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Abstract In this paper we employ a one-factor Lévy model to determine basket
option prices. More precisely, basket option prices are determined by replacing the
distribution of the real basketwith an appropriate approximation. For the approximate
basket we determine the underlying characteristic function and hence we can derive
the related basket option prices by using the Carr–Madan formula. We consider a
three-moments-matching method. Numerical examples illustrate the accuracy of our
approximations; several Lévy models are calibrated to market data and basket option
prices are determined. In the last part we show how our newly designed basket option
pricing formula can be used to define implied Lévy correlation by matching model
and market prices for basket options. Our main finding is that the implied Lévy
correlation smile is flatter than its Gaussian counterpart. Furthermore, if (near) at-
the-money option prices are used, the corresponding implied Gaussian correlation
estimate is a good proxy for the implied Lévy correlation.

Keywords Basket option · Implied correlation ·One-factor Lévymodel ·Variance-
Gamma

1 Introduction

Nowadays, an increased volume of multi-asset derivatives is traded. An example of
such a derivative is a basket option. The basic version of such a multivariate product
has the same characteristics as a vanilla option, but now the underlying is a basket of
stocks instead of a single stock. The pricing of these derivatives is not a trivial task
because it requires a model that jointly describes the stock prices involved.
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Stock price models based on the lognormal model proposed in Black and Scholes
[6] are popular choices from a computational point of view; however, they are not
capable of capturing the skewness and kurtosis observed for log returns of stocks
and indices. The class of Lévy processes provides a much better fit for the observed
log returns and, consequently, the pricing of options and other derivatives in a Lévy
setting is much more reliable. In this paper we consider the problem of pricing
multi-asset derivatives in a multivariate Lévy model.

The most straightforward extension of the univariate Black and Scholes model is
based on the Gaussian copula model, also called the multivariate Black and Scholes
model. In this framework, the stocks composing the basket at a given point in time
are assumed to be lognormally distributed and a Gaussian copula is connecting these
marginals. Even in this simple setting, the price of a basket option is not given in a
closed form and has to be approximated; see e.g. Hull and White [23], Brooks et al.
[8], Milevsky and Posner [39], Rubinstein [42], Deelstra et al. [18], Carmona and
Durrleman [12] and Linders [29], among others. However, the normality assumption
for the marginals used in this pricing framework is too restrictive. Indeed, in Linders
and Schoutens [30] it is shown that calibrating the Gaussian copula model to mar-
ket data can lead to non-meaningful parameter values. This dysfunctioning of the
Gaussian copula model is typically observed in distressed periods. In this paper we
extend the classical Gaussian pricing framework in order to overcome this problem.

Several extensions of the Gaussian copula model are proposed in the literature.
For example, Luciano and Schoutens [32] introduce a multivariate Variance Gamma
model where dependence is modeled through a common jump component. This
model was generalized in Semeraro [44], Luciano and