
0

T
L

4
2
k

5
0
2
5
3

9
1
4
7

8
1
.8
0

T
L

4
4
k

p
2
7
5
6
-0

.1
1
4
5
4
0

3
1
2
4

7
8
.5
1

T
L

2
0
k

1
4
4
3
0

3
1
2
4

7
8
.3
5

T
L

3
8
k

1
3
9
3
6

3
1
2
4

7
7
.5
8

T
L

6
5
k

1
4
5
0
0

3
1
2
4

7
8
.4
6

T
L

3
2
k

p
2
7
5
6
-0

.5
2
5
6
5
4

3
1
2
4

8
7
.8
2

T
L

1
9
k

2
5
6
5
4

3
1
2
4

8
7
.8
2

T
L

4
4
k

2
3
9
3
1

3
1
2
4

8
6
.9
5

T
L

6
6
k

2
4
1
8
1

3
1
2
4

8
7
.0
8

T
L

4
9
k

p
2
7
5
6
-0

.9
3
6
4
4
9

3
1
2
4

9
1
.4
3

T
L

1
7
k

3
5
2
4
2

3
1
2
4

9
1
.1
4

T
L

1
8
2
k

3
4
0
9
2

3
1
2
4

9
0
.8
4

T
L

9
5
k

3
4
7
0
3

3
1
2
4

9
1
.0
0

T
L

1
7
5
k

se
y
m

o
u
r-
0
.1

4
7
7

4
1
5

1
3
.0
0

T
L

2
9
k

4
7
7

4
1
5

1
3
.0
0

T
L

2
5
k

4
7
7

4
1
5

1
3
.0
0

T
L

2
7
k

4
7
8

4
1
5

1
3
.1
8

T
L

2
5
k

se
y
m

o
u
r-
0
.5

8
2
3

4
1
5

4
9
.5
7

T
L

3
1
k

8
1
6

4
1
5

4
9
.1
4

T
L

3
7
k

8
2
3

4
1
5

4
9
.5
7

T
L

3
4
k

8
1
4

4
1
5

4
9
.0
2

T
L

3
9
k

se
y
m

o
u
r-
0
.9

1
2
5
2

4
1
5

6
6
.8
5

T
L

3
1
k

1
2
5
2

4
1
5

6
6
.8
5

T
L

2
3
k

1
2
5
1

1
2
5
1

0
.0
0

5
2

1
2
5
1

1
2
5
1

0
.0
0

5
2

st
e
in

2
7
-0

.1
1
8

1
8

0
.0
0

0
1
2
0
2

1
8

1
8

0
.0
0

0
1
2
4
4

1
8

1
8

0
.0
0

0
1
2
0
9

1
8

1
8

0
.0
0

0
1
2
4
7

st
e
in

2
7
-0

.5
1
9

1
9

0
.0
0

1
7
3
7
7

1
9

1
9

0
.0
0

1
7
0
6
0

1
9

1
9

0
.0
0

1
6
4
6
5

1
9

1
9

0
.0
0

1
7
0
0
1

st
e
in

2
7
-0

.9
2
4

1
9

2
0
.8
3

T
L

1
1
0
k

2
4

2
4

0
.0
0

2
1
3
k

2
4

2
4

0
.0
0

0
2

2
4

2
4

0
.0
0

0
2

st
e
in

4
5
-0

.1
3
0

3
0

0
.0
0

4
1
4
k

3
0

3
0

0
.0
0

4
1
4
k

3
0

3
0

0
.0
0

5
1
3
k

3
0

3
0

0
.0
0

5
1
4
k

st
e
in

4
5
-0

.5
3
2

3
2

0
.0
0

1
7
6

2
1
1
k

3
2

3
2

0
.0
0

3
1

1
3
3
k

3
2

3
2

0
.0
0

3
7

1
6
1
k

3
2

3
2

0
.0
0

4
7

2
0
2
k

st
e
in

4
5
-0

.9
4
0

3
0

2
5
.0
0

T
L

1
5
8
k

4
0

4
0

0
.0
0

2
3
4

1
M

4
0

4
0

0
.0
0

0
2

4
0

4
0

0
.0
0

0
2

88 M. Fischetti et al.

Acknowledgment. This research was funded by the Vienna Science and Technology
Fund (WWTF) through project ICT15-014. The work of M. Fischetti and M. Monaci
was also supported by the University of Padova (Progetto di Ateneo “Exploiting ran-
domness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN project
“Mixed-Integer Nonlinear Optimization: Approaches and Applications”). The work of
I. Ljubić and M. Sinnl was also supported by the Austrian Research Fund (FWF,
Project P 26755-N19). The authors thank Ted Ralphs for his technical support and
instructions regarding MibS, and Massimiliano Caramia for providing the instances
used in [3].

References

1. Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel
programming. Optimization Letters 1(3), 259–267 (2007)

2. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971)

3. Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear prob-
lems. Optimization Letters 9(7), 1447–1468 (2015)

4. DeNegre, S.: Interdiction and Discrete Bilevel Linear Programming. Ph.D. thesis,
Lehigh University (2011)

5. DeNegre, S., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear
programs. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations
Research and Cyber-Infrastructure, vol. 47, pp. 65–78. Springer, New York (2009)

6. Kleniati, P.-M., Adjiman, C.S.: A generalization of the branch-and-sandwich algo-
rithm: from continuous to mixed-integer nonlinear bilevel problems. Comput. Chem.
Eng. 72, 373–386 (2015)

7. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper.
Res. 38(5), 911–921 (1990)

8. Ralphs, T.K.: MibS. https://github.com/tkralphs/MibS
9. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear program-

ming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318
(2014)

https://github.com/tkralphs/MibS

	Intersection Cuts for Bilevel Optimization
	1 Introduction
	2 Literature Overview
	3 Bilevel-Free Sets
	4 Mixed-Integer Bilevel Linear Programming
	5 A New Family of Cuts for MIBLP
	6 Informed No-Good Cuts
	7 Preliminary Computational Results
	References

