# Intersection Cuts for Bilevel Optimization

Matteo Fischetti<sup>1(⊠)</sup>, Ivana Ljubić<sup>2</sup>, Michele Monaci<sup>1</sup>, and Markus Sinnl<sup>3</sup>

 DEI, University of Padua, Padua, Italy {matteo.fischetti,michele.monaci}@unipd.it
 ESSEC Business School of Paris, Cergy-Pontoise, France ivana.ljubic@essec.edu
 ISOR, University of Vienna, Vienna, Austria markus.sinnl@univie.ac.at

Abstract. The exact solution of bilevel optimization problems is a very challenging task that received more and more attention in recent years, as witnessed by the flourishing recent literature on this topic. In this paper we present ideas and algorithms to solve to proven optimality generic Mixed-Integer Bilevel Linear Programs (MIBLP's) where all constraints are linear, and some/all variables are required to take integer values. In doing so, we look for a general-purpose approach applicable to any MIBLP (under mild conditions), rather than ad-hoc methods for specific cases. Our approach concentrates on minimal additions required to convert an effective branch-and-cut MILP exact code into a valid MIBLP solver, thus inheriting the wide arsenal of MILP tools (cuts, branching rules, heuristics) available in modern solvers.

#### 1 Introduction

A general bilevel optimization problem is defined as

$$\min_{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}} F(x, y) \tag{1}$$

$$G(x,y) \le 0 \tag{2}$$

$$y \in \arg \min_{y' \in \mathbb{R}^{n_2}} \{ f(x, y') : g(x, y') \le 0 \},$$
 (3)

where  $F, f : \mathbb{R}^{n_1+n_2} \to \mathbb{R}, G : \mathbb{R}^{n_1+n_2} \to \mathbb{R}^{m_1}$ , and  $g : \mathbb{R}^{n_1+n_2} \to \mathbb{R}^{m_2}$ . Let  $n = n_1 + n_2$  denote the total number of decision variables.

We will refer to F(x, y) and  $G(x, y) \leq 0$  as the *leader* objective function and constraints, respectively, and to (3) as the *follower* subproblem. In case the follower subproblem has multiple optimal solutions, we assume that one with minimum leader cost among those with  $G(x, y) \leq 0$  is chosen—i.e. we consider the *optimistic* version of bilevel optimization.

By defining the follower value function for a given  $x \in \mathbb{R}^{n_1}$ 

$$\Phi(x) = \min_{y \in \mathbb{R}^{n_2}} \{ f(x, y) : g(x, y) \le 0 \},$$
(4)

<sup>©</sup> Springer International Publishing Switzerland 2016

Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 77–88, 2016. DOI: 10.1007/978-3-319-33461-5\_7

one can restate the bilevel optimization problem as follows:

$$\min F(x, y) \tag{5}$$

$$G(x,y) \le 0 \tag{6}$$

$$g(x,y) \le 0 \tag{7}$$

$$(x,y) \in \mathbb{R}^n \tag{8}$$

$$f(x,y) \le \Phi(x). \tag{9}$$

Note that the above optimization problem would be hard (both theoretically and in practice) even if one would assume convexity of F, G, f and g (which would imply that of  $\Phi$ ), due to the intrinsic nonconvexity of (9).

Dropping condition (9) leads the so-called *High Point Relaxation* (HPR). As customary in the bilevel context, we assume that HPR is feasible and bounded, and that the minimization problem in (4) is bounded for each feasible solution of HPR—while its feasibility follows directly from the definition of HPR. As HPR contains all the follower constraints, any HPR solution (x, y) satisfies  $f(x, y) \ge \Phi(x)$ , hence (9) actually implies  $f(x, y) = \Phi(x, y)$ .

A point  $(x, y) \in \mathbb{R}^n$  will be called *bilevel infeasible* if it violates (9). A point  $(x, y) \in \mathbb{R}^n$  will be called *bilevel feasible* if it is satisfies all constraints (6)–(9).

### 2 Literature Overview

In this paper we will mainly focus on Mixed-Integer Bilevel Linear Programs (MIBLP's) where some/all variables are required to be integer, and all HPR constraints (plus objective function) are linear.

The first generic branch-and-bound approach to the MIBLP's has been given in [7], where the authors propose to solve HPR embedded into a branch-andbound scheme and basically enumerate bilevel feasible solutions. Recently, [4,5] proposed a sound branch-and-cut approach that builds upon the ideas from [7] and cuts off integer bilevel infeasible solutions, by adding cuts that exploit the integrality property of the leader and the follower variables. The authors provide an open-source MIBLP solver MibS [8]. More recently, [3] again propose to embed HPR into a branch-and-bound tree, bilevel infeasible solutions being cut off by adding a continuous follower subproblem into HPR, each time a new bilevel infeasible solution is detected. Continuous follower subproblems are then reformulated using KKT conditions and linearized in a standard way. Another generic approach for MIBLP's is a branch-and-sandwich method in [6], where the authors propose novel ideas for deriving lower and upper bounds of the follower's value function.

As this is usually the case with intersection cuts for MILPs, our IC's for MIBLP's also use disjunctive arguments. Disjunctive cuts in connection to bilevel linear programming have been investigated in [1], where the continuous follower subproblem is reformulated using KKT conditions, and disjunctive cuts are used to enforce complementary slackness conditions.

