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Abstract. We study the min-cost chain-constrained spanning-tree
(abbreviated MCCST) problem: find a min-cost spanning tree in a graph
subject to degree constraints on a nested family of node sets. We devise
the first polytime algorithm that finds a spanning tree that (i) violates
the degree constraints by at most a constant factor and (ii) whose cost
is within a constant factor of the optimum. Previously, only an algo-
rithm for unweighted CCST was known [13], which satisfied (i) but did
not yield any cost bounds. This also yields the first result that obtains
an O(1)-factor for both the cost approximation and violation of degree
constraints for any spanning-tree problem with general degree bounds
on node sets, where an edge participates in multiple degree constraints.

A notable feature of our algorithm is that we reduce MCCST to
unweighted CCST (and then utilize [13]) via a novel application of
Lagrangian duality to simplify the cost structure of the underlying prob-
lem and obtain a decomposition into certain uniform-cost subproblems.

We show that this Lagrangian-relaxation based idea is in fact applica-
ble more generally and, for any cost-minimization problem with packing
side-constraints, yields a reduction from the weighted to the unweighted
problem. We believe that this reduction is of independent interest. As
another application of our technique, we consider the k-budgeted matroid
basis problem, where we build upon a recent rounding algorithm of [4]

to obtain an improved nO(k1.5/ε)-time algorithm that returns a solution
that satisfies (any) one of the budget constraints exactly and incurs a
(1 + ε)-violation of the other budget constraints.

1 Introduction

Constrained spanning-tree problems, where one seeks a minimum-cost spanning
tree satisfying additional ({0, 1}-coefficient) packing constraints, constitute an
important and widely-studied class of problems. In particular, when the packing
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constraints correspond to node-degree bounds, we obtain the classical min-cost
bounded-degree spanning tree (MBDST) problem, which has a rich history of
study [5,7,10–12,15] culminating in the work of [15] that yielded an optimal
result for MBDST. Such degree-constrained network-design problems arise in
diverse areas including VLSI design, vehicle routing and communication net-
works (see, e.g., the references in [14]), and their study has led to the develop-
ment of powerful techniques in approximation algorithms.

Whereas the iterative rounding and relaxation technique introduced in [15]
(which extends the iterative-rounding framework of [9]) yields a versatile tech-
nique for handling node-degree constraints (even for more-general network-
design problems), we have a rather limited understanding of spanning-tree prob-
lems with more-general degree constraints, such as constraints |T ∩δ(S)| ≤ bS for
sets S in some (structured) family S of node sets.1 A fundamental impediment
here is our inability to leverage the techniques in [10,15]. The few known results
yield: (a) (sub-)optimal cost, but a super-constant additive- or multiplicative-
factor violation of the degree bounds [1–3,6]; or (b) a multiplicative O(1)-factor
violation of the degree bounds (when S is a nested family), but no cost guar-
antee [13]. In particular, in stark contrast to the results known for node-degree-
bounded network-design problems, there is no known algorithm that yields an
O(1)-factor cost approximation and an (additive or multiplicative) O(1)-factor
violation of the degree bounds. (Such guarantees are only known when each edge
participates in O(1) degree constraints [2]; see however [16] for an exception.)

We consider the min-cost chain-constrained spanning-tree (MCCST) problem
introduced by [13], which is perhaps the most-basic setting involving general
degree bounds where there is a significant gap in our understanding vis-a-vis
node-degree bounded problems. In MCCST, we are given an undirected con-
nected graph G = (V,E), nonnegative edge costs {ce}, a nested family S (or
chain) of node sets S1 � S2 � · · · � S� � V , and integer degree bounds {bS}S∈S .
The goal is to find a minimum-cost spanning tree T such that |δT (S)| ≤ bS for
all S ∈ S, where δT (S) := T ∩ δ(S). Olver and Zenklusen [13] give an algorithm
for unweighted CCST that returns a tree T such that |δT (S)| = O(bS) (i.e.,
there is no bound on c(T )), and show that, for some ρ > 0, it is NP-complete to
obtain an additive ρ · log |V |

log log |V | violation of the degree bounds. We therefore focus
on bicriteria (α, β)-guarantees for MCCST, where the tree T returned satisfies
c(T ) ≤ α · OPT and |δT (S)| ≤ β · bS for all S ∈ S.

Our Contributions. Our main result is the first
(
O(1), O(1)

)
-approximation algo-

rithm for MCCST. Given any λ > 1, our algorithm returns a tree T with
c(T ) ≤ λ

λ−1 · OPT and |δT (S)| ≤ 9λ · bS for all S ∈ S, using the algorithm
of [13] for unweighted CCST, denoted AOZ, as a black box (Theorem 3). As
noted above, this is also the first algorithm that achieves an

(
O(1), O(1)

)
-

approximation for any spanning-tree problem with general degree constraints
where an edge belongs to a super-constant number of degree constraints.

