
Quentin Louveaux
Martin Skutella (Eds.)

 123

LN
CS

 9
68

2

18th International Conference, IPCO 2016
Liège, Belgium, June 1–3, 2016
Proceedings

Integer Programming
and Combinatorial
Optimization

Lecture Notes in Computer Science 9682

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Quentin Louveaux • Martin Skutella (Eds.)

Integer Programming
and Combinatorial
Optimization
18th International Conference, IPCO 2016
Liège, Belgium, June 1–3, 2016
Proceedings

123

Editors
Quentin Louveaux
Université de Liège
Liège
Belgium

Martin Skutella
Technische Universität Berlin
Berlin
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-33460-8 ISBN 978-3-319-33461-5 (eBook)
DOI 10.1007/978-3-319-33461-5

Library of Congress Control Number: 2016937374

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the 33 extended abstracts presented at IPCO 2016, the 18th
Conference on Integer Programming and Combinatorial Optimization, held June 1–3,
2016, in Liège, Belgium.

The IPCO conference is run under the auspices of the Mathematical Optimization
Society. It is held every year, except for those in which the International Symposium on
Mathematical Programming takes place. The conference is a forum for researchers and
practitioners working on various aspects of integer programming and combinatorial
optimization. The aim is to present recent developments in theory, computation, and
applications in these areas. The first IPCO conference took place at the University of
Waterloo in May 1990. More information on IPCO and its history can be found at
www.mathopt.org/?nav=ipco.

This year, there were 125 submissions, of which one was withdrawn before the
review process started. Each submission was reviewed by at least three Program
Committee members, often with the help of external reviewers. After an initial elec-
tronic discussions using the EasyChair conference management system, the Program
Committee met in Aussois in January 2016. After two long nights of thorough dis-
cussions, conscious and aware that there is no “right” or “wrong” when it comes to the
ultimate decisions, the Program Committee selected 33 papers to be presented at IPCO
2016 and included in this volume.

We would like to thank all authors who submitted extended abstracts to IPCO 2016,
the members of the Program Committee, who graciously gave their time and energy,
the external reviewers, the members of the local Organizing Committee, the speakers
of the summer school preceding IPCO (Michel Goemans, Nicolas Stier-Moses, and
Juan-Pablo Vielma), the Mathematical Optimization Society and in particular the
members of its IPCO Steering Committee, and — last but not least — the Aussois
barkeeper for providing after-hours refreshment.

March 2016 Quentin Louveaux
Martin Skutella

http://www.mathopt.org/?nav=ipco

Organization

Program Committee

Karen Aardal TU Delft/CWI, The Netherlands
Daniel Bienstock Columbia University, USA
José Correa Universidad de Chile, Chile
Oktay Günlük IBM Research, USA
Satoru Iwata University of Tokyo, Japan
Volker Kaibel Otto-von-Guericke Universität Magdeburg, Germany
Jochen Könemann University of Waterloo, Canada
Andrea Lodi University of Bologna/Polytechnique Montréal,

Italy/Canada
Quentin Louveaux Université de Liège, Belgium
Gianpaolo Oriolo Università degli Studi di Roma Tor Vergata, Italy
András Sebő CNRS, Laboratoire G-SCOP, Grenoble, France
Bruce Shepherd McGill University, Canada
Martin Skutella (Chair) TU Berlin, Germany
Leen Stougie VU Amsterdam/CWI, The Netherlands
Gerhard Woeginger TU Eindhoven, The Netherlands

Organizing Committee

Quentin Louveaux (Chair) Université de Liège, Belgium
Yves Crama Université de Liège, Belgium
Mathieu Van Vyve Université catholique de Louvain, Belgium
Laurence Wolsey Université catholique de Louvain, Belgium
Michèle Delville AIM, Liège, Belgium
Céline Dizier AIM, Liège, Belgium

Additional Reviewers

Abdi, Ahmad
Agnetis, Alessandro
Ahmed, Shabbir
Alvelos, Filipe
An, Hyung-Chan
Angulo, Gustavo
Atamtürk, Alper
Averkov, Gennadiy

Baiou, Mourad
Bampis, Evripidis
Bansal, Nikhil
Barahona, Francisco
Bazzi, Abbas
Benchetrit, Yohann
Bienkowski, Marcin
Boland, Natashia

Bonami, Pierre
Bonifaci, Vincenzo
Bonomo, Flavia
Buchheim, Christoph
Byrka, Jaroslaw
Böhm, Martin
Cacchiani, Valentina
Calinescu, Gruia

Celaya, Marcel
Chalermsook, Parinya
Chandrasekaran,

Karthekeyan
Cseh, Ágnes
D’Ambrosio, Claudia
Dash, Sanjeeb
De Loera, Jesús A.
Dey, Santanu
Ee, Martijn van
Eisenbrand, Friedrich
Eppstein, David
Epstein, Leah
Faenza, Yuri
Fiorini, Samuel
Friggstad, Zachary
Fujishige, Satoru
Fukunaga, Takuro
Furini, Fabio
Gao, Zhihan
Geelen, Jim
Gentile, Claudio
Georgiou, Konstantinos
Goycoolea, Marcos
Grandoni, Fabrizio
Granot, Daniel
Grigoriev, Alexander
Groß, Martin
Gupta, Anupam
Hartman, Irith
Hartvigsen, David
Henk, Martin
Hildebrand, Robert
Hirai, Hiroshi
Hoeksma, Ruben
Hooker, John
Huang, Chien-Chung
Iersel, Leo van
Iori, Manuel
Jansen, Klaus
Jansson, Jesper
Jeż, Łukasz
Kakimura, Naonori
Kamiyama, Naoyuki
Kang, Nano
Kapralov, Michael

Kesselheim, Thomas
Khan, Muhammad
Khanna, Sanjeev
Kleer, Pieter
Kling, Peter
Knust, Sigrid
Kreutzer, Stephan
Kumar, Amit
Lasserre, Jean B.
Laurent, Monique
Lee, James
Levin, Asaf
Li, Shi
Linderoth, Jeff
Loebl, Martin
Luedtke, James
Maffray, Frédéric
Malaguti, Enrico
Manlove, David
Mannino, Carlo
Marcos Alvarez,

Alejandro
Mastrolilli, Monaldo
Matuschke, Jannik
McCormick, Tom
Megow, Nicole
Mehta, Aranyak
Michaels, Dennis
Miyashiro, Ryuhei
Miyazaki, Shuichi
Mnich, Matthias
Morris, Walter
Moseley, Benjamin
Mömke, Tobias
Nagarajan, Viswanath
Nannicini, Giacomo
Naor, Seffi
Naves, Guyslain
Newman, Alantha
Nikolov, Aleksandar
Norine, Serguei
Okamoto, Yoshio
Olver, Neil
Onak, Krzysztof
Ono, Hirotaka
Oosterwijk, Tim

Ostrowski, James
Otachi, Yota
Pacifici, Andrea
Pap, Gyula
Parotsidis, Nikos
Paulusma, Daniel
Peis, Britta
Penev, Irena
Pettie, Seth
Pfetsch, Marc
Pilipczuk, Michał
Poirrier, Laurent
Pokutta, Sebastian
Post, Ian
Proiettu, Guido
Radoszewski, Jakub
Rendl, Franz
Romeijnders, Ward
Rothvoß, Thomas
Rybicki, Bartosz
Saberi, Amin
Sadykov, Ruslan
Saitoh, Toshiki
Sanità, Laura
Santiago Torres, Richard
Schaudt, Oliver
Schmidt, Daniel R.
Schulz, Andreas S.
Schürmann, Achill
Shim, Sangho
Shmoys, David
Sitters, René
Skopalik, Alexander
Smith, Cole
Soma, Tasuku
Soto, José A.
Spoerhase, Joachim
Stee, Rob van
Ster, Suzanne van der
Stiller, Sebastian
Svensson, Ola
Swamy, Chaitanya
Syrgkanis, Vasilis
Szigeti, Zoltán
Takazawa, Kenjiro
Tanigawa, Shin-Ichi

VIII Organization

Tramontani, Andrea
Tunçel, Levent
Urrutia, Sebastián
Ventura, Paolo
Verschae, José
Vielma, Juan Pablo
Vondrák, Jan

Vredeveld, Tjark
Végh, László
Ward, Justin
Weismantel, Robert
Weltge, Stefan
Wiese, Andreas
Wiese, Sven

Williamson, David
Wolsey, Laurence
Zambelli, Giacomo
Zenklusen, Rico
Zhang, Lisa
Zou, Chenglong
Zuylen, Anke van

Organization IX

Contents

On Approximation Algorithms for Concave Mixed-Integer Quadratic
Programming . 1

Alberto Del Pia

Centerpoints: A Link Between Optimization and Convex Geometry 14
Amitabh Basu and Timm Oertel

Rescaled Coordinate Descent Methods for Linear Programming 26
Daniel Dadush, László A. Végh, and Giacomo Zambelli

Approximating Min-Cost Chain-Constrained Spanning Trees: A Reduction
from Weighted to Unweighted Problems . 38

André Linhares and Chaitanya Swamy

Max-Cut Under Graph Constraints . 50
Jon Lee, Viswanath Nagarajan, and Xiangkun Shen

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows and Their
Connections with the Max-Cut Problem. 63

Mourad Baïou and Francisco Barahona

Intersection Cuts for Bilevel Optimization . 77
Matteo Fischetti, Ivana Ljubić, Michele Monaci, and Markus Sinnl

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 89
Thai Dinh, Ricardo Fukasawa, and James Luedtke

Extended Formulations in Mixed-Integer Convex Programming 102
Miles Lubin, Emre Yamangil, Russell Bent, and Juan Pablo Vielma

k-Trails: Recognition, Complexity, and Approximations 114
Mohit Singh and Rico Zenklusen

Better s-t-Tours by Gao Trees. 126
Corinna Gottschalk and Jens Vygen

Popular Edges and Dominant Matchings . 138
Ágnes Cseh and Telikepalli Kavitha

Semidefinite and Linear Programming Integrality Gaps for Scheduling
Identical Machines . 152

Adam Kurpisz, Monaldo Mastrolilli, Claire Mathieu, Tobias Mömke,
Victor Verdugo, and Andreas Wiese

http://dx.doi.org/10.1007/978-3-319-33461-5_1
http://dx.doi.org/10.1007/978-3-319-33461-5_1
http://dx.doi.org/10.1007/978-3-319-33461-5_2
http://dx.doi.org/10.1007/978-3-319-33461-5_3
http://dx.doi.org/10.1007/978-3-319-33461-5_4
http://dx.doi.org/10.1007/978-3-319-33461-5_4
http://dx.doi.org/10.1007/978-3-319-33461-5_5
http://dx.doi.org/10.1007/978-3-319-33461-5_6
http://dx.doi.org/10.1007/978-3-319-33461-5_6
http://dx.doi.org/10.1007/978-3-319-33461-5_7
http://dx.doi.org/10.1007/978-3-319-33461-5_8
http://dx.doi.org/10.1007/978-3-319-33461-5_9
http://dx.doi.org/10.1007/978-3-319-33461-5_10
http://dx.doi.org/10.1007/978-3-319-33461-5_11
http://dx.doi.org/10.1007/978-3-319-33461-5_12
http://dx.doi.org/10.1007/978-3-319-33461-5_13
http://dx.doi.org/10.1007/978-3-319-33461-5_13

Stabilizing Network Bargaining Games by Blocking Players. 164
Sara Ahmadian, Hamideh Hosseinzadeh, and Laura Sanità

Round-Robin Tournaments Generated by the Circle Method Have
Maximum Carry-Over . 178

Erik Lambrechts, Annette M.C. Ficker, Dries R. Goossens,
and Frits C.R. Spieksma

Extreme Functions with an Arbitrary Number of Slopes. 190
Amitabh Basu, Michele Conforti, Marco Di Summa, and Joseph Paat

Minimal Cut-Generating Functions are Nearly Extreme 202
Amitabh Basu, Robert Hildebrand, and Marco Molinaro

On the Mixed Binary Representability of Ellipsoidal Regions 214
Alberto Del Pia and Jeffrey Poskin

Constant Factor Approximation for ATSP with Two Edge Weights:
(Extended Abstract) . 226

Ola Svensson, Jakub Tarnawski, and László A. Végh

Improved Approximation Algorithms for Hitting 3-Vertex Paths 238
Samuel Fiorini, Gwenaël Joret, and Oliver Schaudt

Improved Approximations for Cubic Bipartite and Cubic TSP 250
Anke van Zuylen

An Approximation Algorithm for Uniform Capacitated k-Median Problem
with 1þ � Capacity Violation . 262

Jarosław Byrka, Bartosz Rybicki, and Sumedha Uniyal

Valid Inequalities for Separable Concave Constraints with Indicator
Variables . 275

Cong Han Lim, Jeff Linderoth, and James Luedtke

A Polyhedral Approach to Online Bipartite Matching 287
Alfredo Torrico, Shabbir Ahmed, and Alejandro Toriello

On Some Polytopes Contained in the 0,1 Hypercube that Have a Small
Chvátal Rank . 300

Gérard Cornuéjols and Dabeen Lee

Robust Monotone Submodular Function Maximization 312
James B. Orlin, Andreas S. Schulz, and Rajan Udwani

Maximizing Monotone Submodular Functions over the Integer Lattice. 325
Tasuku Soma and Yuichi Yoshida

XII Contents

http://dx.doi.org/10.1007/978-3-319-33461-5_14
http://dx.doi.org/10.1007/978-3-319-33461-5_15
http://dx.doi.org/10.1007/978-3-319-33461-5_15
http://dx.doi.org/10.1007/978-3-319-33461-5_16
http://dx.doi.org/10.1007/978-3-319-33461-5_17
http://dx.doi.org/10.1007/978-3-319-33461-5_18
http://dx.doi.org/10.1007/978-3-319-33461-5_19
http://dx.doi.org/10.1007/978-3-319-33461-5_19
http://dx.doi.org/10.1007/978-3-319-33461-5_20
http://dx.doi.org/10.1007/978-3-319-33461-5_21
http://dx.doi.org/10.1007/978-3-319-33461-5_22
http://dx.doi.org/10.1007/978-3-319-33461-5_22
http://dx.doi.org/10.1007/978-3-319-33461-5_22
http://dx.doi.org/10.1007/978-3-319-33461-5_23
http://dx.doi.org/10.1007/978-3-319-33461-5_23
http://dx.doi.org/10.1007/978-3-319-33461-5_24
http://dx.doi.org/10.1007/978-3-319-33461-5_25
http://dx.doi.org/10.1007/978-3-319-33461-5_25
http://dx.doi.org/10.1007/978-3-319-33461-5_26
http://dx.doi.org/10.1007/978-3-319-33461-5_27

Submodular Unsplittable Flow on Trees. 337
Anna Adamaszek, Parinya Chalermsook, Alina Ene, and Andreas Wiese

Strong Reductions for Extended Formulations. 350
Gábor Braun, Sebastian Pokutta, and Aurko Roy

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 362
Adam Kurpisz, Samuli Leppänen, and Monaldo Mastrolilli

Approximation-Friendly Discrepancy Rounding . 375
Nikhil Bansal and Viswanath Nagarajan

Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even
for a Rational Polyhedron Containing No Integer Point 387

Gérard Cornuéjols and Yanjun Li

On the Quantile Cut Closure of Chance-Constrained Problems 398
Weijun Xie and Shabbir Ahmed

Author Index . 411

Contents XIII

http://dx.doi.org/10.1007/978-3-319-33461-5_28
http://dx.doi.org/10.1007/978-3-319-33461-5_29
http://dx.doi.org/10.1007/978-3-319-33461-5_30
http://dx.doi.org/10.1007/978-3-319-33461-5_31
http://dx.doi.org/10.1007/978-3-319-33461-5_32
http://dx.doi.org/10.1007/978-3-319-33461-5_32
http://dx.doi.org/10.1007/978-3-319-33461-5_33

On Approximation Algorithms for Concave
Mixed-Integer Quadratic Programming

Alberto Del Pia(B)

Department of Industrial and Systems Engineering & Wisconsin
Institute for Discovery, University of Wisconsin-Madison,

Madison, WI, USA
delpia@wisc.edu

Abstract. We describe an algorithm that finds an ε-approximate solu-
tion to a concave mixed-integer quadratic programming problem. The
running time of the proposed algorithm is polynomial in the size of the
problem and in 1/ε, provided that the number of integer variables and
the number of negative eigenvalues of the objective function are fixed.
The running time of the proposed algorithm is expected unless P = NP.

1 Introduction

Mixed-Integer Quadratic Programming (MIQP) problems are optimization prob-
lems in which the objective function is a quadratic polynomial, the constraints
are linear inequalities, and some of the variables are required to be integers:

minimize x�Hx + h�x

subject to Wx ≥ w (1)

x ∈ Z
p × R

n−p.

In this formulation, H is symmetric, and all the data is rational. Concave MIQP
is the special case of MIQP when the objective is concave, which occurs when H
is negative semidefinite. Concave quadratic cost functions are frequently encoun-
tered in real-world problems concerning economies of scale, which corresponds
to the economic phenomenon of “decreasing marginal cost” (see [7,21]). Concave
MIQP is NP-complete [6,22]. This is even true in very restricted settings such
as the problem to minimize

∑n
i=1(w

�
i x)2 over x ∈ {0, 1}n [18].

If we assume that the dimension n is fixed, then Concave MIQP is polynomi-
ally solvable. Cook, Hartmann, Kannan, and McDiarmid [3] showed that in fixed
dimension we can enumerate the vertices of the integer hull conv{x ∈ Z

n : x ∈ P}
of a polyhedron P in polynomial time, and this result can be extended to the
mixed-integer hull PI = conv{x ∈ Z

p × R
n−p : x ∈ P} by discretization [4,12].

Since the minimum of a Concave MIQP is always achieved at one of the vertices
of PI , Concave MIQP can now be solved in fixed dimension by evaluating all
the vertices of PI and by selecting one with lowest objective value. In this work,
we will not assume that the dimension n of the problem is fixed.
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-33461-5 1

2 A. Del Pia

In order to state our result, we first give the definition of ε-approximation.
Consider an instance of MIQP, and let f(x) denote the objective function. Let
x∗ be an optimum point of the problem, and let fmax be the maximal value of
f(x) on the feasible region. For ε ∈ [0, 1], we say that x� is an ε-approximate
solution if

|f(x�) − f(x∗)| ≤ ε|fmax − f(x∗)|.
If the problem is unbounded or infeasible, the definition fails, and we expect our
algorithm to return an indicator that the problem is unbounded or infeasible.
The definition of ε-approximation has some useful invariance properties. For
instance, it is invariant under dilation and translation of the objective function,
as well as under affine transformation of the feasible region. Our definition of
approximation has been used in earlier works (see, e.g., [1,5,17,25]).

We now state the main result of this paper.

Theorem 1. There is an algorithm to find an ε-approximate solution to Con-
cave MIQP (1). The running time of the proposed algorithm is polynomial in the
size of the problem and in 1/ε, provided that the number p of integer variables,
and the number k of negative eigenvalues of H are fixed.

Concave Quadratic Programming (Concave QP) is the continuous version
of Concave MIQP, and can be obtained by setting p = 0 in (1). Concave
QP is also NP-complete [22], even when the concave quadratic objective has
only one concave direction [20]. In [25], Vavasis gives an algorithm to find an
ε-approximate solution to Concave QP whose running time is polynomial in the
size of the problem and in 1/ε, provided that the number of negative eigenvalues
of H is fixed. Our algorithm can be seen as a direct extension of Vavasis’ result
to the mixed-integer case. This shows that the computational effort needed to
find an ε-approximate solution to a Concave QP or to a Concave MIQP are
essentially the same, as long as the number of integer variables is small.

This is not the first time that the same type of problem can be solved with
the same complexity in the continuous case, and in the mixed-integer case with
a fixed number of integer variables. In fact, celebrated results by Khachiyan [13]
and by Lenstra [14] show that this is true also for linear problems: both Linear
Programming (LP), and Mixed-Integer Linear Programming (MILP) with a fixed
number of integer variables can be solved in polynomial time.

The proposed algorithm has running time polynomial in the size of the prob-
lem and in 1/ε, and exponential in both k and p. We now explain why this
running time is expected unless P = NP. First, we consider the dependence on
ε. Suppose we had a similar approximation algorithm, but with running time
polynomial in | log ε|. Vavasis [25] showed that, for k = 1 and p = 0, such an
algorithm could solve Concave QP with one concave direction in polynomial
time, and the latter problem is NP-complete [20]. Suppose now that we had an
approximation algorithm with running time polynomial in 1/ε and in k. Vavasis
[25] showed that, for p = 0, such algorithm could solve 3SAT in polynomial time,
again implying P = NP. Finally, the existence of an approximation algorithm
with running time polynomial in p, even for k = 0 and ε fixed, would allow us
to solve MAX3SAT in polynomial time, again implying P = NP.

On Approximation Algorithms for Concave MIQP 3

The key idea of our algorithm consists in iteratively subdividing the feasi-
ble region into two parts: one inner region where the mixed-integer points are
“dense”, and an outer region where the mixed-integer points are “sparse”. The
geometry of the mixed-integer points then allows us to employ tools used in the
continuous QP setting, like mesh partition and linear underestimators, in order
to obtain an ε-approximate solution for the inner region. This part of the proof
adapts classic algorithms introduced by Pardalos and Rosen [19] and analyzed
by Vavasis [25]. In the outer region, we use the concept of flatness to subdivide
the problem into a fixed number of lower-dimensional MIQPs. In this second
part of our proof we will use lattice algorithms introduced by Lenstra [14].

2 Proof of Theorem1

Diagonalization. Our starting point is a problem of the form (1) in which
H is negative semidefinite with rank k. The first task of our algorithm is to
perform a linear change of variables that transform the objective function of (1)
in separable form, where the negative-definite part of the problem is confined to
k variables.

In order to do so, we diagonalize H via a LDLT decomposition. This is a
decomposition of the form ΠHΠ� = LDLT , where Π is a permutation matrix,
the matrix D is diagonal, whose first k diagonal entries are negative and the
rest are zero, and where L is lower triangular with normalized diagonal entries
Lii = 1. The importance of the LDLT decomposition is that, in contrast to
other factorizations like the Eigenvalue decomposition or the Cholesky decom-
position, it is a rational decomposition; i.e., if the matrix H is rational then all
numbers that appear in the decomposition are rational and polynomially sized
(see, e.g., [9]).

We can now perform the change of basis (y, z) = L�Πx, and we end up with
an equivalent problem of the form:

minimize y�Dy + c�y + f�z

subject to Ay + Bz ≥ b (2)
(y, z) ∈ L,

where y is a k-dimensional vector, z is a (n−k)-dimensional vector, D is diagonal
and negative definite, and L = {(y, z) ∈ R

n : (y, z) = L�Πx, for x ∈ Z
p ×

R
n−p}. Note that, if we denote by l1, . . . , ln the columns of L�Π, the set L is

the mixed-integer lattice

L = {(y, z) =
n∑

i=1

λil
i : λ1, . . . , λp ∈ Z, λp+1, . . . , λn ∈ R}.

Boundedness of MIQP. The next task of our algorithm is to detect if our
concave MIQP problem (2) is unbounded or not. We remark that detecting if an

4 A. Del Pia

indefinite MIQP problem is unbounded is NP-hard even in the pure continuous
case (see [6,16]).

We first need to define two functions. The first one is the part of the objective
function that depends on y:

q(y) = y�Dy + c�y.

The second one is a function that associates to each ȳ ∈ R
k, the optimal value of

the MILP problem obtained as the restriction of (2) to the set of points (ȳ, z).
Formally,

φ(y) = min{f�z : Ay + Bz ≥ b, (y, z) ∈ L}, (3)

for all y for which the minimum exists. If, for a fixed y, the MILP on the right-
hand is infeasible, we write φ(y) = ∞. Similarly, if, for a fixed y, the MILP on
the right-hand is unbounded, we write φ(y) = −∞. Our MIQP problem (2) is
now equivalent to the unconstrained problem

minimize {q(y) + φ(y) : y ∈ R
k}.

Given a set S ⊆ R
n, we denote by π(S) = {y ∈ R

k : ∃z ∈ R
n−k with (y, z) ∈

S} the projection of S onto the space of the y variables. We also denote by P the
rational polyhedron P = {(y, z) ∈ R

n : Ay +Bz ≥ b}, and we define F = P ∩L.
The next proposition characterizes when our MIQP is unbounded.

Proposition 1. Problem (2) is unbounded if and only if

(i) For every y ∈ π(F), φ(y) = −∞, or
(ii) Region π(F) is unbounded.

Proof. Condition (i) trivially implies that (2) is unbounded. In fact, the existence
of a single y such that φ(y) = −∞ means that the corresponding restriction (3)
of (2) is unbounded.

To prove the sufficiency of condition (ii), we now assume that π(F) is
unbounded. As π(F) ⊆ π(conv F), we have that π(conv F) is unbounded as
well. By Meyer’s theorem [15] we have that conv F is a rational polyhedron, and
Fourier’s method implies that π(conv F) is a rational polyhedron as well. Let
yr be a nonzero rational vector in the recession cone of π(conv F). It follows
that there exists a rational vector zr such that (yr, zr) is in the recession cone
of conv F . Let (ȳ, z̄) ∈ F , and consider the ray {(ȳ, z̄) + t(yr, zr) : t ≥ 0}. The
objective function y�Dy+c�y+f�z evaluated on the ray is t2(yr�Dyr)+O(t).
Since the leading term is negative, the objective function tends to −∞ along
the ray. It follows that (2) is unbounded because, for every t̄ ∈ R, the ray
{(ȳ, z̄) + t(yr, zr) : t ≥ t̄} contains (infinitely many) points in F .

To prove necessity of the conditions, we now assume that (2) is unbounded,
and show that at least one of the two conditions holds. Consider the relaxation
of (2) obtained by dropping the constraint (y, z) ∈ L. Also the latter continuous
problem is unbounded, and in this case Vavasis [24] proved that there exists a

On Approximation Algorithms for Concave MIQP 5

rational ray {(ỹ, z̃) + t(yr, zr) : t ≥ 0} ⊆ P along which the objective function
of (2) tends to −∞. At least one among yr and zr must be nonzero.

Suppose yr is nonzero, and let (ȳ, z̄) ∈ F . The ray {(ȳ, z̄) + t(yr, zr) : t ≥ 0}
is contained in P . Moreover, for every t̄ ∈ R, the ray {(ȳ, z̄) + t(yr, zr) : t ≥ t̄}
contains points in F . This implies that the ray {ȳ + tyr : t ≥ t̄} contains points
in π(F) for every t̄ ∈ R, and hence π(F) is unbounded.

The other case is that yr = 0, in which case zr is nonzero. Our ray {(ỹ, z̃) +
t(yr, zr) : t ≥ 0} can then be written as {(ỹ, z̃ + tzr) : t ≥ 0}. Also, f�zr < 0
because the objective function decreases along the ray by assumption. Let ȳ ∈
π(F), let z̄ be a vector such that (ȳ, z̄) ∈ F , and consider the ray {(ȳ, z̄ + tzr) :
t ≥ 0}. This new ray is contained in the polyhedron {(y, z) ∈ P : y = ȳ}.
Moreover, since (yr, zr) is rational, the ray {(ȳ, z̄ + tzr) : t ≥ t̄} contains points
in F for every t̄ ∈ R. Finally, f�(z̄ + tzr) = t(f�zr) + O(1) tends to −∞ along
the ray, implying φ(ȳ) = −∞. 	

The characterization given in Proposition 1 allows us to determine whether
problem (2) is unbounded or not. For every j = 1, . . . , k, solve

min{yj : (y, z) ∈ F}, max{yj : (y, z) ∈ F}.

Each problem is a MILP with a fixed number p of integer variables, which can
be solved in polynomial time [14]. If any of these MILPs is unbounded, then
MIQP (2) is unbounded by Proposition 1. Otherwise, let (ȳ, z̄) be a point in
F , which can be, for example, an optimal solution of one of the 2k MILPs just
solved. We can now compute φ(ȳ) in polynomial time, since it amounts to solving
another MILP with a fixed number of integer variables. As the point ȳ is in π(F),
Proposition 1 implies that φ(ȳ) = −∞ if and only if problem (2) is unbounded.
From now on, we assume that Problem (2) is bounded.

Boundedness of the Feasible Region. We now show that we can assume
without loss of generality that P is bounded.

In order to do so, we first show that there exists an optimal solution to (2)
whose encoding size is polynomially bounded by the size of (2). Assume that
there exists an optimal solution (y∗, z∗) to (2) that lies in the positive orthant
y ≥ 0, z ≥ 0 (the other cases follow symmetrically). We define P+ to be the
polyhedral convex hull of P ∩ {(y, z) : y ≥ 0, z ≥ 0} ∩ L. Consider the following
continuous problem:

minimize y�Dy + c�y + f�z (4)

subject to (y, z) ∈ P+.

As (4) is a Concave QP, it is well-known that there exists an optimal solution
of (4) at a vertex of the feasible set P+ (see, e.g., [7]). Since vertices of P+ are
in L, this implies that such optimal solution of (4) is also an optimal solution of
(2). The vertices of P+ have size polynomially bounded by the size of P , which
is in turn polynomially bounded by the size of (2) (see, e.g., [2]).

6 A. Del Pia

Now let B be such a polynomial bound. (We will not give this bound explic-
itly, but it can be easily calculated following [2,23].) Our algorithm can now
replace our polyhedron P with the polytope of polynomial size P ∩ {(y, z) :
||(y, z)||∞ ≤ 2B}. In this way we are guaranteed that at least an optimal solu-
tion of the original problem (2) will be feasible for the new problem.

Full-Dimensionality of the Feasible Region. We now show that we can
assume without loss of generality that P is full-dimensional.

To do so, we test whether the constraint set defining P is full dimensional.
This can be done by solving a single LP [8]. If not, we can find a linear change
of basis that does not change the format of (2), and that lowers the dimension
of the problem, ensuring without loss of generality that the feasible set is full
dimensional. Note that this change of basis does not increase the number of
negative eigenvalues of the objective function, or the number of integer variables.

2.1 Approximation in the Inner Region

In this section we define a polyhedron P̄ ⊆ P , and we find an ε-approximate
solution of MIQP problem (2) restricted to feasible region P̄ ∩ L. Later, in
Sect. 2.2, we give an algorithm that decomposes the feasible points in P\P̄ into
a fixed number of lower-dimensional polytopes Pi. Our algorithm will then be
applied recursively to each polytope Pi.

In order to define P̄ we introduce the “even” mixed-integer lattice

L2 = {(y, z) =
n∑

i=1

λil
i : λ1, . . . , λp ∈ 2Z, λp+1, . . . , λn ∈ R} ⊆ L.

By solving 2k MILPs with a fixed number of integer variables we compute, for
every j = 1, . . . , k, the values

lj = min{yj : (y, z) ∈ P ∩ L2}, uj = max{yj : (y, z) ∈ P ∩ L2}.

Each of these MILPs is bounded, since P is bounded. Moreover, we assume that
lj < uj for all j, because otherwise yj is uniquely determined and can be dropped
from the problem. The polytope P̄ is then defined as

P̄ = {(y, z) ∈ P : lj ≤ yj ≤ uj , j = 1, . . . , k}.

The algorithm that we propose in this section is similar to algorithms that
have appeared in the continuous optimization literature, like those described
in Pardalos and Rosen [19] and in Vavasis [25]. In particular, the analysis in
Claims 1, 2, and 4 below follows the one given by Vavasis. These algorithms are
not directly applicable to the mixed-integer case as they rely on the convexity of
the feasible region. Our contribution is to adapt such algorithmic techniques to
the mixed-integer case: the special properties of P̄ will in fact allow us to relax
the convexity requirement, as we will see in Claim 3.

On Approximation Algorithms for Concave MIQP 7

In order to simplify the notation in the remainder of the section, we further
assume that the coordinates of the vector y are translated and rescaled so that

[l1, u1] × · · · × [lk, uk] = [0, 1]k.

Note that this affine transformation can be found and applied in polynomial
time, and it does not change the format of (2), except for the set L. In fact,
because of the translation, both sets L and L2 will no longer necessarily contain
the origin, thus from now on they will be translated lattices.

We now place an (m + 1) × · · · × (m + 1) grid of points in the cube [0, 1]k.
The value of m is the ceiling of

√
k/ε, and the reason behind this choice will

be explained later. The coordinates of the points of the grids have the form
(i1/m, i2/m, . . . , ik/m), where i1, . . . , ik ∈ {0, 1, . . . ,m}. The grid partitions
[0, 1]k into mk subcubes. Next, for each subcube C, we construct an affine under-
estimator of the restriction of q(y) to C. In what follows, we denote by γ the
absolute value of the most negative diagonal entry of D.

Claim 1. For each subcube C, we can construct an affine function μ(y) such
that for every y ∈ C we have

μ(y) ≤ q(y) ≤ μ(y) +
γk

4m2
.

Proof of Claim. Let C be a particular subcube, say C = [r1, s1] × · · · × [rk, sk],
where sj − rj = 1/m for every j. For each j = 1, . . . , k, the affine univariate
function

λj(yj) = djj(rj + sj)yj + cjyj − djjrjsj (5)

satisfies λj(rj) = djjr
2
j + cjrj , and λj(sj) = djjs

2
j + cjsj . We define the affine

function from R
k to R given by

μ(y) =
k∑

j=1

λj(yj).

The separability of q implies that μ(y) and q(y) attain the same values at all
vertices of C. As q is concave, this in particular implies that μ(y) ≤ q(y).

We now show that q(y) − μ(y) is bounded from above by γk/(4m2). From
the separability of q, we obtain

q(y) − μ(y) =
k∑

j=1

(djjy
2
j + cjyj − λj(yj)).

Using the explicit formula for λj given in (5), it can be derived that:

djjy
2
j + cjyj − λj(yj) = −djj(yj − rj)(sj − yj).

8 A. Del Pia

The univariate function on the right-hand is concave, and its maximum is
achieved at yj = (rj + sj)/2. This maximum value is −djj/(4m2). Therefore, as
−djj ≤ γ, for j = 1, . . . , k, we establish that q(y) − μ(y) ≤ γk/(4m2).

For each subcube C�, � = 1, . . . , mk, our algorithm now constructs the
corresponding affine function μ�(y) described in Claim 1. Then, we minimize
μ�(y) + φ(y) on each subcube C�. This can be done by solving the following
MILP with a fixed number of integer variables:

minimize μ�(y) + f�z

subject to Ay + Bz ≥ b

y ∈ C�

(y, z) ∈ L.

Finally, our algorithm returns the best solution (y�, z�) among all the mk opti-
mum solutions just obtained.

We now show that (y�, z�) is an ε-approximate solution to the MIQP problem
(2) restricted to P̄ . To do so, we will obtain two bounds. The first bound is an
upper bound on the gap between the objective value at (y�, z�) and the objective
value at an optimum solution (y∗, z∗) of (2), where P is replaced by P̄ .

Claim 2. The objective value of the point (y�, z�) is at most γk/(4m2) above
the objective value of (y∗, z∗).

Proof of Claim. Note that the objective value at (y�, z�) is q(y�) + φ(y�), while
the objective value at (y∗, z∗) is q(y∗) + φ(y∗). Let μ̃ be the piecewise linear
function on [0, 1]k that coincides with μ� on each subcube C�. We have

q(y�) + φ(y�) − γk

4m2
≤ μ̃(y�) + φ(y�) ≤ μ̃(y∗) + φ(y∗) ≤ q(y∗) + φ(y∗).

The first and third inequalities follow because, by Claim1, we have μ̃(y) ≤ q(y) ≤
μ̃(y) + γk/(4m2) for every y ∈ [0, 1]k. The second inequality holds because y� is
a minimum for function μ̃ + φ over P̄ ∩ L.

The second bound is a lower bound on the gap between the maximum and
the minimum objective function values of the points in P̄ ∩ L. Without loss
of generality, we now assume that the most negative entry of D, the one with
absolute value γ, is d11. By construction of P̄ , there exists a point (y0, z0) ∈
P̄ ∩ L2 such that y0

1 = 0. Similarly, there is a point (y1, z1) ∈ P̄ ∩ L2 such that
y1
1 = 1. We define

(y•, z•) =
1
2
(y0, z0) +

1
2
(y1, z1).

Claim 3. The point (y•, z•) is in P̄ ∩ L.

Proof of Claim. The vector (y•, z•) is clearly in P̄ , since it is a convex com-
bination of two points in P̄ . We now show that it is also in the translated

On Approximation Algorithms for Concave MIQP 9

mixed-integer lattice L. Let w be a vector in L2. Then, we can write (yβ , zβ),
for β = 0, 1, as:

(yβ , zβ) = w +
n∑

i=1

λβ
i li for λβ

1 , . . . , λβ
p ∈ 2Z, λβ

p+1, . . . , λ
β
n ∈ R.

We obtain

(y•, z•) =
1
2
(y0, z0) +

1
2
(y1, z1) = w +

n∑

i=1

(λ0
i

2
+

λ1
i

2

)
li,

and the last vector is in L since λ0
i

2 + λ1
i

2 ∈ Z for every i = 1, . . . , p.
We are now ready to derive our lower bound.

Claim 4. The objective value of the point (y•, z•) is at least γ/4 above the objec-
tive value of (y∗, z∗).

Proof of Claim. Since q(y0)+φ(y0) ≥ q(y∗)+φ(y∗), and q(y1)+φ(y1) ≥ q(y∗)+
φ(y∗), in order to prove the claim we just need to show the following bound:

y•�Dy• + c�y• + f�z• ≥ 1
2

(
q(y0) + φ(y0) + q(y1) + φ(y1)

)
+ γ/4.

To do so, note that y•�Dy• + c�y• + f�z• can be rewritten as

1
2
(
q(y0) + f�z0

)
+

1
2
(
q(y1) + f�z1

) − 1
4
(y0 − y1)�D(y0 − y1).

By definition of φ, the latter is at least

1
2
(
q(y0) + φ(y0)

)
+

1
2
(
q(y1) + φ(y1)

) − 1
4
(y0 − y1)�D(y0 − y1).

Therefore, we just need to show that − 1
4 (y0 − y1)�D(y0 − y1) ≥ γ/4. We can

write:

−1
4
(y0 − y1)�D(y0 − y1) =

1
4

k∑

j=1

(y0
j − y1

j)2(−djj).

All the terms of the summation are nonnegative, thus a lower bound is given by
the first term (y0

1 −y1
1)

2(−d11). By choice of y0 and y1, we obtain (y0
1 −y1

1)
2 = 1,

and since −d11 = γ, we get the desired lower bound of γ/4.
By Claim 2, we can find a point (y�, z�) ∈ P̄ ∩ L that is at most γk/(4m2)

above optimal. By Claims 3 and 4, there is a point in P̄ ∩ L that is at least γ/4
above optimal. Therefore, (y�, z�) is an ε-approximate solution to the MIQP
problem (2) restricted to P̄ provided that

γk

4m2
≤ ε · γ

4
,

10 A. Del Pia

and the latter condition holds if m is the ceiling of
√

k/ε.
In this section, to find (y�, z�), we solved a total of

2k + mk = 2k +
⌈√

k

ε

⌉k

MILPs with p integer variables. For fixed k, the number of MILPs is polynomial
in 1/ε. Moreover, for fixed p, each MILP can be solved in polynomial time. There-
fore, for fixed k and p, the running time of the given approximation algorithm
is polynomial in the size of the problem, and in 1/ε.

2.2 Decomposition of the Outer Region

In this section we explain how to decompose the feasible points in P\P̄ into a
number of lower-dimensional polytopes Pi. For each of these polytopes Pi, we
will then apply recursively the presented algorithm. The total number of times
that we need to run our algorithm will be polynomial when the number of integer
variables p is fixed.

At the end of the execution of the recursive algorithm we will have stored a
polynomial number of ε-approximate solutions, each one corresponding to a par-
ticular polyhedral subset of the original polyhedron. (For example, the solution
(y�, z�) obtained above is the one corresponding to P̄ .) By construction, each
feasible solution will be contained in at least one of these polyhedral subsets.

Finally, we return as the approximate solution to the original MIQP the
vector (y�, z�) that achieves the minimum objective function value among all
the ε-approximate solutions obtained. The objective value of (y�, z�) is at most
that of the ε-approximate solution, say (y�, z�), corresponding to the polyhedral
subset which contains a global optimum solution of the problem. The vector
(y�, z�) is an ε-approximate solution to the original MIQP, and so is the point
(y�, z�) returned by the algorithm.

In the remainder of this section, we will explain how to use Lenstra’s [14]
seminal algorithm in order to obtain a number of lower-dimensional polytopes
Pi which contain all the feasible points that are in P but not in P̄ .

The points in P\P̄ are contained in the full-dimensional polytopes among
the following:

{(y, z) ∈ P : yj ≤ lj} j = 1, . . . , k (6)
{(y, z) ∈ P : yj ≥ uj} j = 1, . . . , k.

This is because, if (ȳ, z̄) ∈ P\P̄ , then there is at least one inequality among
yj ≤ lj and yj ≥ uj that is satisfied strictly by (ȳ, z̄), and the corresponding
polytope among (6) is full-dimensional since so is P . We denote by Q the family
of the full-dimensional polytopes among the 2k polytopes in (6). Each point in
L ∩ P\P̄ is now contained in at least a polytope in Q.

Let Q be one polytope in Q. We now describe how to decompose Q into a
fixed number of lower dimensional polytopes. In order to do so, we will essentially

On Approximation Algorithms for Concave MIQP 11

apply Lenstra’s algorithm [14] to Q. To keep the notation simple, we go back
to the space of the x-variables, which can be done via the change of variables
x = Π�L−�(y, z). Let Q̄ be the image of Q in the space of the x-variables. Since
Q is bounded and full-dimensional, so is Q̄. Moreover, since Q contains points
in L2 only on its boundary, we have that Q̄ contains points in 2Zp × R

n−p only
on its boundary. Let Q̃ be the projection of Q̄ on the integer space:

Q̃ = {(x1, . . . , xp) ∈ R
p : ∃(xp+1, . . . , xn) ∈ R

n−p such that (x1, . . . , xn) ∈ Q̄}.

Clearly Q̃ has dimension p, and contains points in 2Zp only on its boundary. In
order to apply Lenstra’s algorithm, we do not need to explicitly construct the
polytope Q̃, which generally has an exponential number of facets.

Since the number of integer variables p is fixed, following Sect. 5 in
Lenstra [14] (see also Sect. 18 in [23] and Sect. 9 in [2]), with 2Z instead of
Z, we obtain in polynomial time a nonzero vector d ∈ Z

p such that

max{d�x : x ∈ Q̃} − min{d�x : x ∈ Q̃} ≤ 4p(p + 1)2p(p−1)/4.

Clearly, the value on the right-hand is a fixed number for p fixed. (Note that
better bounds and running times can be obtained by using modern Lenstra-type
algorithms, like the ones described in [10,11].)

In general, Lenstra’s algorithm either finds a point in Q̄∩ (2Zp ×R
n−p), or a

flat direction d as above. However, since Q̄ contains points in 2Zp × R
n−p only

on its boundary, the algorithm in any case finds a flat direction d.
We now construct a fixed number of subproblems with one less integer vari-

able. Determine μ = min{dx : x ∈ Q̃}, and consider the polytopes

Q̄t = {x ∈ Q̄ : (d, 0)�x = t} for t = �μ�, . . . , �μ + 4p(p + 1)2p(p−1)/4�.

Then each point in Q̄ ∩ (Zp × R
n−p) is in one of these Q̄t. Now, via a linear

change of basis we can lower by one the dimension of the space where each
Q̄t lives. In this new space, the lattice to be considered will be Z

p−1 × R
n−p.

Since we have to consider each polytope Q ∈ Q, in total we construct at most
2k · 4p(p + 1)2p(p−1)/4 polytopes with one less integer variable.

Our algorithm will now be applied recursively to each polytope Q̄t, until
each obtained polytope will be considered in a purely continuous space. The
algorithm will then be applied a total number of times upper bounded by

p∑

j=0

(2k · 4p(p + 1)2p(p−1)/4)j ≤ (2k · 4p(p + 1)2p(p−1)/4)p+1,

which is a polynomial number for fixed p. 	

12 A. Del Pia

References

1. Bellare, M., Rogaway, P.: The complexity of aproximating a nonlinear program.
In: Pardalos, P.M. (ed.), Complexity in Numerical Optimization. World Scientific
(1993)

2. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer,
Heidelberg (2014)

3. Cook, W., Hartman, M., Kannan, R., McDiarmid, C.: On integer points in poly-
hedra. Combinatorica 12(1), 27–37 (1992)

4. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer pro-
gramming problems. Math. Program. 47(1–3), 155–174 (1990)

5. de Klerk, E., Laurent, M., Parrilo, P.A.: A PTAS for the minimization of polyno-
mials of fixed degree over the simplex. Theoret. Comput. Sci. 361, 210–225 (2006)

6. Del Pia, A., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in
NP, Manuscript (2014)

7. Floudas, C.A., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos,
P.M. (eds.) Handbook of Global Optimization. Nonconvex Optimization and its
Applications, vol. 2, pp. 217–269. Springer, New York (1995)

8. Freund, R.M., Roundy, R., Todd, M.J.: Identifying the set of always-active con-
straints in a system of linear inequalities by a single linear program. Working Paper,
pp. 1674–85, Sloan School of Management, MIT, Cambridge, MA (1985)

9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-
versity Press, Baltimore, MD, USA (1996)

10. Heinz, S.: Complexity of integer quasiconvex polynomial optimization. J. Complex.
21, 543–556 (2005)

11. Hildebrand, R., Köppe, M.: A new lenstra-type algorithm for quasiconvex polyno-
mial integer minimization with complexity 2O(n logn). Discrete Optim. 10, 69–84
(2013)

12. Hildebrand, R., Oertel, T., Weismantel, R.: Note on the complexity of the mixed-
integer hull of a polyhedron. Oper. Res. Lett. 43, 279–282 (2015)

13. Khachiyan, L.G.: A polynomial algorithm in linear programming (in Russian).
Doklady Akademii Nauk SSSR, 244, pp. 1093–1096 (1979). (English translation:
Soviet Mathematics Doklady, 20, pp. 191–194, 1979)

14. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

15. Meyer, R.R.: On the existence of optimal solutions to integer and mixed-integer
programming problems. Math. Program. 7(1), 223–235 (1974)

16. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and linear
programming. Math. Program. 39, 117–129 (1987)

17. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in
Optimization. Wiley, Chichester (1983). Translated by E.R. Dawson from Slozh-
nost’ Zadach i Effektivnost’ Metodov Optimizatsii (1979)

18. Onn, S.: Convex discrete optimization. In: Chvátal, V. (ed.) Combinatorial Opti-
mization: Observation of Strains. Infect Dis Ther. Methods Appl. 3(1), 35–43, pp.
183–228. IOS Press (2011)

19. Pardalos, P.M., Rosen, J.B. (eds.): Constrained Global Optimization: Algorithms
and Applications. LNCS, vol. 268. Springer, Heidelberg (1987)

20. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigen-
value is NP-hard. J. Global Optim. 1(1), 15–22 (1991)

On Approximation Algorithms for Concave MIQP 13

21. Rosen, J.B., Pardalos, P.M.: Global minimization of large-scale constrained con-
cave quadratic problems by separable programming. Math. Program. 34, 163–174
(1986)

22. Sahni, S.: Computationally related problems. SIAM J. Comput. 3, 262–279 (1974)
23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
24. Vavasis, S.A.: Quadratic programming is in NP. Inform. Proces. Lett. 36, 73–77

(1990)
25. Vavasis, S.A.: On approximation algorithms for concave quadratic programming.

In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization,
pp. 3–18. Princeton University Press, Princeton (1992)

Centerpoints: A Link Between Optimization
and Convex Geometry

Amitabh Basu1 and Timm Oertel2(B)

1 Johns Hopkins University, Baltimore, USA
2 Cardiff University, Cardiff, UK

oertelt@cardiff.ac.uk

Abstract. We introduce a concept that generalizes several different
notions of a “centerpoint” in the literature. We develop an oracle-based
algorithm for convex mixed-integer optimization based on centerpoints.
Further, we show that algorithms based on centerpoints are “best possi-
ble” in a certain sense. Motivated by this, we establish several structural
results about this concept and provide efficient algorithms for computing
these points.

1 Introduction

Let μ be a Borel-measure1 on R
n such that 0 < μ(Rn) < ∞. Without any

loss of generality, we normalize the measure to be a probability measure, i.e.,
μ(Rn) = 1. For S ⊂ R

n closed, we define the set of centerpoints C(S, μ) ⊂ S as
the set that attains the following maximum

F(S, μ) := max
x∈S

inf
u∈Sn−1

μ(H+(u, x)), (1)

where Sn−1 denotes the (n − 1)-dimensional sphere and H+(u, x) denotes the
half-space {y ∈ R

n | u · (y − x) ≥ 0}. This definition unifies several definitions
from convex geometry and statistics. Two notable examples are:

1. Winternitz measure of symmetry. Let μ be the Lebesgue measure restricted
to a convex body K (i.e., K is compact and has a non-empty interior), or
equivalently, the uniform probability measure on K, and let S = R

n. F(S, μ)
in this setting is known in the literature as the Winternitz measure of sym-
metry of K, and the centerpoints C(S, μ) are the “points of symmetry” of
K. This notion was studied by Grünbaum in [9] and surveyed by the same
author (along with other measures of symmetry for convex bodies) in [10].

1 The reader who is unfamiliar with measure theory, may simply consider µ to be the
volume measure or the mixed-integer measure on the mixed-integer lattice, i.e., µ(S)
returns the volume of S or the “mixed-integer volume” of the mixed-integer lattice
points inside S, where S will usually be a convex body. The “mixed-integer volume”
reduces to the number of integer points when the lattice is the set of integer points.
See (3) for a precise definition which generalizes both the standard volume and the
“counting measure” for the integer lattice.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 14–25, 2016.
DOI: 10.1007/978-3-319-33461-5 2

Centerpoints: A Link Between Optimization and Convex Geometry 15

2. Tukey depth and median. In statistics and computational geometry, the func-
tion fμ : Rn → R defined as

fμ(x) := inf
u∈Sn−1

μ(H+(u, x)) (2)

is known as the halfspace depth function or the Tukey depth function for the
measure μ, first introduced by Tukey [20]. Taking S = R

n, the centerpoints
C(Rn, μ) are known as the Tukey medians of the probability measure μ, and
F(Rn, μ) is known as the maximum Tukey depth of μ. Tukey introduced the
concept when μ is a finite sum of Dirac measures (i.e., a finite set of points
with the counting measure), but the concept has been generalized to other
probability measures and analyzed from structural, as well as computational
perspectives. See [15] for a survey of structural aspects and other notions of
“depth” used in statistics, and [7] and the references therein for a survey and
recent approaches to computational aspects of the Tukey depth.

Our Results. To the best of our knowledge, all related notions of centerpoints
in the literature always insist on the set S being R

n, i.e., the centerpoint can be
any point from the Euclidean space. We consider more general S, as this captures
certain operations performed by oracle based mixed-integer convex optimization
algorithms. In Sect. 2, we elaborate on this connection between centerpoints
and algorithms for mixed-integer optimization. We first give an algorithm for
solving convex mixed-integer optimization given access to first-order (separation)
oracles, based on centerpoints. Second, we show that oracle-based algorithms for
convex mixed-integer optimization that use centerpoint information are “best
possible” in a certain sense. This comprises our main motivation in studying
centerpoints.

In Sect. 4, we show that when S = R
n and μ is the uniform measure on

polytopes, centerpoints are unique, a question which was surprisingly not proved
earlier. We also present a new technique to lower bound F(Zn ×R

d, ν) where ν
is the “mixed-integer” uniform measure on K ∩ (Zn ×R

d) and K is some convex
body. Such bounds immediately imply bounds on the complexity of oracle-based
convex mixed-integer optimization algorithms.

In Sect. 5, we present a number of exact and approximation algorithms for
computing centerpoints. To the best of our knowledge, the computational study
of centerpoints has only been done for measures μ that are a finite sum of
Dirac measures, i.e., for finite point sets, or when μ is the uniform measure on
two dimensional polygons (e.g. see [5] and the references therein). We initiate
a study for other measures; in particular, the uniform measure on a convex
body, the counting measure on the integer points in a convex body, and the
mixed-integer volume of the mixed-integer points in a convex body. All our
algorithms are exponential in the dimension n but polynomial in the remaining
input data, so these are polynomial time algorithms if n is assumed to be a
constant. Algorithms that are polynomial in n are likely to not exist because
of the reduction to the so-called closed hemisphere problem – see Chap. 7 in
Bremner, Fukuda and Rosta [14].

16 A. Basu and T. Oertel

2 An Application to Mixed-Integer Optimization

We will be interested in the setting when the measure μ is based on the mixed-
integer volume of the mixed-integer points in a convex body K, and S is the
set of mixed-integer points in K. More precisely, let K ⊆ R

n × R
d be a convex

set. Let vold be the d-dimensional volume (Lebesgue measure). We define the
mixed-integer volume with respect to K as

μmixed,K(C) :=
∑

z∈Zn vold(C ∩ K ∩ ({z} × R
d))

∑
z∈Zn vold(K ∩ ({z} × Rd))

(3)

for any Lebesgue measurable subset C ⊆ R
n × R

d. For later use we want to
introduce the notation μ̄mixed(C) =

∑
z∈Zn vold(C∩({z}×R

d)). The dimensions
n and d will be clear from the context.

Our main motivation to study centerpoints comes from its natural connec-
tion to convex mixed-integer optimization. Consider the following unconstrained
optimization problem

min
(x,y)∈Zn×Rd

g(x, y). (4)

where g : Rn × R
d 	→ R is a convex function given by a first-order evaluation

oracle. Queried at a point the oracle return the corresponding function value and
an element from the subdifferential. We assume that the problem is bounded.
Further, if d
= 0, we assume that for every fixed x ∈ Z

n, g(x, y) is Lipschitz
continuous in the y variables with Lipschitz constant L. We present a general
cutting plane method based on centerpoints, i.e. the centerpoint-method. This
can be interpreted as an extension of the well-known Method of Centers of
Gravity or other cutting plane methods such as the Ellipsoid method or Kelly’s
cutting plane method (see [16, Sect. 3.2.6.]) for convex optimization. This type
of idea was also explored by Bertsimas and Vempala in [4] for continuous con-
vex optimization. Our approach bears similarities to Lenstra-type algorithms
[8,13] for convex integer optimization problems. Most variations of Lenstra-type
algorithms rely on a combination of the ellipsoid method and enumeration on
lower dimensional subproblems. The key difference is that our algorithm avoids
enumerating low dimensional subproblems.

We assume that we have access to (approximate) centerpoints of polytopes
through an oracle. As in statistics, we introduce the notation

Dμ(α) := {x ∈ R
n : fμ(x) ≥ α}. (5)

We define the oracle for the case that we only have access to approximate cen-
terpoints as follows.

Definition 1 (α-central-point-oracle). For a polytope P and a given α > 0,
the oracle returns a point z ∈ Dμ(α), where μ := μmixed,P .

This way we hide the complexity of computing centerpoints in the oracle and
keep the following discussion as general as possible. However, for several special
cases the oracle can be realized as we discuss in subsequent sections.

Centerpoints: A Link Between Optimization and Convex Geometry 17

The general algorithmic framework is as follows. We start with a bounding
box, say P 0 := [0, B]n+d with B ∈ Z+, that is guaranteed to contain an opti-
mum and initialize x� = 0, y� = 0. Then, we construct iteratively a sequence
of polytopes P 1, P 2, . . . by intersecting P k with the half-space defined by its
(approximate) centerpoint and the corresponding subgradient arising from g.
That is, let (xk, yk) ∈ Dμmixed,Pk

(α) and let hk ∈ ∂g(xk, yk) be an element of
the subdifferential. Then we define (x�, y�) := argmin{g(x�, y�), g(xk, yk)} and
P k+1 := {(x, y) ∈ P k | g(x�, y�) − g(xi, yi) ≥ hi · (x − xi, y − yi), i = 1, . . . , k}.
It follows that

P k ⊃ P k+1 ⊃ argmin
x∈Zn×Rd

g(x)

for all k ∈ N. Further, by the choice of (xk, yk), the measure of P k decreases
in each iteration by a fraction of at least 1 − α. With (x�, y�) we keep track of
the (approximate) centerpoint xk that has the smallest objective value g� :=
g(x�, y�) among all points we encounter.

Let (x̂, ŷ) ∈ Z
n × R

d attain the optimal value ĝ of Problem (4). We have
μ̄mixed({0, . . . , B}n × [0, B]d) ≈ Bn+d. By standard arguments, we can bound
μ̄mixed(Pk) from below as follows

μ̄mixed(Pk) ≥ μ̄mixed({(x, y) ∈ Z
n × R

d | g((x, y)) − ĝ ≤ g� − ĝ})

≥ μ̄mixed

({

(x̂, y) ∈ {x̂} × R
d

∣
∣
∣
∣ ‖(x̂, ŷ) − (x̂, y)‖2 ≤ g� − ĝ

L

})

=
(

ĝ − g�

L

)d

κd,

where κd denotes the volume of the d-dimensional unit-ball. Then, it follows that
after at most

k ≤ d ln
(

LB
ε

)
+ n ln(B)

ln(1 − α)
iterations we have that g(x�, y�)−g(x̂, ŷ) ≤ ε. Note that in the pure integer case
when d = 0 we can actually solve the problem exactly.

It is not difficult to generalize this to the constrained optimization case:

min
x∈Zn×Rd,

h(x)≤0

g(x).

where g, h : R
n × R

d 	→ R are convex functions given by first-order oracles.
Further, the algorithm can be extended to handle quasi-convex functions, if one
has access to separation oracles for their sublevel sets.

The main feature of this approach is that, from the point view of the number
of function oracle calls, this algorithm is best possible. Assume that d = 0
and that we can compute exact centerpoints. Then one can prove the following
theorem.

Theorem 1. No algorithm can exist for solving general bounded convex inte-
ger optimization problems, that needs fewer function oracle calls than the exact
centerpoint-method in the worst case.

We omit the proof from this extended abstract.

18 A. Basu and T. Oertel

3 General Properties

In this section we first establish some analytic properties of fμ. This will justify
the use of “maximum” in (1), instead of a supremum. The main result of this
section is a bound on the quality of the centerpoints based on Helly numbers.
We will denote the complement of a set X by Xc. We begin with a technical
lemma whose proof is omitted from this extended abstract.

Lemma 1. For any probability measure μ, fμ(x) defined in (2) is quasi-concave
on R

n and upper semicontinuous. Moreover, given x̄ ∈ R
n and δ > 0, let ū ∈

Sn−1 be such that μ(H+(ū, x̄)) ≤ infu∈Sn−1 μ(H+(u, x̄)) + δ
2 . Then ū strongly

separates the set {x ∈ R
n | f(x) ≥ f(x̄) + δ} and x̄, i.e., ū · x < ū · x̄ for all x

such that f(x) ≥ f(x̄) + δ.

Remark 1. Lemma 1 shows that supx∈S fμ(x) is always attained. See Proposition
7 in [18] where this is discussed for S = R

n. The generalization to any closed
subset S is easy; see also Proposition 5 in [18] which states the for every α ≥ 0,
the set Dμ(α) given by (5) is compact.

Next we generalize a theorem well-known in the literature on half-space
(Tukey) depth [18, Proposition 9]; this was earlier stated by Grünbaum [9, The-
orem 1] for uniform probability measures on convex bodies. In all of these works,
the authors consider S = R

n, as discussed in the introduction. We consider
more general sets S. For this we define the Helly number of a set S ⊆ R

n. Let
K := {S ∩ K | K ⊂ R

n convex}. Then the Helly-number h = h(S) ∈ N of S is
defined as the smallest number such that the following property is satisfied for
all finite subsets {C1, . . . , Cm} ⊂ K: If

Ci1 ∩ · · · ∩ Cih
= ∅ for all {i1, . . . , ih} ⊂ {1, . . . , m}
then

C1 ∩ · · · ∩ Cm
= ∅.

If no such number exists, then h(S) = ∞. This extension of Helly’s number was
first considered by Hoffman [11], and has recently been studied in [1,2,6].

Theorem 2. Let S ⊆ R
n be a closed subset and let μ be such that μ(Rn\S) = 0.

If h(S) < ∞, then F(S, μ) ≥ h(S)−1.

The proof follows along similar lines as [18, Proposition 9]. By applying the well
known bound for the mixed-integer Helly-number [2,6,11] we get the following
Corollary.

Corollary 1. F(Zn × R
d, μ) ≥ 1

2n(d+1) for any finite measure μ on R
n+d such

that μ(Rn+d\(Zn×R
d)) = 0. In particular, this holds for μmixed,K for any convex

body K ⊆ R
n × R

d.

Remark 2. Let K ⊂ R
n+d be a convex body and let μmixed,K denote the mixed-

integer volume with respect to K, as defined in (3). One can show that in this
case the infimum in (1) and (2) is actually achieved.

Centerpoints: A Link Between Optimization and Convex Geometry 19

4 Specialized Properties

For a general measure, the centerpoint may not be unique. One can show however
that when S = R

n and μ is the uniform measure on a polytope, the centerpoint
is unique. Surprisingly, this question had not been investigated before, and as
far as we know the question of uniqueness for the centerpoint for general convex
bodies is open. We omit the proof of the following proposition.

Proposition 1. Let μ be the uniform measure on a full-dimensional polytope
P ⊂ R

n. Then C(Rn, μ) is a singleton, i.e., the centerpoint is unique.

Remark 3. With similar arguments one can show the proposition also holds for
strictly convex sets, although the question remains open for general convex bod-
ies. Another interesting open question is the following: Is the centerpoint of
a rational polytope rational? If so, is the size of the centerpoint polynomially
bounded in the size of an irredundant description of the rational polytope?

In the remaining section we want to improve the bound on F(Zn×R
d, ν) com-

ing from Helly numbers (Theorem 2 and Corollary 1) when ν is a mixed-integer
measure. Better bounds have been obtained by Grünbraum by exploiting prop-
erties of the centroid of a convex body K, which is defined as cK :=

∫
K

x dμ(x),
where the integral is taken with respect to the uniform measure μ on K.
Grünbaum proved in [9] that μ(H+(u, cK)) ≥

(
n

n+1

)n

≥ e−1 for any u ∈ Sn−1,

which immediately implies that F(Rn, μ) ≥ e−1. This, of course, drastically
improves the Helly bound of 1

n+1 . In the following we want to extend these
improved bounds to the mixed-integer setting. Ideally, we would want to prove
the following conjecture.

Conjecture 1. Let S = Z
n × R

d and let ν = μmixed,K for some convex body

K ∈ R
n+d. Then F(Zn × R

d, ν) ≥ 1
2n

(
d

d+1

)d

.

In a first step we consider convex sets K that have a large lattice-width, where
the lattice-width is defined as ω(K) := minz∈Zn\{0}[maxx∈K u ·x−minx∈K u ·x].
As an auxiliary lemma, we show that for convex sets with large lattice width, the
d-dimensional Lebesgue measure ν̄ := μ̄mixed of K ∩ (Zn ×R

d) can be bounded
by the (d+n)-dimensional Lebesgue measure μ̄ of K and vice versa. Note that in
this case we do not normalize the measures. In the pure integer setting, i.e., d = 0,
this connection is well known. However, to the best of our knowledge, this kind
of result has never been proven for the mixed-integer setting nor explicitly with
respect to the lattice width. Again, we omit the proof in this extended abstract.
We denote the projection of a set X ⊂ R

n+d onto the first n coordinates by
X|Rn .

Lemma 2. Let K ⊂ R
n+d be a closed convex set with non-empty interior. Let

ω denote the lattice-width of K|Rn . If ω > cn(n + d)7/2αnn
√

n for a universal
constant α and a c ∈ N, then

e− 1
c ≤ ν̄(K ∩ (Zn × R

d))
μ̄(K)

≤ e
1
c .

20 A. Basu and T. Oertel

For the following theorem we introduce the following technical rounding pro-
cedure. Let K be a convex body with a sufficiently large lattice width, i.e.,
ω(K) > cn(n + d)7/2αnn

√
n for some positive integer c, where α is the constant

from Lemma 2. Let μ be the uniform measure on K and let x� ∈ C(Rn+d, μ).
One can show that there exist bi ∈ (−x� + K) ∩ (Zn × R

d) for i = 1, . . . , n
such that b1|Rn , . . . , bn|Rn is a Korkine-Zolotarev basis [12] of Zn with respect
to the maximum inscribed ellipsoid of K|Rn . However, in this extended abstract
we omit the details. In addition we define for i = n + 1, . . . , n + d bi ∈ R

n+d as
the i-th unit vector. Hence, b1, . . . , bn+d define a basis of Rn+d.

Given x =
∑n+d

i=1 λibi ∈ R
n+d with λi ∈ R for all i, we define [x]K ∈ Z

n ×R
d

as
∑n

i=1�λi�bi +
∑n+d

i=n+1 λibi, i.e., we round x to a close mixed-integer point
with respect to the norm induced by K.

Theorem 3. Let ν := μmixed,K , where K ⊂ R
n+d is a convex body and

ν(Rn+d)
= 0, and let x� be the centerpoint with respect to μ, the uniform measure
on K. If ω > 2c(n + d)9/2αnn

√
n for a universal constant α, then

fν([x�]K) ≥ e−1/c(F(Rd+n, μ) − e2/c + 1).

Grünbaum’s Theorem implies then, that F(Zn ×R
d, ν) ≥ e−1/c−1−e1/c +e−1/c.

Proof. As before, let μ̄ denote the (d + n)-dimensional Lebesgue measure with
respect to K and let ν̄ denote the d-dimensional Lebesgue measure with respect
to K ∩ (Zn × R

d), i.e. they are not normalized.
In a first step we prove the following claim: |μ(H+) − ν(H+)| ≤ e2/c − 1 for

any half-space H+. This implies that |F(Rd+n, μ)−F(Rd+n, ν)| ≤ e2/c −1, and,
in particular, |F(Rd+n, μ) − fν(x�)| ≤ e2/c − 1.

Let H+ be any half-space and let H− denote its closed complement. The
lattice-width of either K ∩ H+ or K ∩ H− is larger or equal than ω/2. Since
both cases are similar, we only consider the case ω(K ∩H−) ≥ cn(n+d)αnn

√
n.

Then, by Lemma 2,

ν(H+) =
ν̄(K ∩ H+)

ν̄(K)
≤ e1/cμ̄(K) − e−1/cμ̄(K ∩ H−)

e−1/cμ̄(K)

=
μ̄(K ∩ H+)

μ̄(K)
+

(e1/c − e−1/c)μ̄(K)
e−1/cμ̄(K)

= μ(H+) + (e2/c − 1).

Similarly we can derive a lower bound. This proves the claim.
In the second step we bound the error made by rounding the x� to [x�]K . By

the choice of x� and our rounding procedure one can prove that [x�]K is contained
in 1

c(n+d) (K − x�) + x�. The details will appear in the full version of the paper.

Hence, [x�]K + c(n+d)−1
c(n+d) (K −x�) ⊂ K ⊂ [x�]K + c(n+d)+1

c(n+d) (K − x�). We have for
any u ∈ Sn+d−1 that e−1/cν(H+(u, x�)) ≤ ν(H+(u, [x�]K)) ≤ e1/cν(H+(u, x�)).
Together with the previous claim it follows that

fν([x�]K) ≥ e−1/c(F(Rd+n, μ) − e2/c + 1). ��

Centerpoints: A Link Between Optimization and Convex Geometry 21

5 Computational Aspects

All our algorithms are under the standard Turing machine model of computation.
We say that x ∈ S is an ε-centerpoint for S, μ, if fμ(x) ≥ F(S, μ) − ε where
F(S, μ) is defined in (1) and fμ is defined in (2).

5.1 Exact Algorithms

Uniform Measure on Polytopes. Since the rationality of the centerpoint for
uniform measures on rational polytopes is an open question (see Remark 3), we
consider an “exact” algorithm as one which returns an ε-centerpoint and runs in
time polynomial in log(1ε) and the size of the description of the rational polytope.

Theorem 4. Let n be a fixed natural number. There is an algorithm which takes
as input a rational polytope P ⊆ R

n and ε > 0, and returns an ε-centerpoint for
R

n, μ. The algorithms runs in time polynomial in the size of an irredundant
description of P and log(1ε).

Proof. Since fμ defined in (2) is quasi-concave by Lemma 1, a x∗ satisfying
fμ(x) ≥ F(S, μ)−ε can be found, if one has an approximate evaluation oracle for
fμ, and an approximate separation oracle for the level sets Dμ(α) [8]. Moreover,
the number of oracle calls made is bounded by a polynomial in the size of an
irredundant description of P and log(1ε).

By Lemma 1, the problem boils down to the following:

Given x̄ ∈ R
n and δ > 0, find ū ∈ Sn−1 such that

μ(H+(ū, x̄)) ≤ inf
u∈Sn−1

μ(H+(u, x̄)) + δ. (6)

Given x̄, let P be the set of all partitions of the vertices of P into two sets
that can be achieved by a hyperplane through x̄. This induces a covering of the
sphere Sn−1: For each X ∈ P define UX to be the set of u ∈ Sn−1 such that the
hyperplane u ·x = u · x̄ induces the partition X on the vertices of P . The number
of such partitions is closely related to the VC-dimension of hyperplanes, and in
particular, is easily seen to be O(Mn) where M is the number of vertices of P .
Moreover, one can enumerate these partitions in the same amount of time, by
picking n−1 vertices {v1, . . . , vn−1} of P such that {x̄, v1, . . . , vn−1} are affinely
independent.

To solve problem (6), we will proceed along these steps.

1. For each X ∈ P, find ūX ∈ Sn−1 be such that

μ(H+(ūX , x̄)) ≤ inf
u∈UX

μ(H+(u, x̄)) + δ.

2. Pick X∗ such that μ(H+(ūX∗ , x̄)) ≤ μ(H+(ūX , x̄)) for all X ∈ P and report
ūX∗ as the solution to (6).

22 A. Basu and T. Oertel

To complete the proof, we need to implement Step 1, above in polynomial
time. This is done in Lemma 3.

Lemma 3. For a fixed X ∈ P, one can compute ūX ∈ Sn−1 such that

μ(H+(ūX , x̄)) ≤ inf
u∈UX

μ(H+(u, x̄)) + δ,

using an algorithm whose running time is bounded by a polynomial in log(1δ) and
the size of an irredundant description of P .

This lemma can be proved using methods from real algebraic geometry for quan-
tifier elimination in systems of polynomials inequalities. However, we omit the
detailed proof.

Counting Measure on the Integer Points in Two Dimensional Poly-
topes. If we use the counting measure on the integer points in a polytope, the
algorithm requires no accuracy parameter ε.

Theorem 5. Let P = {x ∈ R
2 | Ax ≤ b} be a rational polytope, where A ∈

Z
m×2 and b ∈ Z

m, such that P ∩ Z
2
= ∅. Let μ denote the uniform measure on

P ∩ Z
2. Then in polynomial time in the input-size of A and b, one can compute

a point
z ∈ C(Z2, μ).

Proof. As already stressed in the previous section, it suffices to show that for a
given x̄ ∈ Z one can compute in polynomial time

ū := argmin
u∈S1

μ(H+(u, x̄)).

Let g : [0, 2π) 	→ [0, 1] be defined as g(α) := μ(H+((sin(α), cos(α))T, x̄)). The
key observations are that g is piecewise constant and that the domain [0, 2π) can
be partitioned into a polynomial number of intervals Si such that g is monotone
on each of them. This implies, that in order to compute ū, one only needs to
evaluate g at the beginning and the end of each interval Si.

Let l+(α) denote the line segment P ∩ {x̄ + λ(sin(α + π/2), cos(α + π/2))T |
λ ≥ 0} and let l−(α) denote P ∩ {x̄ + λ(sin(α − π/2), cos(α − π/2))T | λ ≥ 0}.
Observe that g(α) is monotone increasing if the line segment l+(α) is longer
than the line segment l−(α) and g(α) is monotone decreasing if the line segment
l+(α) is shorter than the line segment l−(α). Hence, the monotonicity can only
change when the two lengths are equal. All those critical α can be computed by
comparing each pair of facets. ��

5.2 Approximation Algorithms

A Lenstra-Type Algorithm to Compute Approximate Centerpoints.
As we already pointed out in Sect. 2, centerpoints can be used to design “opti-
mal” oracle-based algorithms for convex mixed-integer optimization problems.

Centerpoints: A Link Between Optimization and Convex Geometry 23

In turn, it is possible to employ linear mixed-integer optimization techniques to
compute approximate centerpoints. However, this comes with a significant loss
in the approximation guarantee.

Theorem 6. Let n, d ∈ N be fixed and let P be a rational polytope. Then in
polynomial time in the input-size of P , one can find a point

z ∈ Dμmixed,P

(
1

2n2(d + 1)(n+1)

)

∩ (Zn × R
d).

Recall the definition of μmixed,P from (3); the proof idea of Theorem 6 is that
either one employs Theorem 3, or the lattice-width is small and one enumerates
lower dimensional subproblems.

Computing Approximate Centerpoints with a Monte-Carlo Algo-
rithm. In this section, we compute ε-centerpoints, but for any family of mea-
sures from which one can sample uniformly. However, now the algorithm’s run-
time depends polynomially on 1

ε , as opposed to log(1ε) as for the uniform measure
on rational polytopes from Sect. 5.1.

Suppose we have access to two black-box algorithms:

1. OPT is an algorithm which works for some family S of closed subsets of Rn.
OPT takes as input a closed set S ∈ S and computes argmaxx∈S g(x) for any
quasi-concave function g, given an evaluation oracle for g and a separation
oracle for the sets {x | g(x) ≥ α}α∈R. Let T1(S) be the number of calls
that OPT makes to the evaluation and separation oracles, and T2(S) be the
number of elementary arithmetic operations OPT makes during its execution.

2. SAMPLE is an algorithm which works for some family of probability measures
Γ . SAMPLE takes as input a measure μ ∈ Γ and produces a sample point
x ∈ R

n from the measure μ. Let T (μ) be the running time for SAMPLE.

We now show that with access to the above two algorithms, one can compute
an ε-centerpoint for (S, μ) ∈ S × Γ .

Theorem 7. Let S be a family of closed subsets of Rn equipped with an algo-
rithm OPT as described above, and let Γ be a family of measures on R

n equipped
with an algorithm SAMPLE as described above.

There exists a Monte Carlo algorithm which takes as input (S, μ) ∈ S × Γ ,
real numbers ε, δ > 0 and computes an ε-approximate centerpoint for S, μ with
probability at least 1 − δ. The running time of this algorithm is T1(S) · Nd +
T2(S) + T (μ) · N , where N = O(1

ε2 ((n + 1) + log 1
δ).

To prove this theorem, we will need a deep result from probability theory
that has resulted after a long line of research sparked by the seminal ideas of
Vapnik and Chervonenkis [21], and culminated in a result of Talagrand [19].
The following theorem is a rewording of Talagrand’s result [19], specialized for
function classes with bounded VC-dimension.

24 A. Basu and T. Oertel

Theorem 8. Let (X,μ) be a probability space. Let F be a family of functions
mapping X to {0, 1} and let ν be the VC-dimension of the family F . There
exists a universal constant C, such that for any ε, δ > 0, if M is a sample of size
C · 1

ε2 (ν+log 1
δ) drawn independently from X according to μ, then with probability

at least 1 − δ, for every function f ∈ F , | |{x∈M | f(x)=1}|
|M | − μ({x ∈ X | f(x) =

1})| ≤ ε.

Proof (Theorem 7). We call SAMPLE to create a sample M of size C · 1
ε2 ((n+1)+

log 1
δ) by drawing independently and uniformly at random from S (note that M

may contain multiple copies of the same point from S). Since the VC-dimension
of the family of half spaces in R

n is n + 1, we know from Theorem 8 that with
probability at least 1−δ, for every half space H+,

∣
∣ |H+∩M |

|M | −μ(H+)
∣
∣ ≤ ε. Let μ′

be the counting measure on M . Then we obtain that |fμ′(x) − fμ(x)| ≤ ε for all
x ∈ R

n. Therefore, any x∗ ∈ arg maxx∈S fμ′(x) is an ε-centerpoint for S. This can
be achieved by calling OPT to compute x∗ ∈ arg maxx∈S fμ′(x). For this, we need
to exhibit evaluation and separation oracles for fμ′ . But notice that, by Lemma 1,
this can be accomplished by simply implementing the following procedure: given
x ∈ Rd, find the best hyperplane H through x such that |H+∩M |

|M | is minimized.
This can be done in time O(|M |n) by simply enumerating all hyperplanes that
contain n − 1 affinely independent points from M . ��

The following result is a consequence.

Theorem 9. Let n ≥ 1 and d ≥ 0 be fixed integers. There exists a Monte Carlo
algorithm which takes as input an integer m ≥ 1, a matrix A ∈ R

m×(n+d), a
vector b ∈ R

m, real numbers ε, δ > 0 and returns an ε-approximate centerpoint
when S = Z

n × R
d and μ is the uniform measure on {x ∈ Z

n × R
d | Ax ≤ b},

with probability 1 − δ. The running time of the algorithm is a polynomial in
m, log(max{|Ai,j |, |bk|}), 1

ε , log 1
δ .

Proof. By using classical results on maximizing quasi-concave functions over
the integer points in a polyhedron [8], OPT can be implemented for the family
S which is the collection of all sets S that can be represented as the set of
mixed-integer points in a rational polytope. SAMPLE can be implemented for
the family Γ which is the uniform measure on the sets S from S by adapting
a result of Igor Pak [17] on d = 0 to d ≥ 1, using results on computing mixed-
integer volumes in polynomial time for fixed dimensions [3]. ��

References

1. Averkov, G.: On maximal S-free sets and the helly number for the family of
s-convex sets. SIAM J. Discrete Math. 27(3), 1610–1624 (2013)

2. Averkov, G., Weismantel, R.: Transversal numbers over subsets of linear spaces.
Adv. Geom. 12(1), 19–28 (2012)

3. Baldoni, V., Berline, N., Koeppe, M., Vergne, M.: Intermediate sums on polyhedra:
computation and real Ehrhart theory. Mathematika 59(01), 1–22 (2013)

Centerpoints: A Link Between Optimization and Convex Geometry 25

4. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM
51(4), 540–556 (2004)

5. Braß, P., Heinrich-Litan, L., Morin, P.: Computing the center of area of a convex
polygon. Int. J. Comput. Geom. Appl. 13(05), 439–445 (2003)

6. De Loera, J.A., La Haye, R.N., Oliveros, D., Roldán-Pensado, E.: Helly numbers
of algebraic subsets of Rd. arXiv preprint arXiv:1508.02380 (2015)

7. Dyckerhoff, R., Mozharovskyi, P.: Exact computation of halfspace depth. arXiv
preprint arXiv:1411.6927v2 (2015)

8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Algorithms and Combinatorics: Study and Research Texts, vol. 2.
Springer, Berlin (1988)

9. Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyper-
planes. Pac. J. Math. 10, 1257–1261 (1960)

10. Grünbaum, B.: Measures of symmetry for convex sets. In: Convexity: Proceedings
of the Seventh Symposium in Pure Mathematics of the American Mathematical
Society, vol. 7, p. 233. American Mathematical Society (1963)

11. Hoffman, A.J.: Binding constraints and helly numbers. Ann. N. Y. Acad. Sci. 319,
284–288 (1979)

12. Korkine, A.N., Zolotareff, Y.I.: Sur les formes quadratiques. Math. Ann. 6(3), 366–
389 (1873)

13. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

14. Liu, R.Y., Serfling, R.J., Souvaine, D.L.: Data Depth: Robust Multivariate Analy-
sis, Computational Geometry, and Applications, vol. 72. American Mathematical
Society, Providence (2006)

15. Mosler, K.: Depth statistics. In: Becker, C., Fried, R., Kuhnt, S. (eds.) Robustness
and Complex Data Structures, pp. 17–34. Springer, Heidelberg (2013)

16. Nesterov, Y.: Introductory Lectures on Convex Optimization. Applied Optimiza-
tion, vol. 87. Kluwer Academic Publishers, Boston (2004)

17. Pak, I.: On sampling integer points in polyhedra. In: Foundations of computational
mathematics (Hong Kong, 2000), pp. 319–324. World Sci. Publ., River Edge (2002)

18. Rousseeuw, P.J., Ruts, I.: The depth function of a population distribution. Metrika
49(3), 213–244 (1999)

19. Talagrand, M.: Sharper bounds for gaussian and empirical processes. Ann. Probab.
22, 28–76 (1994)

20. Tukey, J.W.: Mathematics and the picturing of data. In: Proceedings of the Inter-
national Congress of Mathematicians, vol. 2, pp. 523–531 (1975)

21. Vapnik, V.N., Chervonenkis, A.Ya.: On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280
(1971)

http://arxiv.org/abs/1508.02380
http://arxiv.org/abs/1411.6927v2

Rescaled Coordinate Descent Methods
for Linear Programming

Daniel Dadush1, László A. Végh2(B), and Giacomo Zambelli2

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
dadush@cwi.nl

2 London School of Economics, London, UK
{l.vegh,g.zambelli}@lse.ac.uk

Abstract. We propose two simple polynomial-time algorithms to find a
positive solution to Ax = 0. Both algorithms iterate between coordinate
descent steps similar to von Neumann’s algorithm, and rescaling steps. In
both cases, either the updating step leads to a substantial decrease in the
norm, or we can infer that the condition measure is small and rescale in
order to improve the geometry. We also show how the algorithms can be
extended to find a solution of maximum support for the system Ax = 0,
x ≥ 0. This is an extended abstract. The missing proofs will be provided
in the full version.

1 Introduction

Let A = [a1, . . . , an] be an integral m × n matrix with rank m, and let L denote
the encoding size of A. We propose two simple polynomial algorithms for the
linear feasibility problem, that is, to find a solution to systems of the form

Ax = 0
x > 0.

(1)

Our main contributions are: (i) new simple iterative methods for (1) with guaran-
teed finite convergence, (ii) a new geometric potential for these systems together
with a rescaling method for improving it.

The algorithms we propose fit into a line of research developed over the past
10 years [2–6,8,15,16,20], where simple iterative updates, such as variants of
perceptron [17] or of the relaxation method [1,11], are combined with some form
of rescaling in order to get polynomial time algorithms for linear programming.

While these methods are slower than current interior point methods, they
nevertheless yield important insights into the structure of linear programs. In
particular, rescaling methods provide geometric potentials associated with a lin-
ear system which quantify how “well-conditioned” the system is, together with
rescaling procedures for improving these potentials. Importantly, these poten-
tials often provide more fine grained measures of the complexity of solving the
linear system than the encoding length of the data, and help identify interest-
ing subclasses of LPs that can be solved in strongly polynomial time (see for
example [5]).
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 26–37, 2016.
DOI: 10.1007/978-3-319-33461-5 3

Rescaled Coordinate Descent Methods for Linear Programming 27

Additionally, our algorithms can be adapted to solve the more general max-
imum support problem: find a solution to Ax = 0, x ≥ 0 whose support
{j : xj > 0} is inclusionwise maximum. Geometrically, this means finding the
face of the convex hull of the columns of A that contains 0 in its relative interior.
While general LP feasibility (and thus LP optimization) can be reduced to (1)
via standard perturbation methods (see for example [18]), this is not desirable
for numerical stability. On the other hand, any algorithm for the maximum sup-
port problem can be used directly to test feasibility of a system of the form
Ax = b, x ≥ 0 via simple homogenziation. We note that it is an open problem to
devise any polynomial method for solving the maximum support problem that
does not depend directly on the bit complexity L, but only on purely geometric
parameters.

Preliminaries. Throughout the paper, we denote L := {x ∈ R
n : Ax =

0}, L+ := L ∩ R
n
+, L> := L ∩ R

n
>. We will also let L⊥ denote the orthog-

onal complement of L; clearly, L⊥ = {z ∈ R
n : ∃y ∈ R

m, z = ATy}. Let
L⊥
+ := L⊥ ∩ R

n
+ and L⊥

> := L⊥ ∩ R
n
>. Therefore (1) is the problem of finding a

point in L>. By strong duality, (1) is feasible if and only if L⊥
+ = {0}, that is,

ATy ≥ 0, (2)

has no solution other than y = 0.
Denote by supp(L+) ⊆ [n] the maximum support of a point in L+. Obviously

supp(L+) ∩ supp(L⊥
+) = ∅, whereas the strong duality theorem implies that

supp(L+) ∪ supp(L⊥
+) = [n].

For any vector v ∈ R
m we denote by v̂ the normal vector in the direction of

v, that is v̂ := v/‖v‖. We let Â := [â1, . . . , ân]. Note that, given v, w ∈ R
m, v̂Tŵ

is the cosine of the angle between them. Let B
m = {x ∈ R

m : ‖x‖ ≤ 1} denote
the m-dimensional Euclidean ball. Let ej denote the jth unit vector an e denote
the all-ones vector of appropriate dimension (depending on the context).

Coordinate Descent Algorithms. Various coordinate descent methods are known
for finding non-zero points in L+ or L⊥

+. Most algorithms address either the
supp(L+) = [n] or the supp(L⊥

+) = [n] case; here we outline the common update
steps.

At every iteration, maintain a non-negative, non-zero vector x ∈ R
n, and let

y = Ax. If y = 0, then x is a non-zero point in L+. If ATy > 0, then ATy ∈ L⊥
>.

Otherwise, choose an index k ∈ [n] such that aT
ky ≤ 0, and update x and y as

follows:
y′ := αy + βâk; x′ := αx +

β

‖ak‖ek, (3)

where α, β > 0 depend on the specific algorithm. Below we discuss various
possible update choices. These can be seen as coordinate descent methods for
minimizing ‖y‖2 subject to y = Ax, x ≥ 0, and some further constraint is added,
e.g. eTx = 1 in the von Neumann algorithm.

28 D. Dadush et al.

An important quantity in the convergence analysis of the algorithms we will
describe is (a slight variant) of the condition measure introduced by Goffin [10]:

ρA := max
‖y‖=1,y∈Rm

min
j∈[n]

aT
j y (4)

We will most often be concerned with the quantity ρÂ, where the columns of A
have been scaled to have norm 1, however both will be useful to us. While ρA

and ρÂ can be very different, note that they always have the same sign.
Geometrically, |ρA| is the distance of the origin from the boundary of conv(A),

where ρA > 0 if and only if supp(L⊥
+) = [n] (in which case the origin is outside

conv(A)), ρA < 0 if and only if supp(L+) = [n] (in which case the origin is in the
interior conv(Â)), and ρA = 0 otherwise. In particular, if ρA < 0, then −ρA is the
radius of the largest ball in R

n inscribed in conv(A) and centered at the origin.
If ρÂ > 0, then ρÂ is the width of the dual cone {y ∈ R

m : ATy > 0}, that is,
the radius of the largest ball in R

m inscribed in the dual cone and centered at a
point at distance one from the origin.

von Neumann’s algorithm maintains at every iteration the condition that y is a
convex combination of â1, . . . , ân. The parameters α, β > 0 are chosen so that
α+β = 1 and ‖y′‖ is smallest possible. That is, y′ is the point of minimum norm
on the line segment joining y and âk. If we denote by yt the vector at iteration t,
a simple argument shows that ‖yt‖ ≤ 1/

√
t (see Dantzig [7]). If 0 is contained in

the interior of the convex hull, that is ρÂ < 0, Epelman and Freund [9] showed

that ‖yt‖ decreases by a factor of
√

1 − ρ2
Â

in every iteration. Though the norm
of y converges exponentially to 0, we note that this method may not actually
terminate in finite time. If 0 is outside the convex hull however, that is, ρÂ > 0,
then the algorithm terminates after at most 1/ρ2

Â
iterations.

Betke [3] gave a polynomial time algorithm, based on a combinatorial vari-
ant of von Neumann’s update, for the case supp(L⊥

+) = [n]. Chubanov uses
von Neumann’s update on the columns of the projection matrix to L, and is
able to solve the maximum support problem in time O(n4L).1

Perceptron chooses α = β = 1 at every iteration. If ρÂ > 0, then, similarly to the
von Neumann algorithm, the perceptron algorithm terminates with a solution
to the system ATy > 0 after at most 1/ρ2

Â
iterations (see Novikoff [13]). Peña

and Soheili gave a smoothed variant of the perceptron update which guarantees
termination in time O(

√
log n/ρÂ) [14], and showed how this gives rise to a

polynomial-time algorithm [15] using the rescaling introduced by Betke in [3].
The same running time O(

√
log n/ρÂ) was achieved by Wei Yu et al. [21] by

adapting the Mirror-Prox algorithm of Nemirovski [12].

Dunagan-Vempala [8] choose α = 1 and β = −(âT
ky). The choice of β is the

one that makes ‖y′‖ the smallest possible when α = 1. It can be readily com-
puted that
1 It had been suggested by Prof. C. Roos that Chubanov’s algorithm could be further

improved to O(n3.5L), but the paper was subsequently withdrawn due to a gap in
the argument.

Rescaled Coordinate Descent Methods for Linear Programming 29

‖y′‖ = ‖y‖
√

1 − (âT
k ŷ)2. (5)

In particular, the norm of y′ decreases at every iteration, and the larger is the
angle between ak and y, the larger the decrease. If ρÂ < 0, then |âT

k ŷ| ≥ |ρÂ|,
therefore this guarantees a decrease in the norm of at least

√
1 − ρ2

Â
.

Our Algorithms. Both our algorithms use Dunagan-Vempala updates:
Algorithm 1 on the columns of A, and Algorithm 2 on the orthogonal projection
matrix Π to the space L⊥. These iterations are performed as long as we obtain
a substantial decrease in ‖y‖. Otherwise, a rescaling is performed in order to
improve a volumetric potential which serves as a proxy to the condition measure
|ρÂ|. The rescaling in Algorithm 1 is the same as in Dunagan-Vempala [8], even
though they solve the dual problem of finding a point in L⊥

>. We will describe
the differences after the description of the algorithm.

Our Algorithm 2 is inspired by the work of Chubanov [6], and it uses the
same rescaling. Our algorithms are in some sense dual to each other however:
Chubanov uses von Neumann updates on the projection matrix to L whereas we
use Dunagan-Vempala on the projection Π to L⊥. For the same algorithm, we
provide two entirely different analyses, one similar to Chubanov’s, and another
volumetric one, as for Algorithm1. Thus, while the rescaling is seemingly very
different from the one used in Algorithm 1, there is indeed a similar underlying
geometry. We compare our algorithm to Chubanov’s at the end of Sect. 3.

The running time of our Algorithm1 is O((m3n + n2m)L), where as
Algorithm 2 runs in O(mn4L) time. Although the second running time bound is
worse, this algorithm can be extended to solve the full support problem within
the same running time estimation. We note that Algorithm1 could also be
extended to solve the maximum support problem, but in a more indirect way,
and at the expense of substantially increasing the running time.

2 Algorithm 1

Algorithm 1, described below, solves (1) (that is, finding a point in L>), using
the Dunagan-Vempala (DV) update. It uses the parameters

ε :=
1

11m
, N := 6mL, δ := min

j∈[n]

1
‖(AAT)−1aj‖ . (6)

It follows from (5) that, if in a given iteration there exists k ∈ [n] such that
âT

k ŷ ≤ −ε, then we obtain a substantial decrease in the norm, namely

‖y′‖ ≤ ‖y‖
√

1 − ε2. (7)

On the other hand, if âT
j ŷ ≥ −ε for all j ∈ [n], then it follows that |ρÂ| < ε, that

is, the condition measure is small. Our aim is to perform a geometric rescaling

30 D. Dadush et al.

that improves the condition measure. As a proxy for |ρÂ|, we use the volume of
the polytope PA defined by

PA := conv(Â) ∩ (−conv(Â)). (8)

Recall that |ρÂ| is the radius of the largest ball around the origin inscribed in PA.

Algorithm 1
Input: A matrix A ∈ Z

m×n with rank m.
Output: Either a solution to the system (1) or the statement that

(1) is infeasible.
1: Set xj := 1 for all j ∈ [n] and y := Ax. Set t := 0.
2: while ‖y‖ ≥ δ and t ≤ N do
3: if ATy ≥ 0 then Terminate, return (1) is infeasible.
4: else
5: Let k := arg min

j∈[n]
âT
j ŷ;

6: if âT
k ŷ < −ε then

7: update x := x − aT
ky

‖ak‖2
ek; y := y − (âT

ky)âk.

8: else
9: rescale A :=

(
I + ŷŷT

)
A; y := 2y; t := t + 1;

10: if ‖y‖ < δ then return feasible solution x − AT(AAT)−1Ax;
11: else return (1) is infeasible.

If âT
j ŷ ≥ −ε for all j ∈ [n], then PA is contained in a “narrow strip” of width

2ε, namely PA ⊆ {z ∈ R
m : −ε ≤ ŷTẑ ≤ ε}. If we replace A with the matrix

A′ := (I + ŷŷT)A, Lemma 2.2 shows that the volume of PA′ is at least 3/2 times
the volume of PA. Geometrically, A′ is obtained by applying to the columns
of A the linear transformation that “stretches” them by a factor of two in the
direction of ŷ (see Fig. 1).

y
1

2

3
4

5

a
b

c

d

e

P Qv

Fig. 1. Effect of rescaling. The dashed circle represent the set of points of norm 1. The
shaded areas are PA and PA′ .

Rescaled Coordinate Descent Methods for Linear Programming 31

Thus, at every iteration we either have a substantial decrease in the length
of the current y, or we have a constant factor increase in the volume of PA. Since
the volume of PA is bounded by the volume of the unit ball in R

m, it follows
that the algorithm cannot perform too many rescalings, unless (1) is infeasible.

After a polynomial number of iterations we either conclude that (1) is infea-
sible or we achieve a vector y = Ax of tiny norm. In the latter case, it can be
shown that projecting x to the kernel of A yields a positive kernel solution. We
now state our main result.

Theorem 2.1. For any input matrix A ∈ Z
m×n, Algorithm1 returns a feasible

solution x for (1) if and only if (1) is feasible. The total number of iterations
of the while cycle is O(m3L), and the total number of arithmetic operations
performed is O

(
(m3n + mn2)L

)
.

Relation to Previous Work. Even though our update step and rescaling are the
same as the one used by Dunagan and Vempala [8], the algorithm and analysis
are substantially different. In fact [8] assumes that supp(L⊥

+) = [n], and shows
that the dual cone width ρÂ increases with a high probability. Their algorithm
makes use of both perceptron as well as the DV update steps. The latter is always
restarted from a random point y in the unit sphere (so in their algorithm y is not
a conic combination of the ai’s). In contrast, our algorithm is fully deterministic,
and uses the coordinate descent method in a more natural and direct way for
the primal full dimensional case supp(L+) = [n].

An earlier volumetric rescaling for the supp(L⊥
+) = [n] case was introduced

by Betke [3]. Given any convex combination x, y = Ax, ‖y‖ ≤ 1/(
√

mn), Betke’s
rescaling shrinks each column of A in the direction of the ai that has the largest
coefficient xi, i.e. aj ← aj − 1/2(âT

i aj)âi. This has the effect of increasing the
volume of the intersection of the cone ATz > 0 with the unit Euclidean ball,
which can be interpreted as a smooth proxy for ρÂ. Here, one can view our
potential as the natural primal counterpart to Betke’s.

Convergent Coordinate Descent. Let us consider a modification of Algorithm1
without any rescaling: first normalize the columns of A to have unit norm (i.e. set
A = Â), initialize δ as above (with the normalized A) and x to e, perform
Dunagan-Vempala updates until ‖y‖ ≤ δ, and terminate with the orthogonal
projection of x onto L. As we explain below, this yields a new “pure” coordinate
descent method for (Algorithm 1) (perhaps with the exception of the rounding
step) with finite convergence.

If (1) is feasible (that is, L> = ∅ and ρÂ < 0), the above will terminate
with a feasible solution in at most O(log(n/|ρÂ|)/ρ2

Â
) iterations. To understand

this, note that after normalizing A, the initial y = Ae has norm at most n by
the triangle inequality. Since the rate of norm decrease for the DV updates is
still

√
1 − ρ2

Â
, after O(log(n/|ρÂ|)/ρ2

Â
) iterations the norm of y is less that |ρÂ|.

Termination then follows by |ρÂ| = |ρA| ≤ δ.
The modified algorithm just described can in fact be seen as the first coor-

dinate descent method with termination bounded in terms of |ρÂ| and n for the

32 D. Dadush et al.

ρÂ < 0 case. In comparison, perceptron and von Neumann may not even ter-
minate in a finite amount of iterations in this setting. In contrast, for the case
ρÂ > 0 these algorithms converge to a feasible solution L⊥

> in O(1/ρ2
Â
) iterations,

whereas our algorithm need not finitely converge. We note that Wolfe’s algorithm
[22], also implicitly used by Betke [3], is a simple finite method for arbitrary
values of ρÂ, including ρÂ = 0. However, finiteness is due to the Simplex-like
nature and there is no bound known on the number of iterations in terms of |ρÂ|
if ρÂ ≤ 0.

Analysis. The crucial part of the analysis is to bound the volume increase of PA

at every rescaling iteration.

Lemma 2.2. Assume (1) is feasible. For some 0 < ε < 1/(11m), let v ∈ R
m,

‖v‖ = 1, such that âT
j v ≥ −ε ∀j ∈ [n]. Let A′ = (I + vvT)A. Then vol(PA′) ≥

3
2vol(PA).

We now sketch the proof of Theorem 2.1. It can be shown that if conv(A) contains
the origin in its interior, then at the beginning PA would contain a ball of radius
at least 2−3L. During the entire algorithm, PA remains inside the unit ball. These
facts, together with Lemma 2.2, imply that if the algorithm does not terminate
within N rescalings, then conv(A) cannot contain the origin in its interior. If
the algorithm terminates for the condition ‖y‖ ≤ δ, then one can show using the
definition of δ that the returned solution is feasible.

To bound the number of iterations, note that by (7), ‖y‖2 decreases by a
factor of (1 − ε2) every time we perform an update. Every time we perform
a rescaling, ‖y‖2 increases by a factor of 4; however, this may only happen
N = O(mL) times. We terminate once ‖y‖2 ≤ δ2. Combining these bounds
gives a bound O(m3L) on the total number of iterations. Every update can
be computed in linear time. The number of rescalings is O(mL), and each of
them can be performed in O(n2) arithmetic operations, provided that we had
previously computed ATA. Therefore the total number of arithmetic operations
is O((m3n + mn2)L).

3 Algorithm 2: A Dual Chubanov Algorithm

Let Π = AT(AAT)−1A denote the orthogonal projection matrix to L⊥ (i.e., the
space spanned by the rows of A), and let π1, . . . , πn denote the columns of Π and
πij (i, j ∈ [n]) denote the (i, j) entry of Π. We recall the following well known
properties of the projection matrix Π.

Proposition 3.1. Let A ∈ R
m×n and let Π = AT(AAT)−1A. The following

hold (i) For all x, z ∈ R
n, Πx = 0 if and only if x ∈ L, and Πz = z if and

only if z ∈ L⊥; (ii) Π2 = Π; (iii) For every w ∈ R
n, ‖Πw‖ ≤ ‖w‖; (iv) For

all j ∈ [n], πj = Πej, thus ‖πj‖ ≤ 1; (v) πjj = ‖πj‖2 for all j ∈ [n]; (vi)
trace(Π) =

∑n
j=1 ‖πj‖2 = m.

Rescaled Coordinate Descent Methods for Linear Programming 33

In Algorithm 2 below, we set ε := 1
16n

√
3m

. Throughout this section, for every
I ⊆ [n] we denote by DI the diagonal matrix with djj = 1/2 if j ∈ I, djj = 1 if
j ∈ I. Thus DI = I − (1/2)

∑
j∈I eje

T
j .

Note that, since zj = πT
j z for all j ∈ [n], the update step is just the Dunagan-

Vempala update applied to the matrix Π instead of on A. Thus, at each update
the norm of the current z decreases by at least a multiplicative factor

√
1 − ε2.

Observe also that at every iteration wj ≥ 1 for all j ∈ [n], so in particular
‖z‖ < 1 immediately implies w − z > 0, thus the algorithm terminates with the
solution x := w − z if ‖z‖ ≤ 1.

We give a proof of correctness of the algorithm. Afterwards, we provide a
different analysis, reminiscent of Lemma 2.2, which relates the rescaling step to
the change of a certain geometric quantity related to the condition measure of Π.

Algorithm 2
Input: A matrix A ∈ Z

m×n with rank m.
Output: Either a solution x ∈ L>, or a set R ⊆ [n] disjoint from the

support of L+.
1: Compute Π = AT(AAT)−1A. Set D = In.
2: Set wj := 1 for all j ∈ [n], z := Πw, countj := 0 for all j ∈ [n].
3: while countj < L for all j ∈ [n] do
4: if w − z > 0 then Terminate, return x := D−1(w − z).

5: if z ≥ 0 then Terminate, return R := {j ∈ [n] : zj �= 0}.
6: else
7: Let i := arg min

j∈[n]

zj
‖z‖‖πj‖ ;

8: if
zi

‖z‖‖πi‖ < −ε then

9: update w := w − ziei

‖πi‖2
; z := z − ziπi

‖πi‖2
;

10: else rescale

11: Let I := {j ∈ [n] :
zj
‖z‖ >

1√
3n

}; D := DDI ;

12: Recompute Π = DAT(AD2AT)−1AD;
13: Set wj := 1 for all j ∈ [n], z := Πw;

14: countj := countj + 1 for all j ∈ I;
return R := {j : countj = L}.

Correctness of the Algorithm. For any a ∈ R, we let a+ := max{0, a} and
a− = (−a)+. The correctness of the algorithm is based on the following simple
bound due to Roos [16].

Lemma 3.2 (Roos). Let z ∈ L⊥ and let k ∈ [n] such that zk > 0. Then, for
every x ∈ L ∩ [0, 1]n.

xk ≤
∑n

j=1 z−
j

zk
. (9)

This bound justifies the rescaling in our algorithm, as stated in the following
lemma.

34 D. Dadush et al.

Lemma 3.3. Let A be the current matrix at a given iteration of Algorithm2.
Suppose that the current z = Πw satisfies zj ≥ −ε‖z‖‖πj‖. Then the set

I =
{

j ∈ [n] :
zj

‖z‖ >
1√
3n

}

is nonempty. Furthermore, every x ∈ L ∩ [0, 1]n satisfies xk ≤ 1
2 for all k ∈ I.

Observe that rescaling has the effect of replacing the null space L of A with
D−1

I L, that is, multiplying by 2 the components indexed by I of all vectors in
L. Let L0 be the null space of the input matrix A (i.e. before any rescaling).
Lemmas 3.2 and 3.3 show that, at any iteration of the algorithm, L0 ∩ [0, 1] ⊆
{x ∈ R

n : xj < 2−countj}. It is well-known (see for example Schrijver [18]) that,
if j ∈ [n] is in the support Ax = 0, x ≥ 0, then there exists a solution with
xj ≥ 2−L. This shows that, whenever countj = L for some j ∈ [n], j cannot be
in the support.

Running Time. At the beginning of the algorithm and after each rescaling,
z = Πe, therefore ‖z‖ ≤ ‖e‖ =

√
n. Every Dunagan-Vempala update decreases

‖z‖2 by a factor 1 − ε2, and the algorithm terminates with x := w − z > 0
when ‖z‖ < 1. This gives the strongly polynomial bound O(n2m log(n)) on the
number of iterations between any two rescaling. Since the algorithm performs at
most L rescaling for every variable, and each update requires O(n) operations,
therefore the running-time of the algorithm is O(n4m log(n)L). (It should be
noted here that the recomputation of the matrix Π at every rescaling can be
performed in O(|I|n2) arithmetic operations using the Sherman-Morrison for-
mula [19], therefore the total number of arithmetic operations performed during
the rescalings is O(n3L)). Finally, one can improve the running time bound to
O(n4mL) by slightly modifying the algorithm, choosing the next w after each
rescaling more carefully, using the following lemma.

Lemma 3.4. Let A ∈ R
m×n, Π = AT(AAT)−1A. Let D > 0 be an n × n

diagonal matrix, and let Π ′ = DAT(AD2AT)−1AD. Given z = πw for some
w ∈ R

n, if we let w′ = D−1w and z′ = Π ′w′, then ‖z′‖ ≤ (
maxi∈[n] D

−1
ii

) ‖z‖.

The Maximum Support Problem. Algorithm 2 can be used to identify the support
of Ax = 0, x ≥ 0: whenever the algorithm returns a set R of indices not in the
support, we set xj := 0 for all j ∈ R, remove the columns of A indexed by R, and
repeat. If the algorithm terminates with a feasible solution x > 0 for the current
system, this defines a maximal support solution for the original problem. In the
worst case, we need to run Algorithm 2 n times, giving a näıve running time
estimate of O(n5mL). However, observe that whenever Algorithm 2 terminates
with a set R of indices, at the subsequent call to the algorithm we can initialize
countj , j ∈ R, to the values computed at the end of the last call. Therefore, the
total number of arithmetic operations needed to compute a maximum support
solution is O(n4mL), the same as the worst-case running time of Algorithm 2.

Rescaled Coordinate Descent Methods for Linear Programming 35

Analysis Based on a Geometric Potential. An alternative volumetric analysis
can be given, similar to the one in Sect. 2. Let QΠ := conv(Π) ∩ conv(−Π). Let
us denote by v̂ol(·) the volume with respect to the measure induced on L⊥. We
will consider as a potential v̂ol(QΠ).

Lemma 3.5. Let ε′ = 1/(16
√

3nm). Let z ∈ L⊥ such that zj ≥ −ε′‖z‖‖πj‖ for
all j ∈ [n]. Let I = {j ∈ [n] : zj

‖z‖ > 1√
3n

}, and Π ′ = DIA
T(AD2

IAT)−1ADI .
Then

v̂ol(QΠ′) ≥ e1/8 v̂ol(QΠ).

Since ε ≤ ε′, it follows that when Algorithm 2 performs a rescaling, the current
point z = Πw satisfies the hypothesis of Lemma 3.5, thus after rescaling, v̂ol(QΠ)
increases by a constant factor. As in Sect. 2, the total number of rescalings can
be bounded by O(mL). In particular, in O(mL) rescalings one can either find a
solution to Ax = 0, x > 0, or argue that none exists. Since m ≤ n, this means
that typically we may be able to prove that Ax = 0, x > 0 has no solution before
we are actually able to identify any index j not in the support.

3.1 Refinements

Note that the two analyses we provided are somewhat “loose”, in the sense that
the parameters in Algorithm 2 have been chosen to ensure that both analyses
hold. Here we propose a few refinements and variants.

(a) To optimize the algorithm based on the potential v̂ol(QΠ), we can use
ε′ = 1/(8

√
nm) instead of ε = 1/(8

√
mn). This improves the total running time

to O(n2m3L).

(b) The analysis of the algorithm based on the argument in Sect. 3 can be simpli-
fied if we set ε̄ = 1/(2

√
mn), and do an update when the condition zi ≤ −ε̄‖πi‖

is satisfied by some i ∈ [n] (rather then when zi ≤ −ε‖z‖‖πi‖). This implies
that the norm of z′ := z − (zi/‖πi‖2)πi satisfies ‖z′‖2 ≤ ‖z‖2(1 − (ε̄/‖z‖)2) =
‖z‖2 − 1/(4mn). Since after each rescaling ‖z‖ ≤ √

n, this ensures that between
every two rescalings there are at most 4mn2 updates (without the need of resort-
ing to Lemma 3.4). When zj ≥ −ε̄‖πj‖ for every j ∈ [n], it follows that there
must be at least one k ∈ [n] such that the bound in (9) is at most 1/2. Indeed,
for any k such that zk ≥ 1 (one such k must exist because w − z > 0 and wj ≥ 1
for all j ∈ [n]) we have (

∑n
j=1 z−

j)/zk ≤ ε
∑n

j=1 ‖πj‖ ≤ ε
√

nm = 1/2.

(c) A variant of the algorithm that gives the same running time but could
potentially be more efficient in practice is the following. Define ε̃ = 1/(2

√
n). At

each iteration, let N(z) := {j : zj < 0}, and compute q :=
∑

j∈N(z) πj . Note
that ‖q‖ ≤ √|N(z)|, since q is the projection onto L⊥ of the incidence vector of
N(z).

Instead of checking if there exists i ∈ [n] such that zi ≤ −ε‖z‖‖πi‖, check if
qTz ≤ −ε̃‖q‖. If such an index exists, then update as follows

36 D. Dadush et al.

z′ := z − q
qTz

‖q‖2 ; w′ := w − qTz

‖q‖2
∑

j∈N(z)

ej .

It follows that ‖z′‖2 ≤ ‖z‖2 − 1/(4n), hence the maximum number of updates
between rescalings is 4n2. If instead qTz > −ε̃‖q‖, then for every k ∈ [n] such
that zk ≥ 1, we have (

∑n
j=1 z−

j)/zk = (−qTz)/zk ≤ ε̃‖q‖ ≤ ε̃
√

n = 1
2 .

Note that the total number of updates performed by the algorithm is O(n3L),
which is better than O(mn3L) updates performed by Algorithm2. However, the
number of arithmetic operations needed to compute q is, in the worst case, O(n2),
therefore the total number of arithmetic operations is still O(n5L). Nevertheless,
this variant may be better in practice because it provides faster convergence.

Comparison with Chubanov’s Algorithm. Chubanov’s algorithm works on the
projection matrix Π̄ = [π̄1, . . . , π̄n] to the null space L of A, that is, Π̄ = I −Π.
At every iteration, Chubanov maintains a vector v ∈ R

n
+ such that eTv = 1,

starting from y = π̄j for some j ∈ [n], and computes y = Π̄v. If y > 0, then
Chubanov’s algorithm terminates with y ∈ L>, else it selects an index i ∈ [n]
with yi ≤ 0 and performs a von Neumann step y′ = λy +(1−λ)π̄i. By Dantzig’s
analysis of von Neumann’s algorithm [7], ‖y′‖−2 ≥ ‖y‖−2+1, hence after at most
4n3 operations ‖y‖ ≤ 1/(2n

√
n). Now, if k = arg maxj∈[n] vj , then vk ≥ 1/n,

therefore we have that for every x ∈ L+ ∩ [0, 1]n, xk ≤ (vTx)/vk = (yTx)/vk ≤
(‖x‖‖y‖)/vk ≤ √

n‖y‖/vk ≤ 1/2. Thus, after at most O(n3) steps, Chubanov’s
algorithm performs the same rescaling as Algorithm2 using I := {j ∈ [n] :
‖y‖/vk ≤ 1/(2

√
n)}.

Note that, while the rescaling used by Algorithm2 and Chubanov’s algorithm
are the same, and both algorithm ultimately produce a point in L> if one exists,
the updating steps work in the opposite direction. Indeed, both algorithms main-
tain a nonnegative vector in R

n, but every von Neumann step in Chubanov’s
algorithm decreases the norm of the orthogonal projection of the nonnegative
vector onto L, whereas every Dunagan-Vempala update of Algorithm2 decreases
the norm of the orthogonal projection z onto L⊥. Also, Chubanov’s iterations
guarantee a fixed increase in ‖y‖−2, and rescaling occurs when ‖y‖ is small
enough, whereas Algorithm 2 terminates when ‖z‖ is small enough (that is, when
‖z‖ ≤ 1), and rescaling occurs when the updating step would not produce a suf-
ficient decrease in ‖z‖.

We note that Chubanov’s algorithm solves the maximum support problem in
O(n4L), and hence is faster than ours. The full version of the paper will include
an enhanced version of Algorithm 2 with running time bound O(n3mL).

References

1. Agmon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392
(1954)

2. Basu, A., De Loera, J., Junod, M.: On Chubanov’s method for linear programming.
INFORMS J. Comput. 26(2), 336–350 (2014)

Rescaled Coordinate Descent Methods for Linear Programming 37

3. Betke, U.: Relaxation, new combinatorial and polynomial algorithms for the linear
feasibility problem. Discrete Comput. Geom. 32, 317–338 (2004)

4. Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary
solution. Math. Prog. 134, 533–570 (2012)

5. Chubanov, S.: A polynomial algorithm for linear optimization which is strongly
polynomial under certain conditions on optimal solutions (2015). http://www.
optimization-online.org/DB FILE/2014/12/4710.pdf

6. Chubanov, S.: A polynomial projection algorithm for linear programming. Math.
Prog. 153, 687–713 (2015)

7. Dantzig, G.B.: An ε-precise feasible solution to a linear program with a convex-
ity constraint in 1/ε2 iterations independent of problem size, Report SOL 92–5,
Stanford University (1992)

8. Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving
linear programs. Math. Prog. 114, 101–114 (2006)

9. Epelman, M., Freund, R.M.: Condition number complexity of an elementary algo-
rithm for computing a reliable solution of a conic linear system. Math. Prog. 88(3),
451–485 (2000)

10. Goffin, J.: The relaxation method for solving systems of linear inequalities. Math.
Oper. Res. 5, 388–414 (1980)

11. Motzkin, T., Schoenberg, I.J.: The relaxation method for linear inequalities. Can.
J. Math. 6, 393–404 (1954)

12. Nemirovski, A.: Prox-method with rate of convergence o(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM J. Optim. 15, 229–251 (2004)

13. Novikoff, A.B.J.: On convergence proofs for perceptrons. In: Proceedings of the
Symposium on the Mathematical Theory of Automata XII, pp. 615–622 (1962)

14. Soheili, N., Peña, J.: A smooth perceptron algorithm. SIAM J. Optim. 22, 728–737
(2012)

15. Peña, J., Soheili, N.: A deterministic rescaled perceptron algorithm. Math. Prog.
155(1), 497–510 (2016)

16. Roos, K.: On Chubanov’s method for solving a homogeneous inequality system.
Numer. Anal. Optim. 134, 319–338 (2015)

17. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65, 386–408 (1958). Cornell Aeronautical
Laboratory

18. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
19. Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a

change in one element of a given matrix. Ann. Math. Stat. 21, 124–127 (1949)
20. Végh, L.A., Zambelli, G.: A polynomial projection-type algorithm for linear pro-

gramming. Oper. Res. Lett. 42, 91–96 (2014)
21. Yu, A.W., Kılınç-Karzan, F., Carbonell, J.: Saddle points and accelerated percep-

tron algorithms. In: Proceedings of the 31st International Conference on Machine
Learning. Journal of Machine Learning Research 32, 1827–1835 (2014)

22. Wolfe, P.: Finding the nearest point in a polytope. Math. Prog. 11(1), 128–149
(1976)

http://www.optimization-online.org/DB_FILE/2014/12/4710.pdf
http://www.optimization-online.org/DB_FILE/2014/12/4710.pdf

Approximating Min-Cost Chain-Constrained
Spanning Trees: A Reduction from Weighted

to Unweighted Problems

André Linhares(B) and Chaitanya Swamy

Combinatorics and Optimization, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

{alinhare,cswamy}@uwaterloo.ca

Abstract. We study the min-cost chain-constrained spanning-tree
(abbreviated MCCST) problem: find a min-cost spanning tree in a graph
subject to degree constraints on a nested family of node sets. We devise
the first polytime algorithm that finds a spanning tree that (i) violates
the degree constraints by at most a constant factor and (ii) whose cost
is within a constant factor of the optimum. Previously, only an algo-
rithm for unweighted CCST was known [13], which satisfied (i) but did
not yield any cost bounds. This also yields the first result that obtains
an O(1)-factor for both the cost approximation and violation of degree
constraints for any spanning-tree problem with general degree bounds
on node sets, where an edge participates in multiple degree constraints.

A notable feature of our algorithm is that we reduce MCCST to
unweighted CCST (and then utilize [13]) via a novel application of
Lagrangian duality to simplify the cost structure of the underlying prob-
lem and obtain a decomposition into certain uniform-cost subproblems.

We show that this Lagrangian-relaxation based idea is in fact applica-
ble more generally and, for any cost-minimization problem with packing
side-constraints, yields a reduction from the weighted to the unweighted
problem. We believe that this reduction is of independent interest. As
another application of our technique, we consider the k-budgeted matroid
basis problem, where we build upon a recent rounding algorithm of [4]

to obtain an improved nO(k1.5/ε)-time algorithm that returns a solution
that satisfies (any) one of the budget constraints exactly and incurs a
(1 + ε)-violation of the other budget constraints.

1 Introduction

Constrained spanning-tree problems, where one seeks a minimum-cost spanning
tree satisfying additional ({0, 1}-coefficient) packing constraints, constitute an
important and widely-studied class of problems. In particular, when the packing

A full version of the paper is available on the CS arXiv.
A. Linhares and C. Swamy—Research supported partially by NSERC grant 327620-09
and the second author’s Discovery Accelerator Supplement Award, and Ontario Early
Researcher Award.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 38–49, 2016.
DOI: 10.1007/978-3-319-33461-5 4

Approximating Min-Cost Chain-Constrained Spanning Trees 39

constraints correspond to node-degree bounds, we obtain the classical min-cost
bounded-degree spanning tree (MBDST) problem, which has a rich history of
study [5,7,10–12,15] culminating in the work of [15] that yielded an optimal
result for MBDST. Such degree-constrained network-design problems arise in
diverse areas including VLSI design, vehicle routing and communication net-
works (see, e.g., the references in [14]), and their study has led to the develop-
ment of powerful techniques in approximation algorithms.

Whereas the iterative rounding and relaxation technique introduced in [15]
(which extends the iterative-rounding framework of [9]) yields a versatile tech-
nique for handling node-degree constraints (even for more-general network-
design problems), we have a rather limited understanding of spanning-tree prob-
lems with more-general degree constraints, such as constraints |T ∩δ(S)| ≤ bS for
sets S in some (structured) family S of node sets.1 A fundamental impediment
here is our inability to leverage the techniques in [10,15]. The few known results
yield: (a) (sub-)optimal cost, but a super-constant additive- or multiplicative-
factor violation of the degree bounds [1–3,6]; or (b) a multiplicative O(1)-factor
violation of the degree bounds (when S is a nested family), but no cost guar-
antee [13]. In particular, in stark contrast to the results known for node-degree-
bounded network-design problems, there is no known algorithm that yields an
O(1)-factor cost approximation and an (additive or multiplicative) O(1)-factor
violation of the degree bounds. (Such guarantees are only known when each edge
participates in O(1) degree constraints [2]; see however [16] for an exception.)

We consider the min-cost chain-constrained spanning-tree (MCCST) problem
introduced by [13], which is perhaps the most-basic setting involving general
degree bounds where there is a significant gap in our understanding vis-a-vis
node-degree bounded problems. In MCCST, we are given an undirected con-
nected graph G = (V,E), nonnegative edge costs {ce}, a nested family S (or
chain) of node sets S1 � S2 � · · · � S� � V , and integer degree bounds {bS}S∈S .
The goal is to find a minimum-cost spanning tree T such that |δT (S)| ≤ bS for
all S ∈ S, where δT (S) := T ∩ δ(S). Olver and Zenklusen [13] give an algorithm
for unweighted CCST that returns a tree T such that |δT (S)| = O(bS) (i.e.,
there is no bound on c(T)), and show that, for some ρ > 0, it is NP-complete to
obtain an additive ρ · log |V |

log log |V | violation of the degree bounds. We therefore focus
on bicriteria (α, β)-guarantees for MCCST, where the tree T returned satisfies
c(T) ≤ α · OPT and |δT (S)| ≤ β · bS for all S ∈ S.

Our Contributions. Our main result is the first
(
O(1), O(1)

)
-approximation algo-

rithm for MCCST. Given any λ > 1, our algorithm returns a tree T with
c(T) ≤ λ

λ−1 · OPT and |δT (S)| ≤ 9λ · bS for all S ∈ S, using the algorithm
of [13] for unweighted CCST, denoted AOZ, as a black box (Theorem 3). As
noted above, this is also the first algorithm that achieves an

(
O(1), O(1)

)
-

approximation for any spanning-tree problem with general degree constraints
where an edge belongs to a super-constant number of degree constraints.

1 Such general degree constraints arise in the context of finding thin trees [1], where
S consists of all node sets, which turn out to be a very useful tool in devising
approximation algorithms for asymmetric TSP.

40 A. Linhares and C. Swamy

We show in Sect. 4 that our techniques are applicable more generally. We
give a reduction showing that for any cost-minimization problem with packing
side-constraints, if we have an algorithm for the unweighted problem that returns
a solution with an O(1)-factor violation of the packing constraints and satisfies a
certain property, then one can utilize it to obtain an

(
O(1), O(1)

)
-approximation

for the cost-minimization problem. Furthermore, we show that if the algorithm
for the unweighted counterpart satisfies a stronger property, then we can utilize
it to obtain a

(
1, O(1)

)
-approximation (Theorem 9).

We believe that our reductions are of independent interest and will be useful
in other settings as well. Demonstrating this, we show an application to the
k-budgeted matroid basis problem, wherein we seek to find a basis satisfying k
budget constraints. Grandoni et al. [8] devised an nO(k2/ε)-time algorithm that
returned a (1, 1+ε, . . . , 1+ε)-solution: i.e., the solution satisfies (any) one budget
constraint exactly and violates the other budget constraints by a (1+ε)-factor (if
the problem is feasible). Very recently, Bansal and Nagarajan [4] improved the
running time to nO(k1.5/ε) but return only a (1 + ε, . . . , 1 + ε)-solution. Applying
our reduction (to the algorithm in [4]), we obtain the best of both worlds: we
return a (1, 1 + ε, . . . , 1 + ε)-solution in nO(k1.5/ε)-time (Theorem 12).

The chief novelty in our algorithm and analysis, and the key underlying
idea, is an unorthodox use of Lagrangian duality. Whereas typically Lagrangian
relaxation is used to drop complicating constraints and thereby simplify the
constraint structure of the underlying problem, in contrast, we use Lagrangian
duality to simplify the cost structure of the underlying problem by equalizing
edge costs in certain subproblems. To elaborate (see Sect. 3.1), the algorithm
in [13] for unweighted CCST can be viewed as taking a solution x to the nat-
ural linear-programming (LP) relaxation for MCCST, converting it to another
feasible solution x′ satisfying a certain structural property, and exploiting this
property to round x′ to a spanning tree. The main bottleneck here in handling
costs (as also noted in [13]) is that cᵀx′ could be much larger than cᵀx since the
conversion ignores the ces and works with an alternate “potential” function.

Our crucial insight is that we can exploit Lagrangian duality to obtain per-
turbed edge costs {cy∗

e } such that the change in perturbed cost due to the con-
version process is bounded. Loosely speaking, if the conversion process shifts
weight from xf to xe, then we ensure that cy∗

e = cy∗
f (see Lemma 5); thus,

(cy∗
)ᵀx = (cy∗

)ᵀx′!. The perturbation also ensures that applying AOZ to x′ yields
a tree whose perturbed cost is equal to (cy∗

)ᵀx′ = (cy∗
)ᵀx. Finally, we show that

for an optimal LP solution x∗, the “error” (cy∗ − c)ᵀx∗ incurred in working with
the cy∗

-cost is O(OPT); this yields the
(
O(1), O(1)

)
-approximation.

We extend the above idea to an arbitrary cost-minimization problem with
packing side-constraints as follows. Let x∗ be an optimal solution to the LP-
relaxation, and P be the polytope obtained by dropping the packing constraints.
We observe that the same Lagrangian-duality based perturbation ensures that
all points on the minimal face of P containing x∗ have the same perturbed cost.
Therefore, if we have an algorithm for the unweighted problem that rounds x∗

to a point x̂ on this minimal face, then we again obtain that (cy∗
)ᵀx̂ = (cy∗

)ᵀx∗,
which then leads to an

(
O(1), O(1)

)
-approximation (as in the case of MCCST).

Approximating Min-Cost Chain-Constrained Spanning Trees 41

Related Work. Whereas node-degree-bounded spanning-tree problems have been
widely studied, relatively few results are known for spanning-tree problems with
general degree constraints for a family S of node-sets. With the exception of the
result of [13] for unweighted CCST, these other results [1–3,6] all yield a tree of
cost at most the optimum with an ω(1) additive- or multiplicative- factor viola-
tion of the degree bounds. Both [2,3] obtain additive factors via iterative round-
ing and relaxation. The factor in [3] is (r − 1) for an arbitrary S, where r is the
maximum number of degree constraints involving an edge (which could be |V |
even when S is a chain), while [2] yields an O(log |V |) factor when S is a laminar
family (the factor does not improve when S is a chain). The dependent-rounding
techniques in [1,6] yield a tree T satisfying |δT (S)| ≤ min

{
O

(log |S|
log log |S|

)
bS ,

(1 + ε)bS + O
(log |S|

ε

)}
for all S ∈ S, for any family S.

For MBDST, Goemans [10] obtained the first
(
O(1), O(1)

)
-approximation;

his result yields a tree of cost at most the optimum and at most +2 violation
of the degree bounds. This was subsequently improved to an (optimal) additive
+1 violation by [15]. Zenklusen [16] considers an orthogonal generalization of
MBDST, where there is a matroid-independence constraint on the edges incident
to each node, and obtains a tree of cost at most the optimum and “additive” O(1)
violation (defined appropriately) of the matroid constraints. To our knowledge,
this is the only prior work that obtains an O(1)-approximation to both the cost
and packing constraints for a constrained spanning-tree problem where an edge
participates in ω(1) packing constraints (albeit this problem is quite different
from spanning tree with general degree constraints).

Finally, we note that our Lagrangian-relaxation based technique is somewhat
similar to its use in [11]. However, whereas [11] uses this to reduce uniform-degree
MBDST to the problem of finding an MST of minimum maximum degree, which
is another weighted problem, we utilize Lagrangian relaxation in a more refined
fashion to reduce the weighted problem to its unweighted counterpart.

2 An LP-Relaxation for MCCST and Preliminaries

We consider the following natural LP-relaxation for MCCST. Throughout, we
use e to index the edges of the underlying graph G = (V,E). For a set S ⊆ V ,
let E(S) denote {uv ∈ E : u, v ∈ S}, and δ(S) denote the edges on the boundary
of S. For a vector z ∈ RE and an edge-set F , we use z(F) to denote

∑
e∈F ze.

min
∑

e

cexe (P)

s.t. x
(
E(S)

) ≤ |S| − 1 ∀∅ �= S � V (1)
x(E) = |V | − 1 (2)

x
(
δ(S)

) ≤ bS ∀S ∈ S (3)
x ≥ 0. (4)

For any x ∈ RE
+, let supp(x) := {e : xe > 0} denote the support of x. It is

well known that the polytope, PST(G), defined by (1), (2), and (4) is the convex

42 A. Linhares and C. Swamy

hull of spanning trees of G. We call points in PST(G) fractional spanning trees.
We refer to (1), (2) as the spanning-tree constraints. We will also utilize (Pλ),
the modified version of (P) where we replace (3) with x

(
δ(S)

) ≤ λbS for all
S ∈ S, where λ ≥ 1. Let OPT (λ) denote the optimal value of (Pλ), and let
OPT := OPT (1).

Preliminaries. A family L ⊆ 2V of sets is a laminar family if for all A,B ∈ L,
we have A ⊆ B or B ⊆ A or A ∩ B = ∅. As is standard, we say that A ∈ L is
a child of L ∈ L if L is the minimal set of L such that A � L. For each L ∈ L,
let GL

L = (V L
L , EL

L) be the graph obtained from
(
L,E(L)

)
by contracting the

children of L in L; we drop the superscript L when L is clear from the context.
Given x ∈ PST(G), define a laminar decomposition L of x to be a (inclusion-

wise) maximal laminar family of sets whose spanning-tree constraints are tight
at x, so x

(
E(A)

)
= |A| − 1 for all A ∈ L. Note that V ∈ L and {v} ∈ L for all

v ∈ V . A laminar decomposition can be constructed in polytime (using network-
flow techniques). For any L ∈ L, let xL

L, or simply xL if L is clear from context,
denote x restricted to EL. Observe that xL is a fractional spanning tree of GL.

3 An LP-Rounding Approximation Algorithm

3.1 An Overview

We first give a high-level overview. Clearly, if (P) is infeasible, there is no span-
ning tree satisfying the degree constraints, so in the sequel, we assume that (P) is
feasible. We seek to obtain a spanning tree T of cost c(T) = O(OPT) such that
|δT (S)| = O(bS) for all S ∈ S, where δT (S) is the set of edges of T crossing S.

In order to explain the key ideas leading to our algorithm, we first briefly
discuss the approach of Olver and Zenklusen [13] for unweighted CCST. Their
approach ignores the edge costs {ce} and instead starts with a feasible solution
x to (P) that minimizes a suitable (linear) potential function. They use this
potential function to argue that if L is a laminar decomposition of x, then (x,L)
satisfies a key structural property called rainbow freeness. Exploiting this, they
give a rounding algorithm, hereby referred to as AOZ, that for every L ∈ L,
rounds xL to a spanning tree TL of GL such that |δTL

(S)| ≈ O
(
xL(δ(S))

)
for all

S ∈ S, so that concatenating the TLs yields a spanning tree T of G satisfying
|δT (S)| = O

(
x(δ(S))

)
= O(bS) for all S ∈ S (Theorem 2). However, as already

noted in [13], a fundamental obstacle towards generalizing their approach to
handle the weighted version (i.e., MCCST) is that in order to achieve rainbow
freeness, which is crucial for their rounding algorithm, one needs to abandon the
cost function c and work with an alternate potential function.

We circumvent this difficulty as follows. First, we note that the algorithm
in [13] can be equivalently viewed as rounding an arbitrary solution x to (P)
as follows. Let L be a laminar decomposition of x. Using the same potential-
function idea, we can convert x to another solution x′ to (P) that admits a
laminar decomposition L′ refining L such that (x′,L′) satisfies rainbow freeness
(see Lemma 1), and then round x′ using AOZ. Of course, the difficulty noted

Approximating Min-Cost Chain-Constrained Spanning Trees 43

above remains, since the move to rainbow freeness (which again ignores c and
uses a potential function) does not yield any bounds on the cost cᵀx′ relative
to cᵀx. We observe however that there is one simple property (*) under which
one can guarantee that cᵀx′ = cᵀx, namely, if for every L ∈ L, all edges in
supp(x) ∩ EL have the same cost. However, it is unclear how to utilize this
observation since there is no reason to expect our instance to have this rather
special property: for instance, all edges of G could have very different costs!

Now let x∗ be an optimal solution to (P) (we will later modify this somewhat)
and L be a laminar decomposition of x∗. The crucial insight that allows us to
leverage property (*), and a key notable aspect of our algorithm and analysis, is
that one can leverage Lagrangian duality to suitably perturb the edge costs so that
the perturbed costs satisfy property (*). More precisely, letting y∗ ∈ RS

+ denote
the optimal values of the dual variables corresponding to constraints (3), if we
define the perturbed cost of edge e to be cy∗

e := ce+
∑

S∈S:e∈δ(S) y∗
S , then the cy∗

-
cost of all edges in supp(x∗)∩EL are indeed equal, for every L ∈ L (Lemma 5). In
essence, this holds because for any e′ ∈ supp(x∗), by complementary slackness,
we have ce′ = (dual contribution to e’ from (1),(2)) −∑

S∈S:e′∈δ(S) y∗
S . Since any

two edges e, f ∈ supp(x∗)∩EL appear in the same sets of L, one can argue that
the dual contributions to e and f from (1), (2) are equal, and thus, cy∗

e = cy∗
f .

Now since (x∗,L∗) satisfies (*) with the perturbed costs cy∗
, we can convert

(x∗,L∗) to (x′,L′) satisfying rainbow freeness without altering the perturbed
cost, and then round x′ to a spanning tree T using AOZ. This immediately yields
|δT (S)| = O(bS) for all S ∈ S. To bound the cost, we argue that c(T) ≤ cy∗

(T) =∑
e cy∗

e x∗
e = cᵀx∗ +

∑
S∈S bSy∗

S (Lemma 6), where the last equality follows from
complementary slackness. (Note that the perturbed costs are used only in the
analysis.) However,

∑
S∈S bSy∗

S need not be bounded in terms of cᵀx∗. To fix
this, we modify our starting solution x∗: we solve (Pλ) (which recall is (P) with
inflated degree bounds {λbS}), where λ > 1, to obtain x∗, and use this x∗ in
our algorithm. Now, letting y∗ be the optimal dual values corresponding to the
inflated degree constraints, a simple duality argument shows that

∑
S∈S bSy∗

S ≤
OPT(1)−OPT(λ)

λ−1 (Lemma 7), which yields c(T) = O(OPT) (see Theorem 3).
A noteworthy feature of our algorithm is the rather unconventional use of

Lagrangian relaxation, where we use duality to simplify the cost structure (as
opposed to the constraint-structure) of the underlying problem by equalizing
edge costs in certain subproblems. This turns out to be the crucial ingredient
that allows us to utilize the algorithm of [13] for unweighted CCST as a black
box without worrying about the difficulties posed by (the move to) rainbow free-
ness. In fact, as we show in Sect. 4, this Lagrangian-relaxation idea is applicable
more generally, and yields a novel reduction from weighted problems to their
unweighted counterparts. We believe that this reduction is of independent inter-
est and will find use in other settings as well.

3.2 Algorithm Details and Analysis

To specify our algorithm formally, we first define the rainbow-freeness property
and state the main result of [13] (which we utilize as a black box) precisely.

44 A. Linhares and C. Swamy

For an edge e, define Se := {S ∈ S : e ∈ δ(S)}. Note that Se could be empty.
We say that two edges e, f ∈ E form a rainbow if Se ⊆ Sf or Sf ⊆ Se. (This
definition is slightly different from the one in [13], in that we allow Se = Sf .) We
say that (x,L) is a rainbow-free decomposition if L is a laminar decomposition
of x and for every set L ∈ L, no two edges of supp(x) ∩ EL form a rainbow.
(Recall that GL = (VL, EL) denotes the graph obtained from

(
L,E(L)

)
by

contracting the children of L.) The following lemma shows that one can convert
an arbitrary decomposition (x,L) to a rainbow-free one; the proof mimics the
potential-function argument in [13] and is deferred to the full version.

Lemma 1. Let x ∈ PST(G) and L be a laminar decomposition of x. We can
compute in polytime a fractional spanning tree x′ ∈ PST(G) and a rainbow-
free decomposition (x′,L′) such that: (i) supp(x′) ⊆ supp(x); (ii) L ⊆ L′; and
(iii) x′(δ(S)) ≤ x(δ(S)) for all S ∈ S.
Theorem 2 [13]. There is a polytime algorithm, AOZ, that given a fractional
spanning tree x′ ∈ PST(G) and a rainbow-free decomposition (x′,L′), returns a
spanning tree TL ⊆ supp(x′) of GL for every L ∈ L′ such that the concatenation
T of the TLs is a spanning tree of G satisfying |δT (S)| ≤ 9x′(δ(S)

)
for all S ∈ S.

We can now describe our algorithm compactly. Let λ > 1 be a parameter.

1. Compute an optimal solution x∗ to (Pλ), a laminar decomposition L of x∗.
2. Apply Lemma 1 to (x∗,L) to obtain a rainbow-free decomposition (x′,L′).
3. Apply AOZ to the input (x′,L′) to obtain spanning trees TL′

L of GL′
L for every

L ∈ L′. Return the concatenation T of all the TL′
L s.

Analysis. We show that the above algorithm satisfies the following guarantee.

Theorem 3. The above algorithm run with parameter λ > 1 returns a spanning
tree T satisfying c(T) ≤ λ

λ−1 · OPT and |δT (S)| ≤ 9λbS for all S ∈ S.
The bound on |δT (S)| follows immediately from Lemma 1 and Theorem 2

since x∗, and hence x′ obtained in step 2, is a feasible solution to (Pλ). So we
focus on bounding c(T). This will follow from three things. First, we define the
perturbed cy∗

-cost precisely. Next, Lemma 5 proves the key result that for every
L ∈ L, all edges in supp(x∗) ∩ EL have the same perturbed cost. Using this
it is easy to show that c(T) ≤ cy∗

(T) =
∑

e cy∗
e x∗

e = OPT (λ) + λ
∑

S∈S bSy∗
S

(Lemma 6). Finally, we show that
∑

S∈S bSy∗
S ≤ OPT−OPT(λ)

λ−1 (Lemma 7), which
yields the bound stated in Theorem 3.

Todefine the perturbed costs, we consider theLagrangian dual of (Pλ) obtained
by dualizing the (inflated) degree constraints x

(
δ(S)

) ≤ λbS for all S ∈ S:

max
y∈R

S
+

(

gλ(y) := min
x∈PST(G)

(∑

e

cexe +
∑

S∈S

(
x(δ(S)) − λbS)yS

))

. (LDλ)

For x ∈ RE and y ∈ RS , let Gλ(x, y) :=
∑

e cexe +
∑

S∈S
(
x(δ(S)) − λbS

)
yS =∑

e cy
exe − λ

∑
S∈S bSyS denote the objective function of gλ(y), where cy

e :=
ce +

∑
S∈S:e∈δ(S) yS .

Approximating Min-Cost Chain-Constrained Spanning Trees 45

Let y∗ be an optimal solution to (LDλ). One can show via LP-duality that
this holds iff there exist dual multipliers μ∗ = (μ∗

S)∅�=S⊆V corresponding to con-
straints (1), (2) of (Pλ) such that (μ∗, y∗) is an optimal solution to the LP dual
of (Pλ). This also implies that gλ(y∗) = Gλ(x∗, y∗) = OPT (λ). Our perturbed
costs are {cy∗

e }. We defer the proof of Lemma 4 to the full version and use it to
show that cy∗

e = cy∗
f for any L ∈ L and any edges e, f ∈ supp(x∗) ∩ EL.

Lemma 4. We have gλ(y∗) = Gλ(x∗, y∗) = OPT (λ). Further, there exists μ∗ =
(μ∗

S)∅�=S⊆V such that (μ∗, y∗) is an optimal solution to the dual (Dλ) of (Pλ).

Lemma 5. For any L ∈ L, all edges of supp(x∗) ∩ EL have the same cy∗
-cost.

Proof Sketch. Consider any two edges e, f ∈ supp(x∗) ∩ EL. Suppose for a con-
tradiction that cy∗

e < cy∗
f . Obtain x̂ from x∗ by increasing x∗

e by ε and decreasing
x∗

f by ε (so x̂e′ = x∗
e′ for all e′ /∈ {e, f}). We argue that one can choose a

sufficiently small ε > 0 such that x̂ ∈ PST(G). This follows since any spanning-
tree constraint that is tight at x∗ can be expressed as a linear combination
of the spanning-tree constraints for the sets in L. Since cy∗

e < cy∗
f , we have

gλ(y∗) ≤ Gλ(x̂, y∗) < Gλ(x∗, y∗) = gλ(y∗), which is a contradiction. ��
Lemma 6. We have c(T) ≤ ∑

e cy∗
e x∗

e =
∑

e cex
∗
e + λ

∑
S∈S bSy∗

S.

Proof. Observe that c(T) ≤ cy∗
(T) since ce ≤ cy∗

e for all e ∈ E as y∗ ≥ 0.
We now bound cy∗

(T). To keep notation simple, we use GL = (VL, EL) and x∗
L

to denote GL
L and (x∗)L

L (which recall is x∗ restricted to EL
L) respectively, and

G′
L = (V ′

L, E′
L) and x∗′

L to denote GL′
L and (x∗)L′

L respectively.
We have cy∗

(T) =
∑

L∈L cy∗
(T ∩ EL) since the sets {EL}L∈L partition E.

