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Abstract. We give a constant factor approximation algorithm for the
Asymmetric Traveling Salesman Problem on shortest path metrics of
directed graphs with two different edge weights. For the case of unit
edge weights, the first constant factor approximation was given recently
in [17]. This was accomplished by introducing an easier problem called
Local-Connectivity ATSP and showing that a good solution to this prob-
lem can be used to obtain a constant factor approximation for ATSP.
In this paper, we solve Local-Connectivity ATSP for two different edge
weights. The solution is based on a flow decomposition theorem for solu-
tions of the Held-Karp relaxation, which may be of independent interest.

1 Introduction

The traveling salesman problem — one of finding the shortest tour of n cities —
is one of the most classical optimization problems. Its definition dates back to
the 19th century and since then a large body of work has been devoted to design-
ing “good” algorithms using heuristics, mathematical programming techniques,
and approximation algorithms. The focus of this work is on approximation algo-
rithms. A natural and necessary assumption in this line of work that we also
make throughout this paper is that the distances satisfy the triangle inequality:
for any triple i, j, k of cities, we have d(i, j)+d(j, k) ≥ d(i, k) where d(·, ·) denotes
the pairwise distances between cities. In other words, it is not more expensive
to take the direct path compared to a path that makes a detour.

With this assumption, the approximability of TSP turns out to be a very deli-
cate question that has attracted significant research efforts. Specifically, one of the
first approximation algorithms (Christofides’ heuristic [6]) was designed for the
symmetric traveling salesman problem (STSP) where we assume symmetric dis-
tances (d(i, j) = d(j, i)); and, more recently, several works (see e.g. [1,3,8,9,17])
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have addressed the more general asymmetric traveling salesman problem (ATSP)
where we make no such assumption.

However, there are still large gaps in our understanding of both STSP and
ATSP. In fact, for STSP, the best approximation algorithm remains Christofides’
3/2-approximation algorithm from the 70’s [6]. For the harder ATSP, the
state of the art is a O(log n/ log log n)-approximation algorithm by Asadpour
et al. [3] and a recent O(poly log log n)-estimation algorithm1 by Anari and
Oveis Gharan [1]. On the negative side, the best inapproximability results only
say that STSP and ATSP are hard to approximate within factors 123/122 and
75/74, respectively [12]. Closing these gaps is a major open problem in the field
of approximation algorithms (see e.g. “Problem 1” and “Problem 2” in the list
of open problems in the recent book by Williamson and Shmoys [18]). What
is perhaps even more intriguing about these questions is that we expect that a
standard linear programming (LP) relaxation, often referred to as the Held-Karp
relaxation, already gives better guarantees. Indeed, it is conjectured to give a
guarantee of 4/3 for STSP and a guarantee of O(1) (or even 2) for ATSP.

An equivalent formulation of STSP and ATSP from a more graph-theoretic
point of view is the following. For STSP, we are given a weighted undirected
graph G = (V,E,w) where w : E → R+ and we wish to find a multisubset F
of edges of minimum total weight such that (V, F ) is connected and Eulerian.
Recall that an undirected graph is Eulerian if every vertex has even degree. We
also remark that we use the term multisubset as the solution F may use the
same edge several times. An intuitive point of view on this definition is that
G represents a road network, and a solution is a tour that visits each vertex
at least once (and may use a single edge/road several times). The definition of
ATSP is similar, with the differences that the input graph is directed and the
output is Eulerian in the directed sense: the in-degree of each vertex equals its
out-degree. Having defined the traveling salesman problem in this way, there are
several natural special cases to consider. For example, what if G is planar? Or,
what if all the edges/roads have the same length, i.e., if G is unweighted?

For planar graphs, we have much better algorithms than in general. Grigni
et al. [11] first obtained a polynomial-time approximation scheme for STSP
restricted to unweighted planar graphs, which was later generalized to edge-
weighted planar graphs by Arora et al. [2]. More recently, ATSP on planar graphs
(and more generally bounded genus graphs) was shown to admit constant factor
approximation algorithms (first by Oveis Gharan and Saberi [9] and later by
Erickson and Sidiropoulos [7] who improved the dependency on the genus).