### 3 Bilevel-Free Sets

The following result is valid for generic bilevel problems and was implicit in some early references (including [9]) where it was only used as a guide for branching.

**Lemma 1.** For any  $\hat{y} \in \mathbb{R}^{n_2}$ , the set

$$S(\hat{y}) = \{ (x, y) \in \mathbb{R}^n : f(x, y) \ge f(x, \hat{y}), \, g(x, \hat{y}) \le 0 \}$$
(10)

does not contain any bilevel feasible point in its interior.

*Proof.* It is enough to prove that no bilevel feasible (x, y) exists such that  $f(x, y) > f(x, \hat{y})$  and  $g(x, \hat{y}) < 0$ . We will in fact prove a tighter result where the latter condition is replaced by  $g(x, \hat{y}) \leq 0$ , as this will be required in the proof of the next theorem. Indeed, for any bilevel feasible solution (x, y) with  $g(x, \hat{y}) \leq 0$ , one has  $f(x, y) \leq \Phi(x) = \min_{y'} \{f(x, y') : g(x, y') \leq 0\} \leq f(x, \hat{y})$ .

In some relevant settings, the above result can be strengthened to obtain the following enlarged bilevel-free set.

**Theorem 1.** Assume that g(x, y) is integer for all HPR solutions (x, y). Then, for any  $\hat{y} \in \mathbb{R}^{n_2}$ , the extended set

$$S^{+}(\hat{y}) = \{(x, y) \in \mathbb{R}^{n} : f(x, y) \ge f(x, \hat{y}), \ g(x, \hat{y}) \le 1\}$$
(11)

does not contain any bilevel feasible point in its interior, where 1 denotes a vector of all ones.

*Proof.* To be in the interior of  $S^+(\hat{y})$ , a bilevel feasible (x, y) should satisfy  $f(x, y) > f(x, \hat{y})$  and  $g(x, \hat{y}) < 1$ . By assumption, the latter condition can be replaced by  $g(x, \hat{y}) \leq 0$ , hence the claim follows from the proof of previous lemma.

As far as we know, the above result is new. In spite of its simplicity, it will play a fundamental role in our solution method.

## 4 Mixed-Integer Bilevel Linear Programming

In the remaining part of the paper we will focus on the case where some/all variables are required to be integer, and all HPR constraints (plus objective function) are linear. This leads to the following Mixed-Integer Bilevel Linear Program (MIBLP):

$$\min F(x, y) \tag{12}$$

$$G(x,y) \le 0 \tag{13}$$

$$g(x,y) \le 0 \tag{14}$$

$$(x,y) \in \mathbb{R}^n \tag{15}$$

- $f(x,y) \le \Phi(x) \tag{16}$ 
  - $x_j$  integer,  $\forall j \in J_1$  (17)
  - $y_j$  integer,  $\forall j \in J_2$ , (18)

where F, G, f, g are now assumed to be affine functions, sets  $J_1 \subseteq \{1, \dots, n_1\}$  and  $J_2 \subseteq \{1, \dots, n_2\}$  identify the (possibly empty) indices of the integer-constrained variables in x and y, respectively, and the value function reads

$$\Phi(x) = \min_{y \in \mathbb{R}^{n_2}} \{ f(x, y) : g(x, y) \le 0, \ y_j \in \mathbb{Z} \ \forall j \in J_2 \}.$$
 (19)

Dropping (16) leads to the HPR, which is a MILP in this setting. Dropping integrality conditions as well leads to the LP relaxation of HPR, namely (12)–(15), an LP which will be denoted by HPR.

Our main goal is to solve the above MIBLP by using a standard simplex-based branch-and-cut algorithm where the hard constraint (16) is enforced, on the fly, by adding cutting planes. The minimal requisite for the correctness of such an approach is the ability of cutting any *vertex*, say  $(x^*, y^*)$ , of  $\overline{\text{HPR}}$  which satisfies the integrality requirements (17) and (18) but is bilevel infeasible because

$$f(x^*, y^*) > \Phi(x^*),$$
 (20)

thus preventing a wrong update of the incumbent. To this end, we will propose a novel application of Balas' intersection cuts [2] in the MIBLP context.

## 5 A New Family of Cuts for MIBLP

Intersection cuts (IC's) for a given  $(x^*, y^*)$  require the definition of two sets: (1) a cone pointed at  $(x^*, y^*)$  that contains all the bilevel feasible solutions, and (2) a convex set  $S^*$  that contains  $(x^*, y^*)$  but no bilevel feasible solutions in its interior. The reader is referred to [2] for technical details.

As customary in mixed-integer programming, IC's are generated for vertices  $(x^*, y^*)$  of an LP relaxation of the problem to be solved, so a suitable cone is just the corner polyhedron associated with the corresponding optimal basis. All relevant information in this cone is readily available in the "optimal tableau" and requires no additional computational effort.

As to the convex set  $S^*$ , we propose to use the set defined in Lemma 1 (or, better, in Theorem 1 if applicable) by choosing

$$\hat{y} = \arg\min_{y} \{ f(x^*, y) : g(x^*, y) \le 0, \ y_j \in \mathbb{Z} \ \forall j \in J_2 \}$$
(21)

(assuming this problem is not unbounded). Indeed, such a set  $S^*$  does not contain any bilevel feasible point in its interior, as required, while  $(x^*, y^*) \in S^*$  because of (20) and  $\Phi(x^*) = f(x^*, \hat{y})$  by definition. Note that  $\hat{y}$  is well defined when  $(x^*, y^*)$  is a solution of HPR, and that  $S^*$  is a convex polyhedron in the MIBLP case.