Fix L ∈ L. Note that x∗
L is a fractional spanning tree of GL = (VL, EL) since

for any ∅ �= Q ⊆ VL, if R is the subset of V corresponding to Q, and A1, . . . , Ak

are the children of L whose corresponding contracted nodes lie in Q, we have
x∗

L

(
EL(Q)

)
= x∗(E(R)

)−∑k
i=1 x∗(E(Ai)

) ≤ |R\(A1∪. . .∪Ak)|+k−1 = |Q|−1
with equality holding when Q = VL. Note that T ∩ EL is a spanning tree of GL

since T is obtained by concatenating spanning trees for the graphs {G′
L′}L′∈L′ ,

and L′ refines L. Also, all edges of supp(x∗) ∩ EL have the same cy∗
-cost by

Lemma 5. So we have cy∗
(T ∩ EL) =

∑
e∈EL

cy∗
e x∗

e. It follows that

cy∗
(T) =

∑

e

cy∗
e x∗

e =
∑

e

(
cex

∗
e +

∑

S∈S:e∈δ(S)

y∗
Sx∗

e

)

=
∑

e

cex
∗
e +

∑

S∈S
y∗

Sx∗(δ(S)
)

=
∑

e

cex
∗
e + λ

∑

S∈S
bSy∗

S .

��

Lemma 7. We have
∑

S∈S bSy∗
S ≤ OPT(1)−OPT(λ)

λ−1 .

Proof. By Lemma 4, there exists μ∗ such that (μ∗, y∗) is an optimal solution to
the dual (Dλ) of (Pλ). Also, (μ∗, y∗) is a feasible solution to (D1). Therefore,

OPT (1) ≥ −
∑

∅�=S⊆V

(|S| − 1)μ∗
S −
∑
S∈S

bSy∗
S , OPT (λ) = −

∑
∅�=S⊆V

(|S| − 1)μ∗
S − λ

∑
S∈S

bSy∗
S .

Hence OPT (1) − OPT (λ) ≥ (λ − 1)
∑

S∈S bSy∗
S . ��

46 A. Linhares and C. Swamy

Proof of Theorem 3. As noted earlier, the bounds on δT (S) follow immediately
from Lemma 1 and Theorem 2: for any S ∈ S, we have |δT (S)| ≤ 9x′(δ(S)

) ≤
9x∗(δ(S)

) ≤ 9λbS . The bound on c(T) follows from Lemmas 6 and 7 since∑
e cex

∗
e = OPT (λ). ��

4 A Reduction from Weighted to Unweighted Problems

We now show that our ideas are applicable more generally, and yield bicrite-
ria approximation algorithms for any cost-minimization problem with packing
side-constraints, provided we have a suitable approximation algorithm for the
unweighted counterpart. Thus, our technique yields a reduction from weighted
to unweighted problems, which we believe is of independent interest.

To demonstrate this, we first isolate the key properties of the rounding algo-
rithm B used above for unweighted CCST that enable us to use it as a black
box to obtain our result for MCCST; this will yield an alternate, illuminating
explanation of Theorem 3. Note that B is obtained by combining the proce-
dure in Lemma 1 and AOZ (Theorem 2). First, we of course utilize that B is an
approximation algorithm for unweighted CCST, so it returns a spanning tree T
such that |δT (S)| = O

(
x∗(δ(S))

)
for all S ∈ S. Second, we exploit the fact that

B returns a tree T that preserves tightness of all spanning-tree constraints that
are tight at x∗. This is the crucial property that allows us to bound c(T), since
this implies (as we explain below) that cy∗

(T) =
∑

e cy∗
e x∗

e, which then yields
the bound on c(T) as before. The equality follows because the set of optimal
solutions to the LP minx∈PST(G) Gλ(x, y∗) is a face of PST(G); thus all points
on the minimal face of PST(G) containing x∗ are optimal solutions to this LP,
and the stated property implies that the characteristic vector of T lies on this
minimal face. In other words, while AOZ proceeds by exploiting the notions of
rainbow freeness and laminar decomposition, these notions are not essential to
obtaining our result; any rounding algorithm for unweighted CCST satisfying
the above two properties can be utilized to obtain our guarantee for MCCST.

We now formalize the above two properties for an arbitrary cost-minimization
problem with packing side-constraints, and prove that they suffice to yield a
bicriteria guarantee. Consider the following abstract problem:

min cᵀx s.t. x is an extreme point of P, Ax ≤ b, (QP)

where P ⊆ Rn
+ is a fixed polytope, c, b ≥ 0, and A ≥ 0. Observe that we can

cast MCCST as a special case of (QP), by taking P = PST(G) (whose extreme
points are spanning trees of G), c to be the edge costs, and Ax ≤ b to be the
degree constraints. Moreover, by taking P to be the convex hull of a bounded set
{x ∈ Zn

+ : Cx ≤ d} we can use (QP) to encode a discrete-optimization problem.
We say that B is a face-preserving rounding algorithm (FPRA) for unweighted

(QP) if given any point x ∈ P, B finds in polytime an extreme point x̂ of P such
that:

(P1) x̂ belongs to the minimal face of P that contains x.

Approximating Min-Cost Chain-Constrained Spanning Trees 47

We say that B is a β-approximation FPRA (where β ≥ 1) if we also have:

(P2) Ax̂ ≤ βAx.

Let (RP
λ) denote the linear program: min

{
cᵀx : x ∈ P, Ax ≤ λb

}
; note that

(RP
1) is the LP-relaxation of (QP). Let opt(λ) denote the optimal value of (RP

λ),
and let opt := opt(1). We say that an algorithm is a (ρ1, ρ2)-approximation
algorithm for (QP) if it finds in polytime an extreme point x̂ of P such that
cᵀx̂ ≤ ρ1opt and Ax̂ ≤ ρ2b.

Theorem 8. Let B be a β-approximation FPRA for unweighted (QP). Then,
given any λ > 1, one can obtain a

(
λ

λ−1 , βλ
)
-approximation algorithm for (QP)

using a single call to B.
Proof Sketch. We dovetail the algorithm for MCCST and its analysis. We simply
compute an optimal solution x∗ to (RP

λ) and round it to an extreme point x̂ of
P using B. By property (P2), it is clear that Ax̂ ≤ β(Ax∗) ≤ βλb.

Let m be the number of rows of A. For y ∈ Rm
+ , define cy := c + Aᵀy. To

bound the cost, as before, we consider the Lagrangian dual of (RP
λ) obtained by

dualizing the side-constraints Ax ≤ λb.

max
y∈R

m
+

(
hλ(y) := min

x∈P
Hλ(x, y)

)
, where Hλ(x, y) := (cy)ᵀx − λyᵀb.

Let y∗ = argmaxy∈R
m
+

hλ(y). We can mimic the proof of Lemma 4 to show that x∗

is an optimal solution to minx∈P Hλ(x, y∗). The set of optimal solutions to this
LP is a face of P. So all points on the minimal face of P containing x∗ are optimal
solutions to this LP. By property (P1), x̂ belongs to this minimal face and so
is an optimal solution to this LP. So (cy∗

)ᵀx̂ = (cy∗
)ᵀx∗ = cᵀx∗ + (y∗)ᵀAx∗ =

opt(λ) + λ(y∗)ᵀb, where the last equality follows by complementary slackness.
Also, by the same arguments as in Lemma 7, we have (y∗)ᵀb ≤ opt(1)−opt(λ)

λ−1 .
Since c ≤ cy∗

, we have cᵀx̂ ≤ (cy∗
)ᵀx̂ ≤ λ

λ−1 · opt. ��

5 Towards a
(
1, O(1)

)
-Approximation Algorithm for (QP)

A natural question that emerges from Theorems 3 and 8 is whether one can
obtain a

(
1, O(1)

)
-approximation, i.e., obtain a solution of cost at most opt that

violates the packing side-constraints by an (multiplicative) O(1)-factor. Such
results are known for degree-bounded spanning tree problems with various kinds
of degree constraints [3,10,15,16], so, in particular, it is natural to ask whether
such a result also holds for MCCST. (Note that for MCCST, the dependent-
rounding techniques in [1,6] yield a tree T with c(T) ≤ OPT and |δT (S)| ≤
min

{
O

(log |S|
log log |S|

)
bS , (1 + ε)bS + O

(log |S|
ε

)}
for all S ∈ S.) We show that our

approach is versatile enough to yield such a guarantee provided we assume a
stronger property from the rounding algorithm B for unweighted (QP).

Let Ai denote the i-th row of A, for i = 1, . . . , m. We say that B is an
(α, β)-approximation FPRA for unweighted (QP) if in addition to properties
(P1), (P2), it satisfies:

48 A. Linhares and C. Swamy

(P3) it rounds a feasible solution x to (RP
α) to an extreme point x̂ of P

satisfying Aᵀ
i x̂ ≥ Aᵀ

i x

α for every i such that Aᵀ
i x = αbi.

(For MCCST, property (P3) requires that |δT (S)| ≥ bS for every set S ∈ S
whose degree constraint (in (Pα)) is tight at the fractional spanning tree x.)

Theorem 9. Let B be an (α, β)-approximation FPRA for unweighted (QP).
Then, one can obtain a (1, αβ)-approximation algorithm for (QP) using a single
call to B.
Proof. We show that applying Theorem 8 with λ = α yields the claimed result.
It is clear that the extreme point x̂ returned satisfies Ax̂ ≤ αβb. As in the
proof of Theorem 8, let y∗ be an optimal solution to maxy∈R

m
+

hλ(y) (where
λ = α). In Lemma 6 and the proof of Theorem 8, we use the weak bound
cᵀx̂ ≤ (cy∗

)ᵀx̂. We tighten this to obtain the improved bound on cᵀx̂. We have
cᵀx̂ = (cy∗

)ᵀx̂ − (y∗)ᵀAx̂, and

(y∗)ᵀAx̂ =
∑

i:Aᵀ
i x∗=λbi

y∗
i (Aᵀ

i x̂) ≥
∑

i:Aᵀ
i x∗=λbi

y∗
i Aᵀ

i x∗

α
=

∑

i:Aᵀ
i x∗=λbi

y∗
i bi = (y∗)ᵀb.

The first and last equalities above follow because y∗
i > 0 implies that Aᵀ

i x∗ =
λbi. The inequality follows from property (P3). Thus, following the rest of the
arguments in the proof of Theorem 8, we obtain that

cᵀx̂ ≤ (cy∗
)ᵀx̂ − (y∗)ᵀb = cᵀx∗ + (λ − 1)(y∗)ᵀb ≤ opt(1). ��

We also obtain the following variant of Theorem 9 with two-sided additive
guarantees (which can be proved by essentially the same arguments).

Theorem 10. Let B be an FPRA for unweighted (QP) that given x ∈ P returns
an extreme point x̂ of P such that Ax−Δ ≤ Ax̂ ≤ Ax+Δ. Using a single call to
B, we can obtain an extreme point x̃ of P such that cᵀx̃ ≤ opt and Ax̃ ≤ b+2Δ.

Application to k-budgeted Matroid Basis. Here, we seek to find a basis S
of a matroid M satisfying k budget constraints {di(S) ≤ Bi}1≤i≤k, where
di(S) :=

∑
e∈S di(e). Note that this can be cast a special case of (QP), where

P = P(M) is the basis polytope of M , the objective function encodes (say) the
first budget constraint and Ax ≤ b encodes the remaining budget constraints.
Applying Theorem 10 to a recent randomized algorithm of [4], we obtain a (ran-
domized) algorithm that, for any ε > 0, returns in nO(k1.5/ε) time a basis that
(exactly) satisfies a chosen budget constraint, and violates the other budget con-
straints by (at most) a (1 + ε)-factor, where n is the size of the ground-set of
M . This matches the current-best approximation guarantee of [8] (who give a
deterministic algorithm) and the current-best running time of [4].

Theorem 11 [4]. There exists a randomized FPRA, BBN, for unweighted
(QP(M)) that rounds any x ∈ P(M) to an extreme point x̂ of P(M) such that
Ax − O(

√
k)Δ ≤ Ax̂ ≤ Ax + O(

√
k)Δ, where Δ = (max1≤j≤n aij)1≤i≤k−1 =

(maxe di+1(e))1≤i≤k−1.

Approximating Min-Cost Chain-Constrained Spanning Trees 49

Applying Theorem 10 with B=BBN, we obtain a basis S of M such that
d1(S) ≤ B1, and di(S) ≤ Bi + O(

√
k)maxe di(e) for all 2 ≤ i ≤ k. We combine

this with a partial-enumeration step, where we “guess” all elements e of an
optimal solution having di(e) = Ω

(
ε√
k

) · Bi for at least one index i ∈ {2, . . . , k},
update M and the budget constraints, and then apply Theorem 10. This yields
the following result.

Theorem 12. There exists a randomized algorithm that, given any ε > 0, finds
in nO(k1.5/ε) time a basis S of M such that d1(S) ≤ B1 and di(S) ≤ (1 + ε)Bi

for all 2 ≤ i ≤ k.

References

1. Asadpour, A., Goemans, M., Madry, A., Oveis Gharan, S., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman
problem. In: Proceedings of the 20th SODA, pp. 379–389 (2010)

2. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generaliza-
tions of network design problems with degree bounds. Math. Program. 141(1–2),
479–506 (2013)

3. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded
directed network design. SICOMP 39(4), 1413–1431 (2009)

4. Bansal, N., Nagarajan, V.: Approximation-friendly discrepancy rounding. In: Lou-
veaux. Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 375–386. Springer,
Heidelberg (2016). Also appears arXiv:1512.02254 (2015)

5. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: What would Edmonds do?
Augmenting paths and witnesses for degree-bounded MSTs. Algorithmica 55, 157–
189 (2009)

6. Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding via
exchange properties of combinatorial structures. In: 51st FOCS (2010)

7. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to
within one of optimal. J. Algorithms 17(3), 409–423 (1994)

8. Grandoni, F., Ravi, R., Singh, M., Zenklusen, R.: New approaches to multi-
objective optimization. Math. Program. 146(1–2), 525–554 (2014)

9. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21, 39–60 (2001)

10. Goemans, M.: Minimum bounded degree spanning trees. In: 47th FOCS (2006)
11. Könemann, J., Ravi, R.: A matter of degree: improved approximation algorithms

for degree-bounded minimum spanning trees. SICOMP 31, 1783–1793 (2002)
12. Könemann, J., Ravi, R.: Primal-dual meets local search: approximating MST’s

with nonuniform degree bounds. In: Proceedings of the 35th STOC, pp. 389–395
(2003)

13. Olver, N., Zenklusen, R.: Chain-constrained spanning trees. In: Goemans, M., Cor-
rea, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 324–335. Springer, Heidelberg (2013)

14. Ravi, R., Marathe, M., Ravi, S., Rosenkrantz, D., Hunt III, H.: Approximation
algorithms for degree-constrained minimum-cost network-design problems. Algo-
rithmica 31(1), 58–78 (2001)

15. Singh, M., Lau, L.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th STOC, pp. 661–670 (2007)

16. Zenklusen, R.: Matroidal degree-bounded minimum spanning trees. In: Proceedings
of the 23rd SODA, pp. 1512–1521 (2012)

http://arxiv.org/abs/1512.02254

Max-Cut Under Graph Constraints

Jon Lee, Viswanath Nagarajan, and Xiangkun Shen(B)

Department of IOE, University of Michigan, Ann Arbor, MI 48109, USA
xkshen@umich.edu

Abstract. An instance of the graph-constrained max-cut (GCMC) prob-
lem consists of (i) an undirected graph G = (V,E) and (ii) edge-weights
c :
(
V
2

) → R+ on a complete undirected graph. The objective is to find
a subset S ⊆ V of vertices satisfying some graph-based constraint in G
that maximizes the weight

∑
u∈S,v �∈S cuv of edges in the cut (S, V \S).

The types of graph constraints we can handle include independent set,
vertex cover, dominating set and connectivity.

Our main results are for the case when G is a graph with bounded
treewidth, where we obtain a 1

2
-approximation algorithm. Our algorithm

uses an LP relaxation based on the Sherali-Adams hierarchy. It can han-
dle any graph constraint for which there is a (certain type of) dynamic
program that exactly optimizes linear objectives.

Using known decomposition results, these imply essentially the same
approximation ratio for GCMC under constraints such as independent
set, dominating set and connectivity on a planar graph G (more gener-
ally for bounded-genus or excluded-minor graphs).

1 Introduction

The max-cut problem is an extensively studied combinatorial-optimization prob-
lem. Given an undirected edge-weighted graph, the goal is to find a subset S ⊆ V
of vertices that maximizes the weight of edges in the cut (S, V \S). Max-cut has a
0.878-approximation algorithm [13] which is known to be best-possible assuming
the “unique games conjecture” [16]. It also has a number of practical applica-
tions, e.g., in circuit layout, statistical physics and clustering.

In some applications, one needs to solve the max-cut problem under addi-
tional constraints on the subset S. Consider for example, the following cluster-
ing problem. The input is an undirected graph G = (V,E) representing, say, a
social network (vertices V denote users and edges E denote connections between
users), and a weight function c :

(
V
2

) → R+ representing, a dissimilarity measure
between pairs of users. The goal is to find a subset S ⊆ V of users that are
connected in G while maximizing the weight of edges in the cut (S, V \S). This
corresponds to finding a cluster of connected users that is as different as possible

Research of J. Lee was partially supported by NSF grant CMMI–1160915 and ONR
grant N00014-14-1-0315.
Research of V. Nagarajan supported in part by a faculty award from Bloomberg
Labs.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 50–62, 2016.
DOI: 10.1007/978-3-319-33461-5 5

Max-Cut Under Graph Constraints 51

from its complement set. This “connected max-cut” problem also arises in image
segmentation applications [15,21].

Designing algorithms for constrained versions of max-cut is also interesting
from a theoretical standpoint. For max-cut under certain types of constraints
(such as cardinality or matroid constraints) good approximation algorithms are
known, e.g., [1,2]. In fact, many of these results have since been extended to
the more general setting of submodular objectives [8,11]. However, not much is
known for max-cut under “graph-based” constraints as in the example above.

In this paper, we study a large class of graph-constrained max-cut prob-
lems and present unified approximation algorithms for them. Our results require
that the constraint be defined on a graph G of bounded treewidth. (Treewidth
is a measure of how similar a graph is to a tree structure — see Sect. 2 for
definitions.) We note however that for a number of constraints (including the
connectivity example above), we can combine our algorithm with known decom-
position results [9,10] to obtain essentially the same approximation ratios when
the constraint graph G is planar/bounded-genus/excluded-minor.

Problem Definition. The input to the graph-constrained max-cut (GCMC) prob-
lem consists of (i) an n-vertex graph G = (V,E) with a graph-property which
implicitly specifies a collection CG ⊆ 2V of feasible vertex subsets, and (ii) (sym-
metric) edge-weights c :

(
V
2

) → R+. The GCMC problem is then as follows:

max
S∈CG

∑

u∈S,v �∈S

c(u, v). (1)

In this paper, we assume that the constraint graph G has bounded treewidth.
We also assume that the graph constraint CG admits an exact dynamic program
(of a specific form) for optimizing a linear objective, i.e. for:

max
S∈CG

∑

u∈S

f(u), where f : V → R is any given vertex weights. (2)

Note that the GCMC objective (1) is a quadratic function of the solution
S, whereas our assumption (2) involves a linear function of the solution S. See
Sect. 2 for more precise definitions/assumptions.

1.1 Our Results and Techniques

Our main result can be stated informally as follows.

Theorem 1 (GCMC result — informal). Consider any instance of the GCMC
problem on a bounded-treewidth graph G = (V,E). Suppose there is an exact
dynamic program for optimizing any linear function subject to constraint CG.
Then we obtain a 1

2 -approximation algorithm for GCMC.

This algorithm uses a linear-programming relaxation for GCMC based on the
dynamic program (for linear objectives) which is further strengthened via the

52 J. Lee et al.

Sherali-Adams LP hierarchy. The resulting LP has polynomial size whenever the
number of dynamic program states associated with a single tree-decomposition
node is constant (see Sect. 2 for the formal definition).1 The rounding algorithm
is a natural top-down procedure that randomly chooses a “state” for each tree-
decomposition node using the LP’s probability distribution conditional on the
choices at its ancestor nodes. The final solution is obtained by combining the
chosen states at each tree-decomposition node, which is guaranteed to satisfy
constraint CG due properties of the dynamic program. We note that the choice
of variables in the Sherali-Adams LP as well as the rounding algorithm are
similar to those used in [14] for the sparsest cut problem on bounded-treewidth
graphs. An important difference in our result is that we apply the Sherali-Adams
hierarchy to a non-standard LP that is defined using the dynamic program for
linear objectives. (If we were to apply Sherali-Adams to the standard LP, then
it is unclear how to enforce the constraint CG during the rounding algorithm.)
Another difference is that our rounding algorithm needs to make a correlated
choice in selecting the states of sibling nodes in order to satisfy constraint CG —
this causes the number of variables in the Sherali-Adams LP to increase, but it
still remains polynomial because the tree decomposition has constant degree.

The requirements in Theorem 1 on the graph constraint CG are satisfied by
several interesting constraints and thus we obtain approximation algorithms for
all these GCMC problems.

Theorem 2 (Applications). There is a 1
2 -approximation algorithm for GCMC

under the following constraints in a bounded-treewidth graph: independent set,
vertex cover, dominating set, connectivity.

We note that many other constraints such as precedence, connected domi-
nating set, and triangle matching also satisfy our requirement. We note that for
some of these constraints (e.g., independent set), there are problem-specific algo-
rithms where the approximation ratio depends on the treewidth k. Our result is
stronger: the algorithm is more general, and the ratio is independent of k.

For many of the constraints above, we can use known decomposition
results [9,10] to obtain approximation algorithms for GCMC when the constraint
graph has bounded genus or excludes some fixed minor (e.g., planar graphs).

Corollary 1. There is a (12 − ε)-approximation algorithm for GCMC under the
following constraints in an excluded-minor graph: independent set, vertex cover,
dominating set. Here ε > 0 is a fixed constant.

Corollary 2. There is a (12 −ε)-approximation algorithm for connected max-cut
in a bounded-genus graph. Here ε > 0 is a fixed constant.

1.2 Related Work

For the basic undirected max-cut problem, there is an elegant 0.878-
approximation algorithm [13] via semidefinite programming. This is also the
best one can hope for, assuming the unique games conjecture [16].
1 For other polynomial-time dynamic programs, the LP has quasi-polynomial size.

Max-Cut Under Graph Constraints 53

Most of the prior work on constrained max-cut has focused on cardinality,
matroid and knapsack constraints [1,2,8,11,17,18]. Constant-factor approxima-
tion algorithms are known for max-cut under the intersection of any constant
number of such constraints — these results hold in the substantially more gen-
eral setting of non-negative submodular functions. The main techniques used
here are local search and the multilinear extension [7] of submodular functions.
These results made crucial use of certain exchange properties of the underlying
constraints, which are not true for graph-based constraints that we consider.

Closer to our setting, a version of the connected max-cut problem was stud-
ied recently in [15], where the connectivity constraint as well as the weight
function were defined on the same graph G. The authors obtained an O(log n)-
approximation algorithm for general graphs, and an exact algorithm on bounded-
treewidth graphs (which implied a PTAS for bounded-genus graphs); their
algorithms relied heavily on the uniformity of the constraint/weight graphs. In
contrast, we consider the connected max-cut problem where the connectivity
constraint and the weight function are unrelated; in particular, our problem gen-
eralizes max-cut even when G is a trivial graph (e.g., a star). Moreover, our
algorithms work for a much wider class of constraints. We note however that
our results require graph G to have bounded treewidth — this is also necessary
because some of the constraints we consider (e.g., independent set) are inapprox-
imable in general graphs. (For connected max-cut itself, obtaining a non-trivial
approximation ratio when G is a general graph remains an open question.)

In terms of techniques, the closest work to ours is [14]. We use ideas from [14]
in formulating the (polynomial size) Sherali-Adams LP as well as in the rounding
algorithm. There are important differences too, as discussed in Sect. 1.1.

Finally, our result adds to a somewhat small list [3–5,12,14,19] of algorithmic
results based on the Sherali-Adams [20] LP hierarchy. We are not aware of a
more direct approach to obtain a constant-factor approximation algorithm even
for connected max-cut when the constraint graph G is a tree.

2 Preliminaries

Basic Definitions. For an undirected complete graph on vertices V and subset
S ⊆ V , let δS be the set of edges with exactly one end-point in S. For any weight
function c :

(
V
2

) → R+ and subset F ⊆ (
V
2

)
, we use c(F) :=

∑
e∈F ce.

Tree Decomposition. Given an undirected graph G = (V,E), a tree decomposi-
tion consists of a tree T = (I, F) and a collection of vertex subsets {Xi ⊆ V }i∈I

such that:

– for each v ∈ V , the nodes {i ∈ I : v ∈ Xi} are connected in T , and
– for each edge (u, v) ∈ E, there is some node i ∈ I with u, v ∈ Xi.

The width of such a tree decomposition is maxi∈I(|Xi|−1), and the treewidth
of G is the smallest width of any tree decomposition for G.

We will work with “rooted” tree decompositions that also specify a root node
r ∈ I. The depth d of such a tree decomposition is the length of the longest root-
leaf path in T . The depth of any node i ∈ I is the length of the r − i path in T .

54 J. Lee et al.

For any i ∈ I, the set Vi denotes all the vertices at or below node i, that is

Vi := ∪k∈Ti
Xk, where Ti = {k ∈ I : k in subtree of T rooted at i}.

The following known result provides a convenient representation of T .

Theorem 3 (Balanced Tree Decomposition [6]). Let G = (V,E) be a graph
of treewidth k. Then G has a rooted tree decomposition (T = (I, F), {Xi|i ∈ I})
where T is a binary tree of depth 2�log 5

4
(2|V |)� and treewidth at most 3k + 2.

This tree decomposition can be found in O(|V |) time.

Dynamic Program for Linear Objectives. We assume that the constraint CG

admits an exact dynamic programming (DP) algorithm for optimizing linear
objectives, i.e. for the problem (2). There is some additional notation that is
needed to formally describe the DP: this is necessary due to the generality of
our results.

Definition 1 (DP). With any tree decomposition (T = (I, F), {Xi|i ∈ I}), we
associate the following:

1. For each node i ∈ I, there is a state space Σi.
2. For each node i ∈ I and σ ∈ Σi, there is a collection Hi,σ ⊆ 2Vi of subsets.
3. For each node i ∈ I, its children nodes {j, j′} and σ ∈ Σi, there is a collection

Fi,σ ⊆ Σj × Σj′ of valid combinations of children states.

Assumption 1 (Linear Objective DP for CG). Let (T = (I, F), {Xi|i ∈ I})
be any tree decomposition. Then there exist Σi, Fi,σ and Hi,σ (see Definition 1)
that satisfy the following:

1. (bounded state space) Σi and Fi,σ are all bounded by constant, that is,
maxi |Σi| = t and maxi,σ |Fi,σ| = p, where t, p = O(1).

2. (required state) For each i ∈ I and σ ∈ Σi, the intersection with Xi of every
set in Hi,σ is the same, denoted Xi,σ, that is S ∩ Xi = Xi,σ for all S ∈ Hi,σ.

3. (subproblem) For each non-leaf node i ∈ I with children {j, j′} and σ ∈ Σi,

Hi,σ =
{

Xi,σ ∪ Sj ∪ Sj′ : Sj ∈ Hj,wj
, Sj′ ∈ Hj′,wj′ , (wj , wj′) ∈ Fi,σ

}
.

By condition 2, for any leaf � ∈ I and σ ∈ Σ�, we have H�,σ = {X�,σ} or ∅.
4. (cover all constraints) At the root node r, we have CG =

⋃
σ∈Σr

Hr,σ.

We note that Assumption 1 implies a polynomial-time dynamic program for
optimizing linear objectives, i.e. problem (2). The converse is not necessarily
true. However, to the best of our knowledge, all natural constraints that admit
a dynamic program on bounded-treewidth graphs satisfy a weaker version of
Assumption 1 where conditions 2–4 are satisfied exactly and a weaker version of
condition 1 is satisfied (with t and p being polynomial in n instead of constant).
Our approach works even in such cases and gives a quasi-polynomial time 1

2 -
approximation algorithm.

We also note that our algorithm just relies on the structure given by Assump-
tion 1, and does not explicitly solve the linear-objective problem (2).

Example: Here we outline how independent set satisfies these requirements.

Max-Cut Under Graph Constraints 55

– The state space of each node i ∈ I consists of all independent subsets of Xi.
– The subsets Hi,σ consist of all independent subsets S ⊆ Vi with S ∩ Xi = σ.
– The valid combinations Fi,σ consist of all tuples (wj , wj′) where the child

states wj and wj′ are “consistent” with state σ at node i. Here “consistent”
means both wj and wj′ make the same choice as σ on the vertices of Xi,
formally, wj ∩ Xi = σ ∩ Xj and wj′ ∩ Xi = σ ∩ Xj′ .

A formal proof appears in the full version. There, we also discuss a number of
other graph constraints satisfying our assumption.

The following result follows from Assumption 1.

Claim 1. For any S ∈ CG, there is a collection {b(i) ∈ Σi}i∈I such that:

– for each node i ∈ I with children j and j′, (b(j), b(j′)) ∈ Fi,b(i),
– for each leaf � we have H�,b(�)
= ∅, and
– S =

⋃
i∈I Xi,b(i).

Moreover, for any vertex u ∈ V , if ū ∈ I denotes the highest node containing u
then u ∈ S ⇐⇒ u ∈ Xū,b(ū).

Sherali-Adams LP Hierarchy. This is one of the several “lift-and-project” pro-
cedures that, given a {0, 1} integer program, produces systematically a sequence
of increasingly tighter convex relaxations. The Sherali-Adams procedure [20]
involves generating stronger LP relaxations by adding new variables and con-
straints. The rth round of this procedure has a variable y(S) for every subset S
of at most r + 1 variables in the original integer program — the new variable
y(S) corresponds to the joint event that all the original variables in S are one.

3 Approximation Algorithm for GCMC

In this section, we prove:

Theorem 4. Consider any instance of the GCMC problem on a bounded-
treewidth graph G = (V,E). If the graph constraint CG satisfies Assumption 1
then we obtain a 1

2 -approximation algorithm.

Algorithm Outline. We start with a balanced tree decomposition T of graph G,
as given in Theorem 3; recall the associated definitions from Sect. 2. Then we
formulate an LP relaxation of the problem using Assumption 1 (i.e. the dynamic
program for linear objectives) and further strengthened by applying the Sherali-
Adams operator. Finally we use a natural top-down rounding that relies on
Assumption 1 and the Sherali-Adams constraints.

All missing proofs will appear in the upcoming full version.

3.1 Linear Program

We start with some additional notation related to the tree decomposition T
(from Theorem 3) and our dynamic program assumption (Assumption 1).

56 J. Lee et al.

– For any node i ∈ I, Ti is the set of nodes on the r − i path along with the
children of all nodes except the children of i. See also Fig. 1.

– P is the collection of all node subsets J such that J ⊆ T�1 ∪ T�2 for some pair
of leaf-nodes �1, �2. See also Fig. 1.

– s(i) ∈ Σi denotes a state at node i. Moreover, for any subset of nodes N ⊆ I,
we use the shorthand s(N) := {s(k) : k ∈ N}.

– ū ∈ I denotes the highest tree-decomposition node containing vertex u.

rr

Ti

i

j j′ l1 l2

Tl1 Tl2

The grey nodes form a set in P .

Fig. 1. Examples of (i) a set Ti and (ii) a set in P.

The variables in our LP are y(s(N)) for all {s(k) ∈ Σk}k∈N and N ∈ P. Vari-
able y(s(N)) corresponds to the joint event that the solution (in CG) “induces”
state s(k) (in terms of Assumption 1) at each node k ∈ N .

We also use variables zuv defined in constraint (4) that measure the prob-
ability of an edge (u, v) being cut. Constraints (5) are the Sherali-Adams con-
straints that enforce consistency among the y variables. Our LP uses a subset of
variables and constraints from O(log n) rounds of the Sherali-Adams hierarchy.
Constraints (6)–(8) are from the dynamic program (Assumption 1) and require
valid state selections.

Claim 2. Let y be a feasible solution to LP. For any node i ∈ I with children
j, j′ and s(k) ∈ Σk for all k ∈ Ti,

y(s(Ti)) =
∑

s(j)∈Σj

∑

s(j′)∈Σj′

y(s(Ti ∪ {j, j′}). (3)

maximize
∑

{u,v}∈(V2)
cuvzuv (LP)

Max-Cut Under Graph Constraints 57

zuv =
∑

s(ū)∈Σū

u∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v �∈Xv̄,s(v̄)

y(s({ū, v̄})) +
∑

s(ū)∈Σū

u�∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v∈Xv̄,s(v̄)

y(s({ū, v̄})),

∀{u, v} ∈
(

V

2

)

; (4)

y(s(N)) =
∑

s(i)∈Σi

y(s(N ∪ {i})), ∀N ∈ P, i /∈ N : N ∪ {i} ∈ P; (5)

∑

s(r)∈Σr

y(s(r)) = 1; (6)

y(s({i, j, j′})) = 0, ∀i ∈ I, s(i) ∈ Σi, (s(j), s(j′)) /∈ Fi,s(i); (7)
y(s(�)) = 0, ∀� ∈ I, s(�) ∈ Σ� : H�,s(�) = ∅; (8)
0 ≤ y(s(N)) ≤ 1, ∀N ∈ P, {s(k) ∈ Σk}k∈N . (9)

In constraint (7), we use j and j′ to denote the two children of node i ∈ I.

3.2 The Rounding Algorithm

We start with the root node r ∈ I. Here {y(s(r)) : s(r) ∈ Σr} defines a prob-
ability distribution over the states of r. We sample a state a(r) ∈ Σr from this
distribution. Then we continue top-down: given the chosen state a(i) of any
node i, we sample states for both children of i simultaneously from their joint
distribution given at node i.

Input : Optimal solution of LP.
Output: A vertex set in CG.

1 Sample a state a(r) at the root node by distribution y(s(r));
2 Do process all nodes i in T in order of increasing depth :
3 Sample states a(j), a(j′) for the children of node i by joint distribution

Pr[a(j) = s(j) and a(j′) = s(j′)] =
y(s(Ti ∪ {j, j′}))

y(s(Ti))
, (10)

where s(Ti) = a(Ti).
4 end
5 Do process all nodes i in T in order of decreasing depth :
6 Ri = Xi,a(i) ∪ Rj ∪ Rj′ where j, j′ are the children of i.
7 end
8 R = Rr;
9 return R.

Algorithm 1. Rounding Algorithm for LP

58 J. Lee et al.

3.3 Algorithm Analysis

Lemma 1. (LP) is a valid relaxation of GCMC.

Proof. Let S ∈ CG be any feasible solution to the GCMC instance. Let {b(i)}i∈I

denote the states given by Claim 1 corresponding to S. For any subset N ∈ P of
nodes, and for all {s(i) ∈ Σi}i∈N , set

y(s(N)) =
{

1, if s(i) = b(i) for all i ∈ N ;
0, otherwise.

Clearly that constraints (5) and (9) are satisfied. By the first two properties
in Claim 1, it follows that constraints (7) and (8) are also satisfied. The last
property in Claim 1 implies that u ∈ S ⇐⇒ u ∈ Xū,b(ū) for any vertex u ∈ V .
So any edge {u, v} is cut exactly when one of the following occurs:

– u ∈ Xū,b(ū) and v
∈ Xv̄,b(v̄);
– u
∈ Xū,b(ū) and v ∈ Xv̄,b(v̄).

Using the setting of variable zuv in (4) it follows that zuv is exactly the indicator
of edge {u, v} being cut by S. Thus the objective value in (LP) is c(δS). �

Lemma 2. (LP) has a polynomial number of variables and constraints. Hence
the overall algorithm runs in polynomial time.

Proof. There are
(
n
2

)
= O(n2) variables zuv. Because the tree is binary, we

have |Ti| ≤ 2d for any node i, where d = O(log n) is the depth of the tree
decomposition. Moreover there are only O(n2) pairs of leaves as there are O(n)
leaf nodes. For each pair �1, �2 of leaves, we have |T�1 ∪ T�2 | ≤ 4d. Thus |P| ≤
O(n2) · 24d = poly(n). By Assumption 1, we have max |Hi,σ| = t = O(1), so the
number of y-variables is at most |P| · t4d = poly(n). This shows that (LP) has
polynomial size and can be solved optimally in polynomial time. Finally, it is
clearly that the rounding algorithm runs in polynomial time. �

Lemma 3. The algorithm’s solution R is always feasible.

Proof. Note that the distributions used in Steps 1 and 2 are valid due to Claim2;
so the states a(i)s are well-defined. Moreover, by the choice of these distributions,
for each node i, y(a(Ti)) > 0.

We now show that for any node i ∈ I with children j, j′ we have (a(j), a(j′)) ∈
Fi,a(i). Indeed, at the iteration for node i (when a(j) and a(j′) are set) using
the conditional probability distribution in (10) and by constraint (7), we obtain
that (a(j), a(j′)) ∈ Fi,a(i) with probability one.

We show by induction that for each node i ∈ I, the subset Ri ∈ Hi,a(i).
The base case is when i is a leaf. In this case, due to constraint (8) and the
fact that y(a(Ti)) > 0 we know that Hi,a(i)
= ∅. So Ri = Xi,a(i) ∈ Hi,a(i) by
Assumption 1(3). For the inductive step, consider node i ∈ I with children j, j′

where Rj ∈ Hj,a(j) and Rj′ ∈ Hj′,a(j′). Moreover, from the property above,
(a(j), a(j′)) ∈ Fi,a(i). Now using Assumption 1(3) we have Ri = Xi,a(i) ∪ Rj ∪
Rj′ ∈ Hi,a(i). Thus the final solution R ∈ CG. �

Max-Cut Under Graph Constraints 59

Claim 3. A vertex u is contained in solution R if and only if u ∈ Xū,a(ū).

In the rest of this section, we show that every edge (u, v) is cut by solution R
with probability at least zuv/2, which would prove the algorithm’s approximation
ratio. Lemma 4 handles the case when ū ∈ Tv̄ (the case v̄ ∈ Tū is identical). And
Lemma 5 handles the (harder) case when ū
∈ Tv̄ and v̄
∈ Tū.

We first state some useful claims before proving the lemmas.

Observation 1 (see [14] for a similar use of this principle). Let X,Y
be two jointly distributed {0, 1} random variables. Then Pr(X = 1)Pr(Y =
0) + Pr(X = 0)Pr(Y = 1) ≥ 1

2 [Pr(X = 0, Y = 1) + Pr(X = 1, Y = 0)].

Claim 4. For any node i and state s(k) ∈ Σk for all k ∈ Ti, the rounding
algorithm satisfies Pr[a(Ti) = s(Ti)] = y(s(Ti)).

Proof. We proceed by induction on the depth of node i. It is clearly true when
i = r, i.e. Ti = {r}. Assuming the statement is true for node i, we will prove it for
i’s children. Let j, j′ be the children nodes of i; note that Tj = Tj′ = Ti ∪{j, j′}.
Then using (10), we have

Pr[a(Tj) = s(Tj) | a(Ti) = s(Ti)] =
y(s(Ti ∪ {j, j′}))

y(s(Ti))
.

Combined with Pr[a(Ti) = s(Ti)] = y(s(Ti)) we obtain Pr[a(Tj) = s(Tj)] =
y(s(Tj)) as desired. �

Claim 5. For any u, v ∈ V , s(ū) ∈ Σū and s(v̄) ∈ Σv̄, we have

y(s({ū, v̄})) =
∑

s(k)∈Σk

k∈Ti\ū\v̄

y(s(Ti ∪ {ū, v̄})),

where i is the least common ancestor of ū and v̄.

Proof. Because i is the least common ancestor of ū and v̄, we have Ti∪{ū, v̄} ∈ P.
Then the claim follows by repeatedly applying constraint (5). �

Lemma 4. Consider any u, v ∈ V such that ū ∈ Tv̄. Then the probability that
edge (u, v) is cut by solution R is zuv.

Lemma 5. Consider any u, v ∈ V such that ū
∈ Tv̄ and v̄
∈ Tū. Then the
probability that edge (u, v) is cut by solution R is at least zuv/2.

Proof. In order to simplify notation, we define:

z+uv =
∑

s(ū)∈Σū

u∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v �∈Xv̄,s(v̄)

y(s({ū, v̄})), z−
uv =

∑

s(ū)∈Σū

u�∈Xū,s(ū)

∑

s(v̄)∈Σv̄

v∈Xv̄,s(v̄)

y(s({ū, v̄})).

Note that zuv = z+uv + z−
uv.

60 J. Lee et al.

Let Du = {s(ū) ∈ Σū|u ∈ s(ū)} and Dv = {s(v̄) ∈ Σv̄|v ∈ s(v̄)}. Let i
denote the least common ancestor of nodes ū and v̄. For any choice of states
{s(k) ∈ Σk}k∈Ti

define:

z+uv(s(Ti)) =
∑

s(ū)∈Du

∑

s(v̄) �∈Dv

y(s(Ti ∪ {ū, v̄}))
y(s(Ti))

,

and similarly z−
uv(s(Ti)).

In the rest of the proof we fix states {s(k) ∈ Σk}k∈Ti
and condition on the

event E that a(Ti) = s(Ti). We will show:

Pr[|{u, v} ∩ R| = 1 | E] ≥ 1
2

(
z+uv(s(Ti)) + z−

uv(s(Ti))
)
. (11)

By taking expectation over the conditioning s(Ti), this would imply Lemma 5.
We now define the following indicator random variables (conditioned on E).

Iu =

{
0 if a(ū)
∈ Du

1 if a(ū) ∈ Du

and Iv =

{
0 if a(v̄)
∈ Dv

1 if a(v̄) ∈ Dv.

Observe that Iu and Iv (conditioned on E) are independent because ū
∈ Tv̄ and
v̄
∈ Tū. So,

Pr[|{u, v} ∩ R| = 1 | E] = Pr[Iu = 1] · Pr[Iv = 0] + Pr[Iu = 0] · Pr[Iv = 1] (12)

For any s(k) ∈ Σk for k ∈ Tū\Ti, we have by Claim 4 and Ti ⊆ Tū that

Pr[a(Tū) = s(Tū) | a(Ti) = s(Ti)] =
Pr[a(Tū) = s(Tū)]
Pr[a(Ti) = s(Ti)]

=
y(s(Tū))
y(s(Ti))

.

Therefore

Pr[Iu = 1] =
∑

s(ū)∈Du

∑

k∈Tū\Ti\{ū}s(k)∈Σk

y(s(Tū))
y(s(Ti))

=
∑

s(ū)∈Du

y(s(Ti ∪ {ū}))
y(s(Ti))

.

The last equality follows from the (5) constraint. Similarly,

Pr[Iv = 1] =
∑

s(v̄)∈Dv

y(s(Ti ∪ {v̄}))
y(s(Ti))

.

Now define {0, 1} random variables X and Y jointly distributed as:

Y = 0 Y = 1
X = 0 Pr[Iv = 1] − z−

uv(s(Ti)) z−
uv(s(Ti))

X = 1 z+uv(s(Ti)) Pr[Iu = 1] − z+uv(s(Ti))

Note that Pr[X = 1] = Pr[Iu = 1] and Pr[Y = 1] = Pr[Iv = 1]. So, applying
Observation 1 and using (12) we have:

Pr[|{u, v} ∩ R| = 1 | E] ≥ 1
2

(Pr[X = 0, Y = 1] + Pr[X = 1, Y = 0]) ,

which implies (11). �

Max-Cut Under Graph Constraints 61

References

1. Ageev, A.A., Hassin, R., Sviridenko, M.: A 0.5-approximation algorithm for MAX
DICUT with given sizes of parts. SIAM J. Discrete Math. 14(2), 246–255 (2001)

2. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage
and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger,
G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999)

3. Bansal, N., Lee, K.W., Nagarajan, V., Zafer, M.: Minimum congestion mapping in
a cloud. SIAM J. Comput. 44(3), 819–843 (2015)

4. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-
bounded arborescences. In: STOC, pp. 543–552 (2009)

5. Bienstock, D., Özbay, N.: Tree-width and the Sherali-Adams operator. Discrete
Optim. 1(1), 13–21 (2004)

6. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen,
J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)

7. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

8. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

9. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor
theory: decomposition, approximation, and coloring. In: FOCS, pp. 637–646 (2005)

10. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Contraction decomposition in
h-minor-free graphs and algorithmic applications. In: STOC, pp. 441–450 (2011)

11. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for
submodular maximization. In: FOCS, pp. 570–579 (2011)

12. Friggstad, Z., Könemann, J., Kun-Ko, Y., Louis, A., Shadravan, M., Tulsiani, M.:
Linear programming hierarchies suffice for directed Steiner tree. In: Lee, J., Vygen,
J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 285–296. Springer, Heidelberg (2014)

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. Assoc.
Comput. Mach. 42(6), 1115–1145 (1995)

14. Gupta, A., Talwar, K., Witmer, D.: Sparsest cut on bounded treewidth graphs:
algorithms and hardness results. In: STOC, pp. 281–290 (2013)

15. Hajiaghayi, M.T., Kortsarz, G., MacDavid, R., Purohit, M., Sarpatwar, K.:
Approximation algorithms for connected maximum cut and related problems. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 693–704. Springer,
Heidelberg (2015)

16. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable csps? SIAM J. Comput. 37(1), 319–357 (2007)

17. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Math. 23(4), 2053–2078 (2010)

18. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806
(2010)

19. Magen, A., Moharrami, M.: Robust algorithms for Max Independent Set on
minor-free graphs based on the Sherali-Adams hierarchy. In: Dinur, I., Jansen,
K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial
Optimization. LNCS, vol. 5687, pp. 258–271. Springer, Heidelberg (2009)

62 J. Lee et al.

20. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3(3), 411–430 (1990)

21. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with
connectivity priors. In: CVPR (2008)

Sparsest Cut in Planar Graphs, Maximum
Concurrent Flows and Their Connections

with the Max-Cut Problem

Mourad Bäıou1(B) and Francisco Barahona2

1 CNRS, Université Clermont II,
Campus des Cézeaux BP 125, 63173 Aubière Cedex, France

baiou@isima.fr
2 IBM T. J. Watson Research Center, Yorktown Heights, NY 10589, USA

Abstract. We study the sparsest cut problem when the “capacity-
demand” graph is planar, and give a combinatorial algorithm. In this
type of graphs there is an edge for each positive capacity and also an
edge for each positive demand. We extend this result to graphs with no
K5 minor. We also show how to find a maximum concurrent flow in these
two cases. We use ideas that had been developed for the max-cut prob-
lem, and show how to exploit the connections among these problems.

Keywords: Sparsest cut · Maximum concurrent flow · Planar graphs ·
Max-cut

1 Introduction

Given a graph C = (V,EC) with a capacity function c : EC → �+, and a graph
D = (V,ED) with a demand function d : ED → �+, the sparsest cut problem
consists of finding a node-set S ⊂ V with d(δD(S)) > 0 that minimizes

c(δC(S))
d(δD(S))

.

For S ⊆ V we denote by δC(S) (resp. δD(S)) the set of edges in EC (resp.
ED) with exactly one endnode in S. The set δC(S) (resp. δD(S)) is called a
cut. We use c(δC(S)) and d(δD(S)) to denote

∑
e∈δC(S) c(e) and

∑
e∈δD(S) d(e)

respectively.
The sparsest cut problem is used to find approximate solutions of problems

in VLSI layout and network routing, see e.g. [6,20,31]. The sparsest cut prob-
lem is NP-hard, see [22]. Approximation algorithms have been given in [1,2,20]
and many others. Approximation algorithms for C being planar and for C having
bounded treewidth were given in [13,27] respectively. If C is planar (or even series-
parallel), a lower bound of 17/16 on the approximability of the problem (unless
P = NP) was given in [13]. If C is planar, an algorithm to find the minimum of

|δ(S)|
min(|S|,|V \S|) was given in [23]. This is called the minimum quotient cut problem.
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 63–76, 2016.
DOI: 10.1007/978-3-319-33461-5 6

64 M. Bäıou and F. Barahona

This was generalized to graphs of bounded genus in [24]. Also in [24] an O(m4g+7)
algorithm for finding the minimum of |δ(S)|

|S|(|V |−|S|) , for graphs of genus g was given.
This is called the uniform sparsest cut problem. Here m = |EC |.

Exact algorithms for sparsest cut have been given for the case when C is a
tree [22], C is planar and all endnodes of the edges in ED are in one face of C
[22], and for the case when all edges in ED have one endnode in a node-set of
fixed size [15]. When the demand edge-set ED consists of exactly one edge, we
have the well known minimum cut problem [10].

For each edge e ∈ ED (the demand graph), let Pe be the set of paths between
the endnodes of e, in EC (the capacity graph). Let P = ∪e∈ED

Pe. A concurrent
flow of throughput λ is a function f : P → �+ such that

∑

p∈Pe

f(p) = λd(e), for all e ∈ ED,

∑

p : e∈p

f(p) ≤ c(e), for all e ∈ EC .

The first set of equations says that the flow sends λd(e) units between the
endnodes of e ∈ ED. The second set of inequalities says that the sum of the flows
going through each edge e ∈ EC , should satisfy the capacity c(e). A maximum
concurrent flow is a flow that maximizes the throughput.

For a cut δD(S) with d(δD(S)) > 0, considering the flow across δC(S), we
obtain the inequality λd(δD(S)) ≤ c(δC(S)). Thus the value of a sparsest cut
is an upper bound for the value of a maximum concurrent flow, [22]. In general
there is a gap between the two values, and many authors have given bounds for
this gap, see e.g. [12,17,18,20,25].

Here we consider the case when the graph H = (V,EC ∪ ED) is planar, and
we give an exact polynomial combinatorial algorithm to find a sparsest cut. We
extend this algorithm to graphs with no K5 minor. For this class of graphs, we
also give a polynomial combinatorial algorithm that starting from the value of
a sparsest cut, finds a maximum concurrent flow. We use ideas that had been
developed for the max-cut problem, and we exploit the connections among these
problems. We review all these techniques to try to make this paper self-contained.

This paper is organized as follows. In Sect. 2 we give some notation and cite
some preliminary results. In Sect. 3 we deal with planar graphs. In Sect. 4 we
study graphs with no K5 minor. Section 5 is devoted to maximum concurrent
flows.

2 Preliminaries

We start with some notation. Given a graph G = (V,E), we use n to denote |V |.
For an edge e ∈ E with endnodes u and v we also use uv to denote the edge e.
For S ⊆ V we denote by δ(S) the set of edges with exactly one endnode in S. The
set δ(S) is called a cut. Notice that δ(V) = ∅ is also a cut. We use δ(v) instead of
δ({v}). Sometimes we use δG to indicate that this is a cut of the graph G. We denote

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows 65

by E(S) the set of edges with both endnodes in S. The subgraphs (S,E(S)) and
(V \ S,E(V \ S)) are called the shores of the cut δ(S). If F ⊆ E, the graph H =
(V, F) is called a spanning graph of G.

For an edge set S ⊆ E, its incidence vector xS is defined by xS(e) = 1 if
e ∈ S, and xS(e) = 0 otherwise, for each edge e ∈ E. The cycle space of a graph
is obtained by taking sums (mod 2) of incidence vectors of cycles. An element
of this space is the incidence vector of a spanning subgraph so that every node
has even degree. A cycle basis is a basis of this vector space. For a planar graph,
its faces minus one, form a cycle basis.

Let 〈·, ·〉 denote the inner product between two vectors. If xC is the inci-
dence vector of a cycle C, and yK and is the incidence vector of a cut K, then
〈xC , yK〉 ≡ 0 (mod 2). This is because the intersection between a cut and a
cycle has even cardinality. Moreover, if {C1, . . . , Cp} is a cycle basis, then y is
the incidence vector of a cut if and only if 〈xCi , y〉 ≡ 0 (mod 2), for i = 1, . . . , p.
Notice that the vector y = 0 is the incidence vector of the cut δ(V) = ∅.

Now we review a classic result in combinatorial optimization.

2.1 The Chinese Postman Problem and Minimum T -joins

Given an undirected connected graph G = (V,E) with nonnegative edge weights
w(e) for each edge e, this problem consists of finding a tour of the graph of min-
imum weight, so that every edge is visited at least once. Edmonds & Johnson [9]
gave a polynomial algorithm for this. Since some edges might have to be visited
more than once, the problem reduces to find a set of edges of minimum weight
that should be visited twice. This can be formulated as follows.

minimize
∑

e∈E

w(e)x(e) (1)

∑

e∈δ(v)

x(e) ≡
{

1 (mod 2) if v ∈ T,
0 (mod 2) if v ∈ V \ T,

(2)

x(e) ∈ {0, 1} for all e ∈ E. (3)

Here T denotes the set of nodes of odd degree. A solution of this corresponds
to a set of paths matching the nodes in T . For this Edmonds & Johnson gave a
combinatorial algorithm that solves the following linear program.

minimize
∑

e∈E

w(e)x(e) (4)

∑

e∈δ(S)

x(e) ≥ 1 for each node-set S with |S ∩ T | odd, (5)

x(e) ≥ 0 for all e ∈ E. (6)

Their algorithm shows that this linear program always has an optimal solu-
tion that is integer valued.

66 M. Bäıou and F. Barahona

If T is an arbitrary set of nodes with |T | even, the same results hold, and
this is called the Minimum T -join problem. We are going to use this in Sects. 3
and 5.

If G is a complete graph, this problem can be solved in O(n3) time, see
[11,19]. If the graph is planar, one can use the planar separator theorem of [21]
to solve this in O(n3/2 log n) time, see [4].

3 Sparsest Cut in Planar Graphs

The max-cut problem with positive edge-weights, in planar graphs, can be solved
in polynomial time using planar duality, see [14]. This is easy to extend to graphs
with positive and negative edge-weights, see [4]. Here we use this extension for
the sparsest cut problem. To simplify notation, we assume that G = (V,E) is
a planar graph with a capacity function c : E → �+ and a demand function
d : E → �+. Some edges might have capacity (or demand) equal to zero. We
have to find a set S ⊂ V with d(δ(S)) > 0 and that minimizes

c(δ(S))
d(δ(S))

.

For fractional optimization problems, Newton’s method, also known as
Dinkelbach method [8], is frequently used. In our case it is as follows.

Newton’s method

Step 0. Pick any set Ŝ ⊂ V with d(δ(Ŝ)) > 0. Set λ = c(δ(Ŝ))

d(δ(Ŝ))
.

Step 1. Find S̄ ⊂ V such that c(δ(S̄)) − λd(δ(S̄)) = min c(δ(S)) − λd(δ(S)).
Step 2. If c(δ(S̄)) − λd(δ(S̄)) < 0, then

c(δ(S̄))
d(δ(S̄))

<
c(δ(Ŝ))
d(δ(Ŝ))

.

In this case set λ = c(δ(S̄))
d(δ(S̄))

, Ŝ ← S̄, and go to Step 1.

If c(δ(S̄)) − λd(δ(S̄)) = 0, stop, Ŝ is an optimal solution.

Notice that in Step 1, it is possible to have S̄ = Ŝ, thus the minimum
is always less than or equal to zero. The value λ decreases at each iteration,
thus the number of iterations is finite. Radzik [26] analysed Newton’s method,
his results imply that if all capacities and demands are bounded by U , then
Newton’s method takes O(log(nU)) iterations, and for general capacities and
demands, the number of iterations is O(n2 log2 n). This last bound was improved
to O(n2 log n) by Wang et al. [33]. Their analysis was for maximization problems,
so here we could maximize d(δ(S))/c(δ(S)). Then in Step 1 we would have to
look for max d(δ(S))−μc(δ(S)), where μ = d(δ(Ŝ))/c(δ(Ŝ)), and notice that this
second algorithm will produce exactly the same set of intermediate solutions as
the first algorithm. Moreover if {λi} are the different values of λ produced by

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows 67

the first algorithm, and {μi} are the different values of μ given by the second
algorithm, then λi = 1/μi for all i. This also shows that we can maximize this
ratio and solve what we can call the Densest cut problem.

Now we have to discuss how to find the minimum in Step 1. We are looking
for a cut of minimum weight. Since the edge-weights can be positive or negative,
this cannot be done with network flow techniques. We define weights w(e) =
c(e) − λd(e) for each edge e ∈ E. Since the intersection between a cut and a
cycle has even cardinality, we define 0–1 variables x(e) for e ∈ E, and solve

minimize
∑

e∈E

w(e)x(e) (7)

∑

e∈C

x(e) ≡ 0 (mod 2), for each cycle C of G. (8)

Let F be the set of faces of G. Since F contains a cycle basis, we just need
to impose Eq. (8) for the elements of F . Then we define

x′(e) =
{

x(e) if w(e) ≥ 0,
1 − x(e) if w(e) < 0.

Also we call odd a face with an odd number of edges e with w(e) < 0, and
even a face with an even number of edges e with w(e) < 0. Then problem (7)–(8)
is equivalent to

minimize
∑

e∈E

|w(e)|x′(e) (9)

∑

e∈F

x′(e) ≡
{

1 (mod 2) if F is an odd face,
0 (mod 2) if F is an even face. (10)

Now consider the dual graph G̃ = (F , E). Let T be the set of odd faces, then
problem (9)–(10) is equivalent to

minimize
∑

e∈E

|w(e)|x′(e) (11)

∑

e∈δ(u)

x′(e) ≡
{

1 (mod 2) if u ∈ T,
0 (mod 2) if u ∈ F \ T.

(12)

This is a minimum T -join problem [9], discussed in Sect. 2.
For planar graphs one can use planar separators [21], and a primal version of

the T -join algorithm [4], to find a minimum T -join in O(n3/2 log n) time. Since
the number of iterations of Newton’s algorithm is O(n2 log n), we can state the
following.

Theorem 1. The sparsest cut problem when H = (V,EC ∪ ED) is planar can
be solved in O(n3.5 log2 n) time.

68 M. Bäıou and F. Barahona

4 Graphs with no K5 Minor

In this section we extend the algorithm from the previous section to graphs with
no K5 minor. Wagner [32] showed that these graphs can be decomposed into
planar graphs and a graph with eight nodes, we describe that decomposition
procedure below.

Let G = (V,E) be a connected graph, and let Y ⊂ V be a minimal artic-
ulation set (that is, the deletion of Y produces a disconnected graph, but no
proper subset of Y has this property). Choose nonemtpy subsets T1, T2 of V ,
such that (T1, Y, T2) is a partition of V , and no edge joins a node in T1 to a node
in T2. Add a set Z of new edges joining each pair of nonadjacent nodes in Y . Let
G1 = (V1, E1), G2 = (V2, E2) be subgraphs so that Vi = Ti ∪Y , Ei = E(Vi)∪Z,
i = 1, 2. Then if |Y | = k, 1 ≤ k ≤ 3, G is called a k-sum of G1 and G2, see
Fig. 1. Wagner [32] showed that a graph has no K5 minor if and only if it can be
obtained by means of k-sums starting from planar graphs and copies of V8, which
is the graph in Fig. 1. This decomposition can be found in linear time, see [28].
To extend the algorithm of the previous section, we have to show how to find
the minimum in Step 1 of Newton’s Algorithm. So we assume that G = (V,E)
is a graph with no K5 minor, with a weight function w : E → �, and we have
to find a cut of minimum weight. Again notice that some of the weights can be
negative, so this cannot be solved with network flow techniques. The algorithm
is as follows.

V8

Fig. 1. Different k-sums, and the graph V8.

If G is planar we treat it as in the previous section. If G is V8 we use enu-
meration. Now we assume that G is a k-sum of G1 and G2, where G2 is a planar
graph or a copy of V8. We need a way to decompose. Denote by α(S, T,H) the
minimum weight of a cut of the graph H, containing the edge set S and having
empty intersection with the edge set T . We write α(H) instead of α(∅, ∅,H). We
have three cases.

– If k = 3, let e, f and g be the edges in G1 ∩ G2. The edge weights in G2

are taken to be the same as for G. Then, a minimum weight cut problem is
solved in G1 where all the edge weights are taken to be the same as for G,
except for e, f, g, which are redefined as the solution of the following system
of linear equations:

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows 69

w′(e) + w′(f) = α({e, f}, ∅, G2) − α(∅, {e, f, g}, G2)
w′(f) + w′(g) = α({f, g}, ∅, G2) − α(∅, {e, f, g}, G2)
w′(e) + w′(g) = α({e, g}, ∅, G2) − α(∅, {e, f, g}, G2).

The above system reflects the fact that a cut contains zero or two of these
edges. We have that

α(G) = α(G1) + α(∅, {e, f, g}, G2).

The new weights for e, f, g contain all the information about G2 needed to
reduce the problem to a minimum weighted cut in G1. So we solve four
problems in G2, to compute the different α values, and then continue working
recursively in G1.

– If k = 2, let e be the edge in G1 ∩ G2. We take in G2 the same weights as for
G. In G1 we redefine only the weight of e as

w′(e) = α({e}, ∅, G2) − α(∅, {e}, G2).

Then α(G) = α(G1) + α(∅, {e}, G2). Thus we have to solve two problems in
G2 to obtain the α values, and then continue working recursively in G1.

– If k = 1, then the problem is solved independently in G1 and G2.

This type of decomposition was used in [7] for the Travelling Salesman Prob-
lem, and in [3] for the Max-cut Problem in graphs with no K5 minor. Since
the decomposition of the graph can be found in linear time, each planar graph
with p nodes can be treated in O(p3/2 log p) time, and each copy of V8 can be
treated in constant time, then a minimum weighted cut in G can be found in
O(n3/2 log n) time. Since Newton’s algorithm takes O(n2 log n) iterations, we
derive the following.

Theorem 2. If H = (V,EC ∪ ED) is a graph with no K5 minor, then the
sparsest cut problem can be solved in O(n3.5 log2 n) time.

5 Maximum Concurrent Flow

Again we assume that we have a graph G = (V,E) with a capacity function
c : E → �+, and a demand function d : E → �+. For λ > 0 we define w(e) =
c(e) − λd(e). Denote by C the set of cycles containing exactly one edge e with
w(e) < 0. A flow is a function f : C → �+ such that

∑
{f(C) | e ∈ C}

{≤ w(e) if w(e) ≥ 0
= −w(e) if w(e) < 0,

(13)

for each edge e. An edge e with w(e) < 0 represents a demand of value |w(e)|
between the endnodes of e. Given a flow, it is easy to derive a concurrent flow
of throughput λ.

70 M. Bäıou and F. Barahona

If there is a flow, and K = δ(S) is a cut, by considering the flow across the
cut we obtain

w(K) ≥ 0. (14)

This inequality says that the sum of the capacities across the cut K should
be at least the sum of the demands across the cut. So condition (14) is necessary
for the existence of a flow, and it is called the cut condition. A cut that violates
(14) will be called a negative cut. For a concurrent flow of throughput λ this

condition translates into λ ≤ c(δ(S))
d(δ(S))

, for any node set S ⊂ V with d(δ(S)) > 0.

Let λ̂ be the value given by the maximum concurrent flow problem. The
sparsest cut value is an upper bound for λ̂ and in general this bound is not
tight. Seymour [29,30], proved that for planar graphs and for graphs with no K5

minor, the cut condition (14) is sufficient for the existence of a flow. This implies
that for these classes of graphs, the maximum throughput is exactly the value
of a sparsest cut. In what follows we show how to find a maximum concurrent
flow starting from the value of a sparsest cut, for the graphs studied here. To
obtain the flow we use the dual variables associated with a linear programming
formulation of the max-cut problem, see also [5]. We assume that we have a
graph with no negative cut and give an algorithm that produces a flow, thus
this is an algorithmic proof of Seymour’s Theorem.

5.1 Planar Graphs

Let λ̂ be the value of a sparsest cut, obtained by Newton’s algorithm. If we set
w(e) = c(e) − λ̂d(e), then the value given by problem (7)–(8) is zero, this is the
termination criterion. Therefore the value given by (9)–(10) (and (11)–(12)) is∑{|w(e)| : w(e) < 0}. Edmonds & Johnson [9] proved that (11)–(12) can be
formulated as

minimize
∑

|w(e)|x′(e) (15)
∑

e∈δ(S)

x′(e) ≥ 1, for all sets S ⊂ F , with |S ∩ T | odd, (16)

x′ ≥ 0. (17)

Here F is the set of faces (the nodes of the dual graph), and T is the set
of faces with an odd number of edges e with w(e) < 0. We need the following
lemma whose proof is omitted.

Lemma 3. Consider an inequality (16), if one of the shores of δ(S) is not
connected, then the inequality is redundant.

Thus we concentrate on sets S such that both shores of δ(S) are connected. Since
cuts in the dual graph correspond to cycles in the original graph, here we obtain
the set of simple cycles in the original graph G, containing an odd number of
edges e with w(e) < 0. Let us denote by C this set of cycles. We have the linear
program below.

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows 71

minimize
∑

|w(e)|x′(e) (18)
∑

e∈C

x′(e) ≥ 1, for all cycles C of C. (19)

x′ ≥ 0. (20)

Its dual is

maximize
∑

C∈C

yC (21)

∑

C : e∈C

yC ≤ |w(e)|, for each edge e, (22)

y ≥ 0. (23)

Let x̄(e) = 1 if w(e) < 0, and x̄(e) = 0 otherwise. We have that x̄ is an optimal
solution of (18)–(20), (because x̄ is a solution of (11)–(12) of value

∑{|w(e)| :
w(e) < 0}). Let ȳ be an optimal solution of (21)–(23), then the complementary
slackness conditions imply that if ȳC > 0, then C contains exactly one edge e
with w(e) < 0. It also follows from complementary slackness that

∑

C : e∈C

ȳC = |w(e)|

for each edge e with w(e) < 0. Thus ȳ is the required flow. For planar graphs
this dual vector can be obtained in O(n3/2 log n) time, see [4].

5.2 Graphs with no K5 Minor

Here we have to consider the following three cases: (1) G is planar. (2) G is a
copy of V8. (3) G is a k-sum of two graphs where one of them is planar or a copy
of V8. If G is planar we treat it is as in the previous subsection, so now we treat
the two remaining cases.

The graph V 8. For this graph we assume that we have a set of edge-weights
w so that the cut condition (14) is satisfied, then we have to show how to find
a flow. We use the same notation as in the previous subsection, in particular
C denotes the set of cycles with an odd number of edges e with w(e) < 0. As
before, we plan to obtain the flow from the linear program (21)–(23).

We need some definitions related to two-commodity flows. A two-commodity
flow is a flow with two demands. A set of two-commodity paths is a set of paths
in the capacity graph, each of these paths is either between the endnodes of the
first demand, or between the endnodes of the second demand. A two-commodity
cut is a minimal edge set of the capacity graph that intersects all two-commodity
paths. A maximum two-commodity flow is a two-commodity flow that maximizes
the total flow. Now we need the following three lemmas. Their proofs are omitted
for space reasons.

Lemma 4. There are two nodes that cover all cycles in C.

72 M. Bäıou and F. Barahona

Lemma 5. The cycles in C are a set of two-commodity paths.

This construction implies that problem (21)–(23) (that is the dual of (18)–(20))
can be seen as a maximum two-commodity flow problem. Hu [16] showed that the
value of a maximum two-commodity flow is equal to the value of a minimum two-
commodity cut. Lemma 5 shows that the incidence vector of a two-commodity
cut satisfies (19)–(20), thus the linear program (18)–(20) has an integer optimum.

Define x̄(e) = 1 if w(e) < 0 and x̄(e) = 0 otherwise. If x̄ is an optimal solution
of (18)–(20) then complementary slackness implies that an optimal solution of
(21)–(23) gives a flow of value

∑{|w(e)| : w(e) < 0}, this is similar to what we
did in Subsect. 5.1. The lemma below shows that x̄ is optimal.

Lemma 6. If x̄ is not optimal, then there is a cut that violates condition (14).

A k-sum. The remaining case is when G is a k-sum of G1 and G2, and G2 is
either a planar graph or a copy of V8. We treat this below.

We have that G with the weights w has no negative cut, so the value obtained
in Step 1 of Newton’s algorithm is zero. We proceed as in Sect. 4 and compute
the weights w′ to be used in G1. First we assume that k = 3. We need the
following lemma.

Lemma 7. We should have α(∅, {e, f, g}, G2) = 0.

Proof. The empty set is also considered as a cut, thus α(∅, {e, f, g}, G2) ≤ 0.
Assume now that there is a cut K = δ(S) of G2 that gives α(∅, {e, f, g}, G2) < 0,
and such that S contains the three nodes in G1 ∩ G2. If we add to S all nodes
in G1 we obtain a cut of G with weight α(∅, {e, f, g}, G2) < 0. ��

Thus the procedure of Sect. 4 gives α(G) = α(G1) = 0. Now for each edge
a ∈ {e, f, g} = G1 ∩ G2, we redefine its weight to w′′(a) = w(a) − w′(a) and we
keep the original weights for the other edges in G2. We need the lemma below.

Lemma 8. The graph G2 with the weights w′′ has no negative cut.

Proof. Let K = δG2(S) be a cut of minimum weight with respect to w′′, and
assume that w′′(K) < 0. Consider first the case when the nodes in G1 ∩ G2 are
in S. Then by adding to S all nodes in G1, we would have a negative cut in G.

Now assume that e, f ∈ K. Then w′′(K) = w(K) − w′(e) − w′(f), from
the definition of w′′. If K is a cut of minimum weight with respect to w′′,
it is also of minimum weight with the constraint that e and f should be in
the cut. Then −w′(e) − w′(f) is a constant for the cuts containing e and f .
Therefore K minimizes w(C) among the cuts C that contain e and f . Thus
w(K) = α({e, f}, ∅, G2), from the definition of α. On the other hand, from the
definition of w′ and Lemma 7 we have w′(e)+w′(f) = α({e, f}, ∅, G2). Then we
have w′′(K) = α({e, f}, ∅, G2) − α({e, f}, ∅, G2) = 0, a contradiction. ��

Then we obtain a flow in G2 with the weights w′′ that can be combined with
a flow in G1 with the weights w′, to produce a flow in G, as shown below.

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows 73

Lemma 9. Let f ′ be a flow in G1 = (V1, E1) with the weights w′, and f ′′ a flow
in G2 = (V2, E2) with the weights w′′, then these two flows can be combined to
produce a flow f̄ in G with the weights w.

Proof. Let {e, f, g} = E1 ∩ E2. Let {e1, f1, g1} be the copies of {e, f, g} in G1,
and {e2, f2, g2} be the copies of {e, f, g} in G2. Let Ḡ be the graph obtained from
G1 and G2 by identifying the nodes in V1 ∩V2 and keeping the edges {e1, f1, g1}
and {e2, f2, g2}. We define f̄(C) = f ′(C) if C is a cycle in G1, f̄(C) = f ′′(C) if
C is a cycle in G2, and f̄(C) = 0 for any other cycle C ∈ C . Then f̄ satisfies
(13) and it is a flow in Ḡ. Next we discuss how to replace the parallel edges e1

and e2 with e. We have four cases.

Case 1. If w′(e1) ≥ 0 and w′′(e2) ≥ 0, then w(e) = w′(e1) + w′′(e2) ≥ 0. For
each cycle C in G1 with f̄(C) > 0, containing e1, we replace e1 with e in C, and
keep the same value for f̄(C). We proceed similarly with cycles in G2 containing
e2. Finally we remove e1 and e2 from Ḡ and keep e. Then

∑{f̄(C) | e ∈ C} =∑{f ′(C) | e1 ∈ C} +
∑{f ′′(C) | e2 ∈ C} ≤ w′(e1) + w′′(e2) = w(e). Therefore

this new flow satisfies (13).

Case 2. If w′(e1) < 0 and w′′(e2) < 0, then w(e) = w′(e1) + w′′(e2) < 0. We
proceed as in the preceding case, then

∑{f̄(C) | e ∈ C} =
∑{f ′(C) | e1 ∈ C} +∑{f ′′(C) | e2 ∈ C} = |w′(e1)|+ |w′′(e2)| = |w(e)|. So the new flow satisfies (13).

Case 3. If w′(e1) ≥ 0 and w′′(e2) < 0. Let {C1, . . . , Ck} be the set of cycles in
G1 containing e1 and with f̄(Ci) > 0. Let {D1, . . . , Dl} be the set of cycles in
G2 containing e2 and with f̄(Dj) > 0. Let μ =

∑
i f̄(Ci), we have μ ≤ w′(e1),

and
∑

j f̄(Dj) = |w′′(e2)|.
PickCi with f̄(Ci) > 0 andDj with f̄(Dj) > 0, and set ε = min{f̄(Ci), f̄(Dj)}.

Let C = (Ci \ {e1}) ∪ (Dj \ {e2}). If Ci or Dj contains exactly two nodes in
G1∩G2, then C is a simple cycle and we set f̄(C) ← f̄(C)+ε, f̄(Ci) ← f̄(Ci)−ε,
f̄(Dj) ← f̄(Dj) − ε. If Ci and Dj contain the three nodes in G1 ∩ G2, then C
as defined above is not be a simple cycle, but the union of two simple cycles C ′

and C ′′. Only one of them, C ′ say, contains an edge with negative weight. Then
we keep C ′, remove C ′′, and proceed as above.

Notice that after this either f̄(Ci) = 0 or f̄(Dj) = 0. Continue doing this
until either (a) f̄(Ci) = 0 for all i, or (b)f̄(Dj) = 0 for all j. We treat these two
sub-cases below.

Sub-case (a). All flow going through e1 has been re-routed, and there are still
|w′′(e2)| − μ units of flow associated with e2. If w(e) = w′(e1) + w′′(e2) ≥ 0,
we just set f̄(Dj) = 0 for all remaining cycles Dj with f̄(Dj) > 0. Then there
is no flow going through the edge e. If w(e) = w′(e1) + w′′(e2) < 0, since
|w′′(e2)| − μ ≥ |w(e)|, we can apply the procedure below.

Re-route

Step 0. Set T = |w(e)|.
Step 1. Pick a cycle Dj with f̄(Dj) > 0. Set ε = min{f(Dj), T}.

74 M. Bäıou and F. Barahona

Step 2. Let D = Dj \ {e2} ∪ {e}. Set f̄(D) = ε. Set T ← T − ε, f̄(Dj) ←
f̄(Dj) − ε. If T > 0 go to Step 1, otherwise stop.

After this procedure for each cycle Dj that still has f̄(Dj) > 0, we set
f̄(Dj) = 0. Then we have

∑
{f̄(C) | e ∈ C} = |w(e)|.

Sub-Case (b). All the demand associated with e2 has been re-routed, and we
have re-routed |w′′(e2)| units of flow going through e1. There are μ−|w′′(e2)|
units going through e1 remaining to re-route. Then for every remaining cycle
Ci with f̄(Ci) > 0, we set C = Ci \ {e1} ∪ {e}, and set f̄(C) = f̄(Ci). Then
μ − |w′′(e2)| =

∑{f̄(C) | e ∈ C} ≤ w′(e1) − |w′′(e2)| = w(e).

Then the edges e1 and e2 are removed and the edge e is kept.

Case 4. If w′(e1) < 0 and w′′(e2) ≥ 0, this is treated as in Case 3.
Then the pairs of parallel edges {f1, f2} and {g1, g2} are treated in a similar

way. ��
Then we continue working recursively in G1. The cases k = 2 and k = 1 are

similar.
Let n2 = |V2|. If G2 is planar, then computing the weights w′ requires treating

G2 three times, this takes O(n3/2
2 log n2) time, and then the flow in G2 with

weights w′′ can be obtained in O(n3/2
2 log n2) time. If G2 is a copy of V8 then

the flow can be obtained in constant time. This leads to the result below.

Theorem 10. For a graph H = (V,EC ∪ ED) that has no K5 minor, once the
value of a sparsest cut has been computed, a maximum concurrent flow can be
obtained in O(n3/2 log n) time.

References

1. Arora, S., Lee, J., Naor, A.: Euclidean distortion and the sparsest cut. J. Am.
Math. Soc. 21, 1–21 (2008)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. J. ACM (JACM) 56, 5 (2009)

3. Barahona, F.: The max-cut problem on graphs not contractible to K5. Oper. Res.
Lett. 2, 107–111 (1983)

4. Barahona, F.: Planar multicommodity flows, max-cut, and the Chinese postman
problem. In: Cook, W., Seymour, P.D. (eds.) Polyhedral Combinatorics. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 1, pp. 189–
202. American Mathematical Society, Providence (1990)

5. Barahona, F.: On cuts and matchings in planar graphs. Math. Program. 60, 53–68
(1993)

6. Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems.
J. Comput. Syst. Sci. 28, 300–343 (1984)

7. Cornuejols, G., Naddef, D., Pulleyblank, W.: The traveling salesman problem in
graphs with 3-edge cutsets. J. ACM (JACM) 32, 383–410 (1985)

Sparsest Cut in Planar Graphs, Maximum Concurrent Flows 75

8. Dinkelbach, W.: On nonlinear fractional programming. Manage. Sci. 13, 492–498
(1967)

9. Edmonds, J., Johnson, E.L.: Matching, euler tours and the Chinese postman. Math.
Program. 5, 88–124 (1973)

10. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

11. Gabow, H.N.: An efficient implementation of Edmonds’ algorithm for maximum
matching on graphs. J. ACM (JACM) 23, 221–234 (1976)

12. Günlük, O.: A new min-cut max-flow ratio for multicommodity flows. SIAM J.
Discrete Math. 21, 1–15 (2007)

13. Gupta, A., Talwar, K., Witmer, D.: Sparsest cut on bounded treewidth graphs:
algorithms and hardness results. In: Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing, pp. 281–290. ACM (2013)

14. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4, 221–225 (1975)

15. Hong, S.-P., Choi, B.-C.: Polynomiality of sparsest cuts with fixed number of
sources. Oper. Res. Lett. 35, 739–742 (2007)

16. Hu, T.C.: Multi-commodity network flows. Oper. Res. 11, 344–360 (1963)
17. Klein, P., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and

multicommodity flow. In: Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, pp. 682–690. ACM (1993)

18. Klein, P., Rao, S., Agrawal, A., Ravi, R.: An approximate max-flow min-cut rela-
tion for undirected multicommodity flow, with applications. Combinatorica 15,
187–202 (1995)

19. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Cor-
poration, New York (1976)

20. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM (JACM) 46, 787–832 (1999)

21. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36, 177–189 (1979)

22. Matula, D.W., Shahrokhi, F.: Sparsest cuts and bottlenecks in graphs. Discrete
Appl. Math. 27, 113–123 (1990)

23. Park, J.K., Phillips, C.A.: Finding minimum-quotient cuts in planar graphs. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Comput-
ing, pp. 766–775. ACM (1993)

24. Patel, V.: Determining edge expansion and other connectivity measures of graphs
of bounded genus. SIAM J. Comput. 42, 1113–1131 (2013)

25. Plotkin, S., Tardos, É.: Improved bounds on the max-flow min-cut ratio for multi-
commodity flows. Combinatorica 15, 425–434 (1995)

26. Radzik, T.: Fractional combinatorial optimization. In: Du, D.-Z., Pardalos, P.M.
(eds.) Handbook of Combinatorial Optimization, pp. 429–478. Springer, USA
(1999)

27. Rao, S.: Small distortion and volume preserving embeddings for planar and euclid-
ean metrics. In: Proceedings of the Fifteenth Annual Symposium on Computational
Geometry, pp. 300–306. ACM (1999)

28. Reed, B., Li, Z.: Optimization and recognition for K 5-minor free graphs in linear
time. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 206–215. Springer, Heidelberg (2008)

29. Seymour, P.: Matroids and multicommodity flows. Eur. J. Comb. 2, 257–290 (1981)
30. Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. London Math.

Soc. 3, 178–192 (1981)

76 M. Bäıou and F. Barahona

31. Shmoys, D.B.: Cut problems and their application to divide-and-conquer. In:
Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 192–
235. PWS Publishing, Boston (1997)

32. Wagner, K.: Über eine eigenschaft der ebenen komplexe. Math. Ann. 114, 570–590
(1937)

33. Wang, Q., Yang, X., Zhang, J.: A class of inverse dominant problems under
weighted l∞ norm and an improved complexity bound for Radzik’s algorithm.
J. Global Optim. 34, 551–567 (2006)

Intersection Cuts for Bilevel Optimization

Matteo Fischetti1(B), Ivana Ljubić2, Michele Monaci1, and Markus Sinnl3

1 DEI, University of Padua, Padua, Italy
{matteo.fischetti,michele.monaci}@unipd.it

2 ESSEC Business School of Paris, Cergy-Pontoise, France
ivana.ljubic@essec.edu

3 ISOR, University of Vienna, Vienna, Austria
markus.sinnl@univie.ac.at

Abstract. The exact solution of bilevel optimization problems is a very
challenging task that received more and more attention in recent years, as
witnessed by the flourishing recent literature on this topic. In this paper
we present ideas and algorithms to solve to proven optimality generic
Mixed-Integer Bilevel Linear Programs (MIBLP’s) where all constraints
are linear, and some/all variables are required to take integer values.
In doing so, we look for a general-purpose approach applicable to any
MIBLP (under mild conditions), rather than ad-hoc methods for specific
cases. Our approach concentrates on minimal additions required to con-
vert an effective branch-and-cut MILP exact code into a valid MIBLP
solver, thus inheriting the wide arsenal of MILP tools (cuts, branching
rules, heuristics) available in modern solvers.

1 Introduction

A general bilevel optimization problem is defined as

min
x∈Rn1 ,y∈Rn2

F (x, y) (1)

G(x, y) ≤ 0 (2)
y ∈ arg min

y′∈Rn2
{f(x, y′) : g(x, y′) ≤ 0 }, (3)

where F, f : R
n1+n2 → R, G : R

n1+n2 → R
m1 , and g : R

n1+n2 → R
m2 . Let

n = n1 + n2 denote the total number of decision variables.
We will refer to F (x, y) and G(x, y) ≤ 0 as the leader objective function

and constraints, respectively, and to (3) as the follower subproblem. In case the
follower subproblem has multiple optimal solutions, we assume that one with
minimum leader cost among those with G(x, y) ≤ 0 is chosen—i.e. we consider
the optimistic version of bilevel optimization.

By defining the follower value function for a given x ∈ R
n1

Φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0 }, (4)

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 77–88, 2016.
DOI: 10.1007/978-3-319-33461-5 7

78 M. Fischetti et al.

one can restate the bilevel optimization problem as follows:

min F (x, y) (5)
G(x, y) ≤ 0 (6)
g(x, y) ≤ 0 (7)
(x, y) ∈ R

n (8)
f(x, y) ≤ Φ(x). (9)

Note that the above optimization problem would be hard (both theoretically and
in practice) even if one would assume convexity of F,G, f and g (which would
imply that of Φ), due to the intrinsic nonconvexity of (9).

Dropping condition (9) leads the so-called High Point Relaxation (HPR). As
customary in the bilevel context, we assume that HPR is feasible and bounded,
and that the minimization problem in (4) is bounded for each feasible solution of
HPR—while its feasibility follows directly from the definition of HPR. As HPR
contains all the follower constraints, any HPR solution (x, y) satisfies f(x, y) ≥
Φ(x), hence (9) actually implies f(x, y) = Φ(x, y).

A point (x, y) ∈ R
n will be called bilevel infeasible if it violates (9). A point

(x, y) ∈ R
n will be called bilevel feasible if it is satisfies all constraints (6)–(9).

2 Literature Overview

In this paper we will mainly focus on Mixed-Integer Bilevel Linear Programs
(MIBLP’s) where some/all variables are required to be integer, and all HPR
constraints (plus objective function) are linear.

The first generic branch-and-bound approach to the MIBLP’s has been given
in [7], where the authors propose to solve HPR embedded into a branch-and-
bound scheme and basically enumerate bilevel feasible solutions. Recently, [4,5]
proposed a sound branch-and-cut approach that builds upon the ideas from
[7] and cuts off integer bilevel infeasible solutions, by adding cuts that exploit
the integrality property of the leader and the follower variables. The authors
provide an open-source MIBLP solver MibS [8]. More recently, [3] again propose
to embed HPR into a branch-and-bound tree, bilevel infeasible solutions being
cut off by adding a continuous follower subproblem into HPR, each time a new
bilevel infeasible solution is detected. Continuous follower subproblems are then
reformulated using KKT conditions and linearized in a standard way. Another
generic approach for MIBLP’s is a branch-and-sandwich method in [6], where the
authors propose novel ideas for deriving lower and upper bounds of the follower’s
value function.

As this is usually the case with intersection cuts for MILPs, our IC’s for
MIBLP’s also use disjunctive arguments. Disjunctive cuts in connection to bilevel
linear programming have been investigated in [1], where the continuous follower
subproblem is reformulated using KKT conditions, and disjunctive cuts are used
to enforce complementary slackness conditions.

Intersection Cuts for Bilevel Optimization 79

3 Bilevel-Free Sets

The following result is valid for generic bilevel problems and was implicit in some
early references (including [9]) where it was only used as a guide for branching.

Lemma 1. For any ŷ ∈ R
n2 , the set

S(ŷ) = {(x, y) ∈ R
n : f(x, y) ≥ f(x, ŷ), g(x, ŷ) ≤ 0} (10)

does not contain any bilevel feasible point in its interior.

Proof. It is enough to prove that no bilevel feasible (x, y) exists such that f(x, y)
> f(x, ŷ) and g(x, ŷ) < 0. We will in fact prove a tighter result where the latter
condition is replaced by g(x, ŷ) ≤ 0, as this will be required in the proof of the
next theorem. Indeed, for any bilevel feasible solution (x, y) with g(x, ŷ) ≤ 0,
one has f(x, y) ≤ Φ(x) = miny′{f(x, y′) : g(x, y′) ≤ 0} ≤ f(x, ŷ).

In some relevant settings, the above result can be strengthened to obtain the
following enlarged bilevel-free set.

Theorem 1. Assume that g(x, y) is integer for all HPR solutions (x, y). Then,
for any ŷ ∈ R

n2 , the extended set

S+(ŷ) = {(x, y) ∈ R
n : f(x, y) ≥ f(x, ŷ), g(x, ŷ) ≤ 1} (11)

does not contain any bilevel feasible point in its interior, where 1 denotes a vector
of all ones.

Proof. To be in the interior of S+(ŷ), a bilevel feasible (x, y) should satisfy f(x, y)
> f(x, ŷ) and g(x, ŷ) < 1. By assumption, the latter condition can be replaced
by g(x, ŷ) ≤ 0, hence the claim follows from the proof of previous lemma.

As far as we know, the above result is new. In spite of its simplicity, it will play
a fundamental role in our solution method.

4 Mixed-Integer Bilevel Linear Programming

In the remaining part of the paper we will focus on the case where some/all
variables are required to be integer, and all HPR constraints (plus objective
function) are linear. This leads to the following Mixed-Integer Bilevel Linear
Program (MIBLP):

min F (x, y) (12)
G(x, y) ≤ 0 (13)
g(x, y) ≤ 0 (14)
(x, y) ∈ R

n (15)
f(x, y) ≤ Φ(x) (16)

xj integer, ∀j ∈ J1 (17)
yj integer, ∀j ∈ J2, (18)

80 M. Fischetti et al.

where F,G, f, g are now assumed to be affine functions, sets J1 ⊆ {1, · · · , n1} and
J2 ⊆ {1, · · · , n2} identify the (possibly empty) indices of the integer-constrained
variables in x and y, respectively, and the value function reads

Φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0, yj ∈ Z ∀j ∈ J2}. (19)

Dropping (16) leads to the HPR, which is a MILP in this setting. Dropping
integrality conditions as well leads to the LP relaxation of HPR, namely (12)–
(15), an LP which will be denoted by HPR.

Our main goal is to solve the above MIBLP by using a standard simplex-based
branch-and-cut algorithm where the hard constraint (16) is enforced, on the fly,
by adding cutting planes. The minimal requisite for the correctness of such an
approach is the ability of cutting any vertex, say (x∗, y∗), of HPR which satisfies
the integrality requirements (17) and (18) but is bilevel infeasible because

f(x∗, y∗) > Φ(x∗), (20)

thus preventing a wrong update of the incumbent. To this end, we will propose
a novel application of Balas’ intersection cuts [2] in the MIBLP context.

5 A New Family of Cuts for MIBLP

Intersection cuts (IC’s) for a given (x∗, y∗) require the definition of two sets:
(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions, and
(2) a convex set S∗ that contains (x∗, y∗) but no bilevel feasible solutions in its
interior. The reader is referred to [2] for technical details.

As customary in mixed-integer programming, IC’s are generated for vertices
(x∗, y∗) of an LP relaxation of the problem to be solved, so a suitable cone is
just the corner polyhedron associated with the corresponding optimal basis. All
relevant information in this cone is readily available in the “optimal tableau”
and requires no additional computational effort.

As to the convex set S∗, we propose to use the set defined in Lemma 1 (or,
better, in Theorem 1 if applicable) by choosing

ŷ = arg min
y

{f(x∗, y) : g(x∗, y) ≤ 0, yj ∈ Z ∀j ∈ J2} (21)

(assuming this problem is not unbounded). Indeed, such a set S∗ does not contain
any bilevel feasible point in its interior, as required, while (x∗, y∗) ∈ S∗ because
of (20) and Φ(x∗) = f(x∗, ŷ) by definition. Note that ŷ is well defined when
(x∗, y∗) is a solution of HPR, and that S∗ is a convex polyhedron in the MIBLP
case.

However, an important property is stillmissing, namely, (x∗, y∗)must belong to
the interior of S∗ if we want to generate a violated intersection cut. This is always
the case for MILBP’s for which S∗ is the extended set defined as in Theorem 1.
This includes problems with all-integer follower where J2 = {1, · · · , n2}, all g-
coefficients are integer, and j ∈ J1 for all xj ’s appearing with nonzero coefficient in
some follower constraint.

Intersection Cuts for Bilevel Optimization 81

A relevant consequence of the above discussion is that, at least in the all-
integer follower case, an exact branch-and-cut MIBLP solver can be obtained
from a MILP solver by just adding a separation function for IC’s based on the
extended set S+(ŷ) defined by (11) and (21). Indeed, observe that an exact
MIBLP solver can be obtained by applying a general-purpose simplex-based
MILP solver to HPR. To avoid the incumbent be updated with bilevel infeasible
solutions, it is enough to cut any HPR solution (x∗, y∗) with f(x∗, y∗) > Φ(x∗).
Without loss of generality, by disabling internal MILP heuristics, we can assume
that (x∗, y∗) is a vertex of the current HPR so we can always cut it by an (locally-
valid) IC as, by definition, (x∗, y∗) is in the interior of the extended S+(ŷ) when
ŷ is defined as in (21). In addition, assuming that all leader’s variables x are
integer and bounded, the number of HPR solutions to cut is finite, so a finite
number of branching nodes (and hence of IC’s) will be generated, i.e., the method
converges in a finite number of iterations.

In the heuristic attempt of producing violated IC’s for a generic vertex
(x∗, y∗) of the HPR polyhedron, one could also consider the following alternative
definition of the point ŷ that defines the bilevel-free set S+(ŷ):

(ŷ, d̂) = arg max
y,d

{d : f(x∗, y) + ϕ d ≤ f(x∗, y∗),

g(x∗, y) + γd ≤ 1, yj ∈ Z ∀j ∈ J2}, (22)

where ϕ ∈ R+ and γ ∈ R
m2
+ are suitable normalization factors, e.g., the Euclid-

ean norm of the corresponding left-hand-side coefficient vectors. The rationale
of this definition is that one wants to detect a bilevel-free set S(ŷ) whose closest
face to (x∗, y∗) has a maximum distance from it.

Example. Figure 1 illustrates the application of IC’s on an example given in [7],
which is frequently used in the literature:

min
x∈Z

−x − 10y (23)

y ∈ arg min
y′∈Z

{ y′ : (24)

−25x + 20y′ ≤ 30 (25)
x + 2y′ ≤ 10 (26)
2x − y′ ≤ 15 (27)

2x + 10y′ ≥ 15 }. (28)

In this all-integer example, there are 8 bilevel feasible points (depicted as
crossed squares in Fig. 1), and the optimal bilevel solution is (2, 2). The drawn
polytope corresponds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Lemma 1 with ŷ
defined as in (21). After solving the first HPR, the point A = (2, 4) is found.
This point is bilevel infeasible, as for x∗ = 2 we have f(x∗, y∗) = y∗ = 4 while

82 M. Fischetti et al.

Φ(x∗) = 2. From (21) we compute ŷ = 2 and the intersection cut derived from
the associated S(ŷ) is depicted in Fig. 1(a). In the next iteration, the optimal
HPR solution moves to B = (6, 2). Again, for x∗ = 6, f(x∗, y∗) = y∗ = 2 while
Φ(x∗) = 1. So we compute ŷ = 1 and generate the IC induced by the associated
S(ŷ), namely 2x + 11y ≤ 27 (cf. Fig. 1(b)). In the next iteration, the fractional
point C = (5/2, 2) is found and ŷ = 1 is again computed. In this case, C is not
in the interior of S(ŷ) so we cannot generate an IC cut from C but we should
proceed and optimize HPR to integrality by using standard MILP tools such as
MILP cuts or branching. This produces the optimal HPR solution (2, 2) which
is bilevel feasible and hence optimal.

We next apply the definition of the enlarged bilevel-free set from Theorem1
(whose assumption is fulfilled) with ŷ defined again as in (21); see Fig. 1(c) and
(d). After the first iteration, the point A = (2, 4) is cut off by a slightly larger
S+(ŷ = 2), but with the same IC as before (y ≤ 2). After the second iteration,
from the bilevel infeasible point B = (6, 2) we derive a larger set S+(ŷ = 1) and
a stronger IC (x + 6y ≤ 14). In the third iteration, solution D = (2, 2) is found
which is the optimal bilevel solution, so no branching at all is required in this
example.

6 Informed No-Good Cuts

A known drawback of IC’s is their dependency on the LP basis associated with
the point to cut, which can create cut accumulation in the LP relaxation and
hence shallow cuts and numerical issues. Moreover, IC’s are not directly applica-
ble if the point to cut is not a vertex of a certain LP relaxation of the problem
at hand, as it happens e.g. when it is computed by the internal MILP heuristics.

We next describe a general-purpose variant of IC’s whose derivation does not
require any LP basis and is based on the well-known interpretation of IC’s as
disjunctive cuts. It turns out that the resulting inequality is valid and violated
by any bilevel infeasible solution of HPR in the relevant special case where all x
and y variables are binary.

Suppose we are given a point ξ∗ = (x∗, y∗) ∈ R
n and a polyhedron S∗ =

{ξ ∈ R
n : αT

i ξ ≤ αi0, i = 1, · · · , k} whose interior contains ξ∗ but no feasible
points. Assume that variable-bound constraints l ≤ ξ ≤ u are present, where
some entries of l or u can be −∞ or +∞, respectively. Given ξ∗, define L :=
{j : ξ∗

j − lj ≤ uj − ξ∗
j } and U := {1, · · · , n} \ L and the corresponding linear

mapping ξ 	→ ξ ∈ R
n with ξj := ξj − lj for j ∈ L, and ξj := uj − ξj for j ∈ U

(variable shift and complement).
By assumption, any feasible point ξ must satisfy the disjunction

k∨

i=1

{ ξ ∈ R
n :

n∑

j=1

αijξj ≥ αi0 }, (29)

whereas ξ∗ violates all the above inequalities. Now, each term of (29) can be
rewritten in terms of ξ as

Intersection Cuts for Bilevel Optimization 83

1 2 3 4 5 6 7 8

(a)
x

1

2

3

4

y

A

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

y ≤ 2

1 2 3 4 5 6 7 8

(b)
x

1

2

3

4

y

B
x x

x

x

x

x

x

x

x

x

x x 2x+ 11y ≤ 27

1 2 3 4 5 6 7 8

(c)
x

1

2

3

4

y

A

x x

x

x

x

x

x

x

x

x

x

x

x

x

x x

y ≤ 2

1 2 3 4 5 6 7 8

(d)
x

1

2

3

4

y

B
x x

x

x

x

x

x

x

x

x

x x x+ 6y ≤ 14

Fig. 1. Illustration of the effect of alternative intersection cuts for a notorious example
from [7]. Shaded regions correspond to the bilevel-free sets for which the cut is derived.

n∑

j=1

αij ξj ≥ βi := αi0 −
∑

j∈L

αij lj −
∑

j∈U

αijuj , (30)

with αij := αij if j ∈ L, αij = −αij otherwise. If βi > 0 for all i = 1, · · · , k, one
can normalize the above inequalities to get

∑n
j=1(αij/βi) ξj ≥ 1 and derive the

valid disjunctive cut in the ξ space

n∑

j=1

γjξj ≥ 1, (31)

where γj := max{αij/βi : i = 1, · · · , k}, and then one can transform it back to
the ξ space in the obvious way. It is easy to see that, in case ξ∗

j ∈ {lj , uj} for

84 M. Fischetti et al.

all j = 1, · · · , n, the above cut is indeed valid (because β > 0) and obviously
violated as ξ

∗
= 0. In all other cases, the above cut separation is just heuristic.

Inequality (31) will be called Informed No-Good (ING) cut as it can be viewed
as a strengthening of the following no-good cut often used for bilevel problems
with all-binary variables—and in many other Constraint Programming (CP) and
Mathematical Programming (MP) contexts:

∑

j∈L

ξj +
∑

j∈U

(1 − ξj) ≥ 1. (32)

The cut above corresponds to the very generic choice

S∗ = {ξ ∈ R
n : ξj ≤ 1∀j ∈ L, 1 − ξj ≤ 1∀j ∈ U}

and is violated by ξ∗ but is satisfied by any other binary point, hence resulting
into a very weak cut. To the best our knowledge, ING cuts are new; they will
hopefully be useful in other CP and MP contexts.

7 Preliminary Computational Results

To evaluate the performance of our new cuts, we embedded them within the
general-purpose MILP solver IBM ILOG Cplex 12.6.2 using callbacks, resulting
into a branch-and-cut (B&C) MIBLP approach. Internal Cplex’s heuristics as
well preprocessing have been deactivated in all experiments. IC separation is
applied at the root node on all LP solutions (in the so-called usercut callback),
while for the remaining nodes it is only applied to integer solutions (lazycut
callback). For fractional solutions, IC’s whose normalized violation is too small
are just skipped. All generated cuts are treated as local cuts (even if no-good
and ING cuts would be globally valid) as this reduces the node LP size and
significantly improves node throughput. To improve the quality of IC cuts, the
bilevel-free set is enlarged by removing all its defining inequalities αT (x, y) ≤ α0

(say) such that imposing the reverse condition αT (x, y) ≥ α0 would trivially
lead to an infeasible HPR relaxation due to the current bounds on the x and y
variables (this step turns out to be very important for the success of our method).
More implementation details will be given in the full paper.

We first compared our code with the one in [3] on the testbed proposed
therein. All such instances turned out to be very easy, both for our approach
and for MibS. More precisely, each instance could be solved in less than a sec-
ond by our code and in at most 3 s by MibS, i.e., both codes were 2–3 orders
of magnitude faster than the one in [3]. Therefore we addressed more difficult
instances, obtained according to the following procedure.

We took a familiar testbed (MILPLIB 3.0) that contains instances that are
easily solvable by modern MILP solvers (except instance seymour which is very
hard even as a MILP). As we planned to also run the open-source MIBLP solver
MibS [8] to check our code, we skipped all instances involving equations or con-
tinuous variables, as well as those involving noninteger coefficients—all the above

Intersection Cuts for Bilevel Optimization 85

cases being not supported by the current release of MibS. This produced a set
of 10 basic 0–1 MILP instances, that we converted into bilevel problems by
labeling the first Y % (rounded up) variables as y’s, and the remaining ones as
x’s. In our test, we considered the three cases with Y ∈ {10, 50, 90} leading
to instances named name-0.1.mps, name-0.5.mps, and name-0.9.mps, respec-
tively. All constraints in the resulting model belong to the follower subproblem,
as MibS cannot handle leader-specific constraints G(x, y) ≤ 0, while the objective
function is used as the leader’s objective F (x, y). Finally, the follower’s objective
is defined as f(x, y) = −F (x, y).

In Table 1, we use MibS to assess the computational difficulty of the instances
we generated. The table also reports results for our basic B&C code (with IC’s
but not ING cuts) when run in single-thread mode and with internal Cplex cuts
disabled. Note that the two solvers cannot be compared directly, as they are
based on a different underlying MILP code, namely: Cplex for our code, and
COIN-OR (BLIS) plus Cplex for MibS. For both codes, we report in Table 1 the
following values: the best obtained upper bound (UB), the best obtained lower
bound (LB), the final percentage gap (%gap) calculated as (UB - LB) / UB ×
100. Computing times (t.[s]) are wall-clock seconds on an Intel Xeon E5-2670v2
@ 2.5 Ghz computer with 12 GB ram. The timelimit was set to 600 s as larger
values produced memory issues for some instances where the number of tree
nodes is very large. If the time-limit was reached, this is notified as “TL” in
the time column. These results clearly indicate that we managed to generate a
testbed which is sufficiently challenging for state-of-the-art MIBLP solvers.

Table 2 compares four settings for our code: (1) only no-good cuts are gen-
erated, (2) only ING cuts are generated, (3) only IC’s are generated, and (4)
IC’s are generated for fractional solutions at root node, while only ING cuts
generated for integer ones. Note that all settings lead to an exact method as all
instances in our testbed are pure binary. All versions were run in 4-thread oppor-
tunistic mode, without disabling internal Cplex cuts, on a Intel Xeon E3-1220V2
quadcore PC @ 3.10 GHz with 16 GB of RAM. Setting (1) is intended to assess
the difficulty of the created data set for a method built on top of Cplex, but
using the most basic MIBLP cuts (no-good). Setting (2) is intended to measure
the performance improvement obtained by replacing generic no-good cuts with
bilevel-specific ING cuts, while the impact of IC’s is addressed in setting (3).
Finally, setting (4) combines IC’s and ING cuts to limit the negative effect of
cut accumulation in the LP basis.

For each of the four setting and for each instance, in Table 2 we report the
same information as in Table 1, plus the overall number of branch-and-bound
nodes (#nodes).

The influence of IC’s to the performance of the B&C can be measured by
comparing the quality of lower bounds of the setting (3), with the settings (1) and
(2). In 14, respectively 11 cases, the LBs obtained by IC’s are strictly stronger
than those obtained by pure no-good and ING cuts, respectively. The quality of
lower bounds when IC’s are combined with ING cuts remains roughly the same
across all instances. As expected, the setting (1) exhibits the worst performance
with 22 instances remaining unsolved within the given time-limit. ING cuts
perform better (in particular considering the quality of lower bounds), but still

86 M. Fischetti et al.

Table 1. Instance difficulty when using two different MIBLP solvers

name Mibs B&C with IC’s

UB LB %gap t.[s] UB LB %gap t.[s]

fast0507-0.1 − 173 100.00 TL 12553 173 98.62 TL

fast0507-0.5 − 173 100.00 TL 61503 174 99.72 TL

fast0507-0.9 − 173 100.00 TL 109916 109916 0.00 7

lseu-0.1 1120 1120 0.00 4 1120 1120 0.00 2

lseu-0.5 2400 1205 49.79 TL 2263 1235 45.43 TL

lseu-0.9 5838 1171 79.94 TL 5838 1275 78.75 TL

p0033-0.1 3089 3089 0.00 0 3089 3089 0.00 0

p0033-0.5 3095 3095 0.00 0 3095 3095 0.00 0

p0033-0.9 4679 4679 0.00 90 4679 4679 0.00 3

p0201-0.1 12615 7859 37.70 TL 12465 7931 36.37 TL

p0201-0.5 14220 7832 44.92 TL 13910 7925 43.03 TL

p0201-0.9 15025 7809 48.03 TL 15025 7925 47.25 TL

p0282-0.1 261188 258435 1.05 TL 260781 260067 0.27 TL

p0282-0.5 276338 258432 6.48 TL 272659 259331 4.89 TL

p0282-0.9 724572 258427 64.33 TL 636846 284519 55.32 TL

p0548-0.1 − 317 100.00 TL 10982 8691 20.86 TL

p0548-0.5 − 317 100.00 TL 22450 8620 61.60 TL

p0548-0.9 − 317 100.00 TL 48959 8694 82.24 TL

p2756-0.1 − 2691 100.00 TL 12765 2734 78.58 TL

p2756-0.5 − 2691 100.00 TL 23976 2723 88.64 TL

p2756-0.9 − 2691 100.00 TL 35867 2733 92.38 TL

seymour-0.1 − 407 100.00 TL 480 407 15.21 TL

seymour-0.5 − 407 100.00 TL 823 408 50.43 TL

seymour-0.9 − 407 100.00 TL 1251 1251 0.00 2

stein27-0.1 18 18 0.00 0 18 18 0.00 1

stein27-0.5 19 19 0.00 7 19 19 0.00 3

stein27-0.9 24 20 16.67 TL 24 24 0.00 0

stein45-0.1 30 30 0.00 103 30 30 0.00 32

stein45-0.5 33 31 6.06 TL 32 32 0.00 205

stein45-0.9 40 31 22.50 TL 40 40 0.00 0

with 20 instances remaining unsolved. Both settings with IC’s and IC’s with ING
cuts manage to solve 12 instances to optimality. The number of enumerated
branch-and-bound nodes varies strongly between the instances, even between
those being derived from the same MIPLIB source. This indicates that, despite
the fact that some instances are derived from the identical HPR formulation,
the difficulty is mainly determined by the structure of the follower subproblem.

Intersection Cuts for Bilevel Optimization 87

T
a
b
le

2
.
C

o
m

p
a
ri

so
n

o
f
d
iff

er
en

t
se

tt
in

g
s

o
f
o
u
r

B
&

C
a
p
p
ro

a
ch

.
n
a
m
e

N
o
-g

o
o
d

c
u
ts

o
n
ly

IN
G

c
u
ts

o
n
ly

IC
’s

o
n
ly

IC
’s

a
n
d

IN
G

c
u
ts

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

U
B

L
B

%
g
a
p

t.
[s
]

#
n
o
d
e
s

fa
st
0
5
0
7
-0

.1
1
2
5
4
7

1
7
3

9
8
.6
2

T
L

2
7
6
6

1
2
5
4
8

1
7
3

9
8
.6
2

T
L

1
1
k

1
2
5
5
0

1
7
3

9
8
.6
2

T
L

4
4
5
1

1
2
5
5
2

1
7
3

9
8
.6
2

T
L

5
3
7
1

fa
st
0
5
0
7
-0

.5
6
1
4
8
5

1
7
3

9
9
.7
2

T
L

2
6
9
9

6
1
4
8
5

1
7
3

9
9
.7
2

T
L

5
2
1
5

-
5
4
4
0

1
0
0
.0
0

T
L

3
3
k

-
5
4
4
0

1
0
0
.0
0

T
L

3
3
k

fa
st
0
5
0
7
-0

.9
1
0
9
9
2
8

1
7
3

9
9
.8
4

T
L

2
6
9
7

1
0
9
9
2
8

1
7
3

9
9
.8
4

T
L

8
6
4

1
0
9
9
1
6

1
0
9
9
1
6

0
.0
0

4
2

1
0
9
9
1
6

1
0
9
9
1
6

0
.0
0

4
2

ls
e
u
-0

.1
1
1
2
0

1
1
2
0

0
.0
0

0
3
8

1
1
2
0

1
1
2
0

0
.0
0

0
4
0

1
1
2
0

1
1
2
0

0
.0
0

0
3
9

1
1
2
0

1
1
2
0

0
.0
0

0
4
0

ls
e
u
-0

.5
2
3
1
4

1
2
1
9

4
7
.3
2

T
L

1
4
1
k

2
2
6
3

1
3
2
4

4
1
.4
9

T
L

1
M

2
2
6
3

1
3
1
8

4
1
.7
6

T
L

2
M

2
2
7
4

1
3
2
3

4
1
.8
2

T
L

1
M

ls
e
u
-0

.9
5
8
3
8

1
2
1
3

7
9
.2
2

T
L

1
2
8
k

5
8
3
8

1
3
5
5

7
6
.7
9

T
L

2
M

5
8
3
8

1
3
8
4

7
6
.2
9

T
L

2
M

5
8
3
8

1
3
8
5

7
6
.2
8

T
L

2
M

p
0
0
3
3
-0

.1
3
0
8
9

3
0
8
9

0
.0
0

0
2

3
0
8
9

3
0
8
9

0
.0
0

0
2

3
0
8
9

3
0
8
9

0
.0
0

0
2

3
0
8
9

3
0
8
9

0
.0
0

0
2

p
0
0
3
3
-0

.5
3
0
9
5

3
0
9
5

0
.0
0

0
4
2

3
0
9
5

3
0
9
5

0
.0
0

0
4
5

3
0
9
5

3
0
9
5

0
.0
0

0
4
1

3
0
9
5

3
0
9
5

0
.0
0

0
4
3

p
0
0
3
3
-0

.9
4
6
7
9

4
6
7
9

0
.0
0

9
1
1
k

4
6
7
9

4
6
7
9

0
.0
0

1
4
6
4
6

4
6
7
9

4
6
7
9

0
.0
0

1
4
0
7
1

4
6
7
9

4
6
7
9

0
.0
0

1
3
3
5
5

p
0
2
0
1
-0

.1
1
2
6
1
0

7
8
0
2

3
8
.1
3

T
L

1
2
6
k

1
2
4
9
5

7
9
1
5

3
6
.6
5

T
L

7
9
4
k

1
2
3
4
5

7
9
4
5

3
5
.6
4

T
L

9
4
4
k

1
2
3
4
5

7
9
2
2

3
5
.8
3

T
L

7
3
8
k

p
0
2
0
1
-0

.5
1
3
9
2
5

7
8
0
3

4
3
.9
6

T
L

1
1
7
k

1
3
9
1
0

7
9
3
2

4
2
.9
8

T
L

9
2
2
k

1
3
9
2
0

7
9
4
4

4
2
.9
3

T
L

1
M

1
3
8
5
0

7
9
4
5

4
2
.6
4

T
L

9
6
5
k

p
0
2
0
1
-0

.9
1
5
0
2
5

7
8
0
4

4
8
.0
6

T
L

1
1
5
k

1
5
0
2
5

7
9
2
5

4
7
.2
5

T
L

7
1
8
k

1
5
0
2
5

7
9
3
3

4
7
.2
0

T
L

7
2
2
k

1
5
0
2
5

7
9
2
7

4
7
.2
4

T
L

7
1
6
k

p
0
2
8
2
-0

.1
2
6
0
7
8
1

2
5
8
4
3
1

0
.9
0

T
L

1
0
2
k

2
6
0
7
8
1

2
5
8
4
4
8

0
.8
9

T
L

2
M

2
6
0
7
8
1

2
5
8
4
4
9

0
.8
9

T
L

3
M

2
6
0
7
8
1

2
5
8
4
4
8

0
.8
9

T
L

2
M

p
0
2
8
2
-0

.5
2
7
4
4
2
2

2
5
8
4
3
2

5
.8
3

T
L

1
2
0
k

2
7
4
4
2
2

2
5
8
4
4
7

5
.8
2

T
L

2
M

2
7
4
4
2
2

2
5
8
4
4
8

5
.8
2

T
L

3
M

2
7
4
4
2
2

2
5
8
4
4
7

5
.8
2

T
L

2
M

p
0
2
8
2
-0

.9
6
8
5
6
4
0

2
5
8
4
3
2

6
2
.3
1

T
L

1
2
4
k

6
3
8
2
4
3

2
5
8
4
4
6

5
9
.5
1

T
L

2
M

6
3
9
9
6
4

2
7
1
7
3
4

5
7
.5
4

T
L

1
5
M

6
4
4
1
1
3

2
7
1
7
3
4

5
7
.8
1

T
L

1
5
M

p
0
5
4
8
-0

.1
1
1
1
0
0

8
6
9
1

2
1
.7
0

T
L

1
2
3
k

1
1
1
0
0

8
6
9
1

2
1
.7
0

T
L

3
6
5
k

1
1
3
4
8

8
6
9
1

2
3
.4
1

T
L

1
M

1
1
3
4
8

8
6
9
1

2
3
.4
1

T
L

4
9
4
k

p
0
5
4
8
-0

.5
2
2
0
8
3

8
6
9
1

6
0
.6
4

T
L

6
4
k

2
2
0
7
8

8
6
9
1

6
0
.6
4

T
L

7
6
k

2
2
0
8
3

8
6
9
1

6
0
.6
4

T
L

7
4
k

2
2
0
8
3

8
6
9
1

6
0
.6
4

T
L

7
0
k

p
0
5
4
8
-0

.9
5
0
1
6
2

8
6
9
1

8
2
.6
7

T
L

1
0
3
k

5
0
1
6
2

8
6
9
1

8
2
.6
7

T
L

2
2
0
k

5
0
2
5
3

9
1
4
7

8
1
.8
0

T
L

4
2
k

5
0
2
5
3

9
1
4
7

8
1
.8
0

T
L

4
4
k

p
2
7
5
6
-0

.1
1
4
5
4
0

3
1
2
4

7
8
.5
1

T
L

2
0
k

1
4
4
3
0

3
1
2
4

7
8
.3
5

T
L

3
8
k

1
3
9
3
6

3
1
2
4

7
7
.5
8

T
L

6
5
k

1
4
5
0
0

3
1
2
4

7
8
.4
6

T
L

3
2
k

p
2
7
5
6
-0

.5
2
5
6
5
4

3
1
2
4

8
7
.8
2

T
L

1
9
k

2
5
6
5
4

3
1
2
4

8
7
.8
2

T
L

4
4
k

2
3
9
3
1

3
1
2
4

8
6
.9
5

T
L

6
6
k

2
4
1
8
1

3
1
2
4

8
7
.0
8

T
L

4
9
k

p
2
7
5
6
-0

.9
3
6
4
4
9

3
1
2
4

9
1
.4
3

T
L

1
7
k

3
5
2
4
2

3
1
2
4

9
1
.1
4

T
L

1
8
2
k

3
4
0
9
2

3
1
2
4

9
0
.8
4

T
L

9
5
k

3
4
7
0
3

3
1
2
4

9
1
.0
0

T
L

1
7
5
k

se
y
m

o
u
r-
0
.1

4
7
7

4
1
5

1
3
.0
0

T
L

2
9
k

4
7
7

4
1
5

1
3
.0
0

T
L

2
5
k

4
7
7

4
1
5

1
3
.0
0

T
L

2
7
k

4
7
8

4
1
5

1
3
.1
8

T
L

2
5
k

se
y
m

o
u
r-
0
.5

8
2
3

4
1
5

4
9
.5
7

T
L

3
1
k

8
1
6

4
1
5

4
9
.1
4

T
L

3
7
k

8
2
3

4
1
5

4
9
.5
7

T
L

3
4
k

8
1
4

4
1
5

4
9
.0
2

T
L

3
9
k

se
y
m

o
u
r-
0
.9

1
2
5
2

4
1
5

6
6
.8
5

T
L

3
1
k

1
2
5
2

4
1
5

6
6
.8
5

T
L

2
3
k

1
2
5
1

1
2
5
1

0
.0
0

5
2

1
2
5
1

1
2
5
1

0
.0
0

5
2

st
e
in

2
7
-0

.1
1
8

1
8

0
.0
0

0
1
2
0
2

1
8

1
8

0
.0
0

0
1
2
4
4

1
8

1
8

0
.0
0

0
1
2
0
9

1
8

1
8

0
.0
0

0
1
2
4
7

st
e
in

2
7
-0

.5
1
9

1
9

0
.0
0

1
7
3
7
7

1
9

1
9

0
.0
0

1
7
0
6
0

1
9

1
9

0
.0
0

1
6
4
6
5

1
9

1
9

0
.0
0

1
7
0
0
1

st
e
in

2
7
-0

.9
2
4

1
9

2
0
.8
3

T
L

1
1
0
k

2
4

2
4

0
.0
0

2
1
3
k

2
4

2
4

0
.0
0

0
2

2
4

2
4

0
.0
0

0
2

st
e
in

4
5
-0

.1
3
0

3
0

0
.0
0

4
1
4
k

3
0

3
0

0
.0
0

4
1
4
k

3
0

3
0

0
.0
0

5
1
3
k

3
0

3
0

0
.0
0

5
1
4
k

st
e
in

4
5
-0

.5
3
2

3
2

0
.0
0

1
7
6

2
1
1
k

3
2

3
2

0
.0
0

3
1

1
3
3
k

3
2

3
2

0
.0
0

3
7

1
6
1
k

3
2

3
2

0
.0
0

4
7

2
0
2
k

st
e
in

4
5
-0

.9
4
0

3
0

2
5
.0
0

T
L

1
5
8
k

4
0

4
0

0
.0
0

2
3
4

1
M

4
0

4
0

0
.0
0

0
2

4
0

4
0

0
.0
0

0
2

88 M. Fischetti et al.

Acknowledgment. This research was funded by the Vienna Science and Technology
Fund (WWTF) through project ICT15-014. The work of M. Fischetti and M. Monaci
was also supported by the University of Padova (Progetto di Ateneo “Exploiting ran-
domness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN project
“Mixed-Integer Nonlinear Optimization: Approaches and Applications”). The work of
I. Ljubić and M. Sinnl was also supported by the Austrian Research Fund (FWF,
Project P 26755-N19). The authors thank Ted Ralphs for his technical support and
instructions regarding MibS, and Massimiliano Caramia for providing the instances
used in [3].

References

1. Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bilevel
programming. Optimization Letters 1(3), 259–267 (2007)

2. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971)

3. Caramia, M., Mari, R.: Enhanced exact algorithms for discrete bilevel linear prob-
lems. Optimization Letters 9(7), 1447–1468 (2015)

4. DeNegre, S.: Interdiction and Discrete Bilevel Linear Programming. Ph.D. thesis,
Lehigh University (2011)

5. DeNegre, S., Ralphs, T.K.: A branch-and-cut algorithm for integer bilevel linear
programs. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations
Research and Cyber-Infrastructure, vol. 47, pp. 65–78. Springer, New York (2009)

6. Kleniati, P.-M., Adjiman, C.S.: A generalization of the branch-and-sandwich algo-
rithm: from continuous to mixed-integer nonlinear bilevel problems. Comput. Chem.
Eng. 72, 373–386 (2015)

7. Moore, J., Bard, J.: The mixed integer linear bilevel programming problem. Oper.
Res. 38(5), 911–921 (1990)

8. Ralphs, T.K.: MibS. https://github.com/tkralphs/MibS
9. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear program-

ming problem under three simplifying assumptions. Comput. Oper. Res. 41, 309–318
(2014)

https://github.com/tkralphs/MibS

Exact Algorithms for the Chance-Constrained
Vehicle Routing Problem

Thai Dinh1, Ricardo Fukasawa2(B), and James Luedtke1(B)

1 Department of Industrial and Systems Engineering,
University of Wisconsin-Madison, Madison, WI 53706, USA

{tndinh,jim.luedtke}@wisc.edu
2 Department of Combinatorics and Optimization, Faculty of Mathematics,

University of Waterloo, Waterloo, ON N2L 3G1, Canada
rfukasawa@uwaterloo.ca

Abstract. We study the chance-constrained vehicle routing problem
(CCVRP), a version of the vehicle routing problem (VRP) with sto-
chastic demands, where a limit is imposed on the probability that each
vehicle’s capacity is exceeded. A distinguishing feature of our proposed
methodologies is that they allow correlation between random demands,
whereas nearly all existing methods for the stochastic VRP require inde-
pendent demands. We first study an edge-based formulation for the
CCVRP, in particular addressing the challenge of how to determine a
lower bound on the number of trucks required to serve a subset of cus-
tomers. We then investigate the use of a branch-and-cut-and-price (BCP)
algorithm. While BCP algorithms have been considered the state of the
art in solving the deterministic VRP, few attempts have been made to
extend this framework to the stochastic VRP.

1 Introduction

The deterministic vehicle routing problem (VRP) [8] is the problem of finding
routes for a fleet of identical, fixed capacity vehicles that collect known amounts
of goods from customers. When demands of customers are random variables, the
problem is referred to as the vehicle routing problem with stochastic demands
(VRPSD). In an optimization model for the VRPSD, one must determine how
to model the possibility that the demands on a planned route might exceed the
capacity of a truck. One approach, taken, e.g., in [3,9,18,20,21], is to consider
a recourse model, in which a recourse action must be taken if a truck’s capacity
is exceeded. This leads to a two-stage stochastic programming formulation, in
which routes are determined in advance of knowing the random demands (first-
stage decisions), and then, when the routes are implemented and demands are
observed, recourse actions (second-stage decisions) are taken if a vehicle’s capac-
ity is exceeded. The objective is to minimize the expected travel cost, including
travel taken in the recourse stage. In order to make the evaluation of the expected
recourse costs tractable, restrictive assumptions are usually placed on the form
of the recourse taken (e.g., that it consists of a trip to/from the depot) and on
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 89–101, 2016.
DOI: 10.1007/978-3-319-33461-5 8

90 T. Dinh et al.

the random demands. In particular, nearly all existing work assumes the random
demands are independent of each other.

We study an alternative approach, the chance-constrained VRP (CCVRP),
which does not explicitly model the recourse actions to be taken when a truck’s
capacity is exceeded, and instead requires that such an event happens with
low probability. This type of model leads to operational benefits like more
consistent service and less need for complex recourse actions to be taken.
Indeed, the CCVRP model is not dependent on the particular choice of recourse
actions which can be either oversimplified or too complex to be computationally
tractable. The first attempt to solve the CCVRP was proposed in [20], where
they derive conditions in which it can be reduced to a deterministic VRP. These
conditions are restrictive, as they require customer demands to be independent
and have identical coefficients of variation. In [13], the first exact solution tech-
nique for CCVRP was proposed using a branch-and-cut framework, but their
implementation requires random demands to be independent and normally dis-
tributed. Though other works exist on the CCVRP, to the best of our knowledge,
these methods, which require restrictive assumptions on the distributions of cus-
tomer demands, are the only proposed exact methods for the problem.

In addition to the shortage of exact algorithms for the CCVRP, the method-
ology applied to VRPSD problems also has some deficiencies. The current best
known algorithms for solving the deterministic VRP are based on a Dantzig-
Wolfe reformulation, strengthened by valid inequalities, solved using a branch-
and-cut-and-price (BCP) algorithm [1,2,7,10,17]. On the other hand, very little
work has attempted to apply the BCP framework to solve either a recourse-based
or chance-constrained VRPSD model. Most of the exact solution techniques for
the recourse-based VRPSD models rely on variants of the integer L-Shaped
method proposed by [15] or the branch-and-price algorithm proposed by [4],
while most of the attempts to solve the CCVRP rely on variants of the branch-
and-cut algorithms proposed in [13,14]. To the best of our knowledge, the only
work that considers solving a VRPSD model using a BCP framework has been
proposed by [11], but is again restricted to the assumption that random demands
are independent.

Main Contributions. We present exact solution methods for the CCVRP
which do not require the customer demands to be independent, and are able to
solve to optimality, or near-optimality, instances with more than 50 customers.
The only assumption we require on the customer demands is that we can com-
pute a quantile of the random variable defined by the sum of customer demands
in any subset of customers. This assumption holds for customer demands having
joint normal distribution and for a scenario model of customer demands. Using
sample average approximation, the scenario model can be used to approximate a
problem in which customer demands follow any distribution from which samples
can be taken [16]. First, we derive strong and computationally tractable bounds
on the number of trucks required to serve a subset of customers and remain
chance constraint feasible, leading to improved capacity inequalities. This allows
us to extend the formulation of [13] to more general cases. Second, we find

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 91

that a direct extension of the pricing routine used in BCP for the deterministic
VRP is challenging since the associated pricing problem is strongly NP-hard
(as opposed to pseudopolynomially solvable in the deterministic case). We thus
propose a relaxed pricing scheme to overcome this challenge. We also empiri-
cally compare the solutions obtained with the CCVRP model to those obtained
with a recourse-based model of the VRPSD, and find that the CCVRP solutions
provide high quality solutions to the recourse-based model, whereas the reverse
is often not true.

2 Problem Definition and an Edge-Based Formulation

Let G = (V,E) be an undirected graph with vertices V = {0, 1, ..., n}. Vertex 0
represents the depot and the vertices V+ = {1, ..., n} represent the customers.
Each customer i ∈ V+ has a random demand Di. The set of demands D is a
random vector defined in a probability space (Ω,F ,P). The expected value and
variance of demand for customer i ∈ V+ are denoted by di and σ2

i , respectively.
The length of edge e ∈ E is denoted by �e ≥ 0. There are K available vehicles
and each vehicle has a capacity of b. A route is a simple cycle C going through 0
(or an edge 0v twice, representing the route 0−v−0 for v ∈ V+). We say a route
serves S if V (C)\{0} = S. A chance-constraint feasible route is a route for which
the set of customers S ⊆ V+ that it serves satisfies P{D(S) ≤ b} ≥ 1 − ε, where
ε ∈ (0, 1) is a given, typically small, parameter. In this expression, the following
standard notation is used (and will be used throughout the paper): given values
wt for a ground set T , define w(Q) :=

∑
t∈Q wt,∀Q ⊆ T . The objective is to

find a minimum length set of K chance constraint feasible routes such that every
customer is visited exactly once.

2.1 Edge-Based Formulation

Let xe represent the number of times edge e is used in a solution. For a subset
of customers S ⊆ V+, we let δ(S) be the cut-set defined by S and let rε(S)
be the minimum number of vehicles needed to serve S with chance-constraint
feasible routes. We call rε(S) the minimum vehicle requirements. The edge-based
formulation is then [13]:

min
x

∑

e∈E

�exe (1a)

s.t.
∑

e∈δ({i})
xe = 2 i ∈ V+ (1b)

∑

e∈δ({0})
xe = 2K (1c)

∑

e∈δ(S)

xe ≥ 2rε(S) S ⊆ V+ (1d)

xe ≤ 1 e ∈ E \ δ({0}) (1e)
xe ∈ Z+ e ∈ E. (1f)

92 T. Dinh et al.

Constraints (1b) require that each customer is visited exactly once by some
vehicle, whereas (1c) states that K vehicles must leave and enter at the depot.
Constraints (1d) are the capacity inequalities, which enforce that enough vehicles
are assigned to any subset of customers.

A similar model has been used for the deterministic VRP with customer
demands di, i ∈ V+ where rε(S) in (1d) is replaced with the minimum number
of trucks r0(S) required to serve the customers in the set S. Calculating this
quantity exactly requires solving the strongly NP-hard bin-packing problem.
Fortunately, for the deterministic VRP, the easily computed lower bound k(S) :=
�d(S)/b� yields a valid formulation, and the resulting cuts have been shown
empirically to be effective. A key challenge for the CCVRP is to determine how
to compute a lower bound for rε(S) that is at least sufficient to provide a valid
formulation, and that is as close to rε(S) as possible in order to yield strong
inequalities. When the formulation (1) was studied in [13], they proposed to use
the value

kI
ε (S) =

⌈(
d(S) + Φ−1(1 − ε)

√
σ2(S)

)
/b

⌉
, (2)

as an approximation of rε(S) which is a valid lower bound when demands are
independent normal, but is not necessarily valid in other cases. In (2), Φ−1 is the
inverse of the cumulative density function of the standard normal distribution.

2.2 Vehicle Requirements in the Capacity Inequalities

We now discuss how to obtain kε(S) ≤ rε(S), such that formulation (1) is still
valid for the CCVRP if we replace rε(S) with kε(S). We refer to such lower
bounds on the minimum vehicle requirements as valid lower bounds. We begin
with a simple valid lower bound, kε(S), defined as:

kε(S) =

{
1, if P{D(S) ≤ b} ≥ 1 − ε

2, otherwise.

which just states that at least two trucks are needed to serve the set of customers
S if the probability that the sum of customer demands in the set S exceeding a
single truck’s capacity is too high.

Proposition 1. kε(S) is a valid lower bound for rε(S).

Note that computing kε(S) only requires computing the probability
P{D(S) ≤ b}. Moreover, any value that is between kε(S) and rε(S) will yield
a valid lower bound. To improve on kε(S), given a random variable X, we use
Qp(X) to denote the p-th quantile of X, that is, Qp(X) = inf

{
α : P{X ≤ α} ≥

p
}
.1 One initial lower bound on rε(S) is given as follows. The proof of this lemma

(and any results without proof) will appear in the full version of this paper.

Lemma 1. Given p := 1 − rε(S)ε, then for all S ⊆ V+, we have rε(S) ≥⌈
Qp(D(S))/b

⌉
.

1 Note that P{D(S) ≤ b} ≥ 1 − ε ⇐⇒ Q1−ε(D(S)) ≤ b.

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 93

The lower bound given by Lemma 1 cannot be directly used because its
calculation uses the value of rε(S) itself. However, one can use Lemma 1 to derive
a computable lower bound. For S ⊆ V+, define a(S, 1) = 1 and for k = 2, . . . , K
define

a(S, k) := min
{

k,
⌈
Q1−(k−1)ε(D(S))/b

⌉}
.

Using a(S, k) we get to our second valid lower bound:

k∗
ε (S) = max

{
a(S, k) : k = 1, 2, ...,K

}
.

Theorem 1. For all S ⊆ V+, kε(S) ≤ k∗
ε (S) ≤ rε(S).

Proof. For brevity, we skip the (simple) proof of kε(S) ≤ k∗
ε (S).

We will show that for any k, a(S, k) is a lower bound on rε(S). Indeed, this
is trivially true if rε(S) ≥ k or if k = 1. Otherwise, rε(S) ≤ k − 1, in which
case Lemma 1 shows that rε(S) ≥ �Qp(D(S))/b�, where p = 1 − rε(S)ε. Then
a(S, k) ≤ rε(S) since Qp(D(S)) is nondecreasing in p. Therefore, the maximum
of these lower bounds over k = 1, . . . , K is also a lower bound. 	

We next discuss how alternative valid lower bounds can be obtained in the
special case when the customer random demands are joint normally distributed.

2.3 Joint Normal Random Demands

In this section we assume customer demands follow a joint normal distribution
with covariance matrix Σ � 0. For a given subset of customers S ⊆ V+, let λS

denote the smallest eigenvalue of the submatrix of Σ associated with rows and
columns corresponding to customers in the set S. In addition, for each customer
i ∈ S, define

d̄i(S) = di + Φ−1(1 − ε)
√

λS/|S|. (3)

Then, for S ⊆ V+ we define the following bound on rε(S):

kJ
ε (S) =

{
1, if P{D(S) ≤ b} ≥ 1 − ε

max
{⌈∑

i∈S d̄i(S)/b
⌉
, 2

}
, otherwise.

Theorem 2. If the demands follow a joint normal distribution with mean vector
d and covariance matrix Σ and ε ≤ 0.5, then

kε(S) ≤ kJ
ε (S) ≤ rε(S),∀S ⊆ V+.

Proof. The proof is omitted due to space limitations, but is based on deriving a
deterministic bin packing problem that provides a lower bound on rε(S). 	

The assumption that ε ≤ 0.5 is not restrictive as the typical use of this
model is for settings in which ε is smaller than 0.5. Note that neither k∗

ε (S)
nor kJ

ε (S) dominates the other. Thus, we use max{k∗
ε (S), kJ

ε (S)} as the valid
lower bound when solving CCVRP instances with joint normal random demands.
We note that when demands follow an independent normal distribution, then
kJ

ε (S) = kI
ε (S), so this result generalizes the bound from [13].

94 T. Dinh et al.

3 Dantzig-Wolfe Formulation

Set partitioning formulations for routing problems are based on enumerating ele-
mentary routes or relaxations of them. We start by describing such an approach
for the deterministic VRP. For that case, an elementary route is a closed walk
v0, v1, . . . , vk, vk+1 = v0, for some k ≥ 1 such that (i) v0 = 0, vi ∈ V+,∀i =
1, . . . , k and vi−1, vi ∈ E,∀i = 1, . . . , k + 1; (ii) vi �= vj ,∀0 < i < j < k + 1 and
(iii) d�y ≤ b, where yv :=

∑k
i=1 1{v=vi} is the number of times v appears in the

route and d is the vector of deterministic customer demands.
Let Q be the set of elementary routes and λj ∈ {0, 1} represent if elementary

route j is used. Let qe
j :=

∑k
i=0 1{e=vivi+1}, that is, the number of times edge e

appears in route j. By using the relationship xe =
∑

j∈Q
qe
jλj , ∀e ∈ E, we obtain

from (1) a set-partitioning based formulation for the deterministic VRP [10]:

min
λ

∑

j∈Q

∑

e∈E

�eq
e
jλj (4a)

s.t.
∑

j∈Q

∑

e∈δ({i})
qe
jλj = 2 i ∈ V+ (4b)

∑

j∈Q

∑

e∈δ({0})
qe
jλj = 2K (4c)

∑

j∈Q

∑

e∈δ(S)

qe
jλj ≥ 2r0(S) S ⊆ V+ (4d)

∑

j∈Q
qe
jλj ≤ 1 e ∈ E \ δ({0}) (4e)

λj ∈ {0, 1} j ∈ Q. (4f)

In order to use (4) in a BCP approach it must be possible to solve the pricing
subproblem of λ variables efficiently. The pricing subproblem consists of finding
elementary routes of minimum reduced cost, which is strongly NP-hard. In [10]
condition (ii) was relaxed, leading to what is called a q-route [5]. Pricing q-routes
is still NP-hard due to the knapsack-type condition (iii), but it can be solved
in pseudo-polynomial time [5] if the demands are integer. We note that more
complex column-generation schemes have also been proposed, strengthening (4)
by forbidding some (or all) cycles in q-routes. Our approach can be adapted to
those cases, but we choose to only present it based on q-routes.

To adapt (4) for the CCVRP, all we need to do is replace r0(S) in (4d) by
rε(S) or any of its valid lower bounds derived in Sect. 2 and consider Q as the
set of chance-constraint feasible q-routes (CCq-routes), where a CCq-route is a
closed walk satisfying (i) and replacing condition (iii) by

P{D�y ≤ b} ≥ 1 − ε (5)

We note that chance-constraint feasible routes are CCq-routes satisfying (ii).

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 95

Unfortunately, in contrast to the deterministic VRP, the pricing of CCq-
routes is strongly NP-hard in general. This is proved by showing the problem
of pricing elementary routes can be reduced to it.

Theorem 3. Suppose the distribution of demands is specified by N scenarios
dk, k = 1, . . . , N , where P{D = dk} = 1/N for k = 1, . . . , N . Then the pricing
of CCq-routes is strongly NP-hard.

To overcome the difficulty in pricing CCq-routes, we propose to further relax
the capacity constraints defining CCq-routes used in the set partitioning formu-
lation. In the following subsections we present two approaches for doing this:
one that applies to any distribution for which we can evaluate (5) and the other
that uses distribution-specific arguments.

3.1 Relaxed Pricing

The key advantage of using q-routes instead of elementary routes in (4) was to
go from a strongly NP-hard pricing to a pseudo-polynomially solvable one. The
approach is valid since the set of q-routes contains the set of elementary routes
and, in any {0, 1} solution to (4), constraints (4b) ensure that only elementary
routes are chosen. We build upon that idea to further relax constraint (5) so that
any chance constraint feasible route is still feasible to the pricing subproblem,
and then use constraints in the master problem to ensure that in a {0, 1} solution
only chance constraint feasible routes are chosen.

Since the original condition (iii) can be handled by dynamic programming,
we choose to relax the condition (5) in CCq-routes to a similar knapsack-type
constraint π�y ≤ bπ. To make sure that chance constraint feasible routes are
still feasible, we must have that

bπ ≥ b∗
π := max

{
π�y : P{D�y ≤ b} ≥ 1 − ε, yi ∈ {0, 1}, i ∈ V+

}
. (6)

It is then clear that the following proposition holds.

Proposition 2. Let y be a binary vector satisfying (5). If (6) holds, then y
satisfies:

π�y ≤ bπ. (7)

We call relaxed chance constraint feasible q-routes (rCCq-routes) the closed
walks satisfying conditions (i) in the definition of elementary routes and replacing
(iii) in that definition by (7).

For any integral and nonnegative choice of the π coefficients, once b∗
π (or an

upper bound) is determined, we can proceed with the pricing exactly the same
way as is done in the deterministic VRP, using (7) as the knapsack constraint.

In the deterministic case VRP, the constraints (4b) impose that, in a {0, 1}
solution to (4) only elementary routes will have their corresponding variable
equal to 1. Since each q-route satisfies the capacity constraints, the constraints
(4d) are not required for validity of the formulation (4), and so a pure branch-
and-price algorithm could be applied. In contrast, in our proposed BCP approach

96 T. Dinh et al.

for the CCVRP, even if a rCCq-route is an elementary route, it may not be a
chance constraint feasible route. The formulation thus requires the constraints
(4d), which impose that in a {0, 1} solution to (4) only chance constraint feasible
routes will have their corresponding variable equal to 1.

We next discuss the choice of the coefficients π and calculation of the value
b∗
π. Any integer values of π can be used, but it is natural to choose values that

correlate with the size of the items, and so we chose to use πi = di (these
may be scaled and rounded to obtain acceptably small integers). Calculating
b∗
π requires solving the chance-constrained knapsack problem (6). This can be a

computationally challenging problem, although it only needs to be solved once as
a preprocessing step. When the demands assume a discrete distribution having
finitely many demand scenarios, the preprocessing problem (6) can be solved
using specialized techniques [19]. With joint normal random demands with mean
vector d and covariance matrix Σ � 0, the capacity chance constraint in (6) can
be modeled as

d�y + Φ−1(1 − ε)
√

y�Σy ≤ b. (8)

which can be reformulated as a second-order cone constraint when ε ≤ 0.5. In
this case, (6) becomes a binary second-order cone programming program. In
addition, if desired, any upper bound on b∗

π that is computationally cheaper to
compute can be used. In the next section, we discuss an alternative relaxation
scheme that can be used when customer demands are joint normally distributed
that avoids solving (6) altogether.

3.2 Relaxed Pricing for Joint Normal Demands

In the case that demands are joint normally distributed with covariance matrix
Σ � 0, we will proceed as follows. Define η∗ as the optimal objective value of
the following semidefinite program

η∗ =max
η,p,Q

η (9a)

s.t. diη ≤ pi i ∈ V+ (9b)
Σ = diag(p1, ..., pn) + Q (9c)
Q � 0, (9d)

and derive the following constraint based on η∗

d�y + Φ−1(1 − ε)
√

η∗d�y ≤ b. (10)

Proposition 3. Let y be a binary vector satisfying (8), then y satisfies (10).

Proof. Let (η∗, p∗, Q∗) be an optimal solution of (9) and let P ∗ = diag(p∗
1, ..., p

∗
n).

It suffices to show that η∗d�y ≤ y�Σy. It follows that y�Σy = y�P ∗y +
y�Q∗y ≥ y�P ∗y, since Q∗ � 0. Since y is a binary vector, y�P ∗y =∑

i∈V+
p∗

i y
2
i = (p∗)�y. Since p∗ is feasible to (9), p∗

i ≥ diη
∗, ∀i ∈ V+. Therefore,

it follows that y�Σy ≥ (p∗)�y ≥ η∗d�y. 	

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 97

Proposition 3 shows that (10) is a relaxation of (5) which is cheap to compute
as it only requires solving a semidefinite program. Though it is not linear in terms
of y, the left-hand-side of (10) is a monotone increasing function of d�y, making
it possible to represent this constraint as

d�y ≤ b̂d(η∗) (11)

where
b̂d(η∗) =

(√
b + Iεη∗ −

√
Iεη∗

)2

and Iε =
(1
2
Φ−1(1 − ε)

)2
.

Thus, the linear constraint (11) is a relaxation of the exact capacity chance
constraint (8) and so it can be used to generate rCCq-routes. We conclude by
noting that for independent normal random variables, the value of η∗ has the
closed-form solution η∗ = min{σ2

i /di : i ∈ V+}.

4 Computational Experiments

Our BCP implementation is based on the code of [10], with similar ideas with
respect to computational choices which, for the sake of brevity, will not be dis-
cussed. One point worth mentioning is that we also adapt the Clarke and Wright
heuristic [6] for the CCVRP to obtain initial primal bounds.

The instances used for testing are adapted from the deterministic VRP
instances available at http://vrp.atd-lab.inf.puc-rio.br/. Independent normal
instances were generated letting Di be normal with mean di equal to the deter-
ministic demand of the instance. Low variance instances were generated by set-
ting standard deviations σi uniformly at random in the interval [0.07∗di, 0.13∗di].
High variance instances had σi uniformly distributed in [0.14 ∗ di, 0.26 ∗ di].