In contrast to planar graphs, STSP and ATSP remain APX-hard for
unweighted graphs (ones where all edges have identical weight) and, until
recently, there were no better algorithms for these cases. Then, in a recent series
of papers, the approximation guarantee of 3/2 was finally improved for STSP
restricted to unweighted graphs. Specifically, Gharan et al. [10] first gave an

1 An estimation algorithm is a polynomial-time algorithm for approximat-
ing/estimating the optimal value without necessarily finding a solution to the prob-
lem.



228 O. Svensson et al.

approximation guarantee of 1.5−ε; Mömke and Svensson [13] proposed a different
approach yielding a 1.461-approximation guarantee; Mucha [14] gave a tighter
analysis of this algorithm; and Sebő and Vygen [16] significantly developed the
approach to give the currently best approximation guarantee of 1.4. Similarly,
for ATSP, it was only very recently that the restriction to unweighted graphs
could be leveraged: the first constant approximation guarantee for unweighted
graphs was given by Svensson [17]. In this paper we make progress towards the
general problem by addressing the simplest case left unresolved by [17]: graphs
with two different edge weights.

Theorem 1.1. There is an O(1)-approximation algorithm for ATSP on graphs
with two different edge weights.

The paper [17] introduces an “easier” problem named Local-Connectivity
ATSP, where one needs to find an Eulerian multiset of edges crossing only sets
in a given partition rather than all possible sets (see next section for definitions).
It is shown that an “α-light” algorithm to this problem yields a (9 + ε)α-factor
approximation for ATSP. For unweighted graphs (and slightly more generally,
for node-induced weight functions2) it is fairly easy to obtain a 3-light algorithm
for Local-Connectivity ATSP; the difficult part in [17] is the black-box reduc-
tion of ATSP to this problem. Note that [17] easily gives an O(wmax/wmin)-
approximation algorithm in general if we take wmax and wmin to denote the
largest and smallest edge weight, respectively. However, obtaining a constant
factor approximation even for two different weights requires substantial further
work.

In Local-Connectivity ATSP we need a lower bound function lb : V →
R+ on the vertices. The natural choice for node-induced weights is lb(v) =∑

e∈δ+(v) w(e)x∗
e. With this weight function, every vertex is able to “pay” for

the incident edges in the Eulerian subgraph we are looking for. This choice of lb
does not seem to work for more general weight functions, and we need to define
lb more “globally”, using a new flow theorem for Eulerian graphs (Theorem 2.4).
In Sect. 1.2, after the preliminaries, we give a more detailed overview of these
techniques and the proof of the theorem. Our argument is somewhat technical,
but it demonstrates the potential of the Local-Connectivity ATSP problem as a
tool for attacking general ATSP.

Finally, let us remark that both STSP [4,15] and ATSP [5] have been studied
in the case when all distances are either 1 or 2. That restriction is very different
from our setting, as in those cases the input graph is complete. In particular, it is
trivial to get a 2-approximation algorithm there, whereas in our setting – where
the input graph is not complete – a constant factor approximation guarantee
already requires non-trivial algorithms.

2 For ATSP, we can think of a node-weighted graph as an edge-weighted graph where
the weight of an edge (u, v) equals the node weight of u.
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1.1 Notation and Preliminaries

We consider an edge-weighted directed graph G = (V,E,w) with w : E → R+.
For a vertex subset S ⊆ V we let δ+(S) = {(u, v) ∈ E : u ∈ S, v ∈ V \ S} and
δ−(S) = {(u, v) ∈ E : u ∈ V \S, v ∈ S} denote the sets of outgoing and incoming
edges, respectively. For a subset of edges E′ ⊆ E, we use δ+E′(S) = δ+(S) ∩ E′

and δ−
E′(S) = δ−(S) ∩ E′. We also let C(E′) = (G̃1, . . . , G̃k) denote the set of

weakly connected components of the graph (V,E′); the vertex set V will always
be clear from the context. For a directed graph G̃ we use V (G̃) to denote its
vertex set and E(G̃) the edge set. For brevity, we denote the singleton set {v}
by v (e.g. δ+(v) = δ+({v})), and we use the notation x(F ) =

∑
e∈F xe for a

subset F ⊆ E of edges. For the case of two edge weights, we use 0 ≤ w0 < w1 to
denote the two possible values, and partition E = E0 ∪ E1 so that w(e) = w0 if
e ∈ E0 and w(e) = w1 if e ∈ E1. We will refer to edges in E0 and E1 as cheap
and expensive edges, respectively.