However, an important property is still missing, namely,  $(x^*, y^*)$  must belong to the *interior* of  $S^*$  if we want to generate a violated intersection cut. This is always the case for MILBP's for which  $S^*$  is the *extended* set defined as in Theorem 1. This includes problems with *all-integer follower* where  $J_2 = \{1, \dots, n_2\}$ , all *g*coefficients are integer, and  $j \in J_1$  for all  $x_j$ 's appearing with nonzero coefficient in some follower constraint. A relevant consequence of the above discussion is that, at least in the allinteger follower case, an exact branch-and-cut MIBLP solver can be obtained from a MILP solver by just adding a separation function for IC's based on the extended set  $S^+(\hat{y})$  defined by (11) and (21). Indeed, observe that an exact MIBLP solver can be obtained by applying a general-purpose simplex-based MILP solver to HPR. To avoid the incumbent be updated with bilevel infeasible solutions, it is enough to cut any HPR solution  $(x^*, y^*)$  with  $f(x^*, y^*) > \Phi(x^*)$ . Without loss of generality, by disabling internal MILP heuristics, we can assume that  $(x^*, y^*)$  is a *vertex* of the current HPR so we can always cut it by an (locallyvalid) IC as, by definition,  $(x^*, y^*)$  is in the interior of the extended  $S^+(\hat{y})$  when  $\hat{y}$  is defined as in (21). In addition, assuming that all leader's variables x are integer and bounded, the number of HPR solutions to cut is finite, so a finite number of branching nodes (and hence of IC's) will be generated, i.e., the method converges in a finite number of iterations.

In the heuristic attempt of producing violated IC's for a generic vertex  $(x^*, y^*)$  of the  $\overline{\text{HPR}}$  polyhedron, one could also consider the following alternative definition of the point  $\hat{y}$  that defines the bilevel-free set  $S^+(\hat{y})$ :

$$(\hat{y}, \hat{d}) = \arg \max_{y, d} \{ d : f(x^*, y) + \varphi \, d \le f(x^*, y^*), \\ g(x^*, y) + \gamma d \le 1, \ y_j \in \mathbb{Z} \ \forall j \in J_2 \},$$
(22)

where  $\varphi \in \mathbb{R}_+$  and  $\gamma \in \mathbb{R}_+^{m_2}$  are suitable normalization factors, e.g., the Euclidean norm of the corresponding left-hand-side coefficient vectors. The rationale of this definition is that one wants to detect a bilevel-free set  $S(\hat{y})$  whose closest face to  $(x^*, y^*)$  has a maximum distance from it.

*Example.* Figure 1 illustrates the application of IC's on an example given in [7], which is frequently used in the literature:

$$\min_{x \in \mathbb{Z}} -x - 10y \tag{23}$$

$$y \in \arg\min_{y' \in \mathbb{Z}} \{ y' :$$
(24)

 $-25x + 20y' \le 30\tag{25}$ 

$$x + 2y' \le 10\tag{26}$$

$$2x - y' \le 15 \tag{27}$$

$$2x + 10y' \ge 15 \}.$$
(28)

In this all-integer example, there are 8 bilevel feasible points (depicted as crossed squares in Fig. 1), and the optimal bilevel solution is (2, 2). The drawn polytope corresponds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Lemma 1 with  $\hat{y}$  defined as in (21). After solving the first  $\overline{\text{HPR}}$ , the point A = (2, 4) is found. This point is bilevel infeasible, as for  $x^* = 2$  we have  $f(x^*, y^*) = y^* = 4$  while  $\Phi(x^*) = 2$ . From (21) we compute  $\hat{y} = 2$  and the intersection cut derived from the associated  $S(\hat{y})$  is depicted in Fig. 1(a). In the next iteration, the optimal  $\overline{\text{HPR}}$  solution moves to B = (6, 2). Again, for  $x^* = 6$ ,  $f(x^*, y^*) = y^* = 2$  while  $\Phi(x^*) = 1$ . So we compute  $\hat{y} = 1$  and generate the IC induced by the associated  $S(\hat{y})$ , namely  $2x + 11y \leq 27$  (cf. Fig. 1(b)). In the next iteration, the fractional point C = (5/2, 2) is found and  $\hat{y} = 1$  is again computed. In this case, C is not in the interior of  $S(\hat{y})$  so we cannot generate an IC cut from C but we should proceed and optimize HPR to integrality by using standard MILP tools such as MILP cuts or branching. This produces the optimal HPR solution (2, 2) which is bilevel feasible and hence optimal.

We next apply the definition of the enlarged bilevel-free set from Theorem 1 (whose assumption is fulfilled) with  $\hat{y}$  defined again as in (21); see Fig. 1(c) and (d). After the first iteration, the point A = (2, 4) is cut off by a slightly larger  $S^+(\hat{y} = 2)$ , but with the same IC as before  $(y \leq 2)$ . After the second iteration, from the bilevel infeasible point B = (6, 2) we derive a larger set  $S^+(\hat{y} = 1)$  and a stronger IC  $(x + 6y \leq 14)$ . In the third iteration, solution D = (2, 2) is found which is the optimal bilevel solution, so no branching at all is required in this example.

