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Abstract. Sherali-Adams [25] and Lovász-Schrijver [21] developed sys-
tematic procedures to strengthen a relaxation known as lift-and-project
methods. They have been proven to be a strong tool for developing approx-
imation algorithms, matching the best relaxations known for problems
like Max-Cut and Sparsest-Cut. In this work we provide lower bounds for
these hierarchies when applied over the configuration LP for the problem
of scheduling identical machines to minimize the makespan. First we show
that the configuration LP has an integrality gap of at least 1024/1023 by
providing a family of instances with 15 different job sizes. Then we show
that for any integer n there is an instance with n jobs in this family such
that after Ω(n) rounds of the Sherali-Adams (SA) or the Lovász-Schrijver
(LS+) hierarchy the integrality gap remains at least 1024/1023.

1 Introduction

Scheduling

Machine scheduling is a classical family of problems in combinatorial optimiza-
tion. In this paper we study the problem, known as P ||Cmax, of scheduling a set
J of n jobs on a set M of identical machines to minimize the makespan, i. e., the
maximum completion time of a job, where each job j ∈ J has a processing time
pj . A job cannot be preempted nor migrated to a different machine, and every job
is released at time zero. This problem admits a polynomial-time approximation
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scheme (PTAS) [16] and even an EPTAS [2], which is the best possible approxi-
mation result since the problem is strongly NP-hard [13]. The convex relaxations
studied for the problem are weaker than those algorithmic results.

Assignment LP. A straightforward way to model P ||Cmax with a linear program
(LP) is the assignment LP which has a variable xij for each combination of a
machine i ∈ M and a job j ∈ J , modeling whether job j is assigned to machine
i. The goal is to minimize a variable T (modeling the makespan) for which we
require that

∑
j∈J xij · pj ≤ T for each machine i.

[Assign] : min T
∑

i∈M

xij ≥ 1 for every j ∈ J

∑

j∈J

xijpj ≤ T for every i ∈ M

T ≥ pj for every j ∈ J

xij ≥ 0 for every i ∈ M, j ∈ J.

Configuration LP. The assignment LP is dominated by the configuration LP
which is, to the best of our knowledge, the strongest relaxation for the prob-
lem studied in the literature. Suppose we are given a value T > 0 that is an
estimate on the optimal makespan, e. g., given by a binary search framework. A
configuration corresponds to a multiset of processing times C ⊆ {pj : j ∈ J}
such that

∑
p∈C p ≤ T , i. e., it is a feasible assignment for a machine when the

time availability is equal to T . Let, for given T , C denotes the set of all feasible
configurations. The multiplicity function m(p,C) indicates the number of times
that the processing time p appears in the multiset C. For each combination of
a machine i and a configuration C the configuration LP has a variable yiC that
models whether we want to assign exactly jobs with processing times in con-
figuration C to machine i. Letting np denote the number of jobs j ∈ J with
processing time pj = p, we can write:

[clp(T )] :
∑

C∈C
yiC = 1 for every i ∈ M ,

∑

i∈M

∑

C∈C
m(p,C)yiC = np for every p ∈ {pj : j ∈ J},

yiC ≥ 0 for every i ∈ M,C ∈ C.

We remark that in another common definition [26], a configuration is a subset,
not of processing times but of jobs. We can solve that LP to a (1 + ε)-accuracy
in polynomial time [26] and similarly our LP above. The definition in terms of
multisets makes sense since we are working in a setting of identical machines.
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Integrality Gap. The configuration LP clp(T ) does not have an objective function
and instead we seek to determine the smallest value T for which it is feasible. In
this context, for a convex relaxation K(T ) we define the integrality gap to be the
supremum value Topt(I)/T ∗(I) over all problem instances I, where Topt(I) is the
optimal value and T ∗(I) is the minimum value T for which K(T ) is feasible. With
the additional constraint that T ≥ maxj∈J pj , the Assignment LP relaxation
has an integrality gap of 2 (which can be shown using the analysis of the list
scheduling algorithm, see e. g., [27]). Here we prove that the configuration LP
has an integrality gap of at least 1024/1023 (Theorem 1(i)).