1 Such general degree constraints arise in the context of finding thin trees [1], where
S consists of all node sets, which turn out to be a very useful tool in devising
approximation algorithms for asymmetric TSP.
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We show in Sect. 4 that our techniques are applicable more generally. We
give a reduction showing that for any cost-minimization problem with packing
side-constraints, if we have an algorithm for the unweighted problem that returns
a solution with an O(1)-factor violation of the packing constraints and satisfies a
certain property, then one can utilize it to obtain an

(
O(1), O(1)

)
-approximation

for the cost-minimization problem. Furthermore, we show that if the algorithm
for the unweighted counterpart satisfies a stronger property, then we can utilize
it to obtain a

(
1, O(1)

)
-approximation (Theorem 9).

We believe that our reductions are of independent interest and will be useful
in other settings as well. Demonstrating this, we show an application to the
k-budgeted matroid basis problem, wherein we seek to find a basis satisfying k
budget constraints. Grandoni et al. [8] devised an nO(k2/ε)-time algorithm that
returned a (1, 1+ε, . . . , 1+ε)-solution: i.e., the solution satisfies (any) one budget
constraint exactly and violates the other budget constraints by a (1+ε)-factor (if
the problem is feasible). Very recently, Bansal and Nagarajan [4] improved the
running time to nO(k1.5/ε) but return only a (1 + ε, . . . , 1 + ε)-solution. Applying
our reduction (to the algorithm in [4]), we obtain the best of both worlds: we
return a (1, 1 + ε, . . . , 1 + ε)-solution in nO(k1.5/ε)-time (Theorem 12).

The chief novelty in our algorithm and analysis, and the key underlying
idea, is an unorthodox use of Lagrangian duality. Whereas typically Lagrangian
relaxation is used to drop complicating constraints and thereby simplify the
constraint structure of the underlying problem, in contrast, we use Lagrangian
duality to simplify the cost structure of the underlying problem by equalizing
edge costs in certain subproblems. To elaborate (see Sect. 3.1), the algorithm
in [13] for unweighted CCST can be viewed as taking a solution x to the nat-
ural linear-programming (LP) relaxation for MCCST, converting it to another
feasible solution x′ satisfying a certain structural property, and exploiting this
property to round x′ to a spanning tree. The main bottleneck here in handling
costs (as also noted in [13]) is that cᵀx′ could be much larger than cᵀx since the
conversion ignores the ces and works with an alternate “potential” function.

Our crucial insight is that we can exploit Lagrangian duality to obtain per-
turbed edge costs {cy∗

e } such that the change in perturbed cost due to the con-
version process is bounded. Loosely speaking, if the conversion process shifts
weight from xf to xe, then we ensure that cy∗

e = cy∗
f (see Lemma 5); thus,

(cy∗
)ᵀx = (cy∗

)ᵀx′!. The perturbation also ensures that applying AOZ to x′ yields
a tree whose perturbed cost is equal to (cy∗

)ᵀx′ = (cy∗
)ᵀx. Finally, we show that

for an optimal LP solution x∗, the “error” (cy∗ − c)ᵀx∗ incurred in working with
the cy∗

-cost is O(OPT ); this yields the
(
O(1), O(1)

)
-approximation.

We extend the above idea to an arbitrary cost-minimization problem with
packing side-constraints as follows. Let x∗ be an optimal solution to the LP-
relaxation, and P be the polytope obtained by dropping the packing constraints.
We observe that the same Lagrangian-duality based perturbation ensures that
all points on the minimal face of P containing x∗ have the same perturbed cost.
Therefore, if we have an algorithm for the unweighted problem that rounds x∗

to a point x̂ on this minimal face, then we again obtain that (cy∗
)ᵀx̂ = (cy∗

)ᵀx∗,
which then leads to an

(
O(1), O(1)

)
-approximation (as in the case of MCCST).
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Related Work. Whereas node-degree-bounded spanning-tree problems have been
widely studied, relatively few results are known for spanning-tree problems with
general degree constraints for a family S of node-sets. With the exception of the
result of [13] for unweighted CCST, these other results [1–3,6] all yield a tree of
cost at most the optimum with an ω(1) additive- or multiplicative- factor viola-
tion of the degree bounds. Both [2,3] obtain additive factors via iterative round-
ing and relaxation. The factor in [3] is (r − 1) for an arbitrary S, where r is the
maximum number of degree constraints involving an edge (which could be |V |
even when S is a chain), while [2] yields an O(log |V |) factor when S is a laminar
family (the factor does not improve when S is a chain). The dependent-rounding
techniques in [1,6] yield a tree T satisfying |δT (S)| ≤ min

{
O

( log |S|
log log |S|

)
bS ,

(1 + ε)bS + O
( log |S|

ε

)}
for all S ∈ S, for any family S.