## 6 Informed No-Good Cuts

A known drawback of IC's is their dependency on the LP basis associated with the point to cut, which can create cut accumulation in the LP relaxation and hence shallow cuts and numerical issues. Moreover, IC's are not directly applicable if the point to cut is not a vertex of a certain LP relaxation of the problem at hand, as it happens e.g. when it is computed by the internal MILP heuristics.

We next describe a general-purpose variant of IC's whose derivation does not require any LP basis and is based on the well-known interpretation of IC's as disjunctive cuts. It turns out that the resulting inequality is valid and violated by any bilevel infeasible solution of HPR in the relevant special case where all xand y variables are binary.

Suppose we are given a point  $\xi^* = (x^*, y^*) \in \mathbb{R}^n$  and a polyhedron  $S^* = \{\xi \in \mathbb{R}^n : \alpha_i^T \xi \leq \alpha_{i0}, i = 1, \cdots, k\}$  whose interior contains  $\xi^*$  but no feasible points. Assume that variable-bound constraints  $l \leq \xi \leq u$  are present, where some entries of l or u can be  $-\infty$  or  $+\infty$ , respectively. Given  $\xi^*$ , define  $L := \{j : \xi_j^* - l_j \leq u_j - \xi_j^*\}$  and  $U := \{1, \cdots, n\} \setminus L$  and the corresponding linear mapping  $\xi \mapsto \overline{\xi} \in \mathbb{R}^n$  with  $\overline{\xi}_j := \xi_j - l_j$  for  $j \in L$ , and  $\overline{\xi}_j := u_j - \xi_j$  for  $j \in U$  (variable shift and complement).

By assumption, any feasible point  $\xi$  must satisfy the disjunction

$$\bigvee_{i=1}^{k} \{\xi \in \mathbb{R}^{n} : \sum_{j=1}^{n} \alpha_{ij} \xi_{j} \ge \alpha_{i0} \},$$
(29)

whereas  $\xi^*$  violates all the above inequalities. Now, each term of (29) can be rewritten in terms of  $\overline{\xi}$  as



Fig. 1. Illustration of the effect of alternative intersection cuts for a notorious example from [7]. Shaded regions correspond to the bilevel-free sets for which the cut is derived.

$$\sum_{j=1}^{n} \overline{\alpha}_{ij} \overline{\xi}_j \ge \overline{\beta}_i := \alpha_{i0} - \sum_{j \in L} \alpha_{ij} l_j - \sum_{j \in U} \alpha_{ij} u_j, \tag{30}$$

with  $\overline{\alpha}_{ij} := \alpha_{ij}$  if  $j \in L$ ,  $\overline{\alpha}_{ij} = -\alpha_{ij}$  otherwise. If  $\overline{\beta}_i > 0$  for all  $i = 1, \dots, k$ , one can normalize the above inequalities to get  $\sum_{j=1}^{n} (\overline{\alpha}_{ij}/\overline{\beta}_i) \overline{\xi}_j \ge 1$  and derive the valid disjunctive cut in the  $\overline{\xi}$  space

$$\sum_{j=1}^{n} \overline{\gamma}_j \overline{\xi}_j \ge 1, \tag{31}$$

where  $\overline{\gamma}_j := \max\{\overline{\alpha}_{ij}/\overline{\beta}_i : i = 1, \cdots, k\}$ , and then one can transform it back to the  $\xi$  space in the obvious way. It is easy to see that, in case  $\xi_j^* \in \{l_j, u_j\}$  for

all  $j = 1, \dots, n$ , the above cut is indeed valid (because  $\overline{\beta} > 0$ ) and obviously violated as  $\overline{\xi}^* = 0$ . In all other cases, the above cut separation is just heuristic.

Inequality (31) will be called *Informed No-Good* (ING) cut as it can be viewed as a strengthening of the following no-good cut often used for bilevel problems with all-binary variables—and in many other Constraint Programming (CP) and Mathematical Programming (MP) contexts:

$$\sum_{j \in L} \xi_j + \sum_{j \in U} (1 - \xi_j) \ge 1.$$
(32)

The cut above corresponds to the very generic choice

$$S^* = \{\xi \in \mathbb{R}^n : \xi_j \le 1 \,\forall j \in L, \ 1 - \xi_j \le 1 \,\forall j \in U\}$$

and is violated by  $\xi^*$  but is satisfied by any other binary point, hence resulting into a very weak cut. To the best our knowledge, ING cuts are new; they will hopefully be useful in other CP and MP contexts.

## 7 Preliminary Computational Results

To evaluate the performance of our new cuts, we embedded them within the general-purpose MILP solver IBM ILOG Cplex 12.6.2 using callbacks, resulting into a branch-and-cut (B&C) MIBLP approach. Internal Cplex's heuristics as well preprocessing have been deactivated in all experiments. IC separation is applied at the root node on all LP solutions (in the so-called usercut callback), while for the remaining nodes it is only applied to integer solutions (lazycut callback). For fractional solutions, IC's whose normalized violation is too small are just skipped. All generated cuts are treated as local cuts (even if no-good and ING cuts would be globally valid) as this reduces the node LP size and significantly improves node throughput. To improve the quality of IC cuts, the bilevel-free set is enlarged by removing all its defining inequalities  $\alpha^T(x, y) \leq \alpha_0$  (say) such that imposing the reverse condition  $\alpha^T(x, y) \geq \alpha_0$  would trivially lead to an infeasible HPR relaxation due to the current bounds on the x and y variables (this step turns out to be very important for the success of our method). More implementation details will be given in the full paper.