Linear Programming and Semi-definite Programming Hierarchies

Hierarchies. An interesting question is whether other convex relaxations have
better integrality gaps. Convex hierarchies, parametrized by a number of levels or
rounds, are systematic approaches to design improved approximation algorithms
by gradually tightening the integrality gap between the integer formulation and
corresponding relaxation, at the cost of increased running time. Popular among
these methods are the Sherali-Adams (SA) hierarchy [25] (Definition 1), the
Lovász-Schrijver (LS+) semi-definite programming hierarchy [21] (Definition 4)
and the Lasserre/Sum-Of-Squares hierarchy [18,22], which is the strongest of
the three. For a comparison between them and their algorithmic implications we
refer to [10,19,23]. In some settings, for example the Independent Set problem
in sparse graphs [4], a mixed SA has also been considered.

Positive Results. For many problems the approximation factors of the best
known algorithms match the integrality gap after performing a constant num-
ber of rounds of this hierarchies. Examples of such problems are: Max-Cut [1]
and Sparsest-Cut [1,9], dense Max-Cut [11], Knapsack and Set-Cover [8]. In the
scheduling context, for minimizing the makespan on two machines in the setting of
unit size jobs and precedence constraints, Svensson solves the problem optimally
with only one level of the linear LS hierarchy [23] (Sect. 3.1, personal communica-
tion between Svensson and the author of [23]). Furthermore, for a constant num-
ber of machines, Levey and Rothvoss give a (1+ε)-approximation algorithm using
(log(n))Θ(log log n) rounds of SA hierarchy [20]. For minimizing weighted comple-
tion time on unrelated machines, one round of LS+ leads to the current best algo-
rithm [5]. Thus, hierarchies are a strong tool for approximation algorithms.

Negative Results. Nevertheless, there are known limitations on these hierarchies.
Lower bounds on the integrality gap of LS+ are known for Independent Set
[12], Vertex Cover [3,7,14,24], Max-3-Sat and Hypergraph Vertex Cover [1], and
k-Sat [6]. For the Max-Cut problem, there are lower bounds for the SA [11]
and LS+ [24]. For the Min-Sum scheduling problem (i. e., scheduling with job
dependent cost functions on one machine) the integrality gap is unbounded even
after O(

√
n) rounds of Lasserre [17]. In particular, that holds for the problem

of minimizing the number of tardy jobs even though that problem is solvable in
polynomial time, thus SDP hierarchies sometimes fail to reduce the integrality
gap even on easy problems.
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Our Results

Our key question in this paper is: is it possible to obtain a polynomial time
(1+ ε)-approximation algorithm based on applying the SA or the LS+ hierarchy
to one of the known LP-formulations of our problem? This would match the best
known (polynomial time) approximation factor we know [2,16].

We answer this question in the negative. We prove that even after Ω(n)
rounds of SA or LS+ to the configuration LP the integrality gap of the resulting
relaxation is still at least 1+1/1023. Since the configuration LP dominates1 the
assignment LP, our result also holds if we apply Ω(n) rounds of SA or LS+ to
the assignment LP.

Theorem 1. Consider the problem of scheduling identical machines to minimize
the makespan, P ||Cmax. For each n ∈ N there exists an instance with n jobs such
that:

(i) the configuration LP has an integrality gap of at least 1024/1023.
(ii) after applying r = Ω(n) rounds of the SA hierarchy to the configuration LP

the obtained relaxation has an integrality gap of at least 1024/1023.
(iii) after applying r = Ω(n) rounds of the LS+ hierarchy to the configuration

LP the obtained relaxation has an integrality gap of at least 1024/1023.

Since polynomial time approximations schemes are known [2,16] for P ||Cmax,
Theorem 1 implies that the SA and the LS+ hierarchies do not yield the best
possible approximation algorithms. We remark that for the hierarchies studied
in Theorem 1, n rounds suffice to bring the integrality gap down to exactly 1,
so results (ii) and (iii) are almost tight in terms of number of levels.