For MBDST, Goemans [10] obtained the first
(
O(1), O(1)

)
-approximation;

his result yields a tree of cost at most the optimum and at most +2 violation
of the degree bounds. This was subsequently improved to an (optimal) additive
+1 violation by [15]. Zenklusen [16] considers an orthogonal generalization of
MBDST, where there is a matroid-independence constraint on the edges incident
to each node, and obtains a tree of cost at most the optimum and “additive” O(1)
violation (defined appropriately) of the matroid constraints. To our knowledge,
this is the only prior work that obtains an O(1)-approximation to both the cost
and packing constraints for a constrained spanning-tree problem where an edge
participates in ω(1) packing constraints (albeit this problem is quite different
from spanning tree with general degree constraints).

Finally, we note that our Lagrangian-relaxation based technique is somewhat
similar to its use in [11]. However, whereas [11] uses this to reduce uniform-degree
MBDST to the problem of finding an MST of minimum maximum degree, which
is another weighted problem, we utilize Lagrangian relaxation in a more refined
fashion to reduce the weighted problem to its unweighted counterpart.

2 An LP-Relaxation for MCCST and Preliminaries

We consider the following natural LP-relaxation for MCCST. Throughout, we
use e to index the edges of the underlying graph G = (V,E). For a set S ⊆ V ,
let E(S) denote {uv ∈ E : u, v ∈ S}, and δ(S) denote the edges on the boundary
of S. For a vector z ∈ RE and an edge-set F , we use z(F ) to denote

∑
e∈F ze.

min
∑

e

cexe (P)

s.t. x
(
E(S)

) ≤ |S| − 1 ∀∅ �= S � V (1)
x(E) = |V | − 1 (2)

x
(
δ(S)

) ≤ bS ∀S ∈ S (3)
x ≥ 0. (4)

For any x ∈ RE
+, let supp(x) := {e : xe > 0} denote the support of x. It is

well known that the polytope, PST(G), defined by (1), (2), and (4) is the convex
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hull of spanning trees of G. We call points in PST(G) fractional spanning trees.
We refer to (1), (2) as the spanning-tree constraints. We will also utilize (Pλ),
the modified version of (P) where we replace (3) with x

(
δ(S)

) ≤ λbS for all
S ∈ S, where λ ≥ 1. Let OPT (λ) denote the optimal value of (Pλ), and let
OPT := OPT (1).

Preliminaries. A family L ⊆ 2V of sets is a laminar family if for all A,B ∈ L,
we have A ⊆ B or B ⊆ A or A ∩ B = ∅. As is standard, we say that A ∈ L is
a child of L ∈ L if L is the minimal set of L such that A � L. For each L ∈ L,
let GL

L = (V L
L , EL

L) be the graph obtained from
(
L,E(L)

)
by contracting the

children of L in L; we drop the superscript L when L is clear from the context.
Given x ∈ PST(G), define a laminar decomposition L of x to be a (inclusion-

wise) maximal laminar family of sets whose spanning-tree constraints are tight
at x, so x

(
E(A)

)
= |A| − 1 for all A ∈ L. Note that V ∈ L and {v} ∈ L for all

v ∈ V . A laminar decomposition can be constructed in polytime (using network-
flow techniques). For any L ∈ L, let xL

L, or simply xL if L is clear from context,
denote x restricted to EL. Observe that xL is a fractional spanning tree of GL.

3 An LP-Rounding Approximation Algorithm

3.1 An Overview

We first give a high-level overview. Clearly, if (P) is infeasible, there is no span-
ning tree satisfying the degree constraints, so in the sequel, we assume that (P) is
feasible. We seek to obtain a spanning tree T of cost c(T ) = O(OPT ) such that
|δT (S)| = O(bS) for all S ∈ S, where δT (S) is the set of edges of T crossing S.

In order to explain the key ideas leading to our algorithm, we first briefly
discuss the approach of Olver and Zenklusen [13] for unweighted CCST. Their
approach ignores the edge costs {ce} and instead starts with a feasible solution
x to (P) that minimizes a suitable (linear) potential function. They use this
potential function to argue that if L is a laminar decomposition of x, then (x,L)
satisfies a key structural property called rainbow freeness. Exploiting this, they
give a rounding algorithm, hereby referred to as AOZ, that for every L ∈ L,
rounds xL to a spanning tree TL of GL such that |δTL

(S)| ≈ O
(
xL(δ(S))

)
for all

S ∈ S, so that concatenating the TLs yields a spanning tree T of G satisfying
|δT (S)| = O

(
x(δ(S))

)
= O(bS) for all S ∈ S (Theorem 2). However, as already

noted in [13], a fundamental obstacle towards generalizing their approach to
handle the weighted version (i.e., MCCST) is that in order to achieve rainbow
freeness, which is crucial for their rounding algorithm, one needs to abandon the
cost function c and work with an alternate potential function.