We first compared our code with the one in [3] on the testbed proposed therein. All such instances turned out to be very easy, both for our approach and for MibS. More precisely, each instance could be solved in less than a second by our code and in at most 3 s by MibS, i.e., both codes were 2–3 orders of magnitude faster than the one in [3]. Therefore we addressed more difficult instances, obtained according to the following procedure.

We took a familiar testbed (MILPLIB 3.0) that contains instances that are easily solvable by modern MILP solvers (except instance **seymour** which is very hard even as a MILP). As we planned to also run the open-source MIBLP solver MibS [8] to check our code, we skipped all instances involving equations or continuous variables, as well as those involving noninteger coefficients—all the above cases being not supported by the current release of MibS. This produced a set of 10 basic 0–1 MILP instances, that we converted into bilevel problems by labeling the first Y% (rounded up) variables as y's, and the remaining ones as x's. In our test, we considered the three cases with  $Y \in \{10, 50, 90\}$  leading to instances named name-0.1.mps, name-0.5.mps, and name-0.9.mps, respectively. All constraints in the resulting model belong to the follower subproblem, as MibS cannot handle leader-specific constraints  $G(x, y) \leq 0$ , while the objective function is used as the leader's objective F(x, y). Finally, the follower's objective is defined as f(x, y) = -F(x, y).

In Table 1, we use MibS to assess the computational difficulty of the instances we generated. The table also reports results for our basic B&C code (with IC's but not ING cuts) when run in single-thread mode and with internal Cplex cuts disabled. Note that the two solvers cannot be compared directly, as they are based on a different underlying MILP code, namely: Cplex for our code, and COIN-OR (BLIS) plus Cplex for MibS. For both codes, we report in Table 1 the following values: the best obtained upper bound (UB), the best obtained lower bound (LB), the final percentage gap (%gap) calculated as (UB - LB) / UB × 100. Computing times (t.[s]) are wall-clock seconds on an Intel Xeon E5-2670v2 @ 2.5 Ghz computer with 12 GB ram. The timelimit was set to 600 s as larger values produced memory issues for some instances where the number of tree nodes is very large. If the time-limit was reached, this is notified as "TL" in the time column. These results clearly indicate that we managed to generate a testbed which is sufficiently challenging for state-of-the-art MIBLP solvers.

Table 2 compares four settings for our code: (1) only no-good cuts are generated, (2) only ING cuts are generated, (3) only IC's are generated, and (4) IC's are generated for fractional solutions at root node, while only ING cuts generated for integer ones. Note that all settings lead to an exact method as all instances in our testbed are pure binary. All versions were run in 4-thread opportunistic mode, without disabling internal Cplex cuts, on a Intel Xeon E3-1220V2 quadcore PC @ 3.10 GHz with 16 GB of RAM. Setting (1) is intended to assess the difficulty of the created data set for a method built on top of Cplex, but using the most basic MIBLP cuts (no-good). Setting (2) is intended to measure the performance improvement obtained by replacing generic no-good cuts with bilevel-specific ING cuts, while the impact of IC's is addressed in setting (3). Finally, setting (4) combines IC's and ING cuts to limit the negative effect of cut accumulation in the LP basis.

For each of the four setting and for each instance, in Table 2 we report the same information as in Table 1, plus the overall number of branch-and-bound nodes (#nodes).

The influence of IC's to the performance of the B&C can be measured by comparing the quality of lower bounds of the setting (3), with the settings (1) and (2). In 14, respectively 11 cases, the LBs obtained by IC's are strictly stronger than those obtained by pure no-good and ING cuts, respectively. The quality of lower bounds when IC's are combined with ING cuts remains roughly the same across all instances. As expected, the setting (1) exhibits the worst performance with 22 instances remaining unsolved within the given time-limit. ING cuts perform better (in particular considering the quality of lower bounds), but still