We prove Theorem 1 by defining a family of instances {Ik}k∈N constructed
from the Petersen graph (see Fig. 1). In Sect. 2 we prove that the configuration
LP is feasible for T = 1023 while the integral optimum has a makespan of at
least 1024. In Sect. 3, we show for each instance Ik that using the hypergeometric
distribution we can define a fractional solution that is feasible for the polytope
obtained by applying Ω(k) rounds of SA to the configuration LP parametrized by
T = 1023. In Sect. 4 we prove the same for the semidefinite relaxations obtained
with the LS+ hierarchy, and we study the protection matrices used in the lower
bound proof. In this part we work with covariances matrices by applying Schur’s
complement and a posterior analysis for block-symmetry matrices.

The Hard Instances

To prove the integrality gaps of 1024/1023, for each odd k ∈ N we define an
instance Ik that is inspired by the Petersen graph G (see Fig. 1) with vertex set
V = {0, 1, . . . , 9}. For each edge e = {u, v} of G, in Ik we introduce k copies of
a job j{uv} of size 2u + 2v. Thus Ik has 15k jobs. (If n is not an odd multiple
of 15, let n = 15k + � where k is the greatest odd integer such that 15k < n. In
this case we simply add to the instance � jobs that each have processing time
1 The projection of the configuration LP onto the assignment space is a contained

inside the polytope of the assignment LP [26].
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Fig. 1. The Petersen graph and its six perfect matchings (dashed lines)

equal to zero.) We define the number of machines for Ik to be 3k. For simplicity,
in the following we do not distinguish between jobs and their sizes. The graph
G has exactly six perfect matchings M̄1, M̄2, . . . , M̄6. Since the sum of the job
sizes in a perfect matching M̄� is

∑

e∈M̄�

pje
=

∑

0≤u≤9

2u = 1023,

M̄� corresponds to a configuration C� that contains one job corresponding to
each edge in M̄� and has makespan 1023. The configurations C1, . . . , C6 are
called matching configurations and we denote them by D = {C1, . . . , C6}.

2 Integrality Gap of the Configuration LP (Theorem 1(i))

Lemma 1. clp[1023] is feasible for Ik.

Proof. To define the fractional solution, for every machine i and each � ∈
{1, 2, . . . , 6} we set yiC�

= 1/6. For all other configurations C we set yiC = 0.
The first set of constraints in clp(T ) (for the machines) is clearly satisfied. For

the second set of constraints (for the job sizes), let p be such a job size and let e
be the corresponding edge in G. The Petersen graph is such that there are exactly
two perfect matchings M̄�, M̄�′ containing e, thus we get

∑3k
i=1(yiC�

+ yiC�′ ) = k
and y is feasible. ��
Lemma 2. The optimal makespan for Ik is at least 1024.

Proof. Assume, for a contradiction, that clp[1023] for Ik has an integer solution
y. Since the total size of jobs is k · 3 · 1023 and there are 3k machines, only
configurations C with makespan exacly equal to 1023 may have yiC 	= 0.

Consider such a configuration C. Since 1023 =
∑9

u=0 2u, considering the
binary representation of 1023, by induction on u it must be that for every u,
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configuration C contains an odd number of jobs corresponding to edges adjacent
to vertex u in G. Furthermore, since the sum does not exceed 1023, that odd
number must be exactly 1. Thus C exactly corresponds to a perfect matching of
G, and so the integer solution y corresponds to a 1-factorization of the multigraph
Gk obtained by taking k copies of each edge in the Petersen graph.

Let M̄1 be the perfect matching of the Petersen graph consisting of the five
edges {0, 5}, {1, 6}, {2, 7}, {3, 8}{4, 9}, called spokes. Let � =

∑
i yiC1 . Since each

spoke, which appears in exactly one other perfect matching M̄j (j > 1), must
be contained in k matchings in total, we must have

∑
i yiCj

= k − � for each
j ∈ [2, 6]. Thus

∑
i,C yiC = 5(k − �) + � = 5k − 4�. However, that sum equals 3k,

the total number of machines, and so � = k/2. Since k is odd and � an integer,
the contradiction follows. ��

3 Integrality Gap for SA (Theorem 1(ii))

We show that for the family of instances {Ik}k∈N defined in Sect. 2, if we apply
O(k) rounds of SA to the configuration LP for T = 1023, then the resulting
relaxation is feasible. Thus, after Ω(k) rounds of SA the configuration LP still
has an integrality gap of at least 1024/1023 on an instance with O(k) jobs and
machines. First, we define the polytope SAr(P ) obtained after r rounds of SA
to a polytope P that is defined via equality constraints2.