We circumvent this difficulty as follows. First, we note that the algorithm
in [13] can be equivalently viewed as rounding an arbitrary solution x to (P)
as follows. Let L be a laminar decomposition of x. Using the same potential-
function idea, we can convert x to another solution x′ to (P) that admits a
laminar decomposition L′ refining L such that (x′,L′) satisfies rainbow freeness
(see Lemma 1), and then round x′ using AOZ. Of course, the difficulty noted
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above remains, since the move to rainbow freeness (which again ignores c and
uses a potential function) does not yield any bounds on the cost cᵀx′ relative
to cᵀx. We observe however that there is one simple property (*) under which
one can guarantee that cᵀx′ = cᵀx, namely, if for every L ∈ L, all edges in
supp(x) ∩ EL have the same cost. However, it is unclear how to utilize this
observation since there is no reason to expect our instance to have this rather
special property: for instance, all edges of G could have very different costs!

Now let x∗ be an optimal solution to (P) (we will later modify this somewhat)
and L be a laminar decomposition of x∗. The crucial insight that allows us to
leverage property (*), and a key notable aspect of our algorithm and analysis, is
that one can leverage Lagrangian duality to suitably perturb the edge costs so that
the perturbed costs satisfy property (*). More precisely, letting y∗ ∈ RS

+ denote
the optimal values of the dual variables corresponding to constraints (3), if we
define the perturbed cost of edge e to be cy∗

e := ce+
∑

S∈S:e∈δ(S) y∗
S , then the cy∗

-
cost of all edges in supp(x∗)∩EL are indeed equal, for every L ∈ L (Lemma 5). In
essence, this holds because for any e′ ∈ supp(x∗), by complementary slackness,
we have ce′ = (dual contribution to e’ from (1),(2)) −∑

S∈S:e′∈δ(S) y∗
S . Since any

two edges e, f ∈ supp(x∗)∩EL appear in the same sets of L, one can argue that
the dual contributions to e and f from (1), (2) are equal, and thus, cy∗

e = cy∗
f .

Now since (x∗,L∗) satisfies (*) with the perturbed costs cy∗
, we can convert

(x∗,L∗) to (x′,L′) satisfying rainbow freeness without altering the perturbed
cost, and then round x′ to a spanning tree T using AOZ. This immediately yields
|δT (S)| = O(bS) for all S ∈ S. To bound the cost, we argue that c(T ) ≤ cy∗

(T ) =∑
e cy∗

e x∗
e = cᵀx∗ +

∑
S∈S bSy∗

S (Lemma 6), where the last equality follows from
complementary slackness. (Note that the perturbed costs are used only in the
analysis.) However,

∑
S∈S bSy∗

S need not be bounded in terms of cᵀx∗. To fix
this, we modify our starting solution x∗: we solve (Pλ) (which recall is (P) with
inflated degree bounds {λbS}), where λ > 1, to obtain x∗, and use this x∗ in
our algorithm. Now, letting y∗ be the optimal dual values corresponding to the
inflated degree constraints, a simple duality argument shows that

∑
S∈S bSy∗

S ≤
OPT(1)−OPT(λ)

λ−1 (Lemma 7), which yields c(T ) = O(OPT ) (see Theorem 3).
A noteworthy feature of our algorithm is the rather unconventional use of

Lagrangian relaxation, where we use duality to simplify the cost structure (as
opposed to the constraint-structure) of the underlying problem by equalizing
edge costs in certain subproblems. This turns out to be the crucial ingredient
that allows us to utilize the algorithm of [13] for unweighted CCST as a black
box without worrying about the difficulties posed by (the move to) rainbow free-
ness. In fact, as we show in Sect. 4, this Lagrangian-relaxation idea is applicable
more generally, and yields a novel reduction from weighted problems to their
unweighted counterparts. We believe that this reduction is of independent inter-
est and will find use in other settings as well.

3.2 Algorithm Details and Analysis

To specify our algorithm formally, we first define the rainbow-freeness property
and state the main result of [13] (which we utilize as a black box) precisely.
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For an edge e, define Se := {S ∈ S : e ∈ δ(S)}. Note that Se could be empty.
We say that two edges e, f ∈ E form a rainbow if Se ⊆ Sf or Sf ⊆ Se. (This
definition is slightly different from the one in [13], in that we allow Se = Sf .) We
say that (x,L) is a rainbow-free decomposition if L is a laminar decomposition
of x and for every set L ∈ L, no two edges of supp(x) ∩ EL form a rainbow.
(Recall that GL = (VL, EL) denotes the graph obtained from

(
L,E(L)

)
by

contracting the children of L.) The following lemma shows that one can convert
an arbitrary decomposition (x,L) to a rainbow-free one; the proof mimics the
potential-function argument in [13] and is deferred to the full version.