| name         |        | Mibs   | 5      |       | E      | B&C with | IC's  |       |
|--------------|--------|--------|--------|-------|--------|----------|-------|-------|
|              | UB     | LB     | %gap   | t.[s] | UB     | LB       | %gap  | t.[s] |
| fast0507-0.1 | -      | 173    | 100.00 | TL    | 12553  | 173      | 98.62 | TL    |
| fast0507-0.5 | _      | 173    | 100.00 | TL    | 61503  | 174      | 99.72 | TL    |
| fast0507-0.9 | —      | 173    | 100.00 | TL    | 109916 | 109916   | 0.00  | 7     |
| lseu-0.1     | 1120   | 1120   | 0.00   | 4     | 1120   | 1120     | 0.00  | 2     |
| lseu-0.5     | 2400   | 1205   | 49.79  | TL    | 2263   | 1235     | 45.43 | TL    |
| lseu-0.9     | 5838   | 1171   | 79.94  | TL    | 5838   | 1275     | 78.75 | TL    |
| p0033-0.1    | 3089   | 3089   | 0.00   | 0     | 3089   | 3089     | 0.00  | 0     |
| p0033-0.5    | 3095   | 3095   | 0.00   | 0     | 3095   | 3095     | 0.00  | 0     |
| p0033-0.9    | 4679   | 4679   | 0.00   | 90    | 4679   | 4679     | 0.00  | 3     |
| p0201-0.1    | 12615  | 7859   | 37.70  | TL    | 12465  | 7931     | 36.37 | TL    |
| p0201-0.5    | 14220  | 7832   | 44.92  | TL    | 13910  | 7925     | 43.03 | TL    |
| p0201-0.9    | 15025  | 7809   | 48.03  | TL    | 15025  | 7925     | 47.25 | TL    |
| p0282-0.1    | 261188 | 258435 | 1.05   | TL    | 260781 | 260067   | 0.27  | TL    |
| p0282-0.5    | 276338 | 258432 | 6.48   | TL    | 272659 | 259331   | 4.89  | TL    |
| p0282-0.9    | 724572 | 258427 | 64.33  | TL    | 636846 | 284519   | 55.32 | TL    |
| p0548-0.1    | -      | 317    | 100.00 | TL    | 10982  | 8691     | 20.86 | TL    |
| p0548-0.5    | -      | 317    | 100.00 | TL    | 22450  | 8620     | 61.60 | TL    |
| p0548-0.9    | -      | 317    | 100.00 | TL    | 48959  | 8694     | 82.24 | TL    |
| p2756-0.1    | -      | 2691   | 100.00 | TL    | 12765  | 2734     | 78.58 | TL    |
| p2756-0.5    | -      | 2691   | 100.00 | TL    | 23976  | 2723     | 88.64 | TL    |
| p2756-0.9    | _      | 2691   | 100.00 | TL    | 35867  | 2733     | 92.38 | TL    |
| seymour-0.1  | -      | 407    | 100.00 | TL    | 480    | 407      | 15.21 | TL    |
| seymour-0.5  | -      | 407    | 100.00 | TL    | 823    | 408      | 50.43 | TL    |
| seymour-0.9  | -      | 407    | 100.00 | TL    | 1251   | 1251     | 0.00  | 2     |
| stein27-0.1  | 18     | 18     | 0.00   | 0     | 18     | 18       | 0.00  | 1     |
| stein27-0.5  | 19     | 19     | 0.00   | 7     | 19     | 19       | 0.00  | 3     |
| stein27-0.9  | 24     | 20     | 16.67  | TL    | 24     | 24       | 0.00  | 0     |
| stein45-0.1  | 30     | 30     | 0.00   | 103   | 30     | 30       | 0.00  | 32    |
| stein 45-0.5 | 33     | 31     | 6.06   | TL    | 32     | 32       | 0.00  | 205   |
| stein45-0.9  | 40     | 31     | 22.50  | TL    | 40     | 40       | 0.00  | 0     |

Table 1. Instance difficulty when using two different MIBLP solvers

with 20 instances remaining unsolved. Both settings with IC's and IC's with ING cuts manage to solve 12 instances to optimality. The number of enumerated branch-and-bound nodes varies strongly between the instances, even between those being derived from the same MIPLIB source. This indicates that, despite the fact that some instances are derived from the identical HPR formulation, the difficulty is mainly determined by the structure of the follower subproblem.