Definition 1 (Polytope SAr(P )). Consider a polytope P ⊆ [0, 1]E defined by
equality constraints. For every constraint

∑
i∈E ai,�yi = b� and every H ⊆ E such

that |H| ≤ r, the constraint
∑

i∈E ai,�yH∪{i} = b�yH is included in SAr(P ), the
level r of the Sherali-Adams hierarchy applied to P . The polytope SAr(P ) lives
in R

Pr+1(E), where Pr+1(E) = {A ⊆ E : |A| ≤ r + 1}.
For the configuration LP clp(T ) the variables set is E = M × C. Since it is

defined by equality constraints, the polytope SAr(clp(T )) corresponds to

[SAr(clp(T ))] :
∑

C∈C
yH∪{(i,C)} = yH ∀ i ∈ M , ∀ H ⊆ E : |H| ≤ r,

∑

i

∑

C∈C
m(p,C)yH∪{(i,C)} = npyH ∀ p ∈ {pj : j ∈ J}, ∀ H ⊆ E : |H| ≤ r,

yH ≥ 0 ∀ H ⊆ E : |H| ≤ r + 1,

y∅ = 1.

Intuitively, the configuration LP computes a set of edges in a complete bipartite
graph with vertex sets U, V where U is the set of machines and V is the set of
configurations. The edges are selected such that they form a U -matching, i.e.,
such that each node in U is incident to at most one selected edge.
2 This definition is slightly different from the one in Sherali & Adams [25]; for sim-

plicity we give a definition that, in the case of equality constraints, is equivalent.
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Definition 2. Given two sets U, V and F ⊆ U × V , the F -degree of u ∈ U is
δF (u) = |{v : (u, v) ∈ F}|, and δF (v) = |{u : (u, v) ∈ F}| if v ∈ V . We say that
F is an U -matching if δF (u) ≤ 1 for every u ∈ U . An element u ∈ U is incident
to F if δF (u) = 1.

In the following we consider the same family of instances {Ik : k ∈
N, k is odd} as in Sect. 2 and T = 1023. For any set S we define P(S) to be
the power set of S. We want to define a solution to SAr(clp(T )) for T = 1023.
To this end, we need to define a value yA for each set A ∈ Pr+1(M × C). In par-
ticular, for A ∈ Pr(M ×D), we define this value according to the hypergeometric
distribution.

Definition 3. Let φ : P(M × D) → R be such that

φ(A) =
1

(3k)|A|

∏

j∈[6]

(k/2)δA(Cj)

if A is an M -matching, and zero otherwise, where (x)a = x(x−1) · · · (x−a+1),
for integer a ≥ 1, is the lower factorial function.

To get some understanding about how the distribution φ works, the following
lemma intuitively shows the following: suppose that we know that a set A is
chosen (i.e., we condition on this), then the conditional probability that also a
pair (i, Cj) is chosen equals k/2−δA(Cj)

3k−|A| , assuming that A ∪ {(i, Cj)} forms an
M -matching.

Lemma 3. Let A ⊆ M × D be an M -matching of size at most 3k − 1. If i ∈ M

is not incident to A, then φ(A ∪ {(i, Cj)}) = φ(A)k/2−δA(Cj)
3k−|A| .

Proof. Given that i is not incident to A, we have |A ∪ {(i, Cj)}| = |A| + 1. Fur-
thermore, for � 	= j we have that δA∪{(i,Cj)}(C�) = δA(C�) and δA∪{(i,Cj)}(Cj) =
δA(Cj) + 1. Therefore, φ(A∪{(i,Cj)})

φ(A) = k/2−δA(Cj)
3k−|A| . ��

The Feasible Solution. We are ready now to define our solution to
SAr(clp(T )). It is the vector yφ ∈ R

Pr+1(E) defined such that yφ
A = φ(A) if

A is an M -matching in M × D, and zero otherwise.