Lemma 1. Let x ∈ PST(G) and L be a laminar decomposition of x. We can
compute in polytime a fractional spanning tree x′ ∈ PST(G) and a rainbow-
free decomposition (x′,L′) such that: (i) supp(x′) ⊆ supp(x); (ii) L ⊆ L′; and
(iii) x′(δ(S)) ≤ x(δ(S)) for all S ∈ S.
Theorem 2 [13]. There is a polytime algorithm, AOZ, that given a fractional
spanning tree x′ ∈ PST(G) and a rainbow-free decomposition (x′,L′), returns a
spanning tree TL ⊆ supp(x′) of GL for every L ∈ L′ such that the concatenation
T of the TLs is a spanning tree of G satisfying |δT (S)| ≤ 9x′(δ(S)

)
for all S ∈ S.

We can now describe our algorithm compactly. Let λ > 1 be a parameter.

1. Compute an optimal solution x∗ to (Pλ), a laminar decomposition L of x∗.
2. Apply Lemma 1 to (x∗,L) to obtain a rainbow-free decomposition (x′,L′).
3. Apply AOZ to the input (x′,L′) to obtain spanning trees TL′

L of GL′
L for every

L ∈ L′. Return the concatenation T of all the TL′
L s.

Analysis. We show that the above algorithm satisfies the following guarantee.

Theorem 3. The above algorithm run with parameter λ > 1 returns a spanning
tree T satisfying c(T ) ≤ λ

λ−1 · OPT and |δT (S)| ≤ 9λbS for all S ∈ S.
The bound on |δT (S)| follows immediately from Lemma 1 and Theorem 2

since x∗, and hence x′ obtained in step 2, is a feasible solution to (Pλ). So we
focus on bounding c(T ). This will follow from three things. First, we define the
perturbed cy∗

-cost precisely. Next, Lemma 5 proves the key result that for every
L ∈ L, all edges in supp(x∗) ∩ EL have the same perturbed cost. Using this
it is easy to show that c(T ) ≤ cy∗

(T ) =
∑

e cy∗
e x∗

e = OPT (λ) + λ
∑

S∈S bSy∗
S

(Lemma 6). Finally, we show that
∑

S∈S bSy∗
S ≤ OPT−OPT(λ)

λ−1 (Lemma 7), which
yields the bound stated in Theorem 3.

Todefine the perturbed costs, we consider theLagrangian dual of (Pλ) obtained
by dualizing the (inflated) degree constraints x

(
δ(S)

) ≤ λbS for all S ∈ S:

max
y∈R

S
+

(
gλ(y) := min

x∈PST(G)

(∑

e

cexe +
∑

S∈S

(
x(δ(S)) − λbS)yS

))
. (LDλ)

For x ∈ RE and y ∈ RS , let Gλ(x, y) :=
∑

e cexe +
∑

S∈S
(
x(δ(S)) − λbS

)
yS =∑

e cy
exe − λ

∑
S∈S bSyS denote the objective function of gλ(y), where cy

e :=
ce +

∑
S∈S:e∈δ(S) yS .
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Let y∗ be an optimal solution to (LDλ). One can show via LP-duality that
this holds iff there exist dual multipliers μ∗ = (μ∗

S)∅�=S⊆V corresponding to con-
straints (1), (2) of (Pλ) such that (μ∗, y∗) is an optimal solution to the LP dual
of (Pλ). This also implies that gλ(y∗) = Gλ(x∗, y∗) = OPT (λ). Our perturbed
costs are {cy∗

e }. We defer the proof of Lemma 4 to the full version and use it to
show that cy∗

e = cy∗
f for any L ∈ L and any edges e, f ∈ supp(x∗) ∩ EL.

Lemma 4. We have gλ(y∗) = Gλ(x∗, y∗) = OPT (λ). Further, there exists μ∗ =
(μ∗

S)∅�=S⊆V such that (μ∗, y∗) is an optimal solution to the dual (Dλ) of (Pλ).

Lemma 5. For any L ∈ L, all edges of supp(x∗) ∩ EL have the same cy∗
-cost.