Joint normal distributions were generated from independent normal ones by
setting the correlation ρij to be inversely proportional to the distance �ij times a
uniform random variable. The idea is that customers that are closer together are
likely to be impacted by similar factors and so should have higher correlation. For
the scenario model, we generated 200 scenarios samples from the low variance
joint normal instances. High variance instances were generated in a similar way,
except that each customer also had a probability of having zero demand. For
such a distribution, it is difficult to exactly calculate P{D(S) ≤ b} for a subset
of customers S, motivating the use of the scenario approximation. For both of
these cases, the sampled demands were rounded to the nearest integer.

The formulations were tested on 10 instances with 32–55 vertices. In all our
tests, we chose ε = 0.05. Tables 1, 2 and 3 present aggregate statistics for the
independent normal, joint normal and scenario models, respectively.

We classified the instances as: small (7 instances with < 50 vertices) and large
(3 instances with ≥ 50 vertices). This grouping highlights the behavior of the
algorithm on instances of different size. For each set of instances, each variance
setting (low and high) and each formulation, the tables present the geometric
mean of time to solve (AvT), the number of instances solved to optimality
(NumSolv) and the arithmetic mean of the gap left after the time limit of

http://vrp.atd-lab.inf.puc-rio.br/

98 T. Dinh et al.

7200 s (AvGap). Instances solved within the time limit have final gap equal to
0 %, while instances not solved within the time limit have time equal to 7200 s.

The formulations tested were as follows: Formulation (1) with valid lower
bounds kε(S), k∗

ε (S) and max{k∗
ε (S), kJ

ε (S)} for rε(S) (named BC, BC∗, BCJ

respectively). In addition, formulation (4) was tested with the valid lower bound
max{k∗

ε (S), kJ
ε (S)} for joint and independent normal distributions and k∗

ε (S)
for the scenario model, and with the relaxed pricing proposed in Sect. 3 for the
corresponding distribution (named BCPr). For independent normally distrib-
uted customer demands, we also tested exact pricing of CCq-routes based on
discretizing both the means and the sum of the variances and considering the
sum of the variances as a resource in the pricing [12]. This was labeled BCPe.
All experiments were run on a Dell R510 machine with 128 G memory, and using
one core of a 2.66 G X5650 Xeon Chip.

The results from the tables show that the improved valid lower bounds
on rε(S) have a very significant impact in all instances, with the use of the
distribution-specific valid bound being usually the best option, although the
generic bound k∗

ε (S) typically performs well too. As for the use of (4) versus
(1), it seems that for smaller instances, the overhead of solving (4) is too much
to overcome. However, for larger instances, the tighter bound provided by (4)
pays off and we are able to solve more of the larger instances using BCP. In
addition, in the independent normal instances, exact pricing seems to be better
than relaxed pricing – in the small instances, the loss is not big and sometimes
even a gain is observed, while in the large instances, there is a clear advantage.

4.1 Comparison of the CCVRP with Recourse Models

One additional experiment performed aimed to compare the solution obtained
by the CCVRP with the one obtained by a recourse model for VRPSD, where
the assumed recourse is that a return trip must be made to the depot whenever
a truck’s capacity is exceeded. This experiment was done for instances having
independent normal customer demands, since these are the only instances that
can be solved for the recourse model. For such instances, the optimal solution for
a recourse-based model and for the CCVRP were obtained, denoted as xr and
xcc, respectively. Both solutions were then compared according to two quantities:

Table 1. Summary of computational results for independent normal random demands.

Low variance High variance

BC BC∗ BCJ BCPr BCPe BC BC∗ BCJ BCPr BCPe

Small AvT (s) 2646 71 40 153 125 3436 354 144 939 1722

NumSolv 3 7 7 6 7 1 4 6 4 4

AvGap (%) 4.73 0 0 0.76 0 10.40 3.17 1.34 1.70 1.44

Large AvT (s) 7200 7200 7200 3311 257 7200 7200 7200 7200 2379

NumSolv 0 0 0 3 3 0 0 0 0 2

AvGap (%) 14.52 8.59 7.27 0 0 14.74 11.12 11.45 5.72 1.10

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 99

Table 2. Summary of computational results for joint normal random demands.

Low variance High variance

BC BC∗ BCJ BCPr BC BC∗ BCJ BCPr

Small AvT (s) 3238 107 109 585 4628 414 393 2335

NumSolv 3 6 6 5 1 4 4 4

AvGap (%) 4.67 1.10 1.12 1.29 11.72 3.41 3.41 2.76

Large AvT (s) 7200 7200 7200 5743 7200 7200 7200 891

NumSolv 0 0 0 1 0 0 0 2

AvGap (%) 14.04 8.73 8.73 2.40 14.58 10.74 10.74 3.06

zr(x) (the objective value of the recourse-based two-stage stochastic program)
and η(x), which represents the largest probability that a vehicle will have its
capacity violated. Note that by design, zr(xr) ≤ zr(xcc) and that η(xcc) ≤ 0.05 –
though it is possible that η(xr) < η(xcc).

We find that when evaluating the CCVRP solution in the recourse model,
the value zr(xcc) was, on average, only about 1 % more than the optimal value
zr(xr), and the largest increase was 3.4 %. On the other hand, while η(xcc)
was always (by design) less than 0.05, η(xr) was greater than 0.15 in three of
the instances, and as high as 0.5, meaning that in the solution there was a truck
whose capacity would be exceeded on average 50 % of the time. We thus conclude
that the CCVRP model tends to yield solutions that are high quality for the
recourse model, whereas the reverse is not true. In addition, the CCVRP model
is not dependent on a particular assumption of the recourse taken, and can be
solved also when customer demands are not independent.

Table 3. Summary of computational results for scenario model of random demands.

Small-Low var Small-High var Large-Low var Large-High var

BC BC∗ BCPr BC BC∗ BCPr BC BC∗ BCPr BC BC∗ BCPr

AvT (s) 1947 217 803 4328 499 4207 7200 7200 7200 7200 7200 7200

NumSolv 3 6 7 1 5 2 0 0 0 0 0 0

AvGap (%) 5.54 0.79 0 11.76 2.64 5.09 13.68 9.07 4.89 19.26 15.78 11.16

5 Conclusion

We propose two exact approaches for the CCVRP with very mild assumptions
on distribution of customer demands. In particular, we allow for correlations
between random customer demands. Significant contributions were made both
to cutting and to pricing, thus allowing for the first time a successful BCP
approach for the CCVRP. Our results show that the formulations proposed are
promising and can be used to solve instances of up to 55 vertices.

100 T. Dinh et al.

Several improvements can still be made to the implementation of the pricing
routines, as well as the investigation of further valid inequalities for the problem.
Those remain the topic of further research.

Acknowledgments. Fukasawa was supported by NSERC Discovery Grant RGPIN-
05623. Luedtke was supported by NSF grants CMMI-0952907 and CMMI-1130266, and
ONR award N00014-15-1-2268.

References

1. Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of
vehicle routing problems. Math. Program. 120(2), 347–380 (2009)

2. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Oper. Res. 59(5), 1269–1283 (2011)

3. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res.
40(3), 574–585 (1992)

4. Christiansen, C.H., Lysgaard, J., Wøhlk, S.: A branch-and-price algorithm for the
capacitated arc routing problem with stochastic demands. Oper. Res. Lett. 37(6),
392–398 (2009)

5. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations. Math. Program.
20(1), 255–282 (1981)

6. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12(4), 568–581 (1964)

7. Contardo, C., Martinelli, R.: A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints. Discr. Optim. 12,
129–146 (2014)

8. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Man. Sci. 6(1), 80–91
(1959)

9. Dror, M., Laporte, G., Louveaux, F.V.: Vehicle routing with stochastic demands
and restricted failures. Zeitschrift für Oper. Res. 37(3), 273–283 (1993)

10. Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M.P., Reis, M., Uchoa,
E., Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle
routing problem. Math. Program. 106(3), 491–511 (2006)

11. Gauvin, C., Desaulniers, G., Gendreau, M.: A branch-cut-and-price algorithm for
the vehicle routing problem with stochastic demands. Comput. & Oper. Res. 50,
141–153 (2014)

12. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In:
Desaulniers, G., Desrosiers, J., Solomon, M. (eds.) Column Generation. Springer,
New York (2005)

13. Laporte, G., Louveaux, F., Mercure, H.: Models and exact solutions for a class of
stochastic location-routing problems. European J. Oper. Res. 39(1), 71–78 (1989)

14. Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochas-
tic travel times. Trans. Sci. 26(3), 161–170 (1992)

15. Laporte, G., Louveaux, F.V., Van Hamme, L.: An integer L-shaped algorithm
for the capacitated vehicle routing problem with stochastic demands. Oper. Res.
50(3), 415–423 (2002)

16. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with
probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

Exact Algorithms for the Chance-Constrained Vehicle Routing Problem 101

17. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol.
8494, pp. 393–403. Springer, Heidelberg (2014)

18. Secomandi, N., Margot, F.: Reoptimization approaches for the vehicle-routing
problem with stochastic demands. Oper. Res. 57(1), 214–230 (2009)

19. Song, Y., Luedtke, J.R., Küçükyavuz, S.: Chance-constrained binary packing prob-
lems. INFORMS J. Comput. 26(4), 735–747 (2014)

20. Stewart, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive app-
roach. Euro. J. Oper. Res. 14(4), 371–385 (1983)

21. Yang, W.H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with
restocking. Trans. Sci. 34(1), 99–112 (2000)

Extended Formulations in Mixed-Integer
Convex Programming

Miles Lubin1(B), Emre Yamangil2, Russell Bent2, and Juan Pablo Vielma1

1 Massachusetts Institute of Technology, Cambridge, MA, USA
mlubin@mit.edu

2 Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract. We present a unifying framework for generating extended
formulations for the polyhedral outer approximations used in algorithms
for mixed-integer convex programming (MICP). Extended formulations
lead to fewer iterations of outer approximation algorithms and generally
faster solution times. First, we observe that all MICP instances from the
MINLPLIB2 benchmark library are conic representable with standard
symmetric and nonsymmetric cones. Conic reformulations are shown to
be effective extended formulations themselves because they encode sep-
arability structure. For mixed-integer conic-representable problems, we
provide the first outer approximation algorithm with finite-time conver-
gence guarantees, opening a path for the use of conic solvers for con-
tinuous relaxations. We then connect the popular modeling framework
of disciplined convex programming (DCP) to the existence of extended
formulations independent of conic representability. We present evidence
that our approach can yield significant gains in practice, with the solu-
tion of a number of open instances from the MINLPLIB2 benchmark
library.

1 Introduction

Mixed-Integer convex programming (MICP) is the class of problems where one
seeks to minimize a convex objective function subject to convex constraints and
integrality restrictions on the variables. MICP is less general than mixed-integer
nonlinear programming (MINLP), where the objective and constraints may be
nonconvex, but unlike the latter, one can often develop finite-time algorithms to
find a global solution. These finite-time algorithms depend on convex nonlinear
programming (NLP) solvers to solve continuous subproblems. MICP, also called
convex MINLP, has broad applications and is supported in various forms by
both academic solvers like Bonmin [7] and SCIP [3] and commercial solvers like
KNITRO [9]; see Bonami et al. [5,8] for a review.

The most straightforward approach for MICP is NLP-based branch and
bound, an extension of the branch and bound algorithm for mixed-integer linear
programming (MILP) where a convex NLP relaxation is solved at each node of
the branch and bound tree [16]. However, driven by the availability of effective
solvers for linear programming (LP) and MILP, it was observed in the early
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 102–113, 2016.
DOI: 10.1007/978-3-319-33461-5 9

Extended Formulations in Mixed-Integer Convex Programming 103

1990s by Leyffer and others [21] that it is often more effective to avoid solving
NLP relaxations when possible in favor of solving polyhedral relaxations using
MILP. Polyhedral relaxations form the basis of the majority of the existing
solvers recently reviewed and benchmarked by Bonami et al. [8].

While traditional MICP approaches construct polyhedral approximations in
the original space of variables, a number of authors have considered introducing
auxiliary variables and forming a polyhedral approximation in a higher dimen-
sional space [19,20,28,30]. Such constructions are called extended formulations
or lifted formulations, the motivation for which is the fact that the projection of
these polyhedra onto the original space can provide a higher quality approxima-
tion than one built from scratch in the original space. Tawarmalani and Sahini-
dis [28] propose, in the context of nonconvex MINLP, extended formulations for
compositions of functions. For MICP, Hijazi et al. [19] demonstrate the effective-
ness of extended formulations in the special case where all nonlinear functions
can be written as a sum of univariate convex functions. Their method obtains
promising speed-ups over Bonmin on the instances which exhibit this structure.
Hijazi et al. generated these extended formulations by hand, and no subsequent
work has proposed techniques for off-the-shelf MICP solvers to detect and exploit
separability. Building on these results, Vielma et al. [30] propose extended formu-
lations for second-order cones. These extended formulations improved solution
times for mixed-integer second-order cone programming (MISOCP) over state of
the art commercial solvers CPLEX and Gurobi quite significantly; both solvers
adopted the technique within a few months after its publication.

A major contribution of this work is to propose a new, unifying framework for
generating extended formulations for the polyhedral outer approximations used
in MICP algorithms. This framework generalizes the work of Hijazi et al. [19]
which was specialized for separable problems to include all MICPs whose objec-
tive and constraints can be expressed in closed algebraic form. We begin in
Sect. 2 by considering conic representability. While many MICP instances are
representable by using MISOCP, reformulation to MISOCP has not been widely
adopted, and MICP is still considered a significantly more general form. We
demonstrate that with the introduction of the nonsymmetric exponential and
power cones, surprisingly, all convex instances in the MINLPLIB2 benchmark
library [1] are representable by a combination of these nonsymmetric cones and
the second-order cone. We discuss how the conic-form representation of a prob-
lem is itself a strong extended formulation. Hence, the guideline to “just solve
the conic form problem” is surprisingly effective.

We note that conic-form problems have modeling strength beyond that of
smooth MICP, in particular for handling of nonsmooth perspective functions
useful in disjunctive convex programming [15]. With the recent development of
conic solvers supporting nonsymmetric cones [26,27], it may be advantageous to
use these solvers over derivative-based NLP solvers, in which case the standard
convergence theory for outer approximation algorithms no longer applies. In
Sect. 3, we present the first finite-time outer approximation algorithm applicable
to mixed-integer conic programming with any closed, convex cones (symmetric
and nonsymmetric), so long as conic duality holds in strong form. This algorithm

104 M. Lubin et al.

extends the work of Drewes and Ulbrich [11] for MISOCP with a much simpler
and more general proof.

In Sect. 4, we generalize the idea of extended formulations through conic
representability by considering the modeling framework of disciplined convex
programming (DCP) [14], a popular modeling paradigm for convex optimiza-
tion which has so far received little notice in the MICP realm. In DCP, convex
expressions are specified in an algebraic form such that convexity can be verified
by simple composition rules. We establish a 1-1 connection between these rules
for verifying convexity and the existence of extended formulations. Hence, all
MICPs expressed in mixed-integer disciplined convex programming (MIDCP)
form have natural extended formulations regardless of conic representability.
This view has connections with techniques for nonconvex MINLP, where it is
already common practice to construct extended outer approximations based on
the algebraic representation of the problem [5].

In our computational experiments, we translate MICP problems from the
MINLPLIB2 benchmark library into MIDCP form and demonstrate significant
gains from the use of extended formulations, including the solution of a number
of open instances. Our open-source solver, Pajarito, is the first solver specialized
for MIDCP and is accessible through existing DCP modeling languages.

2 Extended Formulations and Conic Representability

We state a generic mixed-integer convex programming problem as

minimizex,y f(x, y)
subject to gj(x, y) ≤ 0 ∀j ∈ J, (MICONV)

L ≤ x ≤ U, x ∈ Z
n, y ∈ R

p
+,

where the set J indexes the nonlinear constraints, the functions f, gj : Rn×R
p →

R ∪ {∞} are convex, and the vectors L and U are finite bounds on x. Without
loss of generality, when convenient, we may assume that the objective function
f is linear (via epigraph reformulation [8]).

Vielma et al. [30] discuss the motivation for extended formulations in MICP:
many successful MICP algorithms use polyhedral outer approximations of non-
linear constraints, and polyhedral outer approximations in a higher dimensional
space can often be much stronger than approximations in the original space.
Hijazi et al. [19] give an example of an approximation of an �2 ball in R

n which
requires 2n tangent hyperplanes in the original space to prove that the inter-
section of the ball with the integer lattice is in fact empty. By exploiting the
summation structure in the definition of the �2 ball, [19] demonstrate that an
extended formulation requires only 2n hyperplanes to prove an empty intersec-
tion. More generally, [19,28] propose to reformulate constraints with separable
structure

∑q
k=1 gk(xk) ≤ 0, where gk : R → R are univariate convex functions

by introducing auxiliary variables tk and imposing the constraints
∑q

k=1
tk ≤ 0, gk(xk) ≤ tk∀ k. (1)

Extended Formulations in Mixed-Integer Convex Programming 105

A consistent theme in this paper is the representation of the convex func-
tions f and gj , ∀j ∈ J in (MICONV). Current MICP solvers require continuous
differentiability of the nonlinear functions and access to black-box oracles for
querying the values and derivatives of each at any given point (x, y). The dif-
ficulty in the reformulation (1) is that the standard representation (MICONV)
does not encode the necessary information, since separability is an algebraic
property which is not detectable given only oracles to evaluate function values
and derivatives. As such, we are not aware of any off-the-shelf MICP solver which
exploits this special-case structure, despite the promising experimental results
of [19].

In this section, we consider the equally general, yet potentially more useful,
representation of (MICONV) as a mixed-integer conic programming problem:

min
x,z

cT z

s.t. Axx + Azz = b (MICONE)
L ≤ x ≤ U, x ∈ Z

n, z ∈ K,

where K ⊆ R
k is a closed convex cone. Without loss of generality, we

assume integer variables are not restricted to cones, since we may introduce
corresponding continuous variables by equality constraints. The representation
of (MICONV) as (MICONE) is equally as general in the sense that given a
convex function f , we can define a closed convex cone Kf = cl{(x, y, γ, t) :
γf(x/γ, y/γ) ≤ t, γ > 0} where cl S is defined as the closure of a set S. Using
this, we can reformulate (MICONV) to the equivalent optimization problem

min tf

s.t. tj + sj = 0 ∀j ∈ J, (2)
γf = 1, x = xf , y = yf ,

γj = 1, x = xj , y = yj ,∀j ∈ J,

L ≤ x ≤ U, x ∈ Z
n, y ∈ R

p
+,

(xf , yf , γf , tf) ∈ Kf ,

(xj , yj , γj , tj) ∈ Kgj
, sj ∈ R+ ∀j ∈ J.

The problem (2) is in the form of (MICONE) with K = R
n+|J|
+ ×Kf ×Kg1 ×

· · ·×Kg|J| . Such a tautological reformulation is not particularly useful, however.
What is useful is a reformulation of (MICONV) into (MICONE) where the cone
K is a product K1 × K2 × · · · × Kr, where each Ki is one of a small number
of recognized cones, such as the positive orthant R

n
+, the second-order cone

SOCn = {(t, x) ∈ R
n : ||x|| ≤ t}, the exponential cone, EXP = cl{(x, y, z) ∈

R
3 : y exp(x/y) ≤ z, y > 0}, and the power cone (given 0 < α < 1), POWα =

{(x, y, z) ∈ R
3 : |z| ≤ xαy1−α, x ≥ 0, y ≥ 0}.

The question of which functions can be represented by second-order cones
has been well studied [6,22]. More recently, a number of authors have considered
nonsymmetric cones, in particular the exponential cone, which can be used to

106 M. Lubin et al.

model logarithms, entropy, logistic regression, and geometric programming [27],
and the power cone, which can be used to model p-norms and powers [18].

The folklore within the conic optimization community is that almost all con-
vex constraints which arise in practice are representable by using these cones1,
in addition to the positive semidefinite cone which we do not consider here. To
substantiate this claim, we classified the 333 MICP instances in MINLPLIB2
according to their conic representability and found that all of the instances are
conic representable; see Table 1.

Table 1. A categorization of the 333 MICP instances in the MINLPLIB2 library
according to conic representability. Over two thirds are pure MISOCP problems and
nearly one third is representable by using the exponential (EXP) cone alone. All
instances are representable by using standard cones.

SOC only EXP only SOC and EXP POW only Not representable Total
217 107 7 2 0 333

While solvers for SOC-constrained problems (SOCPs) are mature and com-
mercially supported, the development of effective and reliable algorithms for
handling exponential cones and power cones is an emerging, active research
area [26,27]. Nevertheless, we claim that the conic view of (MICONV) is useful
even lacking reliable solvers for continuous conic relaxations.

As a motivating example, we consider the trimloss [17] (tls) instances from
MINLPLIB2, a convex formulation of the cutting stock problem. These instances
are notable as some of the few unsolved instances in the benchmark library and
also because they exhibit a separability structure more general than what can
be handled by Hizaji et al. [19].

The trimloss instances have constraints of the form
∑q

k=1
−√

xkyk ≤ cT z + b, (3)

where x, y, z are arbitrary variables unrelated to the previous notation in this
section. Harjunkoski et al. [17] obtain these constraints from a clever reformu-
lation of nonconvex bilinear terms. The function −√

xy is the negative of the
geometric mean of x and y. It is convex for nonnegative x and y and its epigraph
E = {(t, x, y) : −√

xy ≤ t, x ≥ 0, y ≥ 0} is representable as an affine transforma-
tion of the three-dimensional second-order cone SOC3 [6]. A conic formulation
for (3) is constructed by introducing an auxiliary variable for each term in the
sum plus a slack variable, resulting in the following constraints:

∑q

k=1
tk + s = cT z + b, (tk, xk, yk) ∈ E ∀k, and s ∈ R+. (4)

1 http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-repre-
sent.html.

http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-represent.html
http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-represent.html

Extended Formulations in Mixed-Integer Convex Programming 107

Equation (4) provides an extended formulation of the constraint (3), that is, an
equivalent formulation using additional variables.

If we take the MINLPLIB2 library to be representative, then conic structure
using standard cones exists in the overwhelming majority of MICP problems in
practice. This observation calls for considering (MICONE) as a standard form of
MICP, one which is perhaps more useful for computation than (MICONV) pre-
cisely because it is an extended formulation which encodes separability structure
in a natural and general way. There is a large body of work and computational
infrastructure for automatically generating the conic-form representation given
an algebraic representation, a discussion we defer to Sect. 4.

The benefits of reformulation from (MICONV) to (MICONE) are quite tan-
gible in practice. By direct reformulation from MICP to MISOCP, we were
able to solve to global optimality the trimloss tls5 and tls6 instances from
MINLPLIB2 by using Gurobi 6.02. These instances from this public benchmark
library had been unsolved since 2001, perhaps indicating that the value of conic
formulations is not widely known.

3 An Outer-Approximation Algorithm for Mixed-Integer
Conic Programming

Although the conic representation (MICONE) does not preclude the use of
derivative-based solvers for continuous relaxations, derivative-based nonlinear
solvers are typically not appropriate for conic problems because the nonlinear
constraints which define the standard cones have points of nondifferentiabil-
ity [13]. Sometimes the nondifferentiability is an artifact of the conic reformu-
lation (e.g., of smooth functions x2 and exp(x)), but in a number of impor-
tant cases the nondifferentiability is intrinsic to the model and provides addi-
tional modeling power. Nonsmooth perspective functions, for example, which are
used in disjunctive convex programming, have been particularly challenging for
derivative-based MICP solvers and have motivated smooth approximations [15].
On the other hand, conic form can handle these nonsmooth functions in a nat-
ural way, so long as there is a solver capable of solving the continuous conic
relaxations.

There is a growing body of work as well as some (so far) experimental solvers
supporting mixed second-order and exponential cone problems [26,27], which
opens the door for considering conic solvers in place of derivative-based solvers.
To the best of our knowledge, however, no outer-approximation algorithm or
finite-time convergence theory has been proposed for general mixed-integer conic
programming problems of the form (MICONE).

In this section, we present the first such algorithm for (MICONE) with arbi-
trary closed, convex cones. This algorithm generalizes the work of Drewes and
Ulbrich [11] for MISOCP with a much simpler proof based on conic duality. In
stating this algorithm, we hope to motivate further development of conic solvers
for cones beyond the second-order and positive semidefinite cones.
2 Solutions reported to Stefan Vigerske, October 5, 2015.

108 M. Lubin et al.

We begin with the definition of dual cones.

Definition 1. Given a cone K, we define K∗ := {β ∈ R
k : βT z ≥ 0 ∀z ∈ K} as

the dual cone of K.

Dual cones provide an equivalent outer description of any closed, convex cone,
as the following lemma states. We refer readers to [6] for the proof.

Lemma 1. Let K be a closed, convex cone. Then z ∈ K iff zT β ≥ 0 ∀β ∈ K∗.

Based on the above lemma, we will consider an outer approximation
of (MICONE):

min
x,z

cT z

s.t. Axx + Azz = b (MIOA(T))
L ≤ x ≤ U, x ∈ Z

n,

βT z ≥ 0 ∀β ∈ T.

Note that if T = K∗, MIOA(T) is an equivalent semi-infinite representation
of (MICONE). If T ⊂ K∗ and |T | < ∞ then MIOA(T) is an MILP outer approx-
imation of (MICONE) whose objective value is a lower bound on the optimal
value of (MICONE).

The outer approximation (OA) algorithm is based on iteratively building up
T until convergence in a finite number of steps to the optimal solution. First,
we define the continuous subproblem for fixed integer value x̂ which plays a key
role in the OA algorithm:

vx̂ = min
z

cT z

s.t. Azz = b − Axx̂, (CP (x̂))
z ∈ K.

The dual of (CP (x̂)) is

max
β,λ

λT (b − Axx̂)

s.t. β = c − AT
z λ (5)

β ∈ K∗.

The following lemmas demonstrate, essentially, that the dual solutions
to (CP (x̂)) provide the only elements of K∗ that we need to consider.

Lemma 2. Given x̂, assume CP (x̂) is feasible and strong duality holds at the
optimal primal-dual solution (zx̂, βx̂, λx̂). Then for any z with Azz = b − Axx̂
and βT

x̂ z ≥ 0, we have cT z ≥ vx̂.

Extended Formulations in Mixed-Integer Convex Programming 109

Proof.

βT
x̂ z = (c − AT

z λx̂)T z = cT z − λT
x̂ (b − Axx̂) = cT z − vx̂ ≥ 0. (6)

Lemma 3. Given x̂, assume CP (x̂) is infeasible and (5) is unbounded, such that
we have a ray (βx̂, λx̂) satisfying βx̂ ∈ K∗, βx̂ = −AT

z λx̂, and λT
x̂ (b − Axx̂) > 0.

Then for any z satisfying Azz = b − Axx̂ we have βT
x̂ z < 0.

Proof.
βT

x̂ z = −λT
x̂ Azz = −λT

x̂ (b − Axx̂) < 0. (7)

Algorithm 1. The conic outer approximation (OA) algorithm
Initialize: zU ← ∞, zL ← −∞, T ← ∅. Fix convergence tolerance ε.
while zU − zL ≥ ε do

Solve MIOA(T).
if MIOA(T) is infeasible then

(MICONE) is infeasible, so terminate.
end if
Let (x̂, ẑ) be the optimal solution of MIOA(T) with objective value wT .
Update lower bound zL ← wT .
Solve CP (x̂).
if CP (x̂) is feasible then

Let (zx̂, βx̂, λx̂) be an optimal primal-dual solution with objective value vx̂.
if vx̂ < zU then

zU ← vx̂
Record (x̂, zx̂) as the best known solution.

end if
else if CP (x̂) is infeasible then

Let (βx̂, λx̂) be a ray of (5).
end if
T ← T ∪ {βx̂}

end while

Finite termination of the algorithm is guaranteed because integer solutions
x̂ cannot repeat, and only a finite number of integer solutions is possible.

This algorithm is arguably incomplete because the assumptions of Lemmas
2 and 3 need not always hold. The assumption of strong duality at the solution
is analogous to the constraint qualification assumption of the NLP OA algo-
rithm [12]. Drewes and Ulbrich [11] describe a procedure in the case of MISOCP
to ensure finite termination if this assumption does not hold. The assumption
that a ray of the dual exists if the primal problem is infeasible is also not always
true in the conic case, though [6] provide a characterization of when this can
occur. These cases will receive full treatment in future work.

A notable difference between the conic OA algorithm and the standard NLP
OA algorithm is that there is no need to solve a second subproblem in the case

110 M. Lubin et al.

of infeasibility, although some specialized NLP solvers may also obviate this
need [2]. In contrast, Drewes and Ulbrich [11] propose a second subproblem in
the case of MISOCP even when dual rays would suffice.

Finally, the algorithm is presented in terms of a single cone K for simplicity.
When K is a product of cones, our implementation disaggregates the elements
of K∗ per individual cone, adding one OA cut per cone per iteration.

4 Extended Formulations and Disciplined Convex
Programming

While many problems are representable in conic form, the transformation from
the user’s algebraic representation of the problem often requires expert knowl-
edge. Disciplined convex programming (DCP) is an algebraic modeling concept
proposed by Grant et al. [14], one of whose original motivations was to provide a
means to make these transformations automatic and transparent to users. DCP
is not intrinsically tied to conic representations, however. In this section, we
present the basic concepts of DCP from the viewpoint of extended formulations.
This perspective both provides insight into how conic formulations are generated
and enables further generalization of the technique to problems which are not
conic representable using standard cones.

Detection of convexity of arbitrary nonlinear expressions is NP-Hard [4], and
since a conic-form representation is a proof of convexity, it is unreasonable to
expect a modeling system to be able to reliably generate these representations
from arbitrary input. Instead, DCP requires users to construct expressions whose
convexity can be proven by simple composition rules. A DCP implementation
(e.g., the MATLAB package CVX) provides a library of basic operations like
addition, subtraction, norms, square root, square, geometric mean, logarithms,
exponential, entropy x log(x), powers, absolute value, max{x, y}, min{x, y}, etc.
whose curvature (convex, concave, or affine) and monotonicity properties are
known. These basic operations are called atoms.

All expressions representing the objective function and constraints are built
up via compositions of these atoms in such a way that guarantees convexity.
For example, the expression exp(x2 + y2) is convex and DCP compliant because
exp(·) is convex and monotone increasing and x2 + y2 is convex because it is
a convex composition (through addition) of two convex atoms. The expression√

xy is concave when x, y ≥ 0 as we noted previously, but not DCP compliant
because the inner term xy has indefinite curvature. In this case, users must
reformulate their expression using a different atom like geomean(x, y). We refer
readers to [10,14] for further introduction to DCP.

An important yet not well-known aspect of DCP is that the composition rules
for DCP have a 1-1 correspondence with the existence of extended formulations
of epigraphs. For example, suppose g is convex and monotone increasing and f
is convex. Then the function h(x) := g(f(x)) is convex and recognized as such
by DCP. If Eh := {(x, t) : h(x) ≤ t} is the epigraph of h, then we can represent
Eh through an extended formulation using the epigraphs Eg and Ef of g and f ,

Extended Formulations in Mixed-Integer Convex Programming 111

respectively. That is, (x, t) ∈ Eh iff ∃ s such that (x, s) ∈ Ef and (s, t) ∈ Eg.
The validity of this extended formulation follows directly from monotonicty of
g. Furthermore, if Ef and Eg are conic representable, then so is Eh, which is
precisely how DCP automatically generates conic formulations. The conic form
representation is not necessary, however; one may instead represent Ef and Eg

using smooth nonlinear constraints if f and g are smooth.
This correspondence between composition of functions and extended for-

mulations was considered by Tawarmalani and Sahinidis [28], although in the
context of nonconvex MINLP. Composition generalizes the notion of separability
far beyond summations of univariate functions as proposed by Hijazi et al. [19].

DCP, based on the philosophy that users should be “disciplined” in their
modeling of convex functions, describes a simple set of rules for verifying con-
vexity and rejects any expressions not satisfying them; it is not based on ad-
hoc detection of convexity which is common among nonconvex MINLP solvers.
DCP is well established within the convex optimization community as a prac-
tical modeling technique, and many would agree that it is reasonable to ask
users to formulate convex optimization problems in DCP form. By doing so they
unknowingly provide all of the information needed to generate powerful extended
formulations.

5 Computational Results

In this section we present preliminary computational results implementing the
extended formulations proposed in this work. We have implemented a solver,
Pajarito, which currently accepts input as mixed-integer conic programming
problems with a mix of second-order and exponential cones. We have trans-
lated 194 convex problems from MINLPLIB2 representable using these cones
into Convex.jl [29], a DCP algebraic modeling language in Julia which performs
automatic transformation into conic form. We exclude instances without integer
constraints, some which are pure quadratic, and some which Bonmin is unable
to solve within time limits. Pajarito currently implements traditional OA using
derivative-based NLP solvers [7] applied to the conic extended formulation, as
the conic solvers we tested were not sufficiently reliable. Pajarito itself relies on
JuMP [23], and the implementation of the core algorithm spans less than 1000
lines of code. Pajarito will be released as open source in the upcoming months.

Our main comparison is with Bonmin’s OA algorithm, which in 2014 bench-
marks by H. Mittelmann was found to be the overall fastest MICP solver when
using CPLEX as the inner MILP solver [25]. For the MISOCP instances, we also
compare with CPLEX. Due to space limitations, we refer readers to [24] for the
appendix and figures containing our preliminary results. Their highlights are:

1. We observe that the extended formulation helps significantly reduce the num-
ber of OA iterations. This can be seen as a sign of scalability provided by the
extended formulation.

2. Pajarito is much faster on many of the challenging problems (slay,netmod,
portfol classical), although these problems are MISOCPs where CPLEX

112 M. Lubin et al.

dominates (note that CPLEX 12.6.2 already applies extended formulations
for MISOCPs [30]). Pajarito has not been optimized for performance, leading
Bonmin to be faster on the relatively easy instances.

3. Perhaps the strongest demonstration of Pajarito’s strength is the gams01
instance, which was previously unsolved and whose conic representation
requires a mix of SOC and EXP cones. The best known bound was 1735.06
and the best known solution was 21516.83. Pajarito solved the instance to
optimality with an objective value of 21380.20 in 6 iterations. Unfortunately,
the origin of the instance is unknown and confidential.

Acknowledgements. We thank the anonymous referees for their comments. They
greatly improved the clarity of the manuscript. We also thank one of the anonymous
referees for pointing out the SOC-representability of the sssd family of instances orig-
inally derived in [15]. M. Lubin was supported by the DOE Computational Science
Graduate Fellowship, which is provided under grant number DE-FG02-97ER25308.
The work at LANL was funded by the Center for Nonlinear Studies (CNLS) and was
carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract
No. DE-AC52-06NA25396. J.P. Vielma was funded by NSF grant CMMI-1351619.

References

1. MINLPLIB2 library. http://www.gamsworld.org/minlp/minlplib2/html/
2. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: An outer approximation-based

solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22,
555–567 (2010)

3. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Com-
put. 1, 1–41 (2009)

4. Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding con-
vexity of quartic polynomials and related problems. Math. Program. 137, 453–476
(2013)

5. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-
Integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society
for Industrial and Applied Mathematics, Philadelphia (2001)

7. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,
C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic
framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–
204 (2008)

8. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed
integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear
Programming. The IMA Volumes in Mathematics and its Applications, vol. 154,
pp. 1–39. Springer, New York (2012)

9. Byrd, R.H., Nocedal, J., Waltz, R.: KNITRO: An integrated package for nonlinear
optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization.
Nonconvex Optimization and its Applications, vol. 83, pp. 35–59. Springer, Berlin
(2006)

10. Diamond, S., Chu, E., Boyd, S.: Disciplined convex programming. http://dcp.
stanford.edu/

http://www.gamsworld.org/minlp/minlplib2/html/
http://dcp.stanford.edu/
http://dcp.stanford.edu/

Extended Formulations in Mixed-Integer Convex Programming 113

11. Drewes, S., Ulbrich, S.: Subgradient based outer approximation for mixed integer
second order cone programming. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Non-
linear Programming. The IMA Volumes in Mathematics and its Applications, vol.
154, pp. 41–59. Springer, New York (2012)

12. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approx-
imation. Math. Program. 66, 327–349 (1994)

13. Goldberg, N., Leyffer, S.: An active-set method for second-order conic-constrained
quadratic programming. SIAM J. Optim. 25, 1455–1477 (2015)

14. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L.,
Maculan, N. (eds.) Global Optimization. Nonconvex Optimization and its Applica-
tions, vol. 84, pp. 155–210. Springer, US (2006)

15. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J.,
Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in
Mathematics and its Applications, vol. 154, pp. 61–89. Springer, New York (2012)

16. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear
integer programming. Manag. Sci. 31, 1533–1546 (1985)

17. Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations
for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105,
594–603 (1998)

18. Hien, L.: Differential properties of euclidean projection onto power cone. Math.
Methods Oper. Res. 83(3), 265–284 (2015)

19. Hijazi, H., Bonami, P., Ouorou, A.: An outer-inner approximation for separable
mixed-integer nonlinear programs. INFORMS J. Comput. 26, 31–44 (2014)

20. Kılınç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer
nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011)

21. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D.
thesis, University of Dundee, December 1993

22. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order
cone programming. Linear Algebra Appl. 284, 193–228 (1998). International Lin-
ear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals
and Image Processing

23. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS
J. Comput. 27, 238–248 (2015)

24. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-
integer convex programming, ArXiv e-prints (2015)

25. Mittelmann, H.: MINLP benchmark. http://plato.asu.edu/ftp/minlp old.html
26. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Operator splitting for conic opti-

mization via homogeneous self-dual embedding, ArXiv e-prints (2013)
27. Serrano, S.A.: Algorithms for unsymmetric cone optimization and an implemen-

tation for problems with the exponential cone. Ph.D. thesis, Stanford University,
Stanford, CA, March 2015

28. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Math. Program. 103, 225–249 (2005)

29. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex opti-
mization in Julia. In: Proceedings of HPTCDL 2014, Piscataway, NJ, USA, pp.
18–28. IEEE Press (2014)

30. Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed
integer conic quadratic programming, ArXiv e-prints (2015)

http://plato.asu.edu/ftp/minlp_old.html

k-Trails: Recognition, Complexity,
and Approximations

Mohit Singh1 and Rico Zenklusen2(B)

1 Microsoft Research, Redmond, USA
mohits@microsoft.com

2 ETH Zurich, Zurich, Switzerland
ricoz@math.ethz.ch

Abstract. The notion of degree-constrained spanning hierarchies, also
called k-trails, was recently introduced in the context of network routing
problems. They describe graphs that are homomorphic images of con-
nected graphs of degree at most k. First results highlight several inter-
esting advantages of k-trails compared to previous routing approaches.
However, so far, only little is known regarding computational aspects of
k-trails.

In this work we aim to fill this gap by presenting how k-trails can be
analyzed using techniques from algorithmic matroid theory. Exploiting
this connection, we resolve several open questions about k-trails. In par-
ticular, we show that one can recognize efficiently whether a graph is a
k-trail, and every graph containing a k-trail is a (k + 1)-trail. Moreover,
further leveraging the connection to matroids, we consider the problem
of finding a minimum weight k-trail contained in a graph G. We show
that one can efficiently find a (2k − 1)-trail contained in G whose weight
is no more than the cheapest k-trail contained in G, even when allowing
negative weights.

The above results settle several open questions raised by Molnár,
Newman, and Sebő.

1 Introduction

Motivated by applications in network routing, the notion of degree-constrained
spanning hierarchies was introduced as a way to obtain lower-degree routing
structures as what could be obtained with low-degree spanning subgraphs [5,6].
These hierarchies, which, for brevity, have also simply been called k-trails [7,9],
describe how a given graph can be described as the homomorphic image of
another low-degree graph. First results have been reported that show advantages
of k-trails compared to traditional methods in network routing contexts [6].
However, many basic questions around k-trails remained open, including whether
one can efficiently decide if a graph is a k-trail; we refer the interested reader
to [9] for a nice overview of some open problems around k-trails. The goal of this
work is to fill this gap by answering several basic open questions about k-trails,
by revealing and exploiting a connection to matroids.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 114–125, 2016.
DOI: 10.1007/978-3-319-33461-5 10

k-Trails: Recognition, Complexity, and Approximations 115

Before giving a summary of our main results, we start by formally defining
k-trails as well as some closely related notions. In particular, the notion of homo-
morphic images introduced below is the basis for defining k-trails. Throughout
this paper, we focus on undirected connected graphs with possibly loops and
parallel edges, and with at least 2 vertices to avoid trivial special cases.

Definition 1 (Homomorphic Image). A graph G = (V,E) is the homomor-
phic image of a graph H = (W,F) if there is an onto function φ : W → V such
that for any two vertices u, v ∈ V (with possibly u = v), the number of edges
in G between u and v is equal to the number of edges in H whose endpoints get
mapped by φ to {u, v}.

1

2

3

4

5

6

7
1

2

3a

3b

4 5a

5b 6

7a

7b

1

2a
2b

3a

3b

4 5a

5b 6

7a

7b

G = (V,E) H1 = (W1, F1) H2 = (W2, F2)

Fig. 1. The graph G is the homomorphic image of H1 as well as H2. The naming of
the vertices has been chosen to highlight the corresponding homomorphisms, e.g., the
nodes 3a and 3b in H1 are both mapped to node 3 in G. G is a 3-trail, because the
homomorphic preimage H2 has maximum degree 3.

Figure 1 shows an example graph and 2 homomorphic preimages of it.
Hence, a preimage H = (W,F) of G corresponds to a graph obtained from

G by splitting each of its vertices v ∈ V into |φ−1(v)| many copies. We therefore
call |φ−1(v)| the φ-multiplicity, or simply multiplicity, of v.

Definition 2 (k-Trail). A graph G = (V,E) is a k-trail if it is the homomor-
phic image of a connected graph H = (W,F) with maximum degree at most k.

The graph G shown in Fig. 1 is a 3-trail since it is the homomorphic image
of H2, which has maximum degree 3. It is not hard to see that k-trails can
equivalently be defined as preimages of trees of degree at most k.

Definition 3 (k-Tree). A graph is a k-tree if it is a spanning tree of maximum
degree at most k.

Lemma 1. If G is a k-trail then it is a homomorphic image of a k-tree. More
precisely, given a connected graph H = (W,F) and onto function φ : W → V
such that G is the homomorphic image of H by φ, we can construct efficiently
a tree H ′ = (W ′, F ′) and onto function φ′ : W ′ → W such that H is the
homomorphic image of H ′ by φ′. Thus, G is the φ′ ◦ φ-homomorphic image of
H ′, and for v ∈ V , the φ′ ◦ φ-multiplicity of v is at least the φ-multiplicity of v.

116 M. Singh and R. Zenklusen

Many basic questions on k-trails remained open. This includes the complexity
status of deciding whether a graph is a k-trail for a given k, an open question
raised in [9]. A nice result shown in [7,9] is that every 2-edge-connected graph
is a 3-trail. Further interesting open questions on k-trails that are motivated
by routing applications are linked to the notion of whether a graph contains a
k-trail, which is defined as follows.

Definition 4 (Containing a k-Trail). We say that a graph G = (V,E) con-
tains a k-trail if there is a set U ⊆ E such that G′ = (V,U) is a k-trail.

Notice that all k-trails are connected graphs, since they are homomorphic
images of connected graphs. Hence, candidate edge sets U ⊆ E, for G = (V,E)
to contain a k-trail (V,U), must be such that (V,U) is connected.

Also many questions linked to the containment of k-trails are open [9], includ-
ing questions related to approximation algorithms for finding minimum weight
k-trails. In particular, it was conjectured in [9] that for any nonnegative edge
weights w : E → Z≥0 and any k ≥ 3, there exists a polynomial algorithm return-
ing a (2k−2)-trail in G whose cost is not larger than the minimum weight k-trail
in G, if G contains a k-trail.

In this paper we are able to settle most of the above-mentioned open ques-
tions, by presenting a new viewpoint on k-trails in terms of matroids.

1.1 Our Results

One of our main results, whose derivation will also be used to highlight a strong
link between k-trails and matroids, is the fact that k-trails can be recognized
efficiently.

Theorem 1. Given a graph G = (V,E) and k ∈ Z>0, it can be checked effi-
ciently whether G is a k-trail, and if so, obtain a connected graph H = (W,F)
with degrees bounded by k and onto function φ : W → V such that G is the
homomorphic image of H by φ.

Contrary to the recognition problem, the containment problem is hard. Our
hardness proof can be interpreted as a natural extension of a hardness proof
shown in [5], for a weighted version of the problem. For completeness, we provide
a full proof in the long version of the paper.

Theorem 2. For any k ∈ Z≥2, the problem of deciding whether a graph contains
a k-trail is NP-complete.

Despite the different complexity status of the containment and recognition
question, the following theorem shows that they are closely related.

Theorem 3. If G contains a k-trail then it is a (k + 1)-trail.

Using that recognition is polynomial time solvable, we can thus find the
smallest k for which a given graph G is a k-trail, which then implies by Theorem 3
that the smallest k′ for which G contains a k′-trail is either k or k − 1. Finally,
we obtain the following result on the containment of weighted k-trails.

k-Trails: Recognition, Complexity, and Approximations 117

Theorem 4. There exists a polynomial time algorithm that, given a graph G =
(V,E) with weight function w : E → Z and an integer k ≥ 2, either shows that
there is no k-trail contained in G or returns a (2k−1)-trail contained in G whose
total weight is at most the weight of any k-trail contained in G.

Theorem 4 almost resolves a conjecture in [9], claiming that one can efficiently
find a (2k − 2)-trail in G of weight no more than the weight of any k-trail
contained in G, assuming k ≥ 3 and nonnegativity of the weights. Our result
only implies the existence of a cheap (2k−1)-trail; however, it holds for arbitrary
weights. Furthermore, we can show that, for arbitrary weights, the factor 2k − 1
is optimal when comparing to a natural LP relaxation.

Organization of Paper. Section 2 proves Theorem 1 and shows how k-trails
can be studied using tools from algorithmic matroid theory. Section 3 discusses
our algorithm for Theorem4. Due to space constraints, the proofs of Lemmas 1–5,
Theorems 1, 2, and the correctness proof of the algorithm in Sect. 3, which com-
pletes the proof of Theorem4, have been omitted from this extended abstract.

Basic Terminology. The degree of a vertex v ∈ V in a graph G = (V,E) is
denoted by degG(v), or simply deg(v) if there is no danger of confusion. If the
graph is clear from context, we will also use the notation degU (v) := |δ(v) ∩ U |
for a set U ⊆ E and v ∈ V .

2 Recognition of k-Trails

Let G = (V,E) be an undirected graph and assume we want to show that G is
a k-trail for k as small as possible. Consider some connected graph H = (W,F)
such that G is the homomorphic image of H by some onto function φ : W → V .
Let v ∈ V and consider all vertices of H that get mapped to v, i.e., φ−1(v) =
{w1, . . . , w�}, where � = |φ−1(v)| is the multiplicity of v. Clearly, we have

degG(v) =
�∑

i=1

degH(wi).

Knowing that v gets split into � vertices by φ, for degrees to be low in H it would
be best if all wi for i ∈ [�] have about the same degree. It turns out that starting
with any H and corresponding φ, we can balance out the degrees of vertices in H
that correspond to the same vertex in G, using a simple modification algorithm.
The following lemma formalizes this statement.

Lemma 2. Given two connected graphs G = (V,E) and H = (W,F), and an
onto function φ : W → V such that G is the homomorphic image of H, one can
determine in polynomial time a connected graph H ′ = (W,F ′) such that

(i) G is the homomorphic image of H ′ by φ.

118 M. Singh and R. Zenklusen

(ii) For any v ∈ V and w ∈ W such that φ(w) = v, the degree of w in H ′ is
either

⌊
degG(v)
|φ−1(v)|

⌋
or

⌈
degG(v)
|φ−1(v)|

⌉
.

We leverage the above lemma to rephrase the problem of whether a graph is
a k-trail in terms of multiplicities.

Definition 5 (Feasible Multiplicity Vector). Let G = (V,E) be a graph. A
vector λ ∈ Z

V
>0 is a feasible multiplicity vector (for G) if G is the homomorphic

image of a connected graph with multiplicities given by λ; more formally, if there
is a connected graph H = (W,F) such that G is the homomorphic image of H
by some onto function φ : W → V , and |φ−1(v)| = λ(v) ∀v ∈ V .

Feasible multiplicity vectors fulfill the following down-monotonicity property.

Lemma 3. Let G be a graph and λ ∈ Z
V
>0 be a feasible multiplicity vector. Then

any vector λ′ ∈ Z
V
>0 with λ′ ≤ λ (component-wise) is also a feasible multiplicity

vector.
Furthermore, this result is constructive: Given a connected graph H and

homomorphism φ such that G is the φ-homomorphic image of H and λ is the
multiplicity vector corresponding to φ, we can efficiently construct for any λ′ ≤ λ
a connected graph H ′ and homomorphism φ′ such that G is the φ′-homomorphic
image of H ′ with corresponding multiplicity vector λ′.

Lemmas 2 and 3 easily imply that the question of whether G is a k-trail for
some given k can be reduced to the problem of deciding whether some multi-
plicity vector λ ∈ Z

V
>0 is feasible.

Lemma 4. A graph G = (V,E) is a k-trail if and only if the following multi-
plicity vector λ ∈ Z

V
>0 is feasible:

λ(v) =
⌈

degG(v)
k

⌉

∀v ∈ V.

To finally provide an efficient recognition algorithm to decide whether a graph
is a k-trail, we show that feasible multiplicity vectors are highly structured.

Notice that a feasible multiplicity vector is at least 1 in each coordinate. For
simplicity, we introduce a shifted version of feasible multiplicity vectors, called
feasible split vector ; a vector μ ∈ Z

V
≥0 is a feasible split vector if μ+1 is a feasible

multiplicity vector, where 1 ∈ Z
V is the all-ones vector. Hence, a split vector

tells us how many times a vertex is split.

Theorem 5. Let G be an undirected graph. The set of feasible split vectors
correspond to the integral points of a polymatroid1, i.e.,

PG := conv({μ ∈ Z
V
≥0 | μ is a feasible split vector}),

1 A polymatroid over a finite set N is a polytope P ⊆ R
N
≥0 described by P = {x ∈

R
N
≥0 | x(S) ≤ f(S) ∀S ⊆ N}, where f : 2N → Z≥0 is a submodular function, and

x(S) =
∑

v∈S xv. We refer the interested reader to [8, vol. B] for more information
on polymatroids.

k-Trails: Recognition, Complexity, and Approximations 119

is a polymatroid. Furthermore, we can efficiently optimize over PG, and for any
feasible split vector μ ∈ Z

V
≥0 we can efficiently find a connected graph H = (W,F)

and an onto function φ : W → V such that G is the homomorphic image of H,
and |φ−1(v)| = μ(v) ∀v ∈ V .

Before proving the theorem, we start with a few observations and show that
Theorem 5 implies Theorem 1. It is well-known that PG being a polymatroid
implies that PG is given by

PG = {x ∈ R
V
≥0 | x(S) ≤ f(S) ∀S ⊆ V },

where f : 2V → Z≥0 is the submodular function defined by

f(S) = max{x(S) | x ∈ PG} ∀S ⊆ V.

Many results on polymatroids typically assume that a polymatroid is given
through a value oracle for the function f . Clearly, if we can efficiently opti-
mize over PG, we can also evaluate efficiently the submodular function f , which,
as described above, corresponds to maximizing a {0, 1}-objective over PG.

We are particularly interested in checking whether some split vector μ ∈ Z
V
≥0

is feasible. Having an efficient evaluation oracle for f allows for checking whether
μ ∈ PG by standard techniques: It suffices to solve the submodular function
minimization problem min{f(S)−x(S) | S ⊆ V }; if the optimal value is negative
then μ
∈ PG, otherwise μ ∈ PG. We will later see that the link between k-trails
and matroids that we establish implies an easy way to check whether μ ∈ PG

using a simple matroid intersection problem (without relying on submodular
function minimization).

Combining the above results and observations, Theorem1 easily follows.

Proof (of Theorem 1). Let λ ∈ Z
V
>0 be defined as in Lemma 4, and let μ =

λ − 1. Lemma 4—rephrased in terms of μ—states that G is a k-trail if and only
if μ is a feasible split vector, which can be checked efficiently by Theorem 5.
Furthermore, if μ is feasible, then Theorem 5 also shows that we can efficiently
obtain a connected graph H̄ = (W, F̄) and onto function φ : W → V such that

(i) G is the homomorphic image of H̄ by φ, and
(ii) |φ−1(v)| = μ(v) + 1 ∀v ∈ V .

By Lemma 2 we can balance the degrees of H̄ for each vertex set φ−1(v) effi-
ciently, to obtain a connected graph H = (W,F) with balanced degrees as stated
in Lemma 2. It remains to observe that all degrees in H are bounded by k. This
indeed holds: let w ∈ W and v = φ(w); we thus obtain

degH(w) ≤
⌈

degG(v)
|φ−1(v)|

⌉

=
⌈

degG(v)
μ(v) + 1

⌉

=

⎡

⎢
⎢
⎢

degG(v)
⌈
degG(v)

k

⌉

⎤

⎥
⎥
⎥

≤
⌈

degG(v)
degG(v)

k

⌉

= k,

where the first inequality follows by Lemma 2 and the second equality by μ(v)+
1 = λ(v) = �degG(v)/k�. �

120 M. Singh and R. Zenklusen

Matroidal Description of k-Trails and Proof of Theorem 5. We start by
introducing an auxiliary graph G′ = (V ′, E′) such that spanning trees in G′ can
be interpreted as graphs H such that G is a homomorphic image of H. Using
this connection, we then derive that PG is a polymatroid over which we can
optimize efficiently, and show how to construct a homomorphic preimage of G
corresponding to some split vector μ, as claimed by Theorem 5.

Hence, let G = (V,E) be an undirected graph. The graph G′ = (V ′, E′)
contains a vertex for each of the two endpoints of each edge in E. More formally,
for each v ∈ V , the Graph G′ contains degG(v) many vertices V ′

v := {ve}e∈δ(v);
hence,

V ′ =
⋃

v∈V

V ′
v .

We note that describing V ′
v by {ve}e∈δ(v) is a slight abuse of notation, since for

each loop at v we include two vertices in V ′
v and not just one. Furthermore,

E′ = Ē ∪ K, where Ē = {{ve, ue} | e = {u, v} ∈ E}, and

K =
⋃

v∈V

Kv, where Kv = {{ve, vf} | ve, vf ∈ V ′
v , ve
= vf} ∀v ∈ V.

See Fig. 2 for an example of the above construction.

u

v

e ue

ve

G = (V,E) G = (V ,E)

Fig. 2. An example for the construction of the auxiliary graph G′ = (V ′, E′) from
G = (V, E). In G′ the thick edges correspond to edges in Ē and the thin ones to edges
in K. The dashed gray circles correspond to the cliques (V ′

v , Kv) and highlight the link
between the vertices v ∈ V in G and vertex sets V ′

v in G′ which correspond to v.

For any spanning tree T ⊆ E′ in G′ that contains E, we define a graph HT =
(WT , FT) and an onto function φT : WT → V , such that G is the homomorphic
image of HT by φ, as follows. Let KT = T ∩ K = T\E. For each v ∈ V consider

k-Trails: Recognition, Complexity, and Approximations 121

the connected components of (V ′
v ,Kv). Let qv be the number of these connected

components and let
V ′

v = C1
v ∪ C2

v ∪ · · · ∪ Cqv
v

be the partition of V ′
v into vertex sets of the qv connected components in (V ′

v ,Kv).
We now define HT = (WT , FT) as the graph obtained from G′ by contracting

all Cj
v for v ∈ V and j ∈ [qv] := {1, . . . , qv}. For clarity, we call the vertices in

HT nodes. Contracting Cj
v corresponds to replacing Cj

v with a single node, which
we identify with the set Cj

v for simplicity, thus leading to the following set of
nodes for HT :

WT = {Cj
v | v ∈ V, j ∈ [qv]}.

Furthermore, two nodes Cj
v , C�

w ∈ WT are adjacent if and only if there is a pair
of vertices, one in Cj

v and one in C�
w, that are connected by an edge in T ∩ Ē;

formally, this corresponds to the existence of e ∈ E such that edge in Ē that
corresponds to e is in T , and ve ∈ Cj

v and we ∈ C�
w. Moreover, φT : WT → V is

defined by
φT (Cj

v) = v ∀ Cj
v ∈ WT .

Figure 3 shows an example construction of HT from a spanning tree T that
contains Ē. We start with some observations that follow immediately from the
above construction:

– G is the homomorphic image of HT by φT .
– The multiplicity of v ∈ V is qv.
– G′ can be constructed efficiently from G.
– Several spanning trees T can lead to the same graph HT and homomorphism

φT ; indeed, for any component Cj
v , the edges of T with both endpoints in Cj

v

form a spanning tree over Cj
v , which can be replaced by any other spanning

tree without changing HT or φT .

Conversely, every description of G as a homomorphic image of a tree can be
obtained by the above construction:

Claim. Let H = (W,F) be a tree and φ : W → V be an onto function such that
G is the homomorphic image of H by φ. Then there exists a spanning tree T in
G′ such that H = HT and φ = φT .

Proof (of claim). Indeed, the spanning tree T can be chosen as follows. Starting
with T = ∅, we first add to T all edges in Ē. For each w ∈ W , we do the
following: Let v = φ(w), and let e1, . . . , eh ∈ E be the φ-images of the edges
δH(w); in particular, e1, . . . , eh ∈ δG(v). We add to T an arbitrary set of h − 1
edges of G′ that form a spanning tree over the vertices ve1 , . . . , veh

. One can now
easily observe that the constructed tree T has the desired properties. �

The equivalence between (ii) and (iii) in the following statement summarizes
the above discussion. The equivalence between (i) and (ii) follows from Lemma 1
(implying (i) ⇒ (ii)) and Lemma 3 (implying (ii) ⇒ (i)).

122 M. Singh and R. Zenklusen

(V , T) HT = (WT , FT)

Fig. 3. On the left-hand side, a spanning tree T in the auxiliary graph G′ = (V ′, E′),
that corresponds to the graph G shown in Fig. 2, is highlighted. On the right-hand
side, the corresponding graph HT is shown. The homomorphism φT : WT → V maps
all vertices of HT within the same dashed circle to the same vertex of G. For v ∈ V ,
the number qv is equal to the number of vertices on the right-hand side lying inside
the dashed circle corresponding to v.

Property 1. Let G = (V,E) be an undirected graph and μ ∈ Z
V
≥0. The following

three statements are equivalent:

(i) G is the homomorphic image of a connected graph H = (W,F) by an onto
function φ : W → V such that |φ−1(v)| = μ(v) + 1 ∀v ∈ V .

(ii) G is the homomorphic image of a tree H = (V,W) by an onto function
φ : W → V such that |φ−1(v)| ≥ μ(v) + 1 ∀v ∈ V .

(iii) There is a spanning tree T in the auxiliary graph G′ = (V ′, E′) such that
Ē ⊆ T and |T ∩ Kv| ≤ |δ(v)| − 1 − μ(v) ∀v ∈ V .

Furthermore, we highlight that the equivalences in Property 1 are all con-
structive.

Using the above connection between the auxiliary graph G′ and homomorphic
preimages of G, Theorem 5 can now be derived as follows. For brevity, we use
the following notation. For any spanning tree T in G′ such that Ē ⊆ T , we
define αT ∈ Z

V
≥0 by αT (v) := |T ∩ Kv| ∀v ∈ V . Furthermore, let deg ∈ Z

V
≥0 be

the degree vector of G, i.e., deg(v) is the degree of v as usual. The equivalence
between point (i) and point (iii) of Property 1 can thus be rephrased as follows.

μ ∈ Z
V
≥0 is a feasible split vector ⇔ ∃ spanning tree T in G′ with

Ē ⊆ T and αT ≤ deg −1 − μ,
(1)

where 1 ∈ Z
V is the all-ones vector.

The equivalence highlighted by (1) directly leads to an efficient way to check
whether a given vector μ ∈ Z

V
≥0 is a feasible split vector, and if so, obtain a

k-Trails: Recognition, Complexity, and Approximations 123

homomorphic preimage of G that certifies it. Indeed, finding a spanning tree T
in G′ that contains Ē and satisfies αT ≤ deg −1 − μ is a matroid intersection
problem. More precisely, the task is to find a spanning tree in G′/Ē (the graph G′

after contracting Ē)—such spanning trees are the bases of the graphic matroid
on G′/Ē—whose edges are simultaneously an independent set in the partition
matroid on the partition K = ∪v∈V Kv, requiring that no more than deg(v) −
1−μ(v) edges are selected within Kv for each v ∈ V . If this matroid intersection
problem has a solution, then we get the desired spanning tree T fulfilling the
conditions of point (iii) in Property 1, which is equivalent to point (i), and this
equivalence is constructive, thus leading to the desired homomorphic preimage
H of G that corresponds to the split vector μ.

We finish by proving the claims about PG in Theorem 5. For this, we start
by observing that the vectors αT are integral base vectors of a polymatroid.

Lemma 5. The polytope

B̄G = conv({αT | T is a spanning tree inG′ with Ē ⊆ T})

is the base polytope of a polymatroid. Furthermore, we can optimize efficiently
over B̄G.

Consider the polymatroid P̄G that corresponds to the base polytope B̄G, i.e.,

P̄G = {x ∈ R
V
≥0 | ∃α ∈ B̄G with x ≤ α}.

We finish the proof of Theorem5 by showing that PG is the (polymatroidal) dual
of P̄G. More precisely, McDiarmid [4] (see also [8, vol. B, Sect. 44.6f]) introduced
the following notion of a dual of a polymatroid, say P̄G ⊆ R

V . Consider a vector
y ∈ Z

V such that P̄G is contained in the box [0, y]; we choose y = deg −1. Then
the set of all points y − α for α ∈ P̄G correspond to the bases of a polymatroid,
which is called the dual of P̄G with respect to y. By (1), the vectors μ ∈ Z

V

obtained by taking any integral point α ∈ B̄G and setting μ = deg −1 − α
correspond precisely to the maximal vertices of PG as defined in Theorem 5.
Hence, PG is the dual of P̄G with respect to y, and thus a polymatroid. Moreover,
analogous to matroid duality, we can efficiently optimize over PG because we can
efficiently optimize over P̄G (see [8, vol, B] for details).

3 Containment of Minimum Weight k-Trails

Now we consider the problem of finding the minimum weight k-trail contained
in G = (V,E) and prove Theorem 4. Our goal is to use the auxiliary graph
G′ = (V ′, E′) described in the proof of Theorem1 for the recognition algorithm.
Recall that edges in E are in one-to-one correspondence with Ē ⊆ E′. We extend
the weight function w : E → Z to all edges in E′, where e ∈ Ē gets the same
weight as the corresponding edge in E. The rest of the edges in E′\Ē are assigned
weight 0. Recall, V ′

v denotes the set of vertices introduced for vertex v and Kv

denote the complete graph on V ′
v . Identical to Property 1, we state the following

property. With a slight abuse of notation, for a subgraph Ĝ = (V, Ê) of G, we
will also denote as Ê the set of edges in Ē that correspond to Ê.

124 M. Singh and R. Zenklusen

Property 2. Let Ĝ = (V, Ê) denote a subgraph of G. Let μ ∈ Z
V
≥0. The following

two statements are equivalent:

(i) Ĝ is the homomorphic image of a connected graph H = (W,F) of maximum
degree k by an onto function φ : W → V with |φ−1(v)| = μ(v) + 1 ∀v ∈ V .

(ii) There is a spanning tree T in the auxiliary graph G′ = (V ′, E′) such that
Ê ⊆ T , |T ∩Kv| ≤ |δE(v)|−1−μ(v) ∀v ∈ V , and finally, |δT (v)|

|δE(v)|−|T∩Kv| ≤ k.

We give a general linear programming relaxation for the problem. For any
set S ⊆ V ′ and set of edges F ⊆ E′, we use the notation F (S) = {{u, v} ∈
F : u, v ∈ S}. We introduce a variable xe for each edge e ∈ E′. The first set of
constraints enforce that x is in the convex hull of spanning trees of G′. We place
degree constraints on Ē-edges incident with V ′

v for a well chosen subset of vertices
v ∈ Q. We will initialize Q = V but remove these constraints successively in later
iterations. We also write the linear program with the edge set Ê ⊆ E′. Again
we initialize F = E′. Property 2 implies that the following linear program is a
relaxation, where E∗ = E is a set to be updated in later steps of the algorithm.

min
∑

e∈E∗
wexe

x(E∗) = |V ′| − 1
x(E∗(S)) ≤ |S| − 1 ∀S ⊆ V ′, S
= ∅
x(δE∗(V ′

v)) + kx(E∗(V ′
v)) ≤ k · degE(v) v ∈ Q

xe ≥ 0 ∀e ∈ E

(LPA)

We now give an algorithm based on the iterative relaxation paradigm. Iter-
ative relaxation and related techniques have previously been applied to degree-
constrained spanning tree problems [1,2,10,11], and we refer the reader to [3]
for further details and examples related to this technique.

1. Initialize Q ← V , E∗ ← E.
2. While Q
= ∅

(a) Let x denote the optimal extreme point solution to LPA.
(b) If there exists an edge e ∈ E∗ such that xe = 0, then E∗ ← E∗\{e}.
(c) If there exists a vertex v ∈ V such that one of the following is satisfied

degE∗(v) + (2k − 1) · |E∗(V ′
v)| ≤ (2k − 1) · degE(v) , or

degE∗(v) ≤ 2k − 1 ,

then Q ← Q\{v}.
3. Return the optimal extreme point solution x∗ to LPA.

In the long version of the paper, we prove that the above algorithm indeed
returns a (2k − 1)-trail. Clearly, the returned (2k − 1)-trail will have weight no
more than the value of LPA, since we only drop constraints during the algorithm,
and resolve the LP. Furthermore, we also obtained an integrality gap example,
showing that when comparing against the LP, the term 2k − 1 is best possible,
assuming arbitrary weight vectors which can also take negative values.

k-Trails: Recognition, Complexity, and Approximations 125

Acknowledgements. We are grateful to Michel Goemans, Anupam Gupta, Neil
Olver, and András Sebő for inspiring discussions, and to the anonymous referees for
many helpful comments. This research project started while both authors were guests at
the Hausdorff Research Institute for Mathematics (HIM) during the 2015 Trimester on
Combinatorial Optimization. Both authors are very thankful to the generous support
and inspiring environment provided by the HIM and the organizers of the trimester
program.

References

1. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generaliza-
tions of network design problems with degree bounds. Math. Program. Ser. A 141,
479–506 (2013)

2. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded
directed network design. SIAM J. Comput. 39(4), 1413–1431 (2009)

3. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization,
vol. 46. Cambridge University Press, Cambridge (2011)

4. McDiarmid, C.J.H.: Rado’s theorem for polymatroids. Math. Proc. Cambridge
Philos. Soc. 78, 263–281 (1975)

5. Molnár, M., Durand, S., Merabet, M.: Approximation of the degree-constrained
minimum spanning hierarchies. In: Halldórsson, M.M. (ed.) SIROCCO 2014.
LNCS, vol. 8576, pp. 96–107. Springer, Heidelberg (2014)

6. Molnár, M., Durand, S., Merabet, M.: A new formulation of degree-constrained
spanning problems. In: Proceedings of 9th International Colloquium on Graph
Theory and Combinatorics (ICGT) (2014). http://oc.inpg.fr/conf/icgt2014/

7. Molnár, M., Newman, A., Sebő, A.: Travelling salesmen on bounded degree trails,
Hausdorff report (in preparation) (2015)

8. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

9. Sebő, A.: Travelling salesmen on bounded degree trails. In: Presentation at HIM
Connectivity Workshop in Bonn, Presentation (2015). https://www.youtube.com/
watch?v=5Do2JMhgrCM

10. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC), pp. 661–670 (2007)

11. Zenklusen, R.: Matroidal degree-bounded minimum spanning trees. In: Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1512–1521 (2012)

http://oc.inpg.fr/conf/icgt2014/
https://www.youtube.com/watch?v=5Do2JMhgrCM
https://www.youtube.com/watch?v=5Do2JMhgrCM

Better s-t-Tours by Gao Trees

Corinna Gottschalk1(B) and Jens Vygen2

1 RWTH Aachen University, Aachen, Germany
corinna.gottschalk@oms.rwth-aachen.de

2 University of Bonn, Bonn, Germany
vygen@or.uni-bonn.de

Abstract. We consider the s-t-path TSP: given a finite metric space
with two elements s and t, we look for a path from s to t that con-
tains all the elements and has minimum total distance. We improve the
approximation ratio for this problem from 1.599 to 1.566. Like previous
algorithms, we solve the natural LP relaxation and represent an opti-
mum solution x∗ as a convex combination of spanning trees. Gao showed
that there exists a spanning tree in the support of x∗ that has only one
edge in each narrow cut (i.e., each cut C with x∗(C) < 2). Our main
theorem says that the spanning trees in the convex combination can be
chosen such that many of them are such “Gao trees” simultaneously at
all sufficiently narrow cuts.

1 Introduction

The traveling salesman problem (TSP) is one of the best-known NP-hard prob-
lems in combinatorial optimization. In this paper, we consider the s-t-path vari-
ant: given a finite metric space (V, c) and two elements s, t ∈ V , the goal is to
find a sequence v1, . . . , vn containing every element exactly once and with v1 = s
and vn = t, minimizing

∑n−1
i=1 c(vi, vi+1). For s = t, this is the well-known metric

TSP; but in this paper we assume s �= t.
The classical algorithm by Christofides (1976) computes a minimum-cost

spanning tree (V, S) and then does parity correction by adding a minimum-cost
matching on the vertices whose degree in S has the wrong parity.

While Christofides’ algorithm is still the best known approximation algorithm
for metric TSP (with ratio 3

2), there have recently been improvements for special
cases and variants (see e.g. Vygen’s 2012 survey), including the s-t-path TSP.

1.1 Previous Work

For the s-t-path TSP, Christofides’ algorithm has only an approximation ratio
of 5

3 as shown by Hoogeveen (1991). An, Kleinberg and Shmoys (2015) were the
first to improve on this and obtained an approximation ratio of 1+

√
5

2 ≈ 1.618.

This work was done during the trimester program on combinatorial optimization at
the Hausdorff Institute for Mathematics in Bonn.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 126–137, 2016.
DOI: 10.1007/978-3-319-33461-5_11

Better s-t-Tours by Gao Trees 127

They first solve the natural LP relaxation and represent an optimum solution
x∗ as a convex combination of spanning trees. This idea, first proposed by Held
and Karp (1970), was exploited earlier for different TSP variants by Asadpour
et al. (2010) and Oveis Gharan et al. (2011). Given this convex combination, An,
Kleinberg and Shmoys (2015) do parity correction for each of the contributing
trees and output the best of these solutions. Sebő (2013) improved the analysis of
this best-of-many Christofides algorithm and obtained the approximation ratio
8
5 . Gao (2015) gave a unified analysis. Vygen (2015) suggested to “reassemble”
the trees: starting with an arbitrary convex combination of spanning trees, he
computed a different one, still representing x∗, that avoids certain bad local
configurations. This led to the slightly better approximation ratio of 1.599.

In this paper, we will reassemble the trees more systematically to obtain a con-
vex combination with strong global properties. This will enable us to control the
cost of parity correction much better, leading to an approximation ratio of 1.566.

This also proves an upper bound of 1.566 on the integrality ratio of the
natural LP. The only known lower bound is 1.5. Sebő and Vygen (2014) proved
that the integrality ratio is indeed 1.5 for the graph s-t-path TSP, i.e., the
special case of graph metrics (where c(v, w) is the distance from v to w in a
given unweighted graph on vertex set V). Gao (2013) gave a simpler proof of
this result, which inspired our work: see Sect. 1.4.

1.2 Notation and Preliminaries

Throughout this paper, (V, c) is the given metric space, n := |V |, and E denotes
the set of edges of the complete graph on V . For any U ⊆ V we write E[U] for
the set of edges with both endpoints in U and δ(U) for the set of edges with
exactly one endpoint in U ; moreover, δ(v) := δ({v}) for v ∈ V . If F ⊆ E and
U ⊆ V , we denote by (V, F)[U] the subgraph (U,F ∩E[U]) of (V, F) induced by
U . For x ∈ R

E
≥0 we write c(x) :=

∑
e={v,w}∈E c(v, w)xe and x(F) :=

∑
e∈F xe

for F ⊆ E. Furthermore, χF ∈ {0, 1}E denotes the characteristic vector of a
subset F ⊆ E, and c(F) := c(χF) the cost of F . For F ⊂ E and f ∈ E, we write
F + f and F − f for F ∪ {f} and F\{f}, respectively.

For T ⊆ V with |T | even, a T -join is a set J ⊆ E for which |δ(v) ∩ J | is odd
if and only if v ∈ T . Edmonds (1965) proved that a minimum cost T -join can
be computed in polynomial time. Moreover, the minimum cost of a T -join is the
minimum over c(y) for y in the T -join polyhedron {y ∈ R

E
≥0 : y(δ(U)) ≥ 1 ∀U ⊂

V with |U ∩ T | odd} as proved by Edmonds and Johnson (1973).
To obtain a solution for the s-t-path TSP, it is sufficient to compute a con-

nected multigraph with vertex set V in which exactly s and t have odd degree.
We call such a graph an {s, t}-tour. As an {s, t}-tour contains an Eulerian walk
from s to t, we can obtain a Hamiltonian s-t-path (i.e. an s-t-path with vertex set
V) by traversing the Eulerian walk and shortcutting when the walk encounters
a vertex that has been visited already. Since c is a metric, it obeys the triangle
inequality. Thus, the resulting path is not more expensive than the {s, t}-tour.

By S we denote the set of edge sets of spanning trees in (V,E). For S ∈ S,
TS denotes the set of vertices whose degree has the wrong parity in (V, S), i.e.,

128 C. Gottschalk and J. Vygen

even for s or t and odd for v ∈ V \{s, t}. Christofides’ algorithm computes an
S ∈ S with minimum c(S) and adds a TS-join J with minimum c(J); this yields
an {s, t}-tour.

1.3 Best-of-Many Christofides

Like An, Kleinberg and Shmoys (2015), we begin by solving the natural LP
relaxation:

min c(x)
subject to x(δ(U)) ≥ 2 (∅ �= U ⊂ V, |U ∩ {s, t}| even)

x(δ(U)) ≥ 1 (∅ �= U ⊂ V, |U ∩ {s, t}| odd)
x(δ(v)) = 2 (v ∈ V \{s, t})
x(δ(v)) = 1 (v ∈ {s, t})

xe ≥ 0 (e ∈ E)

(1)

whose integral solutions are precisely the incidence vectors of the edge sets of the
Hamiltonian s-t-paths in (V,E). This LP can be solved in polynomial time (either
by the ellipsoid method Grötschel et al. (1981) or an extended formulation).
Let x∗ be an optimum basic solution; then x∗ has at most 2n − 3 positive
variables (Goemans 2006). Moreover, x∗ (in fact, every feasible solution) satisfies
x∗(E) = n − 1 and x∗(E[U]) ≤ |U | − 1 for all ∅ �= U ⊂ V . Therefore x∗ can be
written as convex combination of spanning trees, i.e. as x∗ =

∑
S∈S pSχS , where

p is a distribution on S, i.e., pS ≥ 0 for all S ∈ S and
∑

S∈S pS = 1.
As x∗ has at most 2n − 3 positive variables, we can assume that pS > 0 for

at most 2n− 2 spanning trees (V, S) by Carathéodory’s theorem. Such spanning
trees and numbers pS can be computed in polynomial time, using either the
ellipsoid method or the splitting-off technique (cf. Genova and Williamson 2015).

The best-of-many Christofides algorithm does the following. Compute an
optimum solution x∗ for (1) and obtain a distribution p with x∗ =

∑
S∈S pSχS

as above. For each tree (V, S) with pS > 0, compute a minimum weight TS-join
JS . Then, the multigraph (V, S

.∪ JS) is an {s, t}-tour. Output the best of these.
We will fix x∗ henceforth. An important concept in An, Kleinberg and Shmoys

(2015) and the subsequent works are the so-called narrow cuts, i.e., the cuts
C = δ(U) with ∅ �= U ⊂ V and x∗(C) < 2. We denote by C the set of all narrow
cuts. We are going to exploit their structure as well.

Lemma 1 (An, Kleinberg and Shmoys 2015). The narrow cuts form a
chain: there are sets {s} = U0 ⊂ U1 ⊂ · · · ⊂ U�−1 ⊂ U� = V \{t} so that
C = {δ(Ui) : i = 0, . . . , �}. These sets can be computed in polynomial time.

We number the narrow cuts C = {C0, C1 . . . , C�} with Ci = δ(Ui) (i = 0, . . . , �).

1.4 Gao Trees

Our work was inspired by the following idea of Gao (2013):

Better s-t-Tours by Gao Trees 129

Theorem 1 (Gao 2013). There exists a spanning tree S ∈ S with x∗
e > 0 for

all e ∈ S and |C ∩ S| = 1 for all C ∈ C.
In fact, Gao (2013) showed this for any vector x ∈ R

E
≥0 with x(δ(U)) ≥ 1 for

all ∅ �= U ⊂ V and x(δ(U)) ≥ 2 for all ∅ �= U ⊂ V with |U ∩ {s, t}| even. For
graph s-t-path TSP, one uses only variables corresponding to edges of the given
graph. Then every spanning tree has cost n−1. The approximation guarantee of
3
2 then follows from the fact that for a tree (V, S) with |S ∩C| = 1 for all C ∈ C,
the vector 1

2x∗ is in the TS-join polyhedron. But, as shown by Gao (2015), for
the general s-t-path TSP there may be no tree as in Theorem 1 whose cost is
bounded by the LP value.

Let us call a tree S ∈ S a local Gao tree at C if |C ∩ S| = 1. We call S a
global Gao tree if it is a local Gao tree at every narrow cut.

An, Kleinberg and Shmoys (2015) and Sebő (2013) observed that for every
distribution p with x∗ =

∑
S∈S pSχS and every narrow cut C ∈ C, at least a

2− x∗(C) fraction of the trees will be local Gao trees at C. However, in general
none of these trees will be a global Gao tree.

1.5 Our Contribution

Our main contribution is a new structural result: Starting from an arbitrary dis-
tribution of trees representing x∗, we can compute a new distribution in which
a sufficient number of trees are local Gao trees simultaneously for all sufficiently
narrow cuts. For example, if x∗(C) = 3

2 for all C ∈ C, at least half of our new
distribution will be made of global Gao trees. Here is our main structure theorem:

Theorem 2. For every feasible solution x∗ of (1), there are S1, . . . , Sr ∈ S and
p1, . . . , pr > 0 with

∑r
j=1 pj = 1 such that x∗ =

∑r
j=1 pjχ

Sj and for every C ∈ C
there exists a k ∈ {1, . . . , r} with

∑k
j=1 pj ≥ 2 − x∗(C) and |C ∩ Sj | = 1 for all

j = 1, . . . , k.

Note that this result immediately implies Theorem 1, simply by taking S1.
In the next section we will prove Theorem 2. In Sect. 3 we show how to obtain

such a distribution in polynomial time. Finally, in Sect. 4, we explain how this
leads to an improved approximation guarantee of the best-of-many Christofides
algorithm.

The intuition is as follows. For each tree S in our list, we find a vector yS in
the TS-join polyhedron and use it to bound the cost of parity correction. We aim
to bound the average cost of these vectors by an as small as possible multiple of
c(x∗). Following Sebő (2013), we design yS as follows. If S = IS

.∪ JS , where IS

is the s-t-path in S ∈ S, then χJS is in the TS-join polyhedron. Moreover, 1
2x∗

satisfies all constraints of the TS-join polyhedron except those of narrow cuts C
with |S ∩ C| even. We choose yS as a convex combination of χJS and 1

2x∗ but
need to add a correction term for even narrow cuts. For this we can use some
edges in IS′ , possibly of a different tree S′. The s-t-paths of the early trees in
our list, which are global Gao trees and thus do not need correction at narrow
cuts, can thus help pay for the late trees.

130 C. Gottschalk and J. Vygen

2 Proof of the Structure Theorem

We will start with an arbitrary convex combination x∗ =
∑

S∈S pSχS where the
pS (S ∈ S) are rational. If r is a common denominator, then we can take rpS

copies of S and write x∗ = 1
r

∑r
j=1 χSj .

Starting from this list S1, . . . , Sr ∈ S, we will successively exchange a pair of
edges in two of the trees. We will first satisfy the properties for the first tree S1,
then for S2, and so on. For each Sj , we will work on the narrow cuts C1, . . . , C�−1

in this order; note that |C0 ∩Sj | = |C� ∩Sj | = 1 always holds for all j = 1, . . . , r
due to x∗(δ(s)) = x∗(δ(t)) = 1. In the following we write

θi := r(2 − x∗(Ci))�

for i = 0, . . . , �. Note that θ0 = r ≥ θi for all i = 1, . . . , � because x∗(Ci) ≥ 1 =
x∗(C0) = x∗(δ(s)). Our goal is to obtain |Sj ∩ Ci| = 1 whenever j ≤ θi.

Note that |Sj ∩ Ci| = 1 implies that (V, Sj)[Ui] is connected, and we will
first obtain this weaker property by Lemma6, before obtaining |Sj ∩ Ci| = 1 by
Lemma 7.

We need a few preparations. Throughout this section, we use indices g, h, i, i′

for cuts and j, j′, k for trees. We first observe that a sufficient number of trees is
connected in every section between two narrow cuts.

Lemma 2. Let S1, . . . , Sr ∈ S such that x∗ = 1
r

∑r
j′=1 χSj′ . Let 0 ≤ h < i ≤ �

and 1 ≤ j ≤ r with j ≤ θh and j ≤ θi. Let M = Ui\Uh or M = Ui. Then there
exists an index k ≥ j such that (V, Sk)[M] is connected.

Proof. Assume the above is not true. Then |E[M]∩Sj′ | ≤ |M |−1 for all j′ < j,
and |E[M] ∩ Sj′ | ≤ |M | − 2 for j′ ≥ j. Therefore,

x∗(E[M]) = 1
r

r∑

j′=1

|E[M] ∩ Sj′ |

≤ 1
r

(
(j − 1)(|M | − 1) + (r − j + 1)(|M | − 2)

)
= |M | − 2 + j−1

r .

On the other hand, x∗(E[M]) = 1
2

(∑
v∈M x∗(δ(v)) − x∗(δ(M))

)
.

If M = Ui\Uh, we therefore have x∗(E[M]) = |M | − 1
2 (x

∗(Ch) + x∗(Ci)) +
x∗(Ch ∩ Ci) ≥ |M | − 1

2 (x
∗(Ch) + x∗(Ci)).

If M = Ui, we have x∗(E[M]) = |M | − 1
2 − 1

2x∗(Ci) = |M | − 1
2 (1 + x∗(Ci)).

Now, j ≤ θh and j ≤ θi implies 1 ≤ x∗(Ch) < 2− j−1
r and x∗(Ci) < 2− j−1

r .
Thus, in both cases,

x∗(E[M]) > |M | − 1
2 (2 − j−1

r + 2 − j−1
r) = |M | − 2 + j−1

r ,

a contradiction. ��
Next, a similar argument shows that, for any pair of narrow cuts, sufficiently

many trees have no edge in their intersection:

Better s-t-Tours by Gao Trees 131

Lemma 3. Let S1, . . . , Sr ∈ S such that x∗ = 1
r

∑r
j′=1 χSj′ . Let 0 ≤ h < i ≤ �

and 1 ≤ j ≤ r with j ≤ θh and j ≤ θi. Then there exists an index k ≥ j such
that Sk ∩ Ch ∩ Ci = ∅.
Proof. Using x∗(Ci′) < 2− j−1

r for i′ ∈ {h, i} and x∗(δ(U)) ≥ 2 for |U ∩ {s, t}|
even, we obtain

x∗(Ch ∩ Ci) = 1
2

(
x∗(Ch) + x∗(Ci) − x∗(δ(Ui\Uh))

)
< 2 − j−1

r − 1 = r−j+1
r .

Therefore, 1
r

∑r
j′=1 |Sj′ ∩ Ch ∩ Ci| = x∗(Ch ∩ Ci) < r−j+1

r , i.e. at most r − j
trees can contain an edge in Ch ∩ Ci. ��

Finally, as mentioned already in Sect. 1.4, many trees are local Gao trees at
a narrow cut:

Lemma 4. Let S1, . . . , Sr ∈ S such that x∗ = 1
r

∑r
j′=1 χSj′ . Let 1 ≤ i ≤ � − 1

and j ≤ θi with |Ci∩Sj | ≥ 2. Then there exists an index k > θi with |Ci∩Sk| = 1.

Proof. Suppose there exists no such k. Then we get rx∗(Ci) =
∑r

j′=1 |Ci∩Sj′ | ≥
(r − θi +1)2+ θi − 1 = 2r − r(2− x∗(Ci))�+1 > 2r − r(2− x∗(Ci)) = rx∗(Ci),
which is a contradiction. ��

Now we proceed to the main components of the proof of Theorem 2. Recall
that, in order to obtain |Sj ∩ Ci| = 1, we plan to first get the weaker condition
that (V, Sj)[Ui] is connected. While it is not, we exchange a pair of edges with a
later tree. We split the proof into two parts, beginning with the following lemma:

Lemma 5. Let 1 ≤ i ≤ � − 1 and M ⊆ Ui and Sj , Sk ∈ S such that (V, Sj)[M]
is disconnected and (V, Sk)[M] is connected and |Sj ∩ δ(Ui\M)| ≤ 1. Then there
exist edges e ∈ Sj and f ∈ Sk such that Sj − e + f ∈ S and Sk + e − f ∈ S and
e /∈ E[Ui] and f ∈ E[M].

Proof. Let A1, . . . , Aq be the vertex sets of the connected components of
(V, Sj)[M]; note that q ≥ 2 (For illustrations, see Fig. 1).

Let F := Sk ∩ ⋃q
p=1(δ(Ap)\δ(M)) be the set of edges of Sk between the sets

A1, . . . , Aq. Note that F ⊆ E[M]. For p = 1, . . . , q let Bp be the set of vertices
reachable from Ap in (V, Sk\F). Trivially, Ap ⊆ Bp for all p, and {B1, . . . , Bq}
is a partition of V because (V, Sk)[M] is connected and (V, Sk) is a tree.

Let Y be the union of the edge sets of the unique v-w-paths in Sj for all
v, w ∈ M . Note that Y ⊆ E[V \(Ui \ M)] because |Sj ∩ δ(Ui\M)| ≤ 1.

Claim: There exists an index p ∈ {1, . . . , q} and an edge e ∈ Y ∩ δ(Bp) such
that for every p′ ∈ {1, . . . , q}\{p} and v′ ∈ Ap′ , v′′ ∈ Ap, the v′-v′′-path in Sj

contains e.
To prove the Claim, observe that (V, Y) consists of a tree and possibly isolated

vertices. Choose an arbitrary root z in this tree and take an edge e ∈ Y ∩⋃q
p′=1 δ(Bp′) with maximum distance from z.

132 C. Gottschalk and J. Vygen

Ci

M

Ui

A1

A2

Aq

B1

B2

Bq

F

Y

e

Fig. 1. Edges of tree Sj are
green/thin, edges of Sk are
red/bold. Note that e could belong
to Ci (but not to δ(Ui\M)). (Color
figure online)

Let D := {v ∈ V : v is reachable
from z in (V, Y)but not in (V, Y −e)}. We will
show that D ∩ M = Ap for some p ∈
{1, . . . , q}. This will immediately imply that
p and e satisfy the properties of the Claim.

As e ∈ Y , there are v, w ∈ M such that
the v-w-path in Sj contains e. Then exactly
one of these two vertices belongs to D, so
w.l.o.g. v ∈ D ∩ M . Let p be the index with
v ∈ Ap.

Since (V, Sj)[Ap] is connected, this
implies Ap ⊆ D. Next, (D,Y ∩ E[D]) is a
tree and by the choice of e, it contains no
edge from

⋃q
p′=1 δ(Bp′). Therefore, D ⊆ Bp

and hence, D∩M = Ap. The Claim is proved.
Now, take an index p and an edge e as in

the Claim. Consider the path P in Sk that
connects the endpoints of e. Since e ∈ δ(Bp),
P has an edge f ∈ δ(Bp) ∩ Sk = δ(Ap) ∩ F .
Thus, (V, Sk + e − f) is a tree. The path in Sj that connects the endpoints of
f contains e by the Claim. Thus, (V, Sj − e + f) is a tree. We have f ∈ E[M]
since f ∈ F , and e �∈ E[Ui] as e ∈ Y ∩ δ(Bp). ��

Now we make (V, Sj)[Ui] connected without destroying previously obtained
properties:

Lemma 6. Let S1, . . . , Sr ∈ S such that x∗ = 1
r

∑r
j′=1 χSj′ . Let 1 ≤ j ≤ r and

1 ≤ i ≤ � − 1 such that j ≤ θi and |Sj ∩ Ch| = 1 for all h < i with j ≤ θh. Then
we can find Ŝ1, . . . , Ŝr ∈ S in polynomial time such that x∗ = 1

r

∑r
j′=1 χŜj′ , and

Ŝj′ = Sj′ for all j′ < j, and |Ŝj ∩ Ch| = 1 for all h < i with j ≤ θh, and
(V, Ŝj)[Ui] is connected.

Proof. Assume that (V, Sj)[Ui] is disconnected, i.e., |Sj ∩ E[Ui]| < |Ui| − 1. Let
h be the largest index smaller than i with j ≤ θh. Such an index must exist
because θ0 ≥ θi ≥ j.

Case 1: |Sj ∩ E[Ui\Uh]| < |Ui\Uh| − 1.
Let M := Ui\Uh. Note that |Sj ∩ δ(Ui\M)| = |Sj ∩Ch| = 1. Since (V, Sj)[M]

is not connected, by Lemma 2 there exists an index k > j such that (V, Sk)[M]
is connected.

Now we apply Lemma 5 and obtain two trees Ŝj := Sj − e + f and Ŝk :=
Sk + e − f with e /∈ E[Ui] and f ∈ E[M].

We have |Ŝj ∩ E[Ui]| = |Sj ∩ E[Ui]| + 1 and |Ŝj ∩ Ch′ | ≤ |Sj ∩ Ch′ | for all
h′ ≤ h and hence |Ŝj ∩ Ch′ | = 1 for h′ ≤ h with j ≤ θh′ . Note that j > θi′ for all
h < i′ < i, so a new edge f in such cuts Ci′ does no harm.

We replace Sj and Sk by Ŝj and Ŝk and leave the other trees unchanged. If
(V, Ŝj)[Ui] is still not connected, we iterate.

Better s-t-Tours by Gao Trees 133

CiCh

v w

ê

f

W
connected in Sj

M

Fig. 2. Tree Sj green/thin, Ŝk′

red/bold. The dashed edge f
is added to Sj by applying
Lemma 5. (Color figure online)

Case 2: |Sj ∩ E[Ui\Uh]| = |Ui\Uh| − 1.
(V, Sj)[Uh] is connected since |Sj ∩ Ch| = 1.
Moreover, (V, Sj)[Ui\Uh] is connected, but
(V, Sj)[Ui] is disconnected. Therefore, Sj must
contain an edge in Ch ∩Ci and Sj ∩Ch ⊂ Sj ∩Ci

and (V, Sj)[Ui] has exactly two connected com-
ponents: Uh and Ui\Uh (For illustrations, see
Fig. 2).

Case 2a: h > 0. Let g be the largest index
smaller than h with j ≤ θg. Set M := Ui\Ug.
Note that |Sj ∩ δ(Ui\M)| = |Sj ∩ Cg| = 1.
By Lemma 2 there exists an index k ≥ j with
(V, Sk)[M] connected. As (V, Sj)[M] is not con-
nected, we have k > j.

Case 2b: h = 0. Set M := Ui. Note that |Sj ∩ δ(Ui\M)| = |Sj ∩ δ(∅)| = 0. By
Lemma 2, there exists an index k ≥ j such that (V, Sk)[M] is connected. Since
(V, Sj)[M] is not connected, k > j.

Note that in both cases 2a and 2b, (V, Sj)[M] is disconnected. Now we apply
Lemma 5 to Sj and Sk and obtain two trees Ŝj := Sj −e+f and Ŝk := Sk+e−f

with e /∈ E[Ui] and f ∈ E[M]. We replace Sj and Sk by Ŝj and Ŝk and leave the
other trees unchanged. Then (V, Ŝj)[Ui] is connected. We have |Ŝj ∩Ch′ | = 1 for
all h′ < h with j ≤ θh′ , but we may have |Ŝj ∩ Ch| = 2 since E[M] ∩ Ch �= ∅.

Assume |Ŝj ∩Ch| = 2 (otherwise we are done). Then Ŝj ∩Ch ∩Ci = Sj ∩Ch ∩
Ci = Sj ∩ Ch, and this set contains precisely one edge ê = {v, w} (where v ∈ Uh

and w ∈ V \Ui). By Lemma3 there exists an index k′ > j with Ŝk′ ∩Ch ∩Ci = ∅.
Let W be the set of vertices reachable from w in (V, Ŝj\Ci). Since (V, Ŝj)[Ui]

is connected, Ŝj ∩ δ(W) = {ê}. The unique path in (V, Ŝk′) from v to w contains
at least one edge f̂ ∈ δ(W). Note that f̂ /∈ Ch by the choice of Ŝk′ . We replace
Ŝj and Ŝk′ by ˆ̂

Sj := Ŝj − ê + f̂ and ˆ̂
Sk′ := Ŝk′ + ê − f̂ . Then (V,

ˆ̂
Sj)[Ui] is still

connected and | ˆ̂Sj ∩ Ch′ | = 1 for all h′ < i with j ≤ θh′ . ��
Lemma 7. Let S1, . . . , Sr ∈ S such that x∗ = 1

r

∑r
j′=1 χSj′ . Let 1 ≤ i ≤ � − 1

and j ≤ θi such that (V, Sj)[Ui] is connected and |Sj ∩ Ch| = 1 for all h < i

with j ≤ θh. Then we can find Ŝ1, . . . , Ŝr ∈ S in polynomial time such that
x∗ = 1

r

∑r
j′=1 χŜj′ and Ŝj′ = Sj′ for all j′ < j and |Ŝj ∩ Ch| = 1 for all h ≤ i

with j ≤ θh.

Proof. Suppose |Sj ∩ Ci| ≥ 2. Then by Lemma 4 there exists an index k > θi

with |Sk ∩Ci| = 1. We will swap a pair of edges, reducing |Sj ∩Ci| and increasing
|Sk ∩ Ci| while maintaining the other properties (For illustrations, see Fig. 3).
Let Sk ∩ Ci = {{x, y}} with x ∈ Ui and y ∈ V \Ui. Let A be the set of vertices
reachable from y in (V, Sj\Ci). Note that A∩Ui = ∅. We have |δ(A)∩Sj ∩Ci| = 1
because (V, Sj)[Ui] is connected. So let e = {v, w} ∈ (Sj ∩Ci)\δ(A), with v ∈ Ui

and w ∈ V \Ui. Let B be the set of vertices reachable from w in (V, Sj\Ci). We

134 C. Gottschalk and J. Vygen

have w ∈ B, y ∈ A, and A∩B = ∅ by the choice of e. Consider the path P in Sk

from w to y. Note that P does not contain any vertex in Ui because |Sk ∩Ci| = 1.
But P contains at least one edge f ∈ δ(B).

Ci

v w

x y

e

A

B

f

P

Fig. 3. Tree Sj green/
thin, Sk red/bold (Color
figure online)

We will swap e and f . Since Sk ∩ Ci = {{x, y}}, the
w-v-path in Sk contains P . Therefore, Ŝk := Sk + e − f
is a tree. On the other hand, the path in Sj connect-
ing the endpoints of f must use an edge in δ(B). Since
Sj ∩E[Ui] is connected and Sj ∩ (δ(B)\Ci) = ∅, e is the
only edge in δ(B) ∩ Sj and thus, Ŝj := Sj + f − e is a
tree.

Since f ∈ E[V \Ui] and e ∈ Ci, we have |Ŝj ∩ Ci| =
|Sj ∩ Ci| − 1 and |Ŝj ∩ Ch| = |Sj ∩ Ch| for all h < i

with j ≤ θh. Moreover, (V, Ŝj)[Ui] is still connected.
As before, we replace Sj and Sk by Ŝj and Ŝk and
leave the other trees unchanged. If |Ŝj ∩ Ci| > 1, we
iterate. ��

Now the proof of Theorem 2 is a simple induction.
We scan the indices of the trees j = 1, . . . , r in this
order. For each j, we consider all narrow cuts Ci with
j ≤ θi. Since x∗(δ(s)) = x∗(δ(t)) = 1, we always have |Sj ∩ C0| = 1 and
|Sj ∩ C�| = 1 for all j = 1, . . . , r. Now let i ∈ {1, . . . , � − 1} with j ≤ θi.
Assuming |Sj ∩ Ch| = 1 for all h < i with j ≤ θh, we first apply Lemma 6 and
then Lemma 7. The new tree then satisfies |Sj ∩Ch| = 1 for all h ≤ i with j ≤ θh,
and S1, . . . Sj−1 remain unchanged.

3 Obtaining the Distribution in Polynomial Time

So far it was not clear whether the number r of trees in our distribution can be
polynomially bounded. In this section we show two solutions to this question.

First, one can start with an arbitrary distribution p with at most 2n−2 trees
S with pS > 0 and round the coefficients down to integral multiples of ε

2n2 for a
sufficiently small constant ε > 0, and then scale up all coefficients so that their
sum is 1 again. This way we will get a vector x close to x∗ that we can write as
x =

∑r
j=1

1
r χSj , where r ≤ 2n2

ε and Sj ∈ S for j = 1, . . . , r. It is not difficult to
show that x ∈ R

E
≥0 satisfies the properties

x(δ(s)) = x(δ(t)) = 1 and x∗(F) − ε ≤ x(F) ≤ x∗(F) + ε for all F ⊆ E. (2)

In the full version of this paper [arXiv:1511.05514] we show that the proof in
Sect. 2 also works in this case. More precisely:

Theorem 3. Given S1, . . . , Sr ∈ S, a feasible solution x∗ of (1) and ε ≥ 0 such
that x = 1

r

∑r
j=1 χSj satisfies (2), we can find Ŝ1, . . . , Ŝr ∈ S in polynomial time

such that x = 1
r

∑r
j=1 χŜj , and for every C ∈ C there exists a k ∈ {1, . . . , r} with

k
r ≥ 2 − x∗(C) − ε and |C ∩ Ŝj | = 1 for all j = 1, . . . , k.

http://arxiv.org/abs/1511.05514

Better s-t-Tours by Gao Trees 135

This is sufficient to obtain the claimed approximation ratio if ε is chosen
small enough. However, Kanstantsin Pashkovich [private communication, 2015]
suggested a more elegant solution: Theorem 2 implies a stronger version in which
r can be chosen to be less than 2n2 and the trees and p can be found in polynomial
time. We now explain how.

As before, fix an optimum basic solution x∗ of (1). Let ξ1 > · · · > ξk = 1 be
the distinct values among {x∗(C) : C ∈ C} and ξ0 := 2. Note that k ≤ � ≤ n − 2
by Lemma 1. Then Theorem 2 implies that the polytope defined by

k∑

h=1

(ξh−1 − ξh)xh = x∗

xh(Ci) = 1 (1 ≤ h ≤ k, 0 ≤ i ≤ �, x∗(Ci) ≤ ξh)

xh(E) = n − 1 (1 ≤ h ≤ k)

xh(E[U]) ≤ |U | − 1 (1 ≤ h ≤ k, ∅ �= U ⊂ V)

xh
e ≥ 0 (1 ≤ h ≤ k, e ∈ E)

is nonempty: if S1, . . . , Sr and p1, . . . , pr are as in Theorem 2, then

xh =
r∑

j=1

max
{
0, min

{
2 − ξh,

∑
j′≤j pj′

} − max
{
2 − ξh−1,

∑
j′<j pj′

}}

ξh−1 − ξh
χSj

defines a feasible solution. We can find a vector x in this polytope in poly-
nomial time by the ellipsoid method because the separation problem can be
solved in polynomial time. Then, writing each xh as convex combination xh =
∑2n−2

j=1 ph
j χSh

j of 2n − 2 spanning trees, and setting S(h−1)(2n−2)+j := Sh
j and

p(h−1)(2n−2)+j := (ξh−1 − ξh)ph
j for h = 1, . . . , k and j = 1, . . . , 2n − 2, yields a

decomposition x∗ =
∑k(2n−2)

j=1 pjχ
Sj with at most (2n−2)(n−2) spanning trees

and the properties of Theorem 2.

4 Analysis of the Approximation Ratio

In this section, we will analyze the best-of-many Christofides algorithm on a
distribution as in Theorem 2. We follow the framework from Vygen (2015) (based
on An, Kleinberg and Shmoys 2015 and Sebő 2013); see the end of Sect. 1 for an
intuition. In particular, we use the following definition and lemma from Vygen
(2015):

Definition 1. Given numbers 0 ≤ γS ≤ 1 for S ∈ S and β < 1
2 , we define the

benefit of (S,C) ∈ S × C to be bS,C := min
{

β(2−x∗(C))
1−2β , γS

}
if |S ∩ C| is even,

bS,C := 1 − γS if |S ∩ C| = 1, and bS,C = 0 otherwise.

136 C. Gottschalk and J. Vygen

Lemma 8. Let 0 ≤ β < 1
2 and 0 ≤ γS ≤ 1 for S ∈ S. Let p be a distribution on

S with x∗ =
∑

S∈S pSχS. If
∑

S∈S
pSbS,C ≥ β

1−2β (2 − x∗(C))
∑

S∈S:|S∩C| even
pS (3)

for all C ∈ C, then the best-of-many Christofides algorithm run on the trees
S ∈ S with pS > 0 returns a solution of cost at most (2 − β)c(x∗)

We now show how to set the γ-constants in order to maximize the benefits,
with the ultimate goal to choose β as large as possible.

Lemma 9. Let S1, . . . , Sr ∈ S such that x∗ = 1
r

∑r
j=1 χSj , r is even, and for

every C ∈ C there exists a k ∈ {1, . . . , r} with k
r ≥ 2 − x∗(C) and |C ∩ Sj | = 1

for all j = 1, . . . , k.
We set δ := 0.126, and γSj

= δ if j ≤ r
2 and γSj

= 1 − δ otherwise. Choose
β such that β

1−2β = 3.327. Then

1
r

r∑

j=1

bSj ,Ci
≥ 3.327 (2 − x∗(Ci)) 1

r |{j : |Sj ∩ Ci| even}| (4)

for all i = 0, . . . , �.

For the proof of this lemma, see the full version of this paper
[arXiv:1511.05514]. Now we obtain our approximation guarantee:

Theorem 4. There is a 1.566-approximation algorithm for the s-t-path TSP.

Proof. Let x∗ be an optimal solution to (1). Let S1, . . . , Sr′ ∈ S and rational
p1, . . . , pr′ > 0 as in Theorem 2. We showed in Sect. 3 how to obtain this in
polynomial time. Therefore, we can apply Lemma 9 to the trees S1, . . . , Sr′ with
appropriate multiplicities and obtain inequality (3) for β

1−2β = 3.327. Equiva-
lently, β = 3.327

7.654 > 0.434.
Thus, the conditions in Lemma 8 are met and best-of-many Christofides yields

an approximation ratio of at most 2 − β < 1.566. ��

5 Conclusion

The approximation ratio can probably be improved slightly by choosing the γSj

differently, but still depending only on j
r . However, using an analysis based on

Lemma 8, one cannot obtain a better approximation ratio than 14
9 because the

benefit can never be more than one and there can be cuts C with x∗(C) = 3
2

and
∑

S∈S:|S∩C| even pS = 1
2 ; therefore β

1−2β ≤ 4. Our ratio is already close to
this threshold.

On the other hand, it is not impossible that the best-of-many Christofides
algorithm on a distribution like the one obtained in Theorem2, or even on an
arbitrary distribution, has a better approximation ratio, maybe even 3

2 .

Acknowledgement. We thank Kanstantsin Pashkovich for allowing us to include his
idea described in the second half of Sect. 3.

http://arxiv.org/abs/1511.05514

Better s-t-Tours by Gao Trees 137

References

An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s-t
path TSP. J. ACM 62, Article 34, 34:1–34:28 (2015)

Asadpour, A., Goemans, M.X., Mądry, A., Oveis Gharan, S., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman
problem. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pp. 379–389 (2010)

Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman prob-
lem. Technical report 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh (1976)

Edmonds, J.: The Chinese postman’s problem. Bull. Oper. Res. Soc. Am. 13, B-73
(1965)

Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math.
Program. 5, 88–124 (1973)

Gao, Z.: An LP-based 3
2
-approximation algorithm for the s-t path graph traveling

salesman problem. Oper. Res. Lett. 41, 615–617 (2013)
Gao, Z.: On the metric s-t path traveling salesman problem. SIAM J. Discrete Math.

29, 1133–1149 (2015)
Genova, K., Williamson, D.P.: An experimental evaluation of the best-of-many

Christofides’ algorithm for the traveling salesman problem. In: Bansal, N., Finocchi,
I. (eds.) Algorithms – ESA 2015. LNCS, pp. 570–581. Springer, Heidelberg (2015)

Goemans, M.X.: Minimum bounded-degree spanning trees. In: Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp.
273–282 (2006)

Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1, 169–197 (1981)

Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees.
Oper. Res. 18, 1138–1162 (1970)

Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult than
cycles. Oper. Res. Lett. 10, 291–295 (1991)

Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the
traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2011), pp. 550–559 (2011)

Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M., Correa, J.
(eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013)

Sebö, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for graph-TSP, 3/2
for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34,
597–629 (2014)

Vygen, J.: New approximation algorithms for the TSP. OPTIMA 90, 1–12 (2012)
Vygen, J.: Reassembling trees for the traveling salesman. SIAM J. Discrete Math. To

appear. arXiv:1502.03715

http://arxiv.org/abs/1502.03715

Popular Edges and Dominant Matchings

Ágnes Cseh1(B) and Telikepalli Kavitha2

1 Reykjav́ık University, Reykjavik, Iceland
cseh@ru.is

2 Tata Institute of Fundamental Research, Mumbai, India
kavitha@tcs.tifr.res.in

Abstract. Given a bipartite graph G = (A∪B,E) with strict preference
lists and given an edge e∗ ∈ E, we ask if there exists a popular matching
in G that contains e∗. We call this the popular edge problem. A matching
M is popular if there is no matching M ′ such that the vertices that prefer
M ′ to M outnumber those that prefer M to M ′. It is known that every
stable matching is popular; however G may have no stable matching
with the edge e∗. In this paper we identify another natural subclass of
popular matchings called “dominant matchings” and show that if there is
a popular matching that contains the edge e∗, then there is either a stable
matching that contains e∗ or a dominant matching that contains e∗. This
allows us to design a linear time algorithm for the popular edge problem.
When preference lists are complete, we show an O(n3) algorithm to find
a popular matching containing a given set of edges or report that none
exists, where n = |A| + |B|.

1 Introduction

Our input is an instance G = (A ∪ B,E) of the stable marriage problem with
strict and possibly incomplete preference lists, along with an edge e∗ ∈ E. A
matching M is stable if there is no blocking pair with respect to M , in other
words, there is no pair (a, b) such that a is either unmatched or prefers b to
M(a) (a’s partner in M) and similarly, b is either unmatched or prefers a to
M(b). The problem of deciding if there exists a stable matching that contains
the edge e∗ is an old and well-studied problem – this was first considered by
Knuth [13] in 1976 who showed that a modified version of the Gale-Shapley
algorithm solves this problem. Here we consider a related problem that we call
the “popular edge” problem: is there a popular matching in G that contains the
edge e∗?

The notion of popularity, introduced by Gärdenfors [8] in 1975, is a relaxation
of stability. A popular matching allows blocking edges with respect to it, however
there is global acceptance for this matching. We make this formal now.

A vertex u ∈ A ∪ B prefers matching M to matching M ′ if either u is
matched in M and unmatched in M ′ or u is matched in both and it prefers
M(u) to M ′(u). For matchings M and M ′ in G, let φ(M,M ′) be the number of
vertices that prefer M to M ′. If φ(M ′,M) > φ(M,M ′) then M ′ is more popular
than M .
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 138–151, 2016.
DOI: 10.1007/978-3-319-33461-5 12

Popular Edges and Dominant Matchings 139

Definition 1. A matching M is popular if there is no matching that is more
popular than M ; in other words, φ(M,M ′) ≥ φ(M ′,M) for all matchings M ′

in G.

Thus in an election between any pair of matchings, where each vertex casts
a vote for the matching that it prefers, a popular matching never loses. Popular
matchings always exist in G since every stable matching is popular [8]. It is also
known that every stable matching is a minimum size popular matching [10]. As
stability is stricter than popularity, it may be the case that there is no stable
matching that contains the given edge e∗ while there is a popular matching that
contains e∗. Figure 1 has such an example.

a1 : b1 b2 b1 : a1 a2
a2 : b1 b2 : a1

a1 b1b2 a2
1 12 2

Fig. 1. The top-choice of both a1 and of a2 is b1; the second choice of a1 is b2. The
preference lists of the bi’s are symmetric. There is no edge between a2 and b2. The
matching S = {(a1, b1)} is the only stable matching here, while there is another popular
matching M = {(a1, b2), (a2, b1)}. Thus every edge is a popular edge here, while there
is only one stable edge, namely (a1, b1).

Stability is a very strong condition and there are several problems, for
instance, in allocating projects to students or in assigning applicants to training
posts, where the total absence of blocking edges may not be necessary. However
the popularity of a matching is required, otherwise the vertices could vote to
replace the current matching with a more popular one. The popular edge prob-
lem has applications in such a setting where the central authority seeks to pair
a ∈ A and b ∈ B with each other and desires a matching M such that M is
popular and (a, b) ∈ M .

A first attempt to solve this problem may be to ask for a stable matching
S in the subgraph obtained by deleting the endpoints of e∗ from G and add
e∗ to S. However S ∪ {e∗} need not be popular. Figure 2 has a simple example
where e∗ = (a2, b2) and the subgraph induced by a1, b1, a3, b3 has a unique
stable matching {(a1, b1)}. However {(a1, b1), (a2, b2)} is not popular in G as
{(a1, b3), (a2, b1)} is more popular. Note that there is a popular matching M∗ =
{(a1, b3), (a2, b2), (a3, b1)} that contains e∗.

It would indeed be surprising if it was the rule that for every edge e∗, there is
always a popular matching that can be decomposed as e∗+ a stable matching on
the remaining vertices, as popularity is a far more flexible notion than stability;
for instance, the set of vertices matched in every stable matching in G is the
same [7] while there can be a large variation (up to a factor of 2) in the sizes of
popular matchings in G. We need a larger palette than the set of stable matchings
to solve the popular edge problem. We now identify another natural subclass of
popular matchings called dominant popular matchings or dominant matchings,
in short.

140 Á. Cseh and T. Kavitha

a1 : b1 b3 b1 : a2 a1 a3
a2 : b1 b2 b2 : a2
a3 : b1 b3 : a1

a1 b1

b2 a2

b3 a3
1 22

1

1

e∗
2

3

Fig. 2. Here we have e∗ = (a2, b2). The top choice for a1 and a2 is b1, while b3 is a1’s
second choice and b2 is a2’s second choice; b1’s top choice is a2, second choice is a1, and
third choice is a3. The vertices b2, b3, and a3 have a2, a1, and b1 as their only neighbors.

Definition 2. Matching M is dominant if M is popular and moreover, for any
matching M ′ we have: if |M ′| > |M |, then M is more popular than M ′.

When M and M ′ gather the same number of votes in the election between M
and M ′, instead of declaring these matchings as incomparable, it seems natural to
regard the larger of M and M ′ as the superior matching. Dominant matchings are
those popular matchings that have no superior matchings. That is, a dominant
matching M gets at least as many votes as any other matching M ′ in an election
between them and if |M ′| > |M |, then M gets more votes than M ′.

Note that a dominant matching has to be a maximum size popular matching.
However not every maximum size popular matching is a dominant matching, as
the example (from [10]) in Fig. 3 demonstrates.

a1 : b1 b2 b3 b1 : a1 a2 a3
a2 : b1 b2 b2 : a1 a2
a3 : b1 b3 : a1

a1

b2

b1

a2

b3 a3

2

1

1 13

22

1

2

3

Fig. 3. The vertex b1 is the top choice for all ai’s and b2 is the second choice for a1

and a2 while b3 is the third choice for a1. The preference lists of the bi’s are symmetric.
There are 2 maximum size popular matchings here: M1 = {(a1, b1), (a2, b2)} and M2 =
{(a1, b2), (a2, b1)}. The matching M1 is not dominant since it is not more popular than
the larger matching M3 = {(a1, b3), (a2, b2), (a3, b1)}. The matching M2 is dominant
since M2 is more popular than M3.

Our Contribution. Theorem 1 is our main result here. This enables us to solve
the popular edge problem in linear time.

Theorem 1. There exists a popular matching in G = (A ∪ B,E) that contains
the edge e∗, if and only if there exists either a stable matching in G that contains
e∗ or a dominant matching in G that contains e∗.

Techniques. To show Theorem 1, we show that any popular matching M can be
decomposed as M0 ·∪M1, where M0 is dominant in the subgraph induced by the
vertices matched in M0, and in the subgraph induced by the remaining vertices,

Popular Edges and Dominant Matchings 141

M1 is stable. If M contains e∗, then e∗ is either in M0 or in M1. In the former
case, we show a dominant matching in G that contains e∗ and in the latter case,
we show a stable matching in G that contains e∗.

We also show that every dominant matching in G can be realized as an
image (under a simple and natural mapping) of a stable matching in a new
graph G′. This allows us to determine in linear time if there is a dominant
matching with the edge e∗. The above mapping between stable matchings in G′

and dominant matchings in G can also be used to efficiently find a max-weight
dominant matching in G, where each edge has a weight associated with it.

When every vertex in G = (A ∪ B,E) has a complete preference list, then
every popular matching is dominant. Thus in such instances, a max-weight pop-
ular matching can be efficiently computed and we use this to solve the “popular
set” problem. In the popular set problem, we are given a set {e1, e2, . . . , ek} of
edges and we want to find a popular matching with all these edges, if one exists.
We show an O(n3) algorithm for this problem (via max-weight popular match-
ing) when preference lists are complete, where n = |A| + |B|. When preference
lists are incomplete, the complexity of the popular set problem is open, for k ≥ 2.

Related Results. Stable matchings were defined by Gale and Shapley in their
landmark paper [6]. The attention of the community was drawn very early to
the characterization of stable edges: edges and sets of edges that can appear in a
stable matching. In the seminal book of Knuth [13], stable edges first appeared
under the term “arranged marriages”. Knuth presented a linear time algorithm
to find a stable matching with a given stable set of edges or report that none
exists. Gusfield and Irving [9] provided a similar, simple method for the stable
edge problem with the same running time.

The stable edge problem is a highly restricted case of the max-weight sta-
ble matching problem, where a stable matching that has the maximum edge
weight among all stable matchings is sought. With the help of edge weights, var-
ious stable matching problems can be modeled, such as stable matchings with
restricted edges [3] or egalitarian stable matchings [11]. A simple and elegant
formulation of the stable matching polytope of G = (A ∪ B,E) is known [15]
and using this, a max-weight stable matching can be computed in polynomial
time via linear programming. When edge weights are non-negative integers,
Feder [4,5] showed a max-weight stable matching algorithm with running time
O(n2 · log(C

n2 +2) ·min {n,
√

C}), where n is the number of vertices and C is the
optimal weight computed based on the weight function represented as the sum
of U-shaped weight functions at each vertex.

The popular matching problem is to decide if a given instance G = (A∪B,E)
admits a popular matching or not. When ties are allowed in preference lists, this
problem is NP-complete [1,2]. With strict preference lists, the popular matching
problem becomes easy since every stable matching is popular [8]. The size of a
stable matching in G can be as small as |Mmax|/2, where Mmax is a maximum
size matching in G. Relaxing stability to popularity yields larger matchings and
it is easy to show that a largest popular matching has size at least 2|Mmax|/3 in
G = (A ∪ B,E) with strict preference lists. Efficient algorithms for computing

142 Á. Cseh and T. Kavitha

a popular matching of maximum size were shown in [10,12]; in fact, both these
algorithms compute dominant matchings. The popular edge problem was solved
by McDermid and Irving [14] for bipartite instances, where only one side has
preferences and is allowed to vote.

Organization of the Paper. A characterization of dominant matchings is
given in Sect. 2. In Sect. 3 we show a surjective mapping between stable match-
ings in a larger graph G′ and dominant matchings in G. Section 4 has our algo-
rithm for the popular edge problem. Due to space constraints, some proofs have
been omitted from this version of the paper. These proofs will be included in
the full version of the paper.

2 A Characterization of Dominant Matchings

Let M be any matching in G = (A ∪ B,E). Recall that each u ∈ A ∪ B has a
strict and possibly incomplete preference list and let M(u) denote u’s partner
in M .

Definition 3. For any u ∈ A ∪ B and distinct neighbors x and y of u, define
u’s vote between x and y as + if u prefers x to y and − if u prefers y to x.

If a vertex u is unmatched in M , then M(u) is undefined and this is the least
preferred state for u, so voteu(v,M(u)) = + for any neighbor v of u. Label each
edge e = (a, b) in E \ M by the pair (αe, βe), where αe = votea(b,M(a)) and
βe = voteb(a,M(b)), i.e., αe is a’s vote for b vs. M(a) and βe is b’s vote for a
vs. M(b).

For any edge (a, b) /∈ M , there are 4 possibilities for the label of edge (a, b):

– it is (+,+) if (a, b) blocks M in the stable matching sense;
– it is (+,−) if a prefers b to M(a) while b prefers M(b) to a;
– it is (−,+) if a prefers M(a) to b while b prefers a to M(b);
– it is (−,−) if both a and b prefer their respective partners in M to each other.

Let GM be the subgraph of G obtained by deleting edges that are labeled (−,−).
The following theorem characterizes popular matchings.

Theorem 2 (from [10]). A matching M is popular if and only if the following
three conditions are satisfied in the subgraph GM :

(i) There is no alternating cycle wrt M that contains a (+,+) edge.
(ii) There is no alternating path starting from an unmatched vertex wrt M that

contains a (+,+) edge.
(iii) There is no alternating path wrt M that contains two or more (+,+) edges.

Lemma 1 characterizes those popular matchings that are dominant. The “if”
side of Lemma 1 was shown in [12]: it was shown that if there is no augmenting
path with respect to a popular matching M in GM then M is more popular than
all larger matchings.

Popular Edges and Dominant Matchings 143

Here we show that the converse holds as well, i.e., if M is a popular matching
such that M is more popular than all larger matchings, in other words, if M
is a dominant matching, then there is no augmenting path with respect to M
in GM .

Lemma 1. A popular matching M is dominant if and only if there is no aug-
menting path with respect to M in GM .

Corollary 1 is a characterization of dominant matchings. This follows imme-
diately from Lemma 1 and Theorem 2.

Corollary 1. Matching M is a dominant matching if and only if M satisfies
conditions (i)–(iii) of Theorem 2 and condition (iv): there is no augmenting path
wrt M in GM .

3 The Set of Dominant Matchings

In this section we show a surjective mapping from the set of stable matchings
in a new instance G′ = (A′ ∪ B′, E′) to the set of dominant matchings in G =
(A ∪ B,E). It will be convenient to refer to vertices in A and A′ as men and
vertices in B and B′ as women. The construction of G′ = (A′ ∪ B′, E′) is as
follows.

– Corresponding to every man a ∈ A, there will be two men a0 and a1 in A′

and one woman d(a) in B′. The vertex d(a) will be referred to as the dummy
woman corresponding to a. Corresponding to every woman b ∈ B, there will
be exactly one woman in B′ – for the sake of simplicity, we will use b to refer
to this woman as well. Thus B′ = B ∪ d(A), where d(A) = {d(a) : a ∈ A} is
the set of dummy women.

– Regarding the other side of the graph, A′ = A0∪A1, where Ai = {ai : a ∈ A}
for i = 0, 1, and vertices in A0 are called level 0 vertices, while vertices in A1

are called level 1 vertices.

We now describe the edge set E′ of G′. For each a ∈ A, the vertex d(a) has
exactly two neighbors: these are a0 and a1; d(a)’s preference order is a0 followed
by a1. The dummy woman d(a) is a1’s most preferred neighbor and a0’s least
preferred neighbor. The preference list of a0 is all the neighbors of a (in a’s
preference order) followed by d(a). The preference list of a1 is d(a) followed by
the neighbors of a (in a’s preference order) in G.

For any b ∈ B, its preference list in G′ is level 1 neighbors in the same order of
preference as in G followed by level 0 neighbors in the same order of preference
as in G. For instance, if b’s preference list in G is a followed by a′, then b’s
preference list in G′ is top-choice a1, then a′

1, and then a0, and the last-choice
is a′

0.
We now define the mapping T : {stable matchings in G′} → {dominant

matchings in G}. Let M ′ be any stable matching in G.

144 Á. Cseh and T. Kavitha

– T (M ′) is the set of edges obtained by deleting all edges involving vertices in
d(A) (i.e., dummy women) from M ′ and replacing every edge (ai, b) ∈ M ′,
where b ∈ B and i ∈ {0, 1}, by the edge (a, b).

It is easy to see that T (M ′) is a valid matching in G. This is because M ′ has
to match d(a), for every a ∈ A, since d(a) is the top-choice for a1. Thus for each
a ∈ A, one of a0, a1 has to be matched to d(a). Hence at most one of a0, a1 is
matched to a non-dummy woman b and thus M = T (M ′) is a matching in G.
It can be shown that M satisfies properties (i)–(iv) that characterize dominant
matchings (see Corollary 1). Thus M is a dominant matching in G.

T is Surjective. We now show that corresponding to any dominant matching
M in G, there is a stable matching M ′ in G′ such that T (M ′) = M . We will
work in GM , the subgraph of G obtained by deleting all edges labeled (−,−).
We now construct sets A0, A1 ⊆ A and B0, B1 ⊆ B as described in the algorithm
below. These sets will be useful in constructing the matching M ′.

0. Let A0 = B1 = ∅, A1 = {unmatched men in M}, B0 = {unmatched women
in M}.

1. For every edge (y, z) ∈ M that is labeled (+,+) do:
– let A0 = A0 ∪ {y}, B0 = B0 ∪ {M(y)}, B1 = B1 ∪ {z}, and A1 =

A1 ∪ {M(z)}.
2. While there exists a matched man a /∈ A0 adjacent in GM to a woman in B0

do:
– A0 = A0 ∪ {a} and B0 = B0 ∪ {M(a)}.

3. While there exists a matched woman b /∈ B1 adjacent in GM to a man in A1

do:
– B1 = B1 ∪ {b} and A1 = A1 ∪ {M(b)}.

All unmatched men are in A1 and all unmatched women are in B0. For
every edge (y, z) that is labeled (+,+), we add y and its partner to A0 and B0,
respectively while z and its partner are added to B1 and A1, respectively. For
any man a, if a is adjacent to a vertex in B0 and a is not in A0, then a and its
partner get added to A0 and B0, respectively. Similarly, for any woman b, if b is
adjacent to a vertex in A1 and b is not in B1, then b and its partner get added
to B1 and A1, respectively.

The following observations are easy to see (refer to Fig. 4). Every a ∈ A1 has
an even length alternating path in GM to either:

(1) a man unmatched in M (by Step 0 and Step 3) or
(2) a man M(z) where the woman z has an edge labeled (+,+) incident on it

(by Step 1 and Step 3).
Similarly, every a ∈ A0 has an odd length alternating path in GM to either:

(3) a woman unmatched in M (by Step 0 and Step 2) or
(4) a woman M(y) where the man y has an edge labeled (+,+) incident on it

(by Step 1 and Step 2).

Popular Edges and Dominant Matchings 145

A0

A0

B0

B0

B0

A0

A0

A1

A1

B0

B0

B1

B1

(+,+)

A1

A1

A1

B1

B1

Fig. 4. Vertices get added to A1 and A0 by alternating paths in GM from either
unmatched vertices (first and third paths) or endpoints of edges labeled (+,+) (middle
path). The solid black edges are in M , and the white vertices get added to their
respective sets in Steps 0 and 1.

We show the following lemma here and its proof is based on the charac-
terization of dominant matchings in terms of conditions (i)–(iv) as given by
Corollary 1. We will also use (1)–(4) observed above in our proof.

Lemma 2. A0 ∩ A1 = ∅.
Proof. Case 1. Suppose a satisfies reasons (1) and (3) for its inclusion in A1 and
in A0, respectively. So a is in A1 because it is reachable via an even alternating
path in GM from an unmatched man u; also a is in A0 because it is reachable
via an odd length alternating path in GM from an unmatched woman v. Then
there is an augmenting path 〈u, . . . , v〉 wrt M in GM – a contradiction to the
fact that M is dominant (by Lemma 1).

Case 2. Suppose a satisfies reasons (1) and (4) for its inclusion in A1 and in A0,
respectively. So a is in A1 because it is reachable via an even alternating path wrt
M in GM from an unmatched man u; also a is in A0 because it is reachable via
an odd length alternating path in GM from z, where edge (y, z) is labeled (+,+).
Then there is an alternating path wrt M in GM from an unmatched man u to
the edge (y, z) labeled (+,+) and this is a contradiction to condition (ii) of
popularity.

Case 3. Suppose a satisfies reasons (2) and (3) for its inclusion in A1 and in
A0, respectively. This case is absolutely similar to Case 2. This will cause an
alternating path wrt M in GM from an unmatched woman to an edge labeled
(+,+), a contradiction again to condition (ii) of popularity.
Case 4. Suppose a satisfies reasons (2) and (4) for its inclusion in A1 and in A0,
respectively. So a is reachable via an even length alternating path in GM from
an edge labeled (+,+) and M(a) is also reachable via an even length alternating
path in GM from an edge labeled (+,+). If it is the same edge labeled (+,+)
that both a and M(a) are reachable from, then there is an alternating cycle in
GM with a (+,+) edge – a contradiction to condition (i) of popularity. If these
are 2 different edges labeled (+,+), then we have an alternating path in GM

with two edges labeled (+,+) – a contradiction to condition (iii) of popularity.
These four cases finish the proof that A0 ∩ A1 = ∅. �

146 Á. Cseh and T. Kavitha

We now describe the construction of the matching M ′. Initially M ′ = ∅.

– For each a ∈ A0: add the edges (a0,M(a)) and (a1, d(a)) to M ′.
– For each a ∈ A1: add the edge (a0, d(a)) to M ′ and if a is matched in M then

add (a1,M(a)) to M ′.
– For a /∈ (A0 ∪ A1): add the edges (a0,M(a)) and (a1, d(a)) to M ′.

(Note that the men outside A0 ∪ A1 are not reachable from either unmatched
vertices or edges labeled (+,+) via alternating paths in GM .)

It is reasonably straightforward to show that M ′ is a stable matching in G′.
For each a ∈ A, note that exactly one of (a0, d(a)), (a1, d(a)) is in M ′. In order
to form the set T (M ′), the edges of M ′ with women in d(A) are pruned and
each edge (ai, b) ∈ M ′, where b ∈ B and i ∈ {0, 1}, is replaced by (a, b). It is
easy to see that T (M ′) = M .

This concludes the proof that every dominant matching in G can be realized
as an image under T of some stable matching in G′. Thus T is surjective.

Max-Weight Popular Matchings. Our mapping T can also be used to solve
the max-weight dominant matching problem in polynomial time. Here we are
given a weight function w : E → Q and the problem is to find a dominant
matching in G whose sum of edge weights is the highest. Using the function T ,
this problem can be easily reduced to computing a max-weight stable matching
in G′.

If every vertex in G = (A ∪ B,E) has a complete preference list, then every
popular matching M is dominant. This is because M is A-perfect (assuming
|A| ≤ |B|). So every vertex in A is matched in M , thus there is no augmenting
path with respect to M in G (and thus in GM). It now follows from Lemma 1
that M is dominant. Thus we can deduce Theorem 3.

Theorem 3. Given a graph G = (A∪B,E) with strict and complete preference
lists and a weight function w : E → Q, the problem of computing a max-weight
popular matching can be solved in polynomial time.

We now use the above result on max-weight popular matchings to efficiently
solve the popular set problem in complete bipartite graphs. In the popular set
problem, we are given a set {e1, . . . , ek} and we need to find a popular matching
containing these k edges, if one exists. Else we seek a popular matching that
contains as many of these edges as possible. The problem of determining if there
exists a popular matching containing all these k edges can be easily posed as a
max-weight popular matching problem by assigning edge weights as follows: for
1 ≤ i ≤ k, set w(ei) = 1 and set the weight of every other edge to be 0.

It is easy to see that under the above assignment of weights, a max-weight
popular matching is exactly a popular matching that contains the largest number
of edges in {e1, . . . , ek}. In particular, if the weight of this popular matching is
k, then there exists a popular matching that contains all these k edges. Using
the max-weight stable matching algorithm of Feder [4,5] here, we can deduce
the following theorem.

Popular Edges and Dominant Matchings 147

Theorem 4. The popular set problem in G = (A∪B,E) with strict and complete
preference lists can be solved in O(n3) time, where |A| + |B| = n.

4 The Popular Edge Problem

In this section we show a decomposition for any popular matching in terms of
a stable matching and a dominant matching. We use this result to design a
linear time algorithm for the popular edge problem. Here we are given an edge
e∗ = (u, v) in G = (A ∪ B,E) (with strict and possibly incomplete preference
lists) and we would like to know if there exists a popular matching in G that
contains e∗. We claim the following algorithm solves the above problem.

1. If there is a stable matching Me∗ in G that contains edge e∗, then return Me∗ .
2. If there is a dominant matching M ′

e∗ in G that contains edge e∗, then
return M ′

e∗ .
3. Return “there is no popular matching that contains edge e∗ in G”.

Running time of the above algorithm. In step 1 of our algorithm, we have to
determine if there exists a stable matching Me∗ in G that contains e∗ = (u, v).
We modify the Gale-Shapley algorithm so that the woman v rejects all proposals
from anyone worse than u. If the modified Gale-Shapley algorithm produces a
matching M containing e∗, then it will be a men-optimal matching among stable
matchings in G that contain e∗. Else no stable matching in G contains e∗. We
refer the reader to [9, Section 2.2.2] for the correctness of the modified Gale-
Shapley algorithm; it is based on the following fact:

– If G admits a stable matching that contains e∗ = (u, v), then exactly one of
(i), (ii), (iii) occurs in any stable matching M of G: (i) e∗ ∈ M , (ii) v is
matched to a neighbor better than u, (iii) u is matched to a neighbor better
than v.

In step 2 of our algorithm for the popular edge problem, we have to determine
if there exists a dominant matching in G that contains e∗ = (u, v). This is
equivalent to checking if there exists a stable matching in G′ that contains either
the edge (u0, v) or the edge (u1, v). This can be determined by using the same
modified Gale-Shapley algorithm as given in the previous paragraph. Thus both
steps 1 and 2 of our algorithm can be implemented in O(m) time, where m = |E|.

We now show the correctness of our algorithm. Let M be a popular matching
in G that contains edge e∗. We will use M to show that there is either a stable
matching or a dominant matching that contains e∗. As before, label each edge
e = (a, b) outside M by the pair of votes (αe, βe), where αe is a’s vote for b vs.
M(a) and βe is b’s vote for a vs. M(b).

We run the following algorithm now – this is similar to the algorithm in the
previous section (where we showed T to be surjective) to build the subsets A0, A1

of A and B0, B1 of B, except that all the sets A0, A1, B0, B1 are initialized to
empty sets here.

148 Á. Cseh and T. Kavitha

0. Initialize A0 = A1 = B0 = B1 = ∅.
1. For every edge (a, b) ∈ M that is labeled (+,+):

– let A0 = A0 ∪ {a}, B1 = B1 ∪ {b}, A1 = A1 ∪ {M(b)}, and B0 =
B0 ∪ {M(a)}.

2. While there exists a man a′ /∈ A0 that is adjacent in GM to a woman in B0

do:
– A0 = A0 ∪ {a′} and B0 = B0 ∪ {M(a′)}.

3. While there exists a woman b′ /∈ B1 that is adjacent in GM to a man in A1

do:
– B1 = B1 ∪ {b′} and A1 = A1 ∪ {M(b)}.

All vertices added to the sets A0 and B1 are matched in M – otherwise there
would be an alternating path from an unmatched vertex to an edge labeled (+,+)
and this contradicts condition (ii) of popularity of M (see Theorem 2). Note that
every vertex in A1 is reachable via an even length alternating path wrt M in GM

from some man M(b) whose partner b has an edge labeled (+,+) incident on it.
Similarly, every vertex in A0 is reachable via an odd length alternating path wrt
M in GM from some woman M(a) whose partner a has an edge labeled (+,+)
incident on it. The proof of Case 4 of Lemma 2 shows that A0 ∩ A1 = ∅.

We have B1 = M(A1) and B0 = M(A0) (see Fig. 5). All edges labeled (+,+)
are in A0 ×B1 (from our algorithm) and all edges in A1 ×B0 have to be labeled
(−,−) (otherwise we would contradict either condition (i) or (iii) of popularity
of M).

Let A′ = A0 ∪ A1 and B′ = B0 ∪ B1. Let M0 be the matching M restricted
to A′ ∪ B′. The matching M0 is popular on A′ ∪ B′. Suppose not and there is a
matching N0 on A′∪B′ that is more popular. Then the matching N0∪(M \M0) is
more popular than M , a contradiction to the popularity of M . Since M0 matches
all vertices in A′ ∪ B′, it follows that M0 is dominant on A′ ∪ B′.

A1

A0 B0

B1

A\A B\B

Fig. 5. M0 is the matching M restricted to A′ ∪ B′. All unmatched vertices are in
(A \ A′) ∪ (B \ B′).

Let M1 = M \ M0 and let Y = A \ A′ and Z = B \ B′. The matching M1 is
stable on Y ∪ Z as there is no edge labeled (+,+) in Y × Z (all such edges are
in A0 × B1 by Step 1 of our algorithm above).

Popular Edges and Dominant Matchings 149

The subgraph GM contains no edge in A1 × Z – otherwise such a woman
z ∈ Z should have been in B1 (by Step 3 of the algorithm above) and similarly,
GM contains no edge in Y ×B0 – otherwise such a man y ∈ Y should have been
in A0 (by Step 2 of this algorithm). We will now show Lemmas 3 and 4. These
lemmas prove the correctness of our algorithm.

Lemma 3. If e∗ ∈ M0 then there exists a dominant matching in G that con-
tains e∗.

Proof. Let H be the induced subgraph of G on Y ∪ Z. We will transform the
stable matching M1 in H to a dominant matching M∗

1 in H. We do this by
computing a stable matching in the graph H ′ = (Y ′ ∪ Z ′, E′) – the definition of
H ′ (with respect to H) is analogous to the definition of G′ (with respect to G)
in Sect. 3. So for each man y ∈ Y , we have two men y0 and y1 in Y ′ and one
dummy woman d(y) in Z ′; the set Z ′ = Z ∪ d(Y) and the preference lists of the
vertices in Y ′ ∪ Z ′ are exactly as given in Sect. 2 for the vertices in G′.

We wish to compute a dominant matching in H, equivalently, a stable match-
ing in H ′. However we will not compute a stable matching in H ′ from scratch
since we want to obtain a dominant matching in H using M1. So we compute
a stable matching in H ′ by starting with the following matching in H ′ (this is
essentially the same as M1):

– for each edge (y, z) in M1, include the edges (y0, z) and (y1, d(y)) in this initial
matching and for each unmatched man y in M1, include the edge (y0, d(y))
in this matching. This is a feasible starting matching as there is no blocking
pair with respect to this matching.

Now run the Gale-Shapley algorithm in H ′ with unmatched men proposing
and women disposing. Note that the starting set of unmatched men is the set of
all men y1 where y is unmatched in M1. However as the algorithm progresses,
other men could also get unmatched and propose. Let M ′

1 be the resulting stable
matching in H ′. Let M∗

1 be the dominant matching in H corresponding to the
stable matching M ′

1 in H ′.
Observe that M0 is untouched by the transformation M1 � M∗

1 . Let M∗ =
M0 ∪ M∗

1 . Since e∗ ∈ M0, the matching M∗ contains e∗. The proof that M∗ is
a dominant matching in G will be given in the full version of the paper. This
finishes the proof of Lemma 3. �
Lemma 4. If the edge e∗ ∈ M1 then there exists a stable matching in G that
contains e∗.

Proof. Here will leave M1 untouched and transform the dominant matching M0

on A′ ∪ B′ to a stable matching M ′
0 on A′ ∪ B′. We do this by demoting all men

in A1. That is, we run the stable matching algorithm on A′ ∪B′ with preference
lists as in the original graph G, i.e., men in A1 are not promoted over the ones
in A0. Our starting matching is M0 restricted to edges in A1 × B1. Since there
is no blocking pair with respect to M0 in A1 × B1, this is a feasible starting
matching.

150 Á. Cseh and T. Kavitha

Now unmatched men (all those in A0) propose in decreasing order of pref-
erence to the women in B′ and when a woman receives a better proposal than
what she currently has, she discards her current partner and accepts the new
proposal. This may make men in A1 single and so they too propose. This is the
Gale-Shapley algorithm with the only difference that our starting matching is
not empty but M0 restricted to the edges of A1 × B1. Let M ′

0 be the resulting
matching on A′ ∪ B′. Let M ′ = M ′

0 ∪ M1. This is a matching that contains the
edge e∗ since e∗ ∈ M1. The proof that M ′ is a dominant matching in G will be
given in the full version of the paper. This finishes the proof of Lemma 4. �
We have thus shown the correctness of our algorithm. Theorem 5 now follows.

Theorem 5. Given a stable marriage instance G = (A ∪ B,E) with strict pref-
erence lists and an edge e∗ ∈ E, we can determine in linear time if there exists
a popular matching in G that contains e∗.

We remark that identifying the whole set of popular edges in an instance also
requires linear computation time. In the proof of Theorem 5 it is stated that an
edge is popular if and only if it corresponds to a stable edge in G or G′. Due to [9],
we can compute the set of stable edges in linear time in G and in G′ as well.

Acknowledgment. Thanks to Chien-Chung Huang for useful discussions which led
to the definition of dominant matchings.

References

1. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010)

2. Cseh, Á., Huang, C.-C., Kavitha, T.: Popular matchings with two-sided preferences
and one-sided ties. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 367–379. Springer, Heidelberg (2015)

3. Dias, V.M.F., da Fonseca, G.D., de Figueiredo, C.M.H., Szwarcfiter, J.L.: The
stable marriage problem with restricted pairs. Theor. Comput. Sci. 306, 391–405
(2003)

4. Feder, T.: A new fixed point approach for stable networks and stable marriages.
J. Comput. Syst. Sci. 45, 233–284 (1992)

5. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11, 291–319 (1994)
6. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.

Math. Monthly 69, 9–15 (1962)
7. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete

Appl. Math. 11, 223–232 (1985)
8. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav.

Sci. 20, 166–173 (1975)
9. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-

rithms. MIT Press, Cambridge (1989)
10. Huang, C.-C., Kavitha, T.: Popular matchings in the stable marriage problem. Inf.