| Table 2. Comparison of       No-good cuts only     ING cuts       IIR     I.R     [%] | Table 2. Comparison of       No-good cuts only     ING cuts       I.B     \$\mathcal{S}_{\mathcal{A}_{\mathcal{D}_{\mathcal{A}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathcal{D}_{\mathca | d cuts only ING cuts<br>2. Comparison of<br>d cuts only ING cuts<br>2. Comparison of<br>1. Comparison of<br>2. Comparison of<br>1. Comparison of<br>2. C | Table 2. Comparison of only       only     ING cuts       + fail #modes     ITR     ITR | Table 2. Comparison of ING cuts       #modes     ING cuts | 2. Comparison of<br>ING cuts | Iparison of<br>ING cuts | n of<br>cuts | . 15 7 | diffe.<br>14 [s] | rent set       | tings c | of our I<br>IC | 3&CC<br>"s only" | appr<br>+ [s]          | oach.          | AII    | IC's al | nd ING | cuts<br>+ [s] | sepon#        |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------|-------------------------|--------------|--------|------------------|----------------|---------|----------------|------------------|------------------------|----------------|--------|---------|--------|---------------|---------------|
|                                                                                       | GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΓB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %gap                                                                                    | t.[s]                                                     | #nodes                       | UB                      | ΓB           | %gap   | t.[s]            | #nodes         | UB      | LB             | %gap             | t.[s]                  | #nodes         | UB     | ΓB      | %gap   | t.[s]         | #noc          |
| t0507-0.1                                                                             | 12547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.62                                                                                   | ΤL                                                        | 2766                         | 12548                   | 173          | 98.62  | ΤĽ               | 11k            | 12550   | 173            | 98.62            | ΤĽ                     | 4451           | 12552  | 173     | 98.62  | ΤL            | 5371          |
| t0507-0.5                                                                             | 61485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.72                                                                                   | $\mathbf{TL}$                                             | 2699                         | 61485                   | 173          | 99.72  | $\mathbf{TL}$    | 5215           | ı       | 5440           | 100.00           | $\mathbf{T}\mathbf{L}$ | 33k            | I      | 5440    | 100.00 | $\mathbf{TL}$ | 33k           |
| t0507-0.9                                                                             | 109928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.84                                                                                   | ΤL                                                        | 2697                         | 109928                  | 173          | 99.84  | $_{\rm TL}$      | 864            | 109916  | 109916         | 0.00             | 4                      | 2              | 109916 | 109916  | 0.00   | 4             | 5             |
| u-0.1                                                                                 | 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                    | 0                                                         | 38                           | 1120                    | 1120         | 0.00   | 0                | 40             | 1120    | 1120           | 0.00             | 0                      | 39             | 1120   | 1120    | 0.00   | 0             | 40            |
| eu-0.5                                                                                | 2314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47.32                                                                                   | ΤL                                                        | 141k                         | 2263                    | 1324         | 41.49  | $_{\rm TL}$      | $1 \mathrm{M}$ | 2263    | 1318           | 41.76            | ΤL                     | 2M             | 2274   | 1323    | 41.82  | $\mathbf{TL}$ | $1\mathrm{M}$ |
| eu-0.9                                                                                | 5838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.22                                                                                   | ΤL                                                        | 128k                         | 5838                    | 1355         | 76.79  | ΤL               | 2M             | 5838    | 1384           | 76.29            | ΤL                     | 2M             | 5838   | 1385    | 76.28  | ΤL            | 2M            |
| 033-0.1                                                                               | 3089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                    | 0                                                         | 2                            | 3089                    | 3089         | 0.00   | 0                | 2              | 3089    | 3089           | 0.00             | 0                      | 2              | 3089   | 3089    | 0.00   | 0             | 5             |
| 033-0.5                                                                               | 3095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                    | 0                                                         | 42                           | 3095                    | 3095         | 0.00   | 0                | 45             | 3095    | 3095           | 0.00             | 0                      | 41             | 3095   | 3095    | 0.00   | 0             | 43            |
| 033-0.9                                                                               | 4679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                    | 6                                                         | 11k                          | 4679                    | 4679         | 0.00   | 1                | 4646           | 4679    | 4679           | 0.00             | -                      | 4071           | 4679   | 4679    | 0.00   | -             | 3355          |
| 201-0.1                                                                               | 12610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.13                                                                                   | ΤL                                                        | 126k                         | 12495                   | 7915         | 36.65  | $_{\rm TL}$      | 794k           | 12345   | 7945           | 35.64            | ΤL                     | 944k           | 12345  | 7922    | 35.83  | $\mathbf{TL}$ | 738k          |
| 201-0.5                                                                               | 13925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.96                                                                                   | ΤL                                                        | 117k                         | 13910                   | 7932         | 42.98  | $_{\rm TL}$      | 922k           | 13920   | 7944           | 42.93            | ΤL                     | $1 \mathrm{M}$ | 13850  | 7945    | 42.64  | $\mathbf{TL}$ | 965k          |
| 201-0.9                                                                               | 15025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.06                                                                                   | ΤL                                                        | 115k                         | 15025                   | 7925         | 47.25  | $_{\rm TL}$      | 718k           | 15025   | 7933           | 47.20            | ΤL                     | 722k           | 15025  | 7927    | 47.24  | $\mathbf{TL}$ | 716k          |
| 1282-0.1                                                                              | 260781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 258431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                    | ΤL                                                        | 102k                         | 260781                  | 258448       | 0.89   | $_{\rm TL}$      | 2M             | 260781  | 258449         | 0.89             | ΤL                     | 3M             | 260781 | 258448  | 0.89   | $\mathbf{TL}$ | 2M            |
| 1282-0.5                                                                              | 274422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 258432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.83                                                                                    | ΤL                                                        | 120k                         | 274422                  | 258447       | 5.82   | $_{\rm TL}$      | 2M             | 274422  | 258448         | 5.82             | ΤL                     | 3M             | 274422 | 258447  | 5.82   | $\mathbf{TL}$ | 2M            |
| 1282-0.9                                                                              | 685640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 258432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62.31                                                                                   | $\mathbf{TL}$                                             | 124k                         | 638243                  | 258446       | 59.51  | $\mathbf{TL}$    | 2M             | 639964  | 271734         | 57.54            | ΤL                     | 15M            | 644113 | 271734  | 57.81  | $\mathbf{TL}$ | 15M           |
| 1548-0.1                                                                              | 11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.70                                                                                   | $\mathbf{TL}$                                             | 123k                         | 11100                   | 8691         | 21.70  | $_{\rm TL}$      | 365k           | 11348   | 8691           | 23.41            | ΤL                     | $1\mathrm{M}$  | 11348  | 8691    | 23.41  | $\mathbf{TL}$ | 494k          |
| 0548-0.5                                                                              | 22083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60.64                                                                                   | $\mathbf{TL}$                                             | 64k                          | 22078                   | 8691         | 60.64  | TL               | 76k            | 22083   | 8691           | 60.64            | ΤL                     | 74k            | 22083  | 8691    | 60.64  | $\mathbf{TL}$ | 70k           |
| 0548-0.9                                                                              | 50162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.67                                                                                   | $\mathbf{TL}$                                             | 103k                         | 50162                   | 8691         | 82.67  | TL               | 220k           | 50253   | 9147           | 81.80            | $_{\rm TL}$            | 42k            | 50253  | 9147    | 81.80  | $\mathbf{TL}$ | 44k           |
| 2756-0.1                                                                              | 14540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78.51                                                                                   | ΤL                                                        | 20k                          | 14430                   | 3124         | 78.35  | $_{\rm TL}$      | 38k            | 13936   | 3124           | 77.58            | ΤL                     | 65k            | 14500  | 3124    | 78.46  | $\mathbf{TL}$ | 32k           |
| 2756-0.5                                                                              | 25654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87.82                                                                                   | $\mathbf{TL}$                                             | 19k                          | 25654                   | 3124         | 87.82  | TL               | 44k            | 23931   | 3124           | 86.95            | $_{\rm TL}$            | 66k            | 24181  | 3124    | 87.08  | $\mathbf{TL}$ | 49k           |
| 2756-0.9                                                                              | 36449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.43                                                                                   | $\mathbf{TL}$                                             | 17k                          | 35242                   | 3124         | 91.14  | $\mathbf{TL}$    | 182k           | 34092   | 3124           | 90.84            | ΤL                     | 95k            | 34703  | 3124    | 91.00  | $\mathbf{TL}$ | 175k          |
| ymour-0.1                                                                             | 477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.00                                                                                   | $\mathbf{TL}$                                             | 29k                          | 477                     | 415          | 13.00  | TL               | 25k            | 477     | 415            | 13.00            | $_{\rm TL}$            | 27k            | 478    | 415     | 13.18  | $\mathbf{TL}$ | 25k           |
| symour-0.5                                                                            | 823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.57                                                                                   | $\mathbf{TL}$                                             | 31k                          | 816                     | 415          | 49.14  | TL               | 37k            | 823     | 415            | 49.57            | ΤL                     | 34k            | 814    | 415     | 49.02  | $\mathbf{TL}$ | 39k           |
| symour-0.9                                                                            | 1252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.85                                                                                   | ΤL                                                        | 31k                          | 1252                    | 415          | 66.85  | $_{\rm TL}$      | 23k            | 1251    | 1251           | 0.00             | ъ                      | 2              | 1251   | 1251    | 0.00   | S             | 5             |
| ein27-0.1                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                    | 0                                                         | 1202                         | 18                      | 18           | 0.00   | 0                | 1244           | 18      | 18             | 0.00             | 0                      | 1209           | 18     | 18      | 0.00   | 0             | 1247          |
| ein27-0.5                                                                             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                    | 1                                                         | 7377                         | 19                      | 19           | 0.00   | 1                | 7060           | 19      | 19             | 0.00             | 1                      | 6465           | 19     | 19      | 0.00   | 1             | 7001          |
| ein27-0.9                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.83                                                                                   | $\mathbf{TL}$                                             | 110k                         | 24                      | 24           | 0.00   | 2                | 13k            | 24      | 24             | 0.00             | 0                      | 2              | 24     | 24      | 0.00   | 0             | 2             |
| ein45-0.1                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                    | 4                                                         | 14k                          | 30                      | 30           | 0.00   | 4                | 14k            | 30      | 30             | 0.00             | ъ                      | 13k            | 30     | 30      | 0.00   | 5             | 14k           |
| ein45-0.5                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                    | 176                                                       | 211k                         | 32                      | 32           | 0.00   | 31               | 133k           | 32      | 32             | 0.00             | 37                     | 161k           | 32     | 32      | 0.00   | 47            | 202k          |
| ein45-0.9                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.00                                                                                   | $\mathbf{TL}$                                             | 158k                         | 40                      | 40           | 0.00   | $^{234}$         | $1\mathrm{M}$  | 40      | 40             | 0.00             | 0                      | 2              | 40     | 40      | 0.00   | 0             | 2             |