Lemma 4. For every odd k, yφ is a feasible solution for SAr(clp(T )) for the
instance Ik when r = k/2� and T = 1023.

Proof. We first prove that yφ ≥ 0. Consider some H ⊆ E. Since yφ
H = φ(H),

using Definition 3, it is easy to check that the lower factorial stays non-negative
for r = k/2�.

We next prove that yφ satisfies the machine constraints in SAr(clp). If i is a
machine incident to H, then all terms in the left-hand summation are 0 except
for the unique pair (i, C) that belongs to H, so the sum equals yφ

H . If i is not
incident to H, then by Lemma 3 we have
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∑

C

yφ
H∪{(i,C)} =

φ(H)
3k − |H|

∑

j∈[6]

(k/2 − δH(Cj)) = φ(H) = yφ
H ,

since 6 · k/2 = 3k and
∑

j∈[6] δH(Cj) = |H|.
Finally we prove that yφ satisfies the set of constraints for every processing

time. Fix p and H. Since yφ is supported by six configurations, we have
∑

i∈M

∑

C∈C
m(p,C)yφ

H∪{(i,C)} =
∑

i∈M

∑

j∈[6]

m(p,Cj)φ(H ∪ {(i, Cj)}).

There are exactly two configurations Cp
1 , Cp

2 ∈ D such that m(p,Cp
1 ) =

m(p,Cp
2 ) = 1, and for the others it is zero, so

∑

j∈[6]

m(p,Cj)φ(H ∪ {(i, Cj)}) = φ(H ∪ {(i, Cp
1 )}) + φ(H ∪ {(i, Cp

2 )}).

Let πM (H) = {i ∈ M : δH(i) = 1} be the subset of machines incident to H. We
split the sum over i ∈ M into two parts, i ∈ πM (H) and i /∈ πM (H). For the
first part,

∑

i∈πM (H)

(φ(H ∪ {(i, Cp
1 )}) + φ(H ∪ {(i, Cp

2 )})) = φ(H)(δH(Cp
1 ) + δH(Cp

2 ))

since φ(H ∪ {(i, Cp
1 )}) is either φ(H) or 0 depending on whether (i, Cp

1 ) ∈ H,
and the same holds for Cp

2 .
For the second part, using Lemma 3 we have that

∑

i/∈πM (H)

(φ(H ∪ {(i, Cp
1 )}) + φ(H ∪ {(i, Cp

2 )}))

=
φ(H)

3k − |H|
∑

i/∈πM (H)

(k/2 − δH(Cp
1 ) + k/2 − δH(Cp

2 ))

= φ(H)(k/2 − δH(Cp
1 ) + k/2 − δH(Cp

2 )),

since |H \ πM (H)| = 3k − |H|. Adding, thanks to cancellations we get precisely
what we want:

∑

i∈M

∑

C∈C
m(p,C)yφ

H∪{(i,C)} = kφ(H) = npy
φ
H .

��
Proof (of Theorem 1(ii)). Consider instance Ik as defined before, T = 1023 and
r = k/2�. By Lemma 4 the vector yφ ∈ SAr(clp(T )). ��
We note that in the above proof, the projection of yφ onto the space of the
configuration LP is the fractional solution from the proof of Lemma 1.
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4 Integrality Gap for LS+ (Theorem 1(iii))

Given a polytope P ⊆ R
d, we consider the convex cone Q = {(a, x) ∈ R

∗ × P :
x/a ∈ P}. We define an operator N+ on convex cones R ⊆ R

d+1 as follows:
y ∈ N+(R) if and only if there exists a symmetric matrix Y ⊆ R

(d+1)×(d+1),
called the protection matrix of y, such that

1. y = Y e∅ = diag(Y ),
2. for all i, Y ei, Y (e∅ − ei) ∈ R,
3. Y is positive semidefinite,

where ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere.