Comput. 222, 180–194 (2013)

Popular Edges and Dominant Matchings 151

11. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal”
stable marriage. J. ACM 34, 532–543 (1987)

12. Kavitha, T.: A size-popularity tradeoff in the stable marriage problem. SIAM J.
Comput. 43, 52–71 (2014)

13. Knuth, D.: Mariages Stables. Les Presses de L’Université de Montréal (1976).
English translation in Stable Marriage and its Relation to Other Combinatorial
Problems. CRM Proceedings and Lecture Notes, vol. 10. American Mathematical
Society (1997)

14. McDermid, E., Irving, R.W.: Popular matchings: structure and algorithms. J.
Comb. Optim. 22(3), 339–359 (2011)

15. Rothblum, U.G.: Characterization of stable matchings as extreme points of a poly-
tope. Math. Program. 54, 57–67 (1992)

Semidefinite and Linear Programming
Integrality Gaps for Scheduling

Identical Machines

Adam Kurpisz1, Monaldo Mastrolilli1, Claire Mathieu2, Tobias Mömke3(B),
Victor Verdugo2,4, and Andreas Wiese5

1 Dalle Molle Institute for Artificial Intelligence Research, Manno, Switzerland
2 Department of Computer Science,

CNRS UMR 8548, École normale supérieure, Paris, France
3 Department of Computer Science, Saarland University, Saarbrücken, Germany

moemke@cs.uni-saarland.de
4 Department of Industrial Engineering, Universidad de Chile, Santiago, Chile

5 Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract. Sherali-Adams [25] and Lovász-Schrijver [21] developed sys-
tematic procedures to strengthen a relaxation known as lift-and-project
methods. They have been proven to be a strong tool for developing approx-
imation algorithms, matching the best relaxations known for problems
like Max-Cut and Sparsest-Cut. In this work we provide lower bounds for
these hierarchies when applied over the configuration LP for the problem
of scheduling identical machines to minimize the makespan. First we show
that the configuration LP has an integrality gap of at least 1024/1023 by
providing a family of instances with 15 different job sizes. Then we show
that for any integer n there is an instance with n jobs in this family such
that after Ω(n) rounds of the Sherali-Adams (SA) or the Lovász-Schrijver
(LS+) hierarchy the integrality gap remains at least 1024/1023.

1 Introduction

Scheduling

Machine scheduling is a classical family of problems in combinatorial optimiza-
tion. In this paper we study the problem, known as P ||Cmax, of scheduling a set
J of n jobs on a set M of identical machines to minimize the makespan, i. e., the
maximum completion time of a job, where each job j ∈ J has a processing time
pj . A job cannot be preempted nor migrated to a different machine, and every job
is released at time zero. This problem admits a polynomial-time approximation

Supported by the Swiss National Science Foundation project 200020-144491/1
“Approximation Algorithms for Machine Scheduling Through Theory and Exper-
iments,” by Sciex Project 12.311, by DFG grant MO 2889/1-1, and by CONICYT-
PCHA/Doctorado Nacional/2014-21140930.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 152–163, 2016.
DOI: 10.1007/978-3-319-33461-5 13

SDP and LP Integrality Gaps for Scheduling Identical Machines 153

scheme (PTAS) [16] and even an EPTAS [2], which is the best possible approxi-
mation result since the problem is strongly NP-hard [13]. The convex relaxations
studied for the problem are weaker than those algorithmic results.

Assignment LP. A straightforward way to model P ||Cmax with a linear program
(LP) is the assignment LP which has a variable xij for each combination of a
machine i ∈ M and a job j ∈ J , modeling whether job j is assigned to machine
i. The goal is to minimize a variable T (modeling the makespan) for which we
require that

∑
j∈J xij · pj ≤ T for each machine i.

[Assign] : min T
∑

i∈M

xij ≥ 1 for every j ∈ J

∑

j∈J

xijpj ≤ T for every i ∈ M

T ≥ pj for every j ∈ J

xij ≥ 0 for every i ∈ M, j ∈ J.

Configuration LP. The assignment LP is dominated by the configuration LP
which is, to the best of our knowledge, the strongest relaxation for the prob-
lem studied in the literature. Suppose we are given a value T > 0 that is an
estimate on the optimal makespan, e. g., given by a binary search framework. A
configuration corresponds to a multiset of processing times C ⊆ {pj : j ∈ J}
such that

∑
p∈C p ≤ T , i. e., it is a feasible assignment for a machine when the

time availability is equal to T . Let, for given T , C denotes the set of all feasible
configurations. The multiplicity function m(p,C) indicates the number of times
that the processing time p appears in the multiset C. For each combination of
a machine i and a configuration C the configuration LP has a variable yiC that
models whether we want to assign exactly jobs with processing times in con-
figuration C to machine i. Letting np denote the number of jobs j ∈ J with
processing time pj = p, we can write:

[clp(T)] :
∑

C∈C
yiC = 1 for every i ∈ M ,

∑

i∈M

∑

C∈C
m(p,C)yiC = np for every p ∈ {pj : j ∈ J},

yiC ≥ 0 for every i ∈ M,C ∈ C.

We remark that in another common definition [26], a configuration is a subset,
not of processing times but of jobs. We can solve that LP to a (1 + ε)-accuracy
in polynomial time [26] and similarly our LP above. The definition in terms of
multisets makes sense since we are working in a setting of identical machines.

154 A. Kurpisz et al.

Integrality Gap. The configuration LP clp(T) does not have an objective function
and instead we seek to determine the smallest value T for which it is feasible. In
this context, for a convex relaxation K(T) we define the integrality gap to be the
supremum value Topt(I)/T ∗(I) over all problem instances I, where Topt(I) is the
optimal value and T ∗(I) is the minimum value T for which K(T) is feasible. With
the additional constraint that T ≥ maxj∈J pj , the Assignment LP relaxation
has an integrality gap of 2 (which can be shown using the analysis of the list
scheduling algorithm, see e. g., [27]). Here we prove that the configuration LP
has an integrality gap of at least 1024/1023 (Theorem 1(i)).

Linear Programming and Semi-definite Programming Hierarchies

Hierarchies. An interesting question is whether other convex relaxations have
better integrality gaps. Convex hierarchies, parametrized by a number of levels or
rounds, are systematic approaches to design improved approximation algorithms
by gradually tightening the integrality gap between the integer formulation and
corresponding relaxation, at the cost of increased running time. Popular among
these methods are the Sherali-Adams (SA) hierarchy [25] (Definition 1), the
Lovász-Schrijver (LS+) semi-definite programming hierarchy [21] (Definition 4)
and the Lasserre/Sum-Of-Squares hierarchy [18,22], which is the strongest of
the three. For a comparison between them and their algorithmic implications we
refer to [10,19,23]. In some settings, for example the Independent Set problem
in sparse graphs [4], a mixed SA has also been considered.

Positive Results. For many problems the approximation factors of the best
known algorithms match the integrality gap after performing a constant num-
ber of rounds of this hierarchies. Examples of such problems are: Max-Cut [1]
and Sparsest-Cut [1,9], dense Max-Cut [11], Knapsack and Set-Cover [8]. In the
scheduling context, for minimizing the makespan on two machines in the setting of
unit size jobs and precedence constraints, Svensson solves the problem optimally
with only one level of the linear LS hierarchy [23] (Sect. 3.1, personal communica-
tion between Svensson and the author of [23]). Furthermore, for a constant num-
ber of machines, Levey and Rothvoss give a (1+ε)-approximation algorithm using
(log(n))Θ(log log n) rounds of SA hierarchy [20]. For minimizing weighted comple-
tion time on unrelated machines, one round of LS+ leads to the current best algo-
rithm [5]. Thus, hierarchies are a strong tool for approximation algorithms.

Negative Results. Nevertheless, there are known limitations on these hierarchies.
Lower bounds on the integrality gap of LS+ are known for Independent Set
[12], Vertex Cover [3,7,14,24], Max-3-Sat and Hypergraph Vertex Cover [1], and
k-Sat [6]. For the Max-Cut problem, there are lower bounds for the SA [11]
and LS+ [24]. For the Min-Sum scheduling problem (i. e., scheduling with job
dependent cost functions on one machine) the integrality gap is unbounded even
after O(

√
n) rounds of Lasserre [17]. In particular, that holds for the problem

of minimizing the number of tardy jobs even though that problem is solvable in
polynomial time, thus SDP hierarchies sometimes fail to reduce the integrality
gap even on easy problems.

SDP and LP Integrality Gaps for Scheduling Identical Machines 155

Our Results

Our key question in this paper is: is it possible to obtain a polynomial time
(1+ ε)-approximation algorithm based on applying the SA or the LS+ hierarchy
to one of the known LP-formulations of our problem? This would match the best
known (polynomial time) approximation factor we know [2,16].

We answer this question in the negative. We prove that even after Ω(n)
rounds of SA or LS+ to the configuration LP the integrality gap of the resulting
relaxation is still at least 1+1/1023. Since the configuration LP dominates1 the
assignment LP, our result also holds if we apply Ω(n) rounds of SA or LS+ to
the assignment LP.

Theorem 1. Consider the problem of scheduling identical machines to minimize
the makespan, P ||Cmax. For each n ∈ N there exists an instance with n jobs such
that:

(i) the configuration LP has an integrality gap of at least 1024/1023.
(ii) after applying r = Ω(n) rounds of the SA hierarchy to the configuration LP

the obtained relaxation has an integrality gap of at least 1024/1023.
(iii) after applying r = Ω(n) rounds of the LS+ hierarchy to the configuration

LP the obtained relaxation has an integrality gap of at least 1024/1023.

Since polynomial time approximations schemes are known [2,16] for P ||Cmax,
Theorem 1 implies that the SA and the LS+ hierarchies do not yield the best
possible approximation algorithms. We remark that for the hierarchies studied
in Theorem 1, n rounds suffice to bring the integrality gap down to exactly 1,
so results (ii) and (iii) are almost tight in terms of number of levels.

We prove Theorem 1 by defining a family of instances {Ik}k∈N constructed
from the Petersen graph (see Fig. 1). In Sect. 2 we prove that the configuration
LP is feasible for T = 1023 while the integral optimum has a makespan of at
least 1024. In Sect. 3, we show for each instance Ik that using the hypergeometric
distribution we can define a fractional solution that is feasible for the polytope
obtained by applying Ω(k) rounds of SA to the configuration LP parametrized by
T = 1023. In Sect. 4 we prove the same for the semidefinite relaxations obtained
with the LS+ hierarchy, and we study the protection matrices used in the lower
bound proof. In this part we work with covariances matrices by applying Schur’s
complement and a posterior analysis for block-symmetry matrices.

The Hard Instances

To prove the integrality gaps of 1024/1023, for each odd k ∈ N we define an
instance Ik that is inspired by the Petersen graph G (see Fig. 1) with vertex set
V = {0, 1, . . . , 9}. For each edge e = {u, v} of G, in Ik we introduce k copies of
a job j{uv} of size 2u + 2v. Thus Ik has 15k jobs. (If n is not an odd multiple
of 15, let n = 15k + � where k is the greatest odd integer such that 15k < n. In
this case we simply add to the instance � jobs that each have processing time
1 The projection of the configuration LP onto the assignment space is a contained

inside the polytope of the assignment LP [26].

156 A. Kurpisz et al.

0

1

23

4
5

6
78

9

0

1

23

4
5

6
78

9

0

1

23

4
5

6
78

9

0

1

23

4
5

6
78

9

0

1

23

4
5

6
78

9

0

1

23

4
5

6
78

9

Fig. 1. The Petersen graph and its six perfect matchings (dashed lines)

equal to zero.) We define the number of machines for Ik to be 3k. For simplicity,
in the following we do not distinguish between jobs and their sizes. The graph
G has exactly six perfect matchings M̄1, M̄2, . . . , M̄6. Since the sum of the job
sizes in a perfect matching M̄� is

∑

e∈M̄�

pje
=

∑

0≤u≤9

2u = 1023,

M̄� corresponds to a configuration C� that contains one job corresponding to
each edge in M̄� and has makespan 1023. The configurations C1, . . . , C6 are
called matching configurations and we denote them by D = {C1, . . . , C6}.

2 Integrality Gap of the Configuration LP (Theorem 1(i))

Lemma 1. clp[1023] is feasible for Ik.

Proof. To define the fractional solution, for every machine i and each � ∈
{1, 2, . . . , 6} we set yiC�

= 1/6. For all other configurations C we set yiC = 0.
The first set of constraints in clp(T) (for the machines) is clearly satisfied. For

the second set of constraints (for the job sizes), let p be such a job size and let e
be the corresponding edge in G. The Petersen graph is such that there are exactly
two perfect matchings M̄�, M̄�′ containing e, thus we get

∑3k
i=1(yiC�

+ yiC�′) = k
and y is feasible. ��
Lemma 2. The optimal makespan for Ik is at least 1024.

Proof. Assume, for a contradiction, that clp[1023] for Ik has an integer solution
y. Since the total size of jobs is k · 3 · 1023 and there are 3k machines, only
configurations C with makespan exacly equal to 1023 may have yiC 	= 0.

Consider such a configuration C. Since 1023 =
∑9

u=0 2u, considering the
binary representation of 1023, by induction on u it must be that for every u,

SDP and LP Integrality Gaps for Scheduling Identical Machines 157

configuration C contains an odd number of jobs corresponding to edges adjacent
to vertex u in G. Furthermore, since the sum does not exceed 1023, that odd
number must be exactly 1. Thus C exactly corresponds to a perfect matching of
G, and so the integer solution y corresponds to a 1-factorization of the multigraph
Gk obtained by taking k copies of each edge in the Petersen graph.

Let M̄1 be the perfect matching of the Petersen graph consisting of the five
edges {0, 5}, {1, 6}, {2, 7}, {3, 8}{4, 9}, called spokes. Let � =

∑
i yiC1 . Since each

spoke, which appears in exactly one other perfect matching M̄j (j > 1), must
be contained in k matchings in total, we must have

∑
i yiCj

= k − � for each
j ∈ [2, 6]. Thus

∑
i,C yiC = 5(k − �) + � = 5k − 4�. However, that sum equals 3k,

the total number of machines, and so � = k/2. Since k is odd and � an integer,
the contradiction follows. ��

3 Integrality Gap for SA (Theorem 1(ii))

We show that for the family of instances {Ik}k∈N defined in Sect. 2, if we apply
O(k) rounds of SA to the configuration LP for T = 1023, then the resulting
relaxation is feasible. Thus, after Ω(k) rounds of SA the configuration LP still
has an integrality gap of at least 1024/1023 on an instance with O(k) jobs and
machines. First, we define the polytope SAr(P) obtained after r rounds of SA
to a polytope P that is defined via equality constraints2.

Definition 1 (Polytope SAr(P)). Consider a polytope P ⊆ [0, 1]E defined by
equality constraints. For every constraint

∑
i∈E ai,�yi = b� and every H ⊆ E such

that |H| ≤ r, the constraint
∑

i∈E ai,�yH∪{i} = b�yH is included in SAr(P), the
level r of the Sherali-Adams hierarchy applied to P . The polytope SAr(P) lives
in R

Pr+1(E), where Pr+1(E) = {A ⊆ E : |A| ≤ r + 1}.
For the configuration LP clp(T) the variables set is E = M × C. Since it is

defined by equality constraints, the polytope SAr(clp(T)) corresponds to

[SAr(clp(T))] :
∑

C∈C
yH∪{(i,C)} = yH ∀ i ∈ M , ∀ H ⊆ E : |H| ≤ r,

∑

i

∑

C∈C
m(p,C)yH∪{(i,C)} = npyH ∀ p ∈ {pj : j ∈ J}, ∀ H ⊆ E : |H| ≤ r,

yH ≥ 0 ∀ H ⊆ E : |H| ≤ r + 1,

y∅ = 1.

Intuitively, the configuration LP computes a set of edges in a complete bipartite
graph with vertex sets U, V where U is the set of machines and V is the set of
configurations. The edges are selected such that they form a U -matching, i.e.,
such that each node in U is incident to at most one selected edge.
2 This definition is slightly different from the one in Sherali & Adams [25]; for sim-

plicity we give a definition that, in the case of equality constraints, is equivalent.

158 A. Kurpisz et al.

Definition 2. Given two sets U, V and F ⊆ U × V , the F -degree of u ∈ U is
δF (u) = |{v : (u, v) ∈ F}|, and δF (v) = |{u : (u, v) ∈ F}| if v ∈ V . We say that
F is an U -matching if δF (u) ≤ 1 for every u ∈ U . An element u ∈ U is incident
to F if δF (u) = 1.

In the following we consider the same family of instances {Ik : k ∈
N, k is odd} as in Sect. 2 and T = 1023. For any set S we define P(S) to be
the power set of S. We want to define a solution to SAr(clp(T)) for T = 1023.
To this end, we need to define a value yA for each set A ∈ Pr+1(M × C). In par-
ticular, for A ∈ Pr(M ×D), we define this value according to the hypergeometric
distribution.

Definition 3. Let φ : P(M × D) → R be such that

φ(A) =
1

(3k)|A|

∏

j∈[6]

(k/2)δA(Cj)

if A is an M -matching, and zero otherwise, where (x)a = x(x−1) · · · (x−a+1),
for integer a ≥ 1, is the lower factorial function.

To get some understanding about how the distribution φ works, the following
lemma intuitively shows the following: suppose that we know that a set A is
chosen (i.e., we condition on this), then the conditional probability that also a
pair (i, Cj) is chosen equals k/2−δA(Cj)

3k−|A| , assuming that A ∪ {(i, Cj)} forms an
M -matching.

Lemma 3. Let A ⊆ M × D be an M -matching of size at most 3k − 1. If i ∈ M

is not incident to A, then φ(A ∪ {(i, Cj)}) = φ(A)k/2−δA(Cj)
3k−|A| .

Proof. Given that i is not incident to A, we have |A ∪ {(i, Cj)}| = |A| + 1. Fur-
thermore, for � 	= j we have that δA∪{(i,Cj)}(C�) = δA(C�) and δA∪{(i,Cj)}(Cj) =
δA(Cj) + 1. Therefore, φ(A∪{(i,Cj)})

φ(A) = k/2−δA(Cj)
3k−|A| . ��

The Feasible Solution. We are ready now to define our solution to
SAr(clp(T)). It is the vector yφ ∈ R

Pr+1(E) defined such that yφ
A = φ(A) if

A is an M -matching in M × D, and zero otherwise.

Lemma 4. For every odd k, yφ is a feasible solution for SAr(clp(T)) for the
instance Ik when r = k/2� and T = 1023.

Proof. We first prove that yφ ≥ 0. Consider some H ⊆ E. Since yφ
H = φ(H),

using Definition 3, it is easy to check that the lower factorial stays non-negative
for r = k/2�.

We next prove that yφ satisfies the machine constraints in SAr(clp). If i is a
machine incident to H, then all terms in the left-hand summation are 0 except
for the unique pair (i, C) that belongs to H, so the sum equals yφ

H . If i is not
incident to H, then by Lemma 3 we have

SDP and LP Integrality Gaps for Scheduling Identical Machines 159

∑

C

yφ
H∪{(i,C)} =

φ(H)
3k − |H|

∑

j∈[6]

(k/2 − δH(Cj)) = φ(H) = yφ
H ,

since 6 · k/2 = 3k and
∑

j∈[6] δH(Cj) = |H|.
Finally we prove that yφ satisfies the set of constraints for every processing

time. Fix p and H. Since yφ is supported by six configurations, we have
∑

i∈M

∑

C∈C
m(p,C)yφ

H∪{(i,C)} =
∑

i∈M

∑

j∈[6]

m(p,Cj)φ(H ∪ {(i, Cj)}).

There are exactly two configurations Cp
1 , Cp

2 ∈ D such that m(p,Cp
1) =

m(p,Cp
2) = 1, and for the others it is zero, so

∑

j∈[6]

m(p,Cj)φ(H ∪ {(i, Cj)}) = φ(H ∪ {(i, Cp
1)}) + φ(H ∪ {(i, Cp

2)}).

Let πM (H) = {i ∈ M : δH(i) = 1} be the subset of machines incident to H. We
split the sum over i ∈ M into two parts, i ∈ πM (H) and i /∈ πM (H). For the
first part,

∑

i∈πM (H)

(φ(H ∪ {(i, Cp
1)}) + φ(H ∪ {(i, Cp

2)})) = φ(H)(δH(Cp
1) + δH(Cp

2))

since φ(H ∪ {(i, Cp
1)}) is either φ(H) or 0 depending on whether (i, Cp

1) ∈ H,
and the same holds for Cp

2 .
For the second part, using Lemma 3 we have that

∑

i/∈πM (H)

(φ(H ∪ {(i, Cp
1)}) + φ(H ∪ {(i, Cp

2)}))

=
φ(H)

3k − |H|
∑

i/∈πM (H)

(k/2 − δH(Cp
1) + k/2 − δH(Cp

2))

= φ(H)(k/2 − δH(Cp
1) + k/2 − δH(Cp

2)),

since |H \ πM (H)| = 3k − |H|. Adding, thanks to cancellations we get precisely
what we want:

∑

i∈M

∑

C∈C
m(p,C)yφ

H∪{(i,C)} = kφ(H) = npy
φ
H .

��
Proof (of Theorem 1(ii)). Consider instance Ik as defined before, T = 1023 and
r = k/2�. By Lemma 4 the vector yφ ∈ SAr(clp(T)). ��
We note that in the above proof, the projection of yφ onto the space of the
configuration LP is the fractional solution from the proof of Lemma 1.

160 A. Kurpisz et al.

4 Integrality Gap for LS+ (Theorem 1(iii))

Given a polytope P ⊆ R
d, we consider the convex cone Q = {(a, x) ∈ R

∗ × P :
x/a ∈ P}. We define an operator N+ on convex cones R ⊆ R

d+1 as follows:
y ∈ N+(R) if and only if there exists a symmetric matrix Y ⊆ R

(d+1)×(d+1),
called the protection matrix of y, such that

1. y = Y e∅ = diag(Y),
2. for all i, Y ei, Y (e∅ − ei) ∈ R,
3. Y is positive semidefinite,

where ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere.

Definition 4. For any r ≥ 0 and polytope P ⊆ R
d, level r of the LS+ hier-

archy, Nr
+(Q) ⊆ R

d+1, is defined recursively by: N0
+(Q) = Q and Nr

+(Q) =
N+(Nr−1

+ (Q)).

To prove the integrality gap for LS+ we follow an inductive argument. We
start from P = clp(T). Along the proof, we use a special type of vectors that
are integral in a subset of coordinates and fractional in the others.

The Feasible Solution. Let A be an M -matching in M ×D. The partial sched-
ule y(A) ∈ R

M×C is the vector such that for every i ∈ M and j ∈ {1, 2, . . . , 6},
y(A)iCj

= φ(A ∪ {(i, Cj)})/φ(A), and zero otherwise. Here is the key Lemma.

Lemma 5. Let k be an odd integer and r ≤ k/2�. Let Qk be the convex cone
of clp(T) for instance Ik and T = 1023. Then, for every M -matching A of
cardinality k/2� − r in M × D, we have y(A) ∈ Nr

+(Qk).

Before proving Lemma 5, let us see how it implies the Theorem.

Proof (of Theorem 1(iii)). Consider instance Ik defined in Sect. 2, T = 1023 and
r = k/2�. By Lemma 5 for A = ∅ we have y(∅) ∈ Nr

+(Qk). ��
In the following two helper lemmas we describe structural properties of every

partial schedule.

Lemma 6. Let A be an M -matching in M ×D, and let i be a machine incident
to A. Then, y(A)iC ∈ {0, 1} for all configuration C.

Proof. If C /∈ D then y(A)iC = 0 by definition. If (i, Cj) ∈ A then y(A)iCj
=

φ(A ∪ {(i, Cj)})/φ(A) = φ(A)/φ(A) = 1. For � 	= j, the set A ∪ {(i, C�)} is not
an M -matching and thus y(A)iCk

= 0. ��
Lemma 7. Let A be an M -matching in M × D of cardinality at most k/2�.
Then, y(A) ∈ clp(T).

Proof. We note that y(A)iC = yφ
A∪{(i,C)}/yφ

A, and then the feasibility of y(A) in
clp(T) is implied by the feasibility of yφ in SAr(clp(T)), for r = k/2�. ��

SDP and LP Integrality Gaps for Scheduling Identical Machines 161

Given a partial schedule y(A), let Y (A) ∈ R
(|M×C|+1)×(|M×C|+1) be the

matrix such that its principal submatrix indexed by {∅} ∪ (M × D) equals
(

1 y(A)�

y(A) Z(A)

)

,

where Z(A)iCj ,�Ch
= φ(A ∪ {(i, Cj), (�, Ch)})/φ(A). All the other entries of the

matrix Y (A) have value equal to zero. The matrix Y (A) provides the protection
matrix we need in the proof of the key Lemma.

Theorem 2. For every M -matching A in M × D such that |A| ≤ k/2�, the
matrix Y (A) is positive semidefinite.

Proof (Sketch). We prove that Y (A) is positive semidefinite by performing sev-
eral transformations that preserve this property. First, we remove all those zero
columns and rows. Then, Y (A) is positive semidefinite if and only if its prin-
cipal submatrix indexed by {∅} ∪ (M × D) is positive semidefinite. We then
construct the covariance matrix Cov(A) by taking the Schur’s Complement of
Y (A) respect to the entry ({∅}, {∅}). The resulting matrix is positive semidef-
inite if and only if Y (A) is positive semidefinite. After removing null rows and
columns in Cov(A) we obtain a new matrix, Cov+(A), which can be written using
Kronecker products as I⊗Q+(J −I)⊗W , with Q,W ∈ R

6×6, Q = αW for some
α ∈ (−1, 0) and I, J being the identity and the all-ones matrix, respectively. By
applying a lemma about block matrices in [15], Y (A) is positive semidefinite if
and only if W is positive semidefinite. The matrix W is of the form Du − uu�,
with u ∈ R

6 and Du is a diagonal matrix such that diag(Du) = u. By Jensen’s
inequality with the function t(y) = y2 it follows that W is positive semidefinite.
A complete proof of the theorem can be found in the Appendix. ��
Lemma 8. Let A be an M -matching in M × D and i a non-incident machine
to A. Then,

∑
j∈[6] Y (A)eiCj

= Y (A)e∅.

Proof. Let S be the index of a row of Y (A). If S /∈ {0}∪ (M ×D) then that row
is identically zero, so the equality is satisfied. Otherwise,

e�
S

∑

j∈[6]

Y (A)eiCj
=

∑

j∈[6]

φ(A ∪ {(i, Cj)} ∪ S)
φ(A)

.

If A∪S is not an M -matching then φ(A∪S∪{i, Cj}) = 0 for all i and j ∈ [6], and
e�

S Y (A)e∅ = φ(A∪S) = 0, so the equality is satisfied. If A∪S is an M -matching,
then

∑

j∈[6]

φ(A ∪ {(i, Cj)} ∪ S)
φ(A)

=
φ(A ∪ S)

φ(A)

∑

j∈[6]

φ(A ∪ S ∪ {(i, Cj)})
φ(A ∪ S)

= e�
S Y (A)e∅

∑

j∈[6]

yφ
A∪S∪{(i,Cj)}

yφ
A∪S

= e�
S Y (A)e∅,

since yφ is a feasible solution for the SA hierarchy. ��

162 A. Kurpisz et al.

Having previous two results we are ready to prove the key Lemma.

Proof (of Lemma 5). We proceed by induction in r. The base case r = 0 is implied
by Lemma 7, and now suppose that it is true for r = t. Let y(A) be a partial
schedule of A of cardinality k/2� − t − 1. We prove that the matrix Y (A) is a
protection matrix for y(A). It is symmetric by definition, y(A)e∅ = diag(y(A)) =
y(A) and thanks to Theorem 2 the matrix Y (A) is positive semidefinite. Let (i, C)
be such that y(A)iC ∈ (0, 1). In particular, by Lemma 6 we have (i, C) /∈ A
and C ∈ D. We claim that Y (A)eiC/y(A)iC is equal to the partial schedule
(1, y(A ∪ {(i, C)})). If S indexes a row not in M × D then the respective entry
in both vectors is zero, so the equality is satisfied. Otherwise,

e�
S Y (A)eiC

y(A)iC
=

φ(A ∪ {(i, C)} ∪ S)
φ(A ∪ {(i, C)})

= y(A ∪ {(i, C)})S .

The cardinality of the M -matching A ∪ {(i, C)} is equal to |A| + 1 = k/2� − t,
and therefore by induction we have that Y (A)eiC/y(A)iC = (1, y(A∪{(i, C)})) ∈
N t

+(Qk). Now we have to prove that the vectors Y (A)(e∅ − eiC)/(1 − y(A)iC)
are feasible for N t

+(Qk). By Lemma 8 we have that for every � ∈ {1, 2, . . . , 6},

Y (A)(e∅ − eiC�
)

1 − y(A)iC�

=
∑

j∈[6]\{�}

(
y(A)iCj∑

j∈[6]\{�} y(A)iCj

)

y(A ∪ {(i, Cj)}),

and then Y (A)(e∅ − eiC�
)/(1 − y(A)iC�

) is a convex combination of the partial
schedules {y(A ∪ {(i, Cj)}) : j ∈ {1, 2, . . . , 6} \ �} ⊂ N t

+(Qk), concluding the
induction. ��

References

1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability
results in the Lovász-Schrijver hierarchy. In: STOC, pp. 294–303 (2005)

2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing. In: SODA, pp. 493–500 (1997)

3. Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without
knowing the linear program. Theor. Comput. 2, 19–51 (2006)

4. Bansal, N.: Approximating independent sets in sparse graphs. In: SODA, pp. 1–8
(2015)

5. Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted com-
pletion time on unrelated machines. CoRR, abs/1511.07826 (2015)

6. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds
and integrality gaps for cutting planes procedures. Theor. Comput. 2, 65–90 (2006)

7. Charikar, M.: On semidefinite programming relaxations for graph coloring and
vertex cover. In: SODA, pp. 616–620 (2002)

8. Chlamtáč, E., Friggstad, Z., Georgiou, K.: Lift-and-project methods for set cover
and Knapsack. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 256–267. Springer, Heidelberg (2013)

SDP and LP Integrality Gaps for Scheduling Identical Machines 163

9. Chlamtac, E., Krauthgamer, R., Raghavendra, P.: Approximating sparsest cut in
graphs of bounded treewidth. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J.
(eds.) APPROX 2010. LNCS, vol. 6302, pp. 124–137. Springer, Heidelberg (2010)

10. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos,
M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Opti-
mization, pp. 139–169. Springer, New York (2012)

11. Fernandez de la Vega, W., Mathieu, C.: Linear programming relaxations of maxcut.
In: SODA, pp. 53–61 (2007)

12. Feige, U., Krauthgamer, R.: The probable value of the Lovász-Schrijver relaxations
for maximum independent set. SIAM J. Comput. 32, 345–370 (2003)

13. Garey, M.R., Johnson, D.S.: “Strong” NP-completeness results: motivation, exam-
ples, and implications. J. ACM 25, 499–508 (1978)

14. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2-o(1) for
vertex cover SDPs in the Lovász-Schrijver hierarchy. SIAM J. Comput. 39, 3553–
3570 (2010)

15. Gvozdenovic, N., Laurent, M.: The operator ψ for the chromatic number of a graph.
SIAM J. Optim. 19, 572–591 (2008)

16. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM 34, 144–162 (1987)

17. Kurpisz, Adam, Leppänen, S., Mastrolilli, M.: A Lasserre lower bound for the
min-sum single machine scheduling problem. In: Bansal, N., Finocchi, I. (eds.)
ESA 2015. LNCS, vol. 9294, pp. 853–864. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48350-3 71

18. Lasserre, J.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11, 796–817 (2001)

19. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0–1 programming. Math. Oper. Res. 28, 470–496 (2003)

20. Levey, E., Rothvoss, T.: A Lasserre-based (1 + ε)-approximation for Pm|pj =
1, prec|Cmax. CoRR, abs/1509.07808 (2015)

21. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization.
SIAM J. Optim. 1, 166–190 (1991)

22. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems.
Math. Program. 96, 293–320 (2003)

23. Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture notes
for the MAPSP (2013)

24. Schoenebeck, G., Trevisan, L., Tulsiani, M.: Tight integrality gaps for Lovász-
Schrijver LP relaxations of vertex cover and max cut. In: Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Computing, pp. 302–310 (2007)

25. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math. 3, 411–430 (1990)

26. Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated
machines. J. Sched. 17, 371–383 (2014)

27. Williamson, D., Shmoys, D.: The Design of Approximation Algorithms. Cambridge
University Press, New York (2011)

http://dx.doi.org/10.1007/978-3-662-48350-3_71
http://dx.doi.org/10.1007/978-3-662-48350-3_71

Stabilizing Network Bargaining Games
by Blocking Players

Sara Ahmadian1(B), Hamideh Hosseinzadeh2, and Laura Sanità1

1 Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada

{sahmadian,lsanita}@uwaterloo.ca
2 Faculty of Mathematical Science, Alzahra University, Tehran, Iran

hamideh.hosseinzadeh@gmail.com

Abstract. Cooperative matching games (Shapley and Shubik) and Net-
work bargaining games (Kleinberg and Tardos) are games described by
an undirected graph, where the vertices represent players. An important
role in such games is played by stable graphs, that are graphs whose set
of inessential vertices (those that are exposed by at least one maximum
matching) are pairwise non adjacent. In fact, stable graphs characterize
instances of such games that admit the existence of stable outcomes.

In this paper, we focus on stabilizing instances of the above games by
blocking as few players as possible. Formally, given a graph G we want
to find a minimum cardinality set of vertices such that its removal from
G yields a stable graph. We give a combinatorial polynomial-time algo-
rithm for this problem, and develop approximation algorithms for some
NP-hard weighted variants, where each vertex has an associated non-
negative weight. Our approximation algorithms are LP-based, and we
show that our analysis are almost tight by giving suitable lower bounds
on the integrality gap of the used LP relaxations.

1 Introduction

Game theory is an active and important area of research in the field of Theoreti-
cal Computer Science, and combinatorial optimization techniques are often cru-
cially employed in solving game theory problems [15]. For several games defined
on networks, studying the structure of the underlying graph that describes the
network setting is important to identify the existence of good outcomes for the
corresponding games. Prominent examples are cooperative matching games intro-
duced by Shapley and Shubik [17] and network bargaining games studied by
Kleinberg and Tardos [10]. These are games described by an undirected graph
G = (V,E), where the vertices represent players, and the cardinality of a maxi-
mum matching in G, denoted by ν(G), represents a total value that the players
could gain by interacting with each other.

In an instance of a cooperative matching game [17], one seeks for an allocation
of the value ν(G) among players, described by a vector y ∈ RV

≥0, in which no
subset of players S has an incentive to form a coalition to deviate. This is formally
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 164–177, 2016.
DOI: 10.1007/978-3-319-33461-5 14

Stabilizing Network Bargaining Games by Blocking Players 165

described by the constraint
∑

v∈S yv ≥ ν(G[S]) for all subsets S, where G[S]
denotes the subgraph induced by the vertices in S. Such allocation y is called
stable. It is well-known (see e.g. [5]) that cooperative matching game instances
that admit the existence of a stable allocation are precisely the set of instances
described by stable graphs: these are graphs whose set of inessential vertices
are pairwise non adjacent. We recall here that a vertex v of a graph G is called
inessential if there exists at least one maximum matching M in G that exposes v,
that is, v is not an endpoint of M , and it is called essential otherwise.

Network bargaining games described by Kleinberg and Tardos [10] are net-
work extensions of the classical Nash bargaining games [14]. In an instance of
a network bargaining game described by a graph G, the edges represent a set
of potential deals of unit value that the players (vertices) could make. An out-
come of the game is given by a matching M of G (representing the set of deals
that the players made) together with a value allocation y ∈ RV

≥0 on each vertex
(representing how the players decided to split the values of the deals they made,
if any). Kleinberg and Tardos [10] introduced the notion of stable outcomes for
such games, that are outcomes where no player has an incentive to deviate, as
well as the notion of balanced outcomes, that are stable outcomes in which, in
addition, the values are “fairly” split among the players. The authors proved
that a balanced outcome exists if and only if a stable outcome exists, and this
happens if and only if the graph G describing the instance is stable.

Since not all graphs are stable, there are instances of both network bargaining
games and cooperative matching games that do not admit stable solutions. This
motivated many authors in past years to address the algorithmic problem of
stabilizing such instances by minimally modifying the underlying graph. Two
very natural ways to modify a graph in order to achieve some desired properties
are via edge-removal or vertex-removal operations. The authors in [4] looked
at edge-removal operations, that is, stabilizing instances of the above games by
blocking potential deals that the players could make. In this paper, we look at
the vertex-removal counterpart, that is, stabilizing instances by blocking players.
Formally, this translates into the following problem:

Vertex-stabilizer Problem: Given a graph G = (V,E), find a minimum car-
dinality vertex-stabilizer, that is a set S ⊆ V whose removal from G yields a
stable graph.

We also generalize and study this problem in the weighted setting (a formal
definition is in the next subsection).

In addition to the connection with game theory, the vertex-stabilizer problem
is also of interest from a combinatorial optimization perspective. In fact, an
alternative and equivalent characterization of stable graphs can be given using
linear programming and the notion of fractional matchings and vertex covers,
as we are now going to explain. For a graph G = (V,E), a fractional matching
is a feasible solution to the LP:

νf (G) := max
{ ∑

e∈E

xe :
∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V, x ≥ 0
}

,

166 S. Ahmadian et al.

where δ(v) denotes the set of edges incident into v. Note that, if we add binary
constraints to the above LP we obtain a formulation to find a matching of G of
maximum cardinality ν(G). The dual of the above LP is:

τf (G) := min
{ ∑

v∈V

yv : yu + yv ≥ 1 ∀{u, v} ∈ E, y ≥ 0
}

.

Once again, note that if we add binary constraints to this dual LP we obtain
the canonical formulation for finding a vertex cover of G of minimum cardinality
τ(G), that is, a min-cardinality subset of vertices covering all edges of the graph.
For this reason, fractional feasible solutions to the above dual LP are called
fractional vertex covers.

By duality theory, we know that the following holds: ν(G) ≤ νf (G) =
τf (G) ≤ τ(G). In general, there are graphs for which all the above inequali-
ties are strict (e.g. a triangle). However, for certain classes of graphs some of the
above inequalities hold tight. In particular, the class of König-Egerváry graphs
[12,18] is formed by all graphs G for which ν(G) = τ(G), that is, all the above
inequalities hold tight. Note that the class of König-Egerváry graphs is a proper
superset of the class of bipartite graphs. It is known (see e.g. [10]) that stable
graphs are exactly the class of graphs for which ν(G) = νf (G) = τf (G) ≤ τ(G),
that is, graphs for which the cardinality of a maximum matching (ν(G)) is equal
to the minimum size of a fractional vertex cover (τf (G)). We have therefore the
following relation:

(Bipartite graphs) � (König-Egerváry) � (Stable graphs) � (General graphs).

The algorithmic problems of turning a general graph into a bipartite one by
removing either a set of edges or a set of vertices of minimum weight/cardinality,
have been studied in the literature (see e.g. [1,8]). Similarly, the algorithmic
problems of turning a given graph into a König-Egerváry one by removing a
min-cardinality subset of edges or of vertices have been studied (see e.g. [13]).
Differently, as mentioned before, for stable graphs only the edge-removal question
has been investigated so far, and this yields an additional motivation to study
the vertex-removal question in this paper, both in the unweighted and in the
weighted setting.

Our Results and Techniques. We study the vertex-stabilizer problem in
Sect. 2. We first show a structural property of any minimal vertex-stabilizer.
Namely, we prove that removing any minimal vertex-stabilizer does not decrease
the size of a maximum matching in the resulting graph (Theorem1). This the-
orem has an interesting interpretation in network bargaining and cooperative
matching games: it states that it is always possible to stabilize instances by block-
ing a minimum number of players without decreasing the total value that the
players could get. An analogue of Theorem1 has been proven by Bock et al. [4]
for minimal edge-stabilizers1, however, their proof does not hold for the vertex-
removal setting, and therefore our proof is different. Interestingly, despite this
1 These are subsets of edges such that their removal from G yields a stable graph.

Stabilizing Network Bargaining Games by Blocking Players 167

analogy, algorithmically the two problems appear to have a different complexity:
while finding a min-cardinality edge-stabilizer is at least as hard as finding a min-
imum vertex cover [4], we here prove (Theorem 2) that finding a min-cardinality
vertex-stabilizer is a polynomial-time solvable problem. In addition, we can prove
(Theorem 3) that the problem of blocking as few players as possible in order to
make a given set of deals realizable as a stable outcome is also polynomial-time
solvable, once again in contrast with the edge-removal setting, where the analo-
gous question has been studied by [4] and shown to be vertex cover-hard. These
three theorems are proved using combinatorial techniques. Theorem1 exploits
the structure of maximum matchings in graphs, that follows from the seminal
works in [2,7]. Using Theorem 1, one can compute a lower bound on the size of a
minimum vertex-stabilizer (as is done in [4]) exploiting properties of the so-called
Edmonds-Gallai Decomposition (EGD) of a graph (definition is in Sect. 2). By
further exploiting the relation that interplays between matchings and EGD, we
get algorithms that prove Theorems 2 and 3.

We study in Sect. 3 the weighted setting. In the vertex-stabilizer problem
described before, players are all equally considered, that is, from an objective
function perspective, we are assuming that blocking a player u is as costly as
blocking a player v, independently on how u and v are connected to the rest of the
players in the network. However, from a bargaining perspective, players might
not all be equally powerful: as an example, players corresponding to essential
vertices have more bargaining power than inessential ones. Moreover, blocking a
player that is highly connected in the graph and therefore have the potential to
enter in many deals might be more costly than blocking a less connected player.
For this reason, blocking different players might have different costs. We can
model this by assigning a weight wv ≥ 0 to each vertex v. In this setting, we
could be interested in either minimizing the weight of the blocked players, or
in maximizing the weight of the remaining players. Two optimization problems
then arise:

Min-weight Vertex-stabilizer: Given a graph G = (V,E), and vertex weights
wv ≥ 0 ∀v ∈ V , find a vertex-stabilizer S that minimizes w(S) =

∑
v∈S wv.

Max-weight Vertex-stabilizer: Given a graph G = (V,E), and vertex weights
wv ≥ 0 ∀v ∈ V , find a vertex-stabilizer S that maximizes w(V \S) =

∑
v/∈S wv.

This weighted setting poses more algorithmic challenges, and this is techni-
cally the most interesting part of the paper. We prove that both the above prob-
lems become NP-hard already if 2 different weights are involved (Theorem 4). For
this reason, we focus on approximation algorithms. We give a 2-approximation
algorithm for the max-weight vertex-stabilizer problem (Theorem 5), and a
O(γ)-approximation algorithm for the min-weight vertex-stabilizer problem
(Theorem 6), where γ is the size of the so-called Tutte-set of the graph G (a
formal definition is in Sect. 2). Both our algorithms are LP-based and rely on
the following strategy. As a first step, we identify a suitable LP-relaxation to
use for our problems. To this extent, we show that we can reduce our prob-
lems to vertex-deletion problems in a bipartite graph, in which the goal is to
remove a subset of vertices in order to turn some special nodes into essential

168 S. Ahmadian et al.

vertices in the remaining graph. This reinterpretation of the problem allows us
to write a formulation that uses a set of flow-type valid constraints, and exploit-
ing the properties of this flow will be crucial to round fractional solutions into
integral ones.

In addition, we show lower bounds on the integrality gap of the LP relaxations
we use, that show that our analysis are almost tight2. We give a 3

2 lower bound on
the integrality gap in the max-weight case, and a Ω(γ) lower bound in the min-
weight case, that asymptotically matches the developed approximation factor.
The lower bound for the min-weight case holds even on graph with bounded
(constant) degree, and to construct it we rely on suitable unbalanced bipartite
expander graphs.

We conclude by showing that we can give an algorithm for the min-weight
vertex-stabilizer problem whose approximation factor is bounded by the maxi-
mum degree of a vertex in G, if we have an additional information: namely, if
we know which is the set of essential vertices in the final graph (Theorem 7).
From a network bargaining perspective, this corresponds to stabilize instances
enforcing that some specific players will always be able to enter in a deal in any
stable outcome. Also for this latter case we show a matching lower bound on
the integrality gap of the LP relaxation we use. Our lower bounds show that to
improve significantly our approximation factors a different strategy or at least
different formulations have to be used.

Related Works. Removing vertices or edges from a graph as to satisfy certain
properties has been widely studied in the literature in many variants. The paper
that is most closely related to our work is [4] that studied the edge-stabilizer
problem in the unweighted setting, and in addition to the results previously
mentioned, they give efficient approximation algorithms for sparse graphs and
for regular graphs. Biró et al. [3] also studied the edge-stabilizer problem, but
considering maximum-weight matchings instead of maximum-cardinality match-
ings, and showed NP-hardness for this case. Könemann et al. [11] studied a
related problem of computing a minimum-cardinality blocking set, that is a set
of edges F such that G\F has a fractional vertex cover of size at most ν(G) (but
note that G\F might not be stable). They give approximation algorithms for
sparse graphs. Mishra et al. [13] studied vertex-removal and edge-removal prob-
lems to turn a graph into a König-Egerváry graph. Among other results, they
give an O(log n log log n) approximation algorithm for the vertex-removal case
in the unweighted setting, and show that assuming Unique Game Conjecture,
both the minimum vertex-removal and edge-removal problems do not admit a
constant factor approximation algorithm. We note that their hardness results do
not seem to be helpful for our setting, since the graphs used in their reductions
are stable.

Finally, we note that recently Ito et al. [9] have given independently alterna-
tive proofs of Theorems 2 and 4. They also give polynomial-time algorithms to
stabilize an unweighted graph by adding edges and vertices.

2 The lower bound constructions are deferred to the full version of the paper.

Stabilizing Network Bargaining Games by Blocking Players 169

2 Minimum Cardinality Vertex-Stabilizers

We first prove that the removal of any minimal vertex-stabilizer does not decrease
the cardinality of a maximum matching in the resulting graph. Here G\S denotes
the graph obtained by removing from G = (V,E) the subset of vertices S ⊆ V .

Theorem 1. For any minimal vertex-stabilizer S ⊆ V of a graph G = (V,E),
we have ν(G\S) = ν(G).

Before giving a proof, we need a proposition (see [10]) that follows from
standard results in matching theory, and uses the notion of M -flower for a
maximum matching M of G. An M -flower is a subgraph of G formed by a
u, v-path of even length that alternates edges in E\M and edges in M , plus a
cycle containing v of 2k + 1 edges, for some integer k ≥ 1, in which exactly k
edges are in M .

Proposition 1 [10]. Given graph G, the following are equivalent characteriza-
tions of a stable graph: (i) The set of inessential vertices of G are pairwise non
adjacent, (ii) ν(G) = τf (G), (iii) There is no M -flower in G for any maximum
matching M . Moreover, if G is not stable, then for every maximum matching M
there is an M -flower.

Fig. 1. M ′ edges are shown by bold edges. Note M ′ ∩ Q2 = M ∩ Q2 while M ∩ Q1 =
Q1\M ′.

Proof of Theorem 1. Let S be a minimal vertex-stabilizer of G = (V,E), and M
be a maximum matching of G\S. Suppose by contradiction that |M | < ν(G). By
classical results on matching theory [2], since M is not a maximum matching in
G there exists an M -augmenting path P in G, that is, a path P that alternates
edges from E\M and edges from M with endpoints s and t which are exposed by
M . Clearly, we must have |S ∩ {s, t}| ≥ 1, otherwise P would be an augmenting
path in G\S, contradicting maximality of M . We distinguish two cases.

Case 1: |S ∩{s, t}| = 1. Without loss of generality, assume s ∈ S. In this case, we
will show that S′ = S\{s} is a vertex-stabilizer of G, which is a contradiction to
the minimality of S. Consider the matching M ′ = MΔP , where Δ denotes the
symmetric difference operator. M ′ is a matching of G\S′ and |M ′| = |M | + 1.
Since adding one vertex to an arbitrary graph can increase the size of maximum

170 S. Ahmadian et al.

matching by at most one, we deduce that M ′ is a maximum matching of G\S′,
hence ν(G\S′) = |M ′|. We now prove that G\S′ is stable by showing that
ν(G\S′) = τf (G\S′). Let y ∈ R

V \S
≥0 be a minimum size fractional vertex cover of

G\S. By stability of G\S, ν(G\S) = 1T y. Define vector y′ ∈ R
V \S′

≥0 as y′
v = yv

for all v ∈ V \S, and y′
s = 1. Obviously y′ is a fractional vertex cover of G\S′.

So we have τf (G\S′) ≤ 1T y′ = 1T y + 1 = ν(G\S) + 1 = ν(G\S′), i.e., G\S′ is
stable.

Case 2: |S ∩ {s, t}| = 2. We first observe that (G\S) ∪ {s} does not contain any
M -augmenting path. Otherwise, by the same arguments as in Case 1, we can
deduce that S \ {s} is a vertex-stabilizer, and obtain a contradiction. Similarly,
(G\S) ∪ {t} does not contain any M -augmenting path. Let S′ = S\{s, t}, and
M ′ = MΔP . We first show that M ′ is a maximum matching in G\S′. If not,
then ν(G\S′) ≥ ν(G\S) + 2. Let M ′′ be maximum matching in G\S′. If we
remove s from G\S′, we delete at most one edge of M ′′. Therefore, ν((G\S) ∪
{s}) ≥ ν(G\S) + 1. However, this implies that M is not a maximum matching
in (G\S) ∪ {s}, and therefore (G\S) ∪ {s} contains an M -augmenting path
contradicting our first observation. Since M ′ is a maximum matching in G\S′,
and G\S′ is not stable, by Proposition 1 there exists an M ′-flower F , with vertex
set u1, . . . , up, with u1 being the M ′-exposed vertex on the even-length path.
Note that F cannot be vertex disjoint from P : otherwise, F would be an M -flower
as well in G\S, contradicting stability of G\S. It follows that F ∪P is a connected
subgraph of G. Let ui be the node with the smallest index i that belongs to both
F and P . Note that i 	= 1, since u1 is M ′-exposed and every node in P is instead
M ′-covered. Moreover, i is necessarily an even number: if odd, then the edge
{ui−1, ui} is in both P and F , contradicting our choice of i. Furthermore, note
that the edge {ui, ui+1} belongs to both P and F . Consider the path Q1 that is
the subpath of P connecting ui to either s or t in P\{ui, ui+1}, and the path Q2

that is the subpath in F with vertex set u1, . . . , ui. Their union Q1 ∪ Q2 forms
a path from u1 to either s or t, say s (the other case is similar). In this case,
Q1 ∪ Q2 is an M -augmenting path in (G\S) ∪ {s} (see Fig. 1), contradicting our
first observation.
�

We now state our algorithm to find a minimum cardinality vertex-stabilizer,
which relies on the notion of Edmonds-Gallai Decomposition (EGD) of a graph.
The EGD of a graph G = (V,E) is a partition of the set of vertices V into 3 sets
(B,C,D) where B is the set of inessential vertices of G, C is the set of essential
vertices of G that have at least one adjacent vertex in B, and D is the remaining
essential vertices of G. The set C is called the Tutte-set of G.

Algorithm 1.
1. Compute the EGD (B,C,D) of G, and a maximum matching M∗ of G that
covers the maximum possible number of isolated vertices in the graph G[B].
2. Let G1, . . . , Gk be the non-singleton components of G[B] with one vertex
exposed by M∗. Set S :=

⋃k
i=1{vi} where vi is the M∗-exposed vertex of Gi.

Stabilizing Network Bargaining Games by Blocking Players 171

Theorem 2. Algorithm 1 is a polynomial-time algorithm to compute a mini-
mum cardinality vertex-stabilizer S of a given graph G.

We here sketch the main ideas of the proof. Let k be as in Algorithm 1. First,
we note that k is a lower bound on the size of any minimum vertex-stabilizer.
This has been proved by Bock et al. [4] for edge-stabilizers, but their proof in
fact extends to vertex-stabilizers if one can assume Theorem 1. Then, we show
that G\S is stable, by constructing a fractional vertex cover of G\S of size equal
to |M∗|. This uses structural properties of maximum matchings and EGD of
graphs. Since the techniques we use here are similar to [4], we defer the proof to
the full version of the paper.

Finally, we consider the optimization problem of blocking as few players as
possible in order to make a given set of deals realizable as a stable outcome.
This translates into finding a minimum vertex-stabilizer S with the additional
constraint that S must be element-disjoint from a given maximum matching M .
We call such S an M -vertex-stabilizer. The proof of the next theorem is deferred
to the full version of the paper.

Theorem 3. There is a polynomial-time algorithm to compute a minimum
M -vertex-stabilizer in a given graph, both in the weighted and in the unweighted
setting.

3 The Weighted Case

We here deal with the vertex-stabilizer problem in the weighted setting, that
is much more challenging than the unweighted one. Due to lack of space, the
proofs of the lemmas and the proofs of Theorems 4 and 7 are deferred to the full
version of the paper.

Theorem 4. The min-weight vertex-stabilizer problem and the max-weight
vertex-stabilizer problem are NP-hard, even if there are only 2 distinct weights.

Since these variants are NP-hard, we focus on approximation algorithms. To
develop our approximation results, we first find a reformulation of our problems
in bipartite graphs. The next lemma follows easily from Theorem 1.

Lemma 1. Let (B,C,D) be the EGD of a graph G. Let G1, G2, · · · , Gp be the
components of G[B] where Gi = (Vi, Ei). Let S be an optimal solution to a min-
weight vertex-stabilizer (resp. max-weight vertex-stabilizer) instance defined on
G. Then, (i) S is a subset of B, (ii) |S ∩ Vi| ≤ 1, (iii) if |S ∩ Vi| = 1, then the
vertex gi ∈ S of Gi is a minimum weight vertex in Gi.

We can use Lemma 1 to simplify our input. If S contains a vertex from a
component Gi, then it must be one of the vertices with minimum weight in Gi.
Therefore, we shrink each non-singleton component Gi to a vertex gi with min-
imum weight among the vertices in the component, and we call it a pseudonode
(we remove multiple copies of the same edge created with this operation, if any).

172 S. Ahmadian et al.

Additionally, we know that S ∩ D = ∅, so we can safely ignore these vertices
and temporarily remove them from G. Lastly, we remark that it is well-known
(see e.g. [16]) that every maximum matching of G matches all vertices in C to
vertices in different components of G[B]; therefore, we ignore and remove edges
between vertices in C from G. In this way we construct from G a weighted bipar-
tite graph Gb = (B̃ ∪C, Ẽ), where Ẽ ⊆ E, and B̃ consists of two sets of vertices:
the set of pseudonodes, call this set B1, and vertices corresponding to singletons
in G[B], call this set B2. By construction and our previous remark, ν(Gb) = |C|
and S naturally corresponds to a subset of B̃ of the same weight.

Definition 1. Let H = (U ∪ W,F) be a bipartite graph and U1 ⊆ U . We call
S ⊆ U a U1-essentializer if all vertices in U1\S are essential in the graph H\S.

The next lemma basically shows that there is an approximation preserving
reduction between the min-weight (resp. max-weight) vertex-stabilizer problem
defined on G, and the problem of finding a suitable B1-essentializer S that min-
imizes

∑
v∈S wv (resp. maximizes

∑
v/∈S wv) in the weighted bipartite graph Gb.

Lemma 2. Let S̃ ⊆ B̃ be a B1-essentializer of Gb that satisfies ν(Gb\S̃) =
ν(Gb). Then S̃ corresponds to a vertex-stabilizer of G (of the same weight). Let
S ⊆ V be an optimal solution to a min-weight vertex-stabilizer (resp. max-weight
vertex-stabilizer) instance defined on G. Then S corresponds to a B1-essentializer
in Gb (of the same weight) that satisfies ν(Gb\S) = ν(Gb).

Next, we give an integer programming description of the set of B1-essentializers,
whose relaxation will be at the heart of our algorithms.

Integer Programming Description. Given Gb = (B̃ ∪ C, Ẽ), with B̃ =
B1 ∪ B2, we introduce a binary variable zv for v ∈ B̃ to denote if v is in a
B1-essentializer S (i.e. zv = 1 if v ∈ S). We also introduce a binary variable y
for v ∈ B̃ ∪C with the following meaning: for v ∈ B̃, we let yv = 1 denote if v is
an essential node in Gb\S; for v ∈ C instead, we let yv = 1 denote if v is always
matched to an inessential node in any maximum matching of Gb\S. For a set of
vertices T , we let y(T) =

∑
v∈T yv, and N(T) denote the set of neighbours (i.e.

adjacent vertices) of T . We let

PI :=
{

(z, y) : yv + zv ≥ 1, for v ∈ B1 (1)

yv + yu + zv ≥ 1, for {u, v} ∈ Ẽ, v ∈ B2, u ∈ C(2)
y(N(A)) ≥ |A| − y(A), for A ⊆ C (3)

y(V) = |C|, (4)

z ∈ {0, 1}B̃ , y ∈ {0, 1}B̃∪C
}

.

Let us give an intuition of the meaning of the linear constraints. Inequality (1)
states that a vertex in B1 is either essential in Gb\S or it is removed (as required
by Definition 1). Inequality (2) states that if a vertex v in B2 is not removed then

Stabilizing Network Bargaining Games by Blocking Players 173

either v is essential in Gb\S or all of its neighbours have to be matched to inessen-
tial vertices in Gb\S. The reason is that, if v is inessential in Gb\S but some
neighbour u of v is matched to an essential vertex v′ in some maximum matching
M of Gb\S, then it is possible to construct an even length M -alternating path
between some M -exposed vertex to v′, contradicting the fact that v′ is essential.
Inequality (3) is a translation of Hall’s theorem, and states that there exists a
matching between vertices in C with y-value 0 and their neighbours with y-value
1, that covers all vertices in C with y-value 0. The reason is that such vertices
will always be matched to essential vertices in Gb\S by any maximum matching.
We would like to emphasize that inequalities (3) are crucial to have a meaning-
ful formulation for our problem. Equality (4) basically ensures that there is a
partition of vertices in C into those that will always be matched to inessential
vertices and those that will always be matched to essential vertices of Gb\S by
any maximum matching. The next lemma makes this intuition rigourous.

Lemma 3. PI describes the set of B1-essentializers of the graph Gb.

We denote by Pf the polytope obtained by relaxing the binary constraints
of PI , i.e. replacing them with 0 ≤ z ≤ 1 and 0 ≤ y ≤ 1. When dealing with
fractional points, Inequality (3) does not correspond to Hall’s theorem anymore,
but it naturally ensures the existence of a flow of value |C| − y(C) from vertices
in C to vertices in B̃. Among other things, this also implies that although this
set contains exponentially (in the size of Gb) many inequalities, we can separate
over them in polynomial time.

Lemma 4. Construct a directed network N= (VN , AN) from graph Gb = (B̃ ∪
C, Ẽ) with VN = B̃ ∪ C ∪ {s, t} and AN = {(s, u) : u ∈ C} ∪ {(v, t) : v ∈ B̃} ∪ Ẽ
where the edges in Ẽ are oriented from C to B̃. Let (z, y) ∈ Pf . Assign yv

amount of capacity to each arc (v, t), (1 − yu) amount of capacity to each arc
(s, u), and ∞ capacity to arcs in Ẽ. Then, there exists a maximum s − t flow in
Nof value y(B̃) = |C| − y(C).

Exploiting the structure of this flow, we can derive useful properties on the
extreme points of Pf . In particular, we have the following lemma:

Lemma 5. Let (z, y) be an extreme point of Pf . There exists a maximum match-
ing in Gb between the set of vertices {v ∈ B̃ : yv > 0} and the set of vertices
{u ∈ C : yu < 1} of cardinality |{v ∈ B̃ : yv > 0}|.

Finally, we note that the problem of finding a B1-essentializer S that maxi-
mizes

∑
v/∈S wv, or minimizes

∑
v∈S wv, can be formulated respectively as

max
{ ∑

v∈B̃

wv(1 − zv) : (z, y) ∈ PI

}
, and min

{ ∑

v∈B̃

wvzv : (z, y) ∈ PI

}
. (5)

Algorithm for Max-weight Vertex-stabilizer. Given a graph G = (V,E)
with weights wv ≥ 0 ∀v ∈ V , we construct from G a weighted bipartite graph
Gb = (B̃ ∪ C, Ẽ), with B̃ = B1 ∪ B2, as described in the beginning of Sect. 3.
We then apply Algorithm 2 that relies on solving the LP relaxation of the max-
imization IP in (5).

174 S. Ahmadian et al.

Algorithm 2.
1. Let (z∗, y∗) ← optimal extreme point of max{∑

v∈B̃(1 − zv) : (z, y) ∈ Pf}.
2. Set B+ := {v ∈ B̃ : 0 < y∗

v}; B1
0 := {v ∈ B̃ : y∗

v = 0, z∗
v = 1}; Bf

0 := {v ∈ B̃ :
y∗

v = 0, 0 < z∗
v < 1}.

3. If w(B+) ≤ w(Bf
0) then set S := (B+ ∪ B1

0), else set S := (Bf
0 ∪ B1

0).
4. While ν(Gb\S) < |C| do: find v ∈ S such that ν(Gb\(S\{v})) > ν(Gb\S),
and set S := S\{v}.

Theorem 5. There is a polynomial-time LP-based 2-approximation algorithm
for the max-weight vertex-stabilizer problem.

Proof. We consider the set S output by Algorithm 2. Note that if S is a
B1-essentializer and ν(Gb\S) = ν(Gb), then it corresponds to a vertex-stabilizer
in G by Lemma 2. Still, Lemma 2 implies that to prove the claimed approxima-
tion guarantee, it is enough to prove that S is a 2-approximated solution for the
problem of finding a B1-essentializer for Gb that maximizes the weight of the
non selected vertices.

First, we show that (a) ν(Gb\S) = ν(Gb) and (b) every vertex in B1\S is
essential in Gb\S, i.e. S is a B1-essentializer. Note that (a) holds by construction
after step 4 (recall that ν(Gb) = |C| and S∩C = ∅, therefore it is always possible
to perform step 4 until the while condition is not satisfied anymore). Moreover,
all vertices added in step 4 are essential vertices. We are left with (b). Define
Cf = {u ∈ C : y∗

u < 1}. Furthermore, partition the set of vertices in B̃ in 4
sets: B+, B1

0 , B
f
0 and B0

0 := {v ∈ B̃ : z∗
v = 0 & y∗

v = 0} (the definition of the
first 3 sets is given in Algorithm 2). Note that the vertices in B1 are either in
B1

0 or B+, so if S = B+ ∪ B1
0 , then Gb\S does not contain any B1 vertex, and

we have nothing to show. Suppose instead S = Bf
0 ∪ B1

0 . Note that there does
not exist any edge between v ∈ B0

0 and u ∈ Cf , because y∗
v + z∗

v = 0 holds
for v and y∗

u < 1 holds for u, and therefore Inequality (2) will be violated for
the edge {v, u}, contradicting feasibility of (z∗, y∗). Therefore, the neighbours of
vertices Cf in Gb\S are vertices in B+ and by Lemma 5, we know that there is a
matching between Cf and B+ covering all vertices in B+. Since every maximum
matching in Gb\S covers all the vertices in C, it must cover all vertices in Cf ,
therefore it must be the case that |Cf | = |B+| and every maximum matching in
Gb\S covers all the vertices in B+, i.e. all the vertices in B+ are essential. Since
(B1\S) ⊆ B+, the result follows.

To conclude the proof, we argue that the weight of the vertices in Gb\S
is at least 1

2 the optimal value of the LP. Let w0 = w(B0
0), w1 = w(B+),

w2 = w(Bf
0). Note that the weight of the vertices in the graph Gb\S is at least

w0+max(w2, w1) which is at least half of w0+w1+w2 =
∑

v∈B̃ wv −∑
v:z∗

v=1 wv,
which is clearly an upper bound on the optimal value of the LP.
�
Algorithm for Min-weight Vertex-stabilizer. Given a graph G = (V,E)
with weights wv ≥ 0 ∀v ∈ V , we construct a weighted bipartite graph Gb =
(B̃ ∪ C, Ẽ), with B̃ = B1 ∪ B2 obtained from G as described in the beginning of
Sect. 3. We then apply Algorithm 3 that relies on solving the LP relaxation of
the minimization IP in (5).

Stabilizing Network Bargaining Games by Blocking Players 175

Algorithm 3.
1. Solve the LP: min

{ ∑
v∈B̃ wvzv : (z, y) ∈ Pf

}
to get an extreme point optimal

solution (z, y), and set S := {v : zv ≥ 1
|C|+1}.

2. While ν(Gb\S) < |C| do: find v ∈ S such that ν(Gb\(S\{v})) > ν(Gb\S),
and set S := S\{v}.

Theorem 6. There is a polynomial-time LP-based (γ + 1)-approximation algo-
rithm for the min-weight vertex-stabilizer problem, where γ is the size of the
Tutte-set of G.

Proof. We consider the set S output by Algorithm 3. As for the max-weight
case, due to Lemma 2 and step 2 of the algorithm, to prove the theorem it is
enough to show that S is a (|C| + 1)-approximated solution for finding a B1-
essentializer for Gb that minimizes the weight of the selected vertices. Trivially,
w(S) ≤ (|C|+1)

∑
v∈B̃ wvzv, therefore the approximation factor guarantee holds.

It remains to show that S is in fact a B1-essentializer for Gb.
Let S̃ be the set S before executing step 2 of the algorithm. We will prove

that each v ∈ B1\S̃ is essential in Gb\S̃. This is enough, since every vertex added
back in step 2 will be essential by construction, and this addition cannot make
any vertex in B1 inessential. Let us assume by contradiction that v0 ∈ B1\S̃
is inessential in Gb\S̃. In this case, if we apply Edmonds’ Blossom Algorithm
[7] in Gb\S̃, we can find a maximum matching M that exposes v0 and a so-
called frustrated tree T = (VT , ET) containing v0 with the following properties:
(i) |ET ∩ M | = |VT ∩ C|, and all vertices in VT \{v0} are covered by M , and
(ii) the neighbours of the set of vertices VT ∩ B̃ in Gb\S̃ are all in the tree T
(we refer to [6,7] for details). Note that the neighbours of VT ∩ B̃ in Gb\S̃ are
the same as the neighbours of VT ∩ B̃ in Gb, i.e. N(VT ∩ B̃) = VT ∩ C as S̃ ⊆ B̃.
Feasibility of (z, y) implies that for each matching edge {u, v} ∈ M , we have
yu + yv + zv ≥ 1. Since S̃ removed all vertices with z-value ≥ 1

|C|+1 , for each
edge {u, v} ∈ M , yu + yv > 1 − 1

|C|+1 . Let MT := M ∩ ET . We have

y(VT) = yv0 +
∑

{u,v}∈MT

(yu + yv) > (1 − 1
|C| + 1

) + |MT |(1 − 1
|C| + 1

)

= |MT | + 1 − |MT | + 1
|C| + 1

≥ |MT |,

where the first inequality follows from the Inequality (1) associated to v0, and
the last inequality follows from the fact that |MT | ≤ |C|. Furthermore, for set
A = VT ∩ C, since |MT | = |A| by (i), we have

y(A) + y(N(A) ∩ VT) = y(VT) > |MT | = |A|. (6)

If we consider the directed network Nand the s − t flow as in Lemma 4, (6) says
that the capacity y(N(A) ∩ VT) of the arcs between t and N(A) ∩ VT is strictly
larger than the flow sent on the arcs from s to A (that can be at most |A|−y(A)).

176 S. Ahmadian et al.

Since a maximum flow necessarily saturates all the edges from N(A) ∩ VT to
t, there is a neighbour of (N(A) ∩ VT) which is not in A who sends positive
flow to some vertex in N(A) ∩ VT , but this contradicts property (ii) of T , as
N(N(A) ∩ VT) = N(B̃ ∩ VT) = A.
�

We remark here that we can show a tight lower bound of Ω(γ) on the integral-
ity gap of the minimization IP in (5) that holds even on graphs with constant
degree. However, we can develop an algorithm whose approximation ratio is
bounded by the maximum degree (δ) of a vertex in G, if we know the set of
essential vertices in the final stable graph (our reduction in Theorem4 shows
that also this problem is NP-hard).

Theorem 7. There is a δ-approximation algorithm for the min-weight vertex-
stabilizer problem, if we know the set of essential vertices in the final stable
graph.

References

1. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: O(
√

log n) approxi-
mation algorithms for min UnCut, min 2CNF deletion, and directed cut problems.
In: Proceedings of STOC 2005, pp. 573–581 (2005)

2. Berge, C.: Two theorems in graph theory. Proc. Natl. Acad. Sci. U.S.A. 43(9),
842–844 (1957)

3. Biró, P., Bomhoff, M., Golovach, P.A., Kern, W., Paulusma, D.: Solutions for the
stable roommates problem with payments. In: Golumbic, M.C., Stern, M., Levy, A.,
Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 69–80. Springer, Heidelberg
(2012)

4. Bock, A., Chandrasekaran, K., Könemann, J., Peis, B., Sanità, L.: Finding small
stabilizers for unstable graphs. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol.
8494, pp. 150–161. Springer, Heidelberg (2014)

5. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of coopera-
tive game theory. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, 1st edn. Morgan & Claypool, San Rafael (2011)

6. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial Opti-
mization. Wiley, New York (1998)

7. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
8. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut

theorems and their applications. SIAM J. Comput. 25, 698–707 (1993)
9. Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Efficient sta-

bilization of cooperative matching games. In: Proceedings of AAMAS (2016, to
appear)

10. Kleinberg, J., Tardos, É.: Balanced outcomes in social exchange networks: In: Pro-
ceedings of STOC 2008, pp. 295–304 (2008)

11. Könemann, J., Larson, K., Steiner, D.: Network bargaining: using approximate
blocking sets to stabilize unstable instances. In: Theory of Computing Systems,
pp. 655–672 (2015)

12. Korach, E., Nguyen, T., Peis, B.: Subgraph characterization of Red/Blue-Split
graph and könig egerváry graphs. In: Proceedings of SODA 2006, pp. 842–850
(2006)

Stabilizing Network Bargaining Games by Blocking Players 177

13. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.: The complexity of
König subgraph problems and above-guarantee vertex cover. Algorithmica 61(4),
857–881 (2011)

14. Nash, J.: The bargaining problem. Econometrica 18, 155–162 (1950)
15. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press, New York (2007)
16. Schrijver, A.: Combinatorial Optimization. Springer, New York (2003)
17. Shapley, L.S., Shubik, M.: The assignment game: the core. Int. J. Game Theory

1(1), 111–130 (1971)
18. Sterboul, F.: A characterization of the graphs in which the transversal number

equals the matching number. J. Comb. Theory Ser. B 27, 228–229 (1979)

Round-Robin Tournaments Generated by the
Circle Method Have Maximum Carry-Over

Erik Lambrechts1, Annette M.C. Ficker2(B), Dries R. Goossens3,
and Frits C.R. Spieksma2

1 Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
erik.lambrechts@kuleuven.be

2 Operations Research Group, Faculty of Economics and Business,
KU Leuven, Leuven, Belgium

{annette.ficker,frits.spieksma}@kuleuven.be
3 Faculty of Economics and Business Administration,

Ghent University, Gent, Belgium
dries.goossens@ugent.be

Abstract. The Circle Method is widely used in the field of sport
scheduling to generate schedules for round-robin tournaments. The so-
called carry-over effect value is a number that can be associated to each
round-robin schedule; it represents a degree of balance of a schedule.

Here, we prove that, for an even number of teams, the Circle Method
generates a schedule with maximum carry-over effect value, answering
an open question.

1 Introduction

In 1847, Reverend T. Kirkman [11] published a method that can be used for
constructing a schedule for round-robin competitions. This method, here called
the Circle Method (aka the polygon method, or the canonical procedure; its
outcome has been referred to as a Kirkman tournament, or the circle design;
see Sect. 2.3 for a precise description), has been used abundantly in practice for
many sports leagues around the world to construct schedules in round robin
competitions (see Sect. 1.1).

In 1980, Russel [14] proposed a measure that associates to each schedule
a value representing a degree of balance of a schedule; this value is called the
carry-over effect value (see Sect. 2.2 for a definition).

Here, we answer the following question:

Does the Circle Method generate a schedule with maximum carry-over effect
value?

Miyashiro and Matsui [13] conjecture that the answer to this question is ‘yes’;
we prove that to be the right answer. Even more, we show that any schedule
with a maximum carry-over effect value can be generated by the Circle Method.

This work is supported by the Interuniversity Attraction Poles Programme initiated
by the Belgian Science Policy Office.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 178–189, 2016.
DOI: 10.1007/978-3-319-33461-5 15

Round-Robin Tournaments Generated by the Circle Method 179

1.1 Motivation

In a round-robin tournament, each pair of teams (or players) meets an equal
number of times; the resulting matches are distributed over rounds such that
each team plays at most a single match in each round. Organizers of round-
robin tournaments face the problem of generating a schedule, i.e., to decide
which match takes place in which round. Graph theory is closely connected to
this problem: by having a node for each team, a match can be seen as a pair of
nodes, and a round can be seen as a matching (see De Werra [4,5]). Then, the
schedule boils down to a sequence of matchings, thereby partitioning the edge
set of the resulting complete graph.

There are many, many different issues that can be taken into account when
designing a tournament. In particular, various ways of generating a schedule
exist, each resulting in a schedule with different properties; we refer to Ander-
son [1], Froncek [3], Januario et al. [9], and Kendall et al. [10] for introductions
and (recent) overviews.

It is fair to say, however, that the so-called Circle Method is a very popular
(if not the most popular) method when it comes to generating schedules for
round-robin competitions. Indeed, the use of the Circle Method is well spread
through different sports leagues and their organizers; for instance, Griggs and
Rosa [8], followed by Goossens and Spieksma [6], documented extensively the
use of the Circle Method throughout soccer leagues in Europe.

The following phenomenon is relevant in any round-robin tournament. Imag-
ine that your team is facing some other team in an upcoming match; we will
argue that the opponent of this other team in the previous match is relevant for
the upcoming match. Indeed, if the team you’re about to face has experienced a
heavy loss in its previous match, the team may have a low morale, or be discour-
aged, and hence perhaps easier to beat. Then your team is receiving a so-called
carry-over effect from the previous opponent of the team your team is about to
face. Of course, the opposite is possible as well: strengthened by having beaten
a weak opponent in their previous match, the team your team is about to face
is full of morale, and perhaps more difficult to beat.

Thus, in each round of the competition your team receives a carry-over effect
from the team that your opponent played against in its previous match (the
rounds are viewed cyclically, i.e., in round 1 your team receives a carry-over
effect from the team your opponent plays in the last round, see Sect. 2): we can
investigate the set of teams from which your team receives a carry-over effect
throughout the competition.

In one extreme case, this set of teams consists of all other teams. Then,
in a single round-robin tournament, each other team gives once a carry-over
effect to your team. Schedules that satisfy this property are called balanced, see
Russel [14]. A balanced schedule need not exist; Russel [14] shows that bal-
anced schedules exist when the number of participating teams is a power of
2; Anderson [2] exhibits balanced schedules when the number of participating
teams equals 20 or 22.

180 E. Lambrechts et al.

In another extreme case, only very few teams give carry-over effects to your
team. This gives rise to schedules that can be perceived as unbalanced or even
unfair. Indeed, different cases have been reported where carry-over effects were
blamed for distorting the outcome of the competition; we refer to Goossens and
Spieksma [7] who describe a case in the 2007 edition of the Norwegian soccer
league (Tippeligean), and a case in the 2006–2007 edition of the Belgian soccer
league (ProLeague). Thus, measuring the degree of ‘unbalancedness’ of a sched-
ule is relevant, and this is done by considering the square of the deviations from
a balanced schedule (see Sect. 2.2). The Circle Method is known for generating
unbalanced schedules; in fact, our contribution here is to show that the Circle
Method actually maximizes the carry-over effect value.

When viewed in graph-theoretical terms, the Circle Method partitions the
edge set of Kn (n even) into n−1 perfect matchings and arranges these matchings
in a specific cyclical order (Sect. 2.3). We show here that this order maximizes a
particular objective, known as the carry-over effect value.

The paper is organized as follows. In Sect. 2 we introduce our terminology
and we state our result (Theorem 1), Sect. 3 formulates the building blocks of
our proof, Sect. 4 finalizes the proof. Due to space limitations proofs of all facts
and lemmas are omitted; they can be found in the full version of this paper [12].

2 Terminology

This section introduces terminology concerning schedules (Sect. 2.1), explains
the value of the carry-over effect of a schedule (Sect. 2.2), and describes the
Circle Method (Sect. 2.3).

2.1 About Schedules

Let n denote the number of teams participating in a single round-robin tourna-
ment (SRR). Throughout this paper, we assume that n is even, and that n ≥ 6
(since the cases where n ∈ {2, 4} are easy to analyze). We use N to denote the
set of teams: N = {1, 2, . . . , n}. We exclusively focus on so-called compact sched-
ules, meaning that there are n − 1 rounds in an SRR; each round consists of n

2
matches (of course, a match consists of a pair of two distinct teams). A schedule
for an SRR specifies, for each of the n − 1 rounds, which pairs of teams are
involved in the matches.

Definition 1. A schedule is called feasible if:

(i) in each round, each team is in one match, and
(ii) after all rounds, each pair of teams has been in a match.

A schedule can be represented in the form of a table. The two tables depicted
in Fig. 1 each represent a possible schedule for n = 8 teams. The opponent of
team i ∈ N in round r can be found on the i-th row and the r-th column
(1 ≤ r ≤ n − 1).

Round-Robin Tournaments Generated by the Circle Method 181

Fig. 1. Two distinct schedules for n = 8 teams.

2.2 About the Carry-Over Effect

Consider the schedule represented in Fig. 1 on the left. In round 1, team 1 plays
team 2, and in round 2, team 1 plays team 6. Thus, team 2 gives a carry-over
effect (coe) to team 6 using team 1 as a carrier. Indeed, any pair of consecutive
numbers on a row in a schedule indicates a coe. More generally, the opponent of
one’s opponent in the previous round is the originator of an effect that is passed
to one’s team. To capture this effect, we use the following definition.

Definition 2 [14]. Given a feasible schedule, we say that team i ∈ N gives a
carry-over effect (coe) to team j ∈ N in round r, if there exists a team k ∈ N
that plays team i in round r − 1, and plays team j in round r, 1 ≤ r ≤ n − 1.
We also say that team j receives a coe from team i in round r.

It is important to realize that we view a schedule cyclically: in round 1,
each team receives a coe coming from a match in round n − 1; and in round
n− 1, each team gives a coe to some team playing in round 1. This is motivated
by observing that, often, in practice, a double round robin schedule is found
by repeating a single round robin schedule. Thus, when dealing with rounds,
we compute modulo n − 1. Indeed, we use freely the phrase r − 1 or r + 1 with
r ∈ {1, 2, . . . , n−1} (as we did in Definition 2); clearly, if r = 1, then r−1 = n−1,
and if r = n − 1, then r + 1 = 1. Concluding: in each round, a team gives a coe
to some team, and receives a coe from some team.

We associate to each schedule a matrix, called the carry-over effect matrix
(the COE matrix).

Definition 3 [14]. The COE matrix is an n × n matrix with entries ci,j, that
represent the number of times that team i gives a coe to team j in a given
schedule, i, j ∈ N . The carry-over effect value (the COE value) of a feasible
schedule is defined as

∑

i∈N

∑

j∈N

c2i,j.

It will be convenient to consider a team’s contribution to the COE value. We
define:

182 E. Lambrechts et al.

Definition 4. The contribution of a team i ∈ N , denoted by Co(i), to the COE
value is defined as Co(i) =

∑

j∈N

c2i,j.

Observe that the COE value of a given schedule equals the sum of the contribu-
tions of the teams. The COE matrices, and their COE values, corresponding to
the two schedules in Fig. 1, are given in Fig. 2, with the zero entries left blank.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

56

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 5 1
1 5 1

1 5 1
1 5 1

1 5 1
5 1 1
1 5 1
1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

196

Fig. 2. Corresponding COE matrices.

As mentioned in Sect. 1.1, a schedule is called balanced if each team receives
a coe from each other team exactly once. The corresponding COE matrix has
all entries equal to 1, except for zero entries on the main diagonal. We see in
Fig. 2 that the first schedule is balanced.

2.3 About the Circle Method

The Circle Method is a method for constructing a feasible schedule for an SRR
with any (even) number of teams. An intuitive description is as follows. Select
a team, say team n, and place it in the center of a circle. All other teams are
placed on the circle. In round 1, the team in the center plays team 1. The
neighbors of team 1 play each other, and in fact, their neighbors also play each
other. This is repeated until all teams are matched up, and we have constructed
the first round. To construct the next round, we “rotate” the matches, that
is, team n plays team 2, the neighbors of team 2 play each other, and so on.
This is illustrated in Fig. 3 for the first three rounds; the resulting schedule is
represented in the right schedule in Fig. 1.

A precise description of the Circle Method is as follows. For each round
r ∈ {1, . . . , n − 1} we have,

– team n plays team r,
– for i, j ∈ N\{r, n}: team i plays team j if i + j ≡ 2r mod (n − 1).

Of course, permuting the teams, and next applying the Circle Method gives
other schedules; we will refer to the class of schedules that can be obtained by
applying the Circle Method to some permutation of the teams, as the class C.

Round-Robin Tournaments Generated by the Circle Method 183

1

2

3

45

6

7

8

1

1

2

3

45

6

7

8

2

1

2

3

45

6

7

8

3

Fig. 3. Visual representation of a schedule constructed with the circle method.

The COE matrix corresponding to a schedule found by the Circle Method
has a specific structure. Consider for example Fig. 2 on the right for the COE
matrix where n = 8. We use this structure to find an explicit expression for the
COE value of a schedule found by the Circle Method; this value is denoted by
CMCOE(n) (where n refers to the number of teams).

Fact 1.

CMCOE(n) = ((n − 3)2 + 3)(n − 1) for each even n ≥ 6.

We are now well-placed to formulate our main result.

Theorem 1. The Circle Method generates a schedule with maximum COE value.

3 Building Blocks of the Proof

This section identifies some basic observations in Sect. 3.1, introduces two con-
cepts in Sect. 3.2, characterizes the class of schedules that can be generated by
the Circle Method in Sect. 3.3, and proves upper bounds on the contribution of
teams with particular properties in Sect. 3.4.

3.1 Basic Observations

The following statements hold for any feasible schedule.

Lemma 1.

(i) Each team gives and receives exactly n−1 times a coe (once in each round).
(ii) A team cannot give, nor receive, a coe to, or from, themselves.
(iii) Each team gives a coe to at least three different teams, and each team

receives a coe from at least three different teams.
(iv) Each team gives at most n − 3 times a coe to a single team.

These statements allow us to determine the maximum contribution to the
COE value of a single team. Indeed, from Lemma 1, it follows that for each i ∈ N ,∑

j∈N

ci,j = n − 1, that at least three of these ci,j values are nonzero, and that all

184 E. Lambrechts et al.

values are bounded by n − 3. This implies that the maximal contribution of a
team equals (n − 3)2 + 1 + 1, corresponding to a situation where a team gives
n − 3 times a coe to a single team, and once to two other teams. Clearly, this is
the only possible situation where a team gives n−3 times a coe to another team.
Thus, the second highest possible contribution of a team is (n − 4)2 + 22 + 1,
corresponding to giving n− 4 times a coe to a team, twice to another team, and
once to yet another team.

Definition 5. Given a feasible schedule, team i ∈ N is called a maximally giving
team (an mg team) if there exists a team j receiving n−3 times a coe from team
i, i.e., if there exists a j with ci,j = n − 3. Alternatively, we call a team j a
maximally receiving team.

When considering the COE matrix on the right in Fig. 2, we see that seven
out of the eight teams are mg teams. It is natural to wonder whether it is possible
to have a large COE value when there are no mg teams. We can easily find the
following lower bound on the number of mg teams that need to be present in a
feasible schedule with a value at least CMCOE(n).

Lemma 2. Any feasible schedule with a COE value greater or equal than
CMCOE(n), has at least

⌈
n
2 + n−6

n−5

⌉
mg teams.

Thus, the COE value of a schedule is bounded from above by that of the
Circle Method if no more than half of the teams are maximally giving teams.

3.2 Basic Concepts: k-Chains and Bridge Teams

The existence of an mg team in a schedule has quite some impact on the structure
of that schedule. Let us investigate this structure in more detail. Suppose, as an
example, that team 1 gives maximally to team 2. Thus, there are n − 3 rounds
during which team 1 gives a coe to team 2. Let us further assume team 1 plays
team 2 in round 2. It is then clear that in this round, team 2 does not receive
a coe from team 1. Also, in the next round, team 2 does not receive a coe from
team 1. But this means that in each of the remaining n − 3 rounds, team 2
has to receive a coe from team 1. Thus, the opponent of team 1 in round r,
and the opponent of team 2 in round r + 1 are the same team for each round
r ∈ {3, 4, . . . , n− 1}. This means that the schedule has the form that is depicted
in Table 1 where we use letters as names for the other teams.

Table 1. Partial schedule in case team 1 gives maximally to team 2.

1 2 3 4 5 6 . . . n− 2 n− 1

1 2 a b c d . . . y z

2 z 1 a b c . . . x y

Round-Robin Tournaments Generated by the Circle Method 185

Notice that both teams 1 and 2 still have only a single empty round; in fact,
it is easily seen that the opponent of team 1 in round 1 must be the same team
as the opponent of team 2 in round 3. As we have the freedom to reindex the
remaining teams, let us say that the empty round is taken by team n, and let
us number the other teams by considering the round in which such a team plays
team 1. This gives rise to Table 2.

Table 2. The structure when a team 1 is an mg team giving maximally to team 2.

1 2 3 4 5 6 . . . n− 2 n− 1

1 n 2 3 4 5 6 . . . n− 2 n− 1

2 n− 1 1 n 3 4 5 . . . n− 3 n− 2

We emphasize that the only crucial assumption we made for constructing
Table 2 is the assumption that team 1 gives maximally to team 2.

Let us further elaborate on this example by considering what happens if team
2 is an mg team as well, giving maximally to some other team. Notice that, given
the structure displayed in Table 2, there can be only one specific team to which
team 2 gives maximally, namely team 3 (the team that plays team 1 in round
3). We leave verification of this claim to the reader.

The resulting implications are described in Table 3; notice the special role of
team n. We will come back to the role of team n extensively.

Table 3. The structure when team 1 is an mg team giving maximally to team 2, giving
maximally to team 3.

1 2 3 4 5 6 . . . n− 2 n− 1

1 n 2 3 4 5 6 . . . n− 2 n− 1

2 n− 1 1 n 3 4 5 . . . n− 3 n− 2

3 n− 2 n− 1 1 2 n 4 . . . n− 4 n− 3

We now define the concept of a k-chain, allowing us to capture the essence
of the example discussed in the preceding paragraphs.

Definition 6. Given a feasible schedule, we define a k-chain as a list consisting
of k + 1 teams, where the first k teams are mg teams, giving maximally to the
next team in the list. A k-chain in which the first and the last team are the same,
is called a closed k-chain, otherwise the k-chain is called open.

The value k of a k-chain represents the number of maximally giving teams in the
chain, and is called the length of the k-chain. For instance, the partial schedule
depicted in Table 3 exhibits a 2-chain.

Definition 7. Suppose that, in some feasible schedule, team i is an mg team,
giving maximally to team j. Suppose further that team i plays team j in round
r. The opponent of team i in round r − 1 is called the bridge team for team i.

186 E. Lambrechts et al.

For instance, in the partial schedule depicted in Table 3, team n is the bridge
team for team 1, and team n is also the bridge team for team 2. Notice that when
investigating a k-chain, we can freely re-index the teams. We use this freedom
to choose team n ∈ N as the bridge team for the first team in the k-chain.

Lemma 3. Given is a feasible schedule containing a k-chain. Let team i ∈ N
be an mg team in the k-chain, giving maximally to team j, and let team n ∈ N
be the bridge team for team i.

(i) If team i plays team j in round r, then team j plays team n in round r + 1.
(ii) Team j receives exactly one coe from team n.

In Table 3, team n is the bridge team for both mg-teams in the 2-chain. This
is not a coincidence.

Lemma 4. Consider a feasible schedule containing a k-chain. There is a unique
team that is a bridge team for each mg team in that k-chain.

Lemma 5. In any feasible schedule, the only closed k-chains that can occur are
those of length n − 1.

3.3 Characterizing the Class C
In this section, we characterize when a schedule is in the class C, i.e., when a
schedule can be constructed by the Circle Method. Also, we give two properties,
and we show that a schedule having one of these properties is in the class C.

Lemma 6. A schedule can be generated with the Circle Method (i.e., is in the
class C) if and only if it contains a closed (n − 1)-chain.

It is interesting to observe that if the schedule contains a k-chain that is “long
enough”, feasibility of the schedule allows us to argue that the schedule must,
in fact, contain a closed (n − 1)-chain, and hence be a schedule in the class C.

Lemma 7. A feasible schedule that contains a k-chain of length n
2 − 2 is a

schedule that can be generated by the Circle Method.

We can also show that when a team is a bridge team for “enough” teams,
feasibility of the schedule allows us to argue that the schedule must contain a
k-chain of length at least n

2 − 2, and hence be a schedule in the class C.

Lemma 8. If, in a given schedule, a team is a bridge team for at least n − 3
other teams, then that schedule can be generated by the Circle Method.

3.4 Upper Bounds on the Contribution of Bridge Teams

We now prove two lemmas that specify an upper bound on the contribution of
a bridge team to the COE value.

Round-Robin Tournaments Generated by the Circle Method 187

Lemma 9. Consider a feasible schedule. Let team b ∈ N be a bridge team for �
distinct mg teams. Then, the contribution of team b is bounded by

Co(b) ≤ (n − 2 − �)2 + � + 1.

In the special case where � = 2, we can improve the bound derived in the
previous lemma. We prove the following statement.

Lemma 10. Consider a feasible schedule. Let team b ∈ N be a bridge team for
two distinct mg teams. Then, the contribution of team b is bounded by

Co(b) ≤ (n − 5)2 + 6.

4 Proving the Theorem

In this section, we ‘assemble’ the building blocks proven in Sect. 3, in order to
prove Theorem 1. First, we deal with the case n ∈ {6, 8}; next, we partition in
Sect. 4.1 the set of teams N into different types of subsets. In Sect. 4.2, we show
how to bound the average contribution of teams in a subset, culminating in the
final proof.

Lemma 11. The Circle Method generates a schedule with maximum COE value
when n ∈ {6, 8}.

4.1 Identifying Subsets of Teams

In Sect. 3, we introduced two possible properties of a team: given a schedule,
a team can be a maximally giving team, and a team can be a bridge team.
Consider a team, say team b ∈ N , that is both maximally giving, as well as a
bridge team. (One might wonder whether this is possible; however, there exist
schedules containing mg bridge teams). This team has very specific properties
as witnessed by the following lemma.

Lemma 12. Let team b ∈ N be a maximally giving bridge team, giving maxi-
mally to team a ∈ N and a bridge team for team 1. Then: (i) team 1, being an
mg team, is a bridge team for team b and (ii) team a is neither an mg team, nor
a bridge team.

The team pairs (b, a) and (1, 2), where teams b and 1 are mg teams as well as
bridge teams, and where teams a and 2 receive maximally from teams b and 1
respectively, are of interest to us. We now define three different types of subsets
of teams.

Definition 8. A type 1 subset is a pair of teams (b, a) where team b is an mg,
bridge team, and team a receives maximally from team b.

188 E. Lambrechts et al.

We use T1 ⊆ N to denote the set of teams that are in sets of Type 1.
Teams that are maximally giving bridge teams are contained in sets of type

1. Let us now discuss the remaining bridge teams. Recall that for every bridge
team b ∈ N , there is a set of mg teams for which team b is a bridge team.
Notice that some of these mg teams might be bridge teams as well; these teams,
however, belong to a type 1 set.

Definition 9. A type 2 subset is a set of teams that consists of one non-
maximally giving bridge team b, and the mg teams for which team b is a bridge
team.

We use T2 ⊆ N to denote the set of teams that are in sets of Type 2. It
follows from Lemma 12 that these mg teams cannot be bridge teams themselves.
From this it is clear that T1 ∩ T2 = ∅.

Each team that gives maximally or is a bridge team (or both) is now classified
in a subset of type 1 or 2. And some of the non-maximally giving, non-bridge
teams are classified as well. All remaining teams will form a single set, called a
set of type 3.

Definition 10. The type 3 subset contains all teams that are not part of any
set of type 1 or of type 2.

We use T3 ⊆ N to denote the set of teams that are in the type 3 set. The
Definitions 8, 9 and 10 imply that the sets T1, T2, and T3 form a partition of N .

4.2 Proving Theorem 1

We show how to obtain an upper bound on the average contribution of a team in
a subset of a particular type. Then we compare these averages with the average
contribution of a team in a schedule found by the Circle Method. Clearly, the
average contribution of a team in a schedule created by the Circle Method is:

CMCOE(n)
n

=
((n − 3)2 + 3)(n − 1)

n
= n2 − 7n + 18 − 12

n
. (1)

We will show that, for n ≥ 10, the average contribution of a team in any subset
in a schedule not in C is less than the average contribution of any team in a
schedule that is in C.

Lemma 13. In any feasible schedule not in C, we have, for each subset Tj (j ∈
{1, 2, 3}) and for each n ≥ 10:

∑
i∈Tj

Co(i)

|Tj | <
CMCOE(n)

n
.

It is now easy to see that Lemma 13 implies Theorem 1: Since the sets T1, T2

and T3 form a partition of N , the COE value of a schedule not in C is smaller

Round-Robin Tournaments Generated by the Circle Method 189

than CMCOE(n), the COE value found by the Circle Method. This means that
the Circle Method maximizes the COE value.

Due to the fact that the average contribution of teams in every type of set
is less than that of the Circle Method, the reverse holds as well. This means
that a schedule that has a maximum COE value can be generated by the Circle
Method.

References

1. Anderson, I.: Combinatorial Designs and Tournaments. Oxford University Press,
Oxford (1997)

2. Anderson, I.: Balancing carry-over effects in tournaments. In: Holroyd, F., Quinn,
K., Rowley, C., Webb, B. (eds.) Combinatorial Designs and Their Applica-
tions. Research Notes in Mathematics, vol. 403, pp. 1–16. CRC Press, Boca
Raton (1997)

3. Froncek, D.: Scheduling a tournament. In: Gallian, J.A. (ed.) Mathematics and
Sports. Dolciani Mathematical Expositions, vol. 43, pp. 203–216. Mathematical
Association of America, Washington DC (2010)

4. De Werra, D.: Geography, games and graphs. Discrete Appl. Math. 2, 327–337
(1980)

5. De Werra, D.: Scheduling in sports. In: Hansen, P. (ed.) Studies on Graphs and
Discrete Programming. Annals of Discrete Mathematics, vol. 11, pp. 381–395.
North-Holland, Amsterdam (1981)

6. Goossens, D.R., Spieksma, F.C.R.: Soccer schedules in Europe: an overview. J.
Sched. 15, 641–651 (2012)

7. Goossens, D.R., Spieksma, F.C.R.: The carry-over effect does not influence football
results. J. Sports Econ. 13, 288–305 (2012)

8. Griggs, T., Rosa, A.: A tour of european soccer schedules, or testing the popularity
of GK2n. Bull. Inst. Comb. Appl. 18, 65–68 (1996)

9. Januario, T., Urrutia, S., Ribeiro, C., de Werra, D.: A Tutorial on Edge Coloring
in Graphs for Sports Scheduling. http://www2.ic.uff.br/∼celso/artigos/ejor single
file.pdf. Accessed 3 Nov 2015

10. Kendall, G., Knust, S., Ribeiro, C., Urrutia, S.: Scheduling in sports: an annotated
bibliography. Comput. Oper. Res. 37, 1–19 (2010)

11. Kirkman, T.P.: On a problem in combinatorics. Camb. Dublin Math. J. 2, 191–204
(1847)

12. Lambrechts, E., Ficker, A.M.C., Goossens, D.R., Spieksma, F.C.R.: Round-robin
tournaments generated by the circle method have maximum carry-over. Research
report, KBI 1603, KU Leuven

13. Miyashiro, R., Matsui, T.: Minimizing the carry-over effects value in a round-robin
tournament. In: Burke, E.K., Rudová, H. (eds.) Proceedings of the 6th Interna-
tional Conference on the Practice and Theory of Automated Timetabling, pp.
460–463 (2006)

14. Russell, K.G.: Balancing carry-over effects in round robin tournaments. Biometrika
67(1), 127–131 (1980)

http://www2.ic.uff.br/~celso/artigos/ejor_single_file.pdf
http://www2.ic.uff.br/~celso/artigos/ejor_single_file.pdf

Extreme Functions with an Arbitrary Number
of Slopes

Amitabh Basu1(B), Michele Conforti2, Marco Di Summa2, and Joseph Paat1

1 Department of Applied Mathematics and Statistics,
Johns Hopkins University, Baltimore, USA

basu.amitabh@jhu.edu
2 Dipartimento di Matematica, Università degli Studi di Padova, Padova, Italy

Abstract. For the one dimensional infinite group relaxation, we con-
struct a sequence of extreme valid functions that are piecewise linear
and such that for every natural number k ≥ 2, there is a function in
the sequence with k slopes. This settles an open question in this area
regarding a universal bound on the number of slopes for extreme func-
tions. The function which is the pointwise limit of this sequence is an
extreme valid function that is continuous and has an infinite number of
slopes. This provides a new and more refined counterexample to an old
conjecture of Gomory and Johnson that stated all extreme functions are
piecewise linear.

1 Introduction

Let b ∈ R\Z. The (one dimensional) infinite group relaxation Rb(R, Z) is the set
of functions x : R → Z+ having finite support (that is, {r : xr > 0} is a finite
set) satisfying: ∑

r∈R

rxr ∈ b + Z, xr ∈ Z+. (1)

A function π : R → R+ is valid for Rb(R, Z) if
∑

r∈R

π(r)xr ≥ 1, for every x ∈ Rb(R, Z). (2)

Valid functions for the infinite group relaxation were first introduced by
Gomory and Johnson [9,10] as means to obtain cutting planes for mixed-integer
programs. This idea has recently culminated in study of cut-generating functions
which has become one of the central aspects of modern cutting plane theory. The
monographs of Basu et al. [2,4] provide a comprehensive introduction to the sub-
ject and survey the recent advances.

The most well known valid function is the Gomory mixed-integer function,
defined as follows:

A. Basu and J. Paat—Supported by the NSF grant CMMI1452820.
M. Conforti and M. Di Summa—Supported by the grant “Progetto di Ateneo 2013”
of the University of Padova.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 190–201, 2016.
DOI: 10.1007/978-3-319-33461-5 16

Extreme Functions with an Arbitrary Number of Slopes 191

π(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
b x, 0 ≤ x < b
1

1−b −
(

1
1−b

)
x, b ≤ x < 1

π(x − j), x ∈ [j, j + 1), j ∈ Z \ {0}.

(3)

A valid function π is minimal if π = π′, for every valid function π′ such that
π′ ≤ π. Given valid functions π and π′ such that π′ ≤ π and π �= π′, it holds
that {xr ∈ Z+ :

∑
π′(r)xr ≥ 1} � {xr ∈ Z+ :

∑
π(r)xr ≥ 1}. Therefore if a

valid function is not minimal, then it is redundant.
A function φ : R → R is subadditive if φ(r1) + φ(r2) ≥ φ(r1 + r2) for all

r1, r2 ∈ R. φ satisfies the symmetry condition if φ(r)+φ(b− r) = 1 for all r ∈ R.
Finally, φ is periodic modulo Z if φ(r) = φ(r + w) for all r ∈ R and w ∈ Z.

Theorem 1 (Gomory and Johnson [9]). Let π : R → R be a nonnegative
function. Then π is a minimal valid function for Rb(R, Z) if and only if π(w) = 0
for all w ∈ Z, π is subadditive, and π satisfies the symmetry condition. (These
conditions imply that π is periodic modulo Z and π(b+w) = 1 for every w ∈ Z.)

It is easy to check that the Gomory mixed-integer function defined above
is subadditive and satisfies the symmetry condition. Therefore, by the above
theorem, it is a minimal function.

Minimal functions are the ones that are not dominated by any other function.
However minimal functions may be implied by convex combinations of valid
functions. Gomory and Johnson define a valid function π to be extreme if π =
π1 = π2 for every pair of valid functions π1, π2 such that π = π1+π2

2 . If π is a
valid function which is extreme, then π is easily seen to be minimal. Therefore
extremality is a stronger requirement.

We say a function φ : R → R is piecewise linear if there is a set of closed,
non-degenerate intervals Ij , j ∈ J such that R = ∪j∈JIj , any bounded subset of
R intersects only finitely many intervals, and φ is affine linear over each interval
Ij . Note that in this definition, a piecewise linear function is continuous.

Theorem 2 (Gomory and Johnson [9]). Let π : R → R be minimal valid
function which is piecewise linear and has only 2 slopes. Then π is an extreme
valid function.

In particular, the above theorem implies that the Gomory mixed-integer function
is extreme.

Extreme valid functions that are piecewise linear and have few slopes receive
the largest number of hits is the shooting experiments of Gomory and Johnson
and seem to be the most useful in practice. Indeed Gomory and Johnson [11]
conjectured that every valid function that is extreme is piecewise linear. This
has been disproved by Basu et al. [1].

Minimal valid functions with 3 slopes are not always extreme. However,
Gomory and Johnson construct an extreme function that is piecewise linear with
3 slopes. It appears to be hard to construct extreme functions that are piece-
wise linear with many slopes. Indeed, until 2013, all known families of piecewise

192 A. Basu et al.

linear extreme functions had at most 4 slopes. This had led Dey and Richard
to pose the question of constructing extreme functions with more than 4 slopes
at a 2010 Aussois meeting [5]. In 2013, Hildebrand, in an unpublished result,
constructed an extreme function that is piecewise linear with 5 slopes and very
recently Köppe and Zhou [13] constructed an extreme function that is piecewise
linear with 28 slopes. These functions were found through a clever computer
search.

Köppe and Zhou [13] express the belief that there exist extreme functions
that are piecewise linear and have an arbitrary number of slopes.1 We prove this.
More precisely, we show the following:

Theorem 3. Let b ∈ (0, 1). For k ≥ 2, there exists an extreme function for
Rb(R, Z) that is piecewise linear with k slopes.

Note that in Theorems 3 and 4, we may assume b ∈ (0, 1) since extreme
functions are periodic with respect to Z. The proof of Theorem3 provided here is
constructive. We define a sequence of functions {πk}∞

k=2, where π2 is the Gomory
mixed-integer function, and π3 is an instantiation of a construction of extreme
functions that are piecewise linear and have 3 slopes provided by Gomory and
Johnson. We first prove some properties about each function πk. In Sect. 3 we
use these properties to show that these functions are subadditive and satisfy the
symmetry condition. Therefore each function πk is a minimal valid function, as
it satisfies the conditions of Theorem 1. Section 4 is devoted to the proof that
each function πk is extreme.

Our next result states that the function which is the pointwise limit of this
sequence is an extreme function that is continuous and has an infinite number
of slopes. The proof appears in Sect. 5.

Theorem 4. Let b ∈ (0, 1). There exists a continuous extreme function π∞ for
Rb(R, Z) with an infinite number of slopes (i.e., values for the derivative of π∞).

In the following sections, we give constructions to establish Theorems 3 and
4 with b in the interval (0, 1

2]. One may obtain extreme functions for values of
b ∈ [12 , 1) by reflecting the constructions about 0. Indeed, one can check that πb

is extreme for Rb(R, Z) when b ∈ (0, 1/2] if and only if π1−b : R → R defined by
π1−b(x) := πb(−x) is extreme for R1−b(R, Z).

2 A Construction of K-Slope Functions πk

Let b ∈ (0, 1
2]. Let π2 be the mixed-integer Gomory function defined by (3).

In constructing πk for k ≥ 3, we use the following intervals:

Ik
1 := [0, b(18)k−2], Ik

2 := [b(18)k−2, 2b(18)k−2],

Ik
3 := [2b(18)k−2, b − 2b(18)k−2], Ik

4 := [b − 2b(18)k−2, b − b(18)k−2],

Ik
5 := [b − b(18)k−2, b], Ik

6 := [b, 1).

1 This is also stated as an open question in the survey by Basu et al. [4].

Extreme Functions with an Arbitrary Number of Slopes 193

Given πk−1, where k − 1 ≥ 2, define πk to be

πk(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2k−2−b

b−b2

)
x, x ∈ Ik

1

42−k

1−b −
(

1
1−b

)
x, x ∈ Ik

2

1−42−k

1−b −
(

1
1−b

)
x, x ∈ Ik

4

1−2k−2

1−b +
(

2k−2−b
b−b2

)
x, x ∈ Ik

5

πk−1(x), x ∈ Ik
3 ∪ Ik

6

πk(x − j), x ∈ [j, j + 1), j ∈ Z \ {0}.

Figure 1 shows πk for various values of k when b = 1
2 . The plots were generated

using the help of a software package created by Hong et al. [12].

(a) k=2 (b) k=3

(c) k = 4

Fig. 1. Plots of πk for b = 1
2

Observe that πk is built recursively with the Gomory mixed-integer function
as the base case. Intuitively, πk is created by adding to πk−1 a perturbation on

194 A. Basu et al.

a small interval to the right of 0 and applying a symmetric perturbation on an
interval to the left of b; the interval [b, 1) is kept intact. These small perturba-
tions allow πk to maintain much of the structure of πk−1, but the number of
distinct slopes is increased by one. We collect some useful properties of πk in
Propositions 1 and 2.

Proposition 1. Let k ≥ 3. Then

(i) Ik
1 ∪ Ik

2 � Ik−1
1 and Ik

4 ∪ Ik
5 � Ik−1

5

(ii) If x ∈ Ik
3 ∪ Ik

6 , then πk(x) = πk−1(x). If x ∈ Ik
1 ∪ Ik

2 , then πk(x) ≥ πk−1(x).
If x ∈ Ik

4 ∪ Ik
5 , then πk(x) ≤ πk−1(x).

(iii) −πk is convex on Ik
1 ∪ Ik

2 and πk is convex on Ik
4 ∪ Ik

5 .
(iv) Let y ∈ Ik

4 ∪ Ik
5 such that y �= b and take x ∈ [0, b − y]. Then πk(x + y) ≤

πk(y) +
(

1−πk(y)
b−y

)
x. Also,

(
πk(b−y)

b−y

)
x ≤ πk(x).

(v) For any x ∈ (0, 1) \ {b}, there exists some natural number Nx such that
x ∈ INx

3 ∪ INx
6 and πk1(x) = πk2(x) whenever k1, k2 ≥ Nx.

Proof. Proof of (i) Observe that

b

(
1
8

)k−3

= 8b

(
1
8

)k−2

> 2b

(
1
8

)k−2

.

By the definitions of Ik
1 , Ik

2 and Ik−1
1 , it follows that Ik

1 ∪ Ik
2 � Ik−1

1 . A similar
argument shows that Ik

4 ∪ Ik
5 � Ik−1

5 .

Proof of (ii) Let x ∈ [0, 1). If x ∈ Ik
3 ∪Ik

6 , then πk(x) = πk−1(x) by definition.
If x ∈ Ik

1 , then from (i) it follows that x ∈ Ik−1
1 . Note that

(
2k−2 − b

b − b2

)

x ≥
(

2k−3 − b

b − b2

)

x,

and so πk(x) ≥ πk−1(x). If x ∈ Ik
2 , then again from (i), x ∈ Ik−1

1 and it follows
that

42−k

1−b −
(

1
1−b

)
x =

(
1

1−b

) (
42−k − x

)

≥
(

1
1−b

)(
42−k − 2b

(
1
8

)k−2
)

since x ∈ Ik
2

=
(

1
b−b2

)(
2k−3

(
2b

(
1
8

)k−2
)

− b
(
2b

(
1
8

)k−2
))

≥
(

2k−3−b
b−b2

)
x since x ∈ Ik

2 .

Hence πk(x) ≥ πk−1(x) on Ik
1 ∪ Ik

2 . A similar argument shows that πk(x) ≤
πk−1(x) on Ik

4 ∪ Ik
5 .

Proof of (iii) By definition, πk is affine linear over Ik
1 with positive slope and

affine linear over Ik
2 with negative slope. Since πk is continuous, it is therefore

concave. So −πk is a convex function over Ik
1 ∪ Ik

2 . The same argument shows
that πk is convex over Ik

4 ∪ Ik
5 .

Extreme Functions with an Arbitrary Number of Slopes 195

Proof of (iv) Fix y ∈ Ik
4 ∪Ik

5 \{b}. It follows by assumption that x+y ∈ [y, b].
Therefore λ = b−x−y

b−y ∈ [0, 1]. Using the facts that πk is convex over [y, b] from
(iii) and πk(b) = 1, we obtain

πk(x+y) = πk(λy +(1−λ)b) ≤ λπk(y)+(1−λ)πk(b) = πk(y)+
(

1 − πk(y)
b − y

)

x.

The other inequality follows from the fact that −πk is convex over Ik
1 ∪ Ik

2

by (iii).

Proof of (v) Notice that as k → ∞, Ik
3 converges to (0, b) and thus, there

exists Nx such that x ∈ INx
3 ∪INx

6 . Moreover, by definition on πk, for any natural
number N , πk(x) = πN (x) ∀x ∈ IN

3 ∩ IN
6 for every k ≥ N . ��

Proposition 2. For each value of k, the function πk is piecewise linear and has
k slopes taking values − 1

1−b and { 2i−2−b
b−b2 }k

i=2.

Proof. We proceed by induction. For π2, the result follows by definition, so
assume that for k − 1 ≥ 2, πk−1 is piecewise linear and has slopes taking values
− 1

1−b and { 2i−2−b
b−b2 }k−1

i=2 .
Observe that for each value of j, πj has a slope of − 1

1−b on the interval (b, 1).
Therefore on the interval [0, b), the function πk−1 must take on slope values
{ 2i−2−b

b−b2 }k−1
i=2 (πk−1 also admits a slope of − 1

1−b on subintervals contained in
[0, b)). By Proposition 1 (ii), πk = πk−1 everywhere except Ik

1 ∪ Ik
2 and Ik

4 ∪ Ik
5 ,

on which πk takes on slope values 2k−2−b
b−b2 and − 1

1−b by definition. Since Ik
1 ∪Ik

2 �

Ik−1
1 and Ik

4 ∪Ik
5 � Ik−1

5 by Proposition 1 (i), it follows that πk has slopes taking
values − 1

1−b and { 2i−2−b
b−b2 }k

i=2.
It is left to show that πk is piecewise linear. By Proposition 1 (ii) and

the induction hypothesis, it is sufficient to show that πk is piecewise lin-
ear on Ik

1 ∪ Ik
2 and Ik

4 ∪ Ik
5 , and that πk

(
2b

(
1
8

)k−2
)

= πk−1

(
2b

(
1
8

)k−2
)

and πk

(
b − 2b(18)k−2

)
= πk−1

(
b − 2b

(
1
8

)k−2
)
. Note that πk is piecewise

linear on Ik
1 ∪ Ik

2 and Ik
4 ∪ Ik

5 by definition. It is straightforward to
check that πk

(
2b

(
1
8

)k−2
)

= πk−1

(
2b

(
1
8

)k−2
)

and πk

(
b − 2b

(
1
8

)k−2
)

=

πk−1

(
b − 2b

(
1
8

)k−2
)
. Thus πk is piecewise linear, as desired. ��

3 Proof of Minimality of πk

In the proof of Theorem 3, it is required to show that πk is a minimal valid
function for Rb(R, Z). Since by definition πk(0) = 0, and πk is periodic, by
Theorem 1, it is sufficient to show that (a) πk(x) = πk(b − x) for all x ∈ [0, 1),
i.e. that πk satisfies the symmetry condition, and (b) πk is subadditive. We show
(a) and (b) in Propositions 3 and 4, respectively.

Proposition 3. πk satisfies the symmetry condition for all k ≥ 2.

196 A. Basu et al.

Proof. We proceed by induction on k. The Gomory mixed-integer function is
known to be minimal and hence π2 is symmetric. Assume πk−1 satisfies the
symmetry condition for k − 1 ≥ 2 and consider x ∈ [0, 1). Observe that x ∈ Ik

1

if and only if b − x ∈ Ik
5 . Therefore, if x ∈ Ik

1 then

πk(x) + πk(b − x) =
(

2k−2 − b

b − b2

)

x +
1 − 2k−2

1 − b
+

(
2k−2 − b

b − b2

)

(b − x) = 1.

A similar argument can be used to show that πk satisfies the symmetry condition
on the intervals Ik

2 and Ik
4 . If x �∈ Ik

1 ∪ Ik
2 ∪ I4k ∪ I5k then b − x �∈ Ik

1 ∪ Ik
2 ∪ I4k ∪ I5k ,

and so symmetry holds by induction. ��
Proposition 4. πk is subadditive for all k ≥ 2.

Proof. We proceed by induction on k. Note that π2 is subadditive, so assume
πk−1 is subadditive for k − 1 ≥ 2. By periodicity of πk, it suffices to check
πk(x) + πk(y) ≥ πk(x + y) for all x, y ∈ [0, 1) and x ≤ y.

Claim. If y ∈ Ik
6 = [b, 1), then πk(x + y) ≤ πk(x) + πk(y).

Proof of Claim. Since πk is piecewise linear, we may integrate it over any bounded
domain. Let π′

k denote the derivative of πk (where defined). A direct calculation
shows

πk(x + y) = πk(x + (y − 1)) by periodicity of πk

= πk(x) +
∫ x−(1−y)

x
π′

k(t)dt

= πk(x) +
∫ x

x−(1−y)
−π′

k(t)dt

≤ πk(x) +
∫ 1

y
−π′

k(t)dt

= πk(x) − πk(1) + πk(y)
= πk(x) + πk(y) since πk(1) = 0.

The inequality follows from Proposition 2, as the minimum value of the slope for
πk is − 1

1−b and this is the slope over the interval [b, 1] ⊇ [y, 1]. This concludes
the proof of the claim. �

By the above claim, it suffices to consider the case y < b. Since b ≤ 1
2 , this

implies that x ≤ y ≤ x + y < 1.

Case 1: x + y ∈ Ik
1 ∪ Ik

2 . By Proposition 1 (iii), the function −πk is convex over
Ik
1 ∪ Ik

2 . Therefore πk(x) + πk(y) ≥ πk(x + y).

Case 2: x + y ∈ Ik
3 . Since x, y ∈ Ik

1 ∪ Ik
2 ∪ Ik

3 we have that

πk(x) + πk(y) ≥ πk−1(x) + πk−1(y) ≥ πk−1(x + y) = πk(x + y),

where the first inequality comes from Proposition 1 (ii), the second inequality
comes from the induction hypothesis, and the final inequality comes again from
Proposition 1 (ii).

Extreme Functions with an Arbitrary Number of Slopes 197

Case 3: x + y ∈ Ik
4 ∪ Ik

5 . If y ∈ Ik
1 ∪ Ik

2 ∪ Ik
3 then using the induction hypothesis

and Proposition 1 (ii), it follows that

πk(x) + πk(y) ≥ πk−1(x) + πk−1(y) ≥ πk−1(x + y) ≥ πk(x + y).

If y ∈ Ik
4 ∪ Ik

5 then x ∈ [0, b − y] and b − y ∈ Ik
1 ∪ Ik

2 . Thus, x ∈ Ik
1 ∪ Ik

2 . Note
that

πk(x + y) ≤ πk(y) +
(

1−πk(y)
b−y

)
x by Proposition 1 (iv)

= πk(y) +
(

πk(b−y)
b−y

)
x by the symmetry property

≤ πk(y) + πk(x) by Proposition 1 (iv).

Case 4: x + y ∈ Ik
6 . πk has a slope of − 1

1−b on the interval [b, x + y]. Moreover,
by Proposition 2, this is the minimum slope that πk admits. Therefore,

πk(x + y) = π(b) +
∫ x+y

b
π′(t)dt

≤ 1 +
∫ y

b−x
π′(t)dt

= 1 + (πk(y) − πk(b − x))
= πk(x) + πk(y),

where the last equality follows by the symmetry of πk. ��

4 Proof of Extremality of πk

We show that φ1 = φ2 = πk for every pair of valid functions φ1, φ2 such that
πk = φ1+φ2

2 . Our proofs are based on the following two lemmas. The first lemma
is an easy consequence of the fact that a minimal valid function is subadditive.
(see Lemma 2.11 (ii) in [4]).

Lemma 1. Let φ be a minimal valid function and φ1, φ2 be valid functions such
that φ = φ1+φ2

2 . Then φ1, φ2 are minimal and for all x, y ∈ R, φ(x + y) =
φ(x) + φ(y) implies φi(x + y) = φi(x) + φi(y) for both i = 1, 2.

The following result first appeared in [11], and was subsequently elaborated
upon in [3,6–8]; see also the survey [4].

Lemma 2 (Interval Lemma). Let U, V be non-degenerate closed intervals in
R. If φ : R → R is bounded over U and V , and satisfies φ(x) + φ(y) = φ(x + y)
for all x ∈ U , y ∈ V , then φ is affine over U, V and U + V with the same slope.

We will use the above lemma when φ is a minimal valid function. In this case
φ is bounded, as 0 ≤ φ ≤ 1.

In the followingClaims 1–4,wedevelop some tools towards proving extremality.

Claim 1. Let k ≥ 3 and let φ be a minimal valid function such that φ = πk on
Ik
6 . Then for all minimal valid functions φ1, φ2 such that φ = φ1+φ2

2 , we must
have φ1 = φ2 = φ = πk on Ik

6 ∪ {1}.

198 A. Basu et al.

Proof. Note that Ik
6 ∪ {1} ≡ [1+b

2 , 1] + [1+b
2 , 1] (modulo 1) and x, y ∈ [1+b

2 , 1]
implies that

φ(x) + φ(y) = πk(x) + πk(y) =
(

1
1−b

−
(

1
1−b

)
x
)
+
(

1
1−b

−
(

1
1−b

)
y
)

= 1
1−b

−
(

1
1−b

)
(x + y − 1)

= πk(x + y − 1)
= πk(x + y) by periodicity
= φ(x + y).

Therefore, Lemmas 1 and 2 together imply that each φi is affine over Ik
6 ∪ {1}.

Since φ, φ1, and φ2 are minimal, Theorem 1 implies φ1(1) = φ2(1) = φ(1) =
πk(1) = 0 and φ1(b) = φ2(b) = φ(b) = πk(b) = 1. Therefore φ1 = φ2 = φ = πk

on Ik
6 ∪ {1}. ��

Claim 2. Let k ≥ 3 and let φ be a minimal valid function such that φ = πk on
I33 = [b

4 , 3b
4]. Then for all minimal valid functions φ1, φ2 such that φ = φ1+φ2

2 ,
we must have φ1 = φ2 = φ = πk on I33 .

Proof. Let A =
[

b
4 , 3b

8

] ⊆ I33 and note that A + A =
[

b
2 , 3b

4

] ⊆ I33 . For x, y ∈ A,
we see that

φ(x) + φ(y) = πk(x) + πk(y) =
1
b
x +

1
b
y =

1
b

(x + y) = πk(x + y) = φ(x + y).

Using Lemmas 1 and 2, we obtain that each φi is affine over [b
2 , 3b

4]. The sym-
metry of φi and φ implies that φi(b

2) = φ(b
2) = πk(b

2) = 1
2 . By subadditiv-

ity of φi, φi(b
4) ≥ 1

2φi(b
2) = 1

4 for i = 1, 2. Since φ(b
4) = πk(b

4) = 1
4 and

φ(b
4) = φ1(

b
4)+φ2(

b
4)

2 , it must be the case that φi(b
4) = 1

4 for i = 1, 2. By sym-
metry of φi, this implies φi(3b

4) = 3
4 = φ(3b

4) = πk(3b
4) for i = 1, 2. Therefore,

by the affine structure of φi over [b
2 , 3b

4], it follows that φi = φ on [b
2 , 3b

4]. The
symmetric property of φi then yields that φi = φ on [b

4 , b
2] and thus on I33 . ��

Claim 3. Let k ≥ 3 and let j ∈ {3, . . . , k}. Let φ be a minimal valid function
such that φ = πk on Ij

2 ∪ Ij
3 ∪ Ij

4 ∪ Ij
6 . Moreover, let φ1, φ2 be minimal valid

functions such that φ = φ1 = φ2 on Ij
3 ∪ Ij

6 and φ = φ1+φ2
2 . Then φ1 = φ2 =

φ = πk on Ij
2 ∪ Ij

4 .

Proof. Let A =
[
3
2b

(
1
8

)j−2
, 2b

(
1
8

)j−2
]

⊆ Ij
2 and B =

[
1 − 1

2b
(
1
8

)j−2
, 1

]
⊆ Ij

6 .

Observe that A + B ≡ Ij
2 (modulo 1). Moreover, x ∈ A and y ∈ B implies

φ(x) + φ(y) = πk(x) + πk(y) =
(

42−j

1−b
−
(

1
1−b

)
x
)
+
(

1
1−b

−
(

1
1−b

)
y
)

= 42−j

1−b
−
(

1
1−b

)
(x + y − 1)

= πk(x + y − 1) = πk(x + y) by periodicity
= φ(x + y).

From Lemmas 1 and 2, it follows that each φi is affine over A,B and Ij
2 with the

same slope. By Claim 1, φi has slope equal to that of φ and πk over Ij
6 = Ik

6 .

Extreme Functions with an Arbitrary Number of Slopes 199

Since φ and πk have the same slope over Ij
6 and Ij

2 , and φi has the same slope
over B ⊆ Ij

6 and Ij
2 , φi must have a slope over Ij

2 equal to that of φ. Also,
since φ1 = φ2 = φ = πk on Ij

3 by assumption, it must be that φi

(
2b

(
1
8

)j−2
)

=

φ
(
2b

(
1
8

)j−2
)

for i = 1, 2. This indicates that φi = φ over Ij
2 . Using symmetry,

we see that φi = φ over Ij
4 . ��

Claim 4. Let k ≥ 3 and let j ∈ {3, . . . , k−1}. Let φ be a minimal valid function
such that φ = πk on (Ij

1 \ int(Ij+1
1 ∪Ij+1

2))∪Ij
2 ∪Ij

3 ∪Ij
4 ∪ (Ij

5 \ int(Ij+1
4 ∪Ij+1

5))∪
Ij
6 . Moreover, let φ1, φ2 be minimal valid functions such that φ = φ1 = φ2 on

Ij
2 ∪ Ij

3 ∪ Ij
4 ∪ Ij

6 and φ = φ1+φ2
2 . Then φ1 = φ2 = φ over Ij

1 \ int(Ij+1
1 ∪ Ij+1

2)
and Ij

5 \ int(Ij+1
4 ∪ Ij+1

5).

Proof. Set I∗ := Ij
1 \ (int(Ij+1

1 ∪ Ij+1
2) ∪ {0}) =

[
2b

(
1
8

)j−1
, b

(
1
8

)j−2
]
. Let

A =

[

2b

(
1
8

)j−1

, 4b

(
1
8

)j−1
]

⊆ I∗.

Note that

A + A =

[

4b

(
1
8

)j−1

, b

(
1
8

)j−2
]

⊆ I∗

and A∪ (A+A) = I∗. A direct calculation shows that πk(x)+πk(y) = πk(x+y)
and φ(x) + φ(y) = φ(x + y) for x, y ∈ A. By Lemmas 1 and 2, φi is affine over
I∗. Let a = 2b

(
1
8

)j−1 be the left-endpoint of I∗; then 4a = b
(
1
8

)j−2 is the
right endpoint of I∗, which is the left endpoint of Ij

2 . Since φ1 = φ2 = φ on
Ij
2 , we have φ1(4a) = φ2(4a) = φ(4a). By subadditivity, φi(a) ≥ 1

4φi(4a). Since
φ(a) = πk(a) = 1

4πk(4a) = 1
4φ(4a) and φ = φ1+φ2

2 , we obtain that φ1(a) =
φ2(a) = φ(a). Therefore, φi = φ over I∗. Symmetry of φi yields that φi = φ over
Ij
5 \ int(Ij+1

4 ∪ Ij+1
5). ��

Lemma 3. Let k ≥ 3 and j ∈ {3, . . . , k} and let φ be a minimal valid function
such that φ = πk on Ij

3 ∪ Ij
6 . Then for all minimal valid functions φ1, φ2 such

that φ = φ1+φ2
2 , we must have φ1 = φ2 = φ = πk on Ij

3 ∪ Ij
6 .

Proof. By Claim 1, we obtain φ1 = φ2 = φ = πk on Ij
6 = Ik

6 . We prove φ1 =
φ2 = φ = πk on Ij

3 by induction on j. For j = 3, the result follows from Claim 2.
We assume the result holds for some j such that 3 ≤ j ≤ k − 1 and show that
it holds for j + 1. Note that Ij+1

3 ∪ {0, b} = (Ij
1 \ int(Ij+1

1 ∪ Ij+1
2)) ∪ Ij

2 ∪ Ij
3 ∪

Ij
4 ∪ (Ij

5 \ int(Ij+1
4 ∪ Ij+1

5)). By the induction hypothesis, the result holds for Ij
3 .

Since we assume φ = πk on Ij+1
3 ∪Ij+1

6 ⊇ Ij
2 ∪Ij

3 ∪Ij
4 ∪Ij

6 , we can apply Claim 3,
obtaining φ1 = φ2 = φ on Ij

2 ∪Ij
4 . Similarly, by applying Claim4, we obtain that

φ1 = φ2 = φ on Ij
1 \ int(Ij+1

1 ∪ Ij+1
2) and Ij

5 \ int(Ij+1
4 ∪ Ij+1

5). ��

200 A. Basu et al.

Proof (Proof of Theorem 3). Consider valid functions φ1, φ2 such that φ1+φ2
2 =

πk. Since πk is minimal, by Lemma 1, φ1, φ2 are also minimal. Using Lemma 3
with φ = πk, we obtain that φ1 = φ2 = πk on Ik

3 ∪Ik
6 . Using Claim 3 with φ = πk

and j = k, we obtain that φ1 = φ2 = πk on Ik
2 ∪ Ik

4 .
It is left to show that φi = πk on Ik

1 and Ik
5 . Let U = V =

[
0, b

2

(
1
8

)k−2
]

and observe U + V ≡
[
0, b

(
1
8

)k−2
]

(modulo 1) = Ik
1 . Since πk is additive on

Ik
1 by definition, Lemma1 implies each φi is as well. Moreover, πk = φ1 = φ2

on
{

0, b
(
1
8

)k−2
}

. Using this, and applying Lemma2 to each φi with the above

choice of U and V , yields φi = πk on Ik
1 . The fact that φi = πk on Ik

5 follows by
symmetry. ��

5 Proof of Theorem 4

Proof. Define π∞ : R → R to be the pointwise limit of {πi}∞
i=2. Since each πk

is minimal, by a standard limit argument, π∞ is minimal (Proposition 4 in [8],
Lemma 6.1 in [4]).

Using Proposition 1 (v), π∞ is continuous over (0, b) and (b, 1). For x = 0 or
x = b, note that, by definition of πk, the maximum value of πk on Ik

1 ∪ Ik
2 is

24−3k(2k−4b)
1−b , which tends to 0 as k → ∞. By symmetry, the smallest value of πk

on the interval Ik
4 ∪ Ik

5 tends to 1 as k → ∞. Hence, the convergence πk → π∞
is actually uniform. Therefore π∞ is continuous everywhere.

We next show that π∞ is extreme. Suppose that π∞ = φ1+φ2
2 for valid

functions φ1, φ2 and let x ∈ [0, 1). Since π is minimal, by Lemma 1, φ1, φ2 are
also minimal. If x = 0 or x = b, then π∞(x) = φ1(x) = φ2(x) by the minimality
of π∞, φ1, and φ2. So assume that x �∈ {0, b}. By Proposition 1 (v), x ∈ INx

3 ∪INx
6 .

Observe that π∞ = πNx
on INx

3 ∪ INx
6 . By applying Lemma 3 with k = Nx and

φ = π∞, we obtain that φ1(x) = φ2(x) = π∞(x).
We finally verify that π∞ has infinitely many slopes. Note that for any k ≥ 3,

π∞ = πk on Ik
3 ∪ Ik

6 and recall that πk has k − 1 different slopes on Ik
3 ∪ Ik

6 . ��

6 Concluding Remarks

One can ask if it is possible to create extreme functions with arbitrary num-
ber of slopes for the higher-dimensional infinite group relaxations. A trivial
way to generalize to higher dimensions is to simply define πn

k : Rn → R+ as
πn

k (x1, x2, . . . , xn) = πk(x1) and πn
∞ : Rn → R+ by defining πn

∞(x1, x2, . . . , xn) =
π∞(x1). However, one can ask whether there are more “non-trivial” examples.
In particular, one can ask whether there exist genuinely n-dimensional extreme
functions with arbitrary number of slopes for all n ≥ 1. A function θ : Rn → R

is genuinely n-dimensional if there does not exist a linear map T : Rn → Rn−1

and a function θ′ : Rn−1 → R such that θ = θ′ ◦ T . It turns out that the
sequential-merge operation invented by Dey and Richard [7] can be used to cre-
ate genuinely n-dimensional extreme functions with arbitrary number of slopes

Extreme Functions with an Arbitrary Number of Slopes 201

for any n ≥ 1. Recall the Gomory mixed-integer function ξ from (3). Letting �
denote the sequential-merge operation, it can be verified that the function

πk � (ξ � (ξ . . . (ξ � ξ)))
︸ ︷︷ ︸

n−1 times

is a genuinely n-dimensional extreme function with at least k different values for
the gradient. The details are a little tedious, and needs a slight modification of
a couple of proofs from Dey and Richard [7]. Hence, we omit these details from
this extended abstract.

References

1. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: A counterexample to a con-
jecture of Gomory and Johnson. Math. Program. Ser. A 133, 25–38 (2012)

2. Basu, A., Conforti, M., Di Summa, M.: A geometric approach to cut-generating
functions. Math. Program. 151(1), 153–189 (2015)

3. Basu, A., Hildebrand, R., Köppe, M.: Equivariant perturbation in Gomory and
Johnson’s infinite group problem. III. Foundations for the k-dimensional case and
applications to k = 2. eprint: arXiv:1403.4628 [math.OC] (2014)

4. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group problem. eprint:
http://arxiv.org/abs/1410.8584 (2014)

5. Dey, S.S., Richard, J.P.P.: Gomory functions (2009). http://www2.isye.gatech.edu/
sdey30/gomoryfunc2.pdf

6. Dey, S.S., Richard, J.P.P.: Facets of two-dimensional infi-
nite group problems. Math. Oper. Res. 33(1), 140–166 (2008).
http://mor.journal.informs.org/cgi/content/abstract/33/1/140

7. Dey, S.S., Richard, J.P.P.: Relations between facets of low- and high-
dimensional group problems. Math. Program. 123(2), 285–313 (2010).
http://dx.doi.org/10.1007/s10107-009-0303-8

8. Dey, S.S., Richard, J.P.P., Li, Y., Miller, L.A.: On the extreme inequal-
ities of infinite group problems. Math. Program. 121(1), 145–170 (2009).
http://dx.doi.org/10.1007/s10107-008-0229-6

9. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhe-
dra, I. Math. Program. 3, 23–85 (1972). http://dx.doi.org/10.1007/BF01585008

10. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhe-
dra, II. Math. Program. 3, 359–389 (1972). http://dx.doi.org/10.1007/BF01585008

11. Gomory, R.E., Johnson, E.L.: T-space and cutting planes. Math. Program. 96,
341–375 (2003). http://dx.doi.org/10.1007/s10107-003-0389-3

12. Hong, C., Köppe, M., Zhou, Y.: Sage program for computation and experimen-
tation with the 1-dimensional Gomory-Johnson infinite group problem (2012).
https://github.com/mkoeppe/infinite-group-relaxation-code

13. Köppe, M., Zhou, Y.: New computer-based search strategies for extreme func-
tions of the Gomory-Johnson infinite group problem. eprint: arXiv:1506.00017
[math.OC] (2015)

http://arxiv.org/abs/1403.4628
http://arxiv.org/abs/1410.8584
http://www2.isye.gatech.edu/sdey30/gomoryfunc2.pdf
http://www2.isye.gatech.edu/sdey30/gomoryfunc2.pdf
http://mor.journal.informs.org/cgi/content/abstract/33/1/140
http://dx.doi.org/10.1007/s10107-009-0303-8
http://dx.doi.org/10.1007/s10107-008-0229-6
http://dx.doi.org/10.1007/BF01585008
http://dx.doi.org/10.1007/BF01585008
http://dx.doi.org/10.1007/s10107-003-0389-3
https://github.com/mkoeppe/infinite-group-relaxation-code
http://arxiv.org/abs/1506.00017

Minimal Cut-Generating Functions
are Nearly Extreme

Amitabh Basu1, Robert Hildebrand2, and Marco Molinaro3(B)

1 Department of Applied Mathematics and Statistics,
The Johns Hopkins University, Baltimore, USA

basu.amitabh@jhu.edu
2 IBM Research, Yorktown Heights, NY, USA

rhildeb@us.ibm.com
3 Computer Science Department, PUC-RIO, Rio de Janeiro, Brazil

mmolinaro@inf.puc-rio.br

Abstract. We study continuous (strongly) minimal cut generating func-
tions for the model where all variables are integer. We consider both
the original Gomory-Johnson setting as well as a recent extension by
Cornuéjols and Yıldız. We show that for any continuous minimal or
strongly minimal cut generating function, there exists an extreme cut
generating function that approximates the (strongly) minimal function
as closely as desired. In other words, the extreme functions are “dense”
in the set of continuous (strongly) minimal functions.

1 Introduction

Cut-generating functions are an important approach for deriving, understanding,
and analyzing general-purpose cutting planes for mixed-integer programs. Given
a natural number n ∈ N and a closed subset S ⊆ R

n\{0}, a cut-generating
function (CGF) for S is a function π : Rn → R such that for every choice of
natural number k ∈ N and k vectors r1, . . . , rk ∈ R

n, the inequality

k∑

i=1

π(ri)yi ≥ 1

is valid for the set

Q0 =
{

y ∈ Z
k
+ :

k∑

i=1

riyi ∈ S

}

.

Note that CGFs for S only depend on n and S, and should work for all choices
of k ∈ N and r1, . . . , rk ∈ R

n.

Amitabh Basu gratefully acknowledges partial support from NSF grant CMMI14
52820.
Most of this research was conducted while Robert Hildebrand was a postdoctoral
researcher at the Institute for Operations Research, Department of Mathematics,
ETH Zürich.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 202–213, 2016.
DOI: 10.1007/978-3-319-33461-5 17

Minimal Cut-Generating Functions are Nearly Extreme 203

Cut-generating functions were originally considered for sets S of the form
S = b + Z

n for some b ∈ R
n \ Z

n by Gomory and Johnson [8,9,12] under the
name of the infinite group relaxation. Such sets S will be called affine lattices.
In this case the connection with Integer Programming is clear: the set Q0 is the
projection of a mixed-integer set in tableaux form Qrel = {(x, y) ∈ Z

m × Z
k
+ :

x = −b +
∑

i riyi} onto the non-basic variables, so CGFs give valid cuts for this
set. Notice that Qrel arises as a relaxation of a generic pure integer program
in standard form by dropping the non-negativity of the basic variables x. So
another important setting of CGFs is one that does not involve this relaxation,
namely using sets S of the form S = b + Z

n
+, where b ∈ R

n\Zn and b ≤ 0 [7];
this now corresponds to the projection of the “unrelaxed” set Qfull = {(x, y) ∈
Z

m
+ × Z

k
+ : x = −b +

∑
i riyi}. We call such sets S truncated affine lattices.

Cut-generating functions have received significant attention in the literature
(see the surveys [2–4] and the references therein). One important feature is that
cut-generating functions capture known general purpose cuts, for example the
prominent GMI cuts and more generally split cuts (when S is an affine lattice)
and the lopsided cuts of Balas and Qualizza [1] (when S is a truncated affine
lattice). Moreover, the CGF perspective gives a clean way of understanding cuts,
since they abstract the finer structure of mixed integer sets and only depend on
n and S (for affine and truncated affine lattices this is just the shift vector b).

Strength of Cut Generating Function and Extreme Functions. Since
their introduction, there has been much interest in understanding what the
“best” CGFs are – the ones that cut “most deeply”. CGFs can be stratified and
at the first level we have (strongly) minimal functions. An inequality α · x ≥ α0

given by α ∈ R
n and α0 ∈ R will be called valid for S if every s ∈ S satisfies

α · s ≥ α0. A CGF π for S is called strongly minimal if there does not exist a
different CGF π′, a real number β ≥ 0 and a valid inequality α · x ≥ α0 for S,
such that for all r ∈ R

n, βπ′(r) + α · r ≤ π(r) and β + α0 ≥ 1 [7].1 This def-
inition captures the standard idea of non-dominated inequalities. Gomory and
Johnson characterized all continuous strongly minimal functions when S is an
affine lattice.

Theorem 1 (Gomory and Johnson [8]). Let S = b + Z
n for some b ∈

R
n\Zn. A continuous function π : Rn → R is a strongly minimal function if and

only if all of the following hold:

(i) π is a nonnegative function with π(z) = 0 for all z ∈ Z
n,

(ii) π is subadditive, i.e., π(r1 + r2) ≤ π(r1) + π(r2) for all r1, r2 ∈ R
n, and

(iii) π satisfies π(r) + π(b − r) = 1 for all r ∈ R
n. (This condition is known as

the symmetry condition.)

Note that the first two conditions imply that π is periodic modulo Z
n, i.e.,

π(r) = π(r+z) for all z ∈ Z
n. This characterization was also recently generalized

by Cornuéjols and Yıldız to a wider class of sets S, which includes truncated
affine lattices as well [7] (see Theorem 4 below).
1 When S is an affine lattice this notion is equivalent to notion of minimal inequality

used in the literature.

204 A. Basu et al.

A stronger notion than strong minimality is that of an extreme function. We
say that a CGF π is extreme if there do not exist distinct CGFs π1 and π2

such that π = π1+π2
2 . This is a subset of strongly minimal functions [7] that

corresponds to a notion of “facets” in the context of CGFs (see also [3,4] for
other notions of “facet” for CGFs). Because of the importance of facet-defining
cuts in Integer Programming, there has been substantial interest in obtaining
and understanding extreme functions (see [3,4] for a survey). For example, a
celebrated result is Gomory and Johnson’s 2-Slope Theorem (Theorem 5 below)
that gives a sufficient condition for a CGF to be extreme (in the affine lattice
setting with n = 1; see [5–7] for generalizations).

Unfortunately the structure of extreme functions seems much more compli-
cated than that of minimal functions. For example, even verifying the extremality
of a function is not completely understood (see [3,4] for preliminary steps in this
direction); a simple characterization like Theorem 1 seems all the more unlikely.

Our Results. As noted above, it is easy to verify that extreme functions are
always strongly minimal. We prove an approximate converse: in a strict mathe-
matical sense, strongly minimal functions for n = 1 are “close” to being extreme
functions. More precisely, in the affine lattice setting we prove the following.

Theorem 2. Let S = b + Z for some b ∈ Q\Z. Let π̄ be a continuous strongly
minimal function for S. Then for every ε > 0 there is an extreme (2-slope)
function π∗ such that ‖π̄ − π∗‖∞ ≤ ε, where ‖ · ‖∞ is the sup norm.

Equivalently, this states that extreme functions are dense, under the sup norm,
in the set of strongly minimal functions. This surprising property of CGFs relies
on their infinite-dimensional nature: for finite-dimensional polyhedra, a (non-
facet) minimal inequality can never be arbitrarily close (under any reasonable
distance) to a facet.

In the truncated affine lattice setting we prove a similar result under an
additional assumption. A function φ : R → R is quasi-periodic (with period d),
if there are real numbers d > 0 and c ∈ R such that φ(r + d) = φ(r) + c
for every r ∈ R. All explicitly known CGFs from the literature are quasi-
periodic. Moreover, quasi-periodic piecewise linear CGFs can be expressed using
a finite number of parameters, making them attractive from a computational
perspective.