We define ATSP as the problem of finding a connected Eulerian subgraph
of minimum weight. As already mentioned in the introduction, this definition is
equivalent to that of visiting each city exactly once (in the metric completion)
since we assume the triangle inequality. The formal definition is as follows.

ATSP

Given: An edge-weighted (strongly connected) digraph G = (V,E,w).
Find: A multisubset F of E of minimum total weight w(F ) =

∑
e∈F w(e)

such that (V, F ) is Eulerian and connected.

Held-Karp Relaxation. The Held-Karp relaxation has a variable xe ≥ 0 for every
edge in G. The intended meaning is that xe should equal the number of times e
is used in the solution. The relaxation LP(G) is defined as follows:

minimize
∑

e∈E

w(e)xe

subject to x(δ+(v)) = x(δ−(v)) v ∈ V,

x(δ+(S)) ≥ 1 ∅ 
= S � V,

x ≥ 0.

(LP(G))

The first set of constraints says that the in-degree should equal the out-degree for
each vertex, i.e., the solution should be Eulerian. The second set of constraints
enforces that the solution is connected; they are sometimes referred to as subtour
elimination constraints. Finally, we remark that although the Held-Karp relax-
ation has exponentially many constraints, it is well-known that we can solve it
in polynomial time either by using the ellipsoid method with a separation oracle
or by formulating an equivalent compact (polynomial-size) linear program. We
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will use x∗ to denote an optimal solution to LP(G) of value OPT, which is a
lower bound on the value of an optimal solution to ATSP on G.

Local-Connectivity ATSP. The Local-Connectivity ATSP problem can be seen
as a two-stage procedure. In the first stage, the input is an edge-weighted digraph
G = (V,E,w) and the output is a “lower bound” function lb : V → R+ on the
vertices such that lb(V ) ≤ OPT. In the second stage, the input is a partition of
the vertices, and the output is an Eulerian multisubset of edges which crosses
each set in the partition and where the ratio of weight to lb of every connected
component is as small as possible. We now give the formal description of the
second stage, assuming the lb function is already computed.

Local-Connectivity ATSP

Given: An edge-weighted digraph G = (V,E,w), a function lb : V → R+

with lb(V ) ≤ OPT, and a partitioning V = V1 ∪ V2 ∪ . . . ∪ Vk of the
vertices.

Find: A Eulerian multisubset F of E such that

|δ+F (Vi)| ≥ 1 for i = 1, 2, . . . , k and max
G̃∈C(F )

w(G̃)
lb(G̃)

is minimized.

Here we used the notation that for a connected component G̃ of (V, F ),
w(G̃) =

∑
e∈E(G̃) w(e) (summation over the edges) and lb(G̃) =

∑
v∈V (G̃) lb(v)

(summation over the vertices). We say that an algorithm for Local-Connectivity
ATSP is α-light on G if it is guaranteed, for any partition, to find a solution F
such that for every component G̃ ∈ C(F ), w(G̃)/lb(G̃) ≤ α.

In [17], lb is defined as lb(v) =
∑

e∈δ+(v) w(e)x∗
e; note that lb(V ) = OPT

in this case. We remark that we use the “α-light” terminology to avoid any
ambiguities with the concept of approximation algorithms (an α-light algorithm
does not compare its solution to an optimal solution to the given instance of
Local-Connectivity ATSP).