Proof Sketch. Consider any two edges e, f ∈ supp(x∗) ∩ EL. Suppose for a con-
tradiction that cy∗

e < cy∗
f . Obtain x̂ from x∗ by increasing x∗

e by ε and decreasing
x∗

f by ε (so x̂e′ = x∗
e′ for all e′ /∈ {e, f}). We argue that one can choose a

sufficiently small ε > 0 such that x̂ ∈ PST(G). This follows since any spanning-
tree constraint that is tight at x∗ can be expressed as a linear combination
of the spanning-tree constraints for the sets in L. Since cy∗

e < cy∗
f , we have

gλ(y∗) ≤ Gλ(x̂, y∗) < Gλ(x∗, y∗) = gλ(y∗), which is a contradiction. ��
Lemma 6. We have c(T ) ≤ ∑

e cy∗
e x∗

e =
∑

e cex
∗
e + λ

∑
S∈S bSy∗

S.

Proof. Observe that c(T ) ≤ cy∗
(T ) since ce ≤ cy∗

e for all e ∈ E as y∗ ≥ 0.
We now bound cy∗

(T ). To keep notation simple, we use GL = (VL, EL) and x∗
L

to denote GL
L and (x∗)L

L (which recall is x∗ restricted to EL
L) respectively, and

G′
L = (V ′

L, E′
L) and x∗′

L to denote GL′
L and (x∗)L′

L respectively.
We have cy∗

(T ) =
∑

L∈L cy∗
(T ∩ EL) since the sets {EL}L∈L partition E.

Fix L ∈ L. Note that x∗
L is a fractional spanning tree of GL = (VL, EL) since

for any ∅ �= Q ⊆ VL, if R is the subset of V corresponding to Q, and A1, . . . , Ak

are the children of L whose corresponding contracted nodes lie in Q, we have
x∗

L

(
EL(Q)

)
= x∗(E(R)

)−∑k
i=1 x∗(E(Ai)

) ≤ |R\(A1∪. . .∪Ak)|+k−1 = |Q|−1
with equality holding when Q = VL. Note that T ∩ EL is a spanning tree of GL

since T is obtained by concatenating spanning trees for the graphs {G′
L′}L′∈L′ ,

and L′ refines L. Also, all edges of supp(x∗) ∩ EL have the same cy∗
-cost by

Lemma 5. So we have cy∗
(T ∩ EL) =

∑
e∈EL

cy∗
e x∗

e. It follows that

cy∗
(T ) =

∑

e

cy∗
e x∗

e =
∑

e

(
cex

∗
e +

∑

S∈S:e∈δ(S)

y∗
Sx∗

e

)

=
∑

e

cex
∗
e +

∑

S∈S
y∗

Sx∗(δ(S)
)

=
∑

e

cex
∗
e + λ

∑

S∈S
bSy∗

S .

��

Lemma 7. We have
∑

S∈S bSy∗
S ≤ OPT(1)−OPT(λ)

λ−1 .

Proof. By Lemma 4, there exists μ∗ such that (μ∗, y∗) is an optimal solution to
the dual (Dλ) of (Pλ). Also, (μ∗, y∗) is a feasible solution to (D1). Therefore,

OPT (1) ≥ −
∑

∅�=S⊆V

(|S| − 1)μ∗
S −
∑

S∈S
bSy∗

S , OPT (λ) = −
∑

∅�=S⊆V

(|S| − 1)μ∗
S − λ

∑

S∈S
bSy∗

S .

Hence OPT (1) − OPT (λ) ≥ (λ − 1)
∑

S∈S bSy∗
S . ��
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Proof of Theorem 3. As noted earlier, the bounds on δT (S) follow immediately
from Lemma 1 and Theorem 2: for any S ∈ S, we have |δT (S)| ≤ 9x′(δ(S)

) ≤
9x∗(δ(S)

) ≤ 9λbS . The bound on c(T ) follows from Lemmas 6 and 7 since∑
e cex

∗
e = OPT (λ). ��

4 A Reduction from Weighted to Unweighted Problems

We now show that our ideas are applicable more generally, and yield bicrite-
ria approximation algorithms for any cost-minimization problem with packing
side-constraints, provided we have a suitable approximation algorithm for the
unweighted counterpart. Thus, our technique yields a reduction from weighted
to unweighted problems, which we believe is of independent interest.

To demonstrate this, we first isolate the key properties of the rounding algo-
rithm B used above for unweighted CCST that enable us to use it as a black
box to obtain our result for MCCST; this will yield an alternate, illuminating
explanation of Theorem 3. Note that B is obtained by combining the proce-
dure in Lemma 1 and AOZ (Theorem 2). First, we of course utilize that B is an
approximation algorithm for unweighted CCST, so it returns a spanning tree T
such that |δT (S)| = O

(
x∗(δ(S))

)
for all S ∈ S. Second, we exploit the fact that

B returns a tree T that preserves tightness of all spanning-tree constraints that
are tight at x∗. This is the crucial property that allows us to bound c(T ), since
this implies (as we explain below) that cy∗

(T ) =
∑

e cy∗
e x∗

e, which then yields
the bound on c(T ) as before. The equality follows because the set of optimal
solutions to the LP minx∈PST(G) Gλ(x, y∗) is a face of PST(G); thus all points
on the minimal face of PST(G) containing x∗ are optimal solutions to this LP,
and the stated property implies that the characteristic vector of T lies on this
minimal face. In other words, while AOZ proceeds by exploiting the notions of
rainbow freeness and laminar decomposition, these notions are not essential to
obtaining our result; any rounding algorithm for unweighted CCST satisfying
the above two properties can be utilized to obtain our guarantee for MCCST.