Theorem 3. Let S = b +Z+, where b ∈ Q\Z and b ≤ 0. Let π̄ be a continuous,
strongly minimal function for S that is quasi-periodic with rational period. Then
for any M ∈ R+ and ε > 0 there is an extreme (2-slope) function π∗ such that
|π̄(r) − π∗(r)| ≤ ε for all r ∈ [−M,M].

Our results imply that for the purpose of cutting-planes, these strongly min-
imal functions perform essentially as well as extreme functions, at least for the
n = 1 case, i.e., cutting planes from a single row. This points out the limitations
of extremality as a measure for the quality of one-dimensional CGFs and suggests
the need for alternative measures (see [10]). However, we have not been able to
establish such results for n ≥ 2. The question remains open whether extremality is
a more useful concept in higher dimensions, making it relevant for multi-row cuts.

Minimal Cut-Generating Functions are Nearly Extreme 205

2 Preliminaries

2.1 Strongly Minimal Functions for Truncated Affine Lattices

The celebrated characterization of strongly minimal inequalities by Gomory and
Johnson was recently extended by Cornuéjols and Yıldız [7] to truncated affine
lattices (actually their result is more general, we only state a special case here).

Theorem 4 (Cornuéjols and Yıldız [7]). Let S = b+Z
n
+, where b ∈ R

n\Zn

and b ≤ 0. A continuous function π : Rn → R is a strongly minimal function if
and only if all of the following hold:

(i) π(0) = 0, and π(−ei) = 0 for all unit vectors ei, i = 1, . . . , n,
(ii) π is subadditive, i.e., π(r1 + r2) ≤ π(r1) + π(r2), and
(iii) π satisfies the symmetry condition, i.e., π(r) + π(b − r) = 1 for all r ∈ R

n.

2.2 Approximations Using Piecewise Linear Functions

We say a function φ : R → R is piecewise linear if there is a set of closed non-
degenerate intervals Ij , j ∈ J such that R =

⋃
j∈J Ij , any bounded subset of R

intersects only finitely many intervals, and φ is affine over each interval Ij . The
endpoints of the intervals Ij are called the breakpoints of φ. Note that in this
definition, a piecewise linear function is continuous.

The next lemma shows that continuous strongly minimal functions can be
approximated by piecewise linear functions that are also strongly minimal; this
can be accomplished by restricting the function to a subgroup and performing
a linear interpolation (a proof is presented in the full version of the paper).
Throughout we use the following notation: Given a subset X ⊆ R and a function
φ : R → R, we denote the restriction of φ to X by φ|X .

Lemma 1. Let S be an affine lattice b + Z or a truncated affine lattice b + Z+

(for n = 1) with b ∈ Q. Let π be uniformly continuous, strongly minimal function
for S. Then for every ε > 0 there is a continuous strongly minimal function πpwl

for S that is piecewise linear and satisfies ‖π − πpwl‖∞ ≤ ε.

2.3 Subadditivity and Additivity

We introduce some tools for studying subadditive functions. For any function
π : R → R, define a slack function Δπ : R × R → R as

Δπ(x, y) = π(x) + π(y) − π(x + y). (1)

Clearly π is subadditive if and only if Δπ ≥ 0. We will employ another concept
in our analysis which we call the additivity domain:

E(π) = {(x, y) : Δπ(x, y) = 0}.

206 A. Basu et al.

When π : R → R is a piecewise linear function periodic modulo Z with an infinite
set of breakpoints U = {. . . , u−1, u0, u1, . . . }, by periodicity, we may assume
that U = {u0, u1, . . . , um} + Z where u0 = 0, um < 1 and ui < ui+1. The
function Δπ is affine on every set F = {(x, y) : ui ≤ x ≤ ui+1, uj ≤ y ≤
uj+1, uk ≤ x + y ≤ uk+1} where (ui, ui+1), (uj , uj+1), and (uk, uk+1) are pairs
of consecutive breakpoints. The set of all such F forms a polyhedral complex
and will be denoted by ΔPU . The vertices of any such F will be denoted by
vert(F). If F is any collection of polyhedra from ΔPU , then we define vert(F) :=
∪F∈Fvert(F). Note that vert(ΔPU) is exactly the set of points (x, y) ∈ R

2 such
that either x, y ∈ U or x, x + y ∈ U or y, x + y ∈ U . The affine structure of Δπ
implies the following (for example, see Fig. 1).

Lemma 2. Let π : R → R be a piecewise linear function periodic modulo Z with
breakpoints in U . Let F be a collection of polyhedra from ΔPU . If Δπ(x, y) ≥ γ for
all (x, y) ∈ vert(F) for some γ > 0, then Δπ(x, y) ≥ γ for all (x, y) ∈ ∪F∈FF . In
particular, Δπ(x, y) ≥ 0 for all (x, y) ∈ vert(ΔPU) if and only if π is subadditive.

2.4 2-Slope Theorems

Piecewise linear functions where the slope takes exactly two values are referred to
as 2-slope functions. We will use the following two general theorems on extreme
functions to show certain 2-slope functions are extreme.

Theorem 5 (Gomory and Johnson [8]). Let S = b + Z be an affine lattice
and let π be a strongly minimal cut generating function for S. If π is piecewise
linear and has exactly two slopes, then it is extreme.

Recently, this theorem was extended to the case when S = b + Z+ using a
similar proof as Gomory and Johnson used.

Theorem 6 (Cornuéjols and Yıldız [7]). Let S = b+Z+ be a truncated affine
lattice and let π : R → R be a strongly minimal cut generating function for S. If π
is such that π(r) ≥ 0 for all r ≥ 0 and the restriction of π to any compact interval
is piecewise linear function with exactly two slopes, then π is extreme.

2.5 2-Slope Fill-in

Gomory and Johnson [8,9,12] described a procedure called the 2-slope fill-in
that allows us to extend subadditive functions from a subgroup of R to the
whole of R. Let U be a subgroup of R. Let g : R → R be a sublinear function,
i.e., g is subadditive and g(λr) = λg(r) for all λ ≥ 0 and r ∈ R. The two-slope
fill-in of any function φ : R → R with respect to U and g is defined as

φfill-in(r) = min
u∈U

{φ(u) + g(r − u)}.

Lemma 3 (Johnson (Sect. 7 in [12])). Let U be any subgroup of R and
let φ : R → R be a function such that φ|U is subadditive, i.e., φ(u1 + u2) ≤
φ(u1) + φ(u2) for all u1, u2 ∈ U . Suppose g is a sublinear function such that
φ ≤ g. Then the 2-slope fill-in φfill-in of φ with respect to U and g is subadditive.
Moreover, φfill-in ≥ φ and φfill-in|U = φ|U .

Minimal Cut-Generating Functions are Nearly Extreme 207

3 Proof of Theorem2

The high-level idea is to apply the 2-slope fill-in procedure to the input function π̄
and then symmetrize it to produce a 2-slope function π∗ that satisfies conditions
(i), (ii) and (iii) in Theorem1, and hence is strongly minimal. Then employing
Theorem 5 we have that π∗ is an extreme function. Moreover, we perform the
2-slope fill-in in a way that ‖π̄ − π∗‖∞ ≤ ε, thus giving the desired result.

The main difficulty in pursuing this line of argument is that the symmetriza-
tion step needed after the 2-slope fill-in can easily destroy the desired subad-
ditivity. Therefore, before applying the 2-slope fill-in plus symmetrization we
perturb the original function π̄ to ensure that in most places we have the strict
inequality π(x + y) < π(x) + π(y) (and with enough room).

We start describing this perturbation procedure. For the remainder of this
section, we focus on the case where S = b + Z. Also, using periodicity with
respect to Z, any function π is strongly minimal for S = b + Z if and only if it
is strongly minimal for S = b̄ + Z, where b̄ ≡ b (mod 1). Hence, without loss of
generality, we assume b ∈ (0, 1) throughout this section.

3.1 Equality Reducing Perturbation

The perturbation we consider produces a function with equalities (modulo Z
2)

only on the border of the unit square and on the symmetry lines x + y = b and
x + y = 1 + b. Recall that strongly minimal functions for S = b +Z are periodic
modulo Z and satisfy the symmetric condition, i.e., Δπ(x, y) = 0 whenever
x+y ∈ b+Z. Moreover, only the lines x+y = b+z for z = 0, 1 intersect the cube
[0, 1]2 since b ∈ (0, 1). Define the sets Eδ = {(x, y) : x ∈ [0, δ]∪[1−δ, 1]}∪{(x, y) :
y ∈ [0, δ] ∪ [1 − δ, 1]} for δ > 0, Eb = {(x, y) ∈ [0, 1]2 : b − δ ≤ x + y ≤ b + δ},
and E1+b = {(x, y) ∈ [0, 1]2 : (1 + b) − δ ≤ x + y ≤ (1 + b) + δ}. The main result
of this section is the following.

Lemma 4. Consider a piecewise linear function π that is strongly minimal for
b+Z. Then for any ε ∈ (0, 1), there is a real number δ > 0 and a function πcomb

satisfying the following:

(1) πcomb is strongly minimal for b + Z.
(2) πcomb is piecewise linear whose breakpoints include δ+Z and −δ+Z. Further,

πcomb is linear on [0, δ] and [−δ, 0].
(3) ‖π − πcomb‖∞ ≤ ε.
(4) E(πcomb) ⊆ Eδ ∪ Eb ∪ E1+b.
(5) There exists γ > 0 such that Δπcomb(x, y) > γ for all (x, y) ∈ [0, 1]2\(

Eδ ∪
Eb ∪ E1+b

)
.

The idea behind the proof of this lemma is the observation that if we have a
convex combination π = απ1 + (1 − α)π2 with α ∈ (0, 1), then E(π) ⊆ E(π1) ∩
E(π2). Thus, we will find a function π̂ with nice equalities E(π̂) and then set
πcomb as roughly (1 − ε)π + επ̂. The nice function we use is defined for any
δ ∈ (0,min{ b

2 , 1−b
2 }) as follows (see Fig. 1 for an example):

208 A. Basu et al.

πδ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2δ r r ∈ [0, δ] + Z,
1
2 r ∈ (δ, b − δ] + Z,

1 − 1
2δ (b − r) r ∈ (b − δ, b] + Z,

1 + 1
2δ (b − r) r ∈ (b, b + δ] + Z,

1
2 r ∈ (b + δ, 1 − δ] + Z,
1
2 + 1

2δ (1 − δ − r) r ∈ (1 − δ, 1] + Z.

(2)

Fig. 1. On the left is a plot of πδ : R → [0, 1] for δ = 1
10

and b = 2
5
. This function is

periodic modulo Z, so we only display the domain [0, 1]. On the right we have drawn
the complex ΔPU in dashed lines on the [0, 1]2 domain. The function Δπδ is affine
on each cell of ΔPU . The cells of ΔPU filled in black are those contained in the set
E(πδ). Since πδ is periodic, Δπδ (and hence E(πδ)) is periodic modulo Z

2. Covering
the set E(πδ) in a light shading are the sets Eδ, Eb, and E1+b. The set Eδ around the
boundary of the box is shaded in light blue, while the diagonal strips Eb and E1+b are
shaded in light red. Notice that E(πδ) ⊆ Eδ ∪ Eb ∪ E1+b. In fact, the remaining region
[0, 1]2\(Eδ ∪ Eb ∪ E1+b), colored white, does not intersect E(πδ). Hence Δπδ > γ > 0
on this remaining region.

The following lemma states the key properties of πδ; its proof, presented in
the full version of the paper, uses the characterization of strong minimality from
Theorem 1 and requires a case analysis based on the breakpoints of πδ.

Lemma 5. For all δ ∈ (0,min{ b
2 , 1−b

2 }), the function πδ is strongly minimal for
b+Z. Furthermore, we have E(πδ) ⊆ Eδ ∪Eb ∪E1+b and there exists γ > 0 such
that Δπδ(x, y) > γ for all (x, y) ∈ [0, 1]2\(Eδ ∪ Eb ∪ E1+b).

Proof of Lemma 4. Consider the breakpoints of π in the open interval (0, 1), let
umin and umax be respectively the smallest and the largest of these breakpoints.
Choose δ > 0 sufficiently small – more precisely, δ < min{umin, 1−umax,

b
2 , 1−b

2 }.
By Lemma 5, πδ is strongly minimal, and π is strongly minimal by assump-

tion. Since the conditions (i), (ii) and (iii) in Theorem1 are maintained under

Minimal Cut-Generating Functions are Nearly Extreme 209

taking convex combinations, the function πcomb = (1− ε)π + επδ is also strongly
minimal. Thus, condition (1) is satisfied. By the choice of δ and the fact that
δ + Z and −δ + Z are included in the breakpoints of πδ, condition (2) is also
satisfied. Moreover,

|πcomb(x) − π(x)| = |(1 − ε)π(x) + επδ(x) − π(x)| = | − επ(x) + επδ(x)| ≤ ε,

where the last inequality follows from the fact that 0 ≤ π(x), πδ(x) ≤ 1 for
all x, since both functions are strongly minimal. Thus, condition (3) is satisfied.
Finally, by Lemma 5, there exists a γ̂ > 0 such that Δπδ(x, y) > γ̂ for all (x, y) ∈
[0, 1]2\(Eδ ∪ Eb ∪ E1+b). Since Δπ ≥ 0, it follows that Δπcomb(x, y) = (1 − ε)
Δπ(x, y)+ εΔπδ(x, y) ≥ εΔπδ(x, y) > γ̂ε for all (x, y) ∈ [0, 1]2\(Eδ ∪Eb ∪E1+b).
Taking γ = γ̂ε completes the proof of conditions (4) and (5). ��

3.2 Symmetric 2-Slope Fill-in

We now show that we can apply the 2-slope fill-in plus a symmetrization pro-
cedure to the function πcomb to transform it into a strongly minimal 2-slope
function (and hence extreme) while only making small changes to the function
values.

Lemma 6. Let ε > 0 and let πcomb be any function that satisfies the out-
put conditions of Lemma 4 (for some δ, γ > 0) whose breakpoints are rational.
There exists a strongly minimal 2-slope piecewise linear function πsym such that
‖πcomb − πsym‖∞ ≤ ε.

Proof. By periodicity, we focus on the [0,1] interval. Without loss of generality,
we assume that ε < γ

3 where γ is given in Lemma 4(5). Let s+ and s− be two
slopes of the piecewise linear function πcomb coming from the origin, i.e., let
s+ = limh→0+

πcomb(h)
h , s− = limh→0−

πcomb(h)
h . Since πcomb is nonnegative, it

follows that s+ ≥ 0, s− ≤ 0. The function g(r) := max(s+ · r, s− · r), is easily
seen to be sublinear, and subadditivity of πcomb implies πcomb ≤ g.

Let q ∈ Z
+ such that 1

qZ such that the breakpoints U of πcomb and b
2 are con-

tained in 1
qZ and such that 1

q max{s+, |s−|} < ε
2 . Since πcomb ≤ g, by Lemma 3,

the fill-in function πfill−in of πcomb, with respect to 1
qZ and g, is subadditive.

Unfortunately, πfill−in does not necessarily satisfy the symmetry condition and,
therefore, is not necessarily a strongly minimal function. Hence, we further define

πsym(r) =

{
πfill−in(r) r ∈ [0, b

2] ∪ [1+b
2 , 1],

1 − πfill−in(b − r) r ∈ [b
2 , 1+b

2]

In the definition of πsym, we have enforced the symmetry condition, possibly
sacrificing the subadditivity of the function. We will show that, given the parame-
ters used in the construction, πsym is strongly minimal and actually approximates
πcomb to the desired precision.

By Lemma 3, πfill−in ≥ πcomb and πcomb(u) = πfill−in(u) for all u ∈ 1
qZ. Since

πcomb is period modulo Z, the function πfill−in inherits this property. Moreover,

210 A. Basu et al.

restricted to [0, 1], πfill−in is the pointwise minimum of a finite collection of piece-
wise linear functions and therefore, πfill−in is also piecewise linear. Furthermore,
the maximum slope in absolute value of πfill−in is s = max{s+, |s−|}. Therefore
s is also a bound on the maximum slope in absolute value for πcomb. Hence,

|πfill−in(r) − πcomb(r)| ≤ |πfill−in(u) − πcomb(u)| + 2s|u − r| ≤ ε,

where u ∈ 1
qZ is the closest point in 1

qZ to r. Thus, we have established that
‖πfill−in−πcomb‖∞ ≤ ε. Observe that |πsym(r)−πcomb(r)| = |πfill−in(r)−πcomb(r)|
for all r ∈ [0, b

2]∪[1+b
2 , 1], and |πsym(r)−πcomb(r)| = |πfill−in(b−r)−πcomb(b−r)|

for all r ∈ [b
2 , 1+b

2] because of the symmetry of πcomb. Therefore we also have
that ‖πsym − πcomb‖∞ ≤ ε.

Next, observe that πsym has the same slopes as πfill−in, and therefore is a
2-slope piecewise linear function.

Finally, we establish that πsym is a strongly minimal function. Since it is clear
that πsym(0) = 0, and πsym satisfies the symmetry condition, by Theorem1, we
only need to show that πsym satisfies the subadditivity condition πsym(x + y) ≤
πsym(x) + πsym(y); equivalently, Δπsym(x, y) ≥ 0. This is established by the
following case analysis for each (x, y) ∈ [0, 1]2.

Case 1. Suppose (x, y) ∈ [0, 1]2\(
Eδ ∪ Eb ∪ E1+b

)
.

By Lemma 4(5), Δπcomb(x, y) > γ > 0. Since ‖πsym−πcomb‖∞ ≤ ε, it follows
that

Δπsym(x, y) ≥ Δπcomb(x, y) − 3‖πsym − πcomb‖∞ ≥ 0.

Case 2. Suppose (x, y) ∈ Eδ.
By Lemma 4(2), the slope of πcomb on the interval [0, δ] is s+, while the slope

on the interval [1−δ, 1] is s−. We claim that πcomb = πfill−in on the intervals [0, δ]
and [1−δ, δ]. To see this, consider any two consecutive points u1, u2 ∈ [0, δ]∩ 1

qZ.
For any r ∈ [u1, u2], we have

πcomb(r) = πcomb(u1) + s+(r − u1) = πcomb(u1) + g(r − u1)
≥ min

u∈U
πcomb(u) + g(r − u) = πfill−in(r) ≥ πcomb(r).

The first equality comes from the second part of Lemma 4(2). The last inequality
comes from Lemma 3. Since this holds for any points u1, u2 ∈ 1

qZ ∩ [0, δ] and
0, δ ∈ 1

qZ by Lemma 4(2) and the assumption that all breakpoints of πcomb lie in
1
qZ, the claim holds on the interval [0, δ]. A similar argument verifies the claim
on the interval [1 − δ, 1] by showing that πfill−in takes slope s− on this interval.

Therefore, for x ∈ [0, δ] we have

πsym(x) = s+ · x ≥ s+ · α1 + s− · α2 = π(x + y) − π(y),

where α1 and α2 are the lengths of the subsets of the interval [y, x + y] taking
slopes s+ and s− respectively. The inequality holds since α1 + α2 = x and
s+ ≥ s−.

Minimal Cut-Generating Functions are Nearly Extreme 211

On the other hand, if x ∈ [1 − δ, 1], then

−πsym(x) = −πsym(x − 1) = s− · (1 − x)

≤ s+ · α1 + s− · α2 = πsym(y) − πsym(x + y − 1) = πsym(y) − πsym(x + y),

where α1, α2 are the lengths of the subsets of the interval [x + y − 1, y] taking
slopes s+ and s− respectively. The inequality holds since α1 + α2 = 1 − x and
s+ ≥ s−. Here we used the fact that πsym is periodic modulo Z.

Case 3. Suppose (x, y) ∈ Eb ∪ E1+b.
Suppose first that (x, y) ∈ Eb. Then x + y = b − β for some β ∈ [−δ, δ]. By

Case 2, it follows that πsym(β)+πsym(x) ≥ πsym(x+β). Therefore, −(πsym(β)+
πsym(x)) ≤ −πsym(x + β). Since πsym satisfies the symmetry condition, we have

πsym(b − β) = 1 − πsym(β) = 1 − πsym(β) − πsym(x) + πsym(x)
≤ 1 − πsym(x + β) + πsym(x) = πsym(b − x − β) + πsym(x)
= πsym(x) + πsym(y).

The proof is similar for (x, y) ∈ E1+b.
Since Cases 1–3 cover all options for (x, y) ∈ [0, 1]2, we see that πsym is indeed

subadditive. This concludes the proof. ��

3.3 Concluding the Proof of Theorem 2

Consider a strongly minimal function π̄ for S = b+Z. Since π̄ is continuous and
periodic with period 1, it is actually uniformly continuous. Thus, we can apply
Lemma 1 to obtain a piecewise linear function πpwl that is strongly minimal
for S and satisfies ‖π̄ − πpwl‖∞ ≤ ε

3 . Then we employ the equality reduction
Lemma 4 over πpwl to obtain a strongly minimal function πcomb with ‖πpwl −
πcomb‖∞ ≤ ε

3 . Then we can apply Lemma 6 to πcomb to obtain a function πsym

with ‖πcomb − πsym‖∞ ≤ ε
3 satisfying the other properties given by the lemma.

Then the 2-Slope Theorem 5 implies that πsym is extreme, and triangle inequality
gives ‖π̄ − πsym‖∞ ≤ ‖π̄ − πpwl‖∞ + ‖πpwl − πcomb‖∞ + ‖πcomb − πsym‖∞ ≤ ε.
This concludes the proof.

4 Proof of Theorem3

The high-level idea of the proof of Theorem3 is to take the input function π̄,
which is strongly minimal and quasi-periodic, and remove a linear term from
it and scale the domain to obtain a function π̃ that is periodic modulo Z (and
in fact strongly minimal). Then we can apply Theorem2 to this transformed
function π̃ to obtain an extreme function π̃sym close to it and then undo the
transformation over π̃sym to obtain an extreme function π∗. The only caveat is
that in this last step simply undoing the function transformation does not give
us an extreme function: an extra correction step needs to take place to correct
the fact that π̃sym is a (slight) modification of π̃.

One can transform a quasi-periodic function into a periodic one by removing
a linear term (the proof can be readily verified).

212 A. Basu et al.

Lemma 7. Let φ be quasi-periodic with period d, and let c ∈ R be such that
φ(x + d) = φ(x) + c. Then the function φ̃(x) := φ(x) − c

dx is periodic with
period d.

We also need the following lemma which follows from [11, Theorem 7.5.1].

Lemma 8. Let φ : R → R be a continuous, subadditive, periodic function and
φ(0) = 0. Then φ ≥ 0.

We proceed with proving Theorem 3. Consider a truncated affine lattice
S = b + Z+ with b ∈ Q\Z and b ≤ 0. Consider a continuous, strongly mini-
mal, quasi-periodic function π̄ for S with rational period d and let c ∈ R be such
that π̄(x + d) = π̄(x) + c. The rationality of d, combined with [7, Theorem 7],
implies that c ≥ 0. Thus, by Lemma 7, there exists α ≥ 0 such that the function
π̄(r)−α · r is periodic with period d. Define the transformed function π̃ : R → R

by removing a linear term and scaling the domain as

π̃(r) =
1

1 − αb
· (π̄(d · r) − α(d · r)) .

Observe that 1 − αb ≥ 0 since α ≥ 0 and b ≤ 0. Not only is π̃ periodic with
period 1, it is in fact strongly minimal for an appropriately transformed set S̃
(a proof is presented in the full version of the paper).

Lemma 9. The function π̃ is strongly minimal for S̃ = b
d + Z.

Recall the parameters M and ε > 0 in the statement of Theorem 3. Now set
ε′ > 0 small enough so that 1 + ε′b ≥ 1

2 and

max
{ (

1
1 + ε′b

− 1
)

,

(

1 − 1
1 − ε′b

)}

· max
y∈[−M,M]

|π̄(y)| + ε′(M + 2) ≤ ε.

Apply Theorem 2, with approximation parameter ε′
1−αb , to obtain a 2-slope func-

tion π̃sym that is strongly minimal for S̃ = b
d + Z and has ‖π̃ − π̃sym‖∞ ≤ ε′

1−αb .
We undo the transformation over π̃sym by rescaling the domain and function

values, and adding back the linear term to define π′ : R → R by setting

π′(r) = (1 − αb) · π̃sym

(r

d

)
+ αr.

Again notice that π′ satisfies quasi-periodicity (with period d), subadditivity,
and π′(0) = 0. Also, since π̃sym is symmetric about b

d , we obtain that π′ is
symmetric about b:

π′(r) + π′(b − r) = (1 − αb) ·
(

π̃sym

(r

d

)
+ π̃sym

(
b − r

d

))
+ αr + α(b − r) = 1.

Minimal Cut-Generating Functions are Nearly Extreme 213

In addition, ‖π̄ − π′‖∞ ≤ ε′:

|π′(r) − π̄(r)| =
∣
∣
∣(1 − αb) · π̃sym

(r

d

)
+ αr − π̄(r)

∣
∣
∣

=
∣
∣
∣(1 − αb)

(
π̃sym

(r

d

)
− π̃

(r

d

))
+ (1 − αb)π̃

(r

d

)
+ αr − π̄(r)

∣
∣
∣

≤ (1 − αb)‖π̃sym − π̃‖∞ ≤ ε′.

Thus the function π′ satisfies all conditions in Theorem 4, except that π′(−1)
may be different from 0, and thus it may not be strongly minimal (and hence
extreme). However, we can correct this in the following way.

Let β = π′(b) + π′(−1) · b = 1 + π′(−1) · b. Since |π′(−1)| ≤ ε′ and by choice
of ε′ we have 1 + ε′b > 0, we obtain β > 0. Define π∗(r) = 1

β (π′(r) + π′(−1) · r).
The proof of the following lemma is presented in the full version of the paper.

Lemma 10. The function π∗ is a piecewise linear 2-slope function that is
strongly minimal for S = b + Z+. Furthermore, |π̄(r) − π∗(r)| ≤ ε for all
r ∈ [−M,M].

Finally, from Theorem6 we have that π∗ is extreme. This concludes the proof
of Theorem 3.

References

1. Balas, E., Qualizza, A.: Monoidal cut strengthening revisited. Discrete Optim.
9(1), 40–49 (2012)

2. Basu, A., Conforti, M., Di Summa, M.: A geometric approach to cut-generating
functions. Math. Program. 151(1), 153–189 (2015)

3. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group
relaxation I: foundations and taxonomy. 4OR 14(1), 1–40 (2015).
http://dx.org/10.1007/s10288-015-0292-9

4. Basu, A., Hildebrand, R., Köppe, M.: Light on the infinite group relaxation II:
sufficient conditions for extremality, sequences, and algorithms. 4OR, 1–25 (2015).
http://dx.org/10.1007/s10288-015-0293-8

5. Basu, A., Hildebrand, R., Köppe, M., Molinaro, M.: A (k+1)-slope theorem for the
k-dimensional infinite group relaxation. SIAM J. Optim. 23(2), 1021–1040 (2013)

6. Cornuéjols, G., Molinaro, M.: A 3-slope theorem for the infinite
relaxation in the plane. Math. Program. 142(1–2), 83–105 (2013).
http://dx.org/10.1007/s10107-012-0562-7

7. Cornuéjols, G., Yıldız, S.: Cut-generating functions for integer variables (2015).
http://integer.tepper.cmu.edu/webpub/draft.pdf

8. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra, I. Math. Program. 3, 23–85 (1972). http://dx.org/10.1007/BF01585008

9. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra, II. Math. Program. 3, 359–389 (1972). http://dx.org/10.1007/BF01585008

10. Gomory, R.E., Johnson, E.L.: T-space and cutting planes. Math. Program. 96,
341–375 (2003). http://dx.org/10.1007/s10107-003-0389-3

11. Hille, E., Phillips, R.: Functional analysis and semi-groups. Am. Math. Soc. 31
(1957)

12. Johnson, E.L.: On the group problem for mixed integer programming. Math. Pro-
gram. Study 2, 137–179 (1974)

http://dx.org/10.1007/s10288-015-0292-9
http://dx.org/10.1007/s10288-015-0293-8
http://dx.org/10.1007/s10107-012-0562-7
http://integer.tepper.cmu.edu/webpub/draft.pdf
http://dx.org/10.1007/BF01585008
http://dx.org/10.1007/BF01585008
http://dx.org/10.1007/s10107-003-0389-3

On the Mixed Binary Representability
of Ellipsoidal Regions

Alberto Del Pia1 and Jeffrey Poskin2(B)

1 Department of Industrial and Systems Engineering & Wisconsin
Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA

delpia@wisc.edu
2 Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA

poskin@wisc.edu

Abstract. Representability results for mixed-integer linear systems play
a fundamental role in optimization since they give geometric characteri-
zations of the feasible sets that arise from mixed-integer linear programs.
We consider a natural extension of mixed-integer linear systems obtained
by adding just one ellipsoidal inequality. The set of points that can be
described, possibly using additional variables, by these systems are called
ellipsoidal mixed binary representable. In this work, we give geometric
conditions that characterize ellipsoidal mixed binary representable sets.

1 Introduction

The theory of representability starts with a paper of Dantzig [1] and studies
one fundamental question: Given a specified type of algebraic constraints, which
subsets of Rn can be represented as the feasible points of a system defined by
these constraints, possibly using additional variables? Several researchers have
investigated representability questions (see, e.g., [3–10]), and a systematic study
for mixed-integer linear systems is mainly due to Meyer and Jeroslow.

Since the projection of a polyhedron is a polyhedron (see [11]), the sets
representable by system of linear inequalities are polyhedra. More formally, a
set S ⊆ R

n is representable as the projected solution set of a linear system

Dw ≤ d

w ∈ R
n × R

p

if and only if S is a polyhedron.
If we allow also binary extended variables, a geometric characterization has

been given by Jeroslow [6]. A set S ⊆ R
n is representable as the projected

solution set of a mixed-integer linear system

Dw ≤ d

w ∈ R
n × R

p × {0, 1}q

if and only if S is the union of a finite number of polyhedra, each having the
same recession cone.
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 214–225, 2016.
DOI: 10.1007/978-3-319-33461-5 18

On the Mixed Binary Representability of Ellipsoidal Regions 215

We are interested in giving representability results for mixed-integer sets
defined not only by linear inequalities, but also by quadratic inequalities of the
form (w−c)�Q(w−c) ≤ γ, where Q is a positive semidefinite matrix. Inequalities
of this type are called ellipsoidal inequalities, and the set of points that satisfy
one of them is called an ellipsoidal region. Ellipsoidal inequalities arise in many
practical applications. As an example, many real-life quantities are normally
distributed; and for a normal distribution, a natural confidence set, containing
the vast majority of the objects, is an ellipsoidal region. See, e.g., [12] for other
applications of ellipsoidal inequalities.

A characterization of sets representable by an arbitrary number of ellipsoidal
inequalities seems to be currently completely out of reach. In fact, it is easy
to construct examples where just two ellipsoidal inequalities in R

3 project to a
semialgebraic set described by polynomials of degree four in R

2. This can happen
even without linear inequalities or binary extended variables. As a consequence,
in this work we will focus on understanding the expressive power of just one
ellipsoidal inequality.

Formally, we say that a set S ⊆ R
n is ellipsoidal mixed binary (EMB) repre-

sentable if it can be obtained as the projection onto R
n of the solution set of a

system of the form

Dw ≤ d

(w − c)�Q(w − c) ≤ γ

w ∈ R
n+p × {0, 1}q,

(1)

where Q is positive semidefinite. There is a strong connection between EMB-
representable sets and mixed-integer quadratic programming (MIQP). In a
MIQP problem we aim at minimizing a quadratic function over mixed inte-
ger points in a polyhedron. Since MIQP ∈ NP [2], any MIQP with bounded
objective is polynomially equivalent to a polynomial number of MIQP feasibility
problems. If the objective quadratic is ellipsoidal, then each feasibility problem
is a feasibility problem over a set of the form (1).

Our main result is the following geometric characterization of EMB-
representable sets.

Theorem 1. A set S ⊆ R
n is EMB-representable if and only if there exist

ellipsoidal regions Ei ⊆ R
n, i = 1, . . . , k, polytopes Pi ⊆ R

n, i = 1, . . . , k, and a
polyhedral cone C ⊆ R

n such that

S =
k⋃

i=1

(Ei ∩ Pi) + C. (2)

An example of an EMB-representable set is given in Fig. 1.

Both directions of Theorem1 have geometric implications. Since each set
(2) can be obtained as the projection of a set described by a system (1), this
means that the k ellipsoidal regions Ei can be expressed with just one ellipsoidal

216 A. Del Pia and J. Poskin

Fig. 1. An EMB-representable set in R
3

inequality in a higher dimension. We prove this direction of the theorem by
explicitly giving an extended formulation for S.

The other direction of Theorem 1 states that the projection of each system (1)
onto R

n is a set of the form (2). The proof of this statement essentially reduces to
proving that the projection S of a set {x ∈ R

n+1 | Dx ≤ d, (x−c)�Q(x−c) ≤ γ}
onto R

n is a set of the form (2). In order to do so, we introduce the key concept
of a shadowing hyperplane. This hyperplane, that will be formally introduced
later, allows us to split the ellipsoidal region into two ‘parts’ which, in turn,
allow us to decompose S as a union of subsets Si. We will then see how each
set Si can be obtained as the projection of a set in R

n+1 lying on a hyperplane.
This will allow us to prove that each Si can be described with linear inequalities
and one ellipsoidal inequality.

The remainder of this paper is organized as follows. In Sect. 2, we provide
a number of results relating to the intersection of an ellipsoidal region with a
polyhedron and the projections of such regions. In Sect. 3, we prove Theorem 1.

2 Ellipsoidal Regions and Hyperplanes

In this section we formally define ellipsoidal regions. These regions will appear
throughout our study of representability. We will prove a few results on the
intersection of ellipsoidal regions with half-spaces as well as their projections.
These results will be necessary for our proof of Theorem 1.

We say that a set E is an ellipsoidal region in R
n if there exists an n × n

matrix Q � 0 (i.e.,Q is positive semi-definite), a vector c ∈ R
n, and a number

γ ∈ R, such that

E = {x ∈ R
n | (x − c)�Q(x − c) ≤ γ}.

We note that if Q � 0 (i.e.,Q is positive definite) and γ > 0, then E is an
ellipsoid, i.e.,the image of the unit ball B = {x ∈ R

n | ||x|| ≤ 1} under an
invertible affine transformation.

On the Mixed Binary Representability of Ellipsoidal Regions 217

Given a set E ⊆ R
n ×R

p and a vector ȳ ∈ R
p, we define the ȳ-restriction of

E as

E|y=ȳ = {x ∈ R
n | (x, ȳ) ∈ E}.

Note that E|y=ȳ geometrically consists of the intersection of E with coordinate
hyperplanes. Sometimes we will need to consider E|y=ȳ in the original space
R

n × R
p, thus we also define

Ẽ|y=ȳ = {(x, ȳ) ∈ R
n × R

p | (x, ȳ) ∈ E}.

We will also need to perform several restrictions y1 = ȳ1, . . . , yk = ȳk at the
same time. In such case we simply write E|y1=ȳ1,...,yk=ȳk

and Ẽ|y1=ȳ1,...,yk=ȳk
.

In the remainder of the paper we will denote by “rec” the recession cone of
a set, by “lin” the lineality space of a set, by “span” the linear space generated
by a set of vectors, by “cone” the cone generated by a set of vectors, by “range”
the range of a matrix, and by “ker” the kernel of a matrix.

The following observation is well-known, and we give a proof for completeness.

Observation 1. Let q(x) = x�Qx + b�x be a quadratic function on R
n with

Q � 0. Then q(x) has a minimum on R
n if and only if b is in the range of Q.

Proof. Assume b /∈ range(Q). Then since Q is symmetric, we can write b = Qr+c
with Qc = 0 and c �= 0. Consider x(t) = −tc for t ∈ R. Then we have

q(x(t)) = b�x(t) = −tc�c.

Since c �= 0, we see that q(x(t)) → −∞ as t → +∞. Thus, q(x) has no minimum
on R

n.
Assume there exists x0 ∈ R

n such that 1
2b = Qx0. Then

q(x) = (x + x0)�Q(x + x0) − x�
0 Qx0

and q(x) has a minimum at any x̄ such that x̄ + x0 ∈ ker(Q). In particular, −x0

is a minimizer and q(−x0) = −x�
0 Qx0 is the optimal value. ��

The following lemma shows that ellipsoidal regions are closed under inter-
sections with coordinate hyperplanes. This is equivalent to fixing a number of
variables.

Lemma 1. Let E be an ellipsoidal region in R
n ×R

p. Then for any ȳ ∈ R
p, the

set E|y=ȳ is an ellipsoidal region in R
n.

Proof. Let E = {(x, y) ∈ R
n × R

p | q(x, y) ≤ γ}, where q(x, y) is the quadratic
polynomial

q(x, y) =
(

x − c
y − c′

)� (
Q R
R� Q̄

)(
x − c
y − c′

)

.

218 A. Del Pia and J. Poskin

For any fixed ȳ ∈ R
p, since Q � 0 it suffices to show there exists cȳ ∈ R

n and
γȳ ∈ R such that

E|y=ȳ = {x ∈ R
n | (x − cȳ)�Q(x − cȳ) ≤ γȳ}.

Let ȳ ∈ R
p. Since q(x, y) has a minimum on R

n × R
p, the quadratic function

q(x, ȳ) = (x − c)�Q(x − c) + 2(ȳ − c′)�R�(x − c) + (ȳ − c′)�Q̄(ȳ − c′),

has a minimum on R
n. Applying Observation 1, R(ȳ − c′) ∈ range(Q), and there

exists x̄ ∈ R
n such that Qx̄ = R(ȳ − c′). Defining cȳ := c − x̄ and γȳ :=

γ + x̄�Qx̄ − (ȳ − c′)�Q̄(ȳ − c′) we have

E|y=ȳ = {x ∈ R
n | (x − cȳ)�Q(x − cȳ) ≤ γȳ}. ��

We are now ready to provide a geometric description of ellipsoidal regions.
A consequence of this description is that any non-empty ellipsoidal region may
be decomposed into the Minkowski sum of an ellipsoid and a linear space.

Lemma 2. Let E be an ellipsoidal region in R
n. Then

(i) E = ∅, or
(ii) E is an affine space, or
(iii) There exists a k-dimensional linear space L ⊆ R

n, and k distinct indices
i1, . . . , ik ∈ {1, . . . , n} such that the restriction

E|xi1=x̄i1 ,...,xik
=x̄ik

is an ellipsoid in R
n−k, and

E = Ẽ |xi1=x̄i1 ,...,xik
=x̄ik

+ L.

Proof. Let E = {x ∈ R
n | (x − c)�Q(x − c) ≤ γ}. If γ < 0, then E = ∅ since Q

is positive semidefinite. Thus, we may assume that γ ≥ 0 and E is non-empty.
We now show that rec(E) = {x ∈ R

n | x�Qx ≤ 0} = ker(Q). Since E is a
closed convex set, rec(E) is equal to the set of recession directions at any point
x ∈ E . Consider the point c ∈ E . Then for any r ∈ ker(Q) and λ > 0 we have
c + λr ∈ E since λ2r�Qr = 0 ≤ γ. Assume r ∈ R

n is a recession direction from
c ∈ E . Let Q = L�L be a Cholesky decomposition of Q. Then for any λ > 0 we
have λ2r�Qr = λ2||Lr||2 ≤ γ, which implies Lr = 0 and r ∈ ker(Q).

Now assume γ = 0. By the above argument, x ∈ E if and only if x ∈
{c} + ker(Q). Thus E = {c} + ker(Q) is an affine space.

Assume now γ > 0. If Q is invertible then E is an ellipsoid and we are done.
Thus, we may assume L := ker(Q) is nontrivial. Let L = {l1, . . . , lk} be a basis
for L. Extend L to a basis L′ of Rn by adding a subset of the standard basis
vectors {e1, . . . , en} of Rn. Let J ⊆ {1, . . . , n} be the set of indices j for which
ej ∈ L′. Let {i1, . . . , ik} = {1, . . . , n} − J . Consider E ′ := E|xi1=0,...,xik

=0 and
Ẽ ′ := Ẽ |xi1=0,...,xik

=0.

On the Mixed Binary Representability of Ellipsoidal Regions 219

We now show E = Ẽ ′ + L. Since Ẽ ′ ⊆ E and rec(E) = L, we clearly have
Ẽ ′ + L ⊆ E . Let v ∈ E . Expanding v in the basis L′, we have for some l ∈ L
and scalars αj ∈ R, that v = l +

∑
j∈J αjej . Since L = rec(E) we have v − l =

∑
j∈J αjej ∈ E ′ and E ⊆ Ẽ ′ + L.
By Lemma 1, E ′ is an ellipsoidal region in R

n−k. To show E ′ is an ellipsoid
in R

n−k it remains to show that E ′ is full-dimensional and bounded. If E ′ is
unbounded, then E ′ has some recession direction outside of L which contradicts
the fact that rec(E) = L. We finally show that E ′ is full-dimensional. We first
show that E is full-dimensional in R

n. This follows since γ > 0 and there exists
a vector, namely c ∈ R

n, for which the continuous function (x − c)�Q(x − c)
has value 0. This implies that there exists an ε-ball around c, say B, such that
B ⊆ E . The fact that E ′ is full-dimensional follows by considering the intersection
of B + L with E ′. ��

We make the following remark about the proof of (iii) that will be used later.
If one of the standard basis vectors of Rn, say en, is not contained in L, then we
may assume that xn does not occur among the fixed variables xi1 , . . . , xik . To
see this, note that in completing the basis L of L to a basis of Rn we may first
add the standard basis vector en to the set L.

It can be shown that Lemma 2 is in fact an if and only if statement. It then
provides a complete geometric characterization of ellipsoidal regions. The next
observation gives a description of the recession cones that will be encountered
in this paper.

Observation 2. Let P be a polyhedron and E an ellipsoidal region in R
n. Then

rec(E ∩ P) is a polyhedral cone.

Proof. Clearly, rec(E ∩ P) = rec(E) ∩ rec(P). The set rec(P) is a polyhedral
cone (see, e.g., [11]), and rec(E) is a linear space by Lemma 2. As a consequence
rec(E ∩ P) is a polyhedral cone. ��

The following lemma shows that to compute the projection of an ellipsoidal
region E in R

n, it suffices to consider the projection of E ∩H for a specific hyper-
plane H ⊆ R

n. We will refer to such a hyperplane H as a shadowing hyper-
plane, as it contains enough information to completely describe the projection,
or ‘shadow’, of E .

Given a set S ⊆ R
n, and a positive integer k ≤ n, we will denote by projk(S)

the projection of S onto its first k coordinates. Formally,

projk(S) = {x ∈ R
k | ∃y ∈ R

n−k with (x, y) ∈ S}.

Lemma 3. Let E be an ellipsoidal region in R
n. Then there exists a hyperplane

H ⊆ R
n with en /∈ lin(H) such that

projn−1(E) = projn−1(E ∩ H).

Proof. We first note that it suffices to find a hyperplane H such that for any
x ∈ E there exists λ ∈ R such that x + λen ∈ E ∩ H. The cases E = ∅ and E an

220 A. Del Pia and J. Poskin

affine space are trivial. If E = ∅ then any hyperplane H with en /∈ lin(H) satisfies
the condition of the lemma. If E = v + L is an affine space, either en ∈ lin(L)
or en /∈ lin(L). If en ∈ lin(L), we may take H = {x ∈ R

n | xn = 0} since for
any x̄ ∈ E there exists λ̄ ∈ R, namely λ̄ = −x̄n, such that x̄ + λ̄en ∈ E ∩ H.
If en /∈ lin(H), then we may take H to be any hyperplane containing E with
en /∈ lin(H).

We now show the lemma when E is an ellipsoid, say E = {Ax + c | ||x|| ≤ 1}
with A an invertible n×n matrix. Let H ′ = {x ∈ R

n | xn = 0}. Clearly, for any x
in the standard unit ball B there exists λ ∈ R such that x+λen ∈ B∩H ′. Let U be
an orthogonal transformation that maps the standard unit vector en to A−1en

||A−1en|| .
Let T be the invertible affine transformation defined by T (x) = AU(x) + c.
We claim that H := T (H ′) is an appropriate hyperplane. Let x̄ ∈ E . Since
E = AB + c = T (B), we have T−1(x̄) ∈ B. Then there exists λ̄ ∈ R such that
T−1(x̄) + λ̄en ∈ B ∩ H ′. Applying T we have x̄ + λ̄

||A−1en||en ∈ E ∩ H. We have
en /∈ lin(H), since otherwise projn−1(E) = projn−1(E ∩ H) ⊆ projn−1(H) would
have dimension at most n − 2, contradicting the full-dimensionality of E .

Assume now that E is a full-dimensional and unbounded ellipsoidal region,
say E = {x ∈ R

n | (x− c)�Q(x− c) ≤ γ} for some singular positive semi-definite
matrix Q, and γ > 0. Let L = ker(Q), which by Lemma 2 is the recession cone
of E . Suppose first that en ∈ L and consider H = {x ∈ R

n | xn = 0}. Then for
any x̄ ∈ E , we have x̄ − x̄nen ∈ E ∩ H, and H has the desired property.

Thus, we may assume that en /∈ L. We now apply Lemma 2, and obtain a
decomposition

E = Ẽ |xi1=x̄i1 ,...,xik
=x̄ik

+ L.

Further, E ′ := E|xi1=x̄i1 ,...,xik
is an ellipsoid in R

n−k. We note that since en /∈
lin(H), by the remark following Lemma 2, we may assume xn is not among the
variables fixed. Thus, we may assume that e′

n, the restriction of en obtained
by dropping the fixed components, is non-zero in R

n−k. We can now apply the
proof of the bounded case above to the ellipsoid E ′. That is, there exists a
hyperplane H ′ ⊆ R

n−k such that for any x′ ∈ E ′ there exists λ′ ∈ R such that
x′ + λ′e′

n ∈ E ′ ∩ H ′.
Let H̃ ′ be obtained from H ′ by considering it in the original space R

n, i.e.,we
have x ∈ H̃ ′ if and only if xi1 = x̄i1 , . . . , xik = x̄i=k and the vector consisting
of components of x not among these xij is in H ′. We claim that the hyperplane
H := H̃ ′ + L satisfies the condition of the lemma. By construction, en /∈ lin(H).
Now for any x ∈ E , there exists l ∈ L such that x − l ∈ Ẽ ′. Then for some λ ∈ R

we have x − l + λen ∈ Ẽ ′ ∩ H and since L ⊆ H we have x + λen ∈ E ∩ H. ��
With these results in hand, we are now ready to proceed to the proof of

Theorem 1.

3 Proof of Theorem1

To prove sufficiency of the condition, assume that we are given a set

On the Mixed Binary Representability of Ellipsoidal Regions 221

S =
k⋃

i=1

(Ei ∩ Pi) + C,

where Ei = {x ∈ R
n | (x−ci)�Qi(x−ci) ≤ γi} are ellipsoidal regions, Pi = {x ∈

R
n | Aix ≤ bi} are polytopes, and C = cone{r1, . . . , rt} ⊆ R

n is a polyhedral
cone. For each ellipsoidal region Ei, if γi > 0 we can normalize the right hand
side of the inequality to 1. Else, Ei is either empty or an affine space and γi

can be set to 1 at the cost of adding additional linear inequalities to the system
Aix ≤ bi. Thus, we may assume γi = 1 for all i = 1, . . . , k.

We introduce new continuous variables xi ∈ R
n and binary variables δi ∈

{0, 1}, for i = 1, . . . , k, that will model the individual regions Ei ∩ Pi + C. Then
S can be described as the set of x ∈ R

n such that

x =
k∑

i=1

(xi + δici) +
t∑

j=1

λjrj

Aixi ≤ δi(bi − Aici) i = 1, . . . , k

k∑

i=1

δi = 1

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xk

⎞

⎟
⎟
⎟
⎠

� ⎛

⎜
⎜
⎜
⎝

Q1

Q2

. . .
Qk

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xk

⎞

⎟
⎟
⎟
⎠

≤ 1

xi ∈ R
n, δi ∈ {0, 1} i = 1, . . . , k

λj ∈ R
≥0 j = 1, . . . , t.

Now if δ1 = 1 the remaining δi must be 0. Then for each xi with i �= 1, we have
the constraint Aixi ≤ 0 which has the single feasible point xi = 0 since Pi is a
polytope. The remaining constraints reduce to

x = x1 + c1 +
t∑

j=1

λjrj

A1(x1 + c1) ≤ b1

x�
1 Q1x1 ≤ 1

x1 ∈ R
n

λj ∈ R
≥0 j = 1, . . . , t.

By employing a change of variables x′ = x1 + c1, it can be checked that the
latter system describes the region E1 ∩ P1 + C. The remaining regions follow
symmetrically. Therefore S is EMB-representable.

The remainder of the proof is devoted to proving necessity of the condition.
We are given an ellipsoidal region E and a polyhedron P in R

n+p+q, and we
define

222 A. Del Pia and J. Poskin

S̄ := E ∩ P ∩ (Rn+p × {0, 1}q),
S := projn(S̄).

We must show the existence of ellipsoidal regions Ei ⊆ R
n, i = 1, . . . , k, polytopes

Pi ⊆ R
n, i = 1, . . . , k, and a polyhedral cone C ⊆ R

n such that

S =
k⋃

i=1

(Ei ∩ Pi) + C.

Claim 1. It suffices to find ellipsoidal regions Ei ⊆ R
n, polytopes Pi ⊆ R

n, and
polyhedral cones Ci ⊆ R

n, for i = 1, . . . , k, that satisfy

S =
k⋃

i=1

(Ei ∩ Pi + Ci). (3)

Proof of Claim. Let S̃ := E ∩ P ∩ (Rn+p × [0, 1]q). Then for every z̄ ∈ R
q, define

S̄z̄ := E ∩ P ∩ (Rn+p × {z̄}). Clearly, for every z̄ ∈ {0, 1}q, we have rec(S̄z̄) =
rec(S̃), and so projn(rec(S̄z̄)) = projn(rec(S̃)). Since projections and recession
cones operators commute for closed convex sets, we obtain rec(projn(S̄z̄)) =
projn(rec(S̃)). Let C := projn(rec(S̃)). By Observation 2, the set rec(S̃) is a
polyhedral cone, thus so is its projection C.

Note that S̄ = ∪z̄∈{0,1}q S̄z̄ implies S = ∪z̄∈{0,1}qprojn(S̄z̄), therefore
rec(S) = C. This concludes the proof since S =

⋃k
i=1(Ei ∩ Pi + Ci) =

⋃k
i=1(Ei ∩

Pi) + C. �
Claim 2. It suffices to find ellipsoidal regions Ei ⊆ R

n, polyhedra Pi ⊆ R
n, and

polyhedral cones Ci ⊆ R
n, for i = 1, . . . , k, that satisfy (3).

Proof of Claim. In order to show the claim, we prove that if we have Ei ∩Pi +Ci

for an ellipsoidal region Ei, a polyhedron Pi, and a polyhedral cone Ci, then we
may replace Pi with a polytope R without loss.

Replacing Ci with Ci +rec(Ei ∩Pi) if necessary, we may assume that rec(Ei ∩
Pi) ⊆ Ci. Note that the newly defined Ci is a polyhedral cone by Observation 2.
Consider a polyhedral approximation B of Ei such that B ⊆ R

n is a polyhedron,
Ei ⊆ B, and rec(Ei) = rec(B). Then B∩Pi is a polyhedron and can be decomposed
as R + C′

i for a polytope R and a polyhedral cone C′
i ⊆ Ci. We claim that

Ei ∩ R + Ci = Ei ∩ Pi + Ci.
Let x ∈ Ei ∩ R + Ci, and note that R ⊆ Pi so that x ∈ Ei ∩ Pi + Ci. Thus,

Ei ∩ R + Ci ⊆ Ei ∩ Pi + Ci. Let x ∈ Ei ∩ Pi + Ci. Then x ∈ B ∩ Pi + Ci = R + Ci

and we may write x = r + c for some r ∈ R, c ∈ Ci. Note that c ∈ rec(Ei), and
since rec(Ei) is a linear space by Lemma 2, we obtain −c ∈ rec(Ei) as well. Then
x = (x − c) + c and x − c = r ∈ Ei ∩ R, c ∈ Ci so x ∈ Ei ∩ R + Ci. �
Claim 3. We can assume without loss of generality q = 0.

On the Mixed Binary Representability of Ellipsoidal Regions 223

Proof of Claim. Note that, using restrictions, we can write the set S in the form

S =
⋃

z̄∈{0,1}q

projn(S̄|z=z̄).

It suffices to show that each restriction S̄|z=z̄ = E ′ ∩ P ′ for some ellipsoidal
region E ′ ⊂ R

n+p and polyhedron P ′ ⊆ R
n+p. Then, assuming the result in the

case q = 0, for each z̄ ∈ {0, 1}q we have projn(S̄|z=z̄) = ∪k
i=1(Ei ∩Pi + Ci). Since

S is the finite union of such sets, the result follows.
Let z̄ ∈ {0, 1}q. We note S̄|z=z̄ = E|z=z̄ ∩ P|z=z̄. By Lemma 1, E ′ := E|z=z̄ is

an ellipsoidal region in R
n+p. Let P = {(x, y, z) ∈ R

n+p×{0, 1}q | Ax+By+Cz ≤
d}. Also, P ′ := P|z=z̄ = {(x, y) ∈ R

n+p | Ax + By ≤ d − Cz̄} is clearly a
polyhedron.�
Claim 4. We can assume without loss of generality p = 1.

Proof of Claim. Let E ∩ P ⊆ R
n+p. We prove that S = projn(E ∩ P) has the

desired decomposition, by induction on p. For this claim, we assume the base
case, p = 1. Now let p = k, and suppose the statement holds for p < k. Given
E ∩ P ⊆ R

n+k, by the base case p = 1 we have

projn+k−1(E ∩ P) =
t⋃

i=1

(Ei ∩ Pi + Ci).

Since the projection of a union is the union of the projections, we have

S = projn(E ∩ P) =
t⋃

i=1

projn(Ei ∩ Pi + Ci).

Now projn is a linear operator and by the induction hypothesis we have

S =
t⋃

i=1

(si⋃

j=1

(Ei,j ∩ Pi,j + Ki,j) + C′
i

)
,

where C′
i := projn(Ci). Setting K′

i,j = Ki,j + C′
i for each i = 1, . . . , t and j =

1, . . . , si, we have

S =
t⋃

i=1

(si⋃

j=1

(Ei,j ∩ Pi,j + K′
i,j)

)
,

and we are done. �
To prove Theorem 1 it remains to show the following. Assume we are given E∩

P ⊆ R
n+1. We must show the existence of ellipsoidal regions Ei ⊆ R

n, polyhedra
Pi ⊆ R

n, and polyhedral cones Ci ⊆ R
n, for i = 1, . . . , k, that satisfy (3).

Given a half-space H+ = {x ∈ R
n | a�x ≥ b}, we write H for the hyperplane

{x ∈ R
n | a�x = b} and H− for the half-space {x ∈ R

n | a�x ≤ b}. A polyhe-
dron is the intersection of finitely many half-spaces. Thus, there exist half-spaces

224 A. Del Pia and J. Poskin

H+
1 , . . . , H+

s ⊆ R
n+1 such that P = ∩s

i=1H
+
i . By Lemma 3, there exists a hyper-

plane H0 ⊂ R
n+1 with en+1 /∈ lin(H0) such that projn(E) = projn(E ∩ H0).

Then
E ∩ P = (E ∩ H+

0 ∩s
i=1 H+

i) ∪ (E ∩ H−
0 ∩s

i=1 H+
i),

and it suffices to show the statement for the region E ∩ H+
0 ∩s

i=1 H+
i .

Claim 5. Let H be the collection of hyperplanes H among H0, . . . , Hs with
en+1 /∈ lin(H). Then

projn(E ∩s
i=0 H+

i) =
⋃

H∈H
projn(E ∩ H ∩s

i=0 H+
i).

Proof of Claim. It suffices to show that E ∩s
i=0 H+

i has the following property:
for any x ∈ E ∩s

i=0 H+
i there exists a hyperplane H ∈ H and a λ ∈ R such that

x + λen+1 ∈ E ∩ H ∩s
i=0 H+

i .
To prove the claim, we show that we can translate a point x ∈ E∩s

i=0H
+
i along

the line {x + ten+1 | t ∈ R}, and inside the feasible region, until it meets a half-
space in H at equality. If en+1 ∈ lin(Hi) for a half-space Hi, then x+λen+1 ∈ H+

i

for any λ ∈ R.
Let x̄ ∈ E ∩s

i=0 H+
i . Then, by the existence of the shadowing hyperplane H0,

there is one direction among {±en+1} along which x̄ may be translated to intersect
H0 while staying inside E . Thus, there exists λ̄ ∈ R such that x̄ + λ̄en+1 ∈ E ∩s

i=0

H+
i and x̄ + λ̄en+1 is contained in at least one hyperplane H ∈ H. �

Then for any H ∈ H it suffices to show that there exists an ellipsoidal region
E ′ ⊆ R

n and a polyhedron P ′ ⊆ R
n such that

projn(E ∩ H ∩s
i=0 H+

i) = E ′ ∩ P ′.

Without loss of generality, we may assume that Hi ∩ H �= ∅ for each i = 0, . . . , s.
If not, say Hj ∩ H = ∅ for some 0 ≤ j ≤ s. Then either E ∩ H ∩ H+

j = ∅ and our
region is empty, or E ∩H ∩H+

j = E ∩H and H+
j is redundant and may be removed.

We now show that each half-space H+
i can be replaced with a different half-

space M+
i such that E ∩ H ∩ H+

i = E ∩ H ∩ M+
i and en+1 ∈ lin(M+

i). Without
loss of generality, consider H+

1 and the region E ∩H∩H+
1 . Let U = H∩H1. Then

U is an (n − 1)-dimensional affine space, say U = v + V for a linear space V of
dimension n− 1. Let W = V +span(en+1). Since en+1 /∈ lin(U), M1 := v +W is
a hyperplane in R

n+1 that divides H into the same two regions that H1 does. In
particular, upon choice of direction, we have that M+

1 has the desired properties.
We may now replace each H+

i with M+
i in this way.

By the requirement en+1 ∈ lin(M+
i), we have that each M+

i is defined by
a linear inequality with the coefficient of xn+1 equal to 0. Thus, the projection
projn(M+

i) is a half-space in R
n which we denote H̄+

i . Further, if each H+
i for

i = 0, . . . , s is replaced in this way, we have

projn(E ∩ H ∩s
i=0 H+

i) = projn(E ∩ H ∩s
i=0 M+

i) = projn(E ∩ H) ∩s
i=0 H̄+

i ,

and we have the desired polyhedron P ′ := ∩s
i=0H̄

+
i .

On the Mixed Binary Representability of Ellipsoidal Regions 225

It remains to show that projn(E ∩ H) is an ellipsoidal region E ′ ⊆ R
n. Let

H = {(x, y) ∈ R
n+1 | a�(x, y) = b}. Then there exists a linear transformation

from R
n+1 to itself, defined by the matrix A whose first n rows are the first n

standard unit vectors of Rn+1 and whose last row is a. Moreover, A is invertible
since en+1 is not in lin(H). Then, by construction of A, for any vector (x, y) ∈
R

n+1 we have A(x, y) = (x, c) for some c ∈ R. Furthermore, A(H) gets mapped
to the hyperplane {(x, y) ∈ R

n+1 | y = b}. Now, since A is invertible we have

x ∈ projn(E ∩ H) ⇔ ∃y ∈ R such that (x, y) ∈ E ∩ H

⇔ (x, b) ∈ A(E ∩ H)
⇔ (x, b) ∈ A(E).

This shows that projn(E ∩ H) = A(E)|y=b. Ellipsoidal regions are clearly pre-
served under invertible linear transformations, therefore A(E) is an ellipsoidal
region. Finally, by Lemma1, the set A(E)|y=b is an ellipsoidal region. This con-
cludes the proof that projn(E ∩ H) is an ellipsoidal region E ′. ��

References

1. Dantzig, G.B.: Discrete variable extremum problems. Oper. Res. 5, 266–277 (1957)
2. Del Pia, A., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in

NP. Manuscript (2014)
3. Glover, F.: New results on equivalent integer programming formulations. Math.

Prog. 8, 84–90 (1975)
4. Ibaraki, T.: Integer programming formulation of combinatorial optimization prob-

lems. Discrete Math. 16, 39–52 (1976)
5. Jeroslow, R.: Representations of unbounded optimizations as integer programs. J.

Optim. Theory Appl. 30, 339–351 (1980)
6. Jeroslow, R.G.: Representability in mixed integer programming, i: characterization

results. Discrete Appl. Math. 17, 223–243 (1987)
7. Jeroslow, R.G., Lowe, J.K.: Modelling with integer variables. Math. Prog. Study

22, 167–184 (1984)
8. Meyer, R.R.: Integer and mixed-integer programming models: general properties.

J. Optim. Theory Appl. 16(3/4), 191–206 (1975)
9. Meyer, R.R.: Mixed-integer minimization models for piecewise-linear functions of

a single variable. Discrete Math. 16, 163–171 (1976)
10. Meyer, R.R., Thakkar, M.V., Hallman, W.P.: Rational mixed integer and polyhe-

dral union minimization models. Math. Oper. Res. 5, 135–146 (1980)
11. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
12. Villaverde, K., Kosheleva, O., Ceberio, M.: Why ellipsoid constraints, ellipsoid clus-

ters, and Riemannian space-time: Dvoretzky’s theorem revisited. In: Ceberio, M.,
Kreinovich, V. (eds.) Constraint Programming and Decision Making. SCI, vol. 539,
pp. 203–207. Springer, Heidelberg (2014)

Constant Factor Approximation for ATSP
with Two Edge Weights

(Extended Abstract)

Ola Svensson1, Jakub Tarnawski1(B), and László A. Végh2

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
{ola.svensson,jakub.tarnawski}@epfl.ch
2 London School of Economics, London, UK

L.Vegh@lse.ac.uk

Abstract. We give a constant factor approximation algorithm for the
Asymmetric Traveling Salesman Problem on shortest path metrics of
directed graphs with two different edge weights. For the case of unit
edge weights, the first constant factor approximation was given recently
in [17]. This was accomplished by introducing an easier problem called
Local-Connectivity ATSP and showing that a good solution to this prob-
lem can be used to obtain a constant factor approximation for ATSP.
In this paper, we solve Local-Connectivity ATSP for two different edge
weights. The solution is based on a flow decomposition theorem for solu-
tions of the Held-Karp relaxation, which may be of independent interest.

1 Introduction

The traveling salesman problem — one of finding the shortest tour of n cities —
is one of the most classical optimization problems. Its definition dates back to
the 19th century and since then a large body of work has been devoted to design-
ing “good” algorithms using heuristics, mathematical programming techniques,
and approximation algorithms. The focus of this work is on approximation algo-
rithms. A natural and necessary assumption in this line of work that we also
make throughout this paper is that the distances satisfy the triangle inequality:
for any triple i, j, k of cities, we have d(i, j)+d(j, k) ≥ d(i, k) where d(·, ·) denotes
the pairwise distances between cities. In other words, it is not more expensive
to take the direct path compared to a path that makes a detour.

With this assumption, the approximability of TSP turns out to be a very deli-
cate question that has attracted significant research efforts. Specifically, one of the
first approximation algorithms (Christofides’ heuristic [6]) was designed for the
symmetric traveling salesman problem (STSP) where we assume symmetric dis-
tances (d(i, j) = d(j, i)); and, more recently, several works (see e.g. [1,3,8,9,17])

Please refer to the full version (http://arxiv.org/abs/1511.07038) for proofs and more
detailed explanations (with figures).
O. Svensson—Supported by ERC Starting Grant 335288-OptApprox.
L.A. Végh—Supported by EPSRC First Grant EP/M02797X/1.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 226–237, 2016.
DOI: 10.1007/978-3-319-33461-5 19

http://arxiv.org/abs/1511.07038

Constant Factor Approximation for ATSP with Two Edge Weights 227

have addressed the more general asymmetric traveling salesman problem (ATSP)
where we make no such assumption.

However, there are still large gaps in our understanding of both STSP and
ATSP. In fact, for STSP, the best approximation algorithm remains Christofides’
3/2-approximation algorithm from the 70’s [6]. For the harder ATSP, the
state of the art is a O(log n/ log log n)-approximation algorithm by Asadpour
et al. [3] and a recent O(poly log log n)-estimation algorithm1 by Anari and
Oveis Gharan [1]. On the negative side, the best inapproximability results only
say that STSP and ATSP are hard to approximate within factors 123/122 and
75/74, respectively [12]. Closing these gaps is a major open problem in the field
of approximation algorithms (see e.g. “Problem 1” and “Problem 2” in the list
of open problems in the recent book by Williamson and Shmoys [18]). What
is perhaps even more intriguing about these questions is that we expect that a
standard linear programming (LP) relaxation, often referred to as the Held-Karp
relaxation, already gives better guarantees. Indeed, it is conjectured to give a
guarantee of 4/3 for STSP and a guarantee of O(1) (or even 2) for ATSP.

An equivalent formulation of STSP and ATSP from a more graph-theoretic
point of view is the following. For STSP, we are given a weighted undirected
graph G = (V,E,w) where w : E → R+ and we wish to find a multisubset F
of edges of minimum total weight such that (V, F) is connected and Eulerian.
Recall that an undirected graph is Eulerian if every vertex has even degree. We
also remark that we use the term multisubset as the solution F may use the
same edge several times. An intuitive point of view on this definition is that
G represents a road network, and a solution is a tour that visits each vertex
at least once (and may use a single edge/road several times). The definition of
ATSP is similar, with the differences that the input graph is directed and the
output is Eulerian in the directed sense: the in-degree of each vertex equals its
out-degree. Having defined the traveling salesman problem in this way, there are
several natural special cases to consider. For example, what if G is planar? Or,
what if all the edges/roads have the same length, i.e., if G is unweighted?

For planar graphs, we have much better algorithms than in general. Grigni
et al. [11] first obtained a polynomial-time approximation scheme for STSP
restricted to unweighted planar graphs, which was later generalized to edge-
weighted planar graphs by Arora et al. [2]. More recently, ATSP on planar graphs
(and more generally bounded genus graphs) was shown to admit constant factor
approximation algorithms (first by Oveis Gharan and Saberi [9] and later by
Erickson and Sidiropoulos [7] who improved the dependency on the genus).

In contrast to planar graphs, STSP and ATSP remain APX-hard for
unweighted graphs (ones where all edges have identical weight) and, until
recently, there were no better algorithms for these cases. Then, in a recent series
of papers, the approximation guarantee of 3/2 was finally improved for STSP
restricted to unweighted graphs. Specifically, Gharan et al. [10] first gave an

1 An estimation algorithm is a polynomial-time algorithm for approximat-
ing/estimating the optimal value without necessarily finding a solution to the prob-
lem.

228 O. Svensson et al.

approximation guarantee of 1.5−ε; Mömke and Svensson [13] proposed a different
approach yielding a 1.461-approximation guarantee; Mucha [14] gave a tighter
analysis of this algorithm; and Sebő and Vygen [16] significantly developed the
approach to give the currently best approximation guarantee of 1.4. Similarly,
for ATSP, it was only very recently that the restriction to unweighted graphs
could be leveraged: the first constant approximation guarantee for unweighted
graphs was given by Svensson [17]. In this paper we make progress towards the
general problem by addressing the simplest case left unresolved by [17]: graphs
with two different edge weights.

Theorem 1.1. There is an O(1)-approximation algorithm for ATSP on graphs
with two different edge weights.

The paper [17] introduces an “easier” problem named Local-Connectivity
ATSP, where one needs to find an Eulerian multiset of edges crossing only sets
in a given partition rather than all possible sets (see next section for definitions).
It is shown that an “α-light” algorithm to this problem yields a (9 + ε)α-factor
approximation for ATSP. For unweighted graphs (and slightly more generally,
for node-induced weight functions2) it is fairly easy to obtain a 3-light algorithm
for Local-Connectivity ATSP; the difficult part in [17] is the black-box reduc-
tion of ATSP to this problem. Note that [17] easily gives an O(wmax/wmin)-
approximation algorithm in general if we take wmax and wmin to denote the
largest and smallest edge weight, respectively. However, obtaining a constant
factor approximation even for two different weights requires substantial further
work.

In Local-Connectivity ATSP we need a lower bound function lb : V →
R+ on the vertices. The natural choice for node-induced weights is lb(v) =∑

e∈δ+(v) w(e)x∗
e. With this weight function, every vertex is able to “pay” for

the incident edges in the Eulerian subgraph we are looking for. This choice of lb
does not seem to work for more general weight functions, and we need to define
lb more “globally”, using a new flow theorem for Eulerian graphs (Theorem 2.4).
In Sect. 1.2, after the preliminaries, we give a more detailed overview of these
techniques and the proof of the theorem. Our argument is somewhat technical,
but it demonstrates the potential of the Local-Connectivity ATSP problem as a
tool for attacking general ATSP.

Finally, let us remark that both STSP [4,15] and ATSP [5] have been studied
in the case when all distances are either 1 or 2. That restriction is very different
from our setting, as in those cases the input graph is complete. In particular, it is
trivial to get a 2-approximation algorithm there, whereas in our setting – where
the input graph is not complete – a constant factor approximation guarantee
already requires non-trivial algorithms.

2 For ATSP, we can think of a node-weighted graph as an edge-weighted graph where
the weight of an edge (u, v) equals the node weight of u.

Constant Factor Approximation for ATSP with Two Edge Weights 229

1.1 Notation and Preliminaries

We consider an edge-weighted directed graph G = (V,E,w) with w : E → R+.
For a vertex subset S ⊆ V we let δ+(S) = {(u, v) ∈ E : u ∈ S, v ∈ V \ S} and
δ−(S) = {(u, v) ∈ E : u ∈ V \S, v ∈ S} denote the sets of outgoing and incoming
edges, respectively. For a subset of edges E′ ⊆ E, we use δ+E′(S) = δ+(S) ∩ E′

and δ−
E′(S) = δ−(S) ∩ E′. We also let C(E′) = (G̃1, . . . , G̃k) denote the set of

weakly connected components of the graph (V,E′); the vertex set V will always
be clear from the context. For a directed graph G̃ we use V (G̃) to denote its
vertex set and E(G̃) the edge set. For brevity, we denote the singleton set {v}
by v (e.g. δ+(v) = δ+({v})), and we use the notation x(F) =

∑
e∈F xe for a

subset F ⊆ E of edges. For the case of two edge weights, we use 0 ≤ w0 < w1 to
denote the two possible values, and partition E = E0 ∪ E1 so that w(e) = w0 if
e ∈ E0 and w(e) = w1 if e ∈ E1. We will refer to edges in E0 and E1 as cheap
and expensive edges, respectively.

We define ATSP as the problem of finding a connected Eulerian subgraph
of minimum weight. As already mentioned in the introduction, this definition is
equivalent to that of visiting each city exactly once (in the metric completion)
since we assume the triangle inequality. The formal definition is as follows.

ATSP

Given: An edge-weighted (strongly connected) digraph G = (V,E,w).
Find: A multisubset F of E of minimum total weight w(F) =

∑
e∈F w(e)

such that (V, F) is Eulerian and connected.

Held-Karp Relaxation. The Held-Karp relaxation has a variable xe ≥ 0 for every
edge in G. The intended meaning is that xe should equal the number of times e
is used in the solution. The relaxation LP(G) is defined as follows:

minimize
∑

e∈E

w(e)xe

subject to x(δ+(v)) = x(δ−(v)) v ∈ V,

x(δ+(S)) ≥ 1 ∅
= S � V,

x ≥ 0.

(LP(G))

The first set of constraints says that the in-degree should equal the out-degree for
each vertex, i.e., the solution should be Eulerian. The second set of constraints
enforces that the solution is connected; they are sometimes referred to as subtour
elimination constraints. Finally, we remark that although the Held-Karp relax-
ation has exponentially many constraints, it is well-known that we can solve it
in polynomial time either by using the ellipsoid method with a separation oracle
or by formulating an equivalent compact (polynomial-size) linear program. We

230 O. Svensson et al.

will use x∗ to denote an optimal solution to LP(G) of value OPT, which is a
lower bound on the value of an optimal solution to ATSP on G.

Local-Connectivity ATSP. The Local-Connectivity ATSP problem can be seen
as a two-stage procedure. In the first stage, the input is an edge-weighted digraph
G = (V,E,w) and the output is a “lower bound” function lb : V → R+ on the
vertices such that lb(V) ≤ OPT. In the second stage, the input is a partition of
the vertices, and the output is an Eulerian multisubset of edges which crosses
each set in the partition and where the ratio of weight to lb of every connected
component is as small as possible. We now give the formal description of the
second stage, assuming the lb function is already computed.

Local-Connectivity ATSP

Given: An edge-weighted digraph G = (V,E,w), a function lb : V → R+

with lb(V) ≤ OPT, and a partitioning V = V1 ∪ V2 ∪ . . . ∪ Vk of the
vertices.

Find: A Eulerian multisubset F of E such that

|δ+F (Vi)| ≥ 1 for i = 1, 2, . . . , k and max
G̃∈C(F)

w(G̃)
lb(G̃)

is minimized.

Here we used the notation that for a connected component G̃ of (V, F),
w(G̃) =

∑
e∈E(G̃) w(e) (summation over the edges) and lb(G̃) =

∑
v∈V (G̃) lb(v)

(summation over the vertices). We say that an algorithm for Local-Connectivity
ATSP is α-light on G if it is guaranteed, for any partition, to find a solution F
such that for every component G̃ ∈ C(F), w(G̃)/lb(G̃) ≤ α.

In [17], lb is defined as lb(v) =
∑

e∈δ+(v) w(e)x∗
e; note that lb(V) = OPT

in this case. We remark that we use the “α-light” terminology to avoid any
ambiguities with the concept of approximation algorithms (an α-light algorithm
does not compare its solution to an optimal solution to the given instance of
Local-Connectivity ATSP).

Perhaps the main difficulty of ATSP is to satisfy the connectivity require-
ment, i.e., to select an Eulerian subset F of edges which connects the whole
graph. Local-Connectivity ATSP relaxes this condition – we only need to find
an Eulerian set F that crosses the k cuts defined by the partition. This makes
it intuitively an “easier” problem than ATSP. Indeed, an α-approximation algo-
rithm for ATSP (with respect to the Held-Karp relaxation) is trivially an α-
light algorithm for Local-Connectivity ATSP for an arbitrary lb function with
lb(V) = OPT : just return the same Eulerian subset F as the algorithm for
ATSP; since the set F connects the graph, we have maxG̃∈C(F) w(G̃)/ lb(G̃) =
w(F)/ lb(V) ≤ α. Perhaps more surprisingly, the main technical theorem of [17]
shows that the two problems are equivalent up to small constant factors.

Constant Factor Approximation for ATSP with Two Edge Weights 231

Theorem 1.2 [17]. Let A be an algorithm for Local-Connectivity ATSP. Con-
sider an ATSP instance G = (V,E,w), and let OPT denote the optimum value
of the Held-Karp relaxation. If A is α-light on G, then there exists a tour of G
with value at most 5α OPT. Moreover, for any ε > 0, a tour of value at most
(9+ε)α OPT can be found in time polynomial in the number n = |V | of vertices,
in 1/ε, and in the running time of A.

In other words, the above theorem says that in order to approximate an ATSP
instance G, it is sufficient to devise a polynomial-time algorithm to calculate a
lower bound lb and a polynomial time algorithm for Local-Connectivity ATSP
that is O(1)-light on G with respect to this lb function. Our main result is proved
using this framework.

1.2 Technical Overview

Singleton partition. Let us start by outlining the fundamental ideas of our
algorithm and comparing it to [17] for the special case of Local-Connectivity
ATSP when all partition classes Vi are singletons. For unit weights, the choice
lb(v) =

∑
e∈δ+(v) w(e)x�

e = x�(δ+(v)) in [17] is a natural one: intuitively,
every node is able to pay for its outgoing edges. We can thus immediately
give an algorithm for this case: just select an arbitrary integral solution z to
the circulation problem with node capacities 1 ≤ z(δ+(v)) ≤ �x�(δ+(v))�.
Then for any v we have z(δ+(v)) ≤ x�(δ+(v)) + 1 ≤ 2x�(δ+(v)) and hence∑

e∈δ+(v) w(e)ze ≤ 2 lb(v), showing that z is a 2-light solution.
The same choice of lb does not seem to work in the presence of two differ-

ent edge costs. Consider a case when every expensive edge carries only a small
fractional amount of flow. Then

∑
e∈δ+(v) w(e)x�

e can be much smaller than the
expensive edge cost w1, and thus the vertex v would not be able to “afford”
even a single outgoing expensive edge. To resolve this problem, we bundle small
fractional amounts of expensive flow, channelling them to reach a small set of
terminals. This is achieved via Theorem 2.4, a flow result which might be of
independent interest. It shows that within the fractional Held-Karp solution
x�, we can send the flow from an arbitrary edge set E′ to a sink set T with
|T | ≤ 8x�(E′); in fact, T can be any set minimal for inclusion such that it can
receive the total flow from E′. We apply this theorem for E′ = E1, the set of
expensive edges; let f be the flow from E1 to T , and call elements of T termi-
nals. Now, whenever an expensive edge is used, we will “force” it to follow f to
a terminal in T , where it can be paid for. Enforcement is technically done by
splitting the vertices into two copies, one carrying the f flow and the other the
rest. Thus we obtain the split graph Gsp and split fractional optimal solution x�

sp.
The design of the split graph is such that every walk in it which starts with

an expensive edge must proceed through cheap edges until it reaches a termi-
nal before visiting another expensive edge. In our terminology, expensive edges
create “debt”, which must be paid off at a terminal. Starting from an expensive
edge, the debt must be carried until a terminal is reached, and no further debt

232 O. Svensson et al.

can be taken in the meantime. The bound on the number of terminals guar-
antees that we can assign a lower bound function lb with lb(V) ≤ OPT such
that (up to a constant factor) cheap edges are paid for locally, at their heads,
whereas expensive edges are paid for at the terminals they are routed to. Such
a splitting easily solves Local-Connectivity ATSP for the singleton partition:
find an arbitrary integral circulation zsp in the split graph with an upper bound
zsp(δ+(v)) ≤ �2x�

sp(δ
+(v))� on every node, and a lower bound 1 on whichever

copy of v transmits more flow. Note that 2x�
sp is a feasible fractional solution to

this problem. We map zsp back to an integral circulation z in the original graph
by merging the split nodes, thus obtaining a constant-light solution.

Arbitrary partitions. Let us now turn to the general case of Local-Connectivity
ATSP, where the input is an arbitrary partition V = V1 ∪ . . . ∪ Vk. For unit
weights this is solved in [17] via an integer circulation problem on a modified
graph. Namely, an auxiliary node Ai is added to represent each partition class
Vi, and one unit of in- and outgoing flow from Vi is rerouted through Ai. In the
circulation problem, we require exactly one in- and one outgoing edge incident to
Ai to be selected. When we map the solution back to the original graph, there
will be one incoming and one outgoing arc from every set Vi (thus satisfying
the connectivity requirement) whose endpoints inside Vi violate the Eulerian
condition. In [17] every Vi is assumed to be strongly connected, and therefore we
can “patch up” the circulation by connecting the loose endpoints by an arbitrary
path inside Vi. This argument easily gives a 3-light solution.

Let us observe that the strong connectivity assumption is in fact not needed
for the result in [17]. Indeed, given a component Vi which is not strongly con-
nected, consider its decomposition into strongly connected (sub)components,
and pick a Ui ⊆ Vi which is a sink (i.e. it has no edges outgoing to Vi \ Ui).
We proceed by rerouting 1 unit of flow through a new auxiliary vertex just as
in that algorithm, but we do this for Ui instead. This guarantees that Ui has at
least one outgoing edge in our solution, and that edge must leave Vi as well.

We now turn to our result for two different edge weights. We are aiming for a
similar construction as in the unit-weight case: based on the split graph Gsp, we
construct an integer circulation problem with an auxiliary vertex Ai representing
a certain subset Ui ⊆ Vi for every 1 ≤ i ≤ k. We then map its solution back
to the original graph and patch up the loose endpoints inside every Ui by a
path. However, we have to account for the following difficulties: (i) an edge
leaving Ui should also leave Vi; (ii) debt should not disappear inside Ui: if the
edge entering it carries debt but the edge leaving does not, we must make sure
this difference can be charged to a terminal in Ui; (iii) the path used inside Ui

must pay for all expensive edges it uses. All three issues can be appropriately
tackled by defining an auxiliary graph inside Vi. Edges of the auxiliary graph
represent paths containing one expensive edge and one terminal (which can pay
for themselves); however, these paths may not map to paths in the split graph.
We select the subset Ui ⊆ Vi as a sink component in the auxiliary graph.

Constant Factor Approximation for ATSP with Two Edge Weights 233

2 Algorithm for Local-Connectivity ATSP

We prove our main result in this section. Our claim for ATSP follows from solving
Local-Connectivity ATSP:

Theorem 2.1. There is a polynomial-time 100-light algorithm for Local-
Connectivity ATSP on graphs with two edge weights.

Together with Theorem 1.2, this implies our main result:

Theorem 2.2. For any graph with two edge weights, the integrality gap of its
Held-Karp relaxation is at most 500. Moreover, we can find an 901-approximate
tour in polynomial time.

The factor 500 comes from 5 ·100, and 901 is selected so that (9+ ε) ·100 ≤ 901.
Our proof of Theorem 2.1 proceeds as outlined in Sect. 1.2. In this extended
abstract, we only describe the construction; the proof is given in the full version.

Recall that the edges are partitioned into the set E0 of cheap edges and the
set E1 of expensive edges. Set x� to be an optimal solution to the Held-Karp
relaxation. We start by noting that the problem is easy if x� assigns very small
total fractional value to expensive edges. In that case, we can easily reduce the
problem to the unweighted case which was solved in [17].

Lemma 2.3. There is a polynomial-time 6-light algorithm for Local-
Connectivity ATSP for graphs where x�(E1) < 1.

For the rest of this section, we thus assume x�(E1) ≥ 1. Our objective is to
define a function lb : V → R+ such that lb(V) ≤ OPT = w(x�) and then show
how to, given a partition V = V1 ∪ ...∪Vk, find an Eulerian set of edges F which
crosses all Vi-cuts and is O(1)-light with respect to the defined lb function.

2.1 Calculating lb and Constructing the Split Graph

Finding terminals T and flow f. For this, we use the following flow result.

Theorem 2.4. Let D = (V ∪ {s}, E) be a directed graph, c : E → R+ – a
nonnegative capacity vector, and s – a source node with no incoming edges, i.e.,
δ−(s) = ∅. Assume that for all ∅
= S ⊆ V we have

c(δ−(S)) ≥ max{1, c(δ+(S))}. (1)

Consider a set T ⊆ V such that there exists a flow f ≤ c of value c(δ+(s)) from
the source s to the sink set T , and T is minimal subject to this property. Then
|T | ≤ 8c(δ+(s)).

Corollary 2.5. There exist a vertex set T ⊆ V and a flow f : E → R+ from
source set {tail(e) : e ∈ E1} to sink set T of value x�(E1) such that: (a) |T | ≤
8x�(E1), (b) f ≤ x�, (c) f saturates all expensive edges, i.e., f(e) = x�

e for all
e ∈ E1, (d) for each t ∈ T , f(E0 ∩ δ+(t)) = 0 and f(δ−(t)) > 0. Moreover, T
and f can be computed in polynomial time.

234 O. Svensson et al.

Definition of lb. We set lb : V → R+ to be a scaled-down variant of lb : V → R+

which is defined as follows:

lb(v) :=

{
w0 · x�(δ−(v)) if v /∈ T,

w0 · x�(δ−(v)) + w1 · �f(δ−(t))� if v ∈ T.

The definition of lb is now simply lb(v) = lb(v)/10. The scaling-down is done so
as to satisfy lb(V) ≤ OPT (see Lemma 2.6). Clearly we have lb(v) ≥ w0 for all
v ∈ V and lb(t) ≥ w1 + w0 ≥ w1 for terminals t ∈ T .

The intuition behind this setting of lb is that we want to pay for each expen-
sive edge e ∈ E1 in the terminal t ∈ T which the flow f “assigns” to e. Indeed, in
the split graph we will reroute flow (using f) so as to ensure that any path which
traverses e must then visit such a terminal t to offset the cost of the expensive
edge.

Lemma 2.6. lb(V) ≤ 10 · OPT .

Construction of the split graph. The next step is to reroute flow so as to ensure
that all expensive edges are “paid for” by the lb at terminals. To this end, we
define a new split graph and a split circulation on it.

Definition 2.7. The split graph Gsp is defined as follows. For every v ∈ V we
create two copies v0 and v1 in V (Gsp). For every cheap edge (u, v) ∈ E0:

– if x�(u, v) − f(u, v) > 0, create an edge (u0, v0) in E(Gsp) with x�
sp(u, v) =

x�(u, v) − f(u, v),
– if f(u, v) > 0, create an edge (u1, v1) in E(Gsp) with x�

sp(u, v) = f(u, v).

For every expensive edge (u, v) ∈ E1 we create one edge (u0, v1) in E(Gsp) with
x�
sp(u, v) = f(u, v). Finally, for each t ∈ T we create an edge (t1, t0) in E(Gsp)

with x�
sp(t

1, t0) = f(δ−(t)).
The new edges are weighted as follows: images of edges in E0 have weight

w0, the images of edges in E1 have weight w1, and the new edges (t1, t0) have
weight 0. Let us denote the new weight function by wsp.

Vertices v0 will be called free vertices and vertices v1 will be called debt
vertices. Edges entering a free vertex will be called free edges, and those entering
a debt vertex will be called debt edges.

By construction we have that (a) x�
sp is a circulation on Gsp, (b) (the image of)

every cut is still crossed by at least 1 unit of x�
sp, and (c) any path in Gsp which

begins with a debt edge and ends with a free edge must go through a terminal.

2.2 Solving Local-Connectivity ATSP

Now our algorithm is given a partition V = V1∪...∪Vk. The objective is to output
a set of edges F which crosses all Vi-cuts and is O(1)-light with respect to our
lb function. We do so by first defining auxiliary graphs that help us modify the
split graph so as to force our solution to cross the cuts defined by the partition.
We then use such a flow to define the set F of edges.

Constant Factor Approximation for ATSP with Two Edge Weights 235

Construction of auxiliary graphs and modification of split graph. Our first step is
to construct an auxiliary graph for each component Vi. The strong-connectivity
structure of this graph will guide our algorithm.

Definition 2.8. The auxiliary graph Gaux
i is a graph with vertex set Vi and the

following edge set: for u, v ∈ Vi, (u, v) ∈ E(Gaux
i) if any of the following three

conditions is satisfied:

– there is a cheap edge (u, v) ∈ E0 ∩ G[Vi] inside Vi, or
– there is a u-v-path in G[Vi] whose first edge is expensive and all other edges

are cheap, and v ∈ T is a terminal – we then call the edge (u, v) ∈ E(Gaux
i)

a postpaid edge – or
– there is a u-v-path in G[Vi] whose last edge is expensive and all other edges

are cheap, and u ∈ T is a terminal – we then call the edge (u, v) ∈ E(Gaux
i)

a prepaid edge.

Define the preimage of such an edge (u, v) ∈ E(Gaux
i) to be the shortest path

inside Vi as above (in the first case, a single edge).

Now, for each i consider a decomposition of Gaux
i into strongly connected

components. Let Ui ⊆ Vi be the vertex set of a sink component in this decom-
position. That is, there is no edge from Ui to Vi \ Ui in the auxiliary graph
Gaux

i . Note that Gaux
i is constructed based only on the original graph G and not

the split graph Gsp. However, we will solve Local-Connectivity ATSP by solving
an integral circulation problem on G′

sp: a modification of the split graph Gsp,
described as follows.

For each i, define U sp
i = {v0, v1 : v ∈ Ui} ⊆ V (Gsp) to be the set of vertices

in the split graph corresponding to Ui. (Note that U sp
i may not be strongly

connected in Gsp.) We are going to reroute part of the x�
sp flow going in and out

of U sp
i to a new auxiliary vertex Ai. While the 3-light algorithm for unit-weight

graphs rerouted flow from all boundary edges of a component Ui (see Sect. 1.2),
here we will be more careful and choose only a subset of boundary edges of U sp

i

to be rerouted.
To this end, select a subset of edges X−

i ⊆ δ−(U sp
i) with x�

sp(X
−
i) = 1/2

such that either all edges in X−
i are debt edges, or all are free edges.

We define the set of outgoing edges X+
i ⊆ δ+(U sp

i) to be, intuitively, the
edges over which the flow that entered U sp

i by X−
i exits U sp

i . That is, consider an
arbitrary cycle decomposition of the circulation x�

sp, and look at the set of cycles
containing the edges in X−

i . We define X+
i as the set of edges on these cycles

that first leave U sp
i after entering U sp

i on an edge in X−
i ; clearly, x�

sp(X
+
i) = 1/2.

Let gi denote the flow on these cycles connecting the heads of edges in X−
i and

the tails of edges in X+
i . We will use the following claim later in the construction.

Fact 2.9. Assume all edges in X−
i are debt edges but e ∈ X+

i is a free edge or
an expensive edge. Then there exists a path in Gsp[Ui] between a vertex t0 (for
some terminal t ∈ T) and the tail of e, made up of only cheap edges.

236 O. Svensson et al.

We now transform Gsp into a new graph G′
sp and x�

sp into new circulation x′
sp

as follows. For every set Vi in the partition we introduce a new auxiliary vertex
Ai and redirect all edges in X−

i to point to Ai and those in X+
i to point from

Ai. We further subtract the flow gi inside U sp
i ; hence the resulting vector x′

sp

will be a circulation, with x′
sp(δ

−(Ai)) = 1/2. If X−
i is a set of free edges, then

we will say that Ai is a free vertex, otherwise we say that it is a debt vertex.

Transforming x′
sp into an integral flow and obtaining our solution F . In the next

step we round x′
sp to integrality while respecting degrees of vertices:

Lemma 2.10. There exists an integral circulation y′
sp on G′

sp satisfying the
following conditions: (a) y′

sp(δ
−(v)) ≤ �2x�

sp(δ
−(v))� for each v ∈ V (Gsp),

(b) y′
sp(δ

−(Ai)) = 1 for each i. Such a circulation y′
sp can be found in poly-

nomial time.

We will now transform y′
sp into an Eulerian set of edges F in the original

graph G. We can think of this as a three-stage process.
First, we map all edges adjacent to the auxiliary vertices Ai back to their

preimages in Gsp, obtaining from y′
sp an integral pseudo-flow ysp in Gsp. (We use

the term pseudo-flow as now, some vertices may not satisfy flow conservation.)
Second, we contract the two copies v0 and v1 of every vertex v ∈ V , thus

mapping all edges back to their preimages in G. (We remove all edges (t1, t0) for
t ∈ T .) This creates an integral pseudo-flow y in G.

Since the in- and out-degree of Ai were exactly 1 in y′
sp, now (in y) in each

component Ui there is a pair of vertices ui, vi which are the head and tail,
respectively, of the mapped-back edges adjacent to Ai. These are the only vertices
where flow conservation in y can be violated. As the third step, to repair this, we
route a walk Pi from ui to vi. Our Eulerian set of edges F ⊆ E which we finally
return is the integral pseudo-flow y plus the union (over i) of all such walks Pi,
i.e., 1F = y +

∑
i 1Pi

.
It remains to describe how we route these paths. Fix i. Recall that Ui is

strongly connected in Gaux
i . We distinguish two cases:

– If Ai is a free vertex or the edge exiting Ai in y′
sp (in G′

sp) is a debt edge, then
select a shortest ui-vi-path in Gaux

i , map each edge of this path to its preimage
path (see Definition 2.8) and concatenate them to obtain a ui-vi-walk Pi in
Vi.

– If Ai is a debt vertex but the edge exiting Ai in y′
sp (in G′

sp) is a free edge,
then by Fact 2.9 there is a terminal t inside Ui, with a path from t to vi using
only cheap edges. Proceed as above to obtain a ui-t-walk and then append
this cheap t-vi-path to it, obtaining a ui-vi-walk Pi in Vi.

This concludes the description of the algorithm. In the full version of the
paper we prove that the returned Eulerian set of edges F has the properties we
desire, i.e.,

Lemma 2.11. For every connected component G̃ of (V, F) we have w(G̃) ≤
10 · lb(G̃).

Constant Factor Approximation for ATSP with Two Edge Weights 237

Lemma 2.12. For every component Vi we have |δ+F (Vi)| ≥ 1.

Lemmas 2.6 and 2.11 together prove that our algorithm is 100-light with
respect to lb.

References

1. Anari, N., Gharan, S.O.: Effective-resistance-reducing flows and asymmetric TSP.
CoRR, abs/1411.4613 (2014)

2. Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time
approximation scheme for weighted planar graph TSP. In: Proceedings of SODA,
vol. 98, pp. 33–41 (1998)

3. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(log n/
log log n)-approximation algorithm for the asymmetric traveling salesman problem.
In: Proceedings of SODA, pp. 379–389 (2010)

4. Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1, 2)-TSP. In: Pro-
ceedings of SODA, pp. 641–648 (2006)

5. Bläser, M.: A 3/4-approximation algorithm for maximum ATSP with weights zero
and one. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004
and APPROX 2004. LNCS, vol. 3122, pp. 61–71. Springer, Heidelberg (2004)

6. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, DTIC Document (1976)

7. Erickson, J., Sidiropoulos, A.: A near-optimal approximation algorithm for asym-
metric TSP on embedded graphs. In: Proceedings of SOCG, p. 130 (2014)

8. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12(1), 23–39
(1982)

9. Gharan, S.O., Saberi, A.: The asymmetric traveling salesman problem on graphs
with bounded genus. In: Proceedings of SODA, pp. 967–975. SIAM (2011)

10. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the
traveling salesman problem. In: Proceedings of FOCS, pp. 550–559 (2011)

11. Grigni, M., Koutsoupias, E., Papadimitriou, C.H.: An approximation scheme for
planar graph TSP. In: Proceedings of FOCS, pp. 640–645 (1995)

12. Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for TSP.
J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)

13. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: 2011
Proceedings of FOCS, pp. 560–569 (2011)

14. Mucha, M.: 13/9-approximation for graphic TSP. In: Proceedings of STACS, pp.
30–41 (2012)

15. Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with dis-
tances one and two. Math. Oper. Res. 18(1), 1–11 (1993)

16. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the
graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica 34(5), 597–629 (2014)

17. Svensson, O.: Approximating ATSP by relaxing connectivity. In: Proceedings of
FOCS (2015)

18. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, New York (2011)

Improved Approximation Algorithms
for Hitting 3-Vertex Paths

Samuel Fiorini1, Gwenaël Joret2(B), and Oliver Schaudt3

1 Département de Mathématique, Université libre de Bruxelles, Brussels, Belgium
sfiorini@ulb.ac.be

2 Département d’Informatique, Université libre de Bruxelles, Brussels, Belgium
gjoret@ulb.ac.be

3 Institut für Informatik, Universität zu Köln, Köln, Germany
schaudto@uni-koeln.de

Abstract. We study the problem of deleting a minimum cost set of ver-
tices from a given vertex-weighted graph in such a way that the result-
ing graph has no induced path on three vertices. This problem is often
called cluster vertex deletion in the literature and admits a straightfor-
ward 3-approximation algorithm since it is a special case of the vertex
cover problem on a 3-uniform hypergraph. Very recently, You et al. [14]
described an efficient 5/2-approximation algorithm for the unweighted
version of the problem. Our main result is a 7/3-approximation algo-
rithm for arbitrary weights, using the local ratio technique. We further
conjecture that the problem admits a 2-approximation algorithm and
give some support for the conjecture. This is in sharp constrast with the
fact that the similar problem of deleting vertices to eliminate all triangles
in a graph is known to be UGC-hard to approximate to within a ratio
better than 3, as proved by Guruswami and Lee [7].

1 Introduction

Given a graph1 G and cost function c : V (G) → R+, the cluster vertex deletion
problem (Cluster-VD) is to find a minimum cost set X of vertices such that
each component of G − X is a complete graph. Equivalently, X ⊆ V (G) is a
feasible solution if and only if G − X contains no induced subgraph isomorphic
to P3, the path on three vertices.

It should be clear that the problem has a 3-approximation algorithm: Assum-
ing unit costs for simplicity, build any inclusionwise maximal collection C of
vertex-disjoint induced P3’s in G and include in X every vertex covered by some
member of C. If C contains k subgraphs then we get a lower bound of k on the
optimum. On the other hand, the cost of X is 3k.

We acknowledge support from ERC grant FOREFRONT (grant agreement no.
615640) funded by the European Research Council under the EU’s 7th Frame-
work Programme (FP7/2007-2013), and ARC grant AUWB-2012-12/17-ULB2
COPHYMA funded by the French community of Belgium.

1 Graphs in this paper are finite, simple, and undirected.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 238–249, 2016.
DOI: 10.1007/978-3-319-33461-5 20

Improved Approximation Algorithms for Hitting 3-Vertex Paths 239

The problem admits an approximation-preserving reduction from Vertex
Cover: if H is any given graph, let G denote the graph obtained from H by
adding a pendent edge to every vertex. Then solving Vertex Cover on H
is equivalent to solving Cluster-VD on G. Hence, known hardness and inap-
proximability results for Vertex Cover apply to Cluster-VD as well, and in
particular it is UGC-hard to approximate Cluster-VD within any ratio better
than 2. We show that we can however come close to 2.

Theorem 1. Cluster-VD admits a 7/3-approximation algorithm.

We further conjecture that Cluster-VD can be 2-approximated in polyno-
mial time, as is the case for Vertex Cover. We give some support for this
conjecture in Sect. 6, where we report on a 2-approximation algorithm for the
case where the input graph does not contain a diamond (K4 minus an edge) as
an induced subgraph.

In contrast, the problem of finding a minimum cost set of vertices X such
that G − X has no triangle is known to be UGC-hard to approximate to within
any ratio better than 3, as proved by Guruswami and Lee [7] (see also [8] for
related inapproximability results).

Previous Work. Cluster-VD was previously mostly studied in terms of fixed
parameter algorithms. Hüffner et al. [9] first gave a O(2kk9 + nm)-time fixed-
parameter algorithm, parameterized by the solution size k, where n and m
denote the number of vertices and edges of the graph, respectively. This was
subsequently improved by Boral et al. [3], who gave a O(1.9102k(n + m))-time
algorithm. See also Iwata and Oka [10] for related results in the fixed parameter
setting.

As for approximation algorithms, nothing better than a 3-approximation
was known until the very recent work of You et al. [14], who showed that
the unweighted version of Cluster-VD admits a 5/2-approximation algorithm.
They further showed that their algorithm could be implemented efficiently, in
O(nm + n2)-time, using fast modular decomposition.

We note that the work of You et al. [14] and ours have been done indepen-
dently. While we obtained a better approximation ratio of 7/3, let us remark
that the running time of our algorithm is much larger (though still polynomial).
We leave it as an open question whether it could be brought down to a small
polynomial using the techniques from [14].

Incidentally, there was recent activity on another restriction of the vertex
cover problem on 3-uniform hypergraph, namely, the feedback vertex set problem
in tournaments. For that problem, the 5/2-approximation algorithm by Cai et
al. [4] was the best known for many years, until the very recent work of Mnich
et al. [12] who found a 7/3-approximation algorithm for the problem.

Our Approach. Our approximation algorithm is based on the local ratio tech-
nique. In order to illustrate the general approach, let us give a very simple
2-approximation algorithm for hitting all P3-subgraphs (instead of induced sub-
graphs) in a given weighted graph (G, c), see Algorithm 1 below.

240 S. Fiorini et al.

Algorithm 1. Hitting-P3-subgraphs-apx(G, c)
Require: (G, c) a weighted graph
Ensure: X an inclusionwise minimal set of vertices hitting all the P3 subgraphs

if G has no P3 subgraph then
X ← ∅

else if (G, c) has some zero-cost vertex u then
X ′ ← Hitting-P3-subgraphs-apx(G − u, c restricted to V (G − u))
X ← X ′ if G − X ′ has no P3 subgraph; X ← X ′ ∪ {u} otherwise

else
u ← vertex of degree d(u) � 2, and let (H, cH) be the weighted star centered

at u with V (H) := N(u) ∪ {u}, cH(u) := d(u) − 1 and cH(v) := 1 for v ∈ N(u)
λ∗ ← maximum scalar λ s.t. c(v) − λcH(v) � 0 for all v ∈ V (H)
X ← Hitting-P3-subgraphs-apx(G, c − λ∗cH)

end if
return X

It can be easily verified that the set X returned by Algorithm 1 is an
inclusionwise minimal feasible solution. The reason why the algorithm is a
2-approximation is that optimum cost for the weighted star (H, cH) is d(u) − 1
while the solution X returned by the algorithm misses at least one of the vertices
of the star, and thus has a local cost of at most 2(d(u) − 1).

We remark that a 2-approximation algorithm for the problem of hitting
P3-subgraphs can also be obtained via a straightforward modification of the
primal/dual 2-approximation algorithm of Chudak et al. [5] for the feedback ver-
tex set problem. (Indeed, this is exactly what was done by Tu and Zhou [13]).
However, the resulting algorithm is nowhere near as simple as Algorithm 1.

It is perhaps worth pointing out that, in the case of triangle-free graphs,
hitting P3’s or induced P3’s are the same problem. This was actually an impor-
tant insight for the 5/2-approximation algorithm of You et al. [14]. However, for
arbitrary graphs the induced version of the problem seems much more difficult.
Nevertheless, we are tempted to take the simplicity of Algorithm 1 as a hint that
the local ratio technique is a good approach to attack the problem.

From a high level point of view, the structure of our 7/3-approximation
algorithm for Cluster-VD is as follows: As long as there is an induced P3 in
the graph, either we can apply a reduction operation (identifying true twins)
that does not change the optimum, or we find some special induced subgraph
H and decrease the weights of its vertices in (G, c) proportionally to a carefully
chosen weighting cH for the vertices of H, ensuring a local ratio of 7/3. (We
remark that cH depends on H only and is thus independent of the weights of
vertices in G, similarly as in Algorithm 1). The crux of our proof is showing
that, if no reduction can be applied, then the aforementioned special induced
subgraph always exists. The list of induced subgraphs that we look for is given
in Fig. 1. Every graph on the list has at most 7 vertices, and thus we can test
their existence in O(n7)-time.

Improved Approximation Algorithms for Hitting 3-Vertex Paths 241

2 Definitions and Preliminaries

Let G be a graph. Recall that the feasible solutions to Cluster-VD in G are
the sets of vertices X that intersect every induced subgraph isomorphic to P3.
For this reason, we call such sets X hitting sets of G. We denote by OPT(G)
the minimum size of a hitting set of G. The definitions extend naturally in the
weighted setting: Given a weighted graph (G, c), where c : V (G) → R+, we let
OPT(G, c) denote the minimum weight of a hitting set of G. As expected, the
cost of set X ⊆ V (G) is defined as c(X) :=

∑
v∈X c(v).

For X ⊆ V (G), the subgraph of G induced by X is denoted by G[X]. When
H is an induced subgraph of G or isomorphic to an induced subgraph of G, we
sometimes say that G contains H. If G does not contain H, we also say that G
is H-free.

For v ∈ V (G), the neighborhood of v is denoted by N(v). From time to time,
to indicate that x is a neighbor of y, we simply say that x sees y.

In a few occasions in the paper we resort to trigraphs, which are graphs with
a set of special edges called the undecided edges (in figures, these are typically
represented by wiggly edges). A trigraph is an efficient way to represent several
graphs, its instantiations. These are the corresponding graphs in which each
undecided edge may become an edge or not. Much of the terminology we use
for graphs can be extended to trigraphs in a natural way. In particular, we say
that graph G contains trigraph H or that H is an induced subtrigraph of G if
G contains some instantiation of H.

3 Tools

3.1 α-Good Induced Subgraphs

Given a graph G, an induced subgraph H of G, and a weighting cH : V (G) → R+,
we say that (H, cH) is α−good inG if for every inclusionwise minimal hitting set
X of G we have ∑

v∈X∩V (H)

cH(v) � α · OPT(H, cH). (1)

Moreover, we say that an induced subgraph H of G is itself α-good in G if there
exists a weighting cH such that (H, cH) is α-good. The first technical tool of our
7/3-approximation algorithm is the following lemma, which provides a list of α-
good induced subgraphs where α � 7/3 along with their corresponding weights,
see Fig. 1. Due to length restrictions, the proof of the lemma is omitted.

Lemma 1. Let G be a graph and H be an induced subgraph of G. Then H is
7/3-good in G whenever

(i) H is isomorphic to C4, W5, K1,4, the dart, the turtle, H1 or H2;
(ii) H is isomorphic to an instantiation of H3, H4 or H5;
(iii) H is isomorphic to P3, K1,3, the gem or the bull, and there exists some

vertex of H that has no neighbor in G − V (H).

242 S. Fiorini et al.

1 1

11

(a) C4

1

1

1

1 1

1

(b) W5

3

1 1 1 1

(c) K1,4

1

1

1

2 2

(d) Dart

1

2

1

1

1

1

(e) Turtle

1

1

1

1 1

11

(f) H1

1 1

11

1

1

1

(g) H2

1

1

1

1 1

1

1

(h) H3

1

1

1

1 1

1

1

(i) H4

1

1

1

1 1

1 1

(j) H5

11 1

(k) P3

2

1 1 1

(l) K1,3 (claw)

1

1

1

1 1

(m) Gem

1

11

11

(n) Bull

Fig. 1. The 7/3-good induced sub(tri)graphs of Lemma 1. For each corresponding
induced subgraph H, a weighting cH witnessing 7/3-goodness is shown.

Let us emphasize that in point three of the above lemma, the vertex of H
having no neighbor in G−V (H) is arbitrary, that is, it can be any vertex of H. For
any graph G, let H(G) denote the collection of all weighted induced subgraphs
(H, cH) that are isomorphic to a weighted graph from Fig. 1 (the trigraph H3

has 16 corresponding graphs). By Lemma 1, every (H, cH) ∈ H(G) is 7/3-good
in G. Notice that H(G) contains at most 45 isomorphism classes of weighted
induced subgraphs, all of which involving graphs with at most 7 vertices. Notice
also that in our collection of weighted induced subgraphs H(G), the induced
subgraph H determines uniquely the weighting H. Thus H(G) contains O(n7)
weighted induced graphs, where n denotes the number of vertices of G.

3.2 True Twins

Two vertices u, u′ of a graph G are called true twins if they are adjacent and
have the same neighborhood in G − {u, u′}. True twins have a particularly nice

Improved Approximation Algorithms for Hitting 3-Vertex Paths 243

behavior regarding Cluster-VD, as proved in our next lemma. This is our
second main technical tool.

Lemma 2. Let (G, c) be a weighted graph and u, u′ ∈ V (G) be true twins. Let
(G′, c′) denote the weighted graph obtained from G by transferring the whole cost
of u′ to u and then deleting u′, that is, let G′ := G − u′ and c′(v) := c(v) if v ∈
V (H ′), v �= u and c′(v) := c(u)+ c(u′) if v = u. Then OPT(G, c) = OPT(G′, c′).

Proof. We have OPT(G, c) � OPT(G′, c′) because every hitting set X ′ of G′

yields a hitting set X of G with the same cost: we let X := X ′ ∪ {u′} if X
contains u and X := X ′ otherwise.

Conversely, we have OPT(G′, c′) � OPT(G, c) because any inclusionwise
minimal cost hitting set X of G either contains both of the true twins u and u′,
or none of them. ��

If G does not contain any pair of true twins, we say that it is twin-free.

4 Algorithm

Our 7/3-approximation algorithm is described below, see Algorithm 2. Although
we could have presented as a primal-dual algorithm, we chose to present it within
the local ratio framework in order to avoid some technicalities, especially those
related to the elimination of true twins.

The following lemma makes explicit a simple property of Cluster-VD that
is key when using the local ratio technique. This property is common to many
minimization problems, and is often referred to as the Local Ratio Lemma; see
e.g. the survey of Bar-Yehuda et al. [2].

Lemma 3 (Local Ratio Lemma). Let (G, c) be a weighted graph with c the
sum of two cost functions c′ and c′′, and let α � 1. If X is a hitting set of G
such that c′(X) � α · OPT(G, c′) and c′′(X) � α · OPT(G, c′′), then c(X) �
α · OPT(G, c).

Proof. Since c(X) = c′(X) + c′′(X), it is enough to show that OPT(G, c′) +
OPT(G, c′′) � OPT(G, c). To see this, let X∗ be an optimal hitting set for (G, c).
Then OPT(G, c) = c(X∗) = c′(X∗) + c′′(X∗) � OPT(G, c′) + OPT(G, c′′). ��

Besides the Local Ratio Lemma, the analysis of Algorithm 2 relies on two
lemmas. The first lemma guarantees that the algorithm terminates. That is,
the algorithm is always able to find a 7/3-good weighted induced subgraph in
Step 14. Since the number of weighted graphs in H(G) is polynomial, Algorithm 2
in fact runs in polynomial time. The proof of this lemma, which is the true heart
of the algorithm, is given in Sect. 5.

Lemma 4 (Key Lemma). If G is not a disjoint union of cliques and does not
contain true twins, then H(G) is nonempty.

244 S. Fiorini et al.

Algorithm 2. Cluster-VD-apx(G, c)
Require: (G, c) a weighted graph
Ensure: X an inclusionwise minimal hitting set of G
1: if G is a disjoint union of cliques then
2: X ← ∅

3: else if there exists u ∈ V (G) with c(u) = 0 then
4: G′ ← G − u
5: c′(v) ← c(v) for v ∈ V (G′)
6: X ′ ← Cluster-VD-apx(G′, c′)
7: X ← X ′ if X ′ is a hitting set of G; X ← X ′ ∪ {u} otherwise
8: else if there exist true twins u, u′ ∈ V (G) then
9: G′ ← G − u′

10: c′(v) ← c(u) + c(u′) for v = u; c′(v) ← c(v) for v ∈ V (G′) \ {u}
11: X ′ ← Cluster-VD-apx(G′, c′)
12: X ← X ′ if X ′ does not contain u; X ← X ′ ∪ {u′} otherwise
13: else
14: pick any (H, cH) ∈ H(G)
15: λ∗ ← max{λ | ∀v ∈ V (H) : c(v) − λcH(v) � 0}
16: G′ ← G
17: c′(v) ← c(v) − λ∗cH(v) for v ∈ V (H); c′(v) ← c(v) for v ∈ V (G) \ V (H)
18: X ← Cluster-VD-apx(G′, c′)
19: end if
20: return X

Combined with Lemma 4, our second lemma shows that Algorithm 2 is a
7/3-approximation algorithm.

Lemma 5. Suppose that Algorithm 2 terminates given some weighted graph
(G, c) as input, and outputs a set X. Then X is an inclusionwise minimal hitting
set of G and c(X) � 7

3 · OPT(G, c).

Proof. The proof is by induction on the number of recursive calls. If the algo-
rithm does not call itself, then it returns the empty set and in this case the
statement trivially holds. Now assume that the algorithm calls itself at least
once and that the output X ′ of the recursive call is an inclusionwise minimal
hitting set of G′ that satisfies c′(X ′) � 7

3 · OPT(G′, c′). There are three cases to
consider.

Case 1: The recursive call occurs at Step 6. Then we have c(X) = c′(X ′) and
OPT(G, c) = OPT(G′, c′) because (G′, c′) is simply (G, c) with one zero-cost
vertex removed. By construction, X is an inclusionwise minimal hitting set of
G. Moreover, by what precedes, c(X) = c′(X ′) � 7

3 ·OPT(G′, c′) = 7
3 ·OPT(G, c).

Case 2: The recursive call occurs at Step 11. Again, X is an inclusionwise mini-
mal hitting set of G and c(X) = c′(X ′) � 7

3 ·OPT(G′, c′) = 7
3 ·OPT(G, c), where

the last equality holds by Lemma 2.

Case 3: The recursive call occurs at Step 18. In this case, G = G′ and X = X ′,
thus X is automatically an inclusionwise minimal hitting set of G. Let c′′ denote

Improved Approximation Algorithms for Hitting 3-Vertex Paths 245

the weighting cH extended to V (G) by letting c′′(v) := 0 for v ∈ V (G) \ V (H).
We have c′(X) � 7

3 · OPT(G, c′) by induction and λ∗c′′(X) � 7
3 · OPT(G,λ∗c′′)

since all the weighted induced subgraphs (H, cH) in H(G) are 7/3-good in G
(Lemma 1). Because c = c′ + λ∗c′′, Lemma 3 implies c(X) � 7

3 · OPT(G, c). ��
We are now ready to prove our main result.

Proof (of Theorem 1). By Lemmas 4 and 5, Algorithm 2 is a 7/3-approximation
algorithm for Cluster-VD. ��

5 Finding a 7/3-Good Induced Subgraph

The aim of this section is to prove the Key Lemma, Lemma 4, which states that
H(G) is nonempty for all twin-free graphs G that are not a disjoint union of
cliques. Our approach is as follows: We consider a twin-free graph G such that
our collection H(G) of 7/3-good induced subgraphs is empty. We first prove that,
in this case, G contains no claw, then no gem, and then no cycle of length at
least 4 as an induced subgraph. At that point, from a result of Kloks et al. [11],
we know that G is the line graph of an acyclic multigraph. Using this, we then
show that G does not contain any induced P3, as desired.

Lemma 6. Let G be a twin-free graph such that H(G) is empty. Then G is
claw-free.

Proof. Assume that G contains a claw, say on the vertex set {x, u, v, w}, where
x is the central vertex. Since G[x, u, v, w] is not 2-good in G, there exists a
neighbor y of x that is distinct from u, v and w. If y sees none of u, v, w, then
G[{x, y, u, v, w}] is a K1,4, a contradiction. Thus we may assume that yu is an
edge.

Suppose that yv is an edge. If yw is not and edge, then G[{x, y, u, v, w}] is a
dart, a contradiction, and thus yw is an edge. Since G is twin-free, there must
be a vertex z in the symmetric difference N(x)ΔN(y). By symmetry, we may
assume that z ∈ N(x) \ N(y).

Since G is K1,4-free, the set {z, u, v, w} is not stable, and hence |N(z) ∩
{u, v, w}| � 1. If |N(z) ∩ {u, v, w}| � 2, say both zu and zv are edges, then
G[{y, z, u, v}] is a C4, a contradiction. So, |N(z) ∩ {u, v, w}| = 1, and we may
assume that zw is an edge. But now G[{x, y, z, u, v}] is a dart, a contradiction.

Summing up, we conclude that yv is not an edge and, by symmetry, yw is
not an edge.

Since u and y are not true twins in G, there is some vertex z′ in the symmetric
difference N(u)ΔN(y). By symmetry, we may assume that z′ ∈ N(y) \ N(u). If
xz′ is not an edge, then z′ sees none of v, w, because G is C4-free. But then the
graph G[{x, y, z′, u, v, w}] is a turtle, a contradiction. Hence, xz′ is an edge.

To avoid an induced dart on the vertex sets {x, y, z′, u, v} or {x, y, z′, u, w},
both vz′ and wz′ must be edges. But then G[{x, z′, u, v, w}] is a dart, a contra-
diction. This completes the proof. ��

246 S. Fiorini et al.

Lemma 7. Let G be a twin-free graph such that H(G) is empty. Then G is
gem-free.

Proof. By Lemma 6, we know that G is claw-free. For a contradiction, assume
that G contains a gem.

Let k be the maximum number of vertices of a gem contained in G that have
a common neighbor outside of that gem, this maximum being taken over all
gems contained in G.

Consider an induced gem in G, say with vertex set {v1, v2, v3, v4, v5}, such
that there is some vertex v outside of that gem with exactly k neighbors in the
set {v1, v2, v3, v4, v5}. Assume that the gem is made of the 5-cycle v1v2v3v4v5v1
and the two edges v1v3, v1v4. Now, we will distinguish some cases depending on
the value of k. Notice that k � 1 since the gem G[{v1, v2, v3, v4, v5}] is not in
H(G).

Case 1: k = 5. Since v and v1 are not true twins in G, we may assume that there
is some vertex u that sees v1 and not v.

Case 1.1: uv2 is an edge. Then neither uv4 nor uv5 is an edge of G, for other-
wise G[{u, v2, v, v4}] or G[{u, v2, v, v5}] is a C4. Moreover, uv3 is an edge, since
otherwise G[{v1, u, v3, v5}] is a claw. But now the graph G[{v1 . . . , v5} ∪ {v, u}]
is isomorphic to the special graph H1 (see Fig. 1), and thus belongs to H(G), a
contradiction.

Case 1.2: uv2 is not an edge. Then uv4 is an edge for otherwise G[{v1, u, v2, v4}]
is a claw, and similarly uv5 is an edge for otherwise G[{v1, u, v2, v5}] is a claw.
Moreover, uv3 is not an edge, because otherwise G[{u, v3, v, v5}] is a C4. But
again G[{v1, . . . , v5}∪{v, u}] is isomorphic to H1 as in Case 1.1, a contradiction.

Case 2: k = 4. We may assume that v sees v1, v2, v3, v4 and not v5. Other-
wise, by symmetry, we may assume that v sees either all of v2, v3, v4, v5 and
G[{v, v2, v1, v5}] is a C4, or that v sees all of v1, v2, v4, v5 and G[{v, v2, v3, v4}]
is a C4. Since v and v3 are not true twins, we may assume that there is a vertex
u that sees v but not v3. In this case, G contains the trigraph H3 (see Fig. 1), a
contradiction.

Case 3: k = 3. Without loss of generality, v sees v1, v2, v3, because every other
(that is, non-isomorphic) possibility leads to a contradiction. Indeed, if v sees
v1, v2, and v5, then G[{v1, . . . , v5, v}] is a W5. If v sees v3, v4, and v5, then
G[{v, v3, v1, v5}] is a C4, and similarly we have a C4 if v sees v2, v4, and v5, or
v1, v3, and v5. Moreover, if v sees v1, v3, and v4, the dart G[{v, v1, v2, v3, v5}]
appears.

Since v and v2 are not true twins, we may assume that there is a vertex u
seeing v but not v2. We get a contradiction, since G contains the trigraph H4

(see Fig. 1).

Case 4: k � 2. Since G[{v1, v2, v3, v4, v5}] is not in H(G), we know that there
is a neighbor w of v1 outside the gem, and w has at most one neighbor in the
set {v2, . . . , v5}. If w sees neither v3 nor v4, then w is also non-adjacent to at

Improved Approximation Algorithms for Hitting 3-Vertex Paths 247

least one of v2, v5, say v2 using symmetry, and the graph G[{w, v1, v2, v3, v4}] is
a dart. Hence, we may assume that either wv2 or wv3 is an edge, say wv2 by
symmetry. Then G[{w, v1, v3, v4, v5}] is a dart, a contradiction. This completes
the proof. ��

In the following, we need another small graph: a diamond, that is, K4 minus
an edge.

Lemma 8. Let G be a twin-free graph such that such that H(G) is empty. Then
G is diamond-free and K4-free.

Proof. We first prove that G is diamond-free. Suppose we have a diamond on
the vertices u, v, w, and x, where ux is not an edge. By assumption, v and w are
not true twins, and so we may assume that there is some y ∈ N(v) \ N(w). To
avoid a claw on the vertices u, v, x, and y, it must be that uy or xy is an edge.
Both edges cannot be there, since otherwise G[{u, y, x, w}] is a C4. So we may
assume that uy is an edge while xy is not. But now the graph G[{u, v, w, x, y}]
is a gem, which contradicts Lemma 7.

Next we prove that G is K4-free. Assume not, and let u, v, w and x be four
mutually adjacent vertices. Since u and x cannot be true twins, we may assume
that there is some vertex u′ adjacent to u but not to x. Since G is diamond-free,
the only neighbor of u′ in {u, v, w, x} is u. Similarly, we obtain vertices v′ and
w′, where v′ is only adjacent to v in {u, v, w, x} and w′ is only adjacent to w
in {u, v, w, x}. As G is C4-free, the three vertices u′, v′, w′ are pairwise non-
adjacent. But now the graph G[{u, v, w, x, u′, v′, w′}] is isomorphic to the special
graph H2 (see Fig. 1), a contradiction. ��

A hole in a graph is an induced cycle of length at least four.

Lemma 9. Let G be a twin-free graph such that H(G) is empty. Then G is
hole-free.

Proof. Thanks to Lemmas 6 and 8, we know that G is claw-free, diamond-free,
and K4-free. By contradiction, assume that G contains a hole and let H =
v1v2 . . . vkv1 be a shortest hole contained in G. Thus k � 5. If some vertex of H
does not have a neighbor in V (G)\V (H), then G contains an induced P3 whose
middle vertex does not have neighbors outside the P3, in contradiction to the
assumption that H(G) is empty.

There cannot be a vertex outside of H having exactly one neighbor in H
either, as G is claw-free. Moreover, if there is a vertex v outside of H having
two or more neighbors H, they must appear consecutively. This is due to our
assumption that H is a shortest hole in G, and also to the fact that G does
not contain a C4. Since G is diamond-free, this means that every vertex outside
H that sees some vertex of H has exactly two neighbors in H, and they must
appear consecutively on H.

Let u ∈ V (G) \V (H) be a neighbor of v2. We may assume that u is adjacent
to v3 too. Since there is a bull on the vertices v1, v2, v3, v4, and u, there must be
another neighbor v of v2 outside of H. Note that uv is not an edge, because we

248 S. Fiorini et al.

cannot have a diamond or a K4 on u, v, v2, and v3. Similarly, vv3 is not an edge.
Hence, v must be adjacent to v1. But now G[{vk, v1, v2, v3, v4, u, v}] contains the
trigraph H5 (Fig. 1), the undecided edge being included if k = 5, and excluded
if k > 5. This is a contradiction, which concludes the proof. ��

To finalize the proof, we need the following theorem.

Theorem 2 (Kloks et al. [11]). Let G be a graph that is hole-, claw- and
gem-free. Then G is the line graph of an acyclic multigraph.

Now, we are ready to prove our key lemma.

Proof (Proof of Lemma 4). We may assume that G is connected. (Indeed, if not,
simply consider a component.) So |V (G)| � 3. By Lemmas 6, 7 and 9, Theorem 2
gives that G is a K4-free line graph of an acyclic multigraph, say H. Since G is
twin-free, H does not have parallel edges. Also H is clearly connected, thus H
is a tree.

Root the tree H at an arbitrary vertex, and let x be a leaf at maximum
distance from the root. Let y be the parent of x in H. Suppose that y has a child
z distinct from x. Then z is also a leaf. However, the vertices of G corresponding
to edges xy, zy are true twins in G, which is not possible. Hence x is the only
child of y in H. But now the edge xy is a vertex v of degree one in G and, since
|V (G)| � 3, the vertex v is contained in an induced P3. Since v has no neighbor
outside this P3, this is a contradiction. This completes the proof. ��

6 Conclusion

In this paper we presented a 7/3-approximation algorithm for the Cluster-
VD problem, based on the local ratio technique. The main idea underlying the
algorithm is that there exists a collection of small induced subgraphs that are
on the one hand good in the sense that they guarantee a local ratio of at most
7/3, and on the other hand sufficient in the sense that one can always find and
use one of them until the algorithm terminates.

As mentioned in the introduction, we conjecture that there is a
2-approximation algorithm for Cluster-VD. The following result gives some
evidence to back up this conjecture.

Theorem 3. There is a 2-approximation algorithm for Cluster-VD in the
class of diamond-free graphs.

The proof of Theorem 3 is omitted due to length constraints. The algorithm
is modeled on the 7/3-approximation algorithm presented earlier, the main dif-
ference being the use of some infinite (but easy to detect) family of graphs that
are 2-good. We note that Theorem 3 can be seen as a generalization of the
fact that there is a 2-approximation for Cluster-VD in triangle-free graphs, a
result that was used by You et al. [14] in their 5/2-approximation algorithm for
(unweighted) Cluster-VD.

Improved Approximation Algorithms for Hitting 3-Vertex Paths 249

Finally, we point out that the analysis of our 7/3-approximation algorithm
also proves that a certain O(n7)-size LP relaxation for Cluster-VD has inte-
grality gap at most 7/3, namely, the LP relaxation obtained by writing down
at most O(n7) inequalities in the vertex variables xv for each of the weighted
graphs of Fig. 1. By considering graphs G with large girth and small stability
number, we can see that the integrality gap is actually equal to 7/3, since in
these graphs OPT(G) is close to n and only the graphs H ∈ {P3,K1,3,K1,4}
are induced subgraphs of G (details are omitted due to space constraints). Thus
letting xv := 3/7 for all vertices v gives a feasible fractional solution, of cost
3n/7.

References

1. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser.
B 41(2), 182–208 (1986)

2. Bar-Yehuda, R., Bendel, K., Freund, A., Rawitz, D.: Local ratio: a unified frame-
work for approximation algorithms. ACM Comput. Surv. 36(4), 422–463 (2004)

3. Anudhyan, B., Marek, C., Tomasz, K., Marcin, P.: A fast branching algorithm for
cluster vertex deletion. In: Hirsch, Edward A., Kuznetsov, Sergei O., Pin, Jean-
Éric, Vereshchagin, Nikolay K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 111–124.
Springer, Heidelberg (2014). arXiv:1306.3877

4. Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets in tour-
naments. SIAM J. Comput. 30(6), 1993–2007 (2001)

5. Chudak, F.A., Goemans, M.X., Hochbaum, D.S., Williamson, D.P.: A primal-dual
interpretation of two 2-approximation algorithms for the feedback vertex set prob-
lem in undirected graphs. Oper. res. lett. 22(4), 111–118 (1998)

6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2010)

7. Guruswami, V., Lee, E.: Inapproximability of feedback vertex set for bounded
length cycles. ECCC:TR14-006

8. Guruswami, V., Lee, E.: Inapproximability of H-transversal/packing.
arXiv:1506.06302

9. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theor. Comput. Syst. 47(1), 196–217 (2010)

10. Iwata, Y., Oka, K.: Fast dynamic graph algorithms for parameterized problems. In:
Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 241–252. Springer,
Heidelberg (2014)

11. Kloks, T., Kratsch, D., Müller, H.: Dominoes. In: Mayr, E.W., Schmidt, G., Tin-
hofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 106–120. Springer, Heidelberg (1995)

12. Mnich, M., Williams, V.V., Végh, L.A.: A 7, 3-approximation for feedback vertex
sets in tournaments. arXiv:1511.01137

13. Jianhua, T., Zhou, W.: A primal-dual approximation algorithm for the vertex cover
P3 problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011)

14. You, J., Wang, J., Cao, Y.: Approximate association via dissociation.
arXiv:1510.08276

http://arxiv.org/abs/1306.3877
http://eccc.hpi-web.de/report/2014/006/
http://arxiv.org/abs/1506.06302
http://arxiv.org/abs/1511.01137
http://arxiv.org/abs/1510.08276

Improved Approximations for Cubic
Bipartite and Cubic TSP

Anke van Zuylen(B)

Department of Mathematics, College of William & Mary,
Williamsburg, VA, USA

anke@wm.edu

Abstract. We show improved approximation guarantees for the travel-
ing salesman problem on cubic bipartite graphs and cubic graphs. For
cubic bipartite graphs with n nodes, we improve on recent results of Karp
and Ravi [10] by giving a “local improvement” algorithm that finds a
tour of length at most 5/4n − 2. For 2-connected cubic graphs, we show
that the techniques of Mömke and Svensson [11] can be combined with
the techniques of Correa et al. [6], to obtain a tour of length at most
(4/3 − 1/8754)n.

Keywords: Traveling salesman problem · Approximation algorithm ·
Cubic bipartite graphs · Cubic graphs · Barnette’s conjecture

1 Introduction

The traveling salesman problem (TSP) is one of the most famous and widely
studied combinatorial optimization problems. Given a set of cities and pairwise
distances, the goal is to find a tour of minimum length that visits every city
exactly once. Even if we require the distances to form a metric, the problem
remains NP-hard. The classic Christofides’ algorithm [5] finds a tour that has
length at most 3

2 times the length of the optimal tour. Despite much effort in
the 35 years following Christofides’s result, we do not know any algorithms that
improve on this guarantee.

One approach that has often been useful in designing approximation algo-
rithms is the use of linear programming. In this context, a major open question
is to determine the integrality gap of the subtour elimination linear program
or Held-Karp relaxation [7,9]; the integrality gap is the worst-case ratio of the
length of an optimal tour to the optimal value of the relaxation. Examples are
known in which the length of the optimal tour is 4

3 times the value of the Held-
Karp relaxation, and a major open question is whether this is tight.

Recent years have seen some exciting progress towards answering this ques-
tion on graph metrics, also called the graph-TSP. In this special case of the

A. van Zuylen—This work was supported by a grant from the Simons Foundation
(#359525, Anke Van Zuylen) and by NSF Prime Award: HRD-1107147, Women in
Scientific Education (WISE).

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 250–261, 2016.
DOI: 10.1007/978-3-319-33461-5 21

Improved Approximations for Cubic Bipartite and Cubic TSP 251

metric TSP, we are given an unweighted graph G = (V,E) in which the nodes
represent the cities, and the distance between two cities is equal to the shortest
path in G between the corresponding nodes. Examples are known in which the
ratio between the length of the optimal tour and the Held-Karp relaxation is 4

3 ,
where the examples are in fact graph-TSP instances with an underlying graph
G that is 2-connected and subcubic (every node has degree at most three).

The graph-TSP thus captures many of the obstacles that have prevented us
from obtaining improved approximations for general metrics, and much recent
research has focused on finding improved algorithms for the graph-TSP. The
first improvement for graph-TSP metrics is due to Gamarnik et al. [8], who
show an approximation guarantee strictly less than 3

2 for cubic, 3-connected
graphs. Aggarwal et al. [1] give a 4

3 -approximation algorithm for this case. Boyd
et al. [3] show that there is a 4

3 -approximation algorithm for any cubic graph,
and Mömke and Svensson [11] show this holds also for subcubic graphs.

Mömke and Svensson also show a 1.461-approximation algorithm if we make
no assumptions on the underlying graph G. Mucha [12] improves their analysis
to show an approximation guarantee of 13

9 . Sebő and Vygen [13] combine the
techniques of Mömke and Svensson with a clever use of ear decompositions,
which yields an approximation ratio of 1.4.

As mentioned previously, for subcubic graphs, examples exist that show
that we cannot obtain better approximation guarantees than 4

3 unless we use
a stronger lower bound on the optimum than the Held-Karp relaxation or sub-
tour elimination linear program. Correa et al. [6] show that this is not the
case for cubic graphs. They refine the techniques of Boyd et al. [3] and show
how to find a tour of length at most

(
4
3 − 1

61236

)
n for the graph-TSP on a 2-

connected cubic graph G, where n is the number of nodes. Correa et al. also
consider the graph-TSP on planar cubic bipartite 3-connected graphs, and give
a (43 − 1

18)-approximation algorithm. Planar cubic bipartite 3-connected graphs
are known as Barnette graphs, and a long-standing conjecture in graph theory by
Barnette [2] states that all planar cubic bipartite 3-connected graphs are
Hamiltonian. Recently, Karp and Ravi [10] gave a 9

7 -approximation algorithm
for the graph-TSP on a superset of Barnette graphs, cubic bipartite graphs.

In this paper, we give two results that improve on the results for cubic graph-
TSP. For the graph-TSP on (non-bipartite) cubic graphs, we show that the
techniques of Mömke and Svensson [11] can be combined with those of Correa
et al. [6] to find an approximation algorithm with guarantee (43 − 1

8754). We
note that independent of our work, Candráková and Lukotka [4] showed very
recently, using different techniques, how to obtain a 1.3-approximation algorithm
for the graph-TSP on cubic graphs. For connected bipartite cubic graphs, we
give an algorithm that finds a tour of length at most 5

4n − 2, where n is the
number of nodes. The idea behind our algorithm is the same as that of many
previous papers, namely to find a cycle cover (or 2-factor) of the graph with a
small number of cycles. Our algorithm is basically a simple “local improvement”
algorithm. The key idea for the analysis is to assign the size of each cycle to the
nodes contained in it in a clever way; this allows us to give a very simple proof

252 A. van Zuylen

that the algorithm returns a 2-factor with at most n/8 components. We also
give an example that shows that the analysis is tight, even if we relax a certain
condition in the algorithm that restricts the cases when we allow the algorithm
to move to a new solution.

The remainder of this paper is organized as follows. In Sect. 2, we describe
and analyze our algorithm for the graph-TSP on cubic bipartite graphs, and in
Sect. 3, we give our improved result for non-bipartite cubic graphs.

2 The Graph-TSP on Cubic Bipartite Graphs

In the graph-TSP, we are given a graph G = (V,E), and for any u, v ∈ V , we let
the cost cuv be the number of edges in the shortest path between u and v in G.
The goal is to find a tour of the nodes in V that has minimum cost. A 2-factor
of G is a subset of edges F ⊆ E, such that each node in V is incident to exactly
two edges in F . Note that if F is a 2-factor, then each (connected) component
of (V, F) is a simple cycle. If C is a component of (V, F), then we will use V (C)
to denote the nodes in C and E(C) to denote the edges in C. The size of a cycle
C is defined to be |E(C)| (which is of course equal to |V (C)|). Sometimes, we
consider a component of (V, F \ E′) for some E′ ⊂ F . A component of such a
graph is either a cycle C or a path P . We define the length of a path P to be
the number of edges in P .

The main idea behind our algorithm for the graph-TSP in cubic bipartite
graphs (and behind many algorithms for variants of the graph-TSP given in the
literature) is to find a 2-factor F in G such that (V, F) has a a small number of
cycles, say k. We can then contract each cycle of the 2-factor, find a spanning
tree on the contracted graph, and add two copies of the corresponding edges to
the 2-factor. This yields a spanning Eulerian (multi)graph containing n+2(k−1)
edges. By finding a Eulerian walk in this graph and shortcutting, we get a tour
of length at most n+2k−2. In order to get a good algorithm for the graph-TSP,
we thus need to show how to find a 2-factor with few cycles, or, equivalently, for
which the average size of the cycles is large.

In Sect. 2.2, we give an algorithm for which we prove in Lemma 5 that, given
a cubic bipartite graph G = (V,E), it returns a 2-factor with average cycle size
at least 8. By the arguments given above, this implies the following result.

Theorem 1. There exists a 5
4 -approximation algorithm for the graph-TSP on

cubic bipartite graphs.

Before we give the ideas behind our algorithm and its analysis in Sect. 2.1,
we begin with the observation that we may assume without loss of generality
that the graph has no “potential 4-cycles”: a set of 4 nodes S will be called a
potential 4-cycle if there exists a 2-factor in G that contains a cycle with node
set exactly S. The fact that we can modify the graph so that G has no potential
4-cycles was also used by Karp and Ravi [10].

Improved Approximations for Cubic Bipartite and Cubic TSP 253

Lemma 1. To show that every simple cubic bipartite graph G = (V,E) has a
2-factor with at most |V |/8 components, it suffices to show that every simple
cubic bipartite graph G′ = (V ′, E′) with no potential 4-cycles has a 2-factor with
at most |V ′|/8 components.

Proof. We show how to contract a potential 4-cycle S in G to get a simple cubic
bipartite graph G′ with fewer nodes than the original graph, and how, given
a 2-factor with average component size 8 in G′, we can uncontract S to get a
2-factor in G without increasing the number of components.

Let S = {v1, v2, v3, v4} be a potential 4-cycle in G, i.e., E[S] contains 4 edges,
say {v1, v2}, {v2, v3}, {v3, v4}, {v1, v4}, and there exists no node v5 �∈ S that is
incident to two nodes in {v1, v2, v3, v4} (since in that case a 2-factor containing
a cycle with node set S would have v5 as an isolated node, and this cannot be a
2-factor since v5 must have degree 2 in a 2-factor).

We contract S, by identifying v1, v3 to a new node vodd, and identifying v2, v4
to a new node veven. We keep a single copy of the edge {vodd, veven}. The new
graph G′ is simple, cubic and bipartite, and |V ′| = |V | − 2. See Fig. 1 for an
illustration.

v1 v2

v3v4

e1 e2

e4 e3

vodd

veven

e1

e2

e4

e3

Fig. 1. The 4-cycle on the left is contracted, by identifying v1, v3 to a new node vodd,
and identifying v2, v4 to a new node veven, and keeping a single copy of the edge
{vodd, veven}, to obtain the simple cubic bipartite graph on the right.

Given any 2-factor in G′, we can “uncontract” S and find a 2-factor in G
with at most as many components as the 2-factor in G′: If the 2-factor on G′

does not contain {vodd, veven} then it must contain the other 4 edges incident
to vodd and veven. When uncontracting S, this gives one edge incident to each
vi, i = 1, . . . , 4. Since all other node degrees are even, the graph consists of even
cycles and two paths with endpoints in {v1, v2, v3, v4}. We can choose to add
the edges {v1, v2}, {v3, v4}, or the edges {v2, v3}, {v1, v4}; both of these choices
give a 2-factor, and at least one of the two options must give a 2-factor in
which all 4 nodes in S are in the same cycle. If the 2-factor on G′ does contain
{vodd, veven} then it must contain one other edge incident to vodd and to veven.
When uncontracting S, this gives one edge incident to v1 or v3, and one edge
incident to v2 or v4. Suppose without loss of generality the edges are incident to
v1 and v2. Then, we add edges {v2, v3}, {v3, v4}, and {v1, v4} to get a 2-factor.
Note that it is again the case that all 4 nodes in S are in the same cycle. ��

254 A. van Zuylen

2.1 A Local Improvement Heuristic

A cubic bipartite graph has a perfect matching (in fact, it is the case that the
edge set can be decomposed into three perfect matchings), and given a cubic
bipartite graph G = (V,E), we can obtain a 2-factor F by simply finding a
perfect matching M and letting F = E\M . Conversely, if F is a 2-factor for G,
then E\F is a perfect matching in G. Now, given an arbitrary 2-factor F1, we
can use these observations to build a second 2-factor F2 such that most nodes
that are in a small cycle in (V, F1) are in a long cycle in (V, F2): The 2-factor F2

is constructed by taking the matching E\F1 and adding half of the edges from
each cycle in (V, F1). Since each cycle is even, its edges can be decomposed into
two perfect matchings, and we may choose either one of them to add to F2. We
will say 2-factor F2 is locally optimal with respect to F1 if F2 contains all edges in
E \ F1 and for each cycle C in (V, F1), replacing F2 by the symmetric difference
of F2 with E(C) does not reduce the number of components of (V, F2).

The essence of our algorithm is to start with an arbitrary 2-factor F1, find
a 2-factor F2 that is locally optimal with respect to F1, and return the 2-factor
among F1, F2 with the smallest number of components.

If we consider a 6-cycle C in (V, F1), and a 2-factor F2 that is locally optimal
with respect to F1, then it is not hard to see that at least two edges of C will be
part of the same cycle, say D, in (V, F2). Moreover, the fact that the graph G
has no potential 4-cycles can be shown to imply that D has size at least 10. This
observation motivates the condition in Lemma 2 below that for any C in (V, F1),
there should exist D in (V, F2) of size at least 10, such that |V (C) ∩ V (D)| ≥ 4.

In Lemma 2 we show that this condition suffices to guarantee that either
(V, F1) or (V, F2) has at most |V |/8 cycles. In Lemma 3 we show the condition
holds for F2 that is locally optimal for F1, provided that all cycles in F1 are
chordless: An edge {x, y} is a chord for cycle C in (V, F1), if x, y ∈ C, and
{x, y} ∈ E \F1; a cycle will be referred to as chorded if it has at least one chord,
and chordless otherwise.

A few more details are needed to deal with the general case when F1 is not
necessarily chordless; these are postponed to Sect. 2.2.