Perhaps the main difficulty of ATSP is to satisfy the connectivity require-
ment, i.e., to select an Eulerian subset F of edges which connects the whole
graph. Local-Connectivity ATSP relaxes this condition – we only need to find
an Eulerian set F that crosses the k cuts defined by the partition. This makes
it intuitively an “easier” problem than ATSP. Indeed, an α-approximation algo-
rithm for ATSP (with respect to the Held-Karp relaxation) is trivially an α-
light algorithm for Local-Connectivity ATSP for an arbitrary lb function with
lb(V ) = OPT : just return the same Eulerian subset F as the algorithm for
ATSP; since the set F connects the graph, we have maxG̃∈C(F ) w(G̃)/ lb(G̃) =
w(F )/ lb(V ) ≤ α. Perhaps more surprisingly, the main technical theorem of [17]
shows that the two problems are equivalent up to small constant factors.
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Theorem 1.2 [17]. Let A be an algorithm for Local-Connectivity ATSP. Con-
sider an ATSP instance G = (V,E,w), and let OPT denote the optimum value
of the Held-Karp relaxation. If A is α-light on G, then there exists a tour of G
with value at most 5α OPT. Moreover, for any ε > 0, a tour of value at most
(9+ε)α OPT can be found in time polynomial in the number n = |V | of vertices,
in 1/ε, and in the running time of A.

In other words, the above theorem says that in order to approximate an ATSP
instance G, it is sufficient to devise a polynomial-time algorithm to calculate a
lower bound lb and a polynomial time algorithm for Local-Connectivity ATSP
that is O(1)-light on G with respect to this lb function. Our main result is proved
using this framework.

1.2 Technical Overview

Singleton partition. Let us start by outlining the fundamental ideas of our
algorithm and comparing it to [17] for the special case of Local-Connectivity
ATSP when all partition classes Vi are singletons. For unit weights, the choice
lb(v) =

∑
e∈δ+(v) w(e)x�

e = x�(δ+(v)) in [17] is a natural one: intuitively,
every node is able to pay for its outgoing edges. We can thus immediately
give an algorithm for this case: just select an arbitrary integral solution z to
the circulation problem with node capacities 1 ≤ z(δ+(v)) ≤ �x�(δ+(v))�.
Then for any v we have z(δ+(v)) ≤ x�(δ+(v)) + 1 ≤ 2x�(δ+(v)) and hence∑

e∈δ+(v) w(e)ze ≤ 2 lb(v), showing that z is a 2-light solution.
The same choice of lb does not seem to work in the presence of two differ-

ent edge costs. Consider a case when every expensive edge carries only a small
fractional amount of flow. Then

∑
e∈δ+(v) w(e)x�

e can be much smaller than the
expensive edge cost w1, and thus the vertex v would not be able to “afford”
even a single outgoing expensive edge. To resolve this problem, we bundle small
fractional amounts of expensive flow, channelling them to reach a small set of
terminals. This is achieved via Theorem 2.4, a flow result which might be of
independent interest. It shows that within the fractional Held-Karp solution
x�, we can send the flow from an arbitrary edge set E′ to a sink set T with
|T | ≤ 8x�(E′); in fact, T can be any set minimal for inclusion such that it can
receive the total flow from E′. We apply this theorem for E′ = E1, the set of
expensive edges; let f be the flow from E1 to T , and call elements of T termi-
nals. Now, whenever an expensive edge is used, we will “force” it to follow f to
a terminal in T , where it can be paid for. Enforcement is technically done by
splitting the vertices into two copies, one carrying the f flow and the other the
rest. Thus we obtain the split graph Gsp and split fractional optimal solution x�

sp.
The design of the split graph is such that every walk in it which starts with

an expensive edge must proceed through cheap edges until it reaches a termi-
nal before visiting another expensive edge. In our terminology, expensive edges
create “debt”, which must be paid off at a terminal. Starting from an expensive
edge, the debt must be carried until a terminal is reached, and no further debt
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can be taken in the meantime. The bound on the number of terminals guar-
antees that we can assign a lower bound function lb with lb(V ) ≤ OPT such
that (up to a constant factor) cheap edges are paid for locally, at their heads,
whereas expensive edges are paid for at the terminals they are routed to. Such
a splitting easily solves Local-Connectivity ATSP for the singleton partition:
find an arbitrary integral circulation zsp in the split graph with an upper bound
zsp(δ+(v)) ≤ �2x�

sp(δ
+(v))� on every node, and a lower bound 1 on whichever

copy of v transmits more flow. Note that 2x�
sp is a feasible fractional solution to

this problem. We map zsp back to an integral circulation z in the original graph
by merging the split nodes, thus obtaining a constant-light solution.