We now formalize the above two properties for an arbitrary cost-minimization
problem with packing side-constraints, and prove that they suffice to yield a
bicriteria guarantee. Consider the following abstract problem:

min cᵀx s.t. x is an extreme point of P, Ax ≤ b, (QP)

where P ⊆ Rn
+ is a fixed polytope, c, b ≥ 0, and A ≥ 0. Observe that we can

cast MCCST as a special case of (QP), by taking P = PST(G) (whose extreme
points are spanning trees of G), c to be the edge costs, and Ax ≤ b to be the
degree constraints. Moreover, by taking P to be the convex hull of a bounded set
{x ∈ Zn

+ : Cx ≤ d} we can use (QP) to encode a discrete-optimization problem.
We say that B is a face-preserving rounding algorithm (FPRA) for unweighted

(QP) if given any point x ∈ P, B finds in polytime an extreme point x̂ of P such
that:

(P1) x̂ belongs to the minimal face of P that contains x.
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We say that B is a β-approximation FPRA (where β ≥ 1) if we also have:

(P2) Ax̂ ≤ βAx.

Let (RP
λ ) denote the linear program: min

{
cᵀx : x ∈ P, Ax ≤ λb

}
; note that

(RP
1 ) is the LP-relaxation of (QP). Let opt(λ) denote the optimal value of (RP

λ ),
and let opt := opt(1). We say that an algorithm is a (ρ1, ρ2)-approximation
algorithm for (QP) if it finds in polytime an extreme point x̂ of P such that
cᵀx̂ ≤ ρ1opt and Ax̂ ≤ ρ2b.

Theorem 8. Let B be a β-approximation FPRA for unweighted (QP). Then,
given any λ > 1, one can obtain a

(
λ

λ−1 , βλ
)
-approximation algorithm for (QP)

using a single call to B.
Proof Sketch. We dovetail the algorithm for MCCST and its analysis. We simply
compute an optimal solution x∗ to (RP

λ ) and round it to an extreme point x̂ of
P using B. By property (P2), it is clear that Ax̂ ≤ β(Ax∗) ≤ βλb.

Let m be the number of rows of A. For y ∈ Rm
+ , define cy := c + Aᵀy. To

bound the cost, as before, we consider the Lagrangian dual of (RP
λ ) obtained by

dualizing the side-constraints Ax ≤ λb.

max
y∈R

m
+

(
hλ(y) := min

x∈P
Hλ(x, y)

)
, where Hλ(x, y) := (cy)ᵀx − λyᵀb.

Let y∗ = argmaxy∈R
m
+

hλ(y). We can mimic the proof of Lemma 4 to show that x∗

is an optimal solution to minx∈P Hλ(x, y∗). The set of optimal solutions to this
LP is a face of P. So all points on the minimal face of P containing x∗ are optimal
solutions to this LP. By property (P1), x̂ belongs to this minimal face and so
is an optimal solution to this LP. So (cy∗

)ᵀx̂ = (cy∗
)ᵀx∗ = cᵀx∗ + (y∗)ᵀAx∗ =

opt(λ) + λ(y∗)ᵀb, where the last equality follows by complementary slackness.
Also, by the same arguments as in Lemma 7, we have (y∗)ᵀb ≤ opt(1)−opt(λ)

λ−1 .
Since c ≤ cy∗

, we have cᵀx̂ ≤ (cy∗
)ᵀx̂ ≤ λ

λ−1 · opt. ��

5 Towards a
(
1, O(1)

)
-Approximation Algorithm for (QP)

A natural question that emerges from Theorems 3 and 8 is whether one can
obtain a

(
1, O(1)

)
-approximation, i.e., obtain a solution of cost at most opt that

violates the packing side-constraints by an (multiplicative) O(1)-factor. Such
results are known for degree-bounded spanning tree problems with various kinds
of degree constraints [3,10,15,16], so, in particular, it is natural to ask whether
such a result also holds for MCCST. (Note that for MCCST, the dependent-
rounding techniques in [1,6] yield a tree T with c(T ) ≤ OPT and |δT (S)| ≤
min

{
O

( log |S|
log log |S|

)
bS , (1 + ε)bS + O

( log |S|
ε

)}
for all S ∈ S.) We show that our

approach is versatile enough to yield such a guarantee provided we assume a
stronger property from the rounding algorithm B for unweighted (QP).