Lemma 2. Let G = (V,E) be a simple cubic bipartite graph that has no potential
4-cycles, let F1 and F2 be 2-factors in G, such that for any cycle C in (V, F1),
there exists a cycle D in (V, F2) of size at least 10 such that |V (C)∩V (D)| ≥ 4.
Then either (V, F1) or (V, F2) has at most |V |/8 components.

Proof. Let Ki be the number of components of (V, Fi) for i = 1, 2. Note that it
suffices to show that γK1 + (1 − γ)K2 ≤ |V |/8 for some 0 ≤ γ ≤ 1.

In order to do this, we introduce a value α(v) for each node. This value is set
based on the size of the cycle containing v in the second 2-factor, and they will
satisfy

∑
v∈D α(v) = 1 for every cycle D in the second 2-factor (V, F2). Hence,

we have that
∑

v∈V α(v) is equal to the number of cycles in (V, F2). We will then
show that the condition of the lemma guarantees that for a cycle C in (V, F1),

Improved Approximations for Cubic Bipartite and Cubic TSP 255

∑

v∈C

α(v) ≤ 1
6
|V (C)| − 1

3
. (*)

This suffices to prove what we want: we have K2 =
∑

v∈V α(v) ≤ 1
6 |V | − 1

3K1,
which is the same as 1

4K1 + 3
4K2 ≤ 1

8 |V |.
The basic idea to setting the α-values is that if v is in a cycle D in (V, F2)

of size k, then we have α(v) = 1
k . The only exception to this rule is when D

has size 10; in this case we set α(v) for v ∈ D to either 1
6 or 1

12 . There will be
exactly 8 nodes with α(v) = 1

12 and 2 nodes with α(v) = 1
6 . The nodes v in D

with α(v) = 1
12 are chosen in such a way that, if there is a cycle C in (V, F1)

containing at least 4 nodes in D, then at least 4 of the nodes in V (C) ∩ V (D)
will have α(v) = 1

12 . It is possible to achieve this, since the fact that D has 10
nodes implies that (V, F1) can contain at most two cycles that intersect D in 4
or more nodes.

It is easy to see that (*) holds: by the condition in the lemma, any cycle C
contains at least 4 nodes v such that α(v) ≤ 1

12 . Since we assumed in addition
that G has no potential 4-cycles, we also know that α(v) ≤ 1

6 for all other
v ∈ V (C). Hence

∑
v∈C α(v) ≤ 1

6 (|V (C)| − 4) + 4 · 1
12 = 1

6 |V (C)| − 1
3 . ��

By Lemma 2, it is enough to find a 2-factor F2 that satisfies that every cycle
in the first 2-factor, F1, has at least 4 nodes in some “long” cycle of F2 (where
“long” is taken to be size 10 or more). The following lemma states that a locally
optimal F2 satisfies this condition, provided that F1 is chordless.

Lemma 3. Let G = (V,E) be a simple cubic bipartite graph that has no potential
4-cycles, let F1 be a chordless 2-factor in G, and let F2 be a 2-factor that is locally
optimal with respect to F1. Then for any cycle C in (V, F1), there exists a cycle
D in (V, F2) of size at least 10 such that |V (C) ∩ V (D)| ≥ 4.

Proof. Suppose F2 is locally optimal with respect to F1, and assume by contra-
diction that there is some cycle C in (V, F1) such that (V, F2) contains no cycle
of size at least 10 that intersects C in at least 4 nodes. Let F ′

2 = F2�E(C); we
will show that (V, F ′

2) has fewer components than (V, F2), contradicting the fact
that F2 is locally optimal with respect to F1.

Consider an arbitrary cycle D in (V, F2) that intersects C. We will first show
that any node v in D will be in a cycle in (V, F ′

2) that is at least as large as D.
This shows that the number of cycles of (V, F ′

2) is at most the number of cycles
of (V, F2). We then show that it is not possible that for every node, its cycle in
(V, F ′

2) is the same size as the cycle containing it in (V, F2).
If D contains exactly one edge, say e, in C, then in (V, F ′

2), the edge e in D
is replaced by an odd-length path. Hence, in this case the nodes in D will be
contained in a cycle in (V, F ′

2) that is strictly larger than D.
If D contains k > 1 edges in C, then D has size at most 8, since otherwise D

contradicts our assumption that no cycle exists in (V, F2) of size at least 10 that
intersects C in at least 4 nodes. We now show this implies that D has size exactly
8 and k = 2: The size of D is either 6 or 8 since G has no potential 4-cycles. Note
that D alternates edges in C and odd-length paths in (V, F2 \ E(C)). Since C

256 A. van Zuylen

is chordless, the paths cannot have length 1 and must thus have length at least
3. We thus have that D must consist of exactly two edges from C, say e1, e2,
separated by two paths of length 3, say P1, P2.

Since P1 and P2 do not contain edges in C, (V, F ′
2) also contains the edges

in P1 and P2. Hence, to show that all nodes in D are in cycles of size at least
8 in (V, F ′

2), it now suffices to show that the cycles containing P1 and P2 in
(V, F ′

2) have size at least 8. Consider the cycle in (V, F ′
2) containing P1; besides

P1, the cycle contains another path, say P ′
1, connecting the endpoints of P1, and

this path must have odd length ≥ 3 since G is bipartite and has no potential
4-cycles. Furthermore, P ′

1 starts and ends with an edge in C, by definition of
F ′
2 = F2�E(C). Note that P ′

1 thus cannot have length 3, as this would imply
that the middle edge in P ′

1 is a chord for C. So P ′
1 has length at least 5, and

the cycle in (V, F ′
2) containing P1 thus has size at least 8. Similarly, the cycle

containing P2 in (V, F ′
2) has size at least 8.

We have thus shown that all nodes in D are in cycles of size at least |V (D)| in
(V, F ′

2), and hence, (V, F ′
2) has at most as many cycles as (V, F2). Furthermore,

it follows from the argument given above that the number of cycles in (V, F2)
and (V, F ′

2) is the same only if all nodes in C are in cycles of size 8 in both (V, F2)
and (V, F ′

2) and each such cycle consists of two edges from E(C) and two paths
of length 3 in (V, F2 \ E(C)).

We now show by contradiction that the latter is impossible. Suppose C is
such that both in (V, F2) and in (V, F ′

2) every node in V (C) is contained in
a cycle containing two edges from C. Then |V (C)| must be a multiple of 4,
say |V (C)| = 4k. Let the nodes of C be labeled 1, 2, . . . , 4k ≡ 0, such that
{2i + 1, 2i + 2} ∈ F2 and {2i, 2i + 1} ∈ F ′

2 for i = 0, . . . , 2k − 1. We also define
a mapping p(i) for every i = 1, . . . , 4k, such that (V, F2 \ E(C)) contains a path
(which, by our assumption has length 3) from i to p(i) for i = 1, . . . , 4k. Observe
that by the definition of the mapping, p(p(i)) must be equal to i (mod 4k) for
i = 1, . . . , 4k.

Let p(1) = �, then the fact that edge {1, 2} is in a cycle with one other edge
from C in (V, F2) implies that either {�, � + 1} ∈ F2 or {�, � − 1} ∈ F2, and that
either p(2) = � + 1 or p(2) = � − 1. In the first case, edge {2, 3} must be in a
cycle with {� + 1, � + 2} in the second 2-factor (V, F ′

2), and thus p(3) = � + 2. In
the second case, {2, 3} must be in a cycle with {� − 1, � − 2} in (V, F ′

2), and thus
p(3) = � − 2. Repeating the argument shows that either p(i) ≡ � + (i − 1) (mod
4k) for i = 1, . . . , 4k, or p(i) ≡ � − (i − 1) (mod 4k) for i = 1, . . . , 4k.

The first case gives a contradiction to the fact that G is bipartite: note that
p(p(i)) ≡ 2� + i − 2 (mod 4k) and this must be equal to i. Hence, � ≡ 1 (mod
2k); in other words, � is odd, which cannot be the case since (V, F2 \ E(C)) has
a path of length 3 from 1 to � (since p(1) = �) and if � were odd, then C would
have a path of even length from 1 to �, and thus G would contain an odd cycle.

Now suppose that p(i) ≡ �− (i−1) (mod 4k) for i = 1, . . . , 4k. From the pre-
vious argument we know that � must be even, since otherwise G is not bipartite.
But then p(�/2) = �− (�/2− 1) = �/2+1. In other words, node �/2 is connected
to node �/2 + 1 in (V, F2 \ E(C)). But since the edge {�/2, �/2 + 1} is either in

Improved Approximations for Cubic Bipartite and Cubic TSP 257

F2 or in F ′
2, {�/2, �/2 + 1} is the only edge from C in its cycle in either (V, F2)

or (V, F ′
2), contradicting the assumption on C. ��

It may be the case that Lemma 3 also holds for cycles in (V, F1) that do
have chords, but we have not been able to prove this. Instead, there is a simple
alternative operation that ensures that a cycle in (V, F1) with a chord intersects
at least one “long” cycle of size at least 10 in (V, F2) in 4 or more nodes. The
algorithm described next will add this operation, and for technical reasons it will
only modify F2 with respect to a cycle C in (V, F1) if the cycle C does not yet
intersect a long cycle in (V, F2) in 4 or more nodes.

2.2 2-Factor with Average Cycle Size 8

We give our algorithm in Algorithm 1. The algorithm fixes a 2-factor F1 and
initializes F2 to contain all edges in E\F1. The algorithm then proceeds to modify
F2; note that F1 is not changed. We let � denote the symmetric difference
operator. Figure 2 illustrates the modification to F2 in the case of a chorded
cycle Ci.

Let G = (V,E) be a bipartite cubic graph, with potential 4-cycles contracted
using Lemma 1.
Let F1 be an arbitrary 2-factor in G, and let C1, . . . , Ck be the cycles in (V, F1).
For each cycle Ci in (V, F1), let M(Ci) ⊆ E(Ci) be a perfect matching on V (Ci).
Initialize F2 = (E\F1) ∪⋃k

i=1 M(Ci).
while there exists a cycle Ci such that |V (Ci) ∩ V (D)| < 4 for all cycles D in
(V, F2) of size at least 10 do

if Ci is a chordless cycle then
F2 ← F2�E(Ci).

else
Let {x, y} be a chord for Ci, let P1, P2 be the edge disjoint paths in Ci

from x to y.
Relabel P1 and P2 if necessary so that P1 starts and ends with an edge
in F1 \ F2.
F2 ← (F2�E(P1)) \ {x, y}.

end if

end while
Uncontract the 4-cycles in (V, Fj) for j = 1, 2 using Lemma 1.
Return the 2-factor among F1, F2 with the smaller number of components.

Algorithm 1. Approximation Algorithm for Cubic Bipartite TSP

We need to prove that the set of edges F2 remains a 2-factor throughout the
course of the algorithm, that the algorithm terminates, and that upon termina-
tion, either (V, F1) or (V, F2) has at most —V—/8 components. The latter is
clear: if the algorithm terminates, then the condition of Lemma 2 is satisfied,
and therefore one of the two 2-factors has at most —V—/8 components.

258 A. van Zuylen

x

y

x

y

Fig. 2. The figure on the left shows a chorded cycle C in F1 of size 10 and all edges
in G that have both endpoints in C. The dashed edges are in F1 \ F2, and non-dashed
edges are in F2 (where not all edges in F2 that are incident on the nodes are shown).
The figure on the right shows how Algorithm 1 would update F2.

To show that F2 is a 2-factor and that the algorithm terminates is a little
more subtle. In order to show this, it will be helpful to know that each cycle in
(V, Fi) alternates edges in Fi ∩ Fi+1 and edges in Fi \ Fi+1 for i = 1, 2 (where
subscripts are modulo 2, so F3 ≡ F1). This is true initially, however, it is not the
case that this property continues to hold for all cycles. We will show that it does
hold in certain cases, which turn out to be exactly the cases “when we need it”.
In the following, we will say a cycle or path in (V, Fi) is alternating (for F1 and
F2) if it alternates edges in Fi ∩ Fi+1 and Fi \ Fi+1. We will say that a cycle C
in (V, F1) is violated if there exists no D of size at least 10 in (V, F2) such that
|V (C) ∩ V (D)| ≥ 4.

Lemma 4. Algorithm 1 maintains that F2 is a 2-factor that satisfies the follow-
ing properties:

(1) if C in (V, F1) is violated, then C is alternating for F1 and F2;
(2) if D in (V, F2) is not alternating for F1 and F2, then D has size at least 10.

Proof. We prove the lemma by induction on the algorithm. Initially, F2 consists
of E \ F1 and

⋃k
i=1 M(Ci), which are two edge-disjoint perfect matchings on V .

Hence, F2 is a 2-factor, and the two properties hold for all cycles in (V, F1) and
(V, F2).

Suppose the lemma holds and we modify F2 by considering some violated
cycle C. The two properties of the lemma imply the following:

Claim 1. If C is violated, then (V, F2 \ E(C)) consists of even cycles and odd-
length paths, where paths that are not alternating for F1 and F2 have length at
least 9.

Proof of Claim: For each path in the graph (V, F2\E(C)) there exists some cycle
D in (V, F2) such that the path results when removing E(C) ∩ E(D) from D.
If D is alternating for F1 and F2, then the path must have the same property,
and it must start and end with an edge in F2 \ F1. Hence, the path must have
odd length if D is alternating. If D is not alternating then D has size at least
10 by Property (2), so C can have at most one edge in common with D, since

Improved Approximations for Cubic Bipartite and Cubic TSP 259

otherwise C is not violated. Hence, the path obtained by removing the unique
edge in E(C) ∩ E(D) has length at least 9, and its length must be odd, since D
is an even cycle.

If C is chordless, then we modify F2 to F ′
2 = F2�E(C). Clearly, F ′

2 is again
a 2-factor, and Property (1) remains satisfied. Furthermore, any cycle in (V, F ′

2)
that is not alternating for F1 and F ′

2 either also existed in (V, F2) and hence it
has size at least 10, since Property (2) holds for F2, or the cycle contains a path
in (V, F2 \ E(C)) that is not alternating for F1 and F2, and this path has length
at least 9 by the claim. So Property (2) holds for F ′

2.
Now consider the modification of F2 when considering a chorded cycle C in

(V, F1). First consider F ′
2 = F2�E(P1); every node is incident to two edges in

F ′
2, except for x and y, which are incident to three edges in F ′

2, namely two edges
in E(C) plus the edge {x, y}. Hence, removing {x, y} will give a new 2-factor,
say F ′′

2 . The modification from F2 to F ′′
2 is exactly the modification made to F2

by the algorithm.
We now show that the two properties are satisfied. Clearly, C is not alter-

nating for F1 and F ′′
2 , so in order to maintain Property (1), we need to show

that C is no longer violated. To do this, we show that (V, F ′′
2) contains a cycle

of size at least 10 that contains x, y and their 4 neighbors in C. First, suppose
by contradiction that after removing {x, y}, x and y are not in the same cycle.
Consider the component of (V, F ′′

2) containing x: starting from x, it alternates
edges in E(C) and paths in F2 \ E(C), starting and ending with an edge in
E(C). By Claim 1 the paths in (V, F2 \ E(C)) have odd length, and hence the
component containing x must be an odd cycle, contradicting the fact that G is
bipartite. So, x and y must be in the same cycle in (V, F ′′

2). This cycle must thus
consist of two odd-length paths from x to y, each starting and ending with an
edge in F ′′

2 ∩ F1. These paths cannot have length 3, because this would imply
that the path plus the edge {x, y} would form a potential 4-cycle. Hence, the
cycle in (V, F ′′

2) containing x and y has size at least 10.
For Property (2), note that any cycle D in (V, F ′′

2) that is not alternating
for F1 and F ′′

2 either (i) existed in (V, F2) and therefore has size at least 10, or
(ii) contains x and y and we showed above that this cycle has size at least 10, or
(iii) it contains a path in (V, F2 \ E(C)) that is not alternating for F1 and F2,
and by the claim this path has length at least 9. Hence, Property (2) is satisfied
by F ′′

2 . ��
Lemma 5. Given a cubic bipartite graph G = (V,E), Algorithm 1 returns a
2-factor in G with at most |V |/8 components.

Proof. By Lemma 1 it suffices to show that the current lemma holds if G has no
potential 4-cycles. By the termination condition of Algorithm 1 and Lemma 2,
the 2-factor returned by the algorithm does indeed have at most |V |/8 compo-
nents, so it remains to show that the algorithm always returns a 2-factor.

By Lemma 4, the algorithm maintains two 2-factors F1 and F2. Observe
that if a cycle C is not violated, then this continues to hold throughout the
remainder of the algorithm: Let D be a cycle of size at least 10 in (V, F2) such

260 A. van Zuylen

that |V (C) ∩ V (D)| ≥ 4. The only possible changes to D will be caused by a
violated cycle C ′, which necessarily contains at most one edge in D: by Lemma 4
C ′ is alternating for F1 and F2, so if C ′ contains more than one edge in D, C ′

cannot be violated. The modification of F2 with respect to E(C ′) can therefore
only cause the cycle D to become a larger cycle D′ where V (D′) ⊇ V (D). So D′

will have size at least 10, and |V (C) ∩ V (D′)| ≥ 4.
It remains to show that if we modify F2 with respect to some violated cycle

C, then C is not violated for the new 2-factor F ′
2. If C is not chordless, then

this holds because C is not alternating for F1 and the new 2-factor F ′
2, so by

Lemma 4, C is not violated. If C is chordless and violated, then by Claim 1,
(V, F2\E(C)) consists of even cycles and odd-length paths. The proof of Lemma 3
then shows that taking the symmetric difference of F2 with E(C) (strictly)
reduces the number of components. This implies that for F ′

2 = F2�E(C), cycle
C is not violated: otherwise, we could apply the same arguments to show that
(V, F2�E(C)�E(C)) has strictly fewer cycles than (V, F2), but this is a contra-
diction since F2�E(C)�E(C) = F2. ��

It is possible to show through an example on 48 nodes that our analysis of
Algorithm 1 is tight. In fact, the example is also tight for the local improvement
heuristic from Sect. 2.1 and for the local improvement heuristic we obtain if we
allow Algorithm 1 to modify F2 for cycles C that are chorded and/or do have
at least two edges in a cycle of size 10 or more in (V, F2). The details of the
example are omitted from this paper due to space constraints, but can be found
in [14].

3 Cubic Graphs

We now consider cubic graphs, in other words, we drop the requirement that
the graph is bipartite. We assume the graph is 2-connected. The best known
approximation result for the graph-TSP on a 2-connected cubic graphs G =
(V,E) is the fact that there exists a tour of length at most

(
4
3 − 1

61236

) |V | by
Correa et al. [6].

One obstacle for their techniques are chorded 4-cycles, i.e., nodes
(v1, v2, v3, v4) such that the subgraph of G induced by {v1, v2, v3, v4} con-
tains edges {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1} and the “chord” {v2, v4}. The
upper bound on the length of the optimal tour proved by Correa et al. [6] is
4
3 |B| + (43 − 1

8748)(|V \B|) + 2, where |B| is the number of nodes contained in a
chorded 4-cycle.

On the other hand, chorded 4-cycles are “beneficial” for the analysis of the
Mömke and Svensson [11] algorithm, and it is not hard to show that the upper
bound on the length of the optimal tour given by their algorithm is 4

3 |V |− 1
6 |B|−2.

Setting the two bounds equal to each other gives |B| = 1
1459 |V | and thus

shows that there exists a polynomial time algorithm for finding a tour of length
at most

(
4
3 − 1

8754

) |V | for a graph-TSP instance on a 2-connected cubic graph
G = (V,E). By an observation of Mömke and Svensson [11], this also implies a

Improved Approximations for Cubic Bipartite and Cubic TSP 261

(
4
3 − 1

8754

)
-approximation algorithm for cubic graph-TSP, i.e., the graph G does

not have to be 2-connected. We thus have the following result.

Theorem 2. There exists a
(
4
3 − 1

8754

)
-approximation algorithm for the Graph-

TSP on cubic graphs.

Acknowledgements. The author would like to thank Marcin Mucha for careful read-
ing and pointing out an omission in a previous version, Frans Schalekamp for helpful
discussions, and an anonymous reviewer for suggesting the simplified proof for the result
in Sect. 3 for cubic non-bipartite graphs. Other anonymous reviewers are acknowledged
for helpful feedback on the presentation of the algorithm for bipartite cubic graphs.

References

1. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-
connected graphs (2011). http://arxiv.org/abs/1101.5586

2. Barnette, D.W.: Conjecture 5. In: Recent Progress in Combinatorics (1969)
3. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: The traveling salesman problem

on cubic and subcubic graphs. Math. Program. 144(1–2), 227–245 (2014)
4. Candráková, B., Lukotka, R.: Cubic TSP - a 1.3-approximation. CoRR

abs/1506.06369 (2015)
5. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman

problem. Report 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA (1976)

6. Correa, J.R., Larré, O., Soto, J.A.: TSP tours in cubic graphs: beyond 4/3. SIAM
J. Discrete Math. 29(2), 915–939 (2015)

7. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-
salesman problem. Oper. Res. 2, 393–410 (1954)

8. Gamarnik, D., Lewenstein, M., Sviridenko, M.: An improved upper bound for the
TSP in cubic 3-edge-connected graphs. Oper. Res. Lett. 33(5), 467–474 (2005)

9. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18, 1138–1162 (1970)

10. Karp, J., Ravi, R.: A 9/7-approximation algorithm for graphic TSP in cubic bipar-
tite graphs. In: Approximation, Randomization, and Combinatorial Optimization
(APPROX-RANDOM). LIPIcs, vol. 28, pp. 284–296. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2014)

11. Mömke, T., Svensson, O.: Approximating graphic TSP by matchings. In: Proceed-
ings of the 52th Annual Symposium on Foundations of Computer Science, pp.
560–569 (2011)

12. Mucha, M.: 13/9-approximation for graphic TSP. Theory Comput. Syst. 55(4),
640–657 (2014)

13. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combi-
natorica 34(5), 597–629 (2014)

14. van Zuylen, A.: Improved approximations for cubic and cubic bipartite TSP. CoRR
abs/1507.07121 (2015)

http://arxiv.org/abs/1101.5586

An Approximation Algorithm for Uniform
Capacitated k-Median Problem with 1 + ε

Capacity Violation

Jaros�law Byrka1, Bartosz Rybicki1(B), and Sumedha Uniyal2

1 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
{jby,bry}@cs.uni.wroc.pl

2 IDSIA, University of Lugano, Lugano, Switzerland
sumedha@idsia.ch

Abstract. We study the Capacitated k-Median problem, for which all
the known constant factor approximation algorithms violate either the
number of facilities or the capacities. While the standard LP-relaxation
can only be used for algorithms violating one of the two by a factor of
at least two, Li [10,11] gave algorithms violating the number of facilities
by a factor of 1 + ε exploring properties of extended relaxations.

In this paper we develop a constant factor approximation algorithm
for hard Uniform Capacitated k-Median violating only the capacities by
a factor of 1 + ε. The algorithm is based on a configuration LP. Unlike in
the algorithms violating the number of facilities, we cannot simply open
extra few facilities at selected locations. Instead, our algorithm decides
about the facility openings in a carefully designed dependent rounding
process.

1 Introduction

In capacitated k-median we are given a set of potential facilities F , capacity
ui ∈ N

+ for each facility i ∈ F , a set of clients C, a metric distance function d
on C ∪ F and an integer k. The goal is to find a subset F ′ ⊆ F of k facilities
to open and an assignment σ : C → F ′ of clients to the open facilities such
that |σ−1(i)| ≤ ui for every i ∈ F ′, so as to minimize the connection cost∑

j∈C d(j, σ(j)). In the uniform capacity case, ui = u, ∀i ∈ F .
The standard k-median problem, where there is no restriction on the number

of clients served by a facility, can be approximated up to a constant factor [3,7].
The current best is the (2.675 + ε)-approximation algorithm of Byrka et al. [5],
which is a result of optimizing a part of the algorithm of Li and Svensson [12].

Capacitated k-median is among the few remaining fundamental optimization
problems for which it is not clear if there exist constant factor approximation
algorithms. All the known algorithms violate either the number of facilities or
the capacities. In particular, already the algorithm of Charikar et al. [7] gave 16-
approximate solution for uniform capacitated k-median violating the capacities

B. Rybicki—Research supported by NCN 2012/07/N/ST6/03068 grant.
S. Uniyal—Partially supported by the ERC StG project NEWNET No. 279352.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 262–274, 2016.
DOI: 10.1007/978-3-319-33461-5 22

An Approximation Algorithm for Uniform Capacitated k-Median Problem 263

by a factor of 3. Then Chuzhoy and Rabani [8] considered general capacities and
gave a 50-approximation algorithm violating capacities by a factor of 40.

Perhaps the difficulty is related to the unbounded integrality gap of the
standard LP relaxation. To obtain integral solutions that are bounded w.r.t.
a fractional solution to the standard LP, one has to either allow the integral
solution to open twice more facilities or to violate the capacities by a factor of
two. Recently, LP-rounding algorithms essentially matching these limits were
obtained [1,4].

Next, Li broke this integrality gap barrier by giving a constant factor algo-
rithm for uniform capacitated k-median by opening (1 + ε)k facilities [10]. The
algorithm is based on rounding a fractional solution to an extended LP. More
recently, he gave an algorithm working with general soft capacities and still open-
ing (1 + ε)k facilities [11]. (In the soft capacitated version we can open multiple
copies of the same facility, whereas in the hard version we can open at most
one copy.) This new algorithm is based on an even stronger configuration LP.
Notably, each of the extended linear programs is not solved exactly by the algo-
rithms, but rather a clever “round-or-separate” technique is applied. This tech-
nique was previously used in the context of capacitated facility location in [2]. It
essentially allows not to solve the strong LP upfront, but only to detect violated
constraints during the rounding process. If a violated constraint is detected, it
is returned back to the “feasibility-checking” ellipsoid algorithm. While it is not
clear if the strong LP with all the constraints can be solved efficiently, it can be
shown that the above described process terminates in polynomial time, see [2].

1.1 Our Results and Techniques

We give an algorithm for uniform capacitated k-median rounding a frac-
tional solution to the configuration LP, from [11], via the “round-or-separate”
technique. We obtain a constant factor approximate integral solution violating
capacities by a factor of 1 + ε. We utilize the power of the configuration LP in
effectively rounding small size facility sets, and combine it with a careful depen-
dent rounding to coordinate the opening between these small sets. The main
result of this paper is described in the following theorem.

Theorem 1. There is a bi-factor randomized rounding algorithm for hard uni-
form capacitated k-median problem, with O(1/ε2)-approximation under 1 + ε
capacity violation.

Our algorithm utilizes the white-grey-black tree structure from [11], but the
following rounding steps are quite different. In particular, the handling of the
small “black components” differs. While aiming for a solution opening (1 + ε)k
facilities Li [11] can treat each black component independently, we are forced
to precisely determine the number of open facilities. Hence we cannot allow
a single black component to individually decide to open more facilities than
in the fractional solution. Instead, we first use a preprocessing step which we
call massage that reduces the variance in the number of open facilities in the
fractional solution within each “black component”. Then we use a form of a

264 J. Byrka et al.

pipeage rounding between the “black components”, that precisely preserves the
total number of open facilities. The tree structure is used to route the demand
to the eventually open facilities.

2 Linear Program

The following is the basic LP relaxation for the problem:

min
∑

i∈F,j∈C d(i, j)xi,j s.t.
∑

i∈F yi = k; (1)

i∈F xi,j = 1 ∀j ∈ C; (2)

(Basic LP)
∑

j∈C xi,j ≤ uiyi ∀i ∈ F ; (3)

0 ≤ xi,j ≤ yj ≤ 1∀i ∈ F, j ∈ C. (4)

In the above LP, yi indicates whether facility i is open or not, and xi,j

indicates whether client j is connected to facility i or not. Constraint (1) is the
cardinality constraint that exactly k facilities are open, Constraint (2) requires
every client j to be connected, Constraint (4) says that a client can only be
connected to an open facility and Constraint (3) is the capacity constraint.

The basic LP has an unbounded integrality gap even if we allow to violate
the cardinality or the capacity constraints by 2 − ε. To overcome this gap, Li
introduced in [11] a stronger LP called the Configuration LP and got a constant
approximation algorithm by opening (1 + ε)k facilities.

To formulate the configuration LP constraints, let us fix a set B ⊆ F of
facilities. Let S = {S ⊆ B : |S| ≤ �1} and S̃ = S ∪ {⊥}, where �1 is some
constant we will define later and ⊥ stands for “any subset of B with size greater
than �1”. We treat set ⊥ as a set that contains all the facilities i ∈ B. For every
S ∈ S̃, let zB

S be an indicator variable corresponding to the event that the set
of open facilities in B is exactly S and zB

⊥ captures the event that the number
of facilities open in B is more than �1. For every S ∈ S̃ and i ∈ S, zB

S,i indicates
the event that set S is open and i is open as well. Notice that when i ∈ S 	= ⊥,
we always have zB

S,i = zB
S . For every S ∈ S̃, i ∈ S and j ∈ C, zB

S,i,j indicates the
event that zB

S,i = 1 and j is connected to i. The following are valid constraints
for any feasible integral solution.

∑

S∈S̃
zBS = 1; (5)

∑

S∈S̃:i∈S

zBS,i = yi∀i ∈ B; (6)

∑

S∈S̃:i∈S

zBS,i,j = xi,j∀i ∈ B, j ∈ C;

(7)

0 ≤ zBS,i,j ≤ zBS,i ≤ zBS ∀S ∈ S̃, i ∈ S, j ∈ C;
(8)

zBS,i = zBS ,∀S ∈ S, i ∈ S; (9)
∑

i∈S

zBS,i,j ≤ zBS ∀S ∈ S̃, j ∈ C;

(10)
∑

j∈C

zBS,i,j ≤ uiz
B
S,i∀S ∈ S̃, i ∈ S;

(11)
∑

i∈B

zB⊥,i ≥ �1z
B
⊥ . (12)

An Approximation Algorithm for Uniform Capacitated k-Median Problem 265

Constraint (5) says that exactly one set S ∈ S̃ is open. Constraint (6) says
that if facility i is open then zB

S,i = 1 for exactly one set S ∈ S̃. Constraint
(7) says that if j is connected to i then zB

S,i,j = 1 for exactly one set S ∈ S̃.
Constraint (10) says that if zB

S = 1, then j can be connected to at most 1
facility in S. Constraint (11) is the capacity constraint. Constraint (12) says
that if zB

⊥ = 1, then at least �1 facilities in B are open.
The configuration LP is obtained by adding the above set of constraints

for all subsets B ⊆ F . As there are exponentially many sets B, we do not
know how to solve this LP. But given a fractional solution (x, y), for a fixed
set B, we can construct the values of the set of variables z (see [11]) and also
check the constraints in polynomial time since the total number of variables and
constraints is nO(�1). We apply method that has been used in, e.g., [10,11]. Given
a fractional solution (x, y) to the basic LP relaxation, our rounding algorithm
either constructs an integral solution with the desired properties or outputs a
set B ⊆ F for which one of the Constraints (5) to (12) is infeasible. In the latter
case, we can find a violating constraint and feedback it to the ellipsoid method.

3 Rounding Algorithm

Focus on an optimal fractional solution (x, y) to the basic LP. Let dav(j) =∑
i∈F d(i, j)xi,j be the average connection cost of a client j ∈ C. Let d(S, T) =

mini∈S,j∈T d(i, j), for any S, T ⊆ C ∪ F . Also let, d(i, S) = d({i}, S). Note
that the value of the LP solution (x, y) is LP :=

∑
(i,j)∈F×C d(i, j)xi,j =

∑
j∈C dav(j). For any set F ′ ⊆ F of facilities, let yF ′ := y(F ′) :=

∑
i∈F ′ yi

be the volume of the set F ′. For any set F ′ ⊆ F and C ′ ⊆ C of clients, let
xF ′,C′ :=

∑
(i,j)∈F ′×C′ xi,j . Also let, xi,C′ := x{i},C′ and xF ′,j := xF ′,{j}.

Definition 1. Let Di :=
∑

j∈C xi,jd(i, j) and D′
i :=

∑
j∈C xi,jdav(j) for each

i ∈ F . Let DS := D(S) :=
∑

i∈S Di and D′
S := D′(S) :=

∑
i∈S D′

i for every
S ⊆ F , Obviously DF = D′

F = LP.

First we will partition facilities into clusters (as done in [4,10]). Each cluster will
have a client v as its representative. We denote the set of cluster representatives
by R. Each cluster will contain the set of facilities nearest to a representative
v ∈ R and the fractional number of open facilities in each cluster will be bounded
below by 1 − 1

� . Let Uv be the set of facilities in the cluster corresponding to
representative v ∈ R. For any set J ⊆ R of representatives, we use UJ :=
U(J) =

⋃
v∈J Uv. Constants � := O(1/ε) and �1 := �2 are integers, which we

will define later. Since the clustering procedure is the same as in [4,10], we omit.
The following Claim (see Claim 4.1 in [10]) captures the key properties of the
clustering procedure.

Claim 1. The following statements hold:

1. for all v, v′ ∈ R, v 	= v′, we have d(v, v′) > 2�max{dav(v), dav(v′)};
2. for all j ∈ C, ∃v ∈ R, such that dav(v) ≤ dav(j) and d(v, j) ≤ 2�dav(j);

266 J. Byrka et al.

3. yUv
≥ 1 − 1/� for every v ∈ R;

4. for any v ∈ R, i ∈ Uv and j ∈ C, we have d(i, v) ≤ d(i, j) + 2�dav(j).

We partition the set of representatives R build a tree and color its edges in
the same way as Li [11]. To partition R, we run the Kruskal’s algorithm to find a
minimum spanning tree of R. In the Kruskal’s algorithm we maintain a partition
J of R and the set of selected edges EMST . Initially J = {{v} : v ∈ R} and
EMST is empty. The length of each edge (u, v) ∈ (

R
2

)
is the distance between

u and v. We sort all edges in
(
R
2

)
by length, breaking ties in an arbitrary way.

For each edge (u, v) in this order if u and v are not in the same group in J , we
merge the two groups and add edge (u, v) to EMST .

We now color edges of EMST . For every v ∈ R, we know that y(Uv) ≥ 1−1/�.
For any subset of representatives J ⊆ R we say that S is big if y(UJ) ≥ � and
small otherwise. For each edge e ∈ EMST we consider the step in which edge
e = (u, v) was added by the Kruskal’s algorithm to MST. After the iteration we
merge groups Ju (containing u) and Jv (containing v) to one group Ju ∪ Jv. If
both Ju and Jv are small, then we paint edge e in black. If both are big, we
paint the edge e white. Otherwise if one is small and the other is big then we
direct the edge e towards the big group and paint it grey.

Consider only the black edges from EMST . We define a black component of
MST as a connected component in this graph. The following claim (see Claim
4.1 in [11]) is a consequence of the fact that J ⊆ R appears as a group at some
step of the Kruskal’s algorithm.

Claim 2. Let J be a black component, then for every black edge (u, v) in
(
J
2

)
,

we have d(u, v) ≤ d(J,R \ J).

We contract all the black components and remove all the white edges from
MST. The obtained graph Υ is a forest. Each node p (vertex in the contracted
graph) in Υ corresponds to a black component and each grey edge is directed.
Let Jp ⊆ R be the set of representatives corresponding to node p. Abusing the
notation slightly, we define Up := U(Jp) =

⋃
v∈Jp

Uv. Lets define yp := y(Up).
The following lemma follows from the way in which we create our forest. Proof
can be found in [11].

Lemma 1. For any tree τ ∈ Υ , the following statements are true:

1. τ has a root node rτ such that all the grey edges in τ are directed towards rτ ;
2. Jrτ

is big and Jp is small for all other nodes in τ ;
3. in any leaf-to-root path of τ , the lengths of grey edges form a non-increasing

sequence;
4. for any non-root node p ∈ τ , the length of the grey edge in τ connecting p to

its parent is exactly d(Jp, R \ Jp);

Consider a tree τ ∈ Υ . We group the black components of τ top down into sub-
trees choosing grey edges in increasing order of their lengths until the volume of
the group just exceeds �.

An Approximation Algorithm for Uniform Capacitated k-Median Problem 267

Definition 2. A black component is called a singleton component if it contains
only a single node corresponding to some v ∈ R. A singleton component which
is the very root of some tree τ ∈ Υ , is called a singleton root component.

Observation 1. Consider tree τ ∈ Υ . The root-group G has volume at least �. If
the root-group is not a singleton root component, then it has volume at most 2�.
The leaf-groups might have volume smaller that �. All the other internal-groups
have volume in the range [�, 2�).

From now on we will slightly abuse the notation and instead of zUp and
xUp

we will write zp and xp, respectively. Also, we will assume that any black
component Up corresponding to a node p ∈ Υ satisfies the Configuration LP
Constraints (5) to (12). If not, then we find the violating constraint and we
recompute the LP by applying the ellipsoid method.

In the next lemma we consider edges related to a group G. The proofs for all
the lemmas can be found in [6].

Lemma 2. For any tree τ , group G and black component p ∈ G, the following
properties hold:

1. the total number of grey or black edges within G is at most O(�);
2. any grey edge entering G is longer (or equal) to any grey or black edge in G;
3. the total length of the path (including both grey and black edges), from any

node v ∈ Jp to the root r of the group G, is at most O(�)d(Jp, R \ Jp); and
4. the length of the path from v ∈ Jp to the root r′ of its parent group G′ (if it

exists) is O(�)d(Jp, R \ Jp).

Lemma 3. Consider any representative v ∈ R. We can construct a new solution
{x′, y′, z′} such that all the facilities from set Uv are collocated with v. The cost
of the new solution is at most O(�)LP.

For any black component p ∈ Υ , let ẏp =
∑

S∈S |S|z′p
S

1−z′p
⊥

=
∑

i∈S,S∈S z′p
S,i

1−z′p
⊥

and
y′

p =
∑

i∈Up
y′

i =
∑

i∈S,S∈S̃ z′p
S,i =

∑
S∈S |S|z′p

S,i +
∑

i∈Up
z′p

⊥,i. Moreover, we
define π(Jp) :=

∑
j∈C xp,j(1 − xp,j) for any p ∈ Υ .

Next we show that, we can pre-process each black component p by opening
a set randomly from S and pre-assigning some clients to the open set. We send
the demand of the rest of the clients that was served by p, to the root of the
parent group. To do that, we first reduce the variance in the size of sets in S.

For the |C| = ku case, we perform a massage process in which we move
facilities from bigger sets to smaller ones, until the size of each set is either �ẏp
or �ẏp�. Using the saturation property, we can reroute the demand of clients
assigned to these facilities, so that the final solution remains feasible. We scale
up the opening values of these sets, so that the expected size of sets in S is ẏp.

For the general case, instead, we use a brutal massage process in which we
pick a prefix of the smallest sets in set S, such that their total opening value is
at least a constant. Then we add some extra facilities to the selected sets and

268 J. Byrka et al.

scale up the opening values of these sets, so that the sets have size either �ẏp
or �ẏp� and the total opening is exactly ẏp.

In both cases, we pick a set randomly and pre-assign some clients based on
their connection values. The intuition is that the clients which are served by
more than 1 − ε′ by the black component p, get assigned to the selected set with
high probability and the demand of the other clients can travel to the root of
the parent group by paying the total cost of O(�2)LP.

Lemma 4. Let p ∈ Υ be a black component and Up satisfies yp ≤ 2� and let Zp ∈
{0, 1} be a random variable, such that E[Zp] = ẏp − �ẏp. Moreover, constraints
(5) to (12) are satisfied for the solution {x′, y′, z′} and Up. Then, we can pre-open
a set S ⊆ Up of expected cardinality ẏp, where |S| = �ẏp + Zp, and pre-assign a
set C ′ ⊆ C of clients to S such that

1. each facility i ∈ S is pre-assigned at most u clients
2. expected cost of sending not assigned demand xp,C\C′ to the root of the parent-

group is at most O(�2)d(Jp, R \ Jp)π(Jp)
3. Pr[|S| = �ẏp] = ẏp − �ẏp and Pr[|S| = �ẏp�] = 1 − (ẏp − �ẏp)
4. expected cost of pre-assignment and local moving of xp,C\C′ is at most

O(�)
∑

j∈C,i∈Up

d(i, j)x′
i,j .

3.1 Dependent Rounding

We will use a dependent rounding (DR) procedure, described in [9], to decide if a
particular variable should be rounded up or down. It transforms fractional vector
{v̄i}n

i=1 to a random integral vector {v̂i}n
i=1. DR procedure has the following

properties:

1. Marginal distribution: Pr[v̂i = 1] = v̄i

2. Sum-preservation:
∑n

i=1 v̂i ∈ {�∑n
i=1 v̄i, �

∑n
i=1 v̄i�}.

In our procedure we first fix a tree τ ∈ Υ . Then we choose a pair of fractional
black components according to a predefined order. After that we increase the
opening of one and decrease the opening of the other in a randomized way.
After each such iteration, at least one black component has an integral opening.
Based on the value of the integral opening y′′′

p ∈ {�ẏp, �ẏp�} decided for a
black component p ∈ Υ , we will select a set of facilities S ∈ S : |S| = y′′′

p in a
random way (for details see Lemma 4). First we do dependent rounding among
the black components of the children groups of each parent group. After this step
each group G will have at most one fractional black component among all black
components in its children groups, and the total opening (capacity) within these
black components will be preserved. Finally, once we complete this rounding
phase for all the trees in Υ , then we will do dependent rounding among all the
remaining fractional black components across all the trees in Υ in an arbitrary
order. The procedure will preserve the sum of facility openings, hence in the end
we will open exactly k facilities.

An Approximation Algorithm for Uniform Capacitated k-Median Problem 269

In the “rounding among children groups” step, we will do the rounding among
the black components within the children-groups of a group G in an order defined
by non-decreasing distance of these black components to the root r of the parent
group G (breaking ties arbitrarily). This way, we would have an extra property on
the number of open facilities for every prefix in this order of the black components
belonging to the children-groups of group G.

Before we start the rounding procedure, we will send exactly
∑

i∈Up
z′p

⊥,i −
ẏpz

′p
⊥ opening, from each black component p, to a virtual black component vG

co-located with the root of the group. Note that since z′p
⊥ = zp

⊥ and z′p
⊥,i = zp

⊥,i,
we can use z instead of z′. Let us define ẏvG =

∑
p∈G

∑
i∈Up

zp
⊥,i − ẏpz

p
⊥. We

will call this the blue opening. We will treat this blue opening, co-located with
the root, as a virtual black component. Since we are in the uniform capacity
case, by loosing a constant factor we can assume that F = C [10]. Moreover we
can work with soft capacitated version of the problem due to Theorem 1.2 in
[10]. Hence, for the blue opening, we can simply open the decided number of
co-located facilities at the virtual black component. By BCG(G) we denote a set
of all, virtual or not, black components in the children groups of group G. Note
that, from now on the group G also contains the virtual black component vG .

Consider the root group of the tree τ . If it is a singleton root component then
we classify it as a virtual black component, otherwise we treat it as a standard
black component. Note that the sum ẏp +

∑
i∈Up

z′p
⊥,i − ẏpz

′p
⊥ =

∑
i∈Up

zp
⊥,i +

(1 − zp
⊥)ẏp = yp = y′

p. Hence, the total opening across all the black components
is exactly equal to k.

Lemma 5. For any group G, the total demand is at most (1+O(1/�))
∑

p∈G uẏp.

For simplicity of exposition, we will say that a black component p is closed, if
the procedure decides to round down the opening of that component to �ẏp,
otherwise we say it is opened.

In this dependent rounding procedure, in contrast to [4], we will also be able
to pull demand to the black components where we decided to open an extra
facility. Cost of pulling can be bounded by the LP cost for sending the demand
out of a black component. This new strategy is crucial to bring down the capacity
violation from 2 + ε to 1 + ε.

3.2 Rounding Among Children Groups

Consider any tree τ ∈ Υ and its root r. For simplicity of description, we add a
fake single node parent group and attach the root r to this fake group node with
a grey edge of length exactly d(Jp, R \ Jp), where p corresponds to the only the
black component in the root group. Notice that from now on even the original
root group is a child-group of some other group.

In the first phase of dependent rounding, we select the deepest (w.r.t. the
number of edges) leaf-group and let its parent group be G. Let ȳp = ẏp −�ẏp for
each p ∈ Υ . For performing this dependent rounding procedure within children
groups of G, we use the root r of G as a accumulator, which will temporarily store
all the not assigned demand from children groups of G. Let nG = |BCG(G)|.

270 J. Byrka et al.

To perform the dependent rounding procedure, we would order the com-
ponents in BCG(G) = {p1, p2, . . . pnG } by non-decreasing distance from the
root r of G, so d(pi, r) ≤ d(pi+1, r) for i < nG . We define the vectors
ẏG = (ẏp1 , ẏp2 , . . . ẏpnG) and ȳG = (ȳp1 , ȳp2 , . . . ȳpnG). Now we apply dependent
rounding between the two fractional components in the ith prefix of vector ȳG ,
for each i starting from i = 2 until i = nG . Note that, after applying dependent
rounding on the ith prefix of ȳG , at most one component will remain fractional in
the prefix and one will become integral. If the black component p which become
integral is not virtual, we apply Lemma 4, with r ∈ G as a root and, with
Zp = 1 if component is open and Zp = 0 if it is closed. Let the output vector be
ZG = (Zp1 , Zp1 , . . . ZpG). If

∑
i ȳG(i) is not integral then the output vector will

have one fractional variable, otherwise it will be a vector of all integral values.
Notice that by the property (1) of dependent rounding E[Zp] = ȳp and by the
property (2) the sum of the facility opening ẏp is preserved.

From now on, we will ignore the presence of all the children of the group G in
our procedure. We repeat this process until our tree τ has only the added fake
group left. Note that the root group will contain at most one black component
which is fractional. After we finish the first phase, for each group G, at most one
component of ZG will be fractional.

For any vector v, let v[i1, i2] =
∑i2

k=i1
v(k). Due to the ordering which we

follow in the above dependent rounding procedure and the fact that we didn’t
move any opening out of (or into) set BCG(G) for each group G, the following
observation holds.

Observation 2. After the first phase of the rounding procedure, ZG [1, i] ∈
[�ȳG [1, i], �ȳG [1, i]�] holds for each i and, for each non-leaf group G. Moreover,
ZG [1, nG] = ȳG [1, nG].

Once we complete phase one of rounding for each tree τ ∈ Υ , the second phase
of the rounding procedure starts. In the second phase of the rounding procedure
we just apply dependent rounding among all the remaining fractional variables,
in an arbitrary order, until everything is integral. We apply Lemma 4 to all
the non-virtual components with Zp = 1, if it was open, and Zp = 0 otherwise.
Notice that for the black component from the root group we will use the root of a
fake group as an accumulator. We open �ẏvG � facilities in each virtual component
vG if it was rounded up, and �ẏvG otherwise.

Since the last fractional component in BCC(G) could be either opened or
closed, the total ZG [1, nG] is either �ȳG [1, nG] or �ȳG [1, nG]� respectively. And
since each of the components of vector Z is integral, the following observation
is true.

Observation 3. After the second phase of the rounding procedure, ZG [1, i] ∈
{�ȳG [1, i], �ȳG [1, i]�} holds for each i and, for each non-leaf group G.
Lemma 6. The cost of moving the demand from all black components to their
respective accumulators can be bounded by

∑
p∈Υ O(�2)d(Jp, R \ Jp)π(Jp).

An Approximation Algorithm for Uniform Capacitated k-Median Problem 271

3.3 Pulling Back Demand to the Open Facilities

Now we will define a single-commodity flow corresponding to distributing the
demand from the accumulator co-located with the root of some non-leaf group to
the open facilities in its children groups, for each tree τ ∈ Υ . To do this, we
will pull back demand to the black components in a greedy way by pulling the
demand first to the component belonging to BCG(G) which is closest to the root
r. We can bound the cost of pulling demand to the open facilities by charging it
to the cost of pushing the demand to the root bounded in Lemma 6. The intuition
is, since we are pulling back the demand in a greedy fashion, we can argue that
for every demand, the distance which it will travel in the pulling phase is at
most the distance it traveled to reach the accumulator r in the pushing phase.
Since the cost for pushing is bounded by O(�2)

∑
p∈BCG(G) d(Jp, R \ Jp)π(Jp)

(see Lemma 6), hence by the above claim the cost of pulling back the demand
is bounded as well.

In this procedure, we first fix a tree τ ∈ Υ . Consider a non-leaf group G of
τ and the set BCG(G). In the pre-assignment step (Lemma 4), let qp be the
amount of demand we assigned to the open facilities in each black component
p ∈ BCG(G). Notice that for any virtual black component p ∈ BCG(G) we
didn’t assign any demand in a pre-assignment, so qp = 0. Now we define vector
qG = (qp1 , qp1 . . . , qpnG), to be the vector of the pre-assigned demand, which
respects the same order of the components as in vector ẏG .

Now we describe the pulling back procedure which we call the greedy pulling
process. First, we freeze (1 + O(1/�))u units of demand at the accumulator r of
group G. Next we start pulling the rest of the demand to the black components
BCG(G). We do the pulling process in the same greedy order in which we did
the dependent rounding among the black components BCG(G), i.e. starting from
the component closest to r. By definition, the vectors ẏG , ZG and qG respect this
ordering. We start pulling the demand equal to (1+O(1/�))(ZG(i)+�ẏG(i))u−
qG(i) from the accumulator r to the ith component starting from i = 1, until we
have no more demand to pull. We do this process for each non-leaf group G in
all the trees in our forest Υ .

Observation 4. After the greedy pulling process, each black component p ∈
BCG(G) has a capacity violation by a factor of at most (1 + O(1/�)).

Lemma 7. After the greedy pulling procedure, the left over demand at any accu-
mulator r of some non-leaf group G is exactly equal to u(1 + O(1/�)); which is
the demand frozen at the beginning.

Lemma 8. For any non-leaf group G, the distance travelled by any demand in
the greedy pulling phase is at most the distance travelled by it in the dependent
rounding phase.

Now we would distribute the demand received by any black component p to the
actual open facilities (which are located at the representatives Jp), such that
each facility has a capacity violation of at most 1+O(1/�). The following lemma
bounds the cost of this step.

272 J. Byrka et al.

Lemma 9. Any demand that a black component p received in the greedy pulling
back process can be distributed to the open facilities within p. The distance trav-
elled by the demand received by p in this procedure is at most O(�)d(Jp, R \ Jp).

3.4 Distributing Frozen Demand to the Open Facilities

Now, we distribute the frozen (1 + O(1/�))u units of demand located at the
accumulators over some open facilities, such that each open facility gets at most
uO(1/�) more demand. Let us fix a tree τ ∈ Υ . To do this distribution, we first
send (1+O(1/�))u units of demand from each of the non-fake accumulator to the
accumulator of his parent group. Note that, using Lemma 2, we can bound the
cost for this movement by paying an additive factor of O(�)d(Jp, R \ Jp) in the
distance moved by this demand in Sect. 3.2. Let r be the accumulator belonging
to the group G, which received |CG |(1 + O(1/�))u = O(u|CG |) units of demand
from the accumulators of the non-leaf children groups CG of the group G in the
tree τ . Note that, |CG | ≤ nG , since G may have children which are leaf-groups.
We start sending O(1/�)u(�ẏG(i) + ZG(i)) units of demand to the ith black
component (in the same greedy order defined by the vector ẏG) in the BCG(G),
starting from i = 1, until we have no more demand left with r.

Lemma 10. After the distribution procedure for some accumulator r belonging
to the group G, all the demand which r received from the accumulators of his
non-leaf children groups will be distributed fully.

By an argument similar to Lemma 9, we can send this demand to any open
facility within p, by loosing an additive factor of O(�)d(Jp, R\Jp) in the distance
traveled by the demand. Hence, this shows that we can distribute all the demand
received by r from his children-accumulators, corresponding to groups CG , among
the open facilities within black components in BCG(G), such that each facility
receives at most an extra O(1/�)u units of demand. We keep on doing this process
bottoms-up, until we reach the very root fake accumulator. Now, for the demand
located in the fake accumulator, we just distribute that demand over the open
facilities in the very root group of the tree, which was using this accumulator.
Note that since the very root group comprises of only one black component with
O(�) opening, there will be at least O(�) open facilities in this component and
again we will send O(1/�)u units of extra demand to all the open facilities in
the very root black component. By Lemma 1, each edge in the black component
p has length at most d(Jp, R \ Jp) and by Lemma 2 the number of edges in
the group is O(�). Hence, by loosing an additive factor of O(�)d(Jp, R \ Jp) in
the distance traveled by the demand, we can distribute this demand over open
facilities in this black component.

In the following lemma, we bound the cost of distributing the frozen demand
by the upper bound which we use to bound the cost of moving this demand from
black components in BCG(G) to the accumulator.

Lemma 11. The distance travelled by any demand from each non-fake accu-
mulator group G in the above re-distribution process is bounded above by

An Approximation Algorithm for Uniform Capacitated k-Median Problem 273

O(�)d(Jp, R \ Jp), which is also a bound on the distance it travelled to reach
the accumulator in the dependent rounding phase.

Proof. (Theorem 1). We modify the initial solution by “moving” all facilities
to their respective representatives (see Lemma 3). The obtained solution has
cost O(�)LP. In the Lemma 4, we pre-assign some demand and all the other
demand we send to the respective accumulators. The cost of this operation is∑

p∈Υ

∑
j∈C,i∈Up

O(�)d(i, j)x′
i,j + O(�2)

∑
p∈Υ d(Jp, R \ Jp)π(Jp) ≤ O(�2)LP.

The last inequality follows from [11]. By the Lemmas 8, 9 and 11, we can bound
the distance travelled by any demand in Sects. 3.3 and 3.4 by the distance it trav-
elled in Sect. 3.2. This implies that the cost of moving the demand in Sects. 3.3
and 3.4 is bounded by O(�2)LP. Hence, overall the connection cost of our algo-
rithm is O(�2)LP.

From the Observation 4 we know that the capacity violation of each facility
is at most 1 + O(1/�). Moreover in Sect. 3.4, we increase the capacity violation
of each facility by at most O(1/�). So the final capacity violation is 1 + O(1/�),
which ends the proof of the theorem.

4 Concluding Remarks

We showed that Configuration LP helps obtaining an algorithm with 1+ε capac-
ity violation for uniform capacities. It remains open if a similar result is possible
for general capacities. It seems that the difficulty of generalizing our algorithm
to general case lies in the dependent rounding. It is hard to control the number
of open facilities and the capacities at the same time.

References

1. Aardal, K., van den Berg, P.L., Gijswijt, D., Li, S.: Approximation algorithms for
hard capacitated k-facility location problems. Eur. J. Oper. Res. 242(2), 358–368
(2015)

2. An, H.-C., Singh, M., Svensson, O.: LP-based algorithms for capacitated facility
location. In: IEEE 55th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 256–265. IEEE (2014)

3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

4. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algo-
rithms for hard capacitated k-median problems. In: Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 722–
736. SIAM (2015)

5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median, and positive correlation in budgeted optimization. In: Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 737–756. SIAM (2015)

6. Byrka, J., Rybicki, B., Uniyal, S.: An approximation algorithm for uniform capaci-
tated k-median problem with 1+ε capacity violation. CoRR abs/1511.07494 (2015)

274 J. Byrka et al.

7. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation
algorithm for the k-median problem. In: Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pp. 1–10. ACM (1999)

8. Chuzhoy, J., Rabani, Y.: Approximating k-median with non-uniform capacities. In:
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 952–958. Society for Industrial and Applied Mathematics (2005)

9. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding
and its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)

10. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. In: Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 696–707. SIAM (2015)

11. Li, S.: Approximating capacitated k-median with (1 + ε)k open facilities. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 786–796. SIAM (2016)

12. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. In: Pro-
ceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pp. 901–910. ACM (2013)

Valid Inequalities for Separable Concave
Constraints with Indicator Variables

Cong Han Lim1, Jeff Linderoth2(B), and James Luedtke2(B)

1 Department of Computer Sciences,
University of Wisconsin-Madison, Madison, WI, USA

conghan@cs.wisc.edu
2 Department of Industrial and Systems Engineering,
University of Wisconsin-Madison, Madison, WI, USA

{linderoth,jim.luedtke}@wisc.edu

Abstract. We study valid inequalities for a set relevant for optimization
models that have both binary indicator variables, which indicate positiv-
ity of associated continuous variables, and separable concave constraints.
Such models reduce to a mixed-integer linear program (MILP) when the
concave constraints are ignored, and to a nonconvex global optimiza-
tion problem when the binary restrictions are ignored. In algorithms to
solve such problems to global optimality, relaxations are traditionally
obtained by using valid inequalities for the MILP ignoring the concave
constraints, and by independently relaxing each concave constraint using
the secant obtained from the bounds of the associated variable. We pro-
pose a technique to obtain valid inequalities that are based on both
the MILP and the concave constraints. We begin by analyzing a low-
dimensional set that contains a single binary indicator variable, a single
concave constraint, and three continuous variables. Using this analysis,
for the canonical Single Node Flow Set (SNFS), we demonstrate how
to “tilt” a given valid inequality for the SNFS to obtain additional valid
inequalities that account for separable concave functions of the arc flows.
We present computational results demonstrating the utility of the new
inequalities on a fixed plus concave cost transportation problem. To our
knowledge, this is one of the first works that simultaneously convexifies
both nonconvex functions and binary variables to strengthen the relax-
ations of practical mixed integer nonlinear programs.

Keywords: Mixed integer nonlinear programming · Global optimiza-
tion · Valid inequalities

1 Introduction

We study a nonlinear, mixed-integer set composed of a base polyhedron, a collec-
tion of indicator variables, and the (nonconvex) epigraphs of univariate concave
functions. Specifically, using notation [n] = {1, . . . , n}, we study the intersection
of a polyhedron P ⊆ R

n, the variable bound set,

Z := {(x, z) ∈ R
n × B

n : �izi ≤ xi ≤ uizi for i ∈ [n]},

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 275–286, 2016.
DOI: 10.1007/978-3-319-33461-5 23

276 C.H. Lim et al.

and the component-wise epigraphs of n univariate concave functions {f1, . . . , fn},
fi : R → R,

T = {(x, t) ∈ R
2n : ti ≥ fi(xi), 0 ≤ xi ≤ ui for i ∈ [n]}.

Finding valid inequalities for the set

X := {(x, t, z) ∈ R
2n × B

n : x ∈ P, (x, z) ∈ Z, (x, t) ∈ T } (1)

is the focus of our work. For each i ∈ [n], we assume WLOG that fi(0) = 0,
�i < ui, and for simplicity of presentation we assume that �i ≥ 0. We frequently
abuse notation and perform set intersection between sets with different domains.
For A ⊆ {(a, b) ∈ A × B} and B ⊆ {(b, c) ∈ B × C}, we let A ∩ B = {(a, b, c) ∈
A × B × C : (a, b) ∈ A and (b, c) ∈ B}. With this abuse of notation, we can say
that X = P ∩ Z ∩ T . Using the facts that conv(P ∩ Z) is a polyhedron, and T
is the Cartesian product of the epigraphs of univariate concave functions, it is
easy to establish that conv(X) is a polyhedron, see e.g., Theorem I.1 in [10].

Relaxations of the set X appear as substructures in many important opti-
mization problems. For example, in the case we focus on in this paper, if P is
a single flow constraint, P SNFS :=

{
x ∈ R

n
+ :

∑
i∈N+ xi − ∑

i∈N− xi ≤ d
}
, then

the set P SNFS ∩ Z is the well-studied single node flow set, which arises naturally
in many important practical applications such as production planning and for
which many classes of strong valid inequalities are known [7,15]. When P is the
network-flow polytope, the set P ∩ T (i.e., without indicator variables) is the
feasible region of the minimum concave-cost network flow problem (MCNFP) [9].
The MCNFP arises in many application areas, including production planning,
communication network design, facility location, and VLSI design, where the
concave functions typically model economies of scale.

The set X also occurs as a relaxation of formulations of engineering design
problems that involve a non-linear relationship between input and output vari-
ables. For example, the set X arises in water and gas-network design problems
[4,12,18], where the nonlinearity models the pressure loss across a pipe, and
the binary variables are used to model network design decisions. Even if the
nonlinear functions are not concave, to build a valid relaxation, we typically
must understand how to convexify both the convex and concave parts of a func-
tion. Thus, the set X can be an important building block for building strong
relaxations to many engineering design problems.

In recent years, there has been significant research studying structured mixed
integer nonlinear sets, where the nonlinear functions are convex [1,5,6] There is
relatively less research studying the structure of specific mixed integer nonlinear
sets where the nonlinear functions are nonconvex. In [16], the authors study a
set that contains a nonconvex constraint arising from product blending in com-
bination with binary variables that are used to model fixed costs. The authors
of [11] derive valid inequalities for nonlinear (nonconvex) network design prob-
lems using optimality considerations of subproblems where the integer variables
are fixed. A lifting procedure is applied to include the binary variables in the
inequality and to make them globally valid.

Valid Inequalities for Separable Concave Constraints 277

This work adds to the growing literature that studies structured, nonconvex,
mixed-integer nonlinear sets. The remainder of the extended abstract is divided
into five sections. In Sect. 2, we show that conv(Z ∩ T) is a simple polyhedral
set consisting of a strengthened version of secant inequalities from T . Thus, we
argue that in order to get stronger relaxations of X , we must simultaneously
consider each of the sets whose intersection forms X = P ∩ Z ∩ T . In Sect. 3,
we build a simple, low-dimensional set derived from valid inequalities for P ∩Z,
and we describe how to use this set to construct a valid inequality for X . In
Sect. 4, we demonstrate how to apply the methodology from Sect. 3 when the
set P ∩ Z is the single node flow set. We derive a new class of strong valid
inequalities called Tilted Simple Generalized Flow Cover Inequalities (TSGFCI)
for X . Section 5 contains a computational study where we demonstrate that
applying the TSGFCI inequalities to a fixed plus concave cost transportation
problem can result in significant speedups to state-of-the-art global optimization
software. We make concluding remarks in Sect. 6. Due to space limitations, nearly
all proofs are omitted from this extended abstract.

2 Motivation: The Set Z ∩ T

The standard methodology used to solve optimization problems involving non-
convex structures such as X to global optimality is to create a convex relaxation
of X and then to refine the relaxation over the feasible region via a branch-
and-bound approach. The most natural way to create a convex relaxation of
X , employed by employed by state-of-the-art software such as BARON [17],
ANTIGONE [13], and SCIP [3], is to relax the integrality requirements on binary
variables in Z,

R(Z) := {(x, z) ∈ R
n × [0, 1]n : �izi ≤ xi ≤ uizi for all i ∈ [n]},

and to underestimate the concave functions fi(·) using the secant intersecting
the graph of the function at the endpoints of its domain,

S(T) :=
{

(x, t) ∈ R
2n : ti ≥ f(0) +

fi(ui) − fi(0)
ui − 0

(xi − 0) for i ∈ [n]
}

.

The polyhedron R(X) := P ∩R(Z)∩S(T) is a relaxation that can be employed
within a branch-and-bound approach to optimize over X .

The constraints in the set Z enforce the logical conditions that if the binary
variable zi = 0, then the associated variable xi = 0 as well. Using this fact,
one can strengthen the relaxation R(X) using the set of strengthened secant
inequalities

S+(T , Z) :=
{

(x, t, z) ∈ R
3n : ti ≥ f(�i)zi +

fi(ui) − fi(�i)

ui − �i
(xi − �izi) for i ∈ [n]

}
.

The set S+(T ,Z) forms the basis of the strongest possible convex relaxation
of the X when the constraints in P are ignored. The proof of the following result
is based on standard results on the convex hull of the union of polyhedra [2].

278 C.H. Lim et al.

Proposition 1. conv(Z ∩ T) = R(Z) ∩ S+(T ,Z).

Proposition 1 implies that the strengthened secant inequalities yield the
strongest relaxation we can obtain of X if we ignore the interaction between
P and Z ∩ T . Thus, we next investigate a methodology that can simultaneously
consider portions of all components of the structure of P ∩ Z ∩ T .

3 A Low-Dimensional Mixed-Integer Nonlinear Set

Our goal is to derive valid inequalities for the set X , based on known valid
inequalities for the set P ∩ Z. To this end, in this section, we consider a set
defined by two continuous variable x and s, where the variable x has associated
with it a binary indicator variable z and continuous variable t used to model
f(x). In addition to the constraints relating x to t and z, the set contains two
inequalities which we interpret as being derived from valid inequalities for the
set P ∩ Z. We investigate the convex hull of two closely related variants of this
set. These results form the base of a general methodology for constructing valid
inequalities for our the set X = P ∩ Z ∩ T , defined in (1).

Let f : R → R be a concave function with f(0) = 0, α, β be positive real
numbers, and �, u, γ ∈ R with � < β/α < u. We define the following mixed-
integer linear sets

S≥ := {(s, x, z) ∈ R
2 × B : s + αx − βz ≥ γ, s ≥ γ, �z ≤ x ≤ uz}

and

S≤ := {(s, x, z) ∈ R
2 × B : s + αx − βz ≤ γ, s ≤ γ, �z ≤ x ≤ uz}.

We are interested in studying valid inequalities for the following mixed-
integer nonlinear sets:

ST≥ := {(s, x, t, z) ∈ R
3 × B : (s, x, z) ∈ S≥, t ≥ f(x)}

and ST≤ which is defined similarly, with S≥ replaced by S≤. We assume that

f(β/α) > f(�) +
(

f(u) − f(�)
u − �

)

(β/α − �) (2)

since otherwise f is linear in the range [�, u]. The analysis of the sets ST≥ and
ST≤ is nearly identical, so we focus our analysis on ST≥ and then just present
the results for ST≤.

We begin by analyzing the extreme points of conv(ST≥). We first consider
the set that is obtained when z = 1:

ST 1
≥ := {(s, x, t) ∈ R

3 : s + αx ≥ γ + β, s ≥ γ, � ≤ x ≤ u, t ≥ f(x)}
Figure 1 helps visualize the set ST 1

≥. It follows from concavity of f that the
extreme points of conv(ST 1

≥) are the points (γ+β−α�, �, f(�)), (γ, β/α, f(β/α)),

Valid Inequalities for Separable Concave Constraints 279

Fig. 1. Visualizing the set ST 1
≥.

and (γ, u, f(u)). The hyperplane defined by these three points defines a valid
inequality for the set conv(ST 1

≥).
This discussion is formalized and extended to the set ST≥ in the following

proposition.

Proposition 2. The extreme rays of conv(ST≥) are given by (1, 0, 0, 0) and
(0, 0, 1, 0), and the extreme points of conv(ST≥) are given by the points:

v1 = (γ, 0, 0, 0),
v2 = (γ + β − α�, �, f(�), 1),
v3 = (γ, β/α, f(β/α), 1),
v4 = (γ, u, f(u), 1).

Using polarity theory, we thus obtain the following characterization of valid
inequalities for ST≥.

Corollary 1. An inequality

λss + λxx + λtt + λzz ≥ λ0 (3)

is valid for conv(ST≥) if and only if λ = (λs, λx, λt, λz, λ0) ∈ C≥, where C≥ is
the polyhedral cone

C≥ := {λ ∈ R
5 : λs ≥ 0, λt ≥ 0, vkλ ≥ λ0, k = 1, . . . , 4}.

Furthermore, (3) is a facet-defining inequality for conv(ST≥) if and only λ is an
extreme ray of C≥.

Valid inequalities for ST≥ which have λs = 0 are derived in Sect. 2, and
valid inequalities for ST≥ which have λt = 0 just correspond to the inequalities
defining R(S≥), the continuous relaxation of S≥. We therefore focus on valid
inequalities for ST≥ which have λt > 0 and λs > 0. Under this condition, the
characterization of valid inequalities for ST≥ in Corollary 1 reduces to a system

280 C.H. Lim et al.

of four inequalities, one for each of the points vk, k = 1, 2, 3, 4, in five unknowns.
Thus, the only extreme ray of that system must satisfy all four inequalities as
an equality. Adding the normalization condition that λs = 1 and then observing
that v1λ = λ0 implies that λ0 = γλs = γ, we obtain the following reduced
system of equations:

⎛

⎝
� 1 f(�)

β/α 1 f(β/α)
u 1 f(u)

⎞

⎠

⎛

⎝
λx

λz

λt

⎞

⎠ =

⎛

⎝
−β + α�

0
0

⎞

⎠ . (4)

The assumption (2) together with � < β/α < u imply that the system (4) has
a unique solution, which we denote by (λ̄x, λ̄z, λ̄t), and can be shown to have
λ̄t > 0. We thus obtain the following valid inequality.

Theorem 1. The inequality

s + λ̄xx + λ̄zz + λ̄tt ≥ γ (5)

is a valid and facet-defining inequality for conv(ST≥).

Combined with the previously known valid inequalities which have λt = 0 or
λs = 0, we obtain a complete characterization of conv(ST≥).

Theorem 2. conv(ST≥) is described by the set of (s, x, t, z) for which (s, x, z) ∈
R(S≥), and which satisfy (5) and the strengthened secant inequality

t ≥ f(�)z +
f(u) − f(�)

u − �
(x − �z). (6)

Nearly identical arguments yield the following analogous result for conv(ST≤).

Theorem 3. Let (λ̄x, λ̄z, λ̄t) be the unique solution to the system of equations
⎛

⎝
� 1 f(�)

β/α 1 f(β/α)
u 1 f(u)

⎞

⎠

⎛

⎝
λx

λz

λt

⎞

⎠ =

⎛

⎝
0
0

−β + αu

⎞

⎠ . (7)

Then, the inequality
s + λ̄xx + λ̄zz + λ̄tt ≤ γ (8)

is valid and facet-defining for conv(ST≤), and conv(ST≤) is described by the set
of (s, x, t, z) for which (s, x, z) ∈ R(S≤), and which satisfy (6) and (8).

4 Application to Single Node Flow Set

The Single Node Flow Set XSNFS is

XSNFS =
{

(x, z) ∈ R
n × B

n :
∑

i∈N+

xi −
∑

i∈N−
xi ≤ d, 0 ≤ xi ≤ uizi for i ∈ N

}
.

(9)

Valid Inequalities for Separable Concave Constraints 281

N+ and N− denote the set of indices corresponding to the inflow and outflow
arcs respectively, N = N+ ∪ N−, and n = |N |.

We now define a variant of the Single Node Flow Set that incorporates con-
cave functions of the flow variables. The Concave Single Node Flow Set is

XCSNFS
f =

{
(x, z, t) ∈ R

n × B
n × R

n : (x, z) ∈ SNFS, ti ≥ fi(xi)
}

where fi : R → R are concave functions with fi(0) = 0. Valid and facet-defining
inequalities for conv(XSNFS) are still valid and facet-defining for conv(XCSNFS

f).
We use the theory developed in Sect. 3 to derive additional valid inequalities for
XCSNFS

f based on valid inequalities for XSNFS.

4.1 Valid Inequalities for XCSNFS
f

We begin by assuming we have a valid inequality for XCSNFS
f of the form

∑

i∈M+\F
(αixi − βizi) +

∑

i∈F

(λx
i xi + λz

i zi + λt
iti) +

∑

i∈N\M+

(πx
i xi + πz

i zi) ≤ γ

(10)

where F ⊂ M+ ⊆ N+, and for all i ∈ M+ \ F we have αi, βi > 0.
To apply Theorem 3, we choose k ∈ M+ \F , and write the inequality (10) as

s + αkxk − βkzk ≤ γ

where

s =
∑

i∈M+\(F∪{k})
(αixi−βizi)+

∑

i∈F

(λx
i xi+λz

i zi+λt
iti)

∑

i∈N\M+

(πx
i xi+πz

i zi). (11)

Theorem 3 also requires s ≤ γ to be a valid inequality, which we now establish.

Lemma 1. Assume (10) is a valid inequality for XCSNFS
f . Then s ≤ γ is also a

valid inequality for XCSNFS
f .

Now, we assume we know the following inequality is valid for XSNFS:
∑

i∈M+

(αixi − βizi) +
∑

i∈N\M+

(πx
i xi + πz

i zi) ≤ γ. (12)

By repeatedly applying Theorem3 and Lemma 1, we derive a family of valid
inequalities for XCSNFS

f .

Theorem 4. Assume (12) is a valid inequality for XSNFS with αi, βi > 0 for
i ∈ M+ ⊆ N+. Let F ⊆ M+, and for i ∈ F let (λ̄x

i , λ̄z
i , λ̄

t
i) be the solution to (7)

with (α, β, �, u) ← (αi, βi, 0, ui). Then, the following tilted inequality is valid for
XCSNFS

f :
∑

i∈M+\F
(αixi − βizi) +

∑

i∈F

(λ̄x
i xi + λ̄z

i zi + λ̄t
iti) +

∑

i∈N\M+

(πx
i xi + πz

i zi) ≤ γ.

(13)

282 C.H. Lim et al.

Proof. Starting with (12) we choose k ∈ M+ and apply Lemma 1 and Theorem 3
to obtain a valid inequality of the form (13) in which F = {k}. Proceeding
inductively, given any inequality of the form (13), we can again choose k′ ∈
M+ \ F and apply the same procedure, as long as F ⊂ M+.

We refer to the procedure of generating an inequality (13) from a valid base
inequality (12) as tilting. Given a relaxation solution (x̂, ẑ, t̂) and a “base” valid
inequality (12), the most violated tilted inequality (13) is obtained by setting

F ∗ :=
{
i ∈ M+ : αix̂i − βiẑi < λ̄x

i x̂i + λ̄z
i ẑi + λ̄t

i t̂i
}
. (14)

We leave it is an interesting open question to determine general conditions under
which the tilting procedure yields facet-defining inequalities. However, in the
next section we provide such conditions when the base inequality comes from a
particular class of valid inequalities for XSNFS.

4.2 Tilting Flow Cover Inequalities

An important class of valid inequalities for the XSNFS, are known as flow cover
inequalities (FCI). A generalized flow cover is defined by sets (C+, C−), where
C+ ⊆ N+, C− ⊆ N− and

∑
i∈C+ ui − ∑

i∈C− ui = d + μ, μ > 0.
There are many variants of flow cover inequalities, including FCI with inflows-

only [15], simple generalized and extended generalized FCI [14,19], and lifted
versions of FCI and simple generalized FCI [7,8]. As an illustration of our results,
we focus on the Simple Generalized Flow Cover Inequality (SGFCI), which can
be written as

∑

i∈C+

(
xi − (ui − μ)+zi

) −
∑

i∈L−
min(ui, μ)zi −

∑

i∈N−\(C−∪L−)

xi ≤ d(C+, C−)

(15)

where (C+, C−) is a generalized flow cover, L− ⊆ N− \ C−, and d(C+, C−) =
d +

∑
i∈C− ui − ∑

i∈C+(ui − μ)+. Van Roy and Wolsey [19] provide sufficient
conditions for the SGFCI to be facet-defining. If we let M+ = {i ∈ C+ : ui > μ},
then the SGFCI takes the form of (12) with γ = d(C+, C−). Then, applying
Theorem 4 we obtain that for any F ⊆ M+, the Tilted Simple Generalized Flow
Cover Inequality (TSGFCI):

∑

i∈C+\F

(
xi − (ui − μ)+zi

) −
∑

i∈L−
min(ui, μ)zi −

∑

i∈N−\(C−∪L−)

xi

+
∑

i∈F

(
λ̄x
i xi + λ̄z

i zi + λ̄t
iti

) ≤ d(C+, C−)
(16)

is valid for XCSNFS
f , where for i ∈ F , (λ̄x

i , λ̄z
i , λ̄

t
i) is the solution to (7) with

(α, β, �, u) ← (1, ui − μ, 0, ui).
We next provide sufficient conditions for which these inequalities are facet-

defining for XCSNFS
f , which generalizes the result in [19].

Valid Inequalities for Separable Concave Constraints 283

Theorem 5. Assume (i) d > 0, (ii) maxi∈C+\F ui > μ, (iii) ui > μ for i ∈ L−,

(iv) C− = ∅, and (v)
(∑

i∈C+\F ui

)
− μ > 0. Then the TSGFCI (16) is facet-

defining for XCSNFS
f .

Conditions (i)–(iv) are from [19] and are sufficient to ensure the base inequal-
ity (15) is facet-defining for XSNFS. Condition (v) provides the requirement on
the set F chosen for tilting.

5 Computational Results

In this section we demonstrate the effectiveness of the TSGFCI on a transporta-
tion problem in which flows incur a fixed cost plus concave cost. Given a set
of facilities I with capacities bi, i ∈ I and a set of customers J with demands
dj , j ∈ J the Concave Fixed Charge Transportation Problem (CFCTP) is the
optimization problem:

min
x,z,t

∑

i∈I

∑

j∈J

(tij + pijzij) (CFCTP)

s.t.
∑

i∈I

xij = dj for j ∈ J

∑

j∈J

xij ≤ bi for i ∈ I

tij ≥ fij(xij) for i ∈ I, j ∈ J

0 ≤ xij ≤ uijzij for i ∈ I, j ∈ J.

There objective function models both a fixed charge piij associated with opening
arc (i, j) and a cost that is a concave function fij(·) of the flow. We test our
methods on randomly generated instances of the CFCTP. For a fixed problem
size, we created a family of ten instances, which may be obtained at http://
pages.cs.wisc.edu/∼conghan/concave/.

The fixed charge network structure of (CFCTP) yields Single Node Flow Set
relaxations (9) from which SGFCI may be generated. To obtain valid SGFCI that
can be tilted, each instance is solved with CPLEX v12.6.0. CPLEX allows the
solution of optimization problems with a nonconvex quadratic objective function,
so (CFCTP) was reformulated into the equivalent formulation without the tij
variables. The flow cover cuts that were applied by CPLEX at the end of the root
node processing were extracted and used as the basis of our tilting procedure.
CPLEX also is often able to tighten the upper bounds uij on the flow variables,
and we also extract and use these improved values in computing the lifting
coefficient via (4).

Using the extracted flow cover inequalities from CPLEX, TSGFCI are added
in a separation loop using the optimal lifting set F = F ∗ (defined in (14))
until no more inequalities can be separated. In addition, we also strengthen the
relaxation by adding all TSGFCI for each flow cover with |F | ≤ 2. We remark

http://pages.cs.wisc.edu/~conghan/concave/
http://pages.cs.wisc.edu/~conghan/concave/

284 C.H. Lim et al.

that this implementation potentially underestimates the benefits from TSGFCI,
since we are using flow cover inequalities that are generated without knowledge of
the tilting procedure. An integrated procedure that simultaneously searches for
violated flow cover inequalities along with their tilted variants could potentially
identify additional violated inequalities.

We compare the performance of four different solution approaches: using
CPLEX 12.6.0 with default options on the reformulation that eliminates the t
variables (C), using BARON 14.4.0 on the original problem (B), using BARON
14.4.0 on the problem supplemented with implied bounds and flow covers
extracted by CPLEX (BF), and finally using BARON 14.4.0 with the settings
of (BF) plus the additional TSGFCI added (BT). We could not test the perfor-
mance of CPLEX with the TSGFCI because CPLEX does not allow nonconvex
constraints, and so the formulation used in CPLEX does not contain the nec-
essary t variables. The experiments were performed on a heterogeneous set of
servers, with each family of instances being run on the same machine. Each algo-
rithm was limited to a single thread, a time limit of an hour, and a tolerance of
10−6 for relative optimality gap.

We present a summary of our computational results in Table 1. The Number
of Cuts columns denote the average number of each class of cuts generated
over the 10 instances. For a fixed problem instance, let lM denote the best lower
bound generated by method M ∈ {C,B,BF,BT} and let v∗ denote the objective
value of the best solution amongst the four methods. The Gap Closed columns
denote the average of the values (lM − lB)/(v∗ − lB) over only the instances that
no method was able to solve. We observe that BT solves almost twice as many
instances within the time limit (32 versus 18/19 for B and BF), and for unsolved
instances BT is able to close substantially more of the gap than BF. The set of
instances solved for BT is a strict superset of those for BF, which is in turn a
superset of those solved for B and C. In addition to these results, we note that
at the root node of BARON, BT closes approximately 50 % of the initial gap
over B and BF, which have the same initial lower bounds.

Table 1. Summary of computational results on the different instance families.

Instance family Number of cuts Instances solved Gap closed (unsolved instances)

Suppliers Customers Flow covers Tilts C B BF BT BF BT

10 10 36.1 41.9 7 10 10 10 - -

10 15 43.9 45.9 2 3 4 7 22.0% 65.0%

12 12 45.1 61 2 4 4 8 1.2% 68.5%

12 18 54.6 77.9 0 0 0 2 5.9% 49.8%

15 15 50.5 59.1 0 1 1 5 2.8% 39.2%

18 18 67.1 102.7 0 0 0 0 2.2% 52.6%

Figure 2 presents a plot of the cumulative distribution of solution times over
the 32 instances that are solved by at least one method. Each plot indicates

Valid Inequalities for Separable Concave Constraints 285

Fig. 2. Cumulative distribution plots of solution times. The plots from top to bottom
correspond to the order of the labels in the legend (Color figure online).

the number of instances that have been solved by a certain time. The perfor-
mance for BT significantly dominates all other methods, and BF shows a slight
improvement over B, demonstrating that the flow covers make a small but sig-
nificant difference, whereas the tilted flow covers yield large improvements in
computation time.

6 Conclusion

We study valid inequalities for a mixed-integer nonlinear set having binary indi-
cator variables and separable concave constraints. We derive a technique that
obtains valid inequalities for this set by applying a tilting procedure to inequal-
ities that are known for the set ignoring the concave constraints. We apply this
procedure to a version of this set in which the linear constraints correspond to a
network flow problem, and find that the new inequalities yield significant reduc-
tions in solution times. In future work, it will be interesting to test the proposed
procedure on additional problems having this network structure, and to inves-
tigate the application of the proposed tilting procedure to other mixed-integer
nonlinear structures.

Acknowledgements. The work was supported in part by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied
Mathematics program under contract number DE-AC02-06CH11357.

286 C.H. Lim et al.

References

1. Atamtürk, A., Narayanan, V.: Conic mixed integer rounding cuts. Math. Program.
122, 1–20 (2010)

2. Balas, E.: Disjunctive programming. In: Annals of Discrete Mathematics 5: Discrete
Optimization, pp. 3–51. North Holland (1979)

3. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs.
In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA
Volumes in Mathematics and its Applications, vol. 154, pp. 427–444. Springer,
Heidelberg (2012)

4. D’Ambrosio, C., Lodi, A., Wiese, S., Bragalli, C.: Mathematical programming tech-
niques in water network optimization. Eur. J. Oper. Res. 243(3), 774–788 (2015)

5. Dong, H., Linderoth, J.: On valid inequalities for quadratic programming with
continuous variables and binary indicators. In: Goemans, M., Correa, J. (eds.)
IPCO 2013. LNCS, vol. 7801, pp. 169–180. Springer, Heidelberg (2013)

6. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer
programs. Math. Program. 106, 225–236 (2006)

7. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for
mixed 0–1 integer programs. Math. Program. 85, 439–467 (1999)

8. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Sequence independent lifting in
mixed integer programming. J. Comb. Optim. 4(1), 109–129 (2000)

9. Guisewite, G.M., Pardalos, P.M.: Minimum concave-cost network flow problems:
applications, complexity, and algorithms. Ann. Oper. Res. 25, 75–100 (1990)

10. Horst, R., Tuy, H.: Global Optimization. Springer, New York (1993)
11. Humpola, J., Fügenschuh, A.: A new class of valid inequalities for nonlinear net-

work design problems. Technical report 13–06, ZIB, Konrad-Zuse-Zentrum für
Informationstechnik Berlin (2013)

12. Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of
gas network optimization. Math. Program. 105(2), 563–582 (2006)

13. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous/integer
global optimization of nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)

14. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience, Hoboken (1988)

15. Padberg, M.W., Van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed
charge problems. Oper. Res. 33(4), 842–861 (1985)

16. Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Fixed-
charge transportation with product blending. Trans. Sci. 46(2), 281–295 (2012)

17. Sahinidis, N.V.: BARON: a general purpose global optimization software package.
J. Glob. Optim. 8, 201–205 (1996)

18. Üster, H., Dilaveroğlu, S.: Optimization for design and operation of natural gas
transmission networks. Appl. Energy 133, 56–69 (2014)

19. Van Roy, T., Wolsey, L.A.: Valid inequalities for mixed 0–1 programs. Discrete
Appl. Math. 14(2), 199–213 (1986)

A Polyhedral Approach
to Online Bipartite Matching

Alfredo Torrico, Shabbir Ahmed, and Alejandro Toriello(B)

H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, 30332 Atlanta, Georgia

atorrico3@gatech.edu, {sahmed,atoriello}@isye.gatech.edu

Abstract. We study the i.i.d. online bipartite matching problem, a
dynamic version of the classical model where one side of the bipartition
is fixed and known in advance, while nodes from the other side appear
one at a time as i.i.d. realizations of an underlying distribution, and must
immediately be matched or discarded. We consider various relaxations of
the set of achievable matching probabilities, introduce star inequalities
and their generalizations, and discuss when they are facet-defining. We
also show how several of these relaxations correspond to ranking policies
and their time-dependent generalizations. We finally present results of a
computational study of these relaxations and policies to determine their
empirical performance.

1 Introduction

Bipartite matching is one of the fundamental combinatorial optimization mod-
els, with a century-long history of research and applications in many areas. In
online or dynamic optimization, a widely studied variant has the right side of
the bipartition fixed and known to the decision maker ahead of time, while the
nodes in the left side appear one after another dynamically, and must immedi-
ately be matched to a remaining compatible right-hand node or discarded. This
model has application in a variety of resource allocation and revenue manage-
ment areas, particularly in online search advertisement, where right-hand nodes
represent ads and left-hand nodes are search terms that the search engine wants
to show compatible ads to. Partly because of the connection to online search, the
computer science community has been interested in the model for several years,
beginning with [11], which showed that for a maximum cardinality objective, a
randomized ranking policy achieves the best possible 1 − 1/e competitive ratio,
assuming an adversary chooses which left-hand nodes appear; see e.g. [5] for a
corrected and simplified proof.

The adversarial model of node arrival is relatively pessimistic, and more
recent research has focused on models where arrivals are at least partly governed
by a distribution. In the simplest case, each arriving node is an i.i.d. sample from
a known distribution. Work on this model and its variants began in [8], which
showed that in the i.i.d. model it is possible to improve on the 1−1/e ratio; other

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 287–299, 2016.
DOI: 10.1007/978-3-319-33461-5 24

288 A. Torrico et al.

subsequent results that further improve and/or generalize this approximation
guarantee include [9,10,13].

While these works sometimes employ simple relaxations to design policies,
to our knowledge no researchers have specifically looked at the generation of
good upper bounds for the problem. Our first contribution is to study the set
of matching probabilities achievable by some feasible policy, which is implicitly
encoded as the projection of a doubly exponential polyhedron, and to derive
relaxations by identifying various classes of valid inequalities. This focus on the
achievable region is used in applied probability, for example to study models
in queueing and multi-armed bandits (e.g. [4,6]), but to our knowledge it has
not been applied in online matching. Our second contribution is then to show
that optimal dual solutions of our relaxations imply specific policies; in par-
ticular, several determine simple ranking or time-dependent ranking policies.
This connection is established by enforcing intuitive value function approxima-
tions on the linear programming formulation of the problem’s dynamic program.
This general technique dates back to [1,7,14,17], and has been used to derive
relaxations and policies in many discrete dynamic optimization settings, such as
economic lot scheduling [3], inventory routing [1,2] and the traveling salesman
problem [15,16].

In the remainder of the paper, Sect. 2 states the problem and its formula-
tions, and Sect. 3 discusses our proposed inequalities. Section 4 then shows how
the relaxations imply policies, and Sect. 5 summarizes the results of our compu-
tational study. An Appendix has mathematical proofs not included in the body
of the paper.

2 Model Description and Formulation

We are concerned with online bipartite matching (OBM) between two node sets,
N and V , with edge set E ⊆ N × V . This process occurs dynamically in the
following way. The right-hand set V , with |V | = m, is known and given ahead
of time. The left-hand set N with |N | = n represents elements on the other side
of the bipartition that may appear, but we do not know which ones will appear
and how often. We know only that T elements in total will appear sequentially,
each one drawn independently from the (stationary) uniform distribution over
N ; that is, at each epoch, any node in N appears with probability 1/n and
is treated as a new copy. The assumption that the distribution is uniform is
without loss of generality if the original distribution has rational probabilities,
as we can duplicate nodes to put the problem in this form. Several past works on
this OBM model (e.g. [8]) require T = n so that each left-hand node’s expected
number of appearances is one, but we do not need this assumption. Each time
a left-hand node appears, it must be immediately (and irrevocably) matched to
an available compatible node in V or discarded. The objective is to maximize
the expected number of matches. More generally, we can consider weights on

A Polyhedral Approach to Online Bipartite Matching 289

each edge wij , with the objective to maximize the expected weight of matched
edges; while our upper bound results extend to this case, some results in Sect. 4
depend on the cardinality objective, which we focus on for simplicity. Following
convention from previous literature and the motivating application of search
engine advertisement, we sometimes call i ∈ N an impression, while each j ∈ V
is an ad.

For any impression i ∈ N , let Γ (i) ⊆ V denote i’s neighbors, and define
Γ (j) for ad j ∈ V analogously; also, let η be the random variable with uniform
distribution over N . We can now give a dynamic programming (DP) formulation
for this OBM model. Let v∗

t (i, S) denote the optimal expected value given that
i ∈ N appears when the set of ads S ⊆ V is available and t − 1 draws from N
still remain. Then, for all t = 1, . . . , T , i ∈ N and S ⊆ V ,

v∗
t (i, S) = max

{
maxj∈S∩Γ (i){1 + Eη[v∗

t−1(η, S\j)]}
Eη[v∗

t−1(η, S)],
(1)

where v∗
0(·, ·) is identically zero, and the model’s optimal expected value is given

by Eη[v∗
T (η, V)]. The first term in this recursion corresponds to matching i with

one of its remaining neighbors j ∈ S∩Γ (i); the second corresponds to discarding
i. As with any DP, the optimal value function v∗ induces an optimal policy: At
any state (t, i, S), we choose an action that attains the maximum in (1). In
the maximum cardinality case, it is easy to see that an optimal policy always
matches a node when possible, so that the discarding action is only taken when
nothing else is feasible. Furthermore, any value function approximation implies
a corresponding policy, by substituting it for v∗ in (1) and choosing the action
that attains the maximum.

The recursion (1) can be equivalently captured with the linear program (LP)

min
v

Eη[vT (η, V)] (2a)

s.t. vt(i, S ∪ j) − Eη[vt−1(η, S)] ≥ 1, t ∈ [T], i ∈ N, j ∈ Γ (i), S ⊆ V \j
(2b)

vt(i, S) − Eη[vt−1(η, S)] ≥ 0, t ∈ [T], i ∈ N, S ⊆ V (2c)
v ≥ 0. (2d)

The value function v∗ defined in (1) is optimal for (2). Moreover, this LP is a
strong dual for OBM, in the sense that any feasible v has an objective greater
than or equal to Eη[v∗

T (η, V)].
The dual of (2) is a primal formulation; any feasible solution encodes a feasible

policy and its probability of reaching any state in the DP. That formulation is
the following LP:

290 A. Torrico et al.

max
x,y

∑

i∈N

∑

t∈[T]

∑

j∈Γ (i)

∑

S⊆V \j

xt,S
i,j (3a)

s.t.
∑

j∈Γ (j)

x
T,V \j
i,j + yT,V

i ≤ 1
n

, i ∈ N, (3b)

∑

j∈Γ (i)∩S

x
t,S\j
i,j + yt,S

i − 1
n

∑

k∈N

yt+1,S
k − 1

n

∑

k∈N

∑

j∈Γ (k)∩S

xt+1,S
k,j ≤ 0,

t ∈ [1, T − 1], i ∈ N, ∅ 	= S ⊆ V,

(3c)

∑

j∈Γ (i)∩S

x
T,S\j
i,j + yT,S

i ≤ 0, i ∈ N, S � V, (3d)

x, y ≥ 0. (3e)

Here, xt,S
i,j , the variable corresponding to dual constraint (2b), represents the

probability that the policy chooses to match impression i to ad j in state (t, i, S∪j),
and yt,S

i , which corresponds to (2c), similarly represents a discarding action. As
with its dual, the LP (3) has exponentially many variables and constraints, and is
therefore difficult to work with directly. However, we can equivalently consider
optimizing over the matching probabilities achieved by a feasible policy; this
corresponds to optimizing over a projection of the feasible region of (3),

max

{
∑

i∈N

∑

j∈Γ (i)

zij : ∃ (x, y) ∈ (3b)−(3e) with zij =
∑

t∈[T]

∑

S⊆V \j

xt,S
i,j

}

, (4)

where zij is the probability that impression i is ever matched to ad j. Any
such z is a vector of matching probabilities that is achievable by at least one
feasible policy. Let Q denote this projected polyhedron in the space of z variables,
and note that Q is full-dimensional in RE . We consider relaxations of Q in the
following section.

3 Projected Relaxations

We begin with the simplest relaxation. Recall that each ad j can be matched
at most once, so this constrains all probabilities involving j to not exceed one
in total. Similarly, each impression i appears in each epoch with probability 1/n,
and there are T stages, so the expected number of matches for i cannot exceed
T/n. This gives us the LP

max
∑

(i,j)∈E

zij (5a)

s.t.
∑

j∈Γ (i)

zij ≤ T

n
, i ∈ N (5b)

∑

i∈Γ (j)

zij ≤ 1, j ∈ V (5c)

z ≥ 0. (5d)

A Polyhedral Approach to Online Bipartite Matching 291

In particular, when T = n, (5) gives the deterministic bipartite matching formu-
lation over (N ∪ V,E), and more generally it encodes a simple max-flow model;
see e.g. [8].

We can use similar probabilistic ideas to strengthen the relaxation. An
impression i ∈ N will not appear at all with probability (1 − 1/n)T , and thus

zij ≤ 1 − (1 − 1/n)T , i ∈ N, j ∈ Γ (i) (6)

is valid for Q; see e.g. [9]. Furthermore, these constraints in fact define facets.

Proposition 1. Constraints (6) are facet-defining for the polyhedron of achiev-
able probabilities Q.

Though these inequalities were already known, the proof that they are facet-
defining is new to our knowledge.

Proof (Sketch). We can construct the following |E| affinely independent points
corresponding to policies that satisfy (6) with equality:

– The policy that simply matches (i, j) when possible and ignores other edges.
– For any edge (i′, j′) that doesn’t share an endpoint with (i, j), the policy that

matches either edge when possible.
– For any j′ ∈ Γ (i)\j, the policy that matches (i, j) the first time i appears

and then matches (i, j′) the second time.
– For any i′ ∈ Γ (j)\i, the policy that matches (i, j) when possible but in the

last epoch matches (i′, j) if i′ appears and i hasn’t appeared. ��
We can generalize the previous concept to any set of impressions incident

to an ad j ∈ V . Let I ⊆ Γ (j); no nodes from this set will appear at all with
probability (1 − |I|/n)T , and hence the set of right-star inequalities

∑

i∈I

zij ≤ 1 − (1 − |I|/n)T , j ∈ V, I ⊆ Γ (j) (7)

is valid. Moreover, their separation can be achieved in polynomial time by sorting
the zij in non-increasing order of i, and testing each successive sum against the
corresponding right-hand side. However, they are not necessarily facet-defining
for Q except when |I| = 1. Inequality (7) also shows that (5c) can never be tight
for a feasible policy unless |Γ (j)| = n.

Let us examine the analogous situation on the other side. For an impression
i ∈ N , consider a set J ⊆ Γ (i) of adjacent ads. Since i may appear more than
once, the previous argument does not apply. However, we can still upper bound
the corresponding probabilities by considering the expected number of matches
we can hope to make with i in J . As before, i will never appear with probability
(1 − 1/n)T . Similarly, i will appear exactly once (and can thus only be matched
once) with probability T

n (1−1/n)T−1. This continues until we consider the event
that i appears |J | or more times, because we cannot match i more than these
many times in J . Let B(T, 1/n) denote a binomial random variable with T trials

292 A. Torrico et al.

and probability of success 1/n. The preceding argument shows that the left-star
inequalities

∑

j∈J

zij ≤ E [min {|J |, B(T, 1/n)}] , i ∈ N, J ⊆ Γ (i) (8)

are valid. In addition, the same greedy algorithm can be used to separate them,
this time sorting in non-decreasing order of j.

Theorem 1. Constraints (8) are facet-defining for Q when |J | < T .

The theorem’s proof is similar to Proposition 1 but more involved, and uses
circulant matrices [12]. When |J | ≥ T , we have E [min {|J |, B(T, 1/n)}] = T/n,
and therefore (8) for J � Γ (i) is dominated by (5b). We can, however, use a
similar proof to determine when this inequality is also a facet.

Corollary 1. Constraints (8) for J = Γ (i) are facet-defining for Q regardless
of T , and thus (5b) is facet-defining when |Γ (i)| ≥ T .

Finally, consider two sets I ⊆ N and J ⊆ V . In the best case, they induce
a complete bipartite subgraph, and we can proceed as before. No edges within
the two sets will be matched at all with probability (1 − |I|/n)T , exactly one
will be matched with probability |I|

n (1 − |I|/n)T−1, and so forth. Generalizing,
let B(T, |I|/n) denote a binomial random variable with T trials and probability
|I|/n of success. Then

∑

(i,j)∈E∩(I×J)

zij ≤ E [min {|J |, B(T, |I|/n)}] , I ⊆ N, J ⊆ V, (9)

are valid. This general set of inequalities contains both (7) and (8) as special
cases, by respectively taking J = {j} and I = {i}. Moreover, for any fixed I
or J they can be separated using the same greedy algorithm, now applied to
sums of the z variables; more generally, they can be separated with an integer
program that maximizes the left-hand side for every fixed value of |I| and |J |.
These inequalities are not necessarily facet-defining, except for the cases we have
already pointed out.

A natural question is whether all of Q’s facet’s can be written with 0–1
coefficients. However, this is not true even for very small instances. We have
constructed Q in PORTA for an instance with T = 3, N = {1, 2, 3}, V = {a, b}
and E = {1a, 1b, 2b}. Not counting the non-negativity constraints, Q has 13
facets, but only the four identified in (8) have 0–1 coefficients.

4 Policies Derived from Bounds

We next focus on generating policies based on the relaxations in the previous
section. To do so, we generate approximations of the true value function that are
feasible in (2) but efficient to compute, and show that several of these approxi-
mations lead to ranking policies [11] and their generalizations. A ranking policy

A Polyhedral Approach to Online Bipartite Matching 293

is specified by an ordering or permutation of V : Assuming we label ads in the
permutation’s order as V = {1, . . . , m}, at any decision epoch (t, i, S) we match
the appearing impression i to min{j : j ∈ S ∩Γ (i)}, the lowest-indexed compat-
ible ad that is available. Such policies are appealing from a practical perspec-
tive, as they are completely specified by a permutation and can be implemented
efficiently.

As a first step, suppose we approximate the value at any state by consid-
ering the impression that has just appeared and the remaining available ads.
Specifically, suppose qi ≥ 0 represents the value of having i ∈ N appear and be
available to match. Similarly, let rj ≥ 0 be the value we assign to each available
ad j ∈ V . This leads to an approximation of the expected value of state (t, i, S)
as

vt(i, S) ≈ qi + (t − 1)Eη[qη] +
∑

j∈S

rj . (10)

In the approximation, i has just appeared, and thus the state has value qi. In
addition, there are t − 1 more draws remaining, so we will get the expected
value of qη that many more times. Finally, each j ∈ S still available to match
contributes its value rj .

Proposition 2. Restricting the feasible region of (2) by forcing solutions to have
the form (10) yields the dual of (5), where the q variables correspond to con-
straints (5b) and the r variables correspond to (5c).

Proof (Sketch). Taking expectation in (10) yields Eη[vt(η, S)] = tEη[qη] +∑
j∈S rj ; this is the restricted objective (2a) when t = T, S = V . Similarly,

plugging in the approximation into the matching constraint (2b) for (t, i, S ∪ j)
gives

qi + (t − 1)Eη[qη] +
∑

�∈S∪j

r� − Eη

[

(t − 1)qη +
∑

�∈S

r�

]

= qi + rj ≥ 1.

The discarding constraint (2c) can be shown to be redundant under the restric-
tion, so we are left precisely with the dual of (5). ��

Consider the dual of (5), and let (q(10), r(10)) be an optimal extreme point
solution. Under the cardinality objective function, this dual’s feasible region is
the convex hull of node covers of (N × V,E); thus (q(10), r(10)) is the incidence
vector of a cover, and when T = n it is a minimum cardinality cover. Suppose
we are at state (t, i, S) and employ the value function approximation given by
this solution in (1) to choose an action. Assuming S ∩ Γ (i) 	= ∅, this yields the
optimization problem

arg max
j∈S∩Γ (i)

{

1 + Eη

[

(t − 1)q(10)η +
∑

�∈S\j

r
(10)
�

]}

= arg min
j∈S∩Γ (i)

r
(10)
j ,

294 A. Torrico et al.

where the equivalence follows simply by removing terms that do not depend on
j. This corresponds to a cover ranking policy: Given an optimal node cover, we
match an arriving impression if possible to a non-cover ad, and only match it
to an ad in the cover when no remaining non-cover ad is compatible. Note that
any ranking that orders ads so that non-cover ads appear before ads in the cover
induces a cover ranking policy.

This first approximation (10) does not capture the interaction between
impressions and ads. Suppose we add a value pij ≥ 0 to a state whenever i ∈ N
appears and j ∈ S is one of the remaining ads. The new value function approx-
imation is

vt(i, S) ≈ qi + (t − 1)Eη[qη] +
∑

j∈S

(

rj + pij +
(
1 − (1 − 1/n)t−1

) ∑

k∈N\i

pkj

)

.

(11)

Since i ∈ N is the current impression, the approximation includes a value pij

for all remaining ads j. (This value will be zero if (i, j) 	∈ E, but we include it
to simplify the expressions.) Furthermore, each other impression k ∈ N \ i will
appear at least once in the remaining epochs with probability 1 − (1 − 1/n)t−1,
so we include these values as well, discounted by that probability; we only count
these values once, because an ad can only be matched once.

Proposition 3. Restricting the feasible region of (2) by enforcing the form (11)
on solutions yields the dual of (5) with additional constraints (6), where the new
p variables correspond to constraints (6).

This approximation does not yield a static ranking policy, but does induce a
time-dependent generalization. Let (q(11), r(11), p(11)) be optimal for the dual of
(5) with (6), and suppose we use the approximation (11) in (1). At state (t, i, S)
with S ∩ Γ (i) 	= ∅, after removing terms that do not depend on j, this results in
the optimization problem

arg max
j∈S∩Γ (i)

∑

�∈S\j

(

r
(11)
� +

(
1 − (1 − 1/n)t−1

) ∑

i∈N

p
(11)
i�

)

=

arg min
j∈S∩Γ (i)

{

r
(11)
j +

(
1 − (1 − 1/n)t−1

) ∑

i∈N

p
(11)
ij

}

.

Let p
(11)
j :=

∑
i∈Γ (j) p

(11)
ij . At any epoch t, this policy’s ranking is given by a

linear combination of the r
(11)
j and p

(11)
j values; the influence of the p values

in the ranking is highest in the first epoch, and decays until vanishing in the
last one. As with a (static) ranking policy, these time-dependent rankings can
be pre-computed and the policy implemented efficiently.

We can generalize this approach to include all right-star inequalities.

A Polyhedral Approach to Online Bipartite Matching 295

Theorem 2. Consider the value function approximation

vt(i, S) ≈ qi + (t − 1)Eη[qη]

+
∑

j∈S

(

rj +
∑

I⊆Γ (j)
I	i

pIj +
∑

I⊆Γ (j)
I
	i

(
1 − (1 − |I|/n)t−1

)
pIj

)

, (12)

where q ∈ RN
+ , r ∈ RV

+, and pIj ∈ R+ for j ∈ V and I ⊆ Γ (j). Restricting
the feasible region of (2) with this approximation yields the dual of (5) with the
additional constraints (7), where the p variables correspond to constraints (7).

As before, we get a time-dependent ranking policy. Let (q(12), r(12), p(12)) be
optimal for the dual of (5) with constraints (7). At state (t, i, S) with S∩Γ (i) 	= ∅,
using the value function approximation (12) we obtain the optimization problem

arg max
j∈S∩Γ (i)

∑

�∈S\j

(

r
(12)
� +

∑

I⊆Γ (�)

(1 − (1 − |I|/n)t−1)p(12)I�

)

= arg min
j∈S∩Γ (i)

{

r
(12)
j +

∑

I⊆Γ (j)

(1 − (1 − |I|/n)t−1)p(12)Ij

}

.

As with the policy given by (11), the time-dependent rankings can be pre-
computed and the policy implemented efficiently.

We can state a similar correspondence between constraints (8) and a value
function approximation.

Theorem 3. Consider the value function approximation

vt(i, S) ≈ qi + (t − 1)Eη[qη] +
∑
j∈S

rj +
∑

J⊆Γ (i)

piJE[min{|J ∩ S|, B(t − 1, 1/n) + 1}]

+
∑

k∈N\i

∑
J⊆Γ (k)

pkJE[min{|J ∩ S|, B(t − 1, 1/n)}], (13)

where q ∈ RN
+ , r ∈ RV

+, piJ ∈ R+ for i ∈ N and J ⊆ Γ (i). Restricting the feasible
region of (2) with this approximation yields the dual of (5) with the additional
constraints (8).

This approximation generalizes the intuition behind approximation (11) to
subsets of ads. Suppose we model the value piJ of impression i interacting with
a set of compatible ads J ⊆ Γ (i). When i appears in epoch t, we expect no more
than E[min{|J ∩S|, B(t−1, 1/n)+1}] matches between i and J from that point
forward: The number of matches cannot exceed the number of remaining ads
in the set, |J ∩ S|, but it also cannot exceed the number of times we expect i
to appear, the current appearance plus B(t − 1, 1/n) more. A similar argument
applies to any impression that didn’t appear in this epoch.

296 A. Torrico et al.

This value approximation seems not to define a dynamic ranking policy; let
(q(13), r(13), p(13)) be optimal for the dual of (5) with constraints (8). At state
(t, i, S) with S ∩ Γ (i) 	= ∅, employing the approximation (13) in (1) results in

arg max
j∈S∩Γ (i)

{ ∑

�∈S\j

r
(13)
� +

∑

i∈N

∑

J⊆Γ (i)

p
(13)
iJ E[min{|J ∩ (S \ j)|, B(t − 1, 1/n)}]

}

.

Because the coefficients multiplying the p variables depend explicitly on the
set S of remaining ads, it is impossible to compute these expressions a priori
to obtain a ranking. We have nevertheless also implemented this policy in our
computational experiments, outlined in the next section.

Finally, we can combine and generalize our previous approximations to derive
a correspondence to (9).

Theorem 4. Consider the value function approximation

vt(i, S) ≈qi + (t − 1)Eη[qη] +
∑

j∈S

rj

+
∑

I⊆N
I	i

∑

J⊆V

pIJE[min{|J ∩ S|, B(t − 1, |I|/n) + 1}] (14)

+
∑

I⊆N
I
	i

∑

J⊆V

pIJE[min{|J ∩ S|, B(t − 1, |I|/n)}],

where q ∈ RN
+ , r ∈ RV

+, pIJ ∈ R+ for I ⊆ N and J ⊆ V . Restricting the
feasible region of (2) with this approximation yields the dual of (5) with additional
constraints (9).

This approximation defines a policy similar to the one given by (13).

5 Computational Results

In this section we outline some of the experiments we conducted to test the
bounds and policies. All of the test instances we constructed have T = n = m,
and consist of the following:

1. A cycle of size 20 (n = 10).
2. A cycle of size 200 (n = 100).
3. 20 small instances with n = 10, each one randomly generated by having a

possible edge in N × V be present independently with a probability of 10 %.
4. 20 large dense instances with n = 100, each one randomly generated by having

a possible edge in N ×V be present independently with a probability of 10 %.
5. 20 large sparse instances with n = 100, each one randomly generated by

having a possible edge in N × V be present independently with probability
of 2.5 %.

A Polyhedral Approach to Online Bipartite Matching 297

We tested various bounds on the instances by solving the initial relaxation (5)
and then adding the other inequalities we introduced in Sect. 3. For the policies,
we simulated 20,000 realizations of the small instances and 200 realizations of the
large instances, and we report the sample average of each policy. To benchmark
our results, for the small instances we computed the optimal expected value
given by (1), and for the larger instances we calculated the sample mean of the
maximum expected off-line matching, by computing the maximum cardinality
matching of each simulated realization; this yields an upper bound on any policy
as it affords the decision maker early access to information. As policy compar-
isons, we implemented two heuristics: The single-matching policy computes a
maximum cardinality matching in (N × V,E), and matches only these edges,
ignoring all others; this heuristic has an approximation ratio of 1 − (1 − 1/n)T

(approximately 1 − 1/e when T = n) [8]. The two-matching policy is a heuris-
tic modification of the algorithm from [8] that uses a maximum cardinality 2-
matching in (N × V,E).

Table 1 summarizes the results. For each instance class, in each row we present
the geometric mean of each bound or policy’s ratio to the best available bench-
mark (the DP value for small instances and the expected maximum matching
for large ones). We also report the sample standard deviation of the ratios in
parenthesis.

Table 1. Summary of experiment results.

Bound/policy 20-cycle 200-cycle Small Large dense Large sparse

(5) 1.2681 1.2659 1.3151 (0.081) 1.0018 (0.0011) 1.2167 (0.010)

(5) + (6) 1.2681 1.2659 1.0886 (0.042) 1.0018 (0.0011) 1.1227 (0.011)

(5) + (7) 1.1319 1.0980 1.0536 (0.038) 1.0006 (0.0006) 1.0794 (0.009)

(5) + (8) 1.1606 1.1370 1.0570 (0.031) 1.0013 (0.0009) 1.0961 (0.011)

(5) + (7) + (8) 1.1319 1.0980 1.0536 (0.038) 1.0004 (0.0005) 1.0717 (0.009)

(5) + (9) 1.1319 1.0980 1.0288 (0.023) - -

Exp. matching 1.0514 1 1.0030 (0.005) 1 1

(1) 1 - 1 - -

Matching 0.8259 0.8025 0.8566 (0.053) 0.6351 (0.0007) 0.7768 (0.028)

2-matching 0.9859 0.9496 0.9616 (0.037) 0.7500 (0.0023) 0.8793 (0.030)

(10) 0.9861 0.9474 0.9883 (0.020) 0.9232 (0.0048) 0.9306 (0.008)

(11) 0.9861 0.9474 0.9963 (0.005) 0.9232 (0.0048) 0.9358 (0.008)

(12) 0.9861 0.9474 0.9974 (0.005) 0.9471 (0.0091) 0.9560 (0.006)

(13) 0.9980 0.9539 0.9732 (0.032) 0.9409 (0.0036) 0.8635 (0.070)

With respect to the bounds, the right-star inequalities (7) improve the basic
bound (5) more than the left-star ones (8), even though the latter are facet-
defining. For small instances, the complete subgraph inequalities (9) can further

298 A. Torrico et al.

cut the gap to under 3 %; however, we weren’t able to compute this bound
in a reasonable time for larger instances because of the significant additional
computational burden. For the dense large instances, our bounds are all quite
close to the expected maximum matching benchmark, which is unsurprising since
in most realizations of these instances there is a perfect or near-perfect matching.

In terms of policies, the best performer overall is the time-dependent rank-
ing policy corresponding to the right-star inequalities and approximation (12).
However, the non-ranking policy corresponding to the left-star inequalities and
approximation (13) does perform better on the two cycle instances. In con-
trast, the single-matching heuristic policy does not perform well, and even the
2-matching heuristic’s performance significantly worsens for the large instances;
this may indicate the benefit of having more than two choices per impression in
larger graphs.

References

1. Adelman, D.: Price-directed replenishment of subsets: methodology and its appli-
cation to inventory routing. Manuf. Serv. Oper. Manage. 5, 348–371 (2003)

2. Adelman, D.: A price-directed approach to stochastic inventory/routing. Oper.
Res. 52, 499–514 (2004)

3. Adelman, D., Barz, C.: A unifying approximate dynamic programming model for
the economic lot scheduling problem. Math. Oper. Res. 39, 374–402 (2014)

4. Bertsimas, D., Niño-Mora, J.: Conservation laws, extended polymatroids and
multi-armed bandit problems; a polyhedral approach to indexable systems. Math.
Oper. Res. 21, 257–306 (1996)

5. Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. ACM
SIGACT News 39, 80–87 (2008)

6. Coffman Jr., E., Mitrani, I.: A characterization of waiting time performance real-
izable by single-server queues. Oper. Res. 28, 810–821 (1980)

7. de Farias, D., van Roy, B.: The linear programming approach to approximate
dynamic programming. Oper. Res. 51, 850–865 (2003)

8. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic match-
ing: beating 1 − 1/e. In: Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 117–126. IEEE (2009)

9. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted
matching: improved approximation algorithms. In: Chen, N., Elkind, E., Kout-
soupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 170–181. Springer,
Heidelberg (2011)

10. Jaillet, P., Lu, X.: Online stochastic matching: new algorithms with better bounds.
Math. Oper. Res. 39, 624–646 (2014)

11. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for on-line bipartite
matching. In: Proceedings of the 22nd Annual ACM Symposium on the Theory of
Computing (STOC), pp. 352–358. ACM, New York (1990)

12. Kra, I., Simanca, S.: On circulant matrices. Not. AMS 59, 368–377 (2012)
13. Manshadi, V., Oveis Gharan, S., Saberi, A.: Online stochastic matching: online

actions based on offline statistics. Math. Oper. Res. 37, 559–573 (2012)
14. Schweitzer, P., Seidmann, A.: Generalized polynomial approximations in markov-

ian decision processes. J. Math. Anal. Appl. 110, 568–582 (1985)

A Polyhedral Approach to Online Bipartite Matching 299

15. Toriello, A.: Optimal toll design: a lower bound framework for the asymmetric
traveling salesman problem. Math. Program. 144, 247–264 (2014)

16. Toriello, A., Haskell, W., Poremba, M.: A dynamic traveling salesman problem
with stochastic arc costs. Oper. Res. 62, 1107–1125 (2014)

17. Trick, M., Zin, S.: Spline approximations to value functions: a linear programming
approach. Macroecon. Dyn. 1, 255–277 (1997)

On Some Polytopes Contained in the 0,1
Hypercube that Have a Small Chvátal Rank

Gérard Cornuéjols(B) and Dabeen Lee

Tepper School of Business, Carnegie Mellon University, Pittsburgh, USA
{gc0v,dabeenl}@andrew.cmu.edu

Abstract. In this paper, we consider polytopes P that are contained in
the unit hypercube. We provide conditions on the set of infeasible 0,1
vectors that guarantee that P has a small Chvátal rank. Our conditions
are in terms of the subgraph induced by these infeasible 0,1 vertices in
the skeleton graph of the unit hypercube. In particular, we show that
when this subgraph contains no 4-cycle, the Chvátal rank is at most 3;
and when it has tree width 2, the Chvátal rank is at most 4. We also give
polyhedral decomposition theorems when this graph has a vertex cutset
of size one or two.

1 Introduction

Let Hn := [0, 1]n denote the 0,1 hypercube in R
n. Let P ⊆ Hn be a polytope.

Let S := P ∩{0, 1}n denote the set of 0,1 vectors in P . If an inequality cx ≥ d is
valid for P for some c ∈ Z

n, then cx ≥ �d� is valid for conv(S) since it holds for
any x ∈ P ∩ Z

n. Chvátal [4] introduced an elegant notion of closure as follows.

P ′ =
⋂

c∈Zn

{x ∈ R
n : cx ≥ �max{cx : x ∈ P}�}

is the Chvátal closure of P . Chvátal [4] proved that the closure of a rational
polyhedron is, again, a rational polyhedron. Recently, Dadush et al. [7] showed
that the Chvátal closure of any convex compact set is a rational polytope. Let
P (0) denote P and P (t) denote (P (t−1))′ for t ≥ 1. Then P (t) is the tth Chvátal
closure of P , and the smallest k such that P (k) = conv(S) is called the Chvátal
rank of P . Chvátal [4] proved that the Chvátal rank of every rational polytope
is finite, and Schrijver [11] later proved that the Chvátal rank of every rational
polyhedron is also finite.

Eisenbrand and Schulz [8] proved that the Chvátal rank of any polytope
P ⊆ Hn is O(n2 log n). Rothvoss and Sanitá [10] constructed a polytope P ⊆
Hn whose Chvátal rank is Ω(n2). However, some special polytopes arising in
combinatorial optimization problems have small Chvátal rank; for example, the
fractional matching polytope has Chvátal rank 1. Hartmann et al. [9] gave a

This work was supported in part by NSF grant CMMI1263239 and ONR grant
N00014-12-10032.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 300–311, 2016.
DOI: 10.1007/978-3-319-33461-5 25

On Some Polytopes Contained in the 0,1 Hypercube 301

necessary and sufficient condition for a facet-defining inequality of conv(S) to
have rank 1. In this paper, we investigate 0,1 polytopes with a Chvátal rank
that is a small constant or grows slowly with n.

The skeleton of Hn is the graph G := (V,E) whose vertices correspond to the
2n extreme points of Hn and whose edges correspond to the 1-dimensional faces
of Hn, namely the n2n−1 line segments joining two extreme points of Hn that
differ in exactly one coordinate. Let S̄ := {0, 1}n \S denote the set of 0,1 vectors
that are not in P . Consider the subgraph G(S̄) of G induced by the vertices in
S̄. In this paper, we give conditions on G(S̄) that guarantee a small Chvátal
rank. For example, we show that when S̄ is a stable set in G, the Chvátal rank
of P is at most 1; when each connected component of G(S̄) is a cycle of length
greater than 4 or a path, the Chvátal rank is at most 2; when G(S̄) contains no
4-cycle, the Chvátal rank is at most 3; in particular when G(S̄) is a forest, the
Chvátal rank is at most 3; when the tree width of G(S̄) is 2, the Chvátal rank
is at most 4. In Sect. 4, we give polyhedral decomposition theorems for conv(S)
when G(S̄) contains a vertex cutset of cardinality 1 or 2. These decomposition
theorems are used to prove the results on forests and on graphs of tree width
two mentioned above. In Sect. 5, we give an upper bound on the Chvátal rank
of P that depends on the cardinality of S̄. In particular, we show that if only a
constant number of 0,1 vectors are infeasible, then the Chvátal rank of P is also
a constant. We also give a superpolynomial range on the number of infeasible
0,1 vectors where the upper bound of O(n2 log n) on the Chvátal rank obtained
by Eisenbrand and Schulz can be slightly improved to O(n2 log log n). Finally, in
Sect. 6, we show that optimizing a linear function over S is polynomially solvable
when the Chvátal rank of QS is constant.

Although our results are mostly of theoretical interest, we mention two
applications. The first is to the theory of clutters with the packing property.
Abdi et al. [1] constructed a class of minimal nonpacking clutters from 0,1 poly-
topes with Chvátal rank at most 2. In particular, a 0,1 polytope in [0, 1]5 where
the infeasible 0,1 vectors induce 2 cycles of length 8 and the remaining 16 points
are feasible lead to the discovery of a new minimally nonpacking clutter on 10
elements. Another application occurs when S is the set of 0,1 vectors whose sum
of entries is congruent to i modulo k. The cases k = 2 and k = 3 are discussed
in Sects. 2.1 and 3.

2 Some Polytopes with Small Chvátal Rank

To prove results on a polytope P ⊂ [0, 1]n, we will work with a canonical polytope
QS that has exactly the same set S of feasible 0, 1 vectors. The description of
QS is as follows.

QS := {x ∈ [0, 1]n :
∑n

j=1
(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1/2 for x̄ ∈ S̄}.

The reason for working with QS is that the Chvátal rank of P is always less
than or equal to the Chvátal rank of QS . Furthermore, we have a good handle
on the kth Chvátal closure Q

(k)
S because of the following lemma.

302 G. Cornuéjols and D. Lee

Lemma 1 (CCH [5]). The middle points of all k + 1 dimensional faces of Hn

belong to Q
(k)
S for 0 ≤ k ≤ n − 1.

Chvátal, Cook and Hartmann proved this result when S = ∅. The result
clearly follows for general S ⊆ {0, 1}n since Q∅ ⊆ QS implies Q

(k)
∅ ⊆ Q

(k)
S . We

also make repeated use of the two following results in our proofs.

Lemma 2. Consider a half-space D := {x ∈ R
n : dx ≥ d0}. Let T := D ∩

{0, 1}n and T̄ := {0, 1}n \ T . For every face F of Hn, the graph G(F ∩ T̄) is
connected. In particular G(T̄) is a connected graph.

Theorem 1 (AADK [2]). Let P be a polytope and let G = (V,E) be its
skeleton. Let S ⊂ V , S̄ = V \ S, and S̄1, . . . , S̄m be a partition of S̄ such
that there are no edges of G connecting S̄i, S̄j for all 1 ≤ i < j ≤ m. Then
conv(S) =

⋂m
i=1 conv(V \ S̄i).

Theorem 1, due to Angulo et al. [2], shows that we can consider each connected
component of G(S̄) separately when studying conv(S). In Sect. 4, we give similar
theorems in the case where P ⊂ [0, 1]n and G(S̄) contains a vertex cutset of car-
dinality 1 or 2. In this section, we provide the descriptions for Q

(1)
S , Q

(2)
S , Q

(3)
S .

2.1 Chvátal Rank 1

Theorem 2. The polytope P has Chvátal rank at most 1 when S̄ is a stable set
in G.

In particular, if S contains all the 0,1 vertices of Hn with an even (odd resp.)
number of 1s, then P has Chvátal rank at most 1. Theorem 2 is obtained by
characterizing Q

(1)
S . For each x̄ ∈ S̄, we call

n∑

j=1

(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1 (1)

the vertex inequality corresponding to x̄. For example, when x̄ = 0, the corre-
sponding vertex inequality is x1 + x2 + . . . + xn ≥ 1. Note that each vertex
inequality cuts off exactly the vertex x̄ and it goes through all the neighbors of
x̄ on Hn.

Theorem 3. Q
(1)
S is the intersection of [0, 1]n with the half-spaces defined by

the vertex inequalities (1) for x̄ ∈ S̄.

2.2 Chvátal Rank 2

The next theorem characterizes Q
(2)
S . Let N := {1, . . . , n}.

Throughout the paper, we will use the following notation. For a 0,1 vector
x̄, we denote by x̄i the 0,1 vector that differs from x̄ only in coordinate i ∈ N ,

On Some Polytopes Contained in the 0,1 Hypercube 303

and more generally, for J ⊆ N , we denote by x̄J the 0,1 vector that differs from
x̄ exactly in the coordinates J . We denote by ei the ith unit vector for i ∈ N .

Let x̄, ȳ ∈ S̄ be two vertices of G(S̄) such that they differ in exactly one
coordinate, say ȳ = x̄i. The inequality

∑

j∈N\{i}
(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1 (2)

is called the edge inequality corresponding to edge x̄ȳ. For example, when x̄ = 0
and ȳ = e1, the corresponding edge inequality is x2 + x3 + . . . + xn ≥ 1. The
inequality (2) is the strongest inequality that cuts off x̄ and ȳ but no other
vertex of Hn. Indeed, its boundary contains all 2(n − 1) neighbors of x̄ or ȳ on
Hn (other than x̄ and ȳ themselves). The next theorem states that vertex and
edge inequalities are sufficient to describe the second Chvátal closure of QS .

Theorem 4. Q
(2)
S is the intersection of Q

(1)
S with the half-spaces defined by the

edge inequalities (2) for x̄, ȳ ∈ S̄ such that x̄ȳ is an edge of Hn.

Note that the edge inequality (2) dominates the vertex inequalities for x̄ ∈ S̄
and for ȳ ∈ S̄. Thus vertex inequalities are only needed for the isolated vertices
of G(S̄).

Theorem 5. For n ≥ 3, the Chvátal rank of QS is 2 if and only if G(S̄) contains
a connected component of cardinality at least 2, and each connected component
of G(S̄) is either a cycle of length greater than 4 or a path.

2.3 Chvátal Rank 3

Theorem 6 below is the main result of this section. It characterizes Q
(3)
S .

4-cycles of G(S̄) correspond to 2-dimensional faces of Hn that are squares.
Using our notation, if x̄, x̄i, x̄�, x̄i� ∈ S̄, we say that (x̄, x̄i, x̄�, x̄i�) is a square.
Note that ∑

j∈N\{i,�}
(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1 (3)

is the strongest inequality cutting off exactly the four points of the square
(x̄, x̄i, x̄�, x̄i�). Indeed, the 4(n − 2) neighbors of x̄, x̄i, x̄�, x̄i� in Hn (other than
x̄, x̄i, x̄�, x̄i� themselves) all satisfy (3) at equality. We call (3) a square inequality.
As an example, if (0, e1, e2, e1+e2) is a square contained in G(S̄), the correspond-
ing square inequality is x3 + x4 + . . . + xn ≥ 1.

If x̄ and t ≥ 3 of its neighbors x̄i1 := x̄ + (1 − 2x̄i1)e
i1 , . . . , x̄it := x̄ + (1 −

2x̄it)e
it all belong to S̄, then we say that (x̄, x̄i1 , . . . , x̄it) is a star. The following

star inequality is valid for conv(S)
t∑

r=1

(x̄it(1 − xit) + (1 − x̄it)xit) + 2
∑

j �=i1,...,it

(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 2. (4)

It cuts off the vertices of the star, and goes through the other n − t neighbors
of x̄ on Hn and the t(t − 1)/2 neighbors of two vertices among x̄i1 , . . . , x̄it . For
example, if (0, e1, . . . , et) is a star, then (4) is x1+. . .+xt+2(xt+1+. . .+xn) ≥ 2.

304 G. Cornuéjols and D. Lee

0 e2

e1 e1 + e2

0

e1

e2 e3

Fig. 1. Square and star with x̄ = 0

Theorem 6. Q
(3)
S is the intersection of Q

(2)
S with the half-spaces defined by the

square inequalities (3) and the star inequalities (4).

To illustrate our proof techniques, we will prove Theorem6 in this extended
abstract. The proof uses the following lemma, which gives the linear description
of conv(S) when S̄ is a star.

Lemma 3. Let n ≥ 3. If S̄ is a star, then conv(S) is completely defined by the
corresponding star inequality together with the edge inequalities and the bounds
0 ≤ x ≤ 1.

Proof. We may assume that x̄ = 0, S̄ = {0, e1, . . . , et} and I := {1, . . . , t}.
If t = n, then S is the set of 0,1 vectors satisfying the system

∑n
j=1 xj ≥ 2

with 0 ≤ x ≤ 1. This constraint matrix is totally unimodular. Therefore it defines
an integral polytope, which must be conv(S).

If t = 2, we observe similarly that {x ∈ [0, 1]n :
∑

j∈N\{r}(x̄j(1 − xj) +
(1 − x̄j)xj) ≥ 1 for r = 1, 2} is an integral polytope. Indeed, the corresponding
constraint matrix is also totally unimodular.

If 3 ≤ t < n, it is sufficient to show that A := {x ∈ [0, 1]n :
∑

i∈I xi +
2
∑

j∈N\I xj ≥ 2,
∑

j∈N\{r} xj ≥ 1 for 1 ≤ r ≤ t} is an integral polytope. Let
v be an extreme point of A. We will show that v is an integral vector. Since
we assumed n ≥ 3, A has dimension n and there exist n linearly independent
inequalities active at v.

First, consider the case when the star inequality is active at v. If no edge
inequality is active at v, then n − 1 inequalities among 0 ≤ x ≤ 1 are active
at v. Since

∑
i∈I vi + 2

∑
j∈N\I vj = 2, it follows that all coordinates of v are

integral. Thus we may assume that an edge inequality
∑

j∈N\{1} xj ≥ 1 is active
at v. Consider the face F of A defined by setting this edge inequality and the
star inequality as equalities. Clearly v is a vertex of F . Observe that the two
equations defining F can be written equivalently as

∑
j∈N\{1} xj = 1 and x1 +

∑
j∈N\I xj = 1. Furthermore, any other edge inequality

∑
j∈N\{r} xj ≥ 1 is

implied by x ≥ 0 since it can be rewritten as
∑

j∈I\{1,r} xj ≥ 0 using x1 +
∑

j∈N\I xj = 1. This means that F is entirely defined by 0 ≤ x ≤ 1 and the two
equations x1 +

∑
j∈N\I xj = 1 and

∑
j∈N\{1} xj = 1. This constraint matrix is

totally unimodular, showing that v is an integral vertex.

On Some Polytopes Contained in the 0,1 Hypercube 305

Assume now that the star inequality is not active at v, namely
∑

i∈I vi +
2
∑

j∈N\I vj > 2. If at most one edge inequality is tight at v, then v is obviously
integral. Thus, we may assume that k ≥ 2 edge inequalities are tight at v, say∑

j∈N\{r} xj ≥ 1 for 1 ≤ r ≤ k. Then v1 = . . . = vk. If v1 is fractional, v has at
least k fractional coordinates. We assumed that only k inequalities other than
0 ≤ x ≤ 1 are active at v, so the other coordinates are integral. Hence, vj = 0 for
j �∈ {1, . . . , k} and v1 = . . . = vk = 1

k−1 . Then
∑t

r=1 vr+2
∑

j∈N\I vj = k
k−1 ≤ 2.

However, this contradicts the assumption that
∑

i∈I vi + 2
∑

j∈N\I vj > 2. �

Proof of Theorem6: Applying the Chvátal procedure to inequalities defining Q
(2)
S ,

it is straightforward to show the validity of the inequalities (3) and (4) for Q
(3)
S .

To complete the proof of the theorem, we need to show that all other valid
inequalities for Q

(3)
S are implied by those defining Q

(2)
S , (3) and (4).

Consider a valid inequality for Q
(3)
S and let T̄ denote the set of 0,1 vectors

cut off by this inequality. If T̄ = ∅, then the inequality is implied by 0 ≤ x ≤ 1.
Thus, we assume that T̄ �= ∅. Let T := {0, 1}n \ T̄ . By the definition of a Chvátal
inequality, there exists an inequality ax ≥ b valid for Q

(2)
S that cuts off exactly

the vertices in T̄ . By Lemma 1, the center points of the cubes of Hn all belong
to Q

(2)
S . This means ax ≥ b does not cut off any of them. By Lemma 2, G(T̄)

is a connected graph. We claim that the distance between any two vertices in
G(T̄) is at most 2. Indeed, otherwise G(T̄) contains two opposite vertices of a
cube, and therefore its center satisfies ax < b, a contradiction.

We consider 3 cases: |T̄ | ≤ 3, G(T̄) contains a square, and G(T̄) contains no
square.

If |T̄ | ≤ 3, then G(T̄) is either an isolated vertex, an edge, or a path of length
two. Then vertex and edge inequalities with the bounds 0 ≤ x ≤ 1 are sufficient
to describe conv(T) by Lemma 3.

If G(T̄) contains a square (x̄, x̄i, x̄�, x̄i�), it cannot cut off any other vertex
of Hn (otherwise, by Lemma 2 there would be another vertex of T̄ adjacent to
the square, and thus in a cube, and cut off by the inequality, a contradiction).
Thus, T̄ = {x̄, x̄i, x̄�, x̄i�}. Since

conv(T) = {x ∈ [0, 1]n :
∑

j∈N\{i,�}
(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1},

a Chvátal inequality derived from ax ≥ b will therefore be implied by the square
inequality that corresponds to (x̄, x̄i, x̄�, x̄i�) and the bounds 0 ≤ x ≤ 1.

Assume that G(T̄) contains no square and |T̄ | ≥ 4. Note that a cycle of Hn

that is not a square has length at least six. Since the distance between any two
vertices in G(T̄) is at most two, G(T̄) contains no cycle of Hn. Thus, G(T̄) is a
tree. In fact, G(T̄) is a star since the distance between any two of its vertices is
at most two. Thus T̄ = {x̄, x̄i1 , . . . , x̄it} for some t ≥ 3. By Lemma 3, conv(T)
is described by edge and star inequalities with the bounds 0 ≤ x ≤ 1. Any
Chvátal inequality that one can obtain from ax ≥ b is therefore implied by the
edge inequalities corresponding to the edges (x̄, x̄i1), . . . , (x̄, x̄it) and the star
inequality that corresponds to the star (x̄, x̄i1 , . . . , x̄it). �

306 G. Cornuéjols and D. Lee

Note that, if an edge x̄ȳ of G(S̄) belongs to a square of G(S̄), the correspond-
ing inequality is not needed in the description of Q

(3)
S since it is dominated by the

square inequality. On the other hand, if an edge belongs to a star (x̄, x̄i1 , . . . , x̄it)
of G(S̄) with t < n, there is no domination relationship between the correspond-
ing edge inequality and star inequality by Lemma3.

3 Chvátal Rank 4

In this section, we give the characterization of Q
(4)
S . It is somewhat more involved

than the results for Q
(1)
S , Q

(2)
S and Q

(3)
S , but it is in the same spirit.

Consider any cube with vertices in G(S̄). Specifically, for x̄ ∈ {0, 1}n,
recall that we use the notation x̄i to denote the 0,1 vertex that differs from
x̄ only in coordinate i, and more generally, for J ⊆ N , let x̄J denote the
0,1 vector that differs from x̄ exactly in the coordinates J . If the 8 points
x̄, x̄i, x̄k, x̄�, x̄ik, x̄i�, x̄k�, x̄ik� all belong to S̄, then we say that these points form
a cube. Note that

∑

j∈N\{i,k,�}
(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 1 (5)

is a valid inequality for conv(S) and that it cuts off exactly 8 vertices of Hn,
namely the 8 corners of the cube. In fact, it is the strongest such inequality since
it is satisfied at equality by all 8(n − 3) of their neighbors in Hn. We call (5) a
cube inequality.

0 e2

e1

e3

0 e2

e1

e3
e4 0

e2

e1

e3

e4

Fig. 2. Cube, tulip, and propeller with x̄ = 0

If x̄, x̄i1 , x̄i2 , x̄i3 , x̄i1i2 , x̄i2i3 , x̄i3i1 , x̄i4 , . . . , x̄it all belong to S̄ for some t ≥ 4,
then we say that these points form a tulip. Let IT := {i1, . . . , it}. Note that

3∑

k=1

(x̄ik(1 − xik) + (1 − x̄ik)xik) + 2
t∑

r=4

(x̄ir (1 − xir) + (1 − x̄ir)xir)

+ 3
∑

j �∈IT

(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 3 (6)

On Some Polytopes Contained in the 0,1 Hypercube 307

is a valid inequality for conv(S) that cuts off exactly these points. We call it
a tulip inequality. For example, if x̄ = 0, and x̄ik = ek for k = 1, . . . , t, (6) is
x1 + x2 + x3 + 2(x4 + . . . + xt) + 3(xt+1 + . . . + xn) ≥ 3.

If x̄, x̄i1 , x̄i2 , . . . , x̄it , x̄it+1 , x̄i1it+1 , x̄i2it+1 , . . . , x̄itit+1 all belong to S̄ for some
t ≥ 3, then we say that these points form a propeller. Let IP := {i1, . . . , it+1}.
Note that

t∑

r=1

(x̄ir (1 − xir) + (1 − x̄ir)xir) + 2
∑

j �∈IP

(x̄j(1 − xj) + (1 − x̄j)xj) ≥ 2 (7)

is a valid inequality that cuts off exactly the above points. We call it a propeller
inequality. For example, if x̄ = 0, x̄it+1 = e1 and x̄ik = ek+1 for k = 1, . . . , t, the
propeller inequality is x2 + . . . + xt+1 + 2(xt+2 + . . . + xn) ≥ 2.

Theorem 7. Q
(4)
S is the intersection of Q

(3)
S and the half spaces defined by all

cube, tulip, and propeller inequalities.

Corollary 1. Let P ⊆ [0, 1]n be a polytope, S = P ∩{0, 1}n and S̄ = {0, 1}n \S.
If G(S̄) contains no 4-cycle, then P has Chvátal rank at most 3.

The set of vertices T̄ cut off by a linear inequality induces a connected graph
by Lemma 2. One can show that if G(T̄) contains vertices at distance greater
than 2, then it contains a 4-cycle. Therefore, if G(T̄) contains no 4-cycle, it is a
star in the bipartite graph G(Hn) with one vertex on one side and at most n on
the other.

Remark 1. Let P ⊆ [0, 1]n be given by a system of k inequalities. If G(S̄) contains
no 4-cycle, then |S̄| ≤ k(n + 1). It follows that optimizing a linear function over
S can be solved in polynomial time in this case.

Corollary 2. Let n ≥ 3 and i = 0, 1 or 2. For S ⊇ {x ∈ {0, 1}n :
∑n

j=1 xj =
i (mod 3)}, the set conv(S) is entirely described by vertex, edge, star inequalities
and bounds 0 ≤ x ≤ 1.

We note that, for n ≥ 5, i = 0, 1, 2, 3 and S ⊇ {x ∈ {0, 1}n :
∑n

j=1 xj =
i (mod 4)}, conv(S) might contain an inequality with Chvátal rank 5 in its linear
description.

4 Vertex Cutsets

Corollary 1 implies that if G(S̄) induces a forest, the Chvátal rank of P is at
most 3. This can also be proved directly using a vertex cutset decomposition
theorem in the spirit of Theorem 1. We present it below in Sect. 4.1.

Trees can be generalized using the notion of tree width. A connected graph
has tree width one if and only if it is a tree. Next, we focus our attention on
the case when G(S̄) has tree width two. Instead of working directly with the
definition of tree width, we will use the following characterization: A graph has

308 G. Cornuéjols and D. Lee

tree width at most two if and only if it contains no K4-minor; furthermore a
graph with no K4-minor and at least four vertices always has a vertex cut of
size two.

The main result of this section is that P has Chvátal rank at most 4 when
G(S̄) has tree width two.

Theorem 8. Let P ⊆ [0, 1]n, S = P ∩ {0, 1}n and S̄ = {0, 1}n \ S. If G(S̄) has
tree width 2, the Chvátal rank of P is at most 4.

The proof follows from a 2-vertex cutset decomposition theorem, which we
state below in Sect. 4.2.

4.1 1-Vertex Cutset

The next theorem shows that conv(S) can be decomposed when G(S̄) contains
a vertex cut. This result is in the spirit of the theorem of Angulo, Ahmed, Dey
and Kaibel (Theorem 1) but it is specific to polytopes contained in the unit
hypercube.

Let G = (V,E) be a graph and let X ⊆ V . For v ∈ X, let NX [v] denote the
closed neighborhood of v in the graph G(X). That is NX [v] := {v} ∪ {u ∈ X :
uv ∈ E}.

Theorem 9. Let S ⊆ {0, 1}n and S̄ = {0, 1}n \ S. Let v be a cut vertex in
G(S̄) and let S̄1, . . . , S̄� denote the connected components of G(S̄ \ {v}). Then
conv(S) =

⋂�
i=1 conv({0, 1}n \ (NS̄ [v] ∪ S̄i)).

Furthermore, if v does not belong to any 4-cycle in G(S̄), then conv(S) =
conv({0, 1}n \ NS̄ [v]) ∩ ⋂�

i=1 conv({0, 1}n \ ({v} ∪ S̄i)).

Theorem 9 cannot be extended to general polytopes, as shown in the following
example.

Fig. 3. An example in R
2

On Some Polytopes Contained in the 0,1 Hypercube 309

Example 1. Let P be the polytope in R
2 shown in Fig. 3. Let V := {v1, . . . , v8}

denote its vertex set and let G = (V,E) be its skeleton graph. Let S :=
{v5, v6, v7} and S̄ := V \ S. In the figure the set of white vertices is S,
while the set of black vertices is S̄. Note that v2 is a cut vertex of G(S̄), and
NS̄ [v2] = {v1, v2, v3}. Therefore, S̄1 := {v1, v8} and S̄2 := {v3, v4} induce two
distinct connected components of G(S̄ \ {v2}).