87

Acknowledgment. This research was funded by the Vienna Science and Technology Fund (WWTF) through project ICT15-014. The work of M. Fischetti and M. Monaci was also supported by the University of Padova (Progetto di Ateneo "Exploiting randomness in Mixed Integer Linear Programming"), and by MiUR, Italy (PRIN project "Mixed-Integer Nonlinear Optimization: Approaches and Applications"). The work of I. Ljubić and M. Sinnl was also supported by the Austrian Research Fund (FWF, Project P 26755-N19). The authors thank Ted Ralphs for his technical support and instructions regarding MibS, and Massimiliano Caramia for providing the instances used in [3].

# References

- Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel programming. Optimization Letters 1(3), 259–267 (2007)
- Balas, E.: Intersection cuts-a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971)
- Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear problems. Optimization Letters 9(7), 1447–1468 (2015)
- 4. DeNegre, S.: Interdiction and Discrete Bilevel Linear Programming. Ph.D. thesis, Lehigh University (2011)
- DeNegre, S., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear programs. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-Infrastructure, vol. 47, pp. 65–78. Springer, New York (2009)
- Kleniati, P.-M., Adjiman, C.S.: A generalization of the branch-and-sandwich algorithm: from continuous to mixed-integer nonlinear bilevel problems. Comput. Chem. Eng. 72, 373–386 (2015)
- Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper. Res. 38(5), 911–921 (1990)
- 8. Ralphs, T.K.: MibS. https://github.com/tkralphs/MibS
- Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318 (2014)