Arbitrary partitions. Let us now turn to the general case of Local-Connectivity
ATSP, where the input is an arbitrary partition V = V1 ∪ . . . ∪ Vk. For unit
weights this is solved in [17] via an integer circulation problem on a modified
graph. Namely, an auxiliary node Ai is added to represent each partition class
Vi, and one unit of in- and outgoing flow from Vi is rerouted through Ai. In the
circulation problem, we require exactly one in- and one outgoing edge incident to
Ai to be selected. When we map the solution back to the original graph, there
will be one incoming and one outgoing arc from every set Vi (thus satisfying
the connectivity requirement) whose endpoints inside Vi violate the Eulerian
condition. In [17] every Vi is assumed to be strongly connected, and therefore we
can “patch up” the circulation by connecting the loose endpoints by an arbitrary
path inside Vi. This argument easily gives a 3-light solution.

Let us observe that the strong connectivity assumption is in fact not needed
for the result in [17]. Indeed, given a component Vi which is not strongly con-
nected, consider its decomposition into strongly connected (sub)components,
and pick a Ui ⊆ Vi which is a sink (i.e. it has no edges outgoing to Vi \ Ui).
We proceed by rerouting 1 unit of flow through a new auxiliary vertex just as
in that algorithm, but we do this for Ui instead. This guarantees that Ui has at
least one outgoing edge in our solution, and that edge must leave Vi as well.

We now turn to our result for two different edge weights. We are aiming for a
similar construction as in the unit-weight case: based on the split graph Gsp, we
construct an integer circulation problem with an auxiliary vertex Ai representing
a certain subset Ui ⊆ Vi for every 1 ≤ i ≤ k. We then map its solution back
to the original graph and patch up the loose endpoints inside every Ui by a
path. However, we have to account for the following difficulties: (i) an edge
leaving Ui should also leave Vi; (ii) debt should not disappear inside Ui: if the
edge entering it carries debt but the edge leaving does not, we must make sure
this difference can be charged to a terminal in Ui; (iii) the path used inside Ui

must pay for all expensive edges it uses. All three issues can be appropriately
tackled by defining an auxiliary graph inside Vi. Edges of the auxiliary graph
represent paths containing one expensive edge and one terminal (which can pay
for themselves); however, these paths may not map to paths in the split graph.
We select the subset Ui ⊆ Vi as a sink component in the auxiliary graph.
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2 Algorithm for Local-Connectivity ATSP

We prove our main result in this section. Our claim for ATSP follows from solving
Local-Connectivity ATSP:

Theorem 2.1. There is a polynomial-time 100-light algorithm for Local-
Connectivity ATSP on graphs with two edge weights.

Together with Theorem 1.2, this implies our main result:

Theorem 2.2. For any graph with two edge weights, the integrality gap of its
Held-Karp relaxation is at most 500. Moreover, we can find an 901-approximate
tour in polynomial time.

The factor 500 comes from 5 ·100, and 901 is selected so that (9+ ε) ·100 ≤ 901.
Our proof of Theorem 2.1 proceeds as outlined in Sect. 1.2. In this extended
abstract, we only describe the construction; the proof is given in the full version.

Recall that the edges are partitioned into the set E0 of cheap edges and the
set E1 of expensive edges. Set x� to be an optimal solution to the Held-Karp
relaxation. We start by noting that the problem is easy if x� assigns very small
total fractional value to expensive edges. In that case, we can easily reduce the
problem to the unweighted case which was solved in [17].