Let Ai denote the i-th row of A, for i = 1, . . . ,m. We say that B is an
(α, β)-approximation FPRA for unweighted (QP) if in addition to properties
(P1), (P2), it satisfies:
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(P3) it rounds a feasible solution x to (RP
α ) to an extreme point x̂ of P

satisfying Aᵀ
i x̂ ≥ Aᵀ

i x

α for every i such that Aᵀ
i x = αbi.

(For MCCST, property (P3) requires that |δT (S)| ≥ bS for every set S ∈ S
whose degree constraint (in (Pα)) is tight at the fractional spanning tree x.)

Theorem 9. Let B be an (α, β)-approximation FPRA for unweighted (QP).
Then, one can obtain a (1, αβ)-approximation algorithm for (QP) using a single
call to B.
Proof. We show that applying Theorem 8 with λ = α yields the claimed result.
It is clear that the extreme point x̂ returned satisfies Ax̂ ≤ αβb. As in the
proof of Theorem 8, let y∗ be an optimal solution to maxy∈R

m
+

hλ(y) (where
λ = α). In Lemma 6 and the proof of Theorem 8, we use the weak bound
cᵀx̂ ≤ (cy∗

)ᵀx̂. We tighten this to obtain the improved bound on cᵀx̂. We have
cᵀx̂ = (cy∗

)ᵀx̂ − (y∗)ᵀAx̂, and

(y∗)ᵀAx̂ =
∑

i:Aᵀ
i x∗=λbi

y∗
i (Aᵀ

i x̂) ≥
∑

i:Aᵀ
i x∗=λbi

y∗
i Aᵀ

i x∗

α
=

∑

i:Aᵀ
i x∗=λbi

y∗
i bi = (y∗)ᵀb.

The first and last equalities above follow because y∗
i > 0 implies that Aᵀ

i x∗ =
λbi. The inequality follows from property (P3). Thus, following the rest of the
arguments in the proof of Theorem 8, we obtain that

cᵀx̂ ≤ (cy∗
)ᵀx̂ − (y∗)ᵀb = cᵀx∗ + (λ − 1)(y∗)ᵀb ≤ opt(1). ��

We also obtain the following variant of Theorem 9 with two-sided additive
guarantees (which can be proved by essentially the same arguments).

Theorem 10. Let B be an FPRA for unweighted (QP) that given x ∈ P returns
an extreme point x̂ of P such that Ax−Δ ≤ Ax̂ ≤ Ax+Δ. Using a single call to
B, we can obtain an extreme point x̃ of P such that cᵀx̃ ≤ opt and Ax̃ ≤ b+2Δ.

Application to k-budgeted Matroid Basis. Here, we seek to find a basis S
of a matroid M satisfying k budget constraints {di(S) ≤ Bi}1≤i≤k, where
di(S) :=

∑
e∈S di(e). Note that this can be cast a special case of (QP), where

P = P(M) is the basis polytope of M , the objective function encodes (say) the
first budget constraint and Ax ≤ b encodes the remaining budget constraints.
Applying Theorem 10 to a recent randomized algorithm of [4], we obtain a (ran-
domized) algorithm that, for any ε > 0, returns in nO(k1.5/ε) time a basis that
(exactly) satisfies a chosen budget constraint, and violates the other budget con-
straints by (at most) a (1 + ε)-factor, where n is the size of the ground-set of
M . This matches the current-best approximation guarantee of [8] (who give a
deterministic algorithm) and the current-best running time of [4].

Theorem 11 [4]. There exists a randomized FPRA, BBN, for unweighted
(QP(M)) that rounds any x ∈ P(M) to an extreme point x̂ of P(M) such that
Ax − O(

√
k)Δ ≤ Ax̂ ≤ Ax + O(

√
k)Δ, where Δ = (max1≤j≤n aij)1≤i≤k−1 =

(maxe di+1(e))1≤i≤k−1.
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Applying Theorem 10 with B=BBN, we obtain a basis S of M such that
d1(S) ≤ B1, and di(S) ≤ Bi + O(

√
k)maxe di(e) for all 2 ≤ i ≤ k. We combine

this with a partial-enumeration step, where we “guess” all elements e of an
optimal solution having di(e) = Ω

(
ε√
k

) · Bi for at least one index i ∈ {2, . . . , k},
update M and the budget constraints, and then apply Theorem 10. This yields
the following result.

Theorem 12. There exists a randomized algorithm that, given any ε > 0, finds
in nO(k1.5/ε) time a basis S of M such that d1(S) ≤ B1 and di(S) ≤ (1 + ε)Bi

for all 2 ≤ i ≤ k.
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