Note that conv(S) is a triangle, but the intersection of conv(V \
{v1, v2, v3, v4}) and conv(V \ {v1, v2, v3, v8}) is a parallelogram. Therefore, we
get that

conv(S) �= conv(V \ (NS̄ [v2] ∪ S̄1)) ∩ conv(V \ (NS̄ [v2] ∪ S̄2)). �

4.2 2-Vertex Cut

A key step in proving Theorem 8 is the next theorem.

Theorem 10. Let S ⊆ {0, 1}n and S̄ = {0, 1}n \ S. Let {v1, v2} be a ver-
tex cut of size two in G(S̄). Let S̄1, . . . , S̄k denote the connected components of
G(S̄ \ {v1, v2}). Then conv(S) =

⋂k
i=1 conv({0, 1}n \ (NS̄ [v1] ∪ NS̄ [v2] ∪ S̄i)).

It is natural to ask whether this theorem can be extended to vertex cuts of
larger sizes. The 3-vertex cut case is open, but it turns out that Theorem 10
cannot be generalized to 4-vertex cutsets as shown by the following example.

Example 2. Consider S̄ = (({0, 1}4 × {0}) \ {e1 + e2 + e3 + e4}) ∪ {e5}. Then
x1 + x2 + x3 + x4 + 3x5 ≥ 4 is a facet-defining inequality for conv(S). Note
that it cuts off all points in S̄. In addition, C̄ := {e1, e2, e3, e4} is a vertex cut
of cardinality four in S̄. Then S̄1 := {0, e5} and S̄2 := {e1 + e2 + e3, e1 + e2 +
e4, e1 + e3 + e4, e2 + e3 + e4} induce two connected components of G(S̄ \ C̄).
However,

conv(S) �=
2⋂

i=1

conv({0, 1}5 \ (NS̄ [e1] ∪ . . . ∪ NS̄ [e4] ∪ S̄i))

since x1 + x2 + x3 + x4 + 3x5 ≥ 4 is not valid for conv({0, 1}5 \ (NS̄ [e1] ∪ . . . ∪
NS̄ [e4] ∪ S̄i)) for i = 1, 2. �

4.3 Implication for the Chvátal Rank

Theorems 9 and 10 imply bounds on the Chvátal rank of P when G(S̄) has a
vertex cutset of size one or two.

Corollary 3. Let P = ∩t
i=1Pi, where Pi ⊆ [0, 1]n are polytopes. Let Vi = Pi ∩

{0, 1}n, S = P ∩ {0, 1}n and S̄ = {0, 1}n \ S.

(i) Let v be a cut vertex in G(S̄), let S̄1, . . . , S̄t induce the connected components
of G(S̄ \ {v}). Assume Vi = {0, 1}n \ (NS̄ [v] ∪ S̄i). Then the Chvátal rank
of P is no greater than the maximum Chvátal rank of Pi, i = 1, . . . , t.

310 G. Cornuéjols and D. Lee

(ii) Let {v1, v2} be a vertex cut of size two in G(S̄). Let S̄1, . . . , S̄t induce the
connected components of G(S̄ \ {v1, v2}). Assume Vi = {0, 1}n \ (NS̄ [v1] ∪
NS̄ [v2] ∪ S̄i). Then the Chvátal rank of P is no greater than the maximum
Chvátal rank of Pi, i = 1, . . . , t.

5 Dependency on the Cardinality of the Infeasible Set

One can derive an upper bound on the Chvátal rank as a function of |S̄| using
the result of Eisenbrand and Schulz [8] showing that the Chvátal rank of a 0,1
polytope is at most n2(1 + log2 n).

Theorem 11. If |S̄| = k for some k ≤ n, then the Chvátal rank of P is at most
k2(1 + log2 k).

This theorem implies that if the number of infeasible 0,1 vectors is a constant,
then P is of constant Chvátal rank.

The next theorem shows that the Chvátal rank of P can be guaranteed to
be smaller than the upper bound of O(n2 log n) when the cardinality of S̄ is
bounded above by a subexponential but superpolynomial function of n. The
proof uses a result of Eisenbrand and Schulz [8] stating that, if cx ≥ c0 is a
valid inequality for conv(S), where the cjs are relatively prime integers, then the
Chvátal rank of P is at most n2 + 2n log2 ‖c‖∞.

Theorem 12. If |S̄| < nfk(n) where fk(n) ≤ (log2 n)k for some positive con-
stant k, then the Chvátal rank of P is O(n2 log log n).

6 Optimization Problem Under Small Chvátal Rank

Let P ⊆ [0, 1]n and S = P ∩ {0, 1}n. Even when the Chvátal rank of P is
just 1, it is still an open question whether optimizing a linear function over S is
polynomially solvable or not [6]. In this section, we prove a weaker result.

Theorem 13. Let P ⊆ [0, 1]n and S = P ∩ {0, 1}n. If the Chvátal rank of QS

is constant, then there is a polynomial algorithm to optimize a linear function
over S.

Proof. The optimization problem is of the form min{cx : x ∈ S} where c ∈ R
n.

By complementing variables, we may assume c ≥ 0. By hypothesis, conv(S) =
Q

(k)
S for some constant k. We claim that an optimal solution can be found among

the 0,1 vectors with at most k + 1 nonzero components. This will prove the
theorem since there are only polynomially many such vectors. Indeed, if an
optimal solution x̄ has more than k+1 nonzero components, any 0,1 vector z̄ ≤ x̄

with exactly k+1 nonzero components satisfies cz̄ ≤ cx̄. Because conv(S) = Q
(k)
S

Lemma 1 implies that the face of Hn of dimension k + 1 that contains 0 and z̄
contains a feasible point ȳ ∈ S. Since cȳ ≤ cz̄ ≤ cx̄, the solution ȳ is an optimal
solution. �

On Some Polytopes Contained in the 0,1 Hypercube 311

References

1. Abdi, A., Cornuéjols, G., Pashkovich, K.: Delta minors in clutters (work in
progress)

2. Angulo, G., Ahmed, S., Dey, S.S., Kaibel, V.: Forbidden vertices. Math. Oper. Res.
40, 350–360 (2015)

3. Bockmayr, A., Eisenbrand, F., Hartmann, M., Schulz, A.S.: On the Chvátal rank
of polytopes in the 0/1 cube. Discrete Appl. Math. 98, 21–27 (1999)

4. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Math. 4, 305–337 (1973)

5. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial
optimization. Linear Algebra Appl. 114/115, 455–499 (1989)

6. Cornuéjols, G., Li, Y.: Deciding emptiness of the Gomory-Chvátal closure is NP-
complete, even for a rational polyhedron containing no integer point. In: Louveaux,
Q., Skutella, M. (eds.) IPCO 2016, vol. 9682, pp. 387–397. Springer, Switzerland
(2016)

7. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal-Gomory closure of a compact
convex set. Math. Program. Ser. A 145, 327–348 (2014)

8. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the 0/1
cube. Combinatorica 23, 245–261 (2003)

9. Hartmann, M.E., Queyranne, M., Wang, Y.: On the Chvátal rank of certain
inequalities. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999.
LNCS, vol. 1610, pp. 218–233. Springer, Heidelberg (1999)

10. Rothvoß, T., Sanitá, L.: 0/1 polytopes with quadratic Chvátal rank. In: Goe-
mans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 349–361. Springer,
Heidelberg (2013)

11. Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)

Robust Monotone Submodular Function
Maximization

James B. Orlin, Andreas S. Schulz, and Rajan Udwani(B)

MIT, Cambridge, USA
{jorlin,schulz,rudwani}@mit.edu

Abstract. We consider a robust formulation, introduced by Krause
et al. (2008), of the classic cardinality constrained monotone submod-
ular function maximization problem, and give the first constant factor
approximation results. The robustness considered is w.r.t. adversarial
removal of a given number of elements from the chosen set. In partic-
ular, for the fundamental case of single element removal, we show that
one can approximate the problem up to a factor (1− 1/e)− ε by making

O(n
1
ε) queries, for arbitrary ε > 0. The ideas are also extended to more

general settings.

1 Introduction

A set function f : 2N → R on the ground set N is called submodular if,

f(A + a) − f(A) ≤ f(B + a) − f(B) for all B ⊆ A ⊆ N and a ∈ N\A.

The function is monotone if f(B) ≤ f(A) for all B ⊆ A. We also impose
f(∅) = 0, which combined with monotonicity implies non-negativity. Optimiza-
tion problems with submodular objective functions have received a lot of inter-
est due to several applications where instances of these problems arise naturally.
However, unlike the (unconstrained) minimization of submodular functions, for
which polytime algorithms exist [18,25], even the simplest maximization ver-
sions are NP-hard [9–11,29]. In fact, they encompass some very fundamental
hard problems, such as max-cut, max-k-coverage, max-dicut and variations of
max-SAT and max-welfare.

A long line of beautiful work has culminated in fast and tight approximation
algorithms for many settings of the problem. As an example, for unconstrained
maximization of non-monotone submodular functions, Feige et al. in [11], pro-
vided an algorithm with approximation ratio of 0.4 and showed an inapprox-
imability threshold of 1/2 in the value-oracle model. Extensions by Gharan and
Vondrák [14] and subsequently by Feldman et al. [13] led to further improve-
ment of the guarantee (roughly 0.41 and 0.42, respectively). Finally, Buchbinder
et al. in [7] gave a tight randomized 1/2 approximation algorithm, and this was
recently derandomized [6].

Here we are interested in the problem of maximizing a monotone submodular
function subject to a cardinality constraint, written as: P1 := max

A⊆N,|A|≤k
f(A).

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 312–324, 2016.
DOI: 10.1007/978-3-319-33461-5 26

Robust Monotone Submodular Function Maximization 313

The problem has been well studied and instances of P1 arise in several important
applications, two of them being:

Sensor Placement [17,19–21]: Given a large number of locations N , we would
like to place up to k sensors at certain locations so as to maximize the coverage.
Many commonly used coverage functions measure the cumulative information
gathered in some form, and are thus monotone (more sensors is better) and
submodular (decreasing marginal benefit of adding a new sensor).

However, as highlighted in [20], it is important to ask what happens if some
sensors were to fail. Will the remaining sensors have good coverage regardless
of which sensors failed, or is a small crucial subset responsible for most of the
coverage?

Feature Selection [15,20,22,27]: In many machine learning models, adding a
new feature to an existing set of features always improves the modeling power
(monotonicity) and the marginal benefit of adding a new feature decreases as we
consider larger sets (submodularity). Given a large set of features, we would like
to select a small subset such that, we reduce the problem dimensionality while
retaining most of the information.

However, as discussed in [15,20], in situations where the nature of underlying
data is uncertain, leading to non-stationary feature distributions, it is important
to not have too much dependence on a few features. Taking a concrete example
from [15], in document classification, features may take not standard values due
to small sample effects or in fact, the test and training data may come from
different distributions. In other cases, a feature may even be deleted at some
point, due to input sensors failures for example. Thus, similar questions arise
here too and we would like to have an ‘evenly spread’ dependence on the set of
chosen features. With such issues in mind, consider the following robust variant
of the problem, introduced in [20],

P2 := max
A⊆N,|A|≤k

min
Z⊆A,|Z|≤τ

f(A − Z).

Note that the parameter τ controls the degree of robustness of the chosen
set since the larger τ is, the larger the size of subset Z that can be adversar-
ially removed from the chosen set A. For τ = 0, P2 reduces to the P1. Since
this formulation optimizes the worst case scenario, a natural variation is to opti-
mize the average case failure scenario [16]. However, this is not suitable for
some applications. For instance, we may have no prior on the failure/deletion
mechanism and furthermore, in critical applications, such as sensor placement
for outbreak detection [20,21], we want protection against the worst case. This
form of worst case analysis has been of great interest in operations research and
beyond, under the umbrella of robust optimization (e.g., [2–5]). The idea is to
formulate the uncertainty in model parameters through a deterministic uncer-
tainty set. However, much work in this area assumes that the uncertainty set is
a connected, if not convex, set and in contrast, the uncertainty set in P2, when
τ = 1 for instance, is the disconnected set of canonical unit vectors ei ∈ R

N

(1 at entry i, 0 otherwise).

314 J.B. Orlin et al.

Previous Work on P1 and P2. The first rigorous analysis of P1 was by
Nemhauser et al. [23,24] in the late 70’s, where they showed that the greedy
algorithm gives a guarantee of (1−1/e) and that this is best possible in the value-
oracle model. Later, Feige [10] showed that this is also the best possible under
standard complexity assumptions (through the special case of Max-k-cover).
On the algorithmic side, Badanidiyuru and Vondrák [1] recently gave a faster
algorithm for P1 that improved the quadratic query complexity of the classical
greedy algorithm to nearly linear complexity, by trading off on the approxima-
tion guarantee. However, the optimality (w.r.t. approximation guarantee) of the
greedy algorithm is rather coincidental, and for many complex settings of the
problem (monotone or not), the greedy algorithm tends to be sub-optimal (there
are exceptions, like [26]). An approach first explored by Chekuri et al. [8], that
has been very effective, is to perform optimization on the multilinear relaxation
of the submodular function, followed by clever rounding to get a solution to the
original problem. Based on this framework, tremendous progress has been made
over the last decade for both monotone and non-monotone versions with various
kinds of constraints [8,12,28–30]. In fact, a general framework for establishing
hardness of many of these variants [9,29], also relies intricately on properties of
this relaxation.

Moving on to P2, as we will see, the well known greedy algorithm and also
the above mentioned continuous greedy approach for τ = 0, can be arbitrarily
bad even for τ = 1. In fact, many natural approaches do not have a constant
factor guarantee for τ ≥ 1. The paper by Krause et al. [20], which formally
introduced the problem, actually gives a bi-criterion approximation to the much
more general and inapproximable problem: max

A⊆N,|A|≤k
min

i∈{1,2,...,m}
fi(A), where

fi(.) is monotone submodular for every i. Their algorithm, which is based on
the greedy algorithm for P1, when specialized to P2, guarantees optimality by
allowing sets up to size k(1+Θ(log(τk log n))) and has runtime exponential in τ .
To the best of our knowledge, no stronger/constant factor approximation results
were known for P2 prior to our work.

Our Contributions: We work in the value oracle model and give constant factor
guarantees for P2 with combinatorial, ‘greedy like’ algorithms. Our major focus
is on the case τ = 1, since it is a fundamental step towards understanding this
form of robustness for the maximization problem. For this case, we propose: (i)
an algorithm with parameter m, that guarantees a ratio of (1 − 1/e) − Ω(1/m)
using O(nm+1) queries and (ii) a fast and practical 0.5547 approximation. Intu-
itively, the central idea is that we would like to be protected against removal
of important elements in our set; leveraging properties of the greedy algorithm,
we find that only a few elements are actually critical in this sense. Thus, we
ensure that we have a set that is robust to removal of any one of those few
elements. For τ = o(

√
k), we give a fast and asymptotically 0.285 approximate

algorithm. In the more general case, where we wish to find a robust set A in an
independence system, we extend some of the ideas from the cardinality case into
an enumerative procedure that yields an α/(τ + 1) approximation using an α

Robust Monotone Submodular Function Maximization 315

approximation algorithm for τ = 0 as a subroutine. However, the runtime scales
as nτ+1.

The outline for the rest of the paper is as follows: In Sect. 2, we introduce some
notation and see how several natural ideas fail to give any approximation guar-
antees. In Sect. 3, we focus on τ = 1 and starting with a special case slowly build
up to an algorithm with asymptotic guarantee (1 − 1/e) − ε. Finally, in Sect. 4,
we extend some of the ideas to τ = o(

√
k) and to more general constraints.

Section 5 concludes with some open questions. Also, due to space constraints we
defer most proofs to the full version of this paper.

2 Preliminaries

2.1 Definitions

We denote an instance of P2 on ground set N with cardinality constraint
parameter k and robustness parameter τ by (k,N, τ). Subsequently, we use
OPT (k,N, τ) to denote an optimal set for the instance (k,N, τ). For any given
set A, we call a subset Z a minimizer if f(A − Z) = min

B⊆A;|B|≤τ
f(A − B). Also,

let Z(A) be the set of minimizers of A. When τ = 1, we often use the letter
z for minimizers. In fact, we generally refer to singleton sets without braces
{} and use + and ∪ interchangeably. Also, we call the subset A − Z of A, an
active subset of A. Next, consider the set function gτ (A) = min

B⊆A;|B|≤τ
f(A − B),

i.e., gτ (A) = f(A − Z), the value of an active subset of A. We simply use g(.),
when τ is clear from context. Also, define the marginal increase in value due
to a set X, when added to the set A as f(X|A) = f(A ∪ X) − f(A). Similarly,
g(X|A) = g(A ∪ X) − g(A).

Let β(η, α) = eα−1
eα−η for η ∈ [0, 1], α ≥ 0. Note that β(0, 1) = (1 − 1/e). This

function appears naturally in our analysis and will be very useful for expressing
approximation guarantees of the algorithms. Finally, consider the basic greedy
algorithm defined below:

Algorithm 1. Greedy Algorithm
1: Initialize A = ∅
2: while |A| < k do A = A + argmax

x∈N−A
f(x|A)

3: Output: A

If we run the above algorithm for k = n, we end up with the set N . Using this
we index the elements in the order they were added. So N = {a1, a2, . . . , an},
where a1 is the first element picked by the greedy algorithm and thus also a
highest value element.

It can be shown that we cannot approximate P2 better than P1 (approx-
imable up to a factor of β(0, 1), details in full version). Before going into positive
results, we will see how some natural ideas fail to give any guarantees for the
robust problem, starting with the greedy algorithm itself.

316 J.B. Orlin et al.

2.2 Negative Results

The example below demonstrates why the greedy algorithm that does well for
instances of P1, fails for P2. However, the weakness will also indicate a property
which will be useful later.

Example: Consider a ground set N of size 2k such that f(a1) = 1, f(ai) = 0,
∀ 2 ≤ i ≤ k and f(aj) = 1

k , ∀j ≥ k + 1. Also, for all j ≥ k + 1, let f(aj |X) = 1
k

if X ∩ {a1, aj} = ∅ and 0 otherwise. Consider the set S = {ak+1, · · · , a2k}
and let the set picked by the greedy algorithm (with arbitrary tie-breaking) be
A = {a1, · · · , ak}. Then we have that f(A − a1) = 0 and f(S − aj) = 1 − 1

k for
every aj ∈ S. The insight here is that greedy may select a set such that only
the first few elements contribute most of the value in the set, which makes it
non-robust. However, as we discuss more formally later, such a concentration of
value implies that only the first two elements {a1, a2} are critical and protecting
against removal of either of those two suffices for best possible guarantees.

In fact, many natural variations fail to give an approximation ratio better
than 1/(k − 1). Indeed, a guarantee of this order, i.e. 1/(k − τ), is achievable
for any τ by the following näıve algorithm: Pick the k largest value elements. It
is also important to examine if the function g is super/sub-modular, since that
would make existing techniques useful. It turns out not However, it is monotonic.
Despite this, it is interesting to examine a natural variant of the greedy algo-
rithm, where we greedily pick w.r.t g, but that variant can also be arbitrarily
bad. We defer details/proofs omitted above to the full version.

3 Main Result: Algorithms for τ = 1

3.1 Special Case of “Copies”

We first consider a special case, which will serve two purposes. First, it will
simplify things and the insights gained for this case can be generalized to get
stronger results. Secondly, since this case may arise in practical scenarios, it is
worthwhile to discuss the special algorithms as they are much simpler than the
general Algorithms 3 and 4 discussed later on.

Given an element x ∈ N , we call another element x′ a copy of element x if,

f(x′) = f(x) and f(x′|x) = 0.

This implies f(x|x′) = f({x, x′}) − f(x′) = f(x) + f(x′|x) − f(x′) = 0. In fact,
it can be shown that f(x′|A) = f(x|A) for every A ⊂ N not containing x or x′.
This is a useful case for robust sensor placement, if we were allowed to place
multiple/duplicate sensors at certain locations that are critical for coverage.

For the rest of this sub-section, assume that each element in N has a copy
and denote the copy of element ai by a′

i. As indicated previously, we would like
to make our set robust to removal of critical elements. In the presence of copies,
adding a copy of these elements achieves that. So as a first step, let’s construct

Robust Monotone Submodular Function Maximization 317

a set that includes a copy of each element, and so is unaffected by single element
removal. One way to do this is to run the greedy algorithm for k/2 iterations
and then add a copy of each of the k/2 elements. Then, one can show that
g(S) = f(S) ≥ β(0, 0.5) f(OPT (k,N, 0)) ≥ (1 − 1√

e
) g(OPT (k,N, 1)), where

the last inequality follows from substitution and because f(.) ≥ g(.). Hence,
we have ≈0.393-approximation and the bound is tight. Can we improve this?
One way to do better is to think about whether we really need to copy all k/2
elements. Turns out, just copying {a1, a2} is enough. The intuition here is that
if the greedy set has value nicely spread out, we could get away without copying
anything. So in such a case, copying the first two elements does not hurt much.
Otherwise, as in the example from Sect. 2, if greedy concentrates its value on the
first few elements, then copying just them suffices.

Now as a step towards showing that the first two elements are enough, con-
sider the algorithm where we add a copy of just the first element a1 and then con-
tinue adding greedily to get the set {a1, a

′
1, a2, · · · , ak−1}. We call this the 1-Copy

algorithm and it guarantees a ratio 0.5 for k ≥ 7 (proof in full version). In fact,
we cannot do better if we copy just one element. Now, consider the algorithm
that copies the first two elements and thus outputs: {a1, a

′
1, a2, a

′
2, a3, . . . , ak−2}.

Call this the 2-Copy algorithm. We sketch the proof here since it captures some
of the essence of the much more technical analysis for later algorithms.

Theorem 1. For the case with copies, 2-Copy is β
(
0, k−5

k−1

)
approximate.

Proof (sketch). Let z be a minimizer of the output A = {a1, a
′
1, a2,

a′
2, a3, . . . , ak−2}. So if z ∈ {a1, a2} (or their copies), then using proper-

ties of the greedy algorithm and by definition of g, it can be shown that,
f(A − z) = f({a1, a2, . . . , ak−2}) ≥ β(0, k−2

k−1)f(OPT (k − 1, N, 0)) ≥ β(0, k−2
k−1)

g(OPT (k,N, 1)),
If z �∈ {a1, a2} (or their copies) then let f(z|A − z) = ηf(A). We have

due to greedy additions and submodularity, f(a3|{a1, a2}) ≥ f(z|A − z) and
f({a1, a2}) ≥ 2f(z|A − z), which in turn implies that f({a1.a2, a3}) ≥ 3ηf(A).
This relates the value removed by a minimizer z to the value concentrated on the
first 3 elements {a1, a2, a3}. Higher the value removed, higher the concentration
and closer the value of f(A) to f(OPT (k−1, N, 0)). More formally, we can show
that,

f(A) ≥ β(3η,
k − 5
k − 1

)f(OPT (k − 1, N, 0)) ≥ β(3η,
k − 5
k − 1

)g(OPT (k,N, 1)).

Which implies that g(A) = (1 − η)f(A) ≥ (1 − η)β(3η, k−5
k−1)g(OPT (k,N, 1))

Now, we show that the factor (1 − η)β(3η, k−5
k−1) on the RHS is minimized for

η = 0, which finishes the proof. For ease of notation, let e′ denote e
k−5
k−1 , then we

have,

(1 − η)β(3η,
k − 5
k − 1

) =
1
3
(3 − 3η)

e′ − 1
e′ − 3η

=
1
3
(e′ − 1)(1 +

3 − e′

e′ − 3η
)

≥ 1
3
(e′ − 1)(1 +

3 − e′

e′) = (1 − 1/e′) = β(0,
k − 5
k − 1

)

318 J.B. Orlin et al.

As an example, for k ≥ 55 the value of the ratio is ≥ 0.6 ��
The result also implies that if for large k, the output of the greedy algorithm
has a minimizer ai with i ≥ 3, then the greedy set is (1 − 1/e) approximate
for (k,N, 1). This is because, for such an instance we can assume that the set
contains copies of a1, a2 and then apply Theorem1. Moreover, if we copy the first
i elements for i ≥ 3, we get the same guarantee but with worse asymptotics, so
copying more than first two does not result in a gain.

Naturally, the problem we must deal with now is that in general we won’t
have copies. However, as we argued above, the main takeaway from the special
case is that if we can make the greedy set robust to removal of either one of
the first two elements, we get the best possible guarantee (except for small k).
Indeed, we will now essentially focus on how to make a greedy set that is robust
in such a manner without relying on copies.

3.2 Guarantees in Absence of “Copies”

We start by discussing how one could construct a greedy set that is robust to
the removal of just a1. One approach would be to pick a1 and then pick the rest
of the elements greedily while ignoring a1, since that would allow a copy of a1

to be chosen and if no copy exists, it will still allow useful elements which have
small marginal on a1, but large value in absence of it (and so would not have
been considered otherwise). Formally:

Algorithm 2. 0.387 Algorithm
1: Initialize A = {a1}
2: while |A| < k do A = A + argmax

x∈N−A
f(x|A − {a1})

3: Output: A

This simple algorithm is in fact, asymptotically 0.387 approximate (0.357-
approximate for all k ≥ 4, we omit the proof here). However, a clear issue with
the algorithm is that it is oblivious to the minimizers of the set at any iter-
ation. It ignores a1 throughout, even if a1 stops being the minimizer after a
few iterations of ignoring it. Thus, if we track the minimizer and stop ignor-
ing a1 when it is not the minimizer, we do better and can in fact, achieve an
approximation ratio of 0.5 for k ≥ 7 (details in full version). Next, just as in the
presence of copies, in order to get even better guarantees, we need to look at the
set {a1, a2}. A direct generalization to a rule that ignores both a1 and a2, i.e.
argmax
x∈N−A

f(x|A − {a1, a2}), can be shown to have an upper bound less than 0.5.

In fact, many natural addition rules result in upper bounds ≤ 0.5. Algorithm 3
avoids looking at both elements simultaneously and instead ignores a1 until its
marginal becomes sufficiently small and then does the same for a2, if required.

Robust Monotone Submodular Function Maximization 319

Algorithm 3. 0.5547−Ω(1/k) Algorithm
1: Initialize A = {a1, a2}

Phase 1:
2: while |A| < k and f(a1|A − a1) > f(A)

3
do A = A + argmax

x∈N−A
f(x|A − a1)

Phase 2:
3: while |A| < k and f(a2|A − a2) > f(A)

3
do A = A + argmax

x∈N−A
f(x|A − a2)

Phase 3:
4: while |A| < k do A = A + argmax

x∈N−A
f(x|A)

5: Output: A

The algorithm is asymptotically 0.5547-approximate (as an example, guaran-
tee >0.5 for k ≥ 50, details deferred to full version) and note that it’s minimizer
oblivious and only uses greedy as subroutine, which makes it fast and easy to
implement and use. Additionally, in each of the phases of Algorithm3, we can
replace the step-wise rule A = A+argmax

x∈N−A
f(x|A−y), where y is either in {a1, a2}

or ∅, by the more efficient thresholding rule in [1] where, given a threshold w,
we add a new element x if f(x|A − y) ≥ w, with y ∈ {a1, a2, ∅} depending on
the phase, as before. This improves the query/run time to O(n

ε log n
ε), with the

loss of a factor of (1 − ε) in the guarantee.
In order to improve upon the guarantee of Algorithm3, we would like to

devise a way to add new elements while paying attention to both a1 and a2 simul-
taneously. To this end, observe that while a1 is a minimizer, the addition rule of
Algorithm 2 is equivalent to argmax

x∈N−A
g(x|A). By extension, we now propose an

algorithm which asymptotically guarantees (1−1/e)−Ω(1/m) approximation, by
using the addition rule argmax

|S|≤m;S⊆N−A

g(S|A), for m ≥ 1 (while z(A) ⊆ {a1, a2}),

and thus making O(nm+1) queries. Formally:

Algorithm 4. (1 − 1/e) − ε Algorithm
input: m

1: Initialize A = {a1, a2}
Phase 1:

2: while |A| < k and z(A) ⊆ {a1, a2} do
3: l = min{m, k − |A|}
4: A = A ∪ argmax

|S|=l;S⊆N−A

g(S|A)

Phase 2:
5: while |A| < k do A = A + argmax

x∈N−A
f(x|A)

6: Output: A

320 J.B. Orlin et al.

Theorem 2. Algorithm4 is β
(
0, (m−1)(k−2m−2)

mk

)
approximate.

Note that, for k � m we have, (m−1)(k−2m−2)
mk ≈ m−1

m , which translates the above
factor to 1− 1

e(1− 1
m

)
≥ (1−1/e)− 1

e(m−1) . For instance, when k ≥ 1000, choosing
m = 20 guarantees a ratio >0.6. The outline of the analysis is similar to that of
the 2-Copy algorithm (proof of Theorem 1) however, with a lot more technical
details. So instead, here we discuss the rationale behind such an addition rule.

Recall, through Phase 1 in case of Algorithm4 and Phases 1 and 2 in case of
Algorithm 3, we try to make the final set robust to removal of either one of the
two elements {a1, a2}. The reason we resort to m-tuples instead of singletons
in Algorithm 4 is because, for m = 1 we cannot guarantee improvements at
each iteration, as there need not be any element that has marginal value on
both a1 and a2. However, for larger m we can show improving guarantees. More
concretely, consider an instance where f(a1) = f(a2) = 1, a1 has a copy a′

1 and
additionally both a1 and a2 have ‘partial’ copies, f(aj

i) = 1
k and f(aj

i |ai) = 0
for j ∈ {1, . . . , k}, i ∈ {1, 2}. Also, let there be a set G of k −2 garbage elements
with f(G) = 0. Finally, let f({a1, a2}) = 2 and f(aj

i |X) = 1
k if {ai, a

′
i} ∩ X =

∅. Running the algorithm with: (i) m = 1 outputs {a1, a2} ∪ G in the worst
case, with (ii) m = 2 outputs aj

1, a
j
2 on step j of Phase 1 and thus, ‘partially’

copies both a1 and a2. Instead, if we run the algorithm with (iii) m = 3, the
algorithm picks up a′

1 and then copies a2 almost completely with {a1
2, . . . , a

k−3
2 }.

Thus, while {a1, a2} are minimizers, we find that adding m-tuples allows us to
guarantee that at each step we increase g(A) by m−1

m
1
k times the difference from

optimal. When m is large enough that m−1
m ≈ 1, this in turn allows us to (almost)

replicate the guarantee that we see in presence of copies (Theorem 1).

4 Extensions

4.1 Constant Factor Guarantee for τ = o(
√

k)

Here, we present an algorithm for the general case, which is an extension of
the 0.387 algorithm for τ = 1 and effectively uses the greedy algorithm as
a subroutine τ + 1 times. It achieves an asymptotic approximation ratio of
0.285 for τ = o(

√
k) and the guarantee degrades proportionally to 1 − τ2

2k , as
τ approaches

√
2k.

Algorithm 5. Algorithm for τ ≤ √
2k

1: Initialize A0 = A1 = ∅, i = 1.

2: while |A0| < τ(τ+1)
2

do
3: X = { i steps of Greedy Algorithm on ground set N − A0, starting with ∅}
4: A0 = A0 ∪ X; i = i+ 1

5: while |A1| < k − τ(τ+1)
2

do A1 = A1 + argmax
x∈N−(A0∪A1)

f(x|A1)

6: Output: A0 ∪ A1

Robust Monotone Submodular Function Maximization 321

Note that for the special case where we have at least τ copies for each element
available, we can get an asymptotic guarantee of (1− 1/e) for τ = o(

√
k). While

we defer the details to the full version, to get some intuition, consider the case
τ = 2 with at least two copies available for each of a1, a2. As before, to get close
to (1−1/e), we need to make the set unaffected by removal of a1 and a2. We thus
include two copies each of a1, a2, filling up the rest of the set greedily. This will
give us the desired ratio, but notice that one may also build such a set by running
the greedy algorithm for two steps to get {a1, a2} and then ignoring these and
running the greedy algorithm again for two steps on the reduced ground set to
get a set of copies for a1, a2 and finally, ignoring the previous four elements while
adding k − 4 elements greedily. This scheme easily generalizes for larger τ .

The approximation ratio converges to a constant only asymptotically because
we must compare the value of OPT (k,N, τ), which has size k − τ , to a set of
size k − Θ(τ2) (since the Θ(τ2) elements added as copies do not contribute any
real value). Now note that k−Θ(τ2)

k converges to 1 only for τ = o(
√

k) and it is
this degradation that creates the threshold of o(

√
k). Finally, as we mentioned

for Algorithm 3, the greedy steps can be replaced by thresholding steps in [1], to
get a runtime of O((τ + 1)n

ε log n
ε) at the cost of losing a factor of (1 − ε) in the

guarantee.

4.2 General Constraints

So far, we have looked at a robust formulation of P1, where we have a cardinal-
ity constraint. However, there are more sophisticated applications where we find
instances of budget or even matroid constraints. In particular, consider the gen-
eralization max

A∈I
min

|B|≤τ
f(A\B), for some independence system I. By definition,

for any feasible set A ∈ I, all subsets of the form A\B are feasible as well, so the
formulation is sensible. Let’s briefly discuss the case of τ = 1 and suppose that
we are given an α approximation algorithm A, with query/run time O(R) for
the τ = 0 case. Let G0 denote its output and z0 be a minimizer of G0. Consider
the restricted system Iz0 = {A : z0 ∈ A,A ∈ I}. Now, in order to be able to
pick elements that have small marginal on z0 but large value otherwise, we can
generalize the notion of ignoring z0 by maximizing the monotone submodular
function f(.\z0) subject to the independence system Iz0 . However, unlike the
cardinality constraint case, where this algorithm gives a guarantee of 0.387, the
algorithm can be arbitrarily bad in general (because of severely restricted Iz0 ,
for instance). We tackle this issue by adopting an enumerative procedure.

Let Aj denote the algorithm for τ = j and let Aj(N,Z) denote the output
of Aj on ground set N and subject to restricted system IZ . Finally, let ẑ(A) =
argmax

x∈A
f(x). With this, we have for general constraints:

322 J.B. Orlin et al.

Algorithm 6. Aτ : α
τ+1 for General Constraints

1: Initialize i = 0, Z = ∅
2: while N − Z �= ∅ do
3: Gi = A0(N − Z, ∅)
4: zi ∈ ẑ(Gi); Z = Z ∪ zi

5: Mi = zi ∪ Aτ−1(N − Z, zi); i = i + 1

6: Output: argmax{gτ (S)|S ∈ {Gj}i
j=0 ∪ {Mj}i

j=0}

The above scheme has an approximation guarantee of α/(τ + 1) with query
time O(nτR+nτ+1). To understand the basic idea behind the algorithm, assume
that z0 is in an optimal solution for the given τ . Then, given the algorithm Aτ−1,
if a minimizer of the set M0 = z0 ∪Aτ−1(N − z0, z0) includes z0, it only removes
τ −1 elements from Aτ−1(N −z0, z0). On the other hand, if a minimizer doesn’t
include z0, gτ (M0) ≥ f(z0) ≥ f(M0)−gτ (M0)

τ . These two cases yield the desired
ratio, however, since z0 need not be in an optimal solution, we systematically
enumerate. Finally, for the cardinality constraint case, the algorithm can be
simplified to get runtime polynomial in (n, τ) and guarantee that scales as 1

τ ,
which for

√
2k ≤ τ = o(k), is a better guarantee than the naive one of 1

k−τ from
Sect. 2.2.

5 Conclusion and Open Problems

We looked at a robust version of the classical monotone submodular function
maximization problem, where we want sets that are robust to the removal of
any τ elements. In particular, we focused on the pivotal case of single element
removal and gave several approximation algorithms with the best asymptotic
performance lower bound approaching (1 − 1/e). We then also gave an asymp-
totically 0.285-approximation algorithm for the case, where up to o(

√
k) elements

could be removed. It is not known if we can get exactly (1 − 1/e) in polynomial
time or if we can do much better than 0.285 for larger τ . Another interesting
open question is, whether a constant factor approximation algorithm exists for
τ = Ω(

√
k) (as opposed to the 1

τ guarantee discussed at the end of the previous
section). Also, similar robustness versions can be considered for maximization
subject to independence system constraints and we gave an enumerative black
box approach that leads to an α

τ+1 approximation algorithm with query time
scaling as nτ+1, given an α approximation algorithm for the non-robust case.

References

1. Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular func-
tions. In: SODA 2014, pp. 1497–1514. SIAM (2014)

2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton
University Press, Princeton (2009)

Robust Monotone Submodular Function Maximization 323

3. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM Rev. 53(3), 464–501 (2011)

4. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. 98(1–3), 49–71 (2003)

5. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
6. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximiza-

tion problems. CoRR, abs/1508.02157 (2015)
7. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: A tight linear time (1/2)-

approximation for unconstrained submodular maximization. In: FOCS 2012, pp.
649–658 (2012)

8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

9. Dobzinski, S., Vondrák, J.: From query complexity to computational complexity.
In: STOC 2012, pp. 1107–1116. ACM (2012)

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

11. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

12. Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithmfor
submodular maximization. In: FOCS 2011, pp. 570–579. IEEE

13. Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximiza-
tion via a structural continuous greedy algorithm. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 342–353. Springer,
Heidelberg (2011)

14. Gharan, S.O., Vondrák, J.: Submodular maximization by simulatedannealing. In:
SODA 2011, pp. 1098–1116. SIAM

15. Globerson, A., Roweis, S.: Nightmare at test time: robust learning by feature dele-
tion. In Proceedings of the 23rd International Conference on Machine Learning,
pp. 353–360. ACM (2006)

16. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

17. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in Gaussian
processes. In: Proceedings of the 22nd International Conference on Machine Learn-
ing, pp. 265–272. ACM (2005)

18. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM (JACM) 48(4), 761–777
(2001)

19. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal sensor placements:
Maximizing information while minimizing communication cost. In: Proceedings of
the 5th International Conference on Information Processing in Sensor Networks,
pp. 2–10. ACM (2006)

20. Krause, A., McMahan, H.B., Guestrin, C., Gupta, A.: Robust submodular obser-
vation selection. J. Mach. Learn. Res. 9, 2761–2801 (2008)

21. Leskovec, J., Krause, A. Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM (2007)

22. Liu, Y., Wei, K., Kirchhoff, K., Song, Y., Bilmes, J.: Submodular feature selection
for high-dimensional acoustic score spaces. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 7184–7188. IEEE (2013)

324 J.B. Orlin et al.

23. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

24. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions–I. Math. Program. 14(1), 265–294 (1978)

25. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theor. Ser. B 80(2), 346–355 (2000)

26. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

27. Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.P., Smola, A.J., Song, L.,
Philip, S.Y., Yan, X., Borgwardt, K.M.: Near-optimal supervised feature selection
among frequent subgraphs. In: SDM, pp. 1076–1087. SIAM (2009)

28. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: STOC 2008, pp. 67–74. ACM

29. Vondrák, J.: Symmetry and approximability of submodular maximization prob-
lems. SIAM J. Comput. 42(1), 265–304 (2013)

30. Vondrák, J., Chekuri, C., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In: STOC 2011, pp.
783–792. ACM (2011)

Maximizing Monotone Submodular Functions
over the Integer Lattice

Tasuku Soma1(B) and Yuichi Yoshida2

1 Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan
tasuku soma@mist.i.u-tokyo.ac.jp

2 National Institute of Informatics and Preferred Infrastructure, Inc., Tokyo, Japan
yyoshida@nii.ac.jp

Abstract. The problem of maximizing non-negative monotone submod-
ular functions under a certain constraint has been intensively studied in
the last decade. In this paper, we address the problem for functions
defined over the integer lattice.

Suppose that a non-negative monotone submodular function f : Zn
+ →

R+ is given via an evaluation oracle. Assume further that f satisfies
the diminishing return property, which is not an immediate consequence
of the submodularity when the domain is the integer lattice. Then, we
show polynomial-time (1 − 1/e − ε)-approximation algorithm for cardi-
nality constraints, polymatroid constraints, and knapsack constraints.
For a cardinality constraint, we also show a (1 − 1/e − ε)-approximation
algorithm with slightly worse time complexity that does not rely on the
diminishing return property.

Our algorithms for a polymatroid constraint and a knapsack con-
straint first extend the domain of the objective function to the Euclidean
space and then run the continuous greedy algorithm. We give two dif-
ferent kinds of continuous extensions, one is for polymatroid constraints
and the other is for knapsack constraints, which might be of independent
interest.

1 Introduction

Submodular functions have been studied intensively in various areas of opera-
tions research and computer science since submodularity naturally arises in many
problems [12,14,18]. In the last decade, maximization of submodular functions
has attracted particular interest. For example, one can find novel applications
of submodular function maximization in the spread of influence through social
networks [17], text summarization [19,20], and optimal budget allocation for
advertisements [1].

In most previous works, submodular functions defined over a set are consid-
ered, that is, they take a subset of a ground set as the input and return a real
value. However, in many practical scenarios, it is more natural to consider sub-
modular functions over a multiset, or equivalently, submodular functions over

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 325–336, 2016.
DOI: 10.1007/978-3-319-33461-5 27

326 T. Soma and Y. Yoshida

the integer lattice Z
E for some finite set E. We say that a function f : ZE → R

is (lattice) submodular if f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) for all x,y ∈ Z
E ,

where x ∨ y and x ∧ y denote the coordinate-wise maximum and minimum,
respectively. Such a generalized form of submodularity arises in maximizing the
spread of influence with partial incentives [9], optimal budget allocation, sensor
placement, and text summarization [25].

When designing algorithms for maximizing submodular functions, the dimin-
ishing return property often plays a crucial role. A set function f : 2E → R is said
to satisfy the diminishing return property if f(X + i)− f(X) ≥ f(Y + i)− f(Y)
for all X ⊆ Y ⊆ E and i /∈ Y . For example, the simple greedy algorithm for
cardinality constraints by Nemhauser et al. [22] works because of this prop-
erty. For set functions, it is well known that the submodularity is equivalent to
the diminishing return property. For functions over the integer lattice, however,
the lattice submodularity only implies a weaker variant of the inequality. This
nature causes difficulty in designing approximation algorithms; even for a sin-
gle cardinality constraint, we need a more complicated approach such as partial
enumeration [1,25].

Fortunately, objective functions appearing in practical applications admit
the diminishing return property in the following sense. We say that a func-
tion f : Z

E → R is diminishing return submodular (DR-submodular) if
f(x + χi) − f(x) ≥ f(y + χi) − f(y) for arbitrary x ≤ y and i ∈ E, where
χi is the ith unit vector. Any DR-submodular function is lattice submodular;
i.e., DR-submodularity is stronger than the lattice submodularity.1 The prob-
lem of maximizing DR-submodular functions over Z

E naturally appears in the
submodular welfare problem [16,23] and the budget allocation problem with the
decreasing influence probabilities [25]. Nevertheless, there are only a few works
on this problem. In fact, it was not known whether we can compute (1 − 1/e)-
approximation in polynomial time under a single cardinality constraint.

1.1 Main Results

In this paper, we give polynomial-time approximation algorithms for maximiz-
ing monotone DR-submodular functions under cardinality constraints, polyma-
troid constraints, and knapsack constraints. Let f : ZE → R be a non-negative
monotone DR-submodular function unless explicitly stated otherwise. Then
given any small constant ε > 0, our algorithms find (1 − 1/e − ε)-approximate
solutions under these constraints. The details are described below.

Cardinality Constraint: The objective is to maximize f(x) subject to 0 ≤
x ≤ c and x(E) ≤ r, where c ∈ Z

E
+, r ∈ Z+, and x(E) =

∑
e∈E x(e).

We design a deterministic approximation algorithm whose running time is
O(n

ε log ‖c‖∞ log r
ε), which is the first polynomial time algorithm for this

problem.
1 Note that f is DR-submodular if and only if it is lattice submodular and satisfies

the coordinate-wise concave condition: f(x + χi) − f(x) ≥ f(x + 2χi) − f(x + χi)
for any x and i ∈ E (see [26, Lemma 2.3]).

Maximizing Monotone Submodular Functions over Z
E
+ 327

Cardinality Constraint (lattice submodular case): For cardinality con-
straints, we also show a (1 − 1/e − ε)-approximation algorithm for
a monotone lattice submodular function f . This algorithm runs in
O(n

ε2 log ‖c‖∞ log r
ε log τ) time, where τ is the ratio of the maximum value

of f to the minimum positive value of f .
Polymatroid Constraint: The objective is to maximize f(x) subject to x ∈

P ∩ Z
E
+, where P is a polymatroid given via an independence oracle. Our

algorithm runs in Õ(n3

ε5 log2 r + n8) time, where r is the maximum value of
x(E) for x ∈ P . This is the first polynomial time (1−1/e− ε)-approximation
algorithm for this problem.

Knapsack Constraint: The objective is to maximize f(x) subject to a single
knapsack constraint w�x ≤ 1, where w ∈ R

E
+. We devise an approxima-

tion algorithm with Õ(n2

ε18 log 1
w)(1ε)O(1/ε8) running time, which is the first

polynomial time algorithm for this problem.

In order to achieve polynomial-time algorithms instead of pseudo-polynomial
time algorithms, we need to combine several techniques carefully. Our algo-
rithms adapt the “decreasing threshold greedy” framework, recently introduced
by Badanidiyuru and Vondrák [2], and work in the following way. We maintain
a feasible solution x ∈ R

E and a threshold θ ∈ R during the algorithm. Starting
from x = 0, we greedily increase each component of x if the average gain of
the increase is above the threshold θ, with consideration of constraints. Slightly
decreasing the threshold θ, we repeat this greedy process until θ becomes suf-
ficiently small. Except for the cardinality constraint, our algorithms follow the
“continuous greedy” approach [7]; instead of the discrete problem, we consider
the problem of maximizing a continuous extension of the original objective func-
tion. After the greedy phase, we then round the current fractional solution to
an integral solution if needed.

1.2 Technical Contribution

Although our algorithms share some ideas with the algorithms of [2,7], we achieve
several improvements as well as new ideas, mainly due to the essential difference
between set functions and functions over the integer lattice.

Binary Search in the Greedy Phase: In most previous algorithms, the
greedy step works as follows; find the direction of maximum marginal gain and
move the current solution along the direction with a unit step size. However, it
turns out that a naive adaptation of this greedy strategy only gives a pseudo-
polynomial time algorithm. To circumvent this issue, we perform a binary
search to determine the step size in the greedy phase. Combined with the
decreasing threshold framework, this technique reduces the time complexity
significantly.

New Continuous Extensions: To carry out the continuous greedy algorithm,
we need a continuous extension of functions over the integer lattice. Note
that the multilinear extension cannot be directly used since the domain

328 T. Soma and Y. Yoshida

of the multilinear extension is only the hypercube [0, 1]E . In this paper, we
propose two different kinds of new continuous extensions of a function over
the integer lattice, one of which is for polymatroid constraints and the other
is for knapsack constraints. These continuous extensions have similar proper-
ties to the multilinear extension when f is DR-submodular, and are carefully
designed so that we can round fractional solutions without violating polyma-
troid or knapsack constraints. To the best of our knowledge, these continuous
extensions in R

E
+ have not been known up to this paper.

Rounding without violating polymatroid and knapsack constraints:
It is non-trivial how to round fractional solutions in R

E
+ without violating

polymatroid or knapsack constraints. For polymatroid constraints, we show
that the rounding can be reduced to rounding in a matroid polytope, and
therefore we can use existing rounding methods for a matroid polytope. For
knapsack constraints, we design a new simple rounding method based on our
continuous extension.

1.3 Related Work

Studies on maximizing monotone submodular functions were pioneered by the
paper of Neumhauser, Wolsey, and Fisher [22]. They showed that a greedy algo-
rithm achieves a (1 − 1/e)-approximation for maximizing a monotone and sub-
modular set function under a cardinality constraint, and a 1/2-approximation
under a matroid constraint. Their algorithm provides a prototype for following
works. For knapsack constraints, Sviridenko [27] devised the first (1 − 1/e)-
approximation algorithm whose running time is O(n5) time. Whereas these
algorithms are combinatorial and deterministic, the best known algorithms for
matroid constraints are based on a continuous and randomized method. The
first (1 − 1/e)-approximation algorithm for a matroid constraint was provided
by [6], which employed the continuous greedy approach; first solve a continuous
relaxation problem and obtain a fractional approximate solution, then round it
to an integral feasible solution. In their framework, the multilinear extension of a
submodular set function is used as the objective function in the relaxation prob-
lem. They also provided the pipage rounding to obtain an integral feasible solu-
tion. Chekuri, Vondrák, and Zenklusen [7] designed a simple rounding method,
called swap rounding, based on the exchange property of matroid base families.
Recently, Badanidiyuru and Vondrák [2] devised (1 − 1/e − ε)-approximation
algorithms for any fixed constraint ε > 0, with significantly lower time complex-
ity for various constraints. For the inapproximability side, Nemhauser et al. [22]
proved that no algorithm making polynomially many queries to a value oracle
of f cannot achieve an approximation ratio better than 1 − 1/e under any of
constraints mentioned so far. Also, Feige [10] showed that, even if f is given
explicitly, (1 − 1/e)-approximation is the best possible unless P = NP.

Generalized forms of submodularity have been studied in various contexts.
Fujishige [12] discusses submodular functions over a distributive lattice and its
related polyhedra. In the theory of discrete convex analysis by Murota [21],
a subclass of submodular functions over the integer lattice is considered.

Maximizing Monotone Submodular Functions over Z
E
+ 329

The maximization problem also has been studied for variants of submodu-
lar functions. Shioura [23] investigates the maximization of discrete convex
functions. Soma et al. [25] provides a (1−1/e)-approximation algorithm for max-
imizing a monotone lattice submodular function under a knapsack constraint.
However, its running time is pseudo-polynomial. Although the present work
focuses on monotone submodular functions, there are a large body of work on
maximization of non-monotone submodular functions [3–5,11]. Gottschalk and
Peis [13] provided a 1/3-approximation algorithm for maximizing a lattice sub-
modular function over (bounded) integer lattice. Recently, bisubmodular func-
tions and k-submodular functions, other generalizations of submodular functions,
have been studied, and approximation algorithms for maximizing these functions
can be found in [15,24,28].

1.4 Organization of This Paper

The rest of this paper is organized as follows. In Sect. 2, we provide our notations
and basic facts on submodular functions and polymatroid. Section 3 describes
our algorithm for cardinality constraints. In Sect. 4, we provide the continu-
ous extension for polymatroid constraints and our approximate algorithm. We
present our algorithm for knapsack constraints as well as another continuous
extension in Sect. 5. Omitted details and proofs are deferred to the full version.

2 Preliminaries

Notation. We denote the sets of non-negative integers and non-negative reals by
Z+ and R+, respectively. For a positive integer k, [k] denotes the set {1, . . . , k}.
Throughout this paper, E denotes a ground set of size n. For f : R

E → R

and x,y ∈ R
E , we define f(x | y) := f(x + y) − f(y). For x ∈ R

E and
X ⊆ E, we denote x(X) :=

∑
i∈X x(i). For a vector x ∈ R

E , supp+(x) denotes
the set {e ∈ E | x(e) > 0}. For x ∈ Z

E
+, {x} denotes the multiset where the

element e appears x(e) times. For arbitrary two multisets {x} and {y}, we define
{x}\{y} := {(x − y) ∨ 0}. For a multiset {x}, we define |{x}| := x(E).

For the error parameter ε > 0, we always assume that 1
ε is an integer (other-

wise we can slightly decrease it without changing the asymptotic time complexity
and the approximation ratio).

Lattice and DR-Submodularity. We say that a function f : ZE
+ → R is lattice

submodular if it satisfies f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) for all x,y ∈ Z
E ,

where x ∨ y and x ∧ y denote the coordinate-wise maximum and minimum,
respectively, i.e., (x∨y)(e) = max{x(e),y(e)} and (x∧y)(e) = min{x(e),y(e)}
for each e ∈ E. A function f : ZE

+ → R is monotone if f(x) ≤ f(y) for all x and
y with x ≤ y. We say that f : Zn → R is diminishing return submodular (DR-
submodular) if f(x+ χi) − f(x) ≥ f(y + χi) − f(y) for every x ≤ y and i ∈ E,
where χi denotes the ith unit vector. We note that the lattice submodularity of

330 T. Soma and Y. Yoshida

Algorithm 1. Cardinality Constraint/DR-Submodular
Input: f : ZE

+ → R+, c ∈ Z
E
+, r ∈ Z+, and ε > 0. Output: y ∈ Z

E
+.

1: y ← 0 and d ← maxe∈E f(χe).
2: for (θ = d; θ ≥ ε

r
d; θ ← θ(1 − ε)) do

3: for all e ∈ E do
4: Find maximum k ≤ min{c(e) − y(e), r − y(E)} with f(kχe | y) ≥ kθ with

binary search.
5: If such k exists then y ← y + kχe

6: return y.

f does not imply the DR-submodularity when the domain is the integer lattice.
Throughout this paper, we assume that f(0) = 0 without loss of generality.

If a function f : ZE → R satisfies f(x ∨ kχi) − f(x) ≥ f(y ∨ kχi) − f(y) for
any i ∈ E, k ∈ Z+, x and y with x ≤ y, then we say that f satisfies the weak
diminishing return property. Any monotone lattice submodular function satisfies
the weak diminishing return property [25].

Polymatroid. Let ρ : 2E → Z+ be a monotone submodular set function with
ρ(∅) = 0. The (integral) polymatroid associated with ρ is the polytope P = {x ∈
R

E
+ : x(X) ≤ ρ(X) ∀X ⊆ E}, and ρ is called the rank function of P .

3 Cardinality Constraint

We give approximation algorithms for maximizing monotone DR-submodular
and lattice submodular functions in Sects. 3.1 and 3.2, respectively.

3.1 Maximization of Monotone DR-Submodular Function

We start with the case of a DR-submodular function. Let f : Z
E
+ → R+ be

a monotone DR-submodular function. Let c ∈ Z
E
+ and r ∈ Z+. We want to

maximize f(x) under the constraints 0 ≤ x ≤ c and x(E) ≤ r. The pseudocode
description of our algorithm is shown in Algorithm1.

The following lemma can be obtained by adopting analysis for the greedy
algorithm (a proof is deferred to the full version).

Lemma 1. Let x∗ be an optimal solution. When adding kχe to the current
solution y in Line 5, the average gain satisfies the following.

f(kχe | y)
k

≥ (1 − ε)
r

∑

s∈{x∗}\{y}
f(χs | y)

Theorem 1. Algorithm1 achieves the approximation ratio of 1 − 1
e − ε in

O(n
ε log ‖c‖∞ log r

ε) time.

Maximizing Monotone Submodular Functions over Z
E
+ 331

Algorithm 2. Binary Search for Cardinality Constraint/Lattice Submodular
Input: f : ZE

+ → R+, e ∈ E, θ > 0, kmax ∈ Z+, ε > 0. Output: 0 ≤ k ≤ kmax or fail.
1: Find kmin with 0 ≤ kmin ≤ kmax such that f(kminχe) > 0 by binary search.
2: if no such kmin exists then fail.
3: for (h = f(kmaxχe); h ≥ (1 − ε)f(kminχe); h = (1 − ε)h) do
4: Find the smallest kmin ≤ k ≤ kmax such that f(kχe) ≥ h by binary search.
5: If f(kχe) ≥ (1 − ε)kθ then return k.
6: fail.

Proof. Let y be the output of Algorithm1. Without loss of generality, we can
assume that y(E) = r. To see this, consider a modified version of the algorithm
in which the threshold is updated until y(E) = r. Let y′ be the output of this
modified algorithm. Since the marginal gain of increasing any coordinate of y
by one is at most εd

r , we have f(y′) − f(y) ≤ εd ≤ εOPT. Therefore, it suffices
to show that y′ is a (1 − 1/e − ε)-approximate solution.

Let yi be the vector after i steps. Let kiχei
be the vector added in the i-th

step. That is, yi =
∑i

j=1 kjχej
. By Lemma 1, we have

f(ki+1χei+1 | yi)
ki+1

≥ 1 − ε

r

∑

s∈{x∗}\{yi}
f(χs | yi).

By DR-submodularity,
∑

s∈{x∗}−{yi} f(χs | yi) ≥ f(x∗ ∨ yi) − f(yi) holds.
Therefore by monotonicity, we have

f(yi+1) − f(yi) = f(ki+1χei+1 | yi) ≥ (1 − ε)ki+1

r
(f(x∗ ∨ yi) − f(yi))

≥ (1 − ε)ki+1

r
(OPT − f(yi)).

Hence, we can show by induction that f(y) ≥
(
1 − ∏

i

(
1 − (1−ε)ki

r

))
OPT.

Since
∏

i

(
1 − (1−ε)ki

r

)
≤ ∏

i exp
(
− (1−ε)ki

r

)
= exp

(
− (1−ε)

∑
i ki

r

)
= e−(1−ε) ≤

1
e + ε, we obtain (1 − 1

e − ε)-approximation. �

3.2 Maximization of Monotone Lattice Submodular Function

We now consider the case that f : ZE
+ → R+ is a monotone lattice submodular

function. The pseudocode description of our algorithm is shown in Algorithm3.
The main issue is that we cannot find k such that f(kχe | x) ≥ kθ by

naive binary search. However, we can find k such that f(kχe | x) ≥ (1 − ε)kθ in
polynomial time (if exists). The idea is guessing the value of f(kχe) by iteratively
decreasing the threshold and checking whether the desired k exists by binary
search. See Algorithm 2 for the details.

Basically replacing the binary search in Algorithm1 with Algorithm 2 yields
the same approximation guarantee. However analysis gets more involved, and
therefore is deferred to the full version.

332 T. Soma and Y. Yoshida

Algorithm 3. Cardinality Constraint/Lattice Submodular
Input: f : ZE

+ → R+, c ∈ Z
E
+, r ∈ Z+, ε > 0.

1: y ← 0 and dmax ← maxe∈E f(c(e)χe).
2: for (θ = dmax; θ ≥ ε

r
dmax; θ ← θ(1 − ε)) do

3: for all e ∈ E do
4: Invoke Algorithm 2 with f(· | y), e, θ, min{c(e) − y(e), r − y(E)}, and ε.
5: If Algorithm 2 outputs k ∈ Z+ then y ← y + kχe

6: return y.

Theorem 2. Algorithm3 achieves an approximation ratio of 1 − 1
e − O(ε) in

O(n
ε2 log ‖c‖∞ log r

ε log τ) time, where τ = maxe∈E f(c(e)χe)
min{f(x):0≤x≤c,f(x)>0} .

4 Polymatroid Constraint

Let P be a polymatroid with a ground set E and the rank function ρ : 2E → Z+.
The objective is to maximize f(x) subject to x ∈ P ∩ Z

E , where f is a DR-
submodular function. In what follows, we denote ρ(E) by r.

4.1 Continuous Extension for Polymatroid Constraints

For x ∈ R
E , let �x� denote the vector obtained by rounding down each entry of

x. For a ∈ R, let 〈a〉 denote the fractional part of a, that is, 〈a〉 := a − �a�. For
x ∈ R

E , we define C(x) := {y ∈ R
E | �x� ≤ y ≤ �x� + 1} as the hypercube x

belongs to.
For x ∈ R

E , we define D(x) as the distribution from which we sample x̄ such
that x̄(i) = �x(i)� with probability 1−〈x(i)〉 and x̄(i) = �x(i)� with probability
〈x(i)〉, for each i ∈ E. We define the continuous extension F : R

E
+ → R+ of

f : ZE
+ → R+ as follows. For each x ∈ R

E
+, we define

F (x) := E
x̄∼D(x)

[f(x̄)] =
∑

S⊆E

f(�x� + χS)
∏

i∈S

〈x(i)〉
∏

i�∈S

(1 − 〈x(i)〉). (1)

We call this type of continuous extensions the continuous extension for polyma-
troid constraints. Note that F is obtained by gluing the multilinear extension of
f restricted to each hypercube. If f : {0, 1}E → R+ is a monotone submodular
function, then it is known that its multilinear extension is monotone and concave
along nonnegative directions. We can show similar properties for the continuous
extension of a function f : Z

E
+ → R+ if f is monotone and DR-submodular.

A proof is deferred to the full version.

Lemma 2. For a monotone DR-submodular function f , the continuous exten-
sion F for the polymatroid constraint is a nondecreasing concave function along
any line of direction d ≥ 0.

Maximizing Monotone Submodular Functions over Z
E
+ 333

Algorithm 4.
Input: f : ZE

+ → R+, x ∈ R
E
+, e ∈ E, θ > 0, α, β, δ ∈ (0, 1), kmax ∈ Z+ Output:k ∈

Z+.
1: � ← 1, u ← kmax.
2: while � < u do
3: m = � �+u

2
�.

4: F̃ (mχe | x) ← Estimates of F (mχe | x) by averaging O
(

log(kmax/δ)
αβ

)
random

samples, respectively.
5: If F̃ (mχe | x) ≥ mθ then � ← m + 1.
6: Else u ← m.
7: k ← � − 1.
8: return k.

Algorithm 5. Decreasing-Threshold
Input: f : ZE

+ → R+, x ∈ R
E
+, ε ∈ [0, 1], P ⊆ R

E
+. Output: A vector y ∈ P ∩ Z

E
+.

1: y ← 0 and d ← maxe∈E f(χe).
2: N ← the solution to N = n�log1/1−ε

N
ε

�. Note that N = O(n
ε

log n
ε
).

3: for (θ = d; θ ≥ εd
N

; θ ← θ(1 − ε)) do
4: for all e ∈ E do
5: Invoke Algorithm 4 to find maximum 0 ≤ k ≤ kmax such that F̃ (kχe | x +

εy) ≥ kθ, where kmax = max{y + kχe ∈ P}, with additive error α5 = ε,
multiplicative error β5 = ε

N(n+1)
, and failure probability δ5 = ε

N
.

6: If such k exists then y ← y + kχe.
7: return y.

4.2 Continuous Greedy Algorithm for Polymatroid Constraint

In this section, we describe our algorithm for the polymatroid constraint, whose
pseudocode description is presented in Algorithm 6. For a continuous extension F
for polymatroid constraints and x,y ∈ R

E , we define F (x | y) = F (x+y)−F (y).
At a high level, our algorithm produces a sequence x0 = 0, . . . ,x1/ε in P .

Given xt, Decreasing-Threshold determines an update direction yt (here our con-
tinuous extension F comes into play), and we update as xt+1 := xt+εyt. Finally,
we perform a rounding algorithm to the fractional solution x1/ε and obtain an
integral solution x̄.

Lemma 3. In the end of Algorithm6, we have F (x) ≥ (1 − 1/e − O(ε))OPT
with probability at least 2/3.

The analysis basically follows [2], but we need to replace the multilinear
extension with the continuous extension for polymatroid constraints. Fortu-
nately, Lemma 2 ensures that a similar argument still works. As the analysis
is fairly technical, we defer it to the full version.

334 T. Soma and Y. Yoshida

Algorithm 6. Polymatroid Constraint/DR-Submodular
Input: f : ZE

+ → R+, P ⊆ R
E
+. Output: A vector x̄ ∈ P ∩ Z

E
+.

1: x ← 0.
2: for (t ← 1; t ≤ � 1

ε
�; t ← t + 1) do

3: y ← Decreasing-Threshold(f,x, ε, P), x ← x + εy.
4: x̄ ← Rounding(x, P).
5: return x̄.

4.3 Rounding

We need a rounding procedure that takes a real vector x as the input and returns
an integral vector x̄ such that E[f(x̄)] ≥ F (x). There are several rounding algo-
rithm in the {0, 1}E case [6,7]. However, generalizing these rounding algorithm
over integer lattice is a nontrivial task. Here, we show that rounding in the
integer lattice can be reduced to rounding in the {0, 1}E case.

Suppose that we have a fractional solution x. Then P∩C(x) is a translation of
a matroid polytope PM . The independence oracle of the corresponding matroid is
just the independence oracle of P restricted to C(x). Thus, the pipage rounding
algorithm for P ′ yields an integral solution x̄ with E[f(x̄)] ≥ F (x) in strongly
polynomial time. Slightly faster rounding can be achieved by swap rounding.
Swap rounding requires that the given fractional solution x is represented by a
convex combination of extreme points of the matroid polytope. In our setting, we
can represent x as a convex combination of extreme points of P ∩ C(x), using
the algorithm of Cunningham [8]. Then we run the swap rounding algorithm
for the convex combination and P ∩ C(x). The running time of this rounding
algorithm is dominated by the complexity of finding a convex combination for
x, which is O(n8) time.

Theorem 3. Algorithm6 finds an (1− 1/e− ε)-approximate solution (in expec-
tation) with high probability in O(nr

ε3 log r
ε log ‖c‖∞ log rn log(r/ε)

ε2 + n8) time.

5 Knapsack Constraint

In this section, we give an efficient algorithm for maximizing DR-submodular
functions under knapsack constraints. The main difficulty of this case is that
we cannot obtain a feasible solution by applying the swap rounding or the
pipage rounding to a fractional solution of the multilinear extension considered
in Sect. 4. To overcome this issue, we introduce another multilinear extension in
Sect. 5.1. Then, we describe our continuous greedy algorithm using this extension
in Sect. 5.2.

5.1 Multilinear Extension for Knapsack Constraints

Let X : I → R
E
+ be a multiset of vectors (indexed by a set I). We say that X

is a multi-vector if, for every i ∈ I, X(i) is of the form kχe, where k ∈ R+ and
e ∈ E. For J ⊆ I, let X(J) :=

∑
j∈J X(j) ∈ R

E
+. Let p ∈ [0, 1]I . Then we define

Maximizing Monotone Submodular Functions over Z
E
+ 335

Fp(X) =
∑

J⊆I

∏

i∈J

p(i)
∏

i�∈J

(1 − p(i))f(X(J))

In this section, ⊕ denotes the concatenation. In our setting, we often consider
Fp for p = ε1, i.e., each element of X is independently sampled in the same
probability ε. In this case, we will use the shorthand notation Fε(X) := Fε1(X).
In addition, we define Fε(kχe | X) := Fε(X ⊕ kχe) − Fε(X). Also, we define
F⊕1

ε (kχe | X) := Fε1⊕1(X ⊕ kχe) − Fε(X), where ε1 corresponds to X and 1
corresponds to kχe. For a multi-vector X and a vector w : E → R, we define
w(X) =

∑
kχe∈X kw(e) as the sum of weights of vectors in X.

Lemma 4. Let f : Z+ → R+ be a monotone DR-submodular function. Fix a
multi-vector X : I → Z

E
+. Then, the function Fp(X), as a function of p, is a

monotone concave function along any line of direction d ≥ 0.

Lemma 5. Let f : Z+ → R+ be a monotone DR-submodular function. Then,
Fε(Y | X) ≥ Fε(Y | X ⊕ X ′) for any multi-vectors X, X ′, and Y .

5.2 Algorithm (Sketch)

We now sketch our algorithm for knapsack constraints. Suppose that x∗ is of
the form

∑
e∈E k∗

eχe. We call an item e small if it satisfies k∗
ef(χe) ≤ ε6f(x∗)

and w(e) ≤ ε4. (In order to obtain the upper bound on the number of copies
to be included, we only need an estimate for f(x∗). So we can discretize the
values in between maxe∈E

f(e)
w(e) and n maxe∈E

f(e)
w(e) into log n

ε values and check
each one of them). Other items are called large. Let � ≤ 1

ε6 + 1
ε4 = O(1

ε6) be
the number of large items. Let the optimal solution be x∗ = x∗

L + x∗
S where

x∗
L =

∑�
i=1 k∗

i χe∗
i

is the vector corresponding to large items and x∗
S = x∗ − x∗

L

is the vector corresponding to small items.
Our overall approach is a variation of the continuous greedy method. How-

ever, we deal with large items and small items separately. This is because, when
there are large items, we cannot round a fractional solution to a feasible solution
without losing significantly in the approximation ratio. To get around this issue,
we guess value sets taken by these large sets. Since the detail of our algorithm
is very involved, we defer it to the full version.

References

1. Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among chan-
nels and influencers. In: Proceedings of WWW, pp. 381–388 (2012)

2. Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular func-
tions. In: Proceedings of SODA, pp. 1497–1514 (2013)

3. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In: Proceedings of
FOCS, pp. 649–658 (2012)

4. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximiza-
tion problems. In: Proceedings of SODA, pp. 392–403 (2016)

336 T. Soma and Y. Yoshida

5. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: Submodular maximization
with cardinality constraints. In: Proceedings of SODA, pp. 1433–1452 (2014)

6. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766
(2011)

7. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via
exchange properties of combinatorial structures. In: Proceedings of FOCS, pp.
575–584 (2010)

8. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theor.
Ser. B 188, 161–188 (1984)

9. Demaine, E.D., Hajiaghayi, M., Mahini, H., Malec, D.L., Raghavan, S., Sawant,
A., Zadimoghadam, M.: How to influence people with partial incentives. In: Pro-
ceedings of WWW, pp. 937–948 (2014)

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

11. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

12. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier,
New York (2005)

13. Gottschalk, C., Peis, B.: Submodular function maximization on the bounded inte-
ger lattice. ArXiv preprint (2015)

14. Iwata, S.: Submodular function minimization. Math. Program. 112(1), 45–64
(2007)

15. Iwata, S., Tanigawa, S., Yoshida, Y.: Bisubmodular function maximization and
extensions. Mathematical Engineering Technical Reports (2013)

16. Kapralov, M., Post, I., Vondrak, J.: Online submodular welfare maximization:
Greedy is optimal. In: Proceedings of SODA, pp. 1216–1225 (2012)

17. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of KDD, pp. 137–146 (2003)

18. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability: Prac-
tical Approaches to Hard Problems, pp. 71–104. Cambridge University Press (2014)

19. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of
submodular functions. In: Proceedings of NAACL, pp. 912–920 (2010)

20. Lin, H., Bilmes, J.: A class of submodular functions for document summarization.
In: Proceedings of NAACL, pp. 510–520 (2011)

21. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
22. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for

maximizing submodular set functions - II. Math. Program. Studies 8, 73–87 (1978)
23. Shioura, A.: On the pipage rounding algorithm for submodular function maximiza-

tion – a view from discrete convex analysis–. Discrete Math. Algorithms Appl. 1(1),
1–23 (2009)

24. Singh, A., Guillory, A., Bilmes, J.: On bisubmodular maximization. In: Proceedings
of AISTATS, pp. 1055–1063 (2012)

25. Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation:
theoretical guarantee and efficient algorithm. In: Proceedings of ICML (2014)

26. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing
return property on the integer lattice. In: Proceedings of NIPS (2015)

27. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

28. Ward, J., Živný, S.: Maximizing bisubmodular and k-submodular functions. In:
Proceedings of SODA, pp. 1468–1481 (2014)

Submodular Unsplittable Flow on Trees

Anna Adamaszek1, Parinya Chalermsook2(B), Alina Ene3, and Andreas Wiese2

1 University of Copenhagen, Copenhagen, Denmark
anad@di.ku.dk

2 Max-Planck-Institut Für Informatik, Saarbrücken, Germany
{parinya,awiese}@mpi-inf.mpg.de

3 University of Warwick, Coventry, UK
a.ene@dcs.warwick.ac.uk

Abstract. We study the Unsplittable Flow problem (UFP) on trees with
a submodular objective function. The input to this problem is a tree with
edge capacities and a collection of tasks, each characterized by a source
node, a sink node, and a demand. A subset of the tasks is feasible if
the tasks can simultaneously send their demands from the source to the
sink without violating the edge capacities. The goal is to select a feasible
subset of the tasks that maximizes a submodular objective function.

Our main result is an O(k log n)-approximation algorithm for Sub-
modular UFP on trees where k denotes the pathwidth of the given tree.
Since every tree has pathwidth O(log n), we obtain an O(log2 n) approx-
imation for arbitrary trees. This is the first non-trivial approximation
guarantee for the problem and it matches the best approximation known
for UFP on trees with a linear objective function.

Our main technical contribution is a new geometric relaxation for
UFP on trees that builds on the recent work of [Bonsma et al., FOCS
2011; Anagnostopoulos et al., SODA 2014] for UFP on paths with a lin-
ear objective. Our relaxation is very structured and we can combine it
with the contention resolution framework of [Chekuri et al., STOC 2011].
Our approach is robust and extends to several related problems, such as
UFP with bag constraints and the Storage Allocation Problem.

Additionally, we study the special case of UFP on trees with a linear
objective and upward instances where, for each task, the source node
is a descendant of the sink node. Such instances generalize UFP on
paths. We build on the work of [Bansal et al., STOC 2006] for UFP on
paths and obtain a QPTAS for upward instances when the input data
is quasi-polynomially bounded. We complement this result by showing
that, unlike the path setting, upward instances are APX-hard if the input
data is arbitrary.

1 Introduction

Submodular functions are a rich class of functions with many applications both in
theory and in practice. On the theoretical side, submodularity is a key concept

Partially supported by the Danish Council for Independent Research DFF-
MOBILEX mobility grant.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 337–349, 2016.
DOI: 10.1007/978-3-319-33461-5 28

338 A. Adamaszek et al.

in combinatorial optimization and economics with deep mathematical conse-
quences. On the practical side, submodular functions arise naturally in a variety
of settings such as data summarization, sensor placement, inference in graphical
models, image segmentation, social networks, auctions, and exemplar clustering
[6,14,16,17,19–22].

One of the main reasons for the success of submodularity is that it combines
a significant modeling power with a certain degree of tractability. This delicate
balance between generality and tractability has made submodular functions very
appealing, and there has been a significant interest in optimizing submodular
functions subject to a variety of constraints.

The traditional approach to submodular maximization makes extensive use
of the classical Greedy algorithm of Nemhauser, Wolsey, and Fisher [23]. The
Greedy algorithm and its continuous counterparts are well-suited for constraints
such as cardinality, matroids, and knapsack, but they fail to handle other types
of natural constraints. Thus there is an increasing need to develop algorithms
for general constraints.

A major contribution in this direction comes from the work of Chekuri et al.
[13] which has developed a powerful framework for submodular function maxi-
mization with general constraints. Their framework leverages the power of math-
ematical programming relaxations coupled with structured rounding schemes
called contention resolution (CR) schemes. In particular, it unifies several pre-
vious results for special cases (e.g., matroids or knapsack constraints) and thus
captures the types of constraints for which we know how to optimize submodu-
lar functions. This has led to the following very interesting meta-question: For
which type of constraints can we provide structured relaxations that admit good
CR schemes? In this paper, we address this question in the specific case of
the unsplittable flow problem (UFP). In this setting, we are given an edge-
capacitated, undirected graph and a collection of tasks; each task is specified
by a source vertex, a sink vertex, and a demand. The goal is to select a maxi-
mum profit subset of the tasks that can be routed unsplittably, i.e., the task’s
demand is routed along a single path from the source to the sink subject to the
edge capacities.

The problem is well-studied, and most of the results focus on linear objec-
tives. Despite its apparent simplicity, already UFP on paths captures several
well-studied problems, including the knapsack problem (when the graph is a
single edge) and resource allocation problems. UFP is quite challenging even on
paths and trees, and one of the main reasons for the difficulty is the lack of
LP relaxations with small integrality gaps. The natural LP relaxation for the
problem has an Ω(n) integrality gap even on paths [9], and standard approaches
for strengthening the LP by adding valid inequalities fail to improve the inte-
grality gap significantly [12]. Chekuri et al. [12] gave a novel LP relaxation for
UFP on paths that strengthens the standard LP using clique type of constraints,
and they showed that it has an O(log n) integrality gap. The relaxation of [12]

Submodular Unsplittable Flow on Trees 339

can also be extended to trees, and understanding this relaxation has been an
interesting and challenging open question1.

The design of good relaxations for UFP is motivated not only by the goal
of obtaining better approximations for linear objectives, but also by the need
of handling more general constraints and objective functions. In particular, the
current approaches for submodular objectives rely on structured relaxations with
good CR schemes. As a result, there is a discrepancy between the approxima-
tion guarantees for linear and submodular objectives. There has been a long line
of work for UFP on paths with a linear objective that led to a constant fac-
tor approximation [4,5]; these approaches combine the standard LP relaxation
with dynamic programming techniques. Chekuri et al. [12] give a combinator-
ial greedy algorithm for UFP on trees with a linear objective that achieves an
O(log2 n) approximation. In contrast, for UFP with a submodular objective, only
an O(log n) approximation is known for paths and no non-trivial approximation
was known for trees prior to our work. Chekuri et al. [13] consider instances
of submodular UFP on trees that satisfy a certain assumption, called the no-
bottleneck assumption (NBA)2, and they give a constant factor approximation
for such instances. However, the no-bottleneck assumption is very restrictive and
removing this restriction poses several technical challenges, particularly for the
design of mathematical programming relaxations.

Thus, there has been an extensive work on UFP on paths but relatively fewer
results on trees. Since UFP models the allocation of communication bandwidths
in networks, we believe that it is worthwhile to develop a better understanding
for more complex network topologies, such as trees. Also, submodular objective
functions are much richer than linear objectives, and can model for instance
linear objective functions with additional constraints.

Our Contributions. We give the first approximation algorithm for submodu-
lar UFP on trees and the first relaxation with a matching integrality gap. Our
algorithm achieves an approximation ratio of O(k log n) on trees with pathwidth
k. As each tree has pathwidth O(log n), this gives an O(log2 n)-approximation
for arbitrary trees, matching the best known result for linear objective func-
tions [12]. For several special cases of the problem, such as paths, spiders, and
caterpillars, our approximation ratio improves to O(log n) (since in those cases
k = O(1)), and such a ratio was not even known for linear objectives. Thus
our result generalizes and improves the best approximations known for UFP on
paths with a submodular objective and UFP on trees with a linear objective.

Theorem 1. There is a O(k · log n) approximation for Submodular UFP on
trees, where k is the pathwidth of the tree and n is the number of nodes in the
tree. Additionally, there is a polynomial-sized relaxation for the problem with a
matching integrality gap.
1 Friggstad and Zao [15] showed an O(log2 n) upper bound on the integrality gap of

the relaxation of [12] for UFP on trees with a linear objective. This upper bound is
shown via a primal-dual analysis which is not suitable for designing a CR scheme.

2 The no-bottleneck assumption states that the maximum demand of any task is at
most the minimum capacity of any edge.

340 A. Adamaszek et al.

We obtain our result via a new geometric LP relaxation for UFP on trees that
is very different from the clique-based approach of [12]. Our relaxation builds
on a powerful two-dimensional geometric viewpoint developed in the context of
the UFP problem on paths with a linear objective [5]. This viewpoint connects
UFP to structured instances of the Maximum Independent Set of Rectangles
(MISR) problem [1,10,11], which in turn allows one to handle instances of UFP
on paths for which the standard LP relaxation fails. The geometry was exploited
to obtain a combinatorial algorithm for such instances that is based on dynamic
programming. A related two-dimensional visualization was used in [2], again as
the basis of a dynamic program. These approaches, however, break down for
submodular UFP on trees; in the two-dimensional viewpoints, an input path
corresponds to a subinterval of the x-axis and this is no longer meaningful for
trees. Also, dynamic programming approaches are not suitable for submodular
objective functions. In contrast to previous work, the focus in this paper is to
translate these geometric insights to an LP relaxation for UFP on trees. We give
a CR scheme for our relaxation that can be combined with the framework of
[13] to obtain approximation guarantees for submodular objectives. The core of
our reasoning is that our LP-formulation not only decides which tasks to select,
but also computes a drawing of them as non-overlapping rectangles on suitable
subpaths of the tree. We remark that our LP is a polynomial-sized extended
formulation and, to the best of our knowledge, this is the first time that an
extended formulation is used in the context of CR schemes.

A very important feature of the CR scheme framework is that it allows one
to combine several constraints, thus extending the applicability of our approach
to two generalized settings. First, in the Submodular Bag-UFP on trees problem,
the input tasks are partitioned into bags and a feasible solution is allowed to
select at most one task per bag [8]3. We obtain an O(k log n) approximation for
Submodular Bag-UFP on trees of pathwidth k. Second, we obtain an O(log n)
approximation for the Submodular Storage Allocation Problem on trees. This
problem has the same input as UFP, with additional requirements that each
selected task gets a private subinterval of width equal to the demand, contained
in [0, ue) for each edge e used by the task. We require that these subintervals
are disjoint for any two tasks sharing an edge of the tree. Intuitively, this models
that each task gets a contiguous portion of the resource spectrum.

Finally, we round up our contributions with the following results for a special
case of UFP on trees with a linear objective function. An instance of UFP on tree
is an upward instance if the input tree is rooted and, for every task, the source
node of the task is an ancestor of the sink node (or vice-versa).

Theorem 2. There is a (1 + ε) approximation algorithm for upward instances
of UFP on trees with running time npoly(log(n/ε)) log(dmax/dmin). In particular, if
the demands are quasi-polynomially bounded, this gives a QPTAS.

3 For linear objective functions, the bag constraints can be “glued” with the objective
function, yielding an instance of Submodular UFP. It is not clear though whether
this holds in general for any initial submodular objective function.

Submodular Unsplittable Flow on Trees 341

Unlike for UFP on paths [4], we show that the dependency of the running
time on the term log(dmax/dmin) can not be removed for upward instances of
UFP on trees. In fact, assuming the Exponential Time Hypothesis (ETH), the
running time of our approximation scheme is essentially tight. This illustrates
an inherent distinction between paths and upward instances on trees. Also, it
shows that this is one of the very rare problems that allows a QPTAS on quasi-
polynomially bounded input data but becomes APX-hard on general instances.

Theorem 3. There is a universal constant ε0 such that for all δ > 0 any (1+ε0)-
approximation algorithm for upward instances of UFP on trees runs in time of
at least npoly(log n) log1−δ(dmax/dmin), unless ETH fails. Also, the problem is APX-
hard.

Other Related Work. The problem of maximizing submodular functions sub-
ject to various constraints is very well-studied and several results are known; we
refer the reader to [13] for an overview. UFP with a linear objective is also exten-
sively studied. Due to space limitation, we omit a detailed discussion of these
results. The best approximation is a (2 + ε) approximation [2] and a QPTAS [3]
for UFP on paths, and an O(log2 n) approximation for UFP on trees [12].

Formal problem definitions. We consider the Unsplittable Flow problem on trees
(UFP-tree). The input consists of an undirected tree T = (V,E) with edge capac-
ities ue ∈ Z+, and a set of tasks T . Each task i ∈ T is characterized by a start
vertex si ∈ V , an end vertex ti ∈ V , a demand di ∈ Z+, and a profit wi ∈ Z+.
For each task i ∈ T denote by pi the unique path between si and ti in T . A fea-
sible solution is a subset of the tasks T ′ ⊆ T satisfying the capacity constraints∑

i∈T ′ : pi�e di ≤ ue for each edge e ∈ E. The goal is to find a feasible solution
maximizing w(T ′) :=

∑
i∈T ′ wi.

The Submodular UFP-tree problem is a generalization of UFP-tree, where
instead of a linear weight function w we are given a submodular objective
function f : 2T → R+ and the goal is to select a feasible subset T ′ ⊆ T
maximizing f(T ′). A function f : 2T → R+ is submodular if f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B) for any two subsets A,B ⊆ T . We assume that f is given
as a value oracle, i.e., we are given access to an oracle that takes as input any
set S and outputs f(S).

In the Bag-UFP-tree problem, in addition to the input of UFP-tree, the input
tasks are partitioned into sets called bags and we are allowed to select at most one
task from each bag. We also consider the Storage Allocation Problem (SAP-tree).
The input to SAP-tree is the same as for UFP-tree, with additional requirement
that for each selected task i in T ′ ⊆ T we have to compute a value h(i) ≥ 0 such
that h(i)+di ≤ ue for each edge e ∈ pi, and [h(i), h(i)+di)∩[h(i′), h(i′)+di′) = ∅
for any two tasks i, i′ ∈ T ′ with pi ∩ pi′
= ∅. This corresponds to giving each
task i ∈ T ′ the portion [h(i), h(i) + di) of the resource spectrum.

342 A. Adamaszek et al.

2 Geometric Relaxation for Submodular UFP on Trees

In this section, we present our O(k · log n) approximation algorithm for Sub-
modular UFP-tree. We first describe a pseudo-polynomial sized LP relaxation for
UFP-tree with a linear objective function. In Sect. 2.2, we show how to reduce
the size of the LP to polynomial. In Sect. 2.3, we extend our algorithm to a
submodular objective function. We defer the description of our results for the
Submodular Bag-UFP and SAP problems to the full version of this paper.

2.1 A Pseudo-Polynomial Sized Relaxation

In the following, we give a geometric LP-relaxation for UFP-tree with a linear
objective function. The relaxation has pseudo-polynomial size.

Reduction to Intersecting Instances. First, we reduce the general case to
the case in which the path of each task contains the root of the tree. We call such
instances intersecting instances. Chekuri et al. [12] showed that, via a standard
centroid decomposition, we can reduce an arbitrary instance to a collection of
intersecting instances at a loss of O(log n) in the approximation ratio.

Lemma 1 (Chekuri et al. [12]). Suppose that there is a polynomial time algo-
rithm for UFP-tree that achieves an α-approximation on intersecting instances.
Then there is a polynomial time O(α · log n) approximation algorithm for the
problem on arbitrary trees. Moreover, this holds for the generalization of the
problem in which the objective function is sub-additive4.

Partitioning into Paths. In the remainder of this section, we assume that
we are given an intersecting instance on a tree T of pathwidth k. Intuitively, a
graph has pathwidth k if it has a tree-decomposition of width k in which the
tree describing the decomposition is a path (see e.g. [18] for a formal definition).
Note that every tree has pathwidth at most O(log n) [18]. Our goal is to compute
a O(k)-approximation for such instances, so that using Lemma 1 we obtain a
O(k log n)-approximation for the general problem. First, we split a given tree
into a collection P of paths such that each input task shares an edge with at
most O(k) paths in P. Then, we define a new LP relaxation for the problem with
a randomized rounding with alteration strategy. The relaxation will be based on
a two-dimensional geometric viewpoint for each path in P.

For our path partition P we require that each path P ∈ P is an upward path,
i.e., one endpoint of the path is an ancestor in T of the other endpoint. The
following observation follows from the property of an intersecting instance.

Observation 1. For each task i and each upward path P , if i uses an edge of
P then it uses the top edge of P .

4 A set function f : 2V → R is sub-additive if f(A ∪ B) ≤ f(A) + f(B) for any two
disjoint sets A and B. Note that a non-negative submodular function is sub-additive.

Submodular Unsplittable Flow on Trees 343

Definition 1. Consider an intersecting instance of UFP-tree on a rooted tree
T . Let P = {P1, . . . , P�} be a collection of paths in T . We say that P is a K-nice
splitting if it has the following properties:

– The paths in P are edge-disjoint, upward paths, partitioning the edges of T .
– Each task uses an edge of at most K paths in P.

The next lemma shows the existence of a O(k)-nice splitting where k is the
pathwidth of T .

Lemma 2. Consider an intersecting instance I of UFP-tree on a rooted tree T
of pathwidth k. There is a polynomial time algorithm that constructs an O(k)-
nice splitting for I.

Geometric Viewpoint. Let P = {P1, . . . , P�} be an O(k)-nice splitting of the
instance that is guaranteed by Lemma 2. We use P to write an LP relaxation
for the problem, based on the following geometric viewpoint. For a path P ∈ P,
let TP be the set of tasks from T using an edge of P .

If we restrict the tasks in our instance to a path P in T , we get an instance
of the Unsplittable Flow problem on paths (UFP-path) in a natural way. For
each task i ∈ TP , the UFP-path instance has a corresponding task whose path is
pi ∩ P . Notice that each task i ∈ TP uses the top edge of P , so we can assume
w.l.o.g. that when traversing the edges of P from top to bottom, their capacities
are non-increasing. We call such an instance a one-sided staircase instance.

We claim that for such an instance of UFP-path on a path P , each feasi-
ble subset of the tasks can be represented as a collection of non-overlapping
rectangles drawn underneath the capacity profile, such that each task i has a
corresponding rectangle of height di whose projection on P is the path of i. We
interpret these rectangles as open sets. We call such a drawing a representing
drawing.

Lemma 3. Consider an instance of UFP-path on a path P in which all of the
tasks use the first edge of P . Any feasible subset of the tasks admits a representing
drawing.

LP Relaxation. Using this geometric viewpoint, we write an LP relaxation for
intersecting instances of UFP-tree as follows. Recall that we have an O(k)-nice
splitting P of the tree T . We add constraints to the relaxation to enforce that
there is a representing drawing for the selected tasks on each path P ∈ P; we
remark that these constraints will automatically enforce the capacity constraints.

Variables. The IP has the following variables. For each task i, we have a variable
xi ∈ {0, 1} with the interpretation that xi = 1 if task i is in the solution. For
each path P ∈ P, each task i ∈ TP , and each height h, we have a variable
y(i, h, P) ∈ {0, 1} with the interpretation that y(i, h, P) = 1 if the rectangle for
task i is drawn at height h in the representing drawing for P . The allowed heights
h are the ones satisfying h + di ≤ ue for each edge e ∈ pi ∩ P , i.e., such that the

344 A. Adamaszek et al.

rectangle fits under the capacity profile. We introduce variables y(i, h, P) only
for such heights.

Constraints. For each path P ∈ P and each task i ∈ TP , we have a constraint
∑

hs.t.∀e∈pi∩P : h+di≤ue

y(i, h, P) = xi . (1)

For each path P ∈ P, we add constraints enforcing that in the representing
drawing for P the rectangles do not overlap. This is achieved by imposing con-
straints modeling that any point q underneath the capacity profile is covered by
at most one rectangle. Since all tasks use the first edge of P , it suffices to con-
sider only points q on a vertical line going through the first edge of P , i.e., points
q = (x0, h) where x0 is an arbitrary x-coordinate strictly between the first and
the second vertex of P and h is an integral height that is at most the capacity
of the first edge of P . We use R(i, h, P) to denote a rectangle representing task i
on P drawn at height h, i.e., R(i, h, P) is a rectangle of height di, with a bottom
y-coordinate h, and whose projection on the x-axis equal pi ∩ P .

For each path P ∈ P and each point q = (x0, h) as described above we have
a constraint ∑

i∈TP

∑

(h′ : q∈R(i,h′,P))

y(i, h′, P) ≤ 1. (2)

We refer to the resulting LP relaxation as Rectangle-LP(P). It clearly has pseudo-
polynomial complexity. In the following, we show an O(k)-approximation based
on LP rounding.

Rounding. Let (x, y) be a feasible solution to Rectangle-LP(P). We use a ran-
domized rounding with alteration strategy (as introduced in [7] to select a subset
of the tasks and a representing drawing for them on each path P ∈ P. We pro-
ceed in two phases. In the selection phase, we pick a subset of the tasks and
determine a drawing for them. The drawing in this phase may contain overlap-
ping rectangles. In the alteration phase, we pick a subset of the selected tasks
whose corresponding rectangles do not overlap.

Selection phase. We select a (not necessarily feasible) set S of tasks. For each
task i, we add i to S independently at random with probability xi/(c1 · k),
where c1 > 1 is a sufficiently large constant that will be determined later. We
refer to the tasks in the random sample S as the selected tasks. Additionally,
for each task i ∈ S and each path P ∈ P such that i ∈ TP , we choose a
rectangle representing the drawing of i on P , as follows. We choose a height h for
the rectangle independently at random according to the probability distribution
{y(i, h, P)/xi}h. Note that the constraints (1) ensure that the values y(i, h, P)/xi

form a probability distribution over the allowed heights h.
Let h(i, P) be the height chosen for task i on the path P ; we use the rectangle

R(i, h(i, P), P) to represent task i on the path P . Let R denote the resulting
drawing, i.e., R is the collection of rectangles selected for the tasks in S. Note
that each rectangle R(i, h, P) is in R with probability xi · y(i,h,P)

xi
= y(i, h, P).

Submodular Unsplittable Flow on Trees 345

Alteration phase. In the alteration phase, we select a subset S′ ⊆ S of the
tasks such that the rectangles R′ ⊆ R representing them on the paths are
non-overlapping. Recall that we view the rectangles as open sets and thus two
rectangles overlap iff they contain a common point in their interiors. We consider
the paths of P in an arbitrary order. For each P ∈ P, let S(P) = {i ∈ S : i ∈
TP }. Our goal is to choose a subset S′(P) ⊆ S(P) such that the rectangles
{R(i, h(i, P), P) : i ∈ S′(P)} are non-overlapping. We choose the set of accepted
tasks S′(P) as follows.

We order the tasks in S(P) in non-increasing order according to their
demands, breaking ties arbitrarily. We consider the tasks in this order. Let i
be the current task. We add i to S′(P) if the rectangle R(i, h(i, P), P) does not
overlap with any of the rectangles {R(i′, h(i′, P), P) : i′ ∈ S′(P)} for the tasks
we have accepted so far.

We refer to the tasks in S′(P) as the tasks accepted on P , and we refer to
the tasks in S(P) − S′(P) as the tasks rejected on P . The following key lemma
shows that each selected task i ∈ S(P) is accepted with a constant probability.
The main observation behind the lemma is that, for each task j that appears
before i in the ordering, if the rectangles R(i, h(i, P), P) and R(j, h(j, P), P)
overlap, then R(j, h(j, P), P) contains the top left or the bottom left corner of
R(i, h(i, P), P) since dj ≥ di; this allows us to check the constraints only at two
points.

Lemma 4. For any path P and task i ∈ TP , Pr[i /∈ S′(P) | i ∈ S(P)] ≤
2/(c1 · k).

Finally, we use the sets {S′(P) : P ∈ P} to select a subset S′ ⊆ S such that
the rectangles R′ ⊆ R representing S′ on each path of P are non-overlapping.
We set S′ = {i ∈ S : ∀P∈P:i∈TP

i ∈ S′(P)}, i.e., a task is accepted if it was
accepted for all paths. It follows from Lemma 4 and the union bound that each
selected task is rejected with probability at most |{P ∈ P : i ∈ TP }| · 2

c1k ≤ 1/2
if c1 is sufficiently large5.

We summarize the rounding step in the following lemma.

Lemma 5. Consider an instance of UFP-tree. Suppose that the instance has a
K-nice splitting P and let (x, y) be a feasible solution to Rectangle-LP(P). Let
S be a random sample of the tasks such that each task i is in S independently
at random with probability xi/(4K). There is a polynomial-time algorithm that
constructs a feasible solution S′ ⊆ S such that, for each task i, Pr[i ∈ S′ | i ∈
S] ≥ 1/2.

For linear objective functions, this yields a pseudo-polynomial LP-based
O(k)-approximation for intersecting instances of UFP-tree and, with Lemma 1,
a O(k log n)-approximation for arbitrary instances of UFP-tree.

5 More precisely, if P is ck-nice, then this happens when c1 ≥ 4c.

346 A. Adamaszek et al.

2.2 A Polynomial-Sized Relaxation

In this section, we show how to turn a pseudo-polynomial sized LP in the previous
section to a polynomial sized one. Notice that the pseudo-polynomial running
time is caused by the fact that the rectangles for the tasks in T can be drawn
at pseudo-polynomially many heights. We show that restricting to a polynomial
sized set of heights incurs only an O(1) factor loss in the approximation ratio.

Task Classification. For a path P ∈ P and a task i ∈ TP , let bP (i) :=
mine∈pi∩P ue be the bottleneck capacity of i on P. We say that a task i ∈ TP is
big on P if di > 1

16 · bP (i). Otherwise we say that i is small on P.

Allowed Hights. For each path P ∈ P and task i ∈ TP , we will now construct
a set H(i, P) of allowed heights for drawing the rectangle corresponding to i on
P . If i is big on P , we set H(i, P) = {bP (i) − di}, i.e., the only allowed height
is obtained by drawing the rectangle for i as high as possible underneath the
capacity profile. If i is small on P , for the integer j such that bP (i) ∈ [2j , 2j+1), we
set H(i, P) =

⋃
r∈N0: r	2j−3/n
≤2j−1{2j−1 + r�2j−3/n}. We have |H(i, P)| ≤ 8n.

Let H be the union of all sets H(i, P). By construction, H has polynomial size.

Restricted LP. Denote by Restricted-Rectangle-LP(P, H) the LP relaxation
where we introduce variables y(i, h, P) and the constraints (1) and (2) only
for the heights h ∈ H. As H has polynomial size, the size of Restricted-
Rectangle-LP(P, H) is also polynomial. The following lemma argues that the
LP restricted to these heights still admit a good fractional solution. Combining
it with Lemma 5 yields the desired polynomial time approximation algorithm for
linear UFP-tree.

Lemma 6. For each feasible integral solution T ′ ⊆ T , there is a feasible frac-
tional solution (x, y) for Restricted-Rectangle-LP(P, H) s.t. (∀i ∈ T ′)xi = 1

64 .

2.3 Submodular Objective via the CR Scheme Framework

In this section, we extend our results to submodular objectives by combining the
results from the previous section with the framework from [13].

Let N be a finite ground set. Let I ⊆ 2N be a family of subsets of N , and
PI a convex relaxation for the constraints imposed by I, such that PI is down-
monotone and solvable.6 Let x ∈ PI and let support(x) = {i ∈ N : xi > 0}. For
any b ∈ [0, 1], let b ·PI = {bx : x ∈ PI}. Let R(x) be a random sample of N such
that each element i ∈ N is in R(x) independently at random with probability
xi. For a set function f : 2N → R+ let F : [0, 1]N → R+ denote the multilinear
extension of f , which is defined as F (x) := E[f(R(x))].

Definition 2 ([13]). For b, c ∈ [0, 1], a (b, c)-balanced CR scheme π for a poly-
tope PI is a procedure that for every x ∈ b · PI and A ⊆ N returns a random
set πx(A) satisfying
6 We call a polytope P ⊆ [0, 1]N down-monotoneif for all z, z′ ∈ [0, 1]N we have that
z ≤ z′ and z′ ∈ P implies that z ∈ P. The polytope is solvable if one can optimize
any linear function over P in polynomial time.

Submodular Unsplittable Flow on Trees 347

(i) πx(A) ⊆ support(x) ∩ A and πx(A) ∈ I with probability 1, and
(ii) for all i ∈ support(x), Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c.

We use the CR schemes as in [13]: first, we compute a vector x∗ with F (x∗) ≥
Ω(max{F (x′) : x′ ∈ PI}). Then, we compute a random sample R(x) with x :=
b · x∗. We apply the CR scheme π and obtain the set πx(R(x)). We know that
for each element i we have that Pr[i ∈ R(x)] = b · x∗

i and Pr[i ∈ πx(R(x)) | i ∈
R(x)] ≥ c. Thus, Pr[i ∈ πx(R(x))] ≥ bc · x∗

i which can be used to show that
E[f(πx(R(x)))] ≥ Θ(bc) · max{F (x′) : x′ ∈ PI}.

Theorem 4 ([13]). Let f : 2N → R+ be a submodular function. Let I ⊆ 2N

be a family of feasible solutions and let PI ⊆ [0, 1]N be a convex relaxation for
I that is down-monotone and solvable. Suppose that there is a (b, c)-balanced
CR scheme for PI . Then there is a polynomial time randomized algorithm that
constructs a solution I ∈ I such that

E[f(I)] ≥ Θ(bc) · max{F (x) : x ∈ PI}.

To apply the above framework, let P denote the set of points x for which
there exists a vector y such that (x, y) is contained in the polytope defined
by Restricted-Rectangle-LP(P,H). Clearly, P is down-monotone and solvable.
Similarly as in the case of linear objective functions, P contains a fractional
point with large profit according to F : Let T ∗ be an optimal integral solu-
tion. By Lemma 6, 1

64 · 1T ∗ ∈ P. Moreover, it is straightforward to verify that
F

(
1
64 · 1T ∗

) ≥ 1
64f(T ∗). So max{F (x) : x ∈ PI} = Ω(OPT).

By Lemma 5, there is a (1/Θ(k), 1/2)-balanced CR scheme for P. Therefore
we can apply Theorem 4 to obtain our main result for Submodular UFP-tree.

Theorem 5. There is a polynomial time O(k) approximation algorithm for Sub-
modular UFP-tree on intersecting instances and, therefore, an O(k log n) approx-
imation for arbitrary instances, where k is the pathwidth of the tree.

References

1. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight inde-
pendent set of rectangles. In: 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, pp. 400–409. IEEE Computer Society (2013)

2. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: A mazing 2+ε approx-
imation for unsplittable flow on a path. In: Chekuri, C. (ed.) Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, pp. 26–41. SIAM (2014)

3. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplit-
table flow on line graphs. In: Kleinberg, J.M. (ed.) Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, pp. 721–729. ACM (2006)

4. Batra, J., Garg, N., Kumar, A., Mömke, T., Wiese, A.: New approximation schemes
for unsplittable flow on a path. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pp. 47–58.
SIAM (2015)

348 A. Adamaszek et al.

5. Bonsma, P.S., Schulz, J., Wiese, A.: A constant-factor approximation algorithm
for unsplittable flow on paths. SIAM J. Comput. 43(2), 767–799 (2014)

6. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In: ICCV, pp. 105–112 (2001)

7. Călinescu, G., Chakrabarti, A., Karloff, H.J., Rabani, Y.: An improved approxi-
mation algorithm for resource allocation. ACM Trans. Algorithms 7(4), 48 (2011)

8. Chakaravarthy, V.T., Choudhury, A.R., Gupta, S., Roy, S., Sabharwal, Y.:
Improved algorithms for resource allocation under varying capacity. In:
Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 222–234. Springer,
Heidelberg (2014)

9. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

10. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In:
Mathieu, C. (ed.) Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, pp. 892–901. SIAM (2009)

11. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)

12. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and column-
restricted packing integer programs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) Approximation, Randomization, and Combinatorial Optimization. LNCS,
vol. 5687, pp. 42–55. Springer, Heidelberg (2009)

13. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

14. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image cat-
egorization. In: IEEE 11th International Conference on Computer Vision, ICCV
2007, pp. 1–8. IEEE (2007)

15. Friggstad, Z., Gao, Z.: On linear programming relaxations for unsplittable flow
in trees. In: Garg, N., Jansen, K., Rao, A., Rolim, J.D.P. (eds.) Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2015. LIPIcs, vol. 40, pp. 265–283. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2015)

16. Jegelka, S., Bilmes, J.A.: Submodularity beyond submodular energies: coupling
edges in graph cuts. In: The 24th IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2011, pp. 1897–1904. IEEE Computer Society (2011)

17. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. Theor. Comput. 11, 105–147 (2015)

18. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math.
43(1), 97–101 (1993)

19. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular
functions. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, pp. 1650–1654. AAAI Press (2007)

20. Krause, A., Guestrin, C.: Submodularity and its applications in optimized infor-
mation gathering. ACM TIST 2(4), 32 (2011)

21. Krause, A., Singh, A.P., Guestrin, C.: Near-optimal sensor placements in gaussian
processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.
9, 235–284 (2008)

Submodular Unsplittable Flow on Trees 349

22. Lin, H., Bilmes, J.A.: A class of submodular functions for document summarization.
In: Lin, D., Matsumoto, Y., Mihalcea, R. (eds.) Proceedings of the Conference of
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pp. 510–520. The Association for Computer Linguistics
(2011)

23. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

Strong Reductions for Extended Formulations

Gábor Braun1(B), Sebastian Pokutta1, and Aurko Roy2

1 ISyE, Georgia Institute of Technology, Atlanta, GA, USA
{gabor.braun,sebastian.pokutta}@isye.gatech.edu

2 College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
aurko@gatech.edu

Abstract. We generalize the reduction mechanism between linear pro-
gramming problems from [1] in two ways (1) relaxing the requirement of
affineness, and (2) extending to fractional optimization problems.

As applications we provide several new LP-hardness and SDP-
hardness results, e.g., for the SparsestCut problem, the BalancedSeparator
problem, the MaxCut problem and the Matching problem on 3-regular
graphs. We also provide a new, very strong Lasserre integrality gap for
the IndependentSet problem, which is strictly greater than the best known
LP approximation, showing that the Lasserre hierarchy does not always
provide the tightest SDP relaxation.

1 Introduction

Linear and semidefinite programs are the main components in the design of
many practical (approximation) algorithms and therefore understanding their
expressive power is a fundamental problem. The complexity of these programs is
measured by the number of constraints, ignoring all other aspects affecting the
running time of an actual algorithm, in particular, these measures are indepen-
dent of the P vs. NP question. We call a problem LP-hard if it does not admit
an LP formulation with a polynomial number of constraints, and we define SDP-
hardness similarly.

Recently, motivated by Yannakakis’s influential work [2], a plethora of strong
lower bounds have been established for many important optimization problems,
such as e.g., theMatchingproblem [3] or theTravelingSalesman problem [4,5]. In [1],
the authors introduced a reductionmechanismproviding inapproximability results
for large classes of problems. However, the reductions were required to be affine,
and hence failed for e.g., the VertexCover problem, where intermediate Sherali–
Adams reductions were employed in [6] due to this shortcoming.

In this work we extend the reduction mechanism of [1] in two ways, estab-
lishing several new hardness results both in the LP and SDP setting; both are
special cases arising from reinterpreting LPs and SDPs as proof systems (which
we explore in detail in the full-length version). First, by including additional
‘computation’ in the reduction, we allow non-affine relations between problems,
eliminating the need of Sherali–Adams reduction in [6]. Second, we extend the
framework to fractional optimization problems (such as e.g., SparsestCut) where
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 350–361, 2016.
DOI: 10.1007/978-3-319-33461-5 29

Strong Reductions for Extended Formulations 351

ratios of linear functions have to be optimized. Here typically one optimizes the
numerator and denominator at the same time.

Related Work

The immediate precursor to this work is [1] (generalizing [7,8]), introducing a
reduction mechanism. Base hard problems are the Matching problem [3], as well
as constraint satisfaction problems [5,9] based on hierarchy hardness results,
such as e.g., [10,11].

Contribution

Generalized LP/SDP Reductions. We generalize the reduction mechanism in [1]
by modeling additional computation, i.e., using extra LP or SDP constraints.
Put differently, we allow for more complicated reduction maps as long as they
have a small LP/SDP formulation. As a consequence, we can relax the affineness
requirement and enable a weak form of gap-amplification and boosting. This over-
comes a major limitation of the approach in [1], yielding significantly stronger
reductions at a small cost.

Fractional LP/SDP Optimization. Second, we present a fractional LP/SDP
framework and reduction mechanism, where the objective functions are ratios
of functions from a low dimensional space, such as for the SparsestCut problem.
For these problems the standard LP/SDP framework is meaningless as the ratios
span a high dimensional affine space. The fractional framework models the usual
way of solving fractional optimization problems, with strong statements about
LP or SDP complexity.

Direct Non-linear Hardness Reductions. We demonstrate the power of our gener-
alized reduction by establishing new LP-hardness and SDP-hardness for several
problems of interest, i.e., these problems cannot be solved by LPs/SDPs of poly-
nomial size; see Table 1. We establish various hardness results for the SparsestCut
and BalancedSeparator problems even when one of the underlying graph has
bounded treewidth. We also show the first explicit SDP-hardness for the Max-
Cut problem, inapproximability within a factor of 15/16+ε, which is better than
the algorithmic hardness of 16/17 + ε. Finally, we prove a new, strong Lasserre
integrality gap of n1−γ after O(nγ) rounds for the IndependentSet problem for
any sufficiently small γ > 0. It not only significantly strengthens and comple-
ments the best-known integrality gap results so far [12–15], but also shows the
suboptimality of Lasserre relaxations for the IndependentSet problem together
with [6]. Our reduction mechanism also allows for direct reductions to interme-
diate CSP problems as used for optimal inapproximability results for the Vertex-
Cover problem over simple graphs and Q-regular hypergraphs in [6], eliminating
Sherali–Adams reductions and we obtain a natural reduction to establish LP-
hardness of matching over 3-regular graphs; we provide details in the full-length
version.

352 G. Braun et al.

Table 1. Inapproximability of optimization problems. tw denotes treewidth.

Finally, inspired by our reductions we also obtain a new technique to derive
small uniform linear programs for problems over graphs of bounded treewidth,
where the same linear program is used for all instances of a problem (independent
of the actual tree decomposition), complementing the nonuniform formulation
in [16]; details are to be found in the full-length version.

Outline

We start by recalling and refining the linear programming framework in Sect. 2 to
include fractional optimization problems. We provide the reduction mechanism
in Sect. 3, with applications in Sects. 4, 5 and 6 to various problems. For missing
proofs and additional details we refer the reader to the full-length version of the
paper.

2 Preliminaries

2.1 Optimization Problems

Definition 1 (Optimization problem). An optimization problem is a tuple
P = (S,I, val) consisting of a set S of feasible solutions, a set I of instances,
and a real-valued objective called measure val : I × S → R.

We shall write valI(s) for the objective value of a feasible solution s ∈ S for
an instance I ∈ I.

The SparsestCut problem is defined over a graph with two kinds of edges:
supply and demand edges. The objective is to find a cut that minimizes the
ratio of the capacity of cut supply edges to the total demand separated. For a
weight function f : E(Kn) → R≥0, we define the graph [n]f := ([n], Ef) where
Ef := {(i, j) | i, j ∈ [n], f(i, j) > 0}. We study the SparsestCut problem with
bounded-treewidth supply graph. Let tw(G) denote the treewidth of the graph G.

Strong Reductions for Extended Formulations 353

Definition 2 (SparsestCut(n,k)). Let n be a positive integer. The minimization
problem SparsestCut(n,k) consists of

instances nonnegative demand d : E(Kn) → R≥0 and capacity c : E(Kn) →
R≥0 such that tw([n]c) ≤ k;

feasible solutions all subsets s of [n];
measure ratio of separated capacity and separated demand:

valI(s) =
valnI(s)
valdI(s)

where valnI(s) :=
∑

i∈s,j /∈s c(i, j) and valdI(s) :=
∑

i∈s,j /∈s d(i, j) for capacity
c, demand d and set s.

Recall that an independent set I of a graph G is a subset of pairwise non-
adjacent vertices I ⊆ V (G). The IndependentSet problem on a graph G asks for
an independent set of G of maximum size. We formally define it as an optimiza-
tion problem below.

Definition 3 (IndependentSet(G)). Given a graph G, the maximization problem
IndependentSet(G) consists of

instances all induced subgraphs H of G;
feasible solutions all independent subsets I of G;
measure valH(I) = |I ∩ V (H)|.

The MaxCut problem asks for a vertex set in a graph cutting a maximum
number of edges. Here we formulate two versions of the problem differing in
the largeness of the class of instances. Given a vertex set X ⊆ V (G), let
δ(X):= {{u, v} ∈ E(G) | u ∈ X, v /∈ X} denote the set of edges of G with one
end point in X and the other end point outside X.

Definition 4 (MaxCut(G)). Given a graph G, the (non-uniform) maximization
problem MaxCut(G) consists of

instances all induced subgraph H of G;
feasible solutions all vertex subsets X ⊆ V (G);
measure valH(X) = |E(H) ∩ δ(X)|.
For a positive integer n, we denote by MaxCut(n) the (uniform) version of the
problem where the instances are all subgraphs of the complete graph Kn (and the
feasible solutions are all vertex subsets of V (Kn)).

2.2 LP/SDP Complexity and Fractional Optimization

A fractional optimization problem is an optimization problem where the objec-
tives have the form of a fraction valI = valnI/valdI , such as for SparsestCut. In
this case the affine space of the objective functions valI of instances is typi-
cally not low dimensional, immediately ruling out small linear and semidefinite

354 G. Braun et al.

formulations. Nevertheless, there are examples of efficient linear programming
based algorithms for such problems, however here the linear programs are used
to find an optimal value of a linear combination of valnI and valdI (see e.g., [17]).
To be able to analyze the size of LPs or SDPs for such problems we refine the
notion of formulation complexity from [1] to incorporate these types of linear
programs, which reduces to the original definition with the choice of valnI = valI
and valdI = 1.

We first remind the reader of the notions of linear programming and semi-
definite programming complexity of non-fractional optimization problems from
[1]; precise definitions are to be found in the full-length version. Given a maxi-
mization problem P = (S,I, val), let C,S be real-valued functions on I, called
completeness guarantee and soundness guarantee. The (C,S)-approximate linear
programming formulation complexity fcLP(P, C, S) of P is intuitively the num-
ber of linear inequalities needed to derive maxI ≤ C(I) for all instances I of P
satisfying maxI ≤ S(I). The notion of (C,S)-approximate semidefinite program-
ming formulation complexity fcSDP(P, C, S) is defined similarly. Similar defini-
tions hold for minimization problems.

The essential difference in the fractional case is that instead of deriving
valnI/valdI = valI ≤ C(I), we require deriving the equivalent valnI ≤ C(I)valdI
and valdI ≥ 0, which is significantly easier in terms of linear programming proofs.
This leads to definitions of LP formulation complexity fcLP(P, C, S) and SDP
formulation complexity fcSDP(P, C, S) similar to the non-fractional case.

For both types of problems, the guarantees C and S will often be of the
form C = αg and S = βg for some constants α and β and an easy-to-
compute function g. Then we shall write fcLP(P, α, β) instead of the more precise
fcLP(P, αg, βg).

3 Reductions with Distortion

We now introduce a generalization of the affine reduction mechanism for LPs and
SDPs as introduced in [1], answering an open question posed both in [1,6] and
leading to many new reductions that were impossible in the affine framework.

Definition 5 (Reduction). Let P1 = (S1,I1, val) and P2 = (S2,I2, val) be
optimization problems with guarantees C1, S1 and C2, S2, respectively. Let τ1 =
+1 if P1 is a maximization problem, and τ1 = −1 if P1 is a minimization
problem. Similarly, let τ2 = ±1 depending on whether P2 is a maximization
problem or a minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible
solutions independently;

2. two nonnegative I1 × S1 matrices M1, M2

subject to the conditions

τ1 [C1(I1) − valI1(s1)] = τ2
[
C2(I∗

1) − valI∗
1
(s∗

1)
]
M1(I1, s1) + M2(I1, s1)

(1-complete)

Strong Reductions for Extended Formulations 355

τ2OPT (I∗
1) ≤ τ2S2(I∗

1) if τ1OPT (I1) ≤ τ1S1(I1). (1-sound)

The matrices M1 and M2 provide extra freedom to add additional (valid) inequal-
ities during the reduction. In fact, we might think of them as modeling more
complex reductions. These matrices should have low computational overhead,
which in our framework means LP or SDP rank.

Theorem 1. Let P1 and P2 be optimization problems with a reduction from P1

to P2 respecting the completeness guarantees C1, C2 and soundness guarantees
S1, S2 of P1 and P2, respectively. Then

fcLP(P1, C1, S1) ≤ rkLPM2 + rkLPM1 + rk+M1 · fcLP(P2, C2, S2), (2)

fcSDP(P1, C1, S1) ≤ rkSDPM2 + rkSDPM1 + rkpsdM1 · fcSDP(P2, C2, S2), (3)

where M1 and M2 are the matrices in the reduction as in Definition 5.

The corresponding multiplicative inapproximability factors can be obtained
as usual, by taking the ratio of soundness and completeness.

3.1 Reduction Between Fractional Problems

Reductions for fractional optimization problems are completely analogous to the
non-fractional case:

Definition 6 (Reduction). Let P1 = (S1,I1, val) and P2 = (S2,I2, val) be
fractional optimization problems with guarantees C1, S1 and C2, S2, respectively.
Let τ1 = +1 if P1 is a maximization problem, and τ1 = −1 if P1 is a minimiza-
tion problem. Similarly, let τ2 = ±1 depending on whether P2 is a maximization
problem or a minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible
solutions independently;

2. four nonnegative I1 × S1 matrices M
(n)
1 , M

(d)
1 , M

(n)
2 , M

(d)
2

subject to the conditions

τ1

[
C1(I1)valdI1

(s1) − valnI1
(s1)

]

= τ2

[
C2(I∗

1)valdI∗
1
(s∗

1) − valnI∗
1
(s∗

1)
]
M

(n)
1 (I1, s1) + M

(n)
2 (I1, s1)

(4-complete)

valdI1
(s1) = valdI∗

1
(s∗

1) · M
(d)
1 (I1, s1) + M

(d)
2 (I1, s1) (4-denominator)

τ2OPT (I∗
1) ≤ τ2S2(I∗

1) ifτ1OPT (I1) ≤ τ1S1(I1). (4-sound)

356 G. Braun et al.

As the vald are supposed to span a small dimensional subspace, the matrices
M

(d)
1 and M

(d)
2 are not supposed to significantly influence the strength of the

reduction even with the trivial choice M
(d)
1 = 0 and M

(d)
2 (I1, s1) = valdI1

(s1).
However, as in the non-fractional case, the complexity of M

(n)
1 and M

(n)
2 could

have a major influence on the strength of the reduction. The reduction theorem
is a special case of the reinterpretation as proof system; see full-length version:

Theorem 2. Let P1 and P2 be optimization problems with a reduction from P1

to P2 Then

fcLP(P1, C1, S1) ≤ rkLP

[
M

(n)
2

M
(d)
2

]

+ rkLP

[
M

(n)
1

M
(d)
1

]

+ rk+

[
M

(n)
1

M
(d)
1

]

· fcLP(P2,C2,S2),

(5)

fcSDP(P1, C1, S1) ≤ rkSDP

[
M

(n)
2

M
(d)
2

]

+ rkSDP

[
M

(n)
1

M
(d)
1

]

+ rkpsd

[
M

(n)
1

M
(d)
1

]

· fcSDP(P2,C2,S2),

(6)

where M
(n)
1 , M

(d)
1 , M

(n)
2 , and M

(d)
2 are the matrices in the reduction as in

Definition 6.

4 BalancedSeparator and SparsestCut

The SparsestCut problem is a high-profile problem that received considerable
attention in the past. It is known that SparsestCut with general demands can be
approximated within a factor of O(

√
log n log log n) [18] and the standard SDP

has an integrality gap of (log n)Ω(1) [19]. In this section we will show that the
SparsestCut problem cannot be approximated well by small LPs and SDPs by
using the new reduction mechanism from Sect. 3.1, even if the supply graph has
bounded treewidth, with the lower bound matching the upper bound in [17] in
the LP case. The results are unconditional LP/SDP analog to [20], however for
a different regime.

Theorem 3 (LP/SDP hardness for SparsestCut, tw(supply) = O(1)). For
any ε ∈ (0, 1) there are ηLP > 0 and ηSDP > 0 such that for every large enough
n the following hold

fcLP (SparsestCut(n, 2), ηLP(1 + ε), ηLP (2 − ε)) ≥ nΩ(log n/ log log n),

fcSDP

(

SparsestCut(n, 2), ηSDP

(

1 +
4ε

5

)

, ηSDP

(
16
15

− ε

))

≥ nΩ(log n/ log log n).

In other words SparsestCut(n, 2) is LP-hard with an inapproximability factor of
2 − ε, and SDP-hard with an inapproximability factor of 16

15 − O(ε).

Strong Reductions for Extended Formulations 357

A complementary reduction proves the hardness of approximating Balanced
Separator where the demand graph has constant treewidth.

Theorem 4 (LP-hardness for BalancedSeparator). For any constant c1 ≥ 1
there is another constant c2 ≥ 1 such that for all n there is a demand function
d : E(Kn) → R≥0 satisfying tw([n]d) ≤ c2 so that BalancedSeparator(n, d) is
LP-hard with inapproximability factor of c1.

Proof (Proof sketch of Theorem 3). We use the reduction from [17], reducing
MaxCut to SparsestCut. Given an instance I of MaxCut(n) we first construct the
instance I∗ on vertex set V = {u, v}∪ [n] where u and v are two special vertices.
Let us denote the degree of a vertex i in I by deg(i) and let m := 1

2

∑n
i=1 deg(i) be

the total number of edges in I. We define the capacity function c : V ×V → R≥0

as

c(i, j) :=

{
deg(i)

m if j = u, i �= v or j = v, i �= u

0 otherwise.

Note that the supply graph has treewidth at most 2 being a copy of K2,n. The
demand function d : V × V → R≥0 is defined as

d(i, j) :=

{
2
m if {i, j} ∈ E(I)
0 otherwise.

We map a solution s to MaxCut(n) to the cut s∗ := s∪{u} of SparsestCut(n+2,2).
We remind the reader of the powering operation from [17] to handle the case

of unbalanced and non u-v cuts. It successively adds for every edge of I∗ a copy
of itself, scaling both the capacities and demands by the capacity of the edge.
After l rounds, we obtain an instance I∗

l on a fixed set of O(N2l) vertices, and
similarly the cuts s∗ extend naturally to cuts s∗

l on these vertices, independent of
the instance I. Recall that the supply graph of I∗

l has the same treewidth as that
of I∗ [17, Observation 4.4], i.e., at most 2. Completeness follows by construction,
see [17, Claim 4.2],

valnI∗
l
(s∗

l) = 1, valdI∗
l
(s∗

l) = lvalI(s).

Soundness follows from [17, Lemmas 4.3 and 4.7]:

OPT (Il) ≥ 1
1 + (l − 1)OPT (I) / |E(I)| .

Now the hardness result follow from Theorem 2 with matrices M
(n)
1 (I1, s1) := C1

(I1), M
(n)
2 (I1, s1) := 0, M

(d)
1 (I1, s1) := 0, M

(d)
2 (I1, s1) := 1. Hardness of the

base problem MaxCut is provided by [9] (for the LP case) and Theorem5 (for the
SDP case), and leads to ηLP = 5ε

3−ε and ηSDP = 3ε
1−4ε .

358 G. Braun et al.

5 SDP Hardness of MaxCut

We now show that MaxCut cannot be approximated via small SDPs within a
factor of 15/16 + ε. As approximation guarantees for an instance graph H, we
shall use C(H) = α |E(H)| and S(H) = β |E(H)| for some constants α and β,
and for brevity write only α and β.

Theorem 5. For any δ, ε > 0 there are infinitely many n such that there is a
graph G with n vertices and

fcSDP(MaxCut(G), 4/5 − ε, 3/4 + δ) = nΩ(log n/ log log n). (7)

Proof (Proof sketch). By [10, Theorem 4.5] and [5, Theorem 6.4], for any δ, ε > 0
we have fcSDP(Max-3-XOR/0,1 −ε, 1/2 + δ) = mΩ(log m/ log log m) for infinitely
many m. We reuse the gadget based reduction from Max-3-XOR to MaxCut in [21,
Lemma 4.2]. Let x1, . . . , xm be the variables for Max-3-XOR. For every possible
clause C = (xi+xj+xk = 0), we shall use the gadget graph HC from [21, Fig. 4.1],
reproduced here in Fig. 1. We shall use the graph G, which is the union of all the
gadgets H(C) for all possible clauses. The vertices 0 and x1, . . . , xm are shared
by the gadgets, the other vertices are unique to each gadget.

0

xi

xj

xk

Fig. 1. The gadget HC for the clause C = (xi + xj + xk = 0) in the reduction from
Max-3-XOR to MaxCut. Solid vertices are shared by gadgets, the empty ones are local
to the gadget.

A Max-3-XOR instance I = {Ci}i is mapped to the union GI =
⋃

i H(Ci) of
the gadgets of the clauses Ci in I, which is an induced subgraph of G. A feasible
solution, i.e., an assignment s : {x1, . . . , xm} → {0, 1} is mapped to a vertex
set s∗ satisfying the following conditions: (1) xi ∈ s∗ if and only if s(xi) = 1,
(2) 0 /∈ s∗ (3) on every gadget H(C) the set s∗ cuts the maximal number of
edges subject to the previous two conditions. It is easy to see that s∗ cuts 16
out of the 20 edges of every H(C) if s satisfies C, and it cuts 14 edges if s does
not satisfy C. Therefore valGI (s∗) = (14 + 2valI(s))/20. It also follows from the
construction that valGI achieves its maximum on a vertex set of the form s∗,
showing soundness of the reduction, and proving the claim, noting that G has
n = O(m3) vertices.

Strong Reductions for Extended Formulations 359

6 Lasserre Relaxation is Suboptimal for IndependentSet(G)

As a curiosity, we will now derive a new lower bound on the Lasserre inte-
grality gap for the IndependentSet problem, establishing that the Lasserre hier-
archy is suboptimal: there exists a linear-sized LP formulation for the Inde-
pendentSet problem with approximation guarantee 2

√
n, whereas there exists

a family of graphs with Lasserre integrality gap n1−γ after Ω(nγ) rounds for
arbitrary small γ. While this is expected assuming P vs. NP, our result is uncon-
ditional. It also complements previous integrality gaps, like n/2O(

√
log n log log n)

for 2Θ(
√
log n log log n) rounds in [12], and others in [22], e.g., Θ(

√
n) rounds of

Lasserre are required for deriving the exact optimum.

Theorem 6. For any small enough γ > 0 there are infinitely many n, such that
there is a graph G with n vertices with the largest independent set of G having
size α(G) = O(nγ) but there is a Ω(nγ)-round Lasserre solution of size Θ(n),
i.e., the integrality gap is n1−γ . However fcLP(IndependentSet(G), 2

√
n) ≤ 3n+1.

Proof (Proof sketch). The statement fcLP(IndependentSet(G), 2
√

n) ≤ 3n + 1 is
[6, Lemma 5.2]. For the integrality gap construction, we apply [23, Theorem 4.2],
providing an instance I of Max-Θ(log N)-CSP on N variables with m = NΘ(1)

clauses, such that at most an N−ω(1) fraction of the clauses are satisfiable but
there is a N1−o(1)-round Lasserre solution satisfying all the clauses. In particular,
every clause has only a constant number a of satisfying partial assignments.

Let G be the conflict graph of I, i.e., the vertices of G are pairs (i, s) with
i ∈ [m] and s a satisfying partial assignments s of clause Ci with domain the
set of free variables of Ci. Two pairs (i, s) and (j, t) assignments are adjacent
as vertices of G if and only if the partial assignments s and t conflict, i.e.,
s(xj) �= t(xj) for some variable xj on which both s and t are defined. Thus G
has n = NΘ(1) vertices.

Given an assignment t : {x1, . . . , xN} → [q] we define the independent set t∗

of G as the set of partial assignments s compatible with t. (Obviously, t∗ is an
independent set.) This provides a mapping ∗ from the set of assignments of the
x1, . . . , xN to the set of independent sets of G. Clearly, valG(t∗) = mvalI(t),
as t∗ contains one vertex per clause satisfied by t. It is easy to see that every
independent set I of G is a subset of some t∗, and hence OPT (G) = mOPT (I) =
O(N). The map ∗ has degree O(log N), and hence extends to Lasserre solutions
the usual way, providing SoSN1−o(1)/ log N (G) ≥ m. It follows that with the right
choice of parameters, G has the Lasserre integrality gap claimed in the theorem.

Acknowledgements. Research reported in this paper was partially supported by
NSF CAREER award CMMI-1452463. Parts of this research was conducted at the
CMO-BIRS 2015 workshop Modern Techniques in Discrete Optimization: Mathematics,
Algorithms and Applications and we would like to thank the organizers for providing a
stimulating research environment, as well as Levent Tunçel for helpful discussions on
Lasserre relaxations of the IndependentSet problem.

360 G. Braun et al.

References

1. Braun, G., Pokutta, S., Zink, D.: Inapproximability of combinatorial problems via
small LPs and SDPs (2015)

2. Yannakakis, M.: Expressing combinatorial optimization problems by linear pro-
grams. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

3. Rothvoß, T.: The matching polytope has exponential extension complexity. In:
Proceedings of STOC, pp. 263–272 (2014)

4. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidef-
inite extended formulations: exponential separation and strong lower bounds. J.
ACM (2015, to appear)

5. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite
programming relaxations. arXiv preprint arXiv:1411.6317 (2014)

6. Bazzi, A., Fiorini, S., Pokutta, S., Svensson, O.: No small linear program approxi-
mates Vertex Cover within a factor 2 − ε. arXiv preprint arXiv:1503.00753 (2015)

7. Pashkovich, K.: Extended Formulations for Combinatorial Polytopes. Ph.D. thesis.
Magdeburg Universität (2012)

8. Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear pro-
grams (beyond hierarchies). In: 53rd IEEE Symposium on Foundations of Com-
puter Science (FOCS 2012), pp. 480–489 (2012)

9. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint satis-
faction requires large LP relaxations. In: IEEE 54th Annual Symposium on Foun-
dations of Computer Science (FOCS 2013), pp. 350–359. IEEE (2013)

10. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: IEEE
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008,
pp. 593–602. IEEE (2008)

11. Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams
relaxations. In: Proceedings of the Forty-First Annual ACM Symposium on Theory
of Computing, pp. 283–292. ACM (2009)

12. Tulsiani, M.: CSP gaps and reductions in the Lasserre hierarchy. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 303–312.
ACM (2009)

13. Au, Y.H., Tunçel, L.: A comprehensive analysis of polyhedral lift-and-project meth-
ods. arXiv preprint (2013). arXiv:1312.5972

14. Lipták, L., Tunçel, L.: The stable set problem and the lift-and-project ranks of
graphs. Math. Program. 98(1–3), 319–353 (2003)

15. Stephen, T., Tuncel, L.: On a representation of the matching polytope via semi-
definite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

16. Kolman, P., Koutecký, M., Tiwary, H.R.: Extension complexity, MSO logic, and
treewidth. CoRR abs/1507.04907 (2015)

17. Gupta, A., Talwar, K., Witmer, D.: Sparsest cut on bounded treewidth graphs:
algorithms and hardness results. In: Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing, pp. 281–290. ACM (2013)

18. Arora, S., Lee, J., Naor, A.: Euclidean distortion and the sparsest cut. J. Am.
Math. Soc. 21(1), 1–21 (2008)

19. Cheeger, J., Kleiner, B., Naor, A.: A (log n)Ω(1) integrality gap for the sparsest
cut SDP. In: 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009, pp. 555–564. IEEE (2009)

20. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the
hardness of approximating multicut and sparsest-cut. Comput. Complex. 15(2),
94–114 (2006)

http://arxiv.org/abs/1411.6317
http://arxiv.org/abs/1503.00753
http://arxiv.org/abs/1312.5972

Strong Reductions for Extended Formulations 361

21. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation,
and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

22. Au, Y.H., Tunçel, L.: Complexity analyses of Bienstock–Zuckerberg and Lasserre
relaxations on the matching and stable set polytopes. In: Günlük, O., Woeginger,
G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 14–26. Springer, Heidelberg (2011)

23. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polyno-
mial integrality gaps for strong SDP relaxations of densest k-subgraph. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, pp. 388–405 (2012)

Sum-of-Squares Hierarchy Lower Bounds
for Symmetric Formulations

Adam Kurpisz, Samuli Leppänen(B), and Monaldo Mastrolilli

IDSIA, 6928 Manno, Switzerland
{adam,samuli,monaldo}@idsia.ch

Abstract. We introduce a method for proving Sum-of-Squares (SoS)/
Lasserre hierarchy lower bounds when the initial problem formulation
exhibits a high degree of symmetry. Our main technical theorem allows
us to reduce the study of the positive semidefiniteness to the analysis of
“well-behaved” univariate polynomial inequalities.

We illustrate the technique on two problems, one unconstrained and
the other with constraints. More precisely, we give a short elementary
proof of Grigoriev/Laurent lower bound for finding the integer cut poly-
tope of the complete graph. We also show that the SoS hierarchy requires
a non-constant number of rounds to improve the initial integrality gap
of 2 for the Min-Knapsack linear program strengthened with cover
inequalities.

1 Introduction

Proving lower bounds for the Sum-of-Squares (SoS)/Lasserre hierarchy [21,27]
has attracted notable attention in the theoretical computer science community
during the last decade, see e.g. [6,11,14,15,23–25,29,31]. This is partly because
the hierarchy captures many of the best known approximation algorithms based
on semidefinite programming (SDP) for several natural 0/1 optimization prob-
lems (see [24] for a recent result). Indeed, it can be argued that the SoS hierarchy
is the strongest candidate to be the “optimal” meta-algorithm predicted by the
Unique Games Conjecture (UGC) [18,28]. On the other hand, the hierarchy is
also one of the best known candidates for refuting the conjecture since it is still
conceivable that one could show that the SoS hierarchy achieves better approx-
imation guarantees than the UGC predicts (see [5] for discussion). Despite the
interest in the algorithm and due to the many technical challenges presented by
semidefinite programming, only relatively few techniques are known for prov-
ing lower bounds for the hierarchy. In particular, several integrality gap results
follow from applying gadget reductions to the few known original lower bound
constructions.

Indeed, many of the known lower bounds for the SoS hierarchy originated in
the works of Grigoriev [14,15] on the positivstellensatz proof system. We defer

Supported by the Swiss National Science Foundation project 200020-144491/1
“Approximation Algorithms for Machine Scheduling Through Theory and Exper-
iments” and by Sciex Project 12.311.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 362–374, 2016.
DOI: 10.1007/978-3-319-33461-5 30

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 363

the formal definition of the hierarchy for later and only point out that solv-
ing the hierarchy after t rounds takes nO(t) time. In [15] Grigoriev showed that
random 3Xor or 3Sat instances cannot be solved even by Ω(n) rounds of the
SoS hierarchy (some of these results were later independently rediscovered by
Schoenebeck [29]). Lower bounds, such as those of [6,31] rely on [15,29] com-
bined with gadget reductions. Another important lower bound was also given
by Grigoriev [14] for the Knapsack problem (a simplified proof can be found
in [16]), showing that the SoS hierarchy cannot prove within �n/2� rounds that
the polytope {x ∈ [0, 1]n :

∑n
i=1 xi = n/2} contains no integer point when n

is odd. Using essentially the same construction as in [16], Laurent [23] inde-
pendently showed that �n

2 � rounds are not enough for finding the integer cut
polytope of the complete graph with n nodes, where n is odd.1 By using sev-
eral new ideas and techniques, but a similar starting point as in [16,23], Meka,
Potechin and Wigderson [25] were able to show a lower bound of Ω(log1/2 n)
for the Planted-Clique problem. Common to the works [16,23,25] is that the
matrix involved in the analysis has a large kernel, and they prove that a princi-
pal submatrix is positive definite by applying the theory of association schemes
[12]. For different techniques to obtain lower bounds, we refer for example to the
recent papers [4,19,20] (see also Sect. 5.2) and the survey [11] for an overview of
previous results.

In this paper we introduce a method for proving SoS hierarchy lower bounds
when the initial problem formulation exhibits a high degree of symmetry. Our
main technical theorem (Theorem 1) allows us to reduce the study of the positive
semidefiniteness to the analysis of “well-behaved” univariate polynomial inequal-
ities. The theorem applies whenever the solution and constraints are symmetric,
informally meaning that all subsets of the variables of equal cardinality play the
same role in the formulation (see Sect. 3 for the formal definition). For example,
the solution in [14,16,23] for Max-Cut is symmetric in this sense.

We note that exploiting symmetry reduces the number of variables involved
in the analysis, and different ways of utilizing symmetry have been widely used
in the past for proving integrality gaps for different hierarchies, see for exam-
ple [7,13,15,17,20,30]. An interesting difference of our approach from others is
that we establish several lower bounds without fully identifying the formula of
eigenvectors. More specifically, the common task in this context is to identify
the spectral structure to get a simple diagonalized form. In the previous papers
the moment matrices belong to the Bose-Mesner algebra of a well-studied asso-
ciation scheme, and hence one can use the existing theory. In this paper, instead
of identifying the spectral structure completely, we identify only possible forms
and propose to test all the possible candidates. This is in fact an important
point, since the approach may be extended even if the underlying symmetry is
imperfect or its spectral property is not well understood.

1 The two problems, Knapsack and Max-Cut in complete graphs, considered respec-
tively in [14,16] and in [23], are essentially the same and we will use Max-Cut to
refer to both.

364 A. Kurpisz et al.

The proof of Theorem 1 is obtained by a sequence of elementary opera-
tions, as opposed to notions such as big kernel in the matrix form, the use of
interlacing eigenvalues, the machinery of association schemes and various results
about hyper-geometric series as in [14,16,23]. Thus Theorem 1 applies to the
whole class of symmetric solutions, even when several conditions and machin-
ery exploited in [14,16,23] cannot be directly applied. For example the kernel
dimension, which was one of the important key property used to prove the results
in [14,16,23], depends on the particular solution that is used and it is not a gen-
eral property of the class of symmetric solutions. The solutions for two problems
considered in this paper have completely different kernel sizes of the analyzed
matrices, one large and the other zero.

We demonstrate the technique with two illustrative and complementary
applications. First, we show that the analysis of the lower bound for Max-Cut
in [14,16,23] simplifies to few elementary calculations once the main theorem
is in place. This result is partially motivated by the open question posed by
O’Donnell [26] of finding a simpler proof for Grigoriev’s lower bound for the
Knapsack problem.

As a second application we consider a constrained problem. We show that
after Ω(log1−ε n) levels the SoS hierarchy does not improve the integrality gap
of 2 for the Min-knapsack linear program formulation strengthened with cover
inequalities [9] introduced by Wolsey [32]. Adding cover inequalities is currently
the most successful approach for capacitated covering problems of this type
[1–3,8,10]. Our result is the first SoS lower bound for formulations with cover
inequalities. In this application we demonstrate that our technique can also be
used for suggesting the solution and for analyzing its feasibility.

2 The SoS Hierarchy

Consider a 0/1 optimization problem with m ≥ 0 linear constraints g�(x) ≥ 0,
for � ∈ [m] and x ∈ R

n. We are interested in approximating the convex hull of
the integral points of the set K = {x ∈ R

n | g�(x) ≥ 0,∀� ∈ [m]} with the SoS
hierarchy defined in the following.

The form of the SoS hierarchy we use in this paper (Definition 1) is equivalent
to the one used in literature (see e.g. [4,21,22]). It follows from applying a change
of basis to the dual certificate of the refutation of the proof system [22] (see also
[25] for discussion on the connection to the proof system). We use this change
of basis in order to obtain a useful decomposition of the moment matrices as a
sum of rank one matrices of special kind. This will play an important role in our
analysis.

For any I ⊆ N = {1, . . . , n}, let xI denote the 0/1 solution obtained by
setting xi = 1 for i ∈ I, and xi = 0 for i ∈ N \ I. We denote by g�(xI) the value
of the constraint evaluated at xI . For each integral solution xI , where I ⊆ N , in
the SoS hierarchy defined below there is a variable yN

I that can be interpreted
as the “relaxed” indicator variable for the solution xI . We point out that in this
formulation of the hierarchy the number of variables {yN

I : I ⊆ N} is exponential

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 365

in n, but this is not a problem in our context since we are interested in proving
lower bounds rather than solving an optimization problem.

Let Pt(N) be the collection of subsets of N of size at most t ∈ N. For every
I ⊆ N , the q-zeta vector ZI ∈ R

Pq(N) is a 0/1 vector with J-th entry (|J | ≤ q)
equal to 1 if and only if J ⊆ I.2 Note that ZIZ

�
I is a rank one matrix and the

matrices considered in Definition 1 are linear combinations of these rank one
matrices.

Definition 1. The t-th round SoS hierarchy relaxation for the set K, denoted by
SoSt(K), is the set of values {yN

I ∈ R : ∀I ⊆ N} that satisfy
∑

I⊆N

yN
I = 1, (1)

∑

I⊆N

yN
I ZIZ

�
I 	 0,where ZI ∈ R

Pt+d(N) (2)

∑

I⊆N

g�(xI)yN
I ZIZ

�
I 	 0, ∀� ∈ [m], where ZI ∈ R

Pt(N) (3)

where d = 0 if m = 0 (no linear constraints), otherwise d = 1.

It is straightforward to see that the SoS hierarchy formulation given in Defini-
tion 1 is a relaxation of the integral polytope. Indeed consider any feasible inte-
gral solution xI ∈ K and set yN

I = 1 and the other variables to zero. This solution
clearly satisfies Condition (1), Condition (2) because the rank one matrix ZIZ

�
I

is positive semidefinite (PSD), and Condition (3) since xI ∈ K.