Lemma 2.3. There is a polynomial-time 6-light algorithm for Local-
Connectivity ATSP for graphs where x�(E1) < 1.

For the rest of this section, we thus assume x�(E1) ≥ 1. Our objective is to
define a function lb : V → R+ such that lb(V ) ≤ OPT = w(x�) and then show
how to, given a partition V = V1 ∪ ...∪Vk, find an Eulerian set of edges F which
crosses all Vi-cuts and is O(1)-light with respect to the defined lb function.

2.1 Calculating lb and Constructing the Split Graph

Finding terminals T and flow f. For this, we use the following flow result.

Theorem 2.4. Let D = (V ∪ {s}, E) be a directed graph, c : E → R+ – a
nonnegative capacity vector, and s – a source node with no incoming edges, i.e.,
δ−(s) = ∅. Assume that for all ∅ 
= S ⊆ V we have

c(δ−(S)) ≥ max{1, c(δ+(S))}. (1)

Consider a set T ⊆ V such that there exists a flow f ≤ c of value c(δ+(s)) from
the source s to the sink set T , and T is minimal subject to this property. Then
|T | ≤ 8c(δ+(s)).

Corollary 2.5. There exist a vertex set T ⊆ V and a flow f : E → R+ from
source set {tail(e) : e ∈ E1} to sink set T of value x�(E1) such that: (a) |T | ≤
8x�(E1), (b) f ≤ x�, (c) f saturates all expensive edges, i.e., f(e) = x�

e for all
e ∈ E1, (d) for each t ∈ T , f(E0 ∩ δ+(t)) = 0 and f(δ−(t)) > 0. Moreover, T
and f can be computed in polynomial time.
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Definition of lb. We set lb : V → R+ to be a scaled-down variant of lb : V → R+

which is defined as follows:

lb(v) :=

{
w0 · x�(δ−(v)) if v /∈ T,

w0 · x�(δ−(v)) + w1 · �f(δ−(t))� if v ∈ T.

The definition of lb is now simply lb(v) = lb(v)/10. The scaling-down is done so
as to satisfy lb(V ) ≤ OPT (see Lemma 2.6). Clearly we have lb(v) ≥ w0 for all
v ∈ V and lb(t) ≥ w1 + w0 ≥ w1 for terminals t ∈ T .

The intuition behind this setting of lb is that we want to pay for each expen-
sive edge e ∈ E1 in the terminal t ∈ T which the flow f “assigns” to e. Indeed, in
the split graph we will reroute flow (using f) so as to ensure that any path which
traverses e must then visit such a terminal t to offset the cost of the expensive
edge.

Lemma 2.6. lb(V ) ≤ 10 · OPT .

Construction of the split graph. The next step is to reroute flow so as to ensure
that all expensive edges are “paid for” by the lb at terminals. To this end, we
define a new split graph and a split circulation on it.

Definition 2.7. The split graph Gsp is defined as follows. For every v ∈ V we
create two copies v0 and v1 in V (Gsp). For every cheap edge (u, v) ∈ E0:

– if x�(u, v) − f(u, v) > 0, create an edge (u0, v0) in E(Gsp) with x�
sp(u, v) =

x�(u, v) − f(u, v),
– if f(u, v) > 0, create an edge (u1, v1) in E(Gsp) with x�

sp(u, v) = f(u, v).

For every expensive edge (u, v) ∈ E1 we create one edge (u0, v1) in E(Gsp) with
x�
sp(u, v) = f(u, v). Finally, for each t ∈ T we create an edge (t1, t0) in E(Gsp)

with x�
sp(t

1, t0) = f(δ−(t)).
The new edges are weighted as follows: images of edges in E0 have weight

w0, the images of edges in E1 have weight w1, and the new edges (t1, t0) have
weight 0. Let us denote the new weight function by wsp.

Vertices v0 will be called free vertices and vertices v1 will be called debt
vertices. Edges entering a free vertex will be called free edges, and those entering
a debt vertex will be called debt edges.