Definition 4. For any r ≥ 0 and polytope P ⊆ R
d, level r of the LS+ hier-

archy, Nr
+(Q) ⊆ R

d+1, is defined recursively by: N0
+(Q) = Q and Nr

+(Q) =
N+(Nr−1

+ (Q)).

To prove the integrality gap for LS+ we follow an inductive argument. We
start from P = clp(T ). Along the proof, we use a special type of vectors that
are integral in a subset of coordinates and fractional in the others.

The Feasible Solution. Let A be an M -matching in M ×D. The partial sched-
ule y(A) ∈ R

M×C is the vector such that for every i ∈ M and j ∈ {1, 2, . . . , 6},
y(A)iCj

= φ(A ∪ {(i, Cj)})/φ(A), and zero otherwise. Here is the key Lemma.

Lemma 5. Let k be an odd integer and r ≤ k/2�. Let Qk be the convex cone
of clp(T ) for instance Ik and T = 1023. Then, for every M -matching A of
cardinality k/2� − r in M × D, we have y(A) ∈ Nr

+(Qk).

Before proving Lemma 5, let us see how it implies the Theorem.

Proof (of Theorem 1(iii)). Consider instance Ik defined in Sect. 2, T = 1023 and
r = k/2�. By Lemma 5 for A = ∅ we have y(∅) ∈ Nr

+(Qk). ��
In the following two helper lemmas we describe structural properties of every

partial schedule.

Lemma 6. Let A be an M -matching in M ×D, and let i be a machine incident
to A. Then, y(A)iC ∈ {0, 1} for all configuration C.

Proof. If C /∈ D then y(A)iC = 0 by definition. If (i, Cj) ∈ A then y(A)iCj
=

φ(A ∪ {(i, Cj)})/φ(A) = φ(A)/φ(A) = 1. For � 	= j, the set A ∪ {(i, C�)} is not
an M -matching and thus y(A)iCk

= 0. ��
Lemma 7. Let A be an M -matching in M × D of cardinality at most k/2�.
Then, y(A) ∈ clp(T ).

Proof. We note that y(A)iC = yφ
A∪{(i,C)}/yφ

A, and then the feasibility of y(A) in
clp(T ) is implied by the feasibility of yφ in SAr(clp(T )), for r = k/2�. ��
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Given a partial schedule y(A), let Y (A) ∈ R
(|M×C|+1)×(|M×C|+1) be the

matrix such that its principal submatrix indexed by {∅} ∪ (M × D) equals
(

1 y(A)�

y(A) Z(A)

)

,

where Z(A)iCj ,�Ch
= φ(A ∪ {(i, Cj), (�, Ch)})/φ(A). All the other entries of the

matrix Y (A) have value equal to zero. The matrix Y (A) provides the protection
matrix we need in the proof of the key Lemma.

Theorem 2. For every M -matching A in M × D such that |A| ≤ k/2�, the
matrix Y (A) is positive semidefinite.

Proof (Sketch). We prove that Y (A) is positive semidefinite by performing sev-
eral transformations that preserve this property. First, we remove all those zero
columns and rows. Then, Y (A) is positive semidefinite if and only if its prin-
cipal submatrix indexed by {∅} ∪ (M × D) is positive semidefinite. We then
construct the covariance matrix Cov(A) by taking the Schur’s Complement of
Y (A) respect to the entry ({∅}, {∅}). The resulting matrix is positive semidef-
inite if and only if Y (A) is positive semidefinite. After removing null rows and
columns in Cov(A) we obtain a new matrix, Cov+(A), which can be written using
Kronecker products as I⊗Q+(J −I)⊗W , with Q,W ∈ R

6×6, Q = αW for some
α ∈ (−1, 0) and I, J being the identity and the all-ones matrix, respectively. By
applying a lemma about block matrices in [15], Y (A) is positive semidefinite if
and only if W is positive semidefinite. The matrix W is of the form Du − uu�,
with u ∈ R

6 and Du is a diagonal matrix such that diag(Du) = u. By Jensen’s
inequality with the function t(y) = y2 it follows that W is positive semidefinite.
A complete proof of the theorem can be found in the Appendix. ��
Lemma 8. Let A be an M -matching in M × D and i a non-incident machine
to A. Then,

∑
j∈[6] Y (A)eiCj

= Y (A)e∅.