3 The Main Technical Theorem

The main result of this paper (see Theorem 1 below) allows us to reduce the
study of the positive semidefiniteness for matrices (2) and (3) to the analysis of
“well-behaved” univariate polynomial inequalities. It can be applied whenever
the solutions and constraints are symmetric, namely they are invariant under
all permutations π of the set N : zN

I = zN
π(I) for all I ⊆ N (equivalently when

zN
I = zN

J whenever |I| = |J |),3 where zN
I is understood to denote either yN

I or
g�(xI)yN

I . For example, the solution for Max-Cut considered by Grigoriev [14]
and Laurent [23] belongs to this class.

Theorem 1. For any t ∈ {1, . . . , n}, let St be the set of univariate polynomials
Gh(k) ∈ R[k], for h ∈ {0, . . . , t}, that satisfy the following conditions:

Gh(k) ∈ R[k]2t (4)
Gh(k) = 0 for k ∈ {0, . . . , h − 1} ∪ {n − h + 1, . . . , n}, when h ≥ 1 (5)
Gh(k) ≥ 0 for k ∈ [h − 1, n − h + 1] (6)

2 In order to keep the notation simple, we do not emphasize the parameter q as the
dimension of the vectors should be clear from the context.

3 We define the set-valued permutation by π(I) = {π(i) | i ∈ I}.

366 A. Kurpisz et al.

For any fixed set of values {zN
k ∈ R : k = 0, . . . , n}, if the following holds

n−h∑

k=h

(
n

k

)

zN
k Gh(k) ≥ 0 ∀Gh(k) ∈ St (7)

then the matrix
n∑

k=0

zN
k

∑

I⊆N
|I|=k

ZIZ
�
I (where ZI ∈ R

Pt(N)) (8)

is positive-semidefinite.

Note that polynomial Gh(k) in (6) is nonnegative in a real interval, and
in (5) it is zero for a finite set of integers. Moreover, constraints (7) are trivially
satisfied for h > �n/2�.

Theorem 1 is a actually a corollary of a technical theorem that is not strictly
necessary for the applications of this paper, and therefore deferred to a later
section (see Theorem 3 in Sect. 6). The proof (given in Sect. 6) is obtained by
exploiting the high symmetry of the eigenvectors of the matrix appearing in (8).
Condition (7) corresponds to the requirement that the Rayleigh quotient being
non-negative restricted to some highly symmetric vectors (which we show are
the only ones we need to consider).

4 Max-Cut for the Complete Graph

In the Max-Cut problem, we are given an undirected graph and we wish to
find a partition of the vertices (a cut) which maximizes the number of edges
whose endpoints are on different sides of the partition (cut value). For the com-
plete graph with n vertices, consider any solution with ω vertices on one side
and the remaining n − ω on the other side of the partition. This gives a cut of
value ω(n − ω). When n is odd and for any ω ≤ n/2, Grigoriev [14] and Lau-
rent [23] considered the following solution (reformulated in the basis considered
in Definition 1):

yN
I = (n + 1)

(
ω

n + 1

)
(−1)n−|I|

ω − |I| ∀I ⊆ N (9)

It is shown [14,23] that (9) is a feasible solution for the SoS hierarchy of value
ω(n−ω), for any ω ≤ n/2 up to round t ≤ �ω�. In particular for ω = n/2 the cut
value of the SoS relaxation is strictly larger than the value of the optimal integral
cut (i.e. �n

2 �(�n
2 � + 1)), showing therefore an integrality gap at round �n/2�.

We note that the formula for the solution (9) is essentially implied by
the requirement of having exactly ω vertices on one side of the partition
(see [14,23,25] for more details) and the core of the analysis in [14,23] is in
showing that (9) is a feasible solution for the SoS hierarchy. By taking advan-
tage of Theorem 1, the proof that (9) is a feasible solution for the SoS relaxation
follows by observing the fact below.

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 367

Lemma 1. For any polynomial P (x) ∈ R[x] of degree ≤ n and yN
i = yN

I defined
in (9) we have

n∑

k=0

(
n

k

)

yN
k P (k) = P (ω)

Proof. By the polynomial remainder theorem P (k) = (ω−k)Q(k)+P (ω), where
Q(k) is a unique polynomial of degree at most n − 1. It follows that

n∑

k=0

(
n

k

)

yN
k P (k) =

n∑

k=0

(
n

k

)

yN
k (ω − k)Q(k)

︸ ︷︷ ︸
=0

+P (ω)
n∑

k=0

(
n

k

)

yN
k

︸ ︷︷ ︸
=1

= P (ω)

since
∑n

k=0(−1)k
(
n
k

)
Q(k) = 0 for any polynomial of degree at most n − 1. ��

Now by Lemma 1 we have
∑n

k=0 yN
k

(
n
k

)
Gh(k) = Gh(ω) and the feasibility of (9)

follows by Theorem 1, since we have that Gh(ω) ≥ 0 whenever t ≤ ω for ω ≤ n/2.

5 Min-Knapsack with Cover Inequalities

The Min-Knapsack problem is defined as follows: we have n items with costs
ci and profits pi, and we want to choose a subset of items such that the sum
of the costs of the selected items is minimized and the sum of the profits is at
least a given demand P . Formally, this can be formulated as an integer program
(IP) min

{∑n
j=1 cjxj :

∑n
j=1 pjxj ≥ P, x ∈ {0, 1}n

}
. It is easy to see that the

natural linear program (LP), obtained by relaxing x ∈ {0, 1}n to x ∈ [0, 1]n in
(IP), has an unbounded integrality gap.

By adding the Knapsack Cover (KC) inequalities introduced by Wolsey [32]
(see also [9]), the arbitrarily large integrality gap of the natural LP can be
reduced to 2 (and it is tight [9]). The KC constraints are as follows:

∑
j �∈A pA

j xj ≥
P − p(A) for all A ⊆ N , where p(A) =

∑
i∈A pi and pA

j = min {pj , P − p(A)}.
Note that these constraints are valid constraints for integral solutions. Indeed, in
the “integral world” if a set A of items is picked we still need to cover P − p(A);
the remaining profits are “trimmed” to be at most P −p(A) and this again does
not remove any feasible integral solution.

The following instance [9] shows that the integrality gap implied by KC
inequalities is 2: we have n items of unit costs and profits. We are asked to select
a set of items in order to obtain a profit of at least 1 + 1/(n − 1). The resulting
linear program formulation with KC inequalities is as follows (for xi ∈ [0, 1],
i = 1, . . . , n)

(LP+) min
n∑

j=1

xj s.t.
n∑

j=1

xj ≥ 1 + 1/(n − 1) (10)

∑

j∈N ′
xj ≥ 1 ∀N ′ ⊆ N : |N ′| = n − 1 (11)

368 A. Kurpisz et al.

Note that the solution xi = 1/(n − 1) is a valid fractional solution of value
1 + 1/(n − 1) whereas the optimal integral solution has value 2. In the following
we show that SoSt(LP+), with t arbitrarily close to a logarithmic function of n,
admits the same integrality gap as the initial linear program (LP+) relaxation.

Theorem 2. For any δ > 0 and sufficiently large n′, let t = �log1−δ n′�, n =
�n′

t �t and ε = o(t−1). Then the following solution is feasible for SoSt(LP+) with
integrality gap of 2 − o(1)

yN
I =

(
n

|I|
)−1

·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1+ε)n
(n−1)�log n	 for |I| = �log n�
εt
jn for |I| = j n

t and j ∈ [t]
1 − ∑

∅�=I⊆N yN
I for I = ∅

0 otherwise

(12)

5.1 Overview of the Proof

An integrality gap proof for the SoS hierarchy can in general be thought of having
two steps: first, choosing a solution to the hierarchy that attains a superoptimal
value, and second showing that this solution is feasible for the hierarchy. We
take advantage of Theorem 1 in both steps. Here we describe the overview of our
integrality gap construction while keeping the discussion informal and technical
details minimal in this extended abstract.

Choosing the solution. We make the following simplifying assumptions about
the structure of the variables yN

I : due to symmetry in the problem we set yN
I =

yN
J = yN

k for each I, J such that |I| = |J | = k, and for every I ⊆ N we set yN
I ≥ 0

in order to satisfy (2) for free. Furthermore, in order to have an integrality gap
(i.e. a small objective function value), we guess that yN

0 ≈ 1 forcing the other
variables to be small due to (1).

We then show that satisfying (3) for every constraint follows from showing
that

n∑

k=0

(
n

k

)

yN
k (k − 2)

t∏

i=1

(k − ri)2 ≥ 0 (13)

for every choice of t real variables ri. We get this condition by observing similar-
ities in the structure of the constraints and applying Theorem 1, then expressing
the polynomial in root form.4 If we set yN

1 = 0, the only negative term in the sum
corresponds to yN

0 . Then, it is clear that we need at least t+1 non-zero variables
yN

k , otherwise the roots ri can be set such that the positive terms in (13) vanish
and the inequality is not satisfied. Therefore, we choose exactly t + 1 of the yN

k

to be strictly positive (and the rest 0 excluding yN
0), and we distribute them “far

away” from each other, so that no root can be placed such that the coefficient of
two positive terms become small. To take this idea further, for one “very small”
k′ (logarithmic in n), we set yN

k′ positive and space out the rest evenly.

4 It can be shown that the roots ri can be assumed to be real numbers.

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 369

Proving that the solution is feasible. We show that (13) holds for all possible
ri with our chosen solution by analysing two cases. In the first case we assume
that all of the roots ri are larger than log3 n. Then, we show that the “small”
point k′ we chose is enough to satisfy the condition. In the complement case, we
assume that there is at least one root ri that is smaller than log3 n. It follows
that one of the evenly spaced points is “far” from any remaining root, and can
be used to show that the condition is satisfied.

5.2 Further Results

In a recent paper [19] the authors characterize the class of the initial 0/1 relax-
ations that are maximally hard for the SoS hierarchy. Here, maximally hard
means those relaxations that still have an integrality gap even after n−1 rounds
of the SoS hierarchy.5 An illustrative natural member of this class is given by
the simple LP relaxation for the Min Knapsack problem, i.e. the minimization
of

∑n
i=1 xi such that

∑n
i=1 xi ≥ P . In [19] it is shown that at level n − 1 the

integrality gap is k, for any k ≥ 2 if and only if P = Θ(k) · 22n. A natural
question is to understand if the SoS hierarchy is able to reduce the gap when P
is “small”. The previous analysis can be used in a very similar vein to show that
the integrality gap of the LP does not reduce at round t = Ω(log1−ε n) for any
P < 1. We omit the details in this extended abstract.

6 Overview of the Proof of Theorem 1

Theorem 1 is actually a corollary of a stronger statement (see Theorem 3
below) that provides necessary and sufficient conditions for the matrix (8)
to be positive-semidefinite. Theorem 3 uses a special family of polynomials
Gh(k) ∈ R[k] whose definition is deferred to a later section (see Definition 3
in Sect. 6.1). We postpone the definition because it will become natural in the
flow of the proof of Theorem 3. Here we remark that the polynomials Gh(k) of
Definition 3 satisfy the conditions (4), (5) and (6) of Theorem 1 (as shown in
Lemma 7 to follow).

Theorem 3. Let zN
k ∈ R for k ∈ {0, . . . , n}. Then for any t ∈ N the following

matrix is positive-semidefinite
n∑

k=0

zN
k

∑

I⊆N
|I|=k

ZIZ
�
I (where ZI ∈ R

Pt(N)) (14)

if and only if
n∑

k=0

zN
k

(
n

k

)

Gh(k) ≥ 0 for h ∈ {0, . . . , t} (15)

for every univariate polynomial Gh(x) ∈ R[x] of degree at most 2t as defined in
Definition 3.
5 Recall that at level n the integrality gap vanishes.

370 A. Kurpisz et al.

By Lemma 7, Theorem 1 is a straightforward corollary of Theorem 3. In the
following we review the essential steps of the proof of Theorem 3. We suppress
the proofs in this extended abstract due to page limitations.6

6.1 Overview of the Proof of Theorem 3

We study when the matrix M =
∑n

k=0 zk

∑
I⊆N,|I|=k ZIZ

�
I , where ZI ∈ R

Pt(N)

is positive-semidefinite. Theorem 3 allows us to reduce the condition M 	 0 to
inequalities of the form

∑n
k=0

(
n
k

)
zkp(k) ≥ 0, where p(k) is a univariate polyno-

mial of degree 2t with some additional remarkable properties.
A basic key idea that is used to obtain such a characterization is that the

eigenvectors of M are “very well” structured. This structure is used to get p(k)
with the claimed properties.

The structure of the eigenvectors. Let Π denote the group of all permutations
of the set N , i.e. the symmetric group. Let Pπ be the permutation matrix of
size Pt(N) × Pt(N) corresponding to any permutation π of set N , i.e. for any
vector v we have [Pπv]I = vπ(I) for any I ∈ Pt(N) (see Footnote 3). Note that
P−1

π = P�
π .

Lemma 2. For every π ∈ Π we have P�
π MPπ = M or, equivalently, M and

Pπ commute MPπ = PπM .

Corollary 1. If w ∈ R
Pt(N) is an eigenvector of M then v = Pπw is also an

eigenvector of M for any π ∈ Π.

By using Corollary 1 we can show that the set of interesting eigenvectors
have some “strong” symmetry properties that will be used in our analysis. In
the simplest case, for any eigenvector w we could take the vector u =

∑
π∈Π Pπw

and observe that the elements of u have the form uI = uJ for each I, J such that
|I| = |J |. If ‖u‖ �= 0 then u/‖u‖ and w/‖w‖ are two eigenvectors corresponding
to the same eigenvalue. The latter implies that by considering only eigenvectors
having the form uI = uJ for each |I| = |J | we would consider the eigenvalue
corresponding to the “unstructured” eigenvector w as well. This is not the case
in general, however, since it is possible that

∑
π∈Π Pπw = 0.

We overcome this obstacle by restricting the permutations in a way which
guarantees u to be non-zero. Before going into the details, we introduce some
notation.

Definition 2. For any H ⊆ N , we denote by ΠH the permutation group that
fixes the set H in the following sense: π ∈ ΠH ⇔ π(H) = H.

Note that the definition is equivalent to saying that π ∈ ΠH if and only if
π(i) ∈ H for every i ∈ H and π(i) /∈ H for every i /∈ H.

Now, we choose a subset H ⊆ N such that
∑

π∈ΠI
Pπw = 0 for each I such

that |I| < |H| and u =
∑

π∈ΠH
Pπw �= 0. Such a set H always exists, since

6 The full version of the paper is available at http://arxiv.org/abs/1407.1746.

http://arxiv.org/abs/1407.1746

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 371

otherwise w is a zero vector, since if there is one non-zero entry wJ in w, we can
take H = J and the resulting u is non-zero. The choice of H is not unique, but
we can always assume that it is the subset of the first h = |H| elements from
N , i.e. H = {1, . . . , h}. Indeed, if it is not the case, there exists a permutation
π ∈ Π that maps H to the subset of the first |H| elements from N and such
that Pπw is an eigenvector of M by Lemma 1. Now it holds that u �= 0 and the
vector u/‖u‖ is a unit eigenvector corresponding to the same eigenvalue as w
and has many elements that are equal to each other.

Lemma 3. Let w ∈ R
Pt(N) be a unit eigenvector of M corresponding to eigen-

value λ, and H be the smallest subset of N such that u =
∑

π∈ΠH
Pπw �= 0.

Then u/‖u‖ is also a unit eigenvector of M corresponding to eigenvalue λ.

The following lemma shows the structure of eigenvectors obtained from sum-
ming the permutations of any “unstructured” eigenvector.

Lemma 4. Let u =
∑

π∈ΠH
Pπw. Then the vector u is invariant under the

permutations of ΠH , namely uI = uπ(I) for π ∈ ΠH . Equivalently, uI = uJ for
all |I| = |J | such that |I ∩ H| = |J ∩ H|.
Lemmas 3, 4 and the arguments above imply Lemma 5.

Lemma 5. For any eigenvalue λ of M there exists an h = 0, 1, . . . , t such that
the following is an eigenvector corresponding to λ:

uh =
t∑

i=0

min{h,i}∑

j=0

αi,jbi,j (16)

where H = {1, . . . , h}, αi,j ∈ R and bi,j ∈ R
Pt(N) such that [bi,j]Q = 1 if |Q| = i

and |Q ∩ H| = j, [bi,j]Q = 0 otherwise.

By Lemma 5, we have that the positive semidefiniteness condition of M follows
by ensuring that for any h = 0, 1, . . . , t we have u�

h Muh ≥ 0, i.e.

u�
h Muh =

n∑

k=0

zk

∑

I⊆N
|I|=k

(
u�

h ZI

)2

︸ ︷︷ ︸
Ak

=
n∑

k=0

zk

∑

I⊆N
|I|=k

⎛

⎝
t∑

i=0

min{h,i}∑

j=0

αi,jb
�
i,jZI

⎞

⎠

2

≥ 0

In the following (Lemma 6) we show that the above values Ak are interpolated
by the univariate polynomial Gh(x) defined in Definition 3. In Lemma 7 we prove
some remarkable properties of Gh(x) as claimed in Theorem 1.

Definition 3. For any h ∈ {0, . . . , t}, let Gh(k) ∈ R[k] be a univariate polyno-
mial defined as follows

Gh(k) =
h∑

r=0

(
h

r

)

hr(k)

⎛

⎝
h∑

j=0

(
r

j

)

pj(k − r)

⎞

⎠

2

(17)

372 A. Kurpisz et al.

where hr(k) = kr · (n − k)h−r and pj(k − r) =
∑t−j

i=0 αi+j,j

(
k−r

i

)
(for αi,j ∈ R).7

Lemma 6. For every k = 0, . . . , n the following identity holds Ak =(
n
k

)
1

nh Gh(k).

It follows that for any unit eigenvector u of the form (16) the corresponding
eigenvalue is equal to u�Mu = 1

nh

∑n
k=0 zk

(
n
k

)
Gh(k). Theorem 3 requires that

∑n
k=0 zk

(
n
k

)
Gh(k) ≥ 0 which implies that the eigenvalue u�Mu is nonnegative.

In the following section we complete the proof by showing that the polyno-
mials Gh(k) of Definition 3 satisfy the conditions (4), (5) and (6) of Theorem 1.

Lemma 7. For any h ∈ {0, . . . , t}, the polynomials Gh(k) as defined in
Definition 3 have the following properties:

(a) Gh(k) is a univariate polynomial of degree at most 2t,
(b) Gh(k) ≥ 0 for k ∈ [h − 1, n − h + 1]
(c) Gh(k) = 0 for every k ∈ {0, ..., h − 1} ∪ {n − h + 1, ..., n}.

Acknowledgements. The authors would like to express their gratitude to Ola Svens-
son for helpful discussions and ideas regarding this paper.

References

1. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for gen-
eralized caching. In: STOC, pp. 235–244 (2008)

2. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algo-
rithm for generalized min-sum set cover. In: SODA, pp. 1539–1545 (2010)

3. Bansal, N., Pruhs, K.: The geometry of scheduling. In: FOCS, pp. 407–414 (2010)
4. Barak, B., Chan, S.O., Kothari, P.: Sum of squares lower bounds from pairwise

independence. In: STOC (2015)
5. Barak, B., Steurer, D.: Sum-of-squares proofs, the quest toward optimal algorithms.

In: Electronic Colloquium on Computational Complexity (ECCC), vol. 21, p. 59
(2014)

6. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polyno-
mial integrality gaps for strong SDP relaxations of densest k-subgraph. In: SODA,
pp. 388–405 (2012)

7. Blekherman, G., Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. In:
CoRR, abs/1402.4199 (2014)

8. Carnes, T., Shmoys, D.B.: Primal-Dual schema for capacitated covering problems.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
288–302. Springer, Heidelberg (2008)

9. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: SODA, pp. 106–
115 (2000)

7 Denote by xm = x(x − 1) · · · (x − m + 1) the falling factorial (with the convention
that x0 = 1).

Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations 373

10. Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority
covering integer programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010.
LNCS, vol. 6080, pp. 355–368. Springer, Heidelberg (2010)

11. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos,
M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Opti-
mization. International Series in Operations Research & Management Science, vol.
166, pp. 139–169. Springer, US (2011)

12. Godsil, C.: Association schemes (2010). Lecture Notes available at http://quoll.
uwaterloo.ca/mine/Notes/assoc2.pdf

13. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint
help in lifting procedures? Math. Oper. Res. 26(4), 796–815 (2001)

14. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput.
Complex. 10(2), 139–154 (2001)

15. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)

16. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, p. 419. Springer,
Heidelberg (2002)

17. Hong, S., Tunçel, L.: Unification of lower-bound analyses of the lift-and-project
rank of combinatorial optimization polyhedra. Discrete Appl. Math. 156(1), 25–
41 (2008)

18. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775
(2002)

19. Kurpisz, A., Leppänen, S., Mastrolilli, M.: A Lasserre lower bound for the min-
sum single machine scheduling problem. In: Bansal, N., Finocchi, I. (eds.) ESA
2015. LNCS, vol. 9294, pp. 853–864. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48350-3 71

20. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations
for the 0/1 Lasserre hierarchy. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 872–885. Springer, Hei-
delberg (2015)

21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

22. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre
relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

23. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies
for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003)

24. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite
programming relaxations. In: STOC, pp. 567–576 (2015)

25. Meka, R., Potechin, A., Wigderson, A.: Sum-of-squares lower bounds for planted
clique. In: STOC, pp. 87–96 (2015)

26. O’Donnell, R.: Approximability proof complex. Talk at ELC Tokyo (2013). Slides
available at http://www.cs.cmu.edu/∼odonnell/slides/approx-proof-cxty.pps

27. Parrilo, P.: Structured Semidefinite Programs and Semialgebraic Geometry Meth-
ods in Robustness and Optimization. Ph.D. thesis. California Institute of Technol-
ogy (2000)

28. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
In: STOC, pp. 245–254 (2008)

29. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: FOCS,
pp. 593–602 (2008)

http://quoll.uwaterloo.ca/mine/Notes/assoc2.pdf
http://quoll.uwaterloo.ca/mine/Notes/assoc2.pdf
http://dx.doi.org/10.1007/978-3-662-48350-3_71
http://dx.doi.org/10.1007/978-3-662-48350-3_71
http://www.cs.cmu.edu/~odonnell/slides/approx-proof-cxty.pps

374 A. Kurpisz et al.

30. Stephen, T., Tunçel, L.: On a representation of the matching polytope via semi-
definite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

31. Tulsiani, M., CSP gaps and reductions in the Lasserre hierarchy. In: STOC, pp.
303–312 (2009)

32. Wolsey, L.A.: Facets for a linear inequality in 0–1 variables. Math. Program. 8,
168–175 (1975)

Approximation-Friendly Discrepancy Rounding

Nikhil Bansal1 and Viswanath Nagarajan2(B)

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

2 Department of Industrial and Operations Engineering,
University of Michigan, Ann Arbor, USA

viswa@umich.edu

Abstract. Rounding linear programs using techniques from discrep-
ancy is a recent approach that has been very successful in certain set-
tings. However this method also has some limitations when compared to
approaches such as randomized and iterative rounding. We provide an
extension of the discrepancy-based rounding algorithm due to Lovett-
Meka that (i) combines the advantages of both randomized and iterated
rounding, (ii) makes it applicable to settings with more general combi-
natorial structure such as matroids. As applications of this approach, we
obtain new results for various classical problems such as linear system
rounding, degree-bounded matroid basis and low congestion routing.

1 Introduction

A very common approach for solving discrete optimization problems is to solve
some linear programming relaxation, and then round the fractional solution into
an integral one, without (hopefully) incurring much loss in quality. Over the years
several ingenious rounding techniques have been developed (see e.g. [23,24])
based on ideas from optimization, probability, geometry, algebra and various
other areas. Randomized rounding and iterative rounding are two of the most
commonly used methods.

Recently, discrepancy-based rounding approaches have also been very suc-
cessful; a particularly notable result is due to Rothvoss for bin packing [18].
Discrepancy is a well-studied area in combinatorics with several surprising
results (see e.g. [16]), and as observed by Lovász et al. [14], has a natural
connection to rounding. However, until the recent algorithmic developments
[1,9,15,17,19], most of the results in discrepancy were non-constructive and
hence not directly useful for rounding. These algorithmic approaches com-
bine probabilistic approaches like randomized rounding with linear algebraic
approaches such as iterated rounding [12], which makes them quite powerful.

Interestingly, given the connection between discrepancy and rounding, these
discrepancy algorithms can in fact be viewed as meta-algorithms for rounding.

N. Bansal—Supported by a NWO Vidi grant 639.022.211 and an ERC consolidator
grant 617951.
V. Nagarajan—Supported in part by a faculty award from Bloomberg Labs.

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 375–386, 2016.
DOI: 10.1007/978-3-319-33461-5 31

376 N. Bansal and V. Nagarajan

We discuss this in Sect. 1.1 in the context of the Lovett-Meka (LM) algorithm
[15]. This suggests the possibility of one single approach that generalizes both
randomized and iterated rounding. This is our motivating goal in this paper.

While the LM algorithm is already an important step in this direction, it
still has some important limitations. For example, it is designed for obtaining
additive error bounds and it does not give good multiplicative error bounds
(like those given by randomized rounding). This is not an issue for discrepancy
applications, but crucial for many approximation algorithms. Similarly, iterated
rounding can work well with exponentially sized LPs by exploiting their under-
lying combinatorial structure (e.g., degree-bounded spanning tree [20]), but the
current discrepancy results [15,19] give extremely weak bounds in such settings.

Our Results: We extend the LM algorithm to overcome the limitations stated
above. In particular, we give a new variant that also gives Chernoff type mul-
tiplicative error bounds (sometimes with an additional logarithmic factor loss).
We also show how to adapt the above algorithm to handle exponentially large
LPs involving matroid constraints, like in iterated rounding.

This new discrepancy-based algorithm gives new results for problems such
as linear system rounding with violations [5,13], degree-bounded matroid
basis [7,11], low congestion routing [10,13] and multi-budgeted matroid basis [8],
These results simultaneously combine non-trivial guarantees from discrepancy,
randomized rounding and iterated rounding and previously such bounds were
not even known existentially.

Our results are described formally in Sect. 1.2. To place them in the proper
context, we first need to describe some existing rounding approaches (Sect. 1.1).
The reader familiar with the LM algorithm can directly go to Sect. 1.2.

1.1 Preliminaries

We begin by describing LM rounding [15], randomized rounding and iterated
rounding in a similar form, and then discuss their strengths and weaknesses.

LM Rounding: Let A be a m×n matrix with 0–1 entries1, x ∈ [0, 1]n a fractional
vector and let b = Ax. Lovett and Meka showed the following rounding result.

Theorem 1 (LM Rounding [15]). Given A and x as above, For j = 1, . . . , m,
pick any λj satisfying ∑

j

exp(−λ2
j/4) ≤ n/16. (1)

There is an efficient randomized algorithm to find a solution x′ such that:
(i) at most n/2 variables of x′ are fractional (strictly between 0 and 1) and,
(ii) |aj · (x′ −x)| ≤ λj‖aj‖2 for each j = 1, . . . , m, where aj denotes the j-th row
of A.
1 The results below generalize to arbitrary real matrices A and vectors x in natural

ways, but we consider 0–1 case for simplicity.

Approximation-Friendly Discrepancy Rounding 377

Remark: The right hand side of (1) can be set to (1 − ε)n for any ε > 0, at the
expense of O(1) factor loss in other parameters of the theorem; see e.g. [2].

Randomized Rounding: Chernoff bounds state that if X1, . . . , Xn are indepen-
dent Bernoulli random variables, and X =

∑
i Xi and μ = E[X], then

Pr[|X − μ| ≥ εμ] ≤ 2 exp(−ε2μ/4) for ε ≤ 1.

Then independent randomized rounding can be viewed as the following (by using
Chernoff bounds and union bound, and denoting λj = εj

√
bj):

Theorem 2 (Randomized Rounding). For j = 1, . . . , m, pick any λj satis-
fying λj ≤ √

bj, and
∑

j

exp(−λ2
j/4) < 0.5 (2)

Then independent randomized rounding gives a solution x′ such that: (i) All
variables are 0–1, and (ii) |aj(x′ − x)| ≤ λj

√
bj for each j = 1, . . . , m.

Iterated Rounding [12]: This is based on the following linear-algebraic fact.

Theorem 3. If m < n, then there is a solution x′ ∈ [0, 1]n such that (i) x′ has
at least n − m variables set to 0 or 1 and, (ii) A(x′ − x) = 0 (i.e., b = Ax′).

If m > n, some cleverly chosen constraints are dropped until m < n and then
(by Theorem 3) some integral variables are obtained. This is done repeatedly.

Strengths of LM Rounding: Note that if we set λj ∈ {0,∞} in LM rounding,
then it gives a very similar statement to Theorem 3. E.g., if we only care about
some m = n/2 constraints then Theorem3 gives an x′ with at least n/2 integral
variables and ajx = ajx

′ for all these m constraints. Theorem 1 (and the remark
below it) give the same guarantee if we set λj = 0 for all constraints. In general,
LM rounding can be much more flexible as it allows arbitrary λj .

Second, LM rounding is also related to randomized rounding. Note that (1)
and (2) have the same left-hand-side. However, the right-hand-side of (1) is Ω(n),
while that of (2) is O(1). This actually makes a huge difference. In particular,
in (2) one cannot set λj = 1 for more than a couple of constraints (to get an
o(

√
bj) error bound on constraints), while in (1), one can even set λj = 0 for

O(n) constraints. In fact, almost all non-trivial results in discrepancy [16,21,22]
are based on this ability.

Weaknesses of LM Rounding: First, Theorem 1 only gives a partially integral
solution instead of a fully integral one as in Theorem2.

Second, and more importantly, it only gives additive error bounds instead of
multiplicative ones. In particular, note the λj‖aj‖2 vs λj

√
bj error in Theorems 1

and 2. E.g., for a constraint
∑

i xi = log n, Theorem 2 gives λ
√

log n error but
Theorem 1 gives a much higher λ

√
n error. So, while randomized rounding can

378 N. Bansal and V. Nagarajan

give a good multiplicative error like ajx
′ ≤ (1±εj)bj , LM rounding is completely

insensitive to bj .
Finally, iterated rounding works extremely well in many settings where

Theorem 1 does not give anything useful. E.g., in problems involving exponen-
tially many constraints such as the degree bounded spanning tree problem. The
problem is that if m is exponentially large, then the λj ’s in Theorem 1 need to
be very large to satisfy (2).

1.2 Our Results and Techniques

Our first result is the following improvement over Theorem1.

Theorem 4. There is a constant K0 > 0 and randomized polynomial time
algorithm that given x ∈ [0, 1]n, m linear constraints a1, . . . , am ∈ R

n, and
λ1, · · · , λm ≥ 0 with maxm

j=1 λj ≤ poly(n) and
∑m

j=1 e−λ2
j/K0 < n

16 , finds a
solution x′ ∈ [0, 1]n such that:

|〈x′ − x, aj〉| ≤ λj ·
√

Wj(x) +
1 + λj

n2
· ‖aj‖, ∀j ∈ [m] (3)

x′
i ∈ {0, 1}, for Ω(n) indices i ∈ [n] (4)

Here Wj(x) :=
∑n

i=1 a2
ji · min{xi, 1 − xi}2 for each j ∈ [m].

Remarks: (1) The error λj

√
Wj(x) is always smaller than λj‖aj‖ in LM-rounding

and λj(
∑n

i=1 a2
ji ·xi(1−xi))1/2 in randomized rounding. In fact it could even be

much less if the xi are very close to 0 or 1.
(2) The term n/16 above can be made (1 − ε)n for any constant ε > 0, at the
expense of worsening other constants (just as in LM rounding).
(3) The additional error term 1+λj

n2 · ‖aj‖ above is negligible and can be reduced
to 1+λj

nc · ‖aj‖ for any constant c, at the expense of running time nO(c).
We note that Theorem 4 can also be obtained in a “black box” manner from

LM-rounding (Theorem1) by rescaling the polytope given by (3) and (4) and
using its symmetry.2 However, such an approach does not work in the setting of
matroid polytopes (Theorem5 below), and in order to achieve that we modify
LM-rounding as outlined below.

Applications: We focus on linear system rounding as the prime example. Here,
given matrix A ∈ {0, 1}m×n and vector b ∈ Z

m
+ , the goal is to find a vector

y ∈ {0, 1}n satisfying Ay = b. As this is NP-hard, the focus has been on finding
a y ∈ {0, 1}n where Ay ≈ b.

Given any fractional solution x ∈ [0, 1]n satisfying Ax = b, using Theorem 4
iteratively we can obtain an integral vector y ∈ {0, 1}n with

|ajy − bj | ≤ min
{

O(
√

n log(2 + m/n)) ,
√

L · bj + L
}

, ∀j ∈ [m], (5)

2 We thank an anonymous reviewer for pointing this out.

Approximation-Friendly Discrepancy Rounding 379

where L = O(log n log m). Previously known algorithms could provide a bound of
either O(

√
n log(m/n)) for all constraints [15] (e.g., for m = O(n) this gives non-

trivial Spencer type bounds of O(
√

n) [21]) or O(
√

log m·√bj+log m) for all con-
straints (Theorem 2). Note that this does not imply a min{√

n log(m/n),
√

log m·√
bj + log m} violation per constraint, as in general it is not possible to com-

bine two integral solutions and achieve the better of their violation bounds on
all constraints. To the best of our knowledge, even the existence of an integral
solution satisfying the bounds in (5) was not known prior to our work.

In the setting where the matrix A is “column sparse”, i.e., each variable
appears in at most Δ constraints, we obtain a more refined error of

|ajy − bj | ≤ min
{

O(
√

Δ log n) ,
√

L · bj + L
}

, ∀j ∈ [m], (6)

where L = O(log n · log m). Previous algorithms could separately achieve bounds
of Δ− 1 [5], O(

√
Δ log n) [15] or O(

√
log Δ ·√bj + log Δ) [13]. For clarity, Fig. 1

plots the violation bounds achieved by these different algorithms as a function
of the right-hand-side b when m = n (we assume b,Δ ≥ log2 n). Note again that
since there are multiple constraints we can not simply combine algorithms to
achieve the smaller of their violation bounds.

error
bound

b

√
log n · √

b (Theorem 2)
√

log Δ · √
b (reference [14])

Δ − 1 (Theorem 3)
√

Δ · log n (Theorem 1)

min{√
b,

√
Δ} · log n (this paper)

log2 n

Fig. 1. Additive violation bounds for linear system rounding when Δ ≥ log2 n and
b ≥ log2 n.

One can also combine the bounds in (5) and (6), and use some additional
ideas from discrepancy to obtain ∀j ∈ [m]:

|ajy − bj | ≤ O(1) · min
{√

j,
√

n log(2 + m/n),
√

L · bj + L,
√

Δ log n
}

. (7)

Matroid Polytopes: Our main result is an extension of Theorem 4 where the
fractional solution lies in a matroid polytope in addition to satisfying the linear
constraints {aj}m

j=1. Recall that a matroid M is a tuple (V, I) where V is the
groundset of elements and I ⊆ 2V is a collection of independent sets satisfying
the hereditary and exchange properties. The rank function r : 2V → Z of a

380 N. Bansal and V. Nagarajan

matroid is defined as r(S) = maxI∈I,I⊆S |I|. The matroid polytope (i.e. convex
hull of all independent sets) is given by the following linear inequalities:

P (M) := {x ∈ R
n : x(S) ≤ r(S) ∀S ⊆ V, x ≥ 0} .

Theorem 5. There is a randomized polynomial time algorithm that given
matroid M, y ∈ P (M), linear constraints {aj ∈ R

n}m
j=1 and values {λj}m

j=1

satisfying the conditions in Theorem4, finds a solution y′ ∈ P (M) satisfying (3)
and (4).

The fact that we can exactly preserve the matroid constraints leads to a
number of additional improvements:
Degree-Bounded Matroid Basis (DegMat). Given a matroid on elements [n] with
costs d : [n] → Z+ and m “degree constraints” {Sj , bj}m

j=1 where each Sj ⊆ [n]
and bj ∈ Z+, the goal is to find a minimum-cost basis I in the matroid that
satisfies |I ∩ Sj | ≤ bj for all j ∈ [m]. Since even the feasibility problem is NP-
hard, we consider bicriteria approximation algorithms that violate the degree
bounds. We obtain an algorithm where the solution costs at most the optimal
and the degree bound violation is as in (7); here Δ denotes the maximum number
of sets {Sj}m

j=1 containing any element.
Previous algorithms achieved approximation ratios of (1, b+O(

√
b log n)) [7],

based on randomized swap rounding, and (1, b + Δ − 1) [11] based on iter-
ated rounding. Again, these bounds could not be combined together as they
used different algorithms. We note that in general the (1, b + O(

√
n log(m/n)))

approximation is the best possible (unless P = NP) for this problem [3,6].
Multi-criteria Matroid Basis. Given a matroid on elements [n] with k different
cost functions di : [n] → Z+ (for i = 1, · · · , k) and budgets {Bi}k

i=1, the goal
is to find (if possible) a basis I with di(I) ≤ Bi for each i ∈ [k]. We obtain an
algorithm that for any ε > 0 finds in nO(k1.5 / ε) time, a basis I with di(I) ≤
(1+ ε)Bi for all i ∈ [k]. Previously, [8] obtained such an algorithm with nO(k2 / ε)

running time.
Low Congestion Routing. Given a directed graph G = (V,E) with edge capacities
b : E → Z+, k source-sink pairs {(si, ti)}k

i=1 and a length bound Δ, the goal is
to find an si − ti path Pi of length at most Δ for each pair i ∈ [k] such that
the number Ne of paths using any edge e is at most be. Using an LP-based
reduction [7] this can be cast as an instance of DegMat. So we obtain violation
bounds as in (7) which implies:

Ne ≤ be + min
{

O(
√

Δ log n), O(
√

be log n + log2 n)
}

, ∀e ∈ E.

Here n = |V | is the number of vertices. Previous algorithms achieved bounds
of Δ − 1 [10] or O(

√
log Δ · √

bj + log Δ) [13] separately. We can also handle a
richer set of routing requirements: given a laminar family L on the k pairs, with
a requirement rT on each set T ∈ L, we want to find a multiset of paths so that
there are at least rT paths between the pairs in each T ∈ L. Although this is
not an instance of DegMat, the same approach works.

Approximation-Friendly Discrepancy Rounding 381

Overview of Techniques: Our algorithm in Theorem4 is similar to the Lovett-
Meka algorithm, and is also based on performing a Gaussian random walk at
each step in a suitably chosen subspace. However, there some crucial differences.
First, instead of updating each variable by the standard Gaussian N(0, 1), the
variance for variable i is chosen proportional to min(yi, 1 − yi), i.e. proportional
to how close it is to the boundary 0 or 1. This is crucial for getting the mul-
tiplicative error instead of the additive error in the constraints. However, this
slows down the “progress” of variables toward reaching 0 or 1. To get around
this, we add O(log n) additional constraints to define the subspace where the
walk is performed: these restrict the total fractional value of variables in a par-
ticular “scale” to remain fixed. Using these we can ensure that enough variables
eventually reach 0 or 1.

In order to handle the matroid constraints (Theorem5) we need to incorpo-
rate them (although they are exponentially many) in defining the subspace where
the random walk is performed. One difficulty that arises here is that we can no
longer implement the random walk using “near tight” constraints as in [15] since
we are unable to bound the dimension of near-tight matroid constraints. How-
ever, as is well known, the dimension of exactly tight matroid constraints is at
most n/2 at any (strictly) fractional solution, and so we implement the random
walk using exactly tight constraints. This requires us to truncate certain steps
in the random walk (when we move out of the polytope), but we show that the
effect of such truncations is negligible.

2 Matroid Partial Rounding

In this section we will prove Theorem 5 which also implies Theorem 4.
Let y ∈ R

n denote the initial solution. The algorithm will start with X0 = y
and update this vector over time. Let Xt denote the vector at time t for t =
1, . . . , T . The value of T will be defined later. Let � = 2 log2 n. We classify the n
elements in to 2� classes based on their initial values y(i) as follows.

Uk :=
{{

i ∈ [n] : 2−k−1 < y(i) ≤ 2−k
}

if 1 ≤ k ≤ � − 1{
i ∈ [n] : y(i) ≤ 2−�

}
if k = �.

Vk :=
{{

i ∈ [n] : 2−k−1 < 1 − y(i) ≤ 2−k
}

if 1 ≤ k ≤ � − 1{
i ∈ [n] : 1 − y(i) ≤ 2−�

}
if k = �.

Note that the Uk’s partition elements of value (in y) between 0 and 1
2 and

the Vk’s form a symmetric partition of elements valued between 1
2 and 1. This

partition does not change over time, even though the value of variables might
change. We define the “scale” of each element as:

si := 2−k, ∀i ∈ Uk ∪ Vk, ∀k ∈ [�].

Define Wj(s) =
∑n

i=1 a2
ji · s2i for each j ∈ [m]. Note that Wj(s) ≥ Wj(y) and

Wj(s) − 4 · Wj(y) ≤
n∑

i=1

a2
ji · 1

n4
=

‖aj‖2
n4

.

382 N. Bansal and V. Nagarajan

So
√

Wj(y) ≤ √
Wj(s) ≤ 2

√
Wj(y)+ ‖aj‖

n2 . Our algorithm will find a solution
y′ such that

|〈y′−y, aj〉| ≤ λj ·
√

Wj(s)+
1
n2

·‖aj‖2 ≤ 2λj ·
√

Wj(y)+
1 + λj

n2
·‖aj‖2, ∀j ∈ [m];

and y′ has Ω(1) integral variables. This would suffice to prove Theorem 5.
Consider the polytope Q of points x ∈ R

n satisfying the following constraints.

x ∈ P (M), (8)

|〈x − y, aj〉| ≤ λj ·
√

Wj(s) +
1
n2

· ‖aj‖ ∀j ∈ [m], (9)

x(Uk) = y(Uk) ∀k ∈ [�], (10)
x(Vk) = y(Vk) ∀k ∈ [�], (11)

0 ≤ xi ≤ α · 2−k ∀i ∈ Uk, ∀k ∈ [�], (12)

0 ≤ 1 − xi ≤ α · 2−k ∀i ∈ Vk, ∀k ∈ [�]. (13)

Here α > 1 is some constant that will be fixed later. The algorithm will main-
tain the invariant that at any time t ∈ [T], the solution Xt lies in Q. In particular
the constraint (8) requires that Xt stays in the matroid polytope. Constraint 9
controls the violation of the linear (degree) constraints over all time steps. The
last two constraints (12) enforce that variables in Uk (and symmetrically Vk)
do not deviate far beyond their original scale of 2−k. The constraints (10) and
(11) ensure that the total value of elements in Uk (and Vk) stay equal to the
initial sum throughout the algorithm. These constraints will play a crucial role
in arguing that the algorithm finds a partial coloring. Note that there are only
2� such constraints.

The Algorithm: Let γ =
(
n5 · maxj λj

)−1 and T = K/γ2 where K := 10α2.
The algorithm starts with solution X0 = y ∈ Q, and does the following at each
time step t = 0, 1, · · · , T :

1. Consider the set of constraints of Q that are tight at the point x = Xt, and
define the following sets based on this.
(a) Let Cvar

t be the set of tight variable constraints among (12) and (13).
This consists of:
i. i ∈ Uk (for any k) with Xt(i) = 0 or Xt(i) = min{α · 2−k, 1}; and
ii. i ∈ Vk (for any k) with Xt(i) = 1 or Xt(i) = max{1 − α · 2−k, 0}.

(b) Let Cdeg
t be the set of tight degree constraints from (9), i.e. those j ∈ [m]

with
|〈Xt − y, aj〉| = λj ·

√
Wj(s) +

1
n2

‖aj‖.

(c) Let Cpart
t denote the set of the 2� equality constraints (10) and (11).

(d) Let Crank
t be some linearly independent set of rank constraints that span

the tight constraints among (8).

Approximation-Friendly Discrepancy Rounding 383

2. Let Vt denote the subspace orthogonal to all the constraints in Cvar
t , Cdeg

t ,
Cpart

t and Crank
t . Let D be a n × n diagonal matrix with entries dii = 1/si,

and let V ′
t be the subspace V ′

t = {Dv : v ∈ Vt}.

3. Let Gt be a random Gaussian vector in V ′
t. That is, Gt :=

∑k
h=1 ghbh where

the gh are iid N(0, 1), and {b1, . . . , bk} is some orthonormal basis of V ′
t.

4. Define Gt := D−1Gt. As Gt ∈ V ′
t, it must be that Gt = Dv for some v ∈ Vt

and thus Gt = D−1Gt ∈ Vt.
5. Set Yt = Xt + γ · Gt.

(a) If Yt ∈ Q then Xt+1 ← Yt and continue to the next iteration.
(b) Else Xt+1 ← the point in Q that lies on the line segment (Xt, Yt) and

is closest to Yt. This can be found by binary search using a membership
oracle for the matroid.

This completes the description of the algorithm. The analysis involves proving
the following main lemma, which is our goal in the rest of this section.

Lemma 1. With constant probability, the final solution XT has |Cvar
T | ≥ n

20 .

In the full version, we show how this lemma implies Theorem5. All other
missing proofs in this section can also be found in the full version [4].

Claim 1. Given any x ∈ P (M) with 0 < x < 1, the subspace spanned by all the
tight rank constraints has dimension at most n/2. Moreover, such a basis can be
found in polynomial time.

Claim 2. The truncation Step 5b occurs at most n times.

The statements of the following two lemmas are similar to those in [15], but
the proofs require additional work since our random walk is different. The first
lemma shows that the expected number of tight degree constraints at the end
of the algorithm is not too high, and the second lemma shows that the expected
number of tight variable constraints is large.

Lemma 2. E[|Cdeg
T |] < n

4 .

Proof: Note that XT − y = γ
∑T

t=0 Gt +
∑n

q=1 Δt(q) where Δs correspond to
the truncation incurred during the iterations t = t(1), · · · , t(n) for which Step 5b
applies (by Claim 2 there are at most n such iterations). Moreover for each q,
Δt(q) = δ · Gt(q) for some δ with 0 < |δ| < γ.

If j ∈ Cdeg
T , then |〈XT − y, aj〉| = λj

√
Wj(s) + 1

n2 · ‖aj‖. As

|〈XT −y, aj〉| ≤ |γ
T∑

t=0

〈Gt, aj〉|+
n∑

q=1

γ|〈Ga(q), aj〉| ≤ |γ
T∑

t=0

〈Gt, aj〉|+nγ · T
max
t=0

|〈Gt, aj〉|,

it follows that if j ∈ Cdeg
T , then one of the following events must occur:

|γ
T∑

t=0

〈Gt, aj〉| ≥ λj

√
Wj(s) or

T
max
t=0

|〈Gt, aj〉| ≥ 1
γn3

· ‖aj‖.

We bound the probabilities of these two events separately.

384 N. Bansal and V. Nagarajan

Event 1. In order to bound the probability of the first event, we consider the
sequence {Zt} where Zt = 〈Gt, aj〉, and note the following useful facts.

Observation 1. The sequence {Zt} forms a martingale satisfying:

1. E [Zt | Zt−1, . . . , Z0] = 0 for all t.
2. |Zt| ≤ n2‖aj‖ whp for all t.
3. E

[
Z2

t | Zt−1, . . . , Z0

] ≤ ∑n
i=1 s2i · a2

ji = Wj(s) for all t.

Using a martingale concentration inequality, we obtain:

Claim 3. Pr
[
|γ ∑T

t=0〈Gt, aj〉| ≥ λj

√
Wj(s)

]
≤ 2 · exp(−λ2

j/3K).

Event 2. Here we will just need simple conditional probabilities.

Pr

[
T

max
t=0

|〈Gt, aj〉| ≥ 1

γn3
· ‖aj‖

]
≤

T∑
t=0

Pr

[
|〈Gt, aj〉| ≥ n‖aj‖

∣∣∣∣G0, · · · , Gt−1

]
,

which is at most T ·exp(−n). The first inequality uses γ < n−4. The last inequal-
ity uses the fact that conditioned on previous Gs, |〈Gt, aj〉| is Gaussian with
mean zero and variance at most ‖aj‖2.

Combining the probabilities of the two events, Pr[j ∈ Cdeg
T] ≤

2 exp(−λ2
j/3K) + T exp(−n), we get

E[|Cdeg
T |] < 2

m∑

j=1

exp
(−λ2

j/(30α2)
)

+
Km

γ2en
< 0.25n

To bound the first term we use the condition on the λj ’s in Theorem 5, with
K0 = 30α2. The latter term is negligible assuming m < γ22n = 2n/n8, and n is
large enough. �

We now prove that in expectation, at least 0.1n variables become tight at
the end of the algorithm. This immediately implies Lemma 1.

Lemma 3. E[|Cvar
T |] ≥ 0.1n.

Proof: Define the following potential function, which will measure the progress
of the algorithm toward the variables becoming tight.

Φ(x) :=
�∑

k=1

22k ·
(

∑

i∈Uk

x(i)2 +
∑

i∈Vk

(1 − x(i))2
)

, ∀x ∈ Q.

Note that since XT ∈ Q, we have XT (i) ≤ α · 2−k for i ∈ Uk and 1 − XT (i) ≤
α · 2−k for i ∈ Vk. So Φ(XT) ≤ α2 · n. We also define the “incremental function”
for any x ∈ Q and g ∈ R

n, f(x, g) := Φ(x + γD−1g) − Φ(x)

= γ2
n∑

i=1

g(i)2 + 2
�∑

k=1

22k ·
(

∑

i∈Uk

x(i)γsi · g(i) −
∑

i∈Vk

(1 − x(i))γsi · g(i)

)

, (14)

Approximation-Friendly Discrepancy Rounding 385

where we used si = 2−k for i ∈ Uk ∪ Vk.
Recall that D−1 is the n × n diagonal matrix with entries (s1, · · · , sn). Sup-

pose the algorithm was modified to never have the truncation step 5b, then in
any iteration t, the increase Φ(Yt) − Φ(Xt) = f(Xt, Gt) where Gt is a random
Gaussian in V ′

t. To deal with the effect of truncation, we consider the worst
possible contribution truncation could have. We define the following quantity:

M :=
T

max
t=0

(
γ2‖Gt‖22 + 2γα‖Gt‖1

)
.

Recall that Φ(Xt+1)−Φ(Xt) = f(Xt, δtGt) for some δt ∈ (0, 1], and δt < 1 if and
only if the truncation step 5b occurs in iteration t. The following is by simple
calculation.

f(Xt, δGt) ≥ f(Xt, Gt) − M, ∀δ ∈ (0, 1). (15)

This implies that Φ(XT) − Φ(X0) equals

T∑

t=0

f(Xt, δtGt) ≥
T∑

t=0

f(Xt, Gt) − M

T∑

t=0

1[step 5b occurs in iteration t]

≥
T∑

t=0

f(Xt, Gt) − nM (by Claim 2) (16)

Claim 4. E[Φ(XT)] − Φ(y) ≥ γ2T · E[dim(VT)] − 1.

By Claim 1 and the fact that |Cpart
T | = 2�, we have

dim(VT) ≥ n − dim(Cvar
T) − dim(Cdeg

T) − dim(Crank
T) − dim(Cpart

T)

≥ n

2
− 2� − dim(Cvar

T) − dim(Cdeg
T)

Taking expectations and by Claim2, E[dim(VT)] ≥ n
4 − 2� − dim(Cvar

T). Using
Φ(XT) ≤ α2n and Claim 4, we obtain:

α2n ≥ E[ΦT] ≥ γ2T ·
(n

4
− 2� − E[dim(Cvar

T)]
)

− 1.

Rearranging and using T = K/γ2, K = 10α2 and � = log n gives E[dim(Cvar
T)] ≥

n
4 − α2n

K − 2� − 1
K , which proves the Lemma 3. �

References

1. Bansal, N.: Constructive algorithms for discrepancy minimization. In: Foundations
of Computer Science (FOCS), pp. 3–10 (2010)

2. Bansal, N., Charikar, M., Krishnaswamy, R., Li, S.: Better algorithms and hardness
for broadcast scheduling via a discrepancy approach. In: SODA, pp. 55–71 (2014)

3. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generaliza-
tions of network design problems with degree bounds. Math. Program. 141(1–2),
479–506 (2013)

386 N. Bansal and V. Nagarajan

4. Bansal, N., Nagarajan, V.: Approximation-friendly discrepancy rounding. CoRR
abs/1512.02254 (2015)

5. Beck, J., Fiala, T.: Integer-making theorems. Discrete Appl. Math. 3, 1–8 (1981)
6. Charikar, M., Newman, A., Nikolov, A.: Tight hardness results for minimizing

discrepancy. In: SODA, pp. 1607–1614 (2011)
7. Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding via

exchange properties of combinatorial structures. In: FOCS, pp. 575–584 (2010)
8. Grandoni, F., Ravi, R., Singh, M., Zenklusen, R.: New approaches to multi-

objective optimization. Math. Program. 146(1–2), 525–554 (2014)
9. Harvey, N.J.A., Schwartz, R., Singh, M.: Discrepancy without partial colorings. In:

APPROX/RANDOM 2014, pp. 258–273 (2014)
10. Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazi-

rani, V.V.: Global wire routing in two-dimensional arrays. Algorithmica 2, 113–129
(1987)

11. Király, T., Lau, L.C., Singh, M.: Degree bounded matroids and submodular flows.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
259–272. Springer, Heidelberg (2008)

12. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization.
Cambridge University Press, Cambridge (2011)

13. Leighton, F.T., Lu, C., Rao, S., Srinivasan, A.: New algorithmic aspects of the local
lemma with applications to routing and partitioning. SIAM J. Comput. 31(2), 626–
641 (2001)

14. Lovasz, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices.
Eur. J. Combin. 7, 151–160 (1986)

15. Lovett, S., Meka, R.: Constructive discrepancy minimization by walking on the
edges. In: FOCS, pp. 61–67 (2012)

16. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer, Heidelberg
(2010)

17. Nikolov, A., Talwar, K.: Approximating hereditary discrepancy via small width
ellipsoids. In: Symposium on Discrete Algorithms, SODA, pp. 324–336 (2015)

18. Rothvoss, T.: Approximating bin packing within o(log OPT * log log OPT) bins.
In: FOCS, pp. 20–29 (2013)

19. Rothvoss, T.: Constructive discrepancy minimization for convex sets. In: IEEE
Symposium on Foundations of Computer Science, FOCS, pp. 140–145 (2014)

20. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC, pp. 661–670 (2007)

21. Spencer, J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–
706 (1985)

22. Srinivasan, A.: Improving the discrepancy bound for sparse matrices: better
approximations for sparse lattice approximation problems. In: Symposium on Dis-
crete Algorithms (SODA), pp. 692–701 (1997)

23. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag, Heidelberg (2001)
24. Williamson, D., Shmoys, D.: The Design of Approximation Algorithms. Cambridge

University Press, Cambridge (2011)

Deciding Emptiness of the Gomory-Chvátal
Closure is NP-Complete, Even for a Rational

Polyhedron Containing No Integer Point

Gérard Cornuéjols1 and Yanjun Li2(B)

1 Tepper School of Business, Carnegie Mellon University,
Pittsburgh, PA 15213, USA

gc0v@andrew.cmu.edu
2 Krannert School of Management, Purdue University,

West Lafayette, IN 47906, USA
li14@purdue.edu

Abstract. Gomory-Chvátal cuts are prominent in integer program-
ming. The Gomory-Chvátal closure of a polyhedron is the intersection
of all half spaces defined by its Gomory-Chvátal cuts. In this paper,
we show that it is NP-complete to decide whether the Gomory-Chvátal
closure of a rational polyhedron is empty, even when this polyhedron con-
tains no integer point. This implies that the problem of deciding whether
the Gomory-Chvátal closure of a rational polyhedron P is identical to
the integer hull of P is NP-hard. Similar results are also proved for the
{−1, 0, 1}-cuts and {0, 1}-cuts, two special types of Gomory-Chvátal cuts
with coefficients restricted in {−1, 0, 1} and {0, 1}, respectively.

Keywords: Integer programming · Gomory-Chvátal cuts · Gomory-
Chvátal closure · Integer hull · Computational complexity

1 Introduction

Throughout this paper we will assume a knowledge of elementary integer pro-
gramming definitions and results. One may use the book by Conforti et al. [4]
as a reference.

We consider the integer program: min wx s.t. Ax ≤ b, x ∈ Z
n, where

b ∈ Z
m, w ∈ Z

n and A ∈ Z
m×n. The polyhedron associated with the linear

programming relaxation of the integer program is denoted by P ≡ {x ∈ R
n :

Ax ≤ b}. Polyhedra of this form, where b ∈ Z
m and A ∈ Z

m×n, are called rational
polyhedra. The convex hull of all feasible solutions of the integer program is a
polyhedron called the integer hull and denoted by PI . An inequality of the form
cx ≤ �d� is called a Gomory-Chvátal cut of P if cx ≤ d is valid for every x ∈ P ,
where c ∈ Z

n. Gomory-Chvátal cuts were originally proposed by Gomory [9]
as a method for solving integer programming and combinatorial optimization
problems. Chvátal [3] introduced a notion of closure associated with these cuts.
The Gomory-Chvátal closure of P is P ′ ≡ {x ∈ P : cx ≤ �d� ∀c ∈ Z

n and
c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 387–397, 2016.
DOI: 10.1007/978-3-319-33461-5 32

388 G. Cornuéjols and Y. Li

d ∈ R such that cx ≤ d is valid for P}. Clearly, PI ⊆ P ′ ⊆ P , and, from the
theory of Gomory-Chvátal cuts, the second inclusion is strict when P 	= PI .

The separation problem for the Gomory-Chvátal closure of a rational polyhe-
dron (GC-Sep) is the following: Given a rational polyhedron P ⊆ R

n and a point
x∗ ∈ R

n, either give a Gomory-Chvátal cut of P such that x∗ violates the cut, or
conclude that x∗ ∈ P ′. The optimization problem over the Gomory-Chvátal clo-
sure of a rational polyhedron (GC-Opt) is: Given a rational polyhedron P ⊆ R

n

and a vector c ∈ Z
n, either find a point x∗ ∈ P ′ that optimizes the function

cx, or conclude that the optimal value of cx over P ′ is unbounded, or conclude
that P ′ = ∅. It follows from a general result of Grötschel, Lovász and Schrijver
[10] that solving GC-Sep in polynomial time is equivalent to solving GC-Opt in
polynomial time. Eisenbrand [6] proved that GC-Sep is NP-hard, which implies
the NP-hardness of GC-Opt.

In this paper, we show a stronger result: Given a rational polyhedron P such
that PI = ∅, it is NP-complete to decide whether P ′ = ∅.

A Gomory-Chvátal cut is called a {−1, 0, 1}-cut (or {0, 1}-cut) if the vector
of variable coefficients c ∈ {−1, 0, 1}n (or {0, 1}n). The {−1, 0, 1}-closure (or
{0, 1}-closure) of P is P ′

{−1,0,1} ≡ {x ∈ P : cx ≤ �d� ∀c ∈ {−1, 0, 1}n and d ∈
R such that cx ≤ d is valid for P} (or P ′

{0,1} ≡ {x ∈ P : cx ≤ �d� ∀c ∈
{0, 1}n and d ∈ R such that cx ≤ d is valid for P}). We show that, given a
polyhedron P such that PI = ∅, it is NP-complete to decide whether P ′

{−1,0,1} =
∅ (or P ′

{0,1} = ∅).

We borrowed some ideas from Mahajan and Ralphs [13] to construct poly-
hedra P in the proof of our NP-completeness results. In their paper the fol-
lowing disjunctive infeasibility problem is proved to be NP-complete: Given
a polyhedron P ⊂ R

n, does there exist π ∈ Z
n and π0 ∈ Z such that

{x ∈ P : πx ≤ π0 or πx ≥ π0 + 1} = ∅? The polyhedra P used in [13]
are simplices, whereas our constructed polyhedra are convex hulls of n + 2 or
n + 3 vectors in R

n. The well-known partition problem is reduced to the dis-
junctive infeasibility problem in Mahajan and Ralphs’ proof, whereas, in our
proofs, the single constraint integer programming feasibility problem is reduced
to the emptiness problem of Gomory-Chvátal closure, and the partition problem
is reduced to the emptiness problems of {−1, 0, 1}-closure and {0, 1}-closure.

The rest of the paper is organized as follows. In Sect. 2, we prove the NP-
completeness of deciding whether the Gomory-Chvátal closure is empty. In
Sect. 3, we prove the NP-completeness of deciding whether the {−1, 0, 1}-closure
(or {0, 1}-closure) is empty. Lastly, in Sect. 4, we present conclusions and open
questions.

2 Deciding Emptiness of the Gomory-Chvátal Closure

In this section, we prove two results. First we show that it is NP-complete to
decide whether the Gomory-Chvátal closure of a rational polyhedron P is empty.

Deciding Emptiness of the Gomory-Chvátal Closure 389

We then show that this problem is NP-complete, even when the polyhedron P
is known to contain no integer point. We first observe that these problems are
in the complexity class NP.

Lemma 1. Deciding whether the Gomory-Chvátal closure of a rational polyhe-
dron is empty belongs to the complexity class NP.

Proof. Let P ≡ {x ∈ R
n : Ax ≤ b} be a rational polyhedron, where b ∈ Z

m, and
A ∈ Z

m×n. Chvátal [3] showed that there is only a finite number of inequalities
needed to describe the Gomory-Chvátal closure, namely inequalities uAx ≤ �ub�
where u ∈ R

m is a vector satisfying uA ∈ Z
n and 0 ≤ u < 1. Note that the integer

vectors d ≡ uA in these inequalities have components satisfying −∑m
i=1 |aij | ≤

dj ≤ ∑m
i=1 |aij |. Similarly, d0 ≡ �ub� satisfies −∑m

i=1 |bi| ≤ d0 ≤ ∑m
i=1 |bi|.

Therefore the above inequalities are described by coefficients whose encoding
size is polynomial in the size of the input. To certify that the Gomory-Chvátal
closure is empty, we appeal to Helly’s theorem: If the Gomory-Chvátal closure
is empty, there exist n+1 of these inequalities whose intersection is empty. A list
of n + 1 such inequalities is a polynomial certificate that the Gomory-Chvátal
closure is empty. �

Theorem 1. It is NP-complete to decide whether the Gomory-Chvátal closure
of a rational polyhedron is empty.

Proof. The theorem will be proved by polynomially reducing the following sin-
gle constraint integer programming feasibility problem, which is known to be
NP-complete [12], to the problem of deciding whether P ′ = ∅ for a rational
polyhedron P .

Single Constraint Integer Programming Feasibility Problem: Given a finite set
of non-negative integers {ai}si=1 and a non-negative integer b, is there a set of
non-negative integers {xi}si=1 satisfying

∑s
i=1 aixi = b?

We consider the Single Constraint Integer Programming Feasibility Problem
with s = n−1 and n ≥ 3. We assume without loss of generality that the greatest
common divisor of a1, a2, · · · , an−1 is 1, and 2 < a1 < a2 < · · · < an−1 < b. So
b ≥ n + 2. Let r = n + 1 + 1

2b . So r is a rational number satisfying r < b and
rb 	∈ Z+. We will show:

Reduction:
The Single Constraint Integer Programming Feasibility Problem can be

polynomially reduced to the problem of deciding whether P ′ = ∅ for the
polyhedron P ⊆ R

n that is the convex hull of the following n + 3 vectors:
v1 = (1

2b , 0, · · · , 0, 1
2b), v2 = (0, 1

2b , 0, · · · , 0, 1
2b), · · · , vn−1 = (0, · · · , 0, 1

2b ,
1
2b),

vn = (0, · · · , 0, 1
2 + 3

2r), vn+1 = (a1, a2, · · · , an−1,−b+ 1
2), vn+2 = ((1−r)a1, (1−

r)a2, · · · , (1 − r)an−1, (r − 1)b + 1), and vn+3 = (0, · · · , 0, 1
2r).

To show that this reduction is correct, we prove the following two claims;
we then observe that converting the vectors v1, v2, · · · , vn+3 into an inequality
description of P can be done in polynomial time.

390 G. Cornuéjols and Y. Li

Claim 1. There is a set of non-negative integers {wi}n−1
i=1 satisfying

∑n−1
i=1 aiwi

= b only if P ′ = ∅.
Proof. Consider an inequality cx ≤ q, where c = (c1, c2, · · · , cn), ci = −wi

for 1 ≤ i ≤ n−1, cn = −1, and q = max {− 1
2b ,− 1

2r} = − 1
2b . Because 1 < ai < b

for 1 ≤ i ≤ n − 1 and
∑n−1

i=1 aiwi = b, it is easy to verify that −1 < cvi ≤ − 1
2b

for 1 ≤ i ≤ n − 1. In addition, −1 < cvn < − 1
2 , cvn+1 = − 1

2 , cvn+2 = −1,
and cvn+3 = − 1

2r . So cx ≤ q is valid for P , and the associated Gomory-Chvátal
inequality is cx ≤ �q� (= −1). We can see that vn+2 is the only vector in P
that satisfies the inequality cx ≤ �q�. Consider the inequality fx ≤ g, where
fx = xn and g = (r − 1)b + 1. It can be easily checked that every vi satisfies
fx ≤ g, so fx ≤ g is valid for P , and fx ≤ �g� (= �rb� − b + 1) is a Gomory-
Chvátal inequality of P . Since rb 	∈ Z+, fx ≤ �g� is violated by vn+2. Now we
can conclude that P ′ = ∅ and Claim 1 is proved.

Claim 2. There is a set of non-negative integers {wi}n−1
i=1 satisfying

∑n−1
i=1 aiwi

= b if P ′ = ∅.
Proof. Let v0 ≡ (0, 0, · · · , 0, 1

2r + 1
2). So v0 ∈ P because v0 = αvn+(1−α)vn+3

for some 0 < α < 1. Let cx ≤ �q� be a Gomory-Chvátal inequality of P that is
violated by v0, where c = (c1, c2, · · · , cn) ∈ Z

n and cx ≤ q is valid for P . Then
cn 	= 0, otherwise we would have 0 = cv0 ≤ q, contradicting that cv0 > �q�.

Let Δ ≡ ∑n−1
i=1 ciai − cnb. First, we show that cn ≤ −1 by deriving contra-

diction in the following two cases:
Case 1. cn ≥ 1 and Δ ≥ 1. If cn

2r ≤ Δ−1, then cv0 = cn
2r + cn

2 ≤ Δ−1+ cn
2 <

�Δ + cn
2 � = �cvn+1� ≤ �q�, which contradicts that cv0 > �q�. If cn

2r > Δ − 1,
then cvn − cv0 = cn

r > 2(Δ − 1). If Δ ≥ 2, then cvn − cv0 > 2, so cv0 <
cvn − 2 < �cvn� ≤ �q�, a contradiction to that cv0 > �q�. If Δ = 1, then cn

r ≥ 1.
Otherwise, if cn

r < 1, then cv0 = cn
2r + cn

2 < 1
2 + cn

2 ≤ �1+ cn
2 � = �cvn+1� ≤ �q�, a

contradiction. Since cn
r ≥ 1, cvn−cv0 ≥ 1, therefore cv0 ≤ cvn−1 < �cvn� ≤ �q�,

a contradiction again.
Case 2. cn ≥ 1 and Δ ≤ 0. Because r > n + 1 > 3, cv0 = cn

2r + cn
2 < cn ≤

(1 − r)Δ + cn = cvn+2. Hence, cv0 < �cvn+2� ≤ �q�, a contradiction.
It is easy to see that cn = −1. Otherwise, if cn ≤ −2, then cvn+3 − cv0 =

− cn
2 ≥ 1, which implies cv0 ≤ cvn+3 − 1 < �cvn+3� ≤ �q�, a contradiction.
Now we show that Δ = 0. If Δ ≥ 1, then cv0 = − 1

2r − 1
2 < 0 < Δ− 1

2 = cvn+1,
implying cv0 < �cvn+1� ≤ �q�, a contradiction. If Δ ≤ −1, then, because r > 3,
cv0 < 0 < (1 − r)Δ − 1 = cvn+2, a contradiction again.

We claim that ci ≤ 0 for i = 1, 2, · · · , n − 1. Otherwise, if ci ≥ 1 for some
1 ≤ i ≤ n − 1, then cv0 < 0 ≤ ci

2b − 1
2b = cvi, a contradiction.

Now let wi = −ci for 1 ≤ i ≤ n − 1. Then Claim 2 is proved.

To complete the proof, it suffices to show that a description of P in the form of
Ãx ≤ b̃, where Ã ∈ Z

m×n and b̃ ∈ Z
m, can be obtained in polynomial time from

the vectors v1, v2, · · · , vn+3. We can see from the coordinates of v1, v2, · · · , vn
and vn+3 that P is a n-dimensional polyhedron. Let i be a counter looping
through n, n + 1 and n + 2. For every i vectors of v1, v2, · · · , vn+3, check if they

Deciding Emptiness of the Gomory-Chvátal Closure 391

are on a unique hyperplane by solving linear equations. If yes, then further check
if the n + 3 − i other vectors are all on one side of the hyperplane. If yes again,
then the equation c̃x = d̃ of the hyperplane with integral c̃ and d̃ whose greatest
common divisor is 1 yields a linear inequality of Ãx ≤ b̃. One can easily see that
this process takes polynomial time and the size of Ã and b̃ is polynomial in the
size of v1, v2, · · · , vn+3. �

Theorem 2. Given a rational polyhedron containing no integer point, it is NP-
complete to decide whether its Gomory-Chvátal closure is empty.

Proof. We build on Theorem 1 and show that the polytope P that was used in
the reduction contains no integer point.

This is equivalent to showing that P d ≡ P ∩ {x ∈ R
n : xn = d} contains no

integer points for every integer d ∈ [−b + 1, nb + 1]. Let P1 be the convex hull of
v1, v2, · · · , vn, vn+1 and vn+3, and let P2 be the convex hull of v1, v2, · · · , vn, vn+2

and vn+3. Since v0 = r−1
r vn+1 + 1

rvn+2 and v0 = αvn + (1 − α)vn+3 for some
0 < α < 1, it is sufficient to show: (a) P d

1 ≡ P1 ∩ {x ∈ R
n : xn = d} contains no

integer points for every integer d ∈ [−b+1, 0]; (b) P d
2 ≡ P2 ∩{x ∈ R

n : xn = d}
contains no integer points for every integer d ∈ [1, nb + 1].

We first prove (a). Because v1, v2, · · · , vn, vn+3 ∈ {x ∈ R
n : xn > 0} and

vn+1 ∈ {x ∈ R
n : xn < 0}, it is easy to verify by calculation that P d

1 , where d
is an integer in [−b + 1, 0], is the convex hull of the n + 1 vectors:

(1−2bd
2b2−b+1a1 + b+d− 1

2
2b2−b+1 , 1−2bd

2b2−b+1a2,
1−2bd

2b2−b+1a3, · · · , 1−2bd
2b2−b+1an−1, d),

(1−2bd
2b2−b+1a1,

1−2bd
2b2−b+1a2 + b+d− 1

2
2b2−b+1 , 1−2bd

2b2−b+1a3, · · · , 1−2bd
2b2−b+1an−1, d),

· · · · · · · · · · · · · · ·
(1−2bd
2b2−b+1a1,

1−2bd
2b2−b+1a2, · · · , 1−2bd

2b2−b+1an−2,
1−2bd

2b2−b+1an−1 + b+d− 1
2

2b2−b+1 , d),
(r+3−2rd

2rb+3 a1,
r+3−2rd
2rb+3 a2,

r+3−2rd
2rb+3 a3, · · · , r+3−2rd

2rb+3 an−1, d),
(1−2rd
2rb+1−ra1,

1−2rd
2rb+1−ra2,

1−2rd
2rb+1−ra3, · · · , 1−2rd

2rb+1−ran−1, d).

Indeed, the first n vectors above are obtained by intersecting the hyperplane
xn = d with the line segment vivn+1, for i = 1, 2, · · · , n, and the last vector is
obtained by intersecting the hyperplane xn = d with the line segment vn+3vn+1

Since P d
1 ⊂ {x ∈ R

n : xn = d}, we only need to consider the convex
hull of the following n + 1 vectors in R

n−1: 1−2bd
2b2−b+1a + b+d− 1

2
2b2−b+1e1,

1−2bd
2b2−b+1a +

b+d− 1
2

2b2−b+1e2, · · · , 1−2bd
2b2−b+1a + b+d− 1

2
2b2−b+1en−1, r+3−2rd

2rb+3 a and 1−2rd
2rb+1−ra, where a ≡

(a1, a2, · · · , an−1) and ei is the i-th unit vector. Let P̃ d
1 denote the convex hull.

Since r < b and d ≥ −b + 1, it is easy to verify that 0 < 1−2bd
2b2−b+1 < 1−2rd

2rb+1−r <
r+3−2rd
2rb+3 < 1. So P̃ d

1 ⊆ Qd
1, where Qd

1 is the convex hull of the n + 1 vectors:

z0 ≡ 1−2bd
2b2−b+1a,

z1 ≡ 1−2bd
2b2−b+1a + b+d− 1

2
2b2−b+1e1,

z2 ≡ 1−2bd
2b2−b+1a + b+d− 1

2
2b2−b+1e2,

· · · · · · · · ·

392 G. Cornuéjols and Y. Li

zn−1 ≡ 1−2bd
2b2−b+1a + b+d− 1

2
2b2−b+1en−1,

zn ≡ r+3−2rd
2rb+3 a.

To prove (a), it suffices to show the following claim.

Claim 3. There is no integer point in Qd
1.

Proof. By contradiction, suppose ṽ ∈ Qd
1 ∩ Z

n−1. Then there must exist a
vector ṽ′ ≡ β0a, where 0 < β0 < 1, such that ‖ṽ− ṽ′‖∞ ≡ max1≤i≤n−1|ṽi− ṽ′

i| ≤
b+d− 1

2
2b2−b+1 ≤ b− 1

2
2b2−b+1 < 1

2b . From the construction of P , it is easy to see that
0 < ṽi < ai for i = 1, 2, · · · , n − 1. Because the greatest common divisor of
a1, a2, · · · , an−1 is 1, there exists no integer point on the line segment connecting
0 and a except for the two end points. Therefore, there exists 1 ≤ i0 ≤ n−2 such
that (ṽi0 , ṽn−1) is not on the line segment connecting (0, 0) and (ai0 , an−1) in
R

2. To derive contradiction, we show below that ‖(ṽi0 , ṽn−1) − (ṽ′
i0

, ṽ′
n−1)‖∞ =

max (|ṽi0 − ṽ′
i0

|, |ṽn−1 − ṽ′
n−1|) ≥ 1

2(b−1) .

Let L denote the line segment connecting (0, 0) and (ai0 , an−1) in R
2.

We know that (ṽ′
i0

, ṽ′
n−1) is on L. Because the integer points between 0 and

(ai0 , an−1) that are not on L are symmetric across (ai0
2 , an−1

2), we may assume
without loss of generality that ṽn−1

ṽi0
< an−1

ai0
. It is not hard to see that the

shortest distance under ‖ · ‖∞ between a point on L and (ṽi0 , ṽn−1) is attained
at a point on the segment L connecting (ṽn−1ai0

an−1
, ṽn−1) and (ṽi0 ,

ṽi0an−1

ai0
).

Since ṽi0 >
ṽn−1ai0
an−1

, ‖(ṽi0 , ṽn−1) − (ṽn−1ai0
an−1

, ṽn−1)‖∞ ≥ 1
an−1

≥ 1
b−1 . Because

an−1 ≥ ai0 , ‖(ṽi0 , ṽn−1) − (ṽi0 ,
ṽi0an−1

ai0
)‖∞ ≥ 1

b−1 . So it follows that the shortest

distance under ‖ ·‖∞ between a point on L and (ṽi0 , ṽn−1) is no less than 1
2(b−1) .

Therefore, ‖(ṽi0 , ṽn−1) − (ṽ′
i0

, ṽ′
n−1)‖∞ ≥ 1

2(b−1) . Claim 3 is proved.

Next we prove (b). Because v1, v2, · · · , vn, vn+3 ∈ {x ∈ R
n : xn < 1} and

vn+2 ∈ {x ∈ R
n : xn > 1}, we know by calculation that P d

2 , where d is an
integer in [1, nb + 1], is the convex hull of the n + 1 vectors:

((r−1)(1−2bd)
2(r−1)b2+2b−1a1 + (r−1)b+1−d

2(r−1)b2+2b−1 , (r−1)(1−2bd)
2(r−1)b2+2b−1a2,

(r−1)(1−2bd)
2(r−1)b2+2b−1a3, · · · ,

(r−1)(1−2bd)
2(r−1)b2+2b−1an−1, d),

((r−1)(1−2bd)
2(r−1)b2+2b−1a1,

(r−1)(1−2bd)
2(r−1)b2+2b−1a2 + (r−1)b+1−d

2(r−1)b2+2b−1 , (r−1)(1−2bd)
2(r−1)b2+2b−1a3, · · · ,

(r−1)(1−2bd)
2(r−1)b2+2b−1an−1, d),

· · · · · · · · · · · · · · ·
((r−1)(1−2bd)
2(r−1)b2+2b−1a1,

(r−1)(1−2bd)
2(r−1)b2+2b−1a2, · · · , (r−1)(1−2bd)

2(r−1)b2+2b−1an−2,
(r−1)(1−2bd)

2(r−1)b2+2b−1an−1+
(r−1)b+1−d

2(r−1)b2+2b−1 , d),

((r−1)(1
2+

3
2r −d)

(r−1)b+ 1
2− 3

2r
a1,

(r−1)(1
2+

3
2r −d)

(r−1)b+ 1
2− 3

2r
a2,

(r−1)(1
2+

3
2r −d)

(r−1)b+ 1
2− 3

2r
a3, · · · ,

(r−1)(1
2+

3
2r −d)

(r−1)b+ 1
2− 3

2r
an−1, d),

((r−1)(1
2r −d)

(r−1)b+1− 1
2r

a1,
(r−1)(1

2r −d)

(r−1)b+1− 1
2r

a2,
(r−1)(1

2r −d)

(r−1)b+1− 1
2r

a3, · · · ,
(r−1)(1

2r −d)

(r−1)b+1− 1
2r

an−1, d).

So we just need to prove that the convex hull of the following n + 1 vectors in
R

n−1, denoted by P̃ d
2 , contains no integer points:

Deciding Emptiness of the Gomory-Chvátal Closure 393

(r−1)(1−2bd)
2(r−1)b2+2b−1a + (r−1)b+1−d

2(r−1)b2+2b−1e1,
(r−1)(1−2bd)

2(r−1)b2+2b−1a + (r−1)b+1−d
2(r−1)b2+2b−1e2, · · · ,

(r−1)(1−2bd)
2(r−1)b2+2b−1a + (r−1)b+1−d

2(r−1)b2+2b−1en−1,
(r−1)(1

2+
3
2r −d)

(r−1)b+ 1
2− 3

2r
a, (r−1)(1

2r −d)

(r−1)b+1− 1
2r

a.

The following properties can be verified by calculation, using d ≤ nb + 1 and
b > r:

1. (r−1)(1−2bd)
2(r−1)b2+2b−1 <

(r−1)(1
2r −d)

(r−1)b+1− 1
2r

<
(r−1)(1

2+
3
2r −d)

(r−1)b+ 1
2− 3

2r
< 0, and each of the three

terms strictly decreases as d increases.
2. For d = kb + h, where integers k and h satisfy 0 ≤ k ≤ �r − 1� = n and 0 <

h < b, (r−1)(1
2+

3
2r −d)

(r−1)b+ 1
2− 3

2r
ai < −kai and (r−1)(1−2bd)

2(r−1)b2+2b−1ai + (r−1)b+1−d
2(r−1)b2+2b−1 < −kai

for i = 1, 2, · · · , n − 1.
3. For d = kb, where integer k satisfies 1 ≤ k ≤ �r − 1� = n, (r−1)(1

2+
3
2r −d)

(r−1)b+ 1
2− 3

2r
ai <

−(k − 1)ai, −kai < (r−1)(1−2bd)
2(r−1)b2+2b−1ai, and (r−1)(1−2bd)

2(r−1)b2+2b−1ai + (r−1)b+1−d
2(r−1)b2+2b−1 <

−(k − 1)ai for i = 1, 2, · · · , n − 1.

By the above property 1, P̃ d
2 ⊆ Qd

2, where Qd
2 is the convex hull of the n + 1

vectors:
y0 ≡ (r−1)(1−2bd)

2(r−1)b2+2b−1a,

y1 ≡ (r−1)(1−2bd)
2(r−1)b2+2b−1a + (r−1)b+1−d

2(r−1)b2+2b−1e1,

y2 ≡ (r−1)(1−2bd)
2(r−1)b2+2b−1a + (r−1)b+1−d

2(r−1)b2+2b−1e2,

· · · · · · · · ·
yn−1 ≡ (r−1)(1−2bd)

2(r−1)b2+2b−1a + (r−1)b+1−d
2(r−1)b2+2b−1en−1,

yn ≡ (r−1)(1
2+

3
2r −d)

(r−1)b+ 1
2− 3

2r
a.

To prove (b), it suffices to show that Qd
2 contains no integer points. Given the

properties 2 and 3 and the fact that (r−1)b+1−d
2(r−1)b2+2b−1 < 1

2b , the proof is very similar
to that of Claim 3. The theorem is proved. �

3 Deciding Emptiness of the {−1, 0, 1}-Closure (or
{0, 1}-Closure) of a Rational Polyhedron with No
Integer Point

In this section, we first prove NP-completeness of deciding emptiness of the
{−1, 0, 1}-closure of a rational polyhedron containing no integer point, and then
prove the same for the {0, 1}-closure as a corollary.

Theorem 3. Given a rational polyhedron containing no integer point, it is NP-
complete to decide whether its {−1, 0, 1}-closure is empty.

Proof. We will prove the theorem by polynomially reducing the following parti-
tion problem, which is known to be NP-complete [7], to the problem of deciding
whether P ′

{−1,0,1} = ∅ for a polyhedron P with no integer points.

394 G. Cornuéjols and Y. Li

Partition Problem: Given a finite set of positive integers S = {ai}si=1, is there a
subset K ⊆ S such that

∑
i∈K ai =

∑
i∈S\K ai?

Let b ≡ 1
2

∑
1≤i≤s ai. We assume without loss of generality that ai < b for

i = 1, 2, · · · , s and that the greatest common divisor of a1, a2, · · · , as is 1. We
also assume without loss of generality that s ≥ 8 (because the Partition Problem
with fixed s can be formulated as an integer program with only s binary variables,
which can be solved in polynomial time [11]).

First, we prove that b can be assumed to be greater than or equal to s + 3.
Note that a Partition Problem with b < s + 3 can be polynomially converted to
another Partition Problem with S′ = S ∪ {∑1≤i≤s ai + 1,

∑
1≤i≤s ai + 1}. Let

s′ = |S′|. So s′ = s + 2. It is easy to see that the Partition Problem with S has
a feasible partition if and only if the Partition Problem with S′ has a feasible
partition. Let b′ ≡ b + (

∑
1≤i≤s ai + 1). Then b′ = 3

2

∑
1≤i≤s ai + 1 ≥ 3s

2 + 1 =
s + 5 + (s2 − 4) ≥ (s + 2) + 3 = s′ + 3.

Now we consider the Partition Problem with s = n− 1, n ≥ 9 and b ≥ n+2.
Let r = n + 1 + 1

2b . So r is a rational number satisfying r < b and rb 	∈ Z+.
We only need to show that the Partition Problem can be polynomially reduced
to the problem of deciding whether P ′

{−1,0,1} = ∅ for the same polyhedron P as
constructed in the proof of Theorem 2, i.e., the convex hull of the n + 3 vectors:
v1 = (1

2b , 0, · · · , 0, 1
2b), v2 = (0, 1

2b , 0, · · · , 0, 1
2b), · · · , vn−1 = (0, · · · , 0, 1

2b ,
1
2b),

vn = (0, · · · , 0, 1
2 + 3

2r), vn+1 = (a1, a2, · · · , an−1, −b+ 1
2), vn+2 = ((1−r)a1, (1−

r)a2, · · · , (1−r)an−1, (r−1)b+1), and vn+3 = (0, · · · , 0, 1
2r). It suffices to prove

the following two claims.

Claim 1. There is a subset K ⊆ S such that
∑

i∈K ai =
∑

i∈S\K ai only if
P ′

{−1,0,1} = ∅.
Proof. Consider an inequality cx ≤ q, where c = (c1, c2, · · · , cn), ci = −1

for i ∈ K, ci = 0 for i ∈ S\K, cn = −1, and q = − 1
2b . One can easily verify:

−1 < cvi < − 1
2b for 1 ≤ i ≤ n − 1, cvn = − 1

2 − 3
2r , and because

∑
i∈K ai = b,

cvn+1 = − 1
2 and cvn+2 = −1. Hence, cx ≤ q is valid for P . Since ci = −1 or

0, the inequality cx ≤ �q� (= −1) is a {−1, 0, 1}-cut of P . From the value of
cvi for 1 ≤ i ≤ n + 2, we see that vn+2 is the only vector in P that satisfies
the inequality cx ≤ �q�. Since rb 	∈ Z+ and b =

∑
i∈K ai, there exists some

j ∈ K satisfying raj 	∈ Z+. Consider the inequality fx ≤ g, where fx = −xj

and g = (r − 1)aj . Apparently, g > 0 and g 	∈ Z+. In addition, fvi < 0 for
1 ≤ i ≤ n + 1 and fvn+2 = g > 0. It is obvious that the inequality fx ≤ �g�
(= �(r − 1)aj�) is a {−1, 0, 1}-cut of P and that vn+2 violates this inequality.
Therefore, P ′

{−1,0,1} = ∅ and Claim 1 is proved.

Claim 2. There is a subset K ⊆ S such that
∑

i∈K ai =
∑

i∈S\K ai if
P ′

{−1,0,1} = ∅.
Proof. Let v0 ≡ (0, 0, · · · , 0, 1

2r + 1
2) ∈ P . Since P ′

{−1,0,1} = ∅, v0 violates an
inequality cx ≤ �q�, where c = (c1, c2, · · · , cn) ∈ {−1, 0, 1}n and cx ≤ q is valid
for P . It is easy to see that cn 	= 0. Otherwise, 0 = cv0 ≤ q, which contradicts
that v0 violates cx ≤ �q�.

Deciding Emptiness of the Gomory-Chvátal Closure 395

Now we show that
∑

1≤i≤n−1 ciai = cnb. If cn = 1, then cv0 = 1
2r + 1

2 . In this
case, if

∑
1≤i≤n−1 ciai ≥ cnb+1, then 3

2 ≤ cvn+1 ≤ q; if
∑

1≤i≤n−1 ciai ≤ cnb−1,
then n + 1 < r ≤ cvn+2 ≤ q. Hence, cv0 < 1 < q, contradicting cv0 > �q�. If
cn = −1, then cv0 = − 1

2r − 1
2 . In this case, if

∑
1≤i≤n−1 ciai ≥ cnb + 1, then

1
2 ≤ cvn+1 ≤ q; if

∑
1≤i≤n−1 ciai ≤ cnb − 1, then n − 1 < r − 2 ≤ cvn+2 ≤ q. So,

cv0 < 0 < q, a contradiction to cv0 > �q�.
It is true that cn = −1. Otherwise, cv0 = 1

2r + 1
2 and cvn+2 = 1 ≤ q,

contradicting that v0 violates cx ≤ �q�.
We now claim that ci ≤ 0 for 1 ≤ i ≤ n − 1. Otherwise, suppose cj = 1 for

some 1 ≤ j ≤ n − 1. Then cvj = 0. Since cv0 = − 1
2r − 1

2 and 0 = cvj ≤ q,
a contradiction similar to the early ones can be derived. Therefore, Claim 2 is
proved.

Using the same approach as shown in the end of the proof of Theorem 2,
it is straight to polynomially obtain a description of P in the form of Ãx ≤ b̃,
where Ã ∈ Z

m×n and b̃ ∈ Z
m, from the vectors v1, v2, · · · , vn+3. The theorem is

proved. �

Corollary 1. Given a rational polyhedron containing no integer point, it is NP-
complete to decide whether its {0, 1}-closure is empty.

Proof. The proof is similar to that of Theorem 3, hence we omit the details and
only point out the differences.

The Partition Problem is polynomially reduced to the problem of deciding
whether P ′

{0,1} = ∅ for the polyhedron P ⊆ R
n that is the convex hull of the

n+3 vectors: v1 = (− 1
2b , 0, · · · , 0,− 1

2b), v2 = (0,− 1
2b , 0, · · · , 0,− 1

2b), · · · , vn−1 =
(0, · · · , 0,− 1

2b ,− 1
2b), vn = (0, · · · , 0,− 1

2 − 3
2r), vn+1 = (−a1,−a2, · · · ,−an−1, b−

1
2), vn+2 = ((r − 1)a1, (r − 1)a2, · · · , (r − 1)an−1, (1 − r)b − 1), and vn+3 =
(0, · · · , 0,− 1

2r).

Claim 1. There is a subset K ⊆ S such that
∑

i∈K ai =
∑

i∈S\K ai only if
P ′

{0,1} = ∅.
The proof of Claim 1 is similar to that of Claim 1 in the proof of Theorem 3

except that ci = 1 for i ∈ K, ci = 0 for i ∈ S\K, cn = 1, and fx = xj .
Claim 2. There is a subset K ⊆ S such that

∑
i∈K ai =

∑
i∈S\K ai if P ′

{0,1} =
∅.

The proof of Claim 2 is similar to but simpler than that of Claim 2 in the proof
of Theorem 3. Here are two differences: First, we let v0 ≡ (0, 0, · · · , 0,− 1

2r − 1
2).

Second, to show by contradiction that
∑

1≤i≤n−1 ciai = cnb, we only consider
the case that cn = 1, and a contradiction can be derived due to cv0 < 0 < q. �

4 Conclusions

In this paper, we proved that the problem of deciding whether the Gomory-
Chvátal closure of a rational polyhedron P is empty is NP-complete, even when

396 G. Cornuéjols and Y. Li

P is known to contain no integer point. Similar results are also proved for the
{−1, 0, 1}-closure and {0, 1}-closure of polyhedron.

There are several questions to which we have not found an answer yet. First,
what if our attention is restricted to the polyhedra in the unit cube (denoted by
[0, 1]n)? Namely,

(i) Is it NP-complete to decide whether P ′ = ∅ for P ⊆ [0, 1]n that contains
no integer point?

(ii) Is it NP-complete to decide whether P ′
{−1,0,1} = ∅ for P ⊆ [0, 1]n that

contains no integer point?
(iii) Is it NP-complete to decide whether P ′

{0,1} = ∅ for P ⊆ [0, 1]n that contains
no integer point?

An interesting class of rational polyhedra is those for which P ′ = PI . A well-
known example in this family is due to Edmonds [5] for 1-matchings of undirected
graphs G = (V,E): P = {x ∈ R

|E| : x(δ(v)) ≤ 1 ∀v ∈ V, xe ≥ 0 ∀e ∈
E}, where δ(v) is the set of edges incident on node v. Edmonds proposed a
polynomial-time algorithm for solving GC-Opt for 1-matchings, and Padberg
and Rao [14] devised a polynomial-time separation algorithm for b-matching
polytopes, implying polynomial-time solvability of GC-Sep for 1-matchings. The
question of deciding whether P ′ = PI for a rational polytope P is not known to
be in NP and Theorem 2 implies that it is NP-hard. But it is an open question
whether the separation problem for the Gomory-Chvátal closure of polyhedra P
that satisfy P ′ = PI is polynomially solvable, and similarly for the associated
optimization problem.

(iv) Is there a polynomial algorithm to find a point in PI or show that PI =
∅ when we know that P ′ = PI?

(v) Is there a polynomial algorithm to optimize over PI when we know that
P ′ = PI?

We believe that the answers to the last two questions are positive. As evi-
dence, we observe that the problem of deciding whether PI = ∅ when we know
that P ′ = PI is in the complexity class NP ∩ co-NP. We already observed
(Lemma 1) that the problem is in NP. To prove that it is in co-NP, it suffices
to exhibit a point x ∈ Z

n that satisfies Ax ≤ b. It is well known that, if such a
point exists, there is one whose encoding is polynomial in the size of the input
[1]. Therefore a polynomial co-NP certificate exists for P ′ = ∅ when P ′ = PI .
On the other hand no obvious co-NP certificate is known for P ′ = ∅ in general.

As an example, consider the maximum weight stable set problem in a graph
G = (V,E), max{wx : x ∈ PI} where P = {x ∈ R

V
+ : xi + xj ≤ 1 for ij ∈ E}.

We note that this problem is NP-hard in general, but that it can be solved
in polynomial time when P ′ = PI . Indeed, Campelo and Cornuéjols [2] showed
that P ′ is entirely described by the inequalities defining P together with the
odd circuit inequalities

∑
i∈C xi ≤ |C|−1

2 for vertex sets C of odd cardinality
that induce a circuit of G. The graphs for which these inequalities completely
describe the stable set polytope PI are called t-perfect graphs. These graphs

Deciding Emptiness of the Gomory-Chvátal Closure 397

are discussed in Chap. 68 of Schrijver’s book [15]. Theorem 68.1 states that a
maximum-weight stable set in a t-perfect graph can be found in polynomial time.
This follows from the equivalence of optimization and separation [10] and the
fact that the separation of odd circuit inequalities can be done in polynomial
time by reduction to shortest path problems [8].

Acknowledgement. We thank Michele Conforti for pointing out to us that the prob-
lem of deciding whether PI = ∅ is in NP ∩ co-NP when we know that P ′ = PI .

References

1. Borosh, I., Treybig, L.B.: Bounds on positive integral solutions to linear Diophan-
tine equations. Proc. Am. Math. Soc. 55, 299–304 (1976)

2. Campelo, M., Cornuéjols, G.: Stable sets, corner polyhedra and the Chvátal clo-
sure. Oper. Res. Lett. 37, 375–378 (2009)

3. Chvátal, V.: Edmonds polytope and a hierarchy of combinatorial problems. Dis-
crete Math. 4, 305–337 (1973)

4. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer,
Switzerland (2014)

5. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl.
Bur. Stan. B 69, 125–130 (1965)

6. Eisenbrand, F.: On the membership problem for the elementary closure of a poly-
hedron. Combinatorica 19, 297–300 (1999)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

8. Gerards, A.M.H., Schrijver, A.: Matrices with the Edmonds-Johnson property.
Combinatorica 6, 365–379 (1986)

9. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bull. Am. Math. Soc. 64, 275–278 (1958)

10. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197 (1981)

11. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8, 538–548 (1983)

12. Lueker, G.S.: Two NP-complete Problems in Non-negative Integer Programming.
Report No. 178, Department of Computer Science, Princeton University, Princeton,
N.J. (1975)

13. Mahajan, A., Ralphs, T.: On the complexity of selecting disjunctions in integer
programming. SIAM J. Optim. 20, 2181–2198 (2010)

14. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper.
Res. 7, 67–80 (1982)

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
Berlin (2003)

On the Quantile Cut Closure
of Chance-Constrained Problems

Weijun Xie and Shabbir Ahmed(B)

School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA

sahmed@isye.gatech.edu

Abstract. A chance constrained problem involves a set of scenario con-
straints from which a small subset can be violated. Existing works typ-
ically consider a mixed integer programming (MIP) formulation of this
problem by introducing binary variables to indicate which constraint sys-
tems are to be satisfied or violated. A variety of cutting plane approaches
for this MIP formulation have been developed. In this paper we consider
a family of cuts for chance constrained problems in the original space
rather than those in the extended space of the MIP reformulation. These
cuts, known as quantile cuts, can be viewed as a projection of the well
known family of mixing inequalities for the MIP reformulation, onto the
original problem space. We show the following results regarding quantile
cuts: (i) the closure of all quantile cuts is a polyhedral set; (ii) separa-
tion of quantile cuts is in general NP-hard; (iii) successive application of
quantile cut closures achieves the convex hull of the chance constrained
problem in the limit; and (iv) in the pure integer setting this convergence
is finite.

1 Introduction

A chance constrained problem (CCP) involves optimization over constraints
(specified by stochastic data) which are required to be satisfied with a prescribed
probability level. A generic formulation of CCP is

min
x

{
c�x : x ∈ S, P[ξ : x ∈ X (ξ)] ≥ 1 − ε

}
. (1)

In the above formulation, S denotes a set of deterministic constraints, ξ denotes
a random data vector, and X (ξ) denotes a system of stochastic constraints whose
data is specified by the random vector ξ. The CCP (1) seeks a solution x ∈ S
that minimizes the cost c�x and satisfies the stochastic constraints X (ξ) with
probability at least (1 − ε) where ε ∈ (0, 1) is a prespecified risk level.

We consider a mixed integer CCP under finite distribution, where we assume
that

– S = {x ∈ Rn−τ × Zτ : Dx ≥ d} is a nonempty, compact deterministic mixed
integer set;

c© Springer International Publishing Switzerland 2016
Q. Louveaux and M. Skutella (Eds.): IPCO 2016, LNCS 9682, pp. 398–409, 2016.
DOI: 10.1007/978-3-319-33461-5 33

On the Quantile Cut Closure of Chance-Constrained Problems 399

– ξ is a random vector with a finite distribution supported on Ξ = {ξ1, . . . , ξN},
where each ξi for i ∈ [N] := {1, . . . , N} corresponds to a scenario with a
probability mass pi; and

– for a given scenario i, the vector ξi defines a nonempty, compact mixed integer
constraint system X i := X (ξi) = {x ∈ Rn−τ × Zτ : Aix ≥ bi}.

In this setting, the chance constraint in (1) corresponds to satisfying a subset
C ⊆ [N] of the scenario constraints, i.e. x ∈ ∩i∈CX i, such that

∑
i∈C pi ≥ 1 − ε.

Let

Z :=

{

C ⊆ [N] :
∑

i∈C
pi ≥ 1 − ε

}

, (2)

be the collection of all feasible subsets of scenarios. Then the feasible region of
(1), denoted by X, can be written in the disjunctive normal form:

X =
⋃

C∈Z

[

S
⋂

i∈C
X i

]

. (3)

We assume throughout that CCP is feasible, and hence X is nonempty. From the
above disjunctive normal form it is clear that, even in the absence of integrality
restrictions, i.e. τ = 0, the set X is nonconvex, and not surprisingly CCP is
strongly NP-hard [9,10].

Since X i is compact for all i ∈ [N] we can introduce binary variables zi for
i ∈ [N] and reformulate (1) as the mixed integer program (MIP):

min
x,z

{
c�x : x ∈ S, Aix ≥ bi − Mi(1 − zi), z ∈ Z

}
, (4)

where

Z :=

⎧
⎨

⎩
z ∈ {0, 1}N :

∑

i∈[N]

pizi ≥ 1 − ε

⎫
⎬

⎭
,

and Mi for all i ∈ [N] are suitable big-M coefficients. Since the linear program-
ming (LP) relaxation of (4) is typically very weak, there has been a great deal
of work in deriving strong valid inequalities for this MIP. One popular approach
is to derive a relaxation of (4) in the form of the well-studied mixing set [5] and
add the corresponding mixing inequalities [1,6–9,15].

We consider a family of valid inequalities for the nonconvex feasible region
X of the CCP (1) in the original x-space, rather than those for the MIP for-
mulation (4) in the (x, z)-space. These valid inequalities known as quantile cuts
are obtained as follows. We first optimize a linear function α�x over each sce-
nario constraint, and record the optimal values βα

i = min{α�x : x ∈ S ∩ X i}
for i ∈ [N]. This approach and resulting βα

i values were used in [8] to derive
a mixing set relaxation for (4). Notice that each βα

i has the associated prob-
ability pi. Next we compute the (1 − ε)-quantile of {βα

i }i∈[N] based on these
probabilities – denote this by βα

q . The quantile cut is then given by α�x ≥ βα
q .

Such inequalities were studied in [10] where it is shown that a single quantile cut

400 W. Xie and S. Ahmed

represents the projection of the convex hull of a mixing set relaxation of (4) in
the (x, z)-space onto the x space. Quantile cuts have been used in computational
studies of chance constrained problems with good results [2,10,14].

In this paper we undertake a theoretical study of quantile cuts. In particular
we study properties of the quantile closure, i.e. the intersection of all quantile
cuts. Quantile cuts represent an infinite family of inequalities - one for each α
vector - and so polyhedrality of and separation over the quantile closure are
interesting questions. By replacing the deterministic constraint system S in (1)
with the (first) quantile closure we obtain a stronger formulation for which we
can apply another round of quantile cuts and derive the second quantile closure
and so on. We investigate how the sequence of sets produced by such successive
quantile closure operations relates to the convex hull of the feasible region of
(1). Our main results are summarized below.

1. The set obtained after a finite number of quantile closure operations is a
polyhedral set.

2. Separation over the first quantile closure is NP-hard.
3. The sequence of sets obtained by successive quantile closure operations con-

verges to the convex hull of X with respect to the Hausdorff metric.
4. In the pure integer setting, i.e. X ⊆ Zn, there exists a finite number of quantile

closure operations after which we can recover the convex hull of X.

The remainder of this paper is organized as follows. In Sect. 2 we discuss
the connection of quantile cuts for conv(X) to the mixing set inequalities for
the MIP (4). In Sect. 3 we prove the polyhedrality of the quantile closure and
establish complexity of separation over it. In Sect. 4 we discuss the convergence
properties of successive quantile closures. We provide some concluding remarks
in Sect. 5.

2 Quantile Cuts and Mixing Inequalities

We first formally define the quantile cut for CCP (1). Recall that S is the set of
deterministic constraints, X i are constraints associated with scenario i ∈ [N], Z
defined in (2) is the collection of all feasible scenario sets, and X given by (3) is
the set of feasible solutions of (1).

Definition 1. Given α ∈ Rn let {βα
i (S)}i∈[N] be the optimal values of

βα
i (S) = min

{
α�x : x ∈ S ∩ X i

} ∀i ∈ [N]. (5)

The quantile βα
q (S) is given by

βα
q (S) : = min

C∈Z
max
i∈C

βα
i (S) (6)

and the associated “quantile cut” is

α�x ≥ βα
q (S). (7)

On the Quantile Cut Closure of Chance-Constrained Problems 401

Note that the above definition depends on S so as to allow for successive appli-
cations with changing S. Since S and X i are assumed to be compact we have
that βα

i (S) ∈ (−∞,+∞] where the value of +∞ is taken when the problem (5)
is infeasible. When pi = 1

N for all i ∈ [N], βα
q (S) is the (�εN	+1)st largest value

among {βα
i (S)}i∈[N].

From the definition above and the disjunctive normal form (3) of X it should
be clear that the quantile cut (7) is valid for conv(X). We next reveal the con-
nection between quantile cuts and mixing inequalities for CCP, which also estab-
lishes the validity of these cuts.

A mixing set [5] is a mixed-integer set of the form

P = {(v, z) ∈ R+ × {0, 1}s : v + hizi ≥ hi i = 1, . . . , s} (8)

with h1 ≥ . . . ≥ hs. The following exponential family of mixing inequalities are
valid for P

v +
l∑

j=1

(htj
− htj+1)ztj

≥ ht1 ∀ T = {t1, . . . , tl} ⊆ {1, . . . , s} , (9)

where ht1 ≥ . . . ≥ htl
, htl+1 = 0. These inequalities are facet defining for P when

t1 = 1 and are sufficient to describe the convex hull of P (see [3,5]).
Using the β-values as defined in (5), Luedtke [8] constructed the following

mixing set relaxation of the MIP formulation (4) of CCP

Y α =
{
(x, z) ∈ Rn × {0, 1}N : α�x + (βα

i (S) − βα
q (S))(1 − zi) ≥ βα

i (S),

i ∈ Bα
q , z ∈ Z

}
. (10)

where Bα
q := {i ∈ [N] : βα

i (S) ≥ βα
q (S)} is a subset of scenarios each of whose

β-value is at least as large as the quantile βα
q (S).

Proposition 1 (Theorem 1, [8]). For any α, the system Y α is a relaxation of
the feasible region of the MIP (4), and hence X ⊆ Projx(Y α), where Projx(·)
denotes the projection of a set onto x space.

Note that Y α is a mixing system with a knapsack side constraint defined by Z,
thus the mixing inequalities of the form (9) are valid. These inequalities were
used within a branch and cut scheme for solving the MIP (4) in [8]. Note that
the mixing inequalities are in the (x, z)-space while the quantile cuts are in the
original x-space. The next result shows that a single quantile cut in the x-space
captures the effect of the entire exponential family of mixing inequalities.

Proposition 2 (Proposition 5, [10]). For any α,

Projx(conv(Y α)) = {x ∈ Rn : α�x ≥ βα
q (S)}.

Inspired by the above result we investigate, in the remainder of the paper, the
strength of the quantile closure, i.e. the intersection of all quantile cuts.

402 W. Xie and S. Ahmed

3 Quantile Closure

In this section we define the quantile closure, prove that it is polyhedral, and
establish its hardness of separation.

Definition 2. The first quantile closure of S is defined as

S1 :=
⋂

α∈R
n

βα
q (S)<∞

{
x ∈ Rn : α�x ≥ βα

q (S)
}

.

Inductively, we can define rth round quantile closure Sr as

Sr :=
⋂

α∈R
n

βα
q (Sr−1)<∞

{
x ∈ Rn : α�x ≥ βα

q (Sr−1)
}

r ≥ 2.

Next we characterize conv(X) and S1 in conjunctive normal form. Let us begin
with the following definition.

Definition 3. A set G ⊆ [N] is a “partial covering subset” if it intersects with
all of feasible scenario subsets in Z, i.e., for any Ĉ ∈ Z, we have G ∩ Ĉ
= ∅.
Also, a set G is a “minimal” partial covering subset if there does not exist another
partial covering subset G′ ⊆ [N] such that G′ � G. We let G denote the collection
of all of the minimal partial covering subsets.

Note that when pi = 1
N for all i ∈ [N], then the collection of minimal partial

covering subsets is G = {G ⊆ [N] : |G| = �εN	 + 1}.

Proposition 3.

X =
⋂

G∈G

[
⋃

i∈G

(
S

⋂
X i

)
]

. (11)

Proof. Define X ′ =
⋂

G∈G
[⋃

i∈G

(
S

⋂ X i
)]

. We need to show that X = X ′.
Let x ∈ X. Then, there exists a feasible subset C ∈ Z such that x ∈⋂

i∈C
(
S

⋂ X i
)
. For an arbitrary minimal partial covering G ∈ G, we must have

x ∈ ⋃
i∈G

(
S

⋂ X i
)

since from Definition 3, G intersects with all of feasible
subsets (i.e., G ∩ C
= ∅). Thus, X ⊆ X ′.

Suppose that there exists an x′ ∈ X ′ such that x′ /∈ X. Define a subset
C′ := {i ∈ [N] : x′ ∈ S

⋂ X i} /∈ Z. Let G′ be the complement of C′, i.e.,
G′ = [N]\C′. We claim that for all C ∈ Z, we have G′ ⋂ C
= ∅. Suppose not,
then there must exist a Ĉ ∈ Z such that G′ ⋂ Ĉ = ∅. This implies that Ĉ ⊆ C′,
and thus

x′ ∈
⋂

i∈C′

(
S

⋂
X i

)
⊆

⋂

i∈Ĉ

(
S

⋂
X i

)
⊆ X,

which contradicts x′ /∈ X. Hence, G′ is a partial covering subset of [N], and thus
x′ ∈ X ′ ⊆ ⋃

i∈G′
(
S

⋂ X i
)
; i.e., this contradicts G′ = [N]\C′. �

On the Quantile Cut Closure of Chance-Constrained Problems 403

Next we provide a conjunctive normal form for S1. We will need the following
preliminary observations.

Lemma 1. The set Bα
q = {i ∈ [N] : βα

i (S) ≥ βα
q (S)} is a partial covering

subset.

Proof. From the definition of βα
q (S), for any subset Ĉ ∈ Z, there must exist an

i0 ∈ Ĉ such that βα
i0

(S) ≥ βα
q (S). Thus Bα

q is a partial covering subset. �
Lemma 2. There exist a G ∈ G such that βα

q (S) = mini∈G βα
i (S).

Proof. By the definition of βα
q (S), there exists a Ĉ ∈ Z with βα

q (S) =
maxĈ βα

i (S) ≥ βα
j (S) for all j ∈ Ĉ. From Definition 3, for each Ĝ ∈ G, we

have Ĝ ∩ Ĉ
= ∅. Hence, βα
q (S) must be no smaller than the smallest value in set

{βα
i (S)}i∈Ĝ; i.e.,

βα
q (S) ≥ min

i∈Ĝ∩Ĉ
βα

i (S) ≥ min
i∈Ĝ

βα
i (S).

From Lemma 1, Bα
q is a partial covering subset. Now let G be a minimal partial

covering subset such that G ⊆ Bα
q . Thus,

min
i∈G

βα
i (S) ≥ min

i∈Bα
q

βα
i (S) ≥ βα

q (S). �

Proposition 4.

S1 =
⋂

G∈G
conv

[
⋃

i∈G

(
S

⋂
X i

)
]

. (12)

Proof. Let WG := conv
[⋃

i∈G

(
S

⋂ X i
)]

,W :=
⋂

G∈G WG. We need to show
that S1 = W .

[S1 ⊆ W]. Consider G ∈ G, and take any valid inequality α�x ≥ β for WG. Let
Ĉ ∈ Z such that βα

q (S) = maxi∈Ĉ βα
i (S). Since G∩ Ĉ
= ∅ by Definition 3, hence

βα
q (S) ≥ min

i∈G∩Ĉ
βα

i (S) ≥ min
i∈G

βα
i (S) ≥ β.

Thus, α�x ≥ β is a valid inequality of S1. This holds for any valid inequality of
WG, we have that S1 ⊆ WG. Since G was arbitrary, it follows that S1 ⊆ WG

for all G ∈ G; i.e., S1 ⊆ W .

[S1 ⊇ W]. For any given α, from Lemma 2, there exist a G ∈ G such that
βα

q (S) = mini∈G βα
i (S). Clearly, α�x ≥ βα

q (S) is a valid inequality for WG; and
so it is valid for W . Thus, S1 ⊇ W . �

Next we show that the above conjunctive normal form of S1 which is inde-
pendent of α implies the polyhedrality of the quantile closures. We will need
the following elementary facts on the convex hull of a finite union of nonempty
compact sets.

404 W. Xie and S. Ahmed

Lemma 3. Let R1, . . . , Rk be nonempty compact sets in Rn.

(i) conv(∪k
i=1Ri) = conv(∪k

i=1 conv(Ri)).
(ii) Suppose, for all i, conv(Ri) is a polytope, then conv(∪k

i=1Ri) is a polytope.
(iii) If x is an extreme point of conv(∪k

i=1Ri) then x is an extreme point of
conv(Ri′) for some i′ ∈ {1, . . . , k}, and hence x ∈ Ri′ .

Theorem 1. For each r ∈ Z++, Sr is a polytope and

Sr =
⋂

G∈G
conv

[
⋃

i∈G

(
Sr−1

⋂
X i

)
]

.

Proof. From Lemma 3 it follows that, for any G ∈ G, conv
[⋃

i∈G

(
S

⋂ X i
)]

=
conv

[⋃
i∈G conv

(
S

⋂ X i
)]

and is a polytope. Since G is a finite set, it follows
from Proposition 4 that S1 is a polytope.

By induction, suppose Sr is a polytope for r ≤ t. Now let r = t + 1, by
Proposition 4, we have

Sr =
⋂

G∈G
conv

[
⋃

i∈G

(
Sr−1

⋂
X i

)
]

and Sr−1 is a polytope, hence Sr is a polytope. �
We close this section by showing that separating over the first quantile closure

even in the absence of integrality restrictions is NP-hard. Our proof is based on
the constructions in [9,10].

Theorem 2. The separation over S1 is, in general, NP-hard

Proof. We consider a covering CCP where X i = {x ∈ Rn : (ai)�x ≥ 1} and
pi = 1/N for all i ∈ [N], and S = [0,M]n with M ≥ maxi∈[N],j∈[n]:ai

j �=0
1
ai

j
.

From [10] it can be shown that

S1 =
⋂

G∈G

{
x ∈ S : a�

Gx ≥ 1
}

, (13)

where (aG)j = maxi∈G ai
j ,∀j ∈ [n], G = {G ⊆ [N] : |G| = k + 1} and k = �εN	

(see Definition 3).
For a given solution x̂ ∈ S, to separate it from S1 is equivalent to solving the

following problem

δ∗ = min
G∈G

max
i∈G

∑

j∈[n]

ai
j x̂j − 1, (14)

i.e., find a violated constraint of the form a�
Gx ≥ 1 in the description (13). If

δ∗ < 0, then x̂ /∈ S1; otherwise, x̂ ∈ S1. Consider the decision version of this
separation problem:

On the Quantile Cut Closure of Chance-Constrained Problems 405

(SepCCP). Given nonnegative integers {ai
j}i∈[N],j∈[n] and a rational vector

x̂ ∈ S, does there exist a G ⊆ [N] with |G| = k + 1(k < N) such that∑
j∈[n] maxi∈G ai

j x̂j < 1?

Following [9] we can show that SepCCP is NP-complete via reduction from the
NP-complete problem CLIQUE which asks

(CLIQUE). Given a graph with nodes V and edges E, does it contain a
clique of size C?

Given an instance of CLIQUE we can construct an instance of SepCCP as [n] =
V, [N] = E, x̂j = 1

C+1 for all j ∈ [n], k + 1 = 1
2C(C − 1) and ai

j = 1 if edge
i contains nodes j and ai

j = 0 otherwise. It is easy to verify that if CLIQUE
has an answer Yes, then there exists a subgraph with edges G ⊆ [N] and |G| =
1
2C(C − 1) such that

∑

j∈[n]

max
i∈G

ai
j x̂j =

C

C + 1
< 1.

Hence, SepCCP has an answer Yes. Conversely, if SepCCP has an answer Yes,
this implies that

∑

j∈[n]

max
i∈G

ai
j < C + 1;

i.e., there exists a subgraph with edges G ⊆ [N] and |G| = 1
2C(C − 1), which

contains at most C nodes. Clearly, thus CLIQUE has an answer Yes. �

4 Convergence of Quantile Closures

In this section, we investigate convergence of successive rounds of quantile clo-
sure operations. Our convergence notions are with respect to the Hausdorff dis-
tance [13]. For two closed convex sets K1,K2 ∈ Rn, the Hausdorff distance
dH(K1,K2) is defined as

dH(K1,K2) := min {δ : K1 ⊆ K2 + B(0, δ),K2 ⊆ K1 + B(0, δ)} ,

where B(0, δ) denotes the ball centered at origin with radius δ. We will need the
following fact on the limit of a set sequence.

Lemma 4 (Proposition 2, [12]). Let {Rr} be a sequence of nonempty com-
pact convex sets such that Rr+1 ⊆ Rr for all r. Then Rr converges to R̄ :=
limr→∞ Rr =

⋂∞
r=1 Rr with respect to the Hausdorff distance, and R̄ is also a

compact convex set.

The following lemma reveals the convergence properties of a sequence of sets
produced by successive quantile closure operations.

406 W. Xie and S. Ahmed

Lemma 5. Let {Sr} be a sequence of quantile closures. Then

(i) there exists a S̄ := limr→∞ Sr;
(ii) for each G ∈ G, we have

conv

[
⋃

i∈G

conv
(
S̄

⋂
X i

)
]

= S̄. (15)

Proof.

(i) This directly follows from Lemma 4 since {Sr} is an inclusion-wise monotone
sequence of compact convex sets.

(ii) Let S̄1 be the quantile closure operation applied to set S̄. Since S̄ = S̄1 by
the limiting operation, we have that

S̄ = S̄1 =
⋂

G∈G
conv

[
⋃

i∈G

(
S̄

⋂
X i

)
]

=
⋂

G∈G
conv

[
⋃

i∈G

conv
(
S̄

⋂
X i

)
]

,

where the second equality is due to Theorem 1 and the third equality follows
from Lemma 3. Since conv

[⋃
i∈G

(
S̄

⋂ X i
)] ⊆ S̄ for all G ∈ G, we have that

(15) holds.

�
Now, we are ready to prove the convergence of the quantile closure procedure

to the convex hull of X.

Theorem 3. The set sequence {Sr} converges to conv (X) with respect to the
Hausdorff distance; i.e., S̄ = limr→∞ Sr = conv (X).

Proof. From Lemma 4, we know that there exists an S̄ = limr→∞ Sr. Since
conv(X) ⊆ Sr for all r, if follows that conv(X) ⊆ S̄. Thus, we only need to show
that conv(X) ⊇ S̄. We will show that any extreme point of the compact convex
set S̄ belongs to X which will complete the proof.

Consider an extreme point x̄ of S̄. By the identity (15) in Lemmas 3(iii)
and 5 and the fact S̄ ⊆ S, it follows that there exists an iG ∈ G such that
x̄ ∈ S̄

⋂ X iG ⊆ S
⋂ X iG for each G ∈ G. Let C̄ := {i ∈ [N] : x̄ ∈ S

⋂ X i}. We
make the following claim.

Claim: C̄ ∈ Z.

Proof. Suppose not. Let Ḡ be the complement of C̄, i.e., Ḡ = [N]\C̄. First of
all, note that we have Ḡ

⋂ C
= ∅ for all C ∈ Z. Otherwise, there must exist a
Ĉ ∈ Z and Ḡ

⋂ Ĉ = ∅, which implies that Ĉ ⊆ C̄, a contradiction that C̄ /∈ Z.
Hence, Ḡ is a partial covering subset of [N]. Let Ĝ be a minimal partial covering
subset such that Ĝ ⊆ Ḡ. Since we know that x̄ ∈ S

⋂
XiĜ for some iĜ ∈ Ĝ (i.e.,

iĜ ∈ C̄), we have a contradiction that Ĝ ∩ C̄ = ∅. �
It then follows that x̄ ∈ ⋂

i∈C̄ S
⋂ X i ⊆ X. This completes the proof. �

On the Quantile Cut Closure of Chance-Constrained Problems 407

Next we show that in the pure integer setting the convex hull of X can be
obtained after a finite number of quantile closure operations.

Theorem 4. Suppose that S ∩ X i ⊆ Zn for all i ∈ [N] (i.e., τ = n), then there
exists a finite r̄ such that

S̄ = S r̄ = conv (X) .

Proof. From Theorem 3, we know that S̄ = conv (X). Now we only need to show
the finite convergence.

Claim 1: If conv(Sr ∩ Zn)
= conv(X), then there exists a δ > 0 (irrespective
of r) such that dH(Sr, conv(X)) ≥ δ.

Proof. Note that conv(X) is an integral polytope, thus we let conv(X) = {x :
Hx ≤ h} with integral matrix H and vector h defining T inequalities. Let δ =
mint=1,...,T

1
‖Ht‖2

, where Ht is tth row of H. Since conv(Sr∩Zn)
= conv(X), thus
there exists an integer point x̂ ∈ conv(Sr ∩ Zn)\ conv(X). Since x̂ /∈ conv(X),
there exists a half space L = {x : H�

t x ≤ ht} such that Htx̂ > ht. Thus,

dH(Sr, conv(X)) ≥ dH(x̂, conv(X)) ≥ dH(x̂, L) =
Htx̂ − ht

‖Ht‖2 ≥ 1
‖Ht‖2 ≥ δ,

where the first inequality is due to x̂ ∈ Sr\ conv(X), the second inequality is
because of conv(X) ⊆ L, the third equality is because Htx̂ > ht, the fourth
inequality is because Ht, x̂, ht are all integral, and the last inequality is due to
the choice of δ. �

It then follows that there must exist a r̄ ∈ Z++ such that conv(S r̄−1 ∩Zn) =
conv(X); otherwise, by Claim 1, dH(Sr, conv(X)) ≥ δ for all r, contradicting
the fact that limr→∞ Sr = conv(X). Since conv(S r̄−1 ∩ Zn) = conv(X), then by
Theorem 1, we have S r̄ = conv (X) := S̄. �

We close this section with two examples. The first shows the necessity of
the compactness assumption for the convergence of the quantile closure to the
convex hull, and second shows the necessity of the pure integer setting for finite
convergence.

Example 1. Let S = R2,X 1 = {x ∈ R2 : 0 ≤ x1 ≤ 2, x2 = 0},X 2 = {x ∈
R2 : x1 = 0, x2 ≥ 0},X 3 = {x ∈ R2 : 1 ≤ x1 ≤ 2, x2 ≥ 0}, ε = 1

3 , pi =
1
3 , i = 1, 2, 3. Since each feasible set contains at least two scenarios, by (3), we
have conv(X) = {x ∈ R2 : 0 ≤ x1 ≤ 2, x2 = 0}. As there are exactly two
scenarios in each minimal partial covering subset, according to Theorem 1, we
have S1 = . . . = Sr = . . . = S̄ = {x ∈ R2 : 0 ≤ x1 ≤ 2, x2 ≥ 0}. Hence, in this
example, the scenario constraints do not define bounded feasible regions, and
the quantile closures do not converge to the convex hull of the feasible region X;
i.e., S̄
= conv(X). �

408 W. Xie and S. Ahmed

Example 2. Suppose S = [0, 2]2,X 1 = {x ∈ R2
+ : 2x1 + 0.5x2 ≥ 1},X 2 = {x ∈

R2
+ : 0.5x1 + 2x2 ≥ 1},X 3 = {x ∈ R2

+ : x1 + x2 ≥ 1}, ε = 1
3 , pi = 1

3 , i = 1, 2, 3.
Since each feasible set contains at least two scenarios, by (3), we have

conv(X) = conv{(1, 0), (0.4, 0.4), (0, 1), (0, 2), (2, 0), (2, 2)},

which contains the set X 3. By induction, we can show that

Sr = conv{(1, 0), (wr, wr), (0, 1), (0, 2), (2, 0), (2, 2)},

where 0 < wr < 0.4 for all r ∈ Z++; i.e., Sr
= conv(X) whenever r < ∞.
Indeed, when r = 1, as there are exactly two scenarios in each minimal partial

covering subset, according to (12), we have

S1 = conv{(1, 0), (1/3, 1/3), (0, 1), (0, 2), (2, 0), (2, 2)},

where w1 = 1/3 ∈ (0, 0.4). Suppose for γ = r ≥ 1, the hypothesis holds; i.e.,

Sr = conv{(1, 0), (wr, wr), (0, 1), (0, 2), (2, 0), (2, 2)},

where 0 < wr < 0.4. Now let γ = r + 1, then by Theorem 1, we have Sr+1 =
conv{(1, 0), (wr+1, wr+1), (0, 1), (0, 2), (2, 0), (2, 2)}, where wr+1 = 0.3 + 1/(30 −
50wr) ∈ (0, 0.4). �

5 Conclusion

In this paper, we studied a family of cuts known as quantile cuts for chance
constrained mixed integer linear program with bounded feasible region and finite
support. We showed the following results (i) the closure of all quantile cuts can
be described in a conjunctive normal form, and hence is a polyhedral set; (ii)
separation of quantile cuts is in general NP-hard; (iii) successive application of
quantile closure operation achieves the convex hull of the chance constrained
problem in the limit; and (iv) in the pure integer setting this convergence is
finite. The boundedness assumption on the feasible region can be relaxed with
some restrictions on the recession directions of the scenario feasible sets. We
are currently working on extending some of the results to the setting of chance
constrained mixed-integer convex programs. Future research questions include
analyzing the strength of the quantile closure and establishing the quantile rank,
i.e. the minimum number of closure operations required to achieve the convex
hull, for some structured chance constrained problems. Finally, note that some of
the results can also be applied to generalized disjunctive programming in [4,11]
by choosing each X i as a disjunctive set and Z as logic constraints.

References

1. Abdi, A., Fukasawa, R.: On the mixing set with a knapsack constraint (2012).
http://arxiv.org/pdf/1207.1077v1.pdf

http://arxiv.org/pdf/1207.1077v1.pdf

On the Quantile Cut Closure of Chance-Constrained Problems 409

2. Ahmed, S., Luedtke, J., Song, Y., Xie, W.: Nonanticipative duality and mixed-
integer programming formulations for chance-constrained stochastic programs
(2014). http://www.optimization-online.org/DB FILE/2014/07/4447.pdf

3. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: The mixed vertex packing
problem. Math. Program. 89(1), 35–53 (2000)

4. Grossmann, I.E., Ruiz, J.P.: Generalized disjunctive programming: a framework
for formulation and alternative algorithms for minlp optimization. In: Lee, J.,
Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, pp. 93–115. Springer,
New York (2012)

5. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3),
429–457 (2001)

6. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math.
Program. 132(1–2), 31–56 (2012)

7. Luedtke, J.: An integer programming and decomposition approach to general
chance-constrained mathematical programs. In: Eisenbrand, F., Shepherd, F.B.
(eds.) IPCO 2010. LNCS, vol. 6080, pp. 271–284. Springer, Heidelberg (2010)

8. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-
constrained mathematical programs with finite support. Math. Program. 146(1–2),
219–244 (2014)

9. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for
linear programs with probabilistic constraints. Math. Program. 122(2), 247–272
(2010)

10. Qiu, F., Ahmed, S., Dey, S.S., Wolsey, L.A.: Covering linear programming with
violations. INFORMS J. Comput. 26(3), 531–546 (2014)

11. Raman, R., Grossmann, I.E.: Modelling and computational techniques for logic
based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

12. Salinetti, G., Wets, R.J.B.: On the convergence of sequences of convex sets in finite
dimensions. SIAM Rev. 21(1), 18–33 (1979)

13. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, vol. 151. Cambridge
University Press, Cambridge (2013)

14. Song, Y., Luedtke, J.R., Küçükyavuz, S.: Chance-constrained binary packing prob-
lems. INFORMS J. Comput. 26, 735–747 (2014)

15. Zhao, M., Huang, K., Zeng, B.: Strong inequalities for chance-constrained program
(2014). http://www.optimization-online.org/DB FILE/2014/11/4634.pdf

http://www.optimization-online.org/DB_FILE/2014/07/4447.pdf
http://www.optimization-online.org/DB_FILE/2014/11/4634.pdf

Author Index

Adamaszek, Anna 337
Ahmadian, Sara 164
Ahmed, Shabbir 287, 398

Baïou, Mourad 63
Bansal, Nikhil 375
Barahona, Francisco 63
Basu, Amitabh 14, 190, 202
Bent, Russell 102
Braun, Gábor 350
Byrka, Jarosław 262

Chalermsook, Parinya 337
Conforti, Michele 190
Cornuéjols, Gérard 300, 387
Cseh, Ágnes 138

Dadush, Daniel 26
Del Pia, Alberto 1, 214
Di Summa, Marco 190
Dinh, Thai 89

Ene, Alina 337

Ficker, Annette M.C. 178
Fiorini, Samuel 238
Fischetti, Matteo 77
Fukasawa, Ricardo 89

Goossens, Dries R. 178
Gottschalk, Corinna 126

Hildebrand, Robert 202
Hosseinzadeh, Hamideh 164

Joret, Gwenaël 238

Kavitha, Telikepalli 138
Kurpisz, Adam 152, 362

Lambrechts, Erik 178
Lee, Dabeen 300
Lee, Jon 50
Leppänen, Samuli 362

Li, Yanjun 387
Lim, Cong Han 275
Linderoth, Jeff 275
Linhares, André 38
Ljubić, Ivana 77
Lubin, Miles 102
Luedtke, James 89, 275

Mastrolilli, Monaldo 152, 362
Mathieu, Claire 152
Molinaro, Marco 202
Mömke, Tobias 152
Monaci, Michele 77

Nagarajan, Viswanath 50, 375

Oertel, Timm 14
Orlin, James B. 312

Paat, Joseph 190
Pokutta, Sebastian 350
Poskin, Jeffrey 214

Roy, Aurko 350
Rybicki, Bartosz 262

Sanità, Laura 164
Schaudt, Oliver 238
Schulz, Andreas S. 312
Shen, Xiangkun 50
Singh, Mohit 114
Sinnl, Markus 77
Soma, Tasuku 325
Spieksma, Frits C.R. 178
Svensson, Ola 226
Swamy, Chaitanya 38

Tarnawski, Jakub 226
Toriello, Alejandro 287
Torrico, Alfredo 287

Udwani, Rajan 312
Uniyal, Sumedha 262

Végh, László A. 26, 226
Verdugo, Victor 152
Vielma, Juan Pablo 102
Vygen, Jens 126

Wiese, Andreas 152, 337

Xie, Weijun 398

Yamangil, Emre 102
Yoshida, Yuichi 325

Zambelli, Giacomo 26
Zenklusen, Rico 114
Zuylen, Anke van 250

412 Author Index

	Preface
	Organization
	Contents
	On Approximation Algorithms for Concave Mixed-Integer Quadratic Programming
	1 Introduction
	2 Proof of Theorem1
	2.1 Approximation in the Inner Region
	2.2 Decomposition of the Outer Region

	References

	Centerpoints: A Link Between Optimization and Convex Geometry
	1 Introduction
	2 An Application to Mixed-Integer Optimization
	3 General Properties
	4 Specialized Properties
	5 Computational Aspects
	5.1 Exact Algorithms
	5.2 Approximation Algorithms

	References

	Rescaled Coordinate Descent Methods for Linear Programming
	1 Introduction
	2 Algorithm 1
	3 Algorithm 2: A Dual Chubanov Algorithm
	3.1 Refinements

	References

	Approximating Min-Cost Chain-Constrained Spanning Trees: A Reduction from Weighted to Unweighted Problems
	1 Introduction
	2 An LP-Relaxation for MCCST and Preliminaries
	3 An LP-Rounding Approximation Algorithm
	3.1 An Overview
	3.2 Algorithm Details and Analysis

	4 A Reduction from Weighted to Unweighted Problems
	5 Towards a -Approximation Algorithm for (QP)
	References

	Max-Cut Under Graph Constraints
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work

	2 Preliminaries
	3 Approximation Algorithm for GCMC
	3.1 Linear Program
	3.2 The Rounding Algorithm
	3.3 Algorithm Analysis

	References

	Sparsest Cut in Planar Graphs, Maximum Concurrent Flows and Their Connections with the Max-Cut Problem
	1 Introduction
	2 Preliminaries
	2.1 The Chinese Postman Problem and Minimum T-joins

	3 Sparsest Cut in Planar Graphs
	4 Graphs with no K5 Minor
	5 Maximum Concurrent Flow
	5.1 Planar Graphs
	5.2 Graphs with no K5 Minor

	References

	Intersection Cuts for Bilevel Optimization
	1 Introduction
	2 Literature Overview
	3 Bilevel-Free Sets
	4 Mixed-Integer Bilevel Linear Programming
	5 A New Family of Cuts for MIBLP
	6 Informed No-Good Cuts
	7 Preliminary Computational Results
	References

	Exact Algorithms for the Chance-Constrained Vehicle Routing Problem
	1 Introduction
	2 Problem Definition and an Edge-Based Formulation
	2.1 Edge-Based Formulation
	2.2 Vehicle Requirements in the Capacity Inequalities
	2.3 Joint Normal Random Demands

	3 Dantzig-Wolfe Formulation
	3.1 Relaxed Pricing
	3.2 Relaxed Pricing for Joint Normal Demands

	4 Computational Experiments
	4.1 Comparison of the CCVRP with Recourse Models

	5 Conclusion
	References

	Extended Formulations in Mixed-Integer Convex Programming
	1 Introduction
	2 Extended Formulations and Conic Representability
	3 An Outer-Approximation Algorithm for Mixed-Integer Conic Programming
	4 Extended Formulations and Disciplined Convex Programming
	5 Computational Results
	References

	k-Trails: Recognition, Complexity, and Approximations
	1 Introduction
	1.1 Our Results

	2 Recognition of k-Trails
	3 Containment of Minimum Weight k-Trails
	References

	Better s-t-Tours by Gao Trees
	1 Introduction
	1.1 Previous Work
	1.2 Notation and Preliminaries
	1.3 Best-of-Many Christofides
	1.4 Gao Trees
	1.5 Our Contribution

	2 Proof of the Structure Theorem
	3 Obtaining the Distribution in Polynomial Time
	4 Analysis of the Approximation Ratio
	5 Conclusion
	References

	Popular Edges and Dominant Matchings
	1 Introduction
	2 A Characterization of Dominant Matchings
	3 The Set of Dominant Matchings
	4 The Popular Edge Problem
	References

	Semidefinite and Linear Programming Integrality Gaps for Scheduling Identical Machines
	1 Introduction
	2 Integrality Gap of the Configuration LP (Theorem 1(i))
	3 Integrality Gap for SA (Theorem 1(ii))
	4 Integrality Gap for LS+ (Theorem 1(iii))
	References

	Stabilizing Network Bargaining Games by Blocking Players
	1 Introduction
	2 Minimum Cardinality Vertex-Stabilizers
	3 The Weighted Case
	References

	Round-Robin Tournaments Generated by the Circle Method Have Maximum Carry-Over
	1 Introduction
	1.1 Motivation

	2 Terminology
	2.1 About Schedules
	2.2 About the Carry-Over Effect
	2.3 About the Circle Method

	3 Building Blocks of the Proof
	3.1 Basic Observations
	3.2 Basic Concepts: k-Chains and Bridge Teams
	3.3 Characterizing the Class C
	3.4 Upper Bounds on the Contribution of Bridge Teams

	4 Proving the Theorem
	4.1 Identifying Subsets of Teams
	4.2 Proving Theorem1

	References

	Extreme Functions with an Arbitrary Number of Slopes
	1 Introduction
	A Construction of K-Slope Functions πk
	Proof of Minimality of πk
	4 Proof of Extremality of πk
	5 Proof of Theorem 4
	6 Concluding Remarks
	References

	Minimal Cut-Generating Functions are Nearly Extreme
	1 Introduction
	2 Preliminaries
	2.1 Strongly Minimal Functions for Truncated Affine Lattices
	2.2 Approximations Using Piecewise Linear Functions
	2.3 Subadditivity and Additivity
	2.4 2-Slope Theorems
	2.5 2-Slope Fill-in

	3 Proof of Theorem2
	3.1 Equality Reducing Perturbation
	3.2 Symmetric 2-Slope Fill-in
	3.3 Concluding the Proof of Theorem2

	4 Proof of Theorem3
	References

	On the Mixed Binary Representability of Ellipsoidal Regions
	1 Introduction
	2 Ellipsoidal Regions and Hyperplanes
	3 Proof of Theorem1
	References

	Constant Factor Approximation for ATSP with Two Edge Weights (Extended Abstract)
	1 Introduction
	1.1 Notation and Preliminaries
	1.2 Technical Overview

	2 Algorithm for Local-Connectivity ATSP
	Calculating lb and Constructing the Split Graph
	2.2 Solving Local-Connectivity ATSP

	References

	Improved Approximation Algorithms for Hitting 3-Vertex Paths
	1 Introduction
	2 Definitions and Preliminaries
	3 Tools
	3.1 α-Good Induced Subgraphs
	3.2 True Twins

	4 Algorithm
	5 Finding a 7/3-Good Induced Subgraph
	6 Conclusion
	References

	Improved Approximations for Cubic Bipartite and Cubic TSP
	1 Introduction
	2 The Graph-TSP on Cubic Bipartite Graphs
	2.1 A Local Improvement Heuristic
	2.2 2-Factor with Average Cycle Size 8

	3 Cubic Graphs
	References

	An Approximation Algorithm for Uniform Capacitated k-Median Problem with 1 + �Capacity Violation
	1 Introduction
	1.1 Our Results and Techniques

	2 Linear Program
	3 Rounding Algorithm
	3.1 Dependent Rounding
	3.2 Rounding Among Children Groups
	3.3 Pulling Back Demand to the Open Facilities
	3.4 Distributing Frozen Demand to the Open Facilities

	4 Concluding Remarks
	References

	Valid Inequalities for Separable Concave Constraints with Indicator Variables
	1 Introduction
	2 Motivation: The Set Z ∩T
	3 A Low-Dimensional Mixed-Integer Nonlinear Set
	4 Application to Single Node Flow Set
	4.1 Valid Inequalities for XCSNFSf
	4.2 Tilting Flow Cover Inequalities

	5 Computational Results
	6 Conclusion
	References

	A Polyhedral Approach to Online Bipartite Matching
	1 Introduction
	2 Model Description and Formulation
	3 Projected Relaxations
	4 Policies Derived from Bounds
	5 Computational Results
	References

	On Some Polytopes Contained in the 0,1 Hypercube that Have a Small Chvátal Rank
	1 Introduction
	2 Some Polytopes with Small Chvátal Rank
	2.1 Chvátal Rank 1
	2.2 Chvátal Rank 2
	2.3 Chvátal Rank 3

	3 Chvátal Rank 4
	4 Vertex Cutsets
	4.1 1-Vertex Cutset
	4.2 2-Vertex Cut
	4.3 Implication for the Chvátal Rank

	5 Dependency on the Cardinality of the Infeasible Set
	6 Optimization Problem Under Small Chvátal Rank
	References

	Robust Monotone Submodular Function Maximization
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Negative Results

	3 Main Result: Algorithms for τ = 1
	3.1 Special Case of ``Copies''
	3.2 Guarantees in Absence of ``Copies''

	4 Extensions
	4.1 Constant Factor Guarantee for τ = o(
	4.2 General Constraints

	5 Conclusion and Open Problems
	References

	Maximizing Monotone Submodular Functions over the Integer Lattice
	1 Introduction
	1.1 Main Results
	1.2 Technical Contribution
	1.3 Related Work
	1.4 Organization of This Paper

	2 Preliminaries
	3 Cardinality Constraint
	3.1 Maximization of Monotone DR-Submodular Function
	3.2 Maximization of Monotone Lattice Submodular Function

	4 Polymatroid Constraint
	4.1 Continuous Extension for Polymatroid Constraints
	4.2 Continuous Greedy Algorithm for Polymatroid Constraint
	4.3 Rounding

	5 Knapsack Constraint
	5.1 Multilinear Extension for Knapsack Constraints
	5.2 Algorithm (Sketch)

	References

	Submodular Unsplittable Flow on Trees
	1 Introduction
	2 Geometric Relaxation for Submodular UFP on Trees
	2.1 A Pseudo-Polynomial Sized Relaxation
	2.2 A Polynomial-Sized Relaxation
	2.3 Submodular Objective via the CR Scheme Framework

	References

	Strong Reductions for Extended Formulations
	1 Introduction
	2 Preliminaries
	2.1 Optimization Problems
	2.2 LP/SDP Complexity and Fractional Optimization

	3 Reductions with Distortion
	3.1 Reduction Between Fractional Problems

	4 BalancedSeparator and SparsestCut
	5 SDP Hardness of MaxCut
	6 Lasserre Relaxation is Suboptimal for IndependentSet(G)
	References

	Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations
	1 Introduction
	2 The SoS Hierarchy
	3 The Main Technical Theorem
	4 Max-Cut for the Complete Graph
	5 Min-Knapsack with Cover Inequalities
	5.1 Overview of the Proof
	5.2 Further Results

	6 Overview of the Proof of Theorem 1
	6.1 Overview of the Proof of Theorem 3

	References

	Approximation-Friendly Discrepancy Rounding
	1 Introduction
	1.1 Preliminaries
	1.2 Our Results and Techniques

	2 Matroid Partial Rounding
	References

	Deciding Emptiness of the Gomory-Chvátal Closure is NP-Complete, Even for a Rational Polyhedron Containing No Integer Point
	1 Introduction
	2 Deciding Emptiness of the Gomory-Chvátal Closure
	3 Deciding Emptiness of the {-1,0,1}-Closure (or {0,1}-Closure) of a Rational Polyhedron with No Integer Point
	4 Conclusions
	References

	On the Quantile Cut Closure of Chance-Constrained Problems
	1 Introduction
	2 Quantile Cuts and Mixing Inequalities
	3 Quantile Closure
	4 Convergence of Quantile Closures
	5 Conclusion
	References

	Author Index