By construction we have that (a) x�
sp is a circulation on Gsp, (b) (the image of)

every cut is still crossed by at least 1 unit of x�
sp, and (c) any path in Gsp which

begins with a debt edge and ends with a free edge must go through a terminal.

2.2 Solving Local-Connectivity ATSP

Now our algorithm is given a partition V = V1∪...∪Vk. The objective is to output
a set of edges F which crosses all Vi-cuts and is O(1)-light with respect to our
lb function. We do so by first defining auxiliary graphs that help us modify the
split graph so as to force our solution to cross the cuts defined by the partition.
We then use such a flow to define the set F of edges.
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Construction of auxiliary graphs and modification of split graph. Our first step is
to construct an auxiliary graph for each component Vi. The strong-connectivity
structure of this graph will guide our algorithm.

Definition 2.8. The auxiliary graph Gaux
i is a graph with vertex set Vi and the

following edge set: for u, v ∈ Vi, (u, v) ∈ E(Gaux
i ) if any of the following three

conditions is satisfied:

– there is a cheap edge (u, v) ∈ E0 ∩ G[Vi] inside Vi, or
– there is a u-v-path in G[Vi] whose first edge is expensive and all other edges

are cheap, and v ∈ T is a terminal – we then call the edge (u, v) ∈ E(Gaux
i )

a postpaid edge – or
– there is a u-v-path in G[Vi] whose last edge is expensive and all other edges

are cheap, and u ∈ T is a terminal – we then call the edge (u, v) ∈ E(Gaux
i )

a prepaid edge.

Define the preimage of such an edge (u, v) ∈ E(Gaux
i ) to be the shortest path

inside Vi as above (in the first case, a single edge).

Now, for each i consider a decomposition of Gaux
i into strongly connected

components. Let Ui ⊆ Vi be the vertex set of a sink component in this decom-
position. That is, there is no edge from Ui to Vi \ Ui in the auxiliary graph
Gaux

i . Note that Gaux
i is constructed based only on the original graph G and not

the split graph Gsp. However, we will solve Local-Connectivity ATSP by solving
an integral circulation problem on G′

sp: a modification of the split graph Gsp,
described as follows.

For each i, define U sp
i = {v0, v1 : v ∈ Ui} ⊆ V (Gsp) to be the set of vertices

in the split graph corresponding to Ui. (Note that U sp
i may not be strongly

connected in Gsp.) We are going to reroute part of the x�
sp flow going in and out

of U sp
i to a new auxiliary vertex Ai. While the 3-light algorithm for unit-weight

graphs rerouted flow from all boundary edges of a component Ui (see Sect. 1.2),
here we will be more careful and choose only a subset of boundary edges of U sp

i

to be rerouted.
To this end, select a subset of edges X−

i ⊆ δ−(U sp
i ) with x�

sp(X
−
i ) = 1/2

such that either all edges in X−
i are debt edges, or all are free edges.

We define the set of outgoing edges X+
i ⊆ δ+(U sp

i ) to be, intuitively, the
edges over which the flow that entered U sp

i by X−
i exits U sp

i . That is, consider an
arbitrary cycle decomposition of the circulation x�

sp, and look at the set of cycles
containing the edges in X−

i . We define X+
i as the set of edges on these cycles

that first leave U sp
i after entering U sp

i on an edge in X−
i ; clearly, x�

sp(X
+
i ) = 1/2.

Let gi denote the flow on these cycles connecting the heads of edges in X−
i and

the tails of edges in X+
i . We will use the following claim later in the construction.

Fact 2.9. Assume all edges in X−
i are debt edges but e ∈ X+

i is a free edge or
an expensive edge. Then there exists a path in Gsp[Ui] between a vertex t0 (for
some terminal t ∈ T ) and the tail of e, made up of only cheap edges.
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We now transform Gsp into a new graph G′
sp and x�

sp into new circulation x′
sp

as follows. For every set Vi in the partition we introduce a new auxiliary vertex
Ai and redirect all edges in X−

i to point to Ai and those in X+
i to point from

Ai. We further subtract the flow gi inside U sp
i ; hence the resulting vector x′

sp

will be a circulation, with x′
sp(δ

−(Ai)) = 1/2. If X−
i is a set of free edges, then

we will say that Ai is a free vertex, otherwise we say that it is a debt vertex.