Proof. Let S be the index of a row of Y (A). If S /∈ {0}∪ (M ×D) then that row
is identically zero, so the equality is satisfied. Otherwise,

e�
S

∑

j∈[6]

Y (A)eiCj
=

∑

j∈[6]

φ(A ∪ {(i, Cj)} ∪ S)
φ(A)

.

If A∪S is not an M -matching then φ(A∪S∪{i, Cj}) = 0 for all i and j ∈ [6], and
e�
S Y (A)e∅ = φ(A∪S) = 0, so the equality is satisfied. If A∪S is an M -matching,

then
∑

j∈[6]

φ(A ∪ {(i, Cj)} ∪ S)
φ(A)

=
φ(A ∪ S)

φ(A)

∑

j∈[6]

φ(A ∪ S ∪ {(i, Cj)})
φ(A ∪ S)

= e�
S Y (A)e∅

∑

j∈[6]

yφ
A∪S∪{(i,Cj)}

yφ
A∪S

= e�
S Y (A)e∅,

since yφ is a feasible solution for the SA hierarchy. ��
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Having previous two results we are ready to prove the key Lemma.

Proof (of Lemma 5). We proceed by induction in r. The base case r = 0 is implied
by Lemma 7, and now suppose that it is true for r = t. Let y(A) be a partial
schedule of A of cardinality k/2� − t − 1. We prove that the matrix Y (A) is a
protection matrix for y(A). It is symmetric by definition, y(A)e∅ = diag(y(A)) =
y(A) and thanks to Theorem 2 the matrix Y (A) is positive semidefinite. Let (i, C)
be such that y(A)iC ∈ (0, 1). In particular, by Lemma 6 we have (i, C) /∈ A
and C ∈ D. We claim that Y (A)eiC/y(A)iC is equal to the partial schedule
(1, y(A ∪ {(i, C)})). If S indexes a row not in M × D then the respective entry
in both vectors is zero, so the equality is satisfied. Otherwise,

e�
S Y (A)eiC

y(A)iC
=

φ(A ∪ {(i, C)} ∪ S)
φ(A ∪ {(i, C)})

= y(A ∪ {(i, C)})S .

The cardinality of the M -matching A ∪ {(i, C)} is equal to |A| + 1 = k/2� − t,
and therefore by induction we have that Y (A)eiC/y(A)iC = (1, y(A∪{(i, C)})) ∈
N t

+(Qk). Now we have to prove that the vectors Y (A)(e∅ − eiC)/(1 − y(A)iC)
are feasible for N t

+(Qk). By Lemma 8 we have that for every � ∈ {1, 2, . . . , 6},

Y (A)(e∅ − eiC�
)

1 − y(A)iC�

=
∑

j∈[6]\{�}

(
y(A)iCj∑

j∈[6]\{�} y(A)iCj

)

y(A ∪ {(i, Cj)}),

and then Y (A)(e∅ − eiC�
)/(1 − y(A)iC�

) is a convex combination of the partial
schedules {y(A ∪ {(i, Cj)}) : j ∈ {1, 2, . . . , 6} \ �} ⊂ N t

+(Qk), concluding the
induction. ��

References

1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability
results in the Lovász-Schrijver hierarchy. In: STOC, pp. 294–303 (2005)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing. In: SODA, pp. 493–500 (1997)

3. Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without
knowing the linear program. Theor. Comput. 2, 19–51 (2006)

4. Bansal, N.: Approximating independent sets in sparse graphs. In: SODA, pp. 1–8
(2015)

5. Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted com-
pletion time on unrelated machines. CoRR, abs/1511.07826 (2015)

6. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds
and integrality gaps for cutting planes procedures. Theor. Comput. 2, 65–90 (2006)

7. Charikar, M.: On semidefinite programming relaxations for graph coloring and
vertex cover. In: SODA, pp. 616–620 (2002)
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