Transforming x′
sp into an integral flow and obtaining our solution F . In the next

step we round x′
sp to integrality while respecting degrees of vertices:

Lemma 2.10. There exists an integral circulation y′
sp on G′

sp satisfying the
following conditions: (a) y′

sp(δ
−(v)) ≤ �2x�

sp(δ
−(v))� for each v ∈ V (Gsp),

(b) y′
sp(δ

−(Ai)) = 1 for each i. Such a circulation y′
sp can be found in poly-

nomial time.

We will now transform y′
sp into an Eulerian set of edges F in the original

graph G. We can think of this as a three-stage process.
First, we map all edges adjacent to the auxiliary vertices Ai back to their

preimages in Gsp, obtaining from y′
sp an integral pseudo-flow ysp in Gsp. (We use

the term pseudo-flow as now, some vertices may not satisfy flow conservation.)
Second, we contract the two copies v0 and v1 of every vertex v ∈ V , thus

mapping all edges back to their preimages in G. (We remove all edges (t1, t0) for
t ∈ T .) This creates an integral pseudo-flow y in G.

Since the in- and out-degree of Ai were exactly 1 in y′
sp, now (in y) in each

component Ui there is a pair of vertices ui, vi which are the head and tail,
respectively, of the mapped-back edges adjacent to Ai. These are the only vertices
where flow conservation in y can be violated. As the third step, to repair this, we
route a walk Pi from ui to vi. Our Eulerian set of edges F ⊆ E which we finally
return is the integral pseudo-flow y plus the union (over i) of all such walks Pi,
i.e., 1F = y +

∑
i 1Pi

.
It remains to describe how we route these paths. Fix i. Recall that Ui is

strongly connected in Gaux
i . We distinguish two cases:

– If Ai is a free vertex or the edge exiting Ai in y′
sp (in G′

sp) is a debt edge, then
select a shortest ui-vi-path in Gaux

i , map each edge of this path to its preimage
path (see Definition 2.8) and concatenate them to obtain a ui-vi-walk Pi in
Vi.

– If Ai is a debt vertex but the edge exiting Ai in y′
sp (in G′

sp) is a free edge,
then by Fact 2.9 there is a terminal t inside Ui, with a path from t to vi using
only cheap edges. Proceed as above to obtain a ui-t-walk and then append
this cheap t-vi-path to it, obtaining a ui-vi-walk Pi in Vi.

This concludes the description of the algorithm. In the full version of the
paper we prove that the returned Eulerian set of edges F has the properties we
desire, i.e.,

Lemma 2.11. For every connected component G̃ of (V, F ) we have w(G̃) ≤
10 · lb(G̃).
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Lemma 2.12. For every component Vi we have |δ+F (Vi)| ≥ 1.

Lemmas 2.6 and 2.11 together prove that our algorithm is 100-light with
respect to lb.
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5. Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero
and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004
and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, DTIC Document (1976)

7. Erickson, J., Sidiropoulos, A.: A near-optimal approximation algorithm for asym-
metric TSP on embedded graphs. In: Proceedings of SOCG, p. 130 (2014)

8. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39
(1982)

9. Gharan, S.O., Saberi, A.: The asymmetric traveling salesman problem on graphs
with bounded genus. In: Proceedings of SODA, pp. 967–975. SIAM (2011)

10. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the
traveling salesman problem. In: Proceedings of FOCS, pp. 550–559 (2011)

11. Grigni, M., Koutsoupias, E., Papadimitriou, C.H.: An approximation scheme for
planar graph TSP. In: Proceedings of FOCS, pp. 640–645 (1995)

12. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP.
J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)

13. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: 2011
Proceedings of FOCS, pp. 560–569 (2011)

14. Mucha, M.: 13/9-approximation for graphic TSP. In: Proceedings of STACS, pp.
30–41 (2012)

15. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Math. Oper. Res. 18(1), 1–11 (1993)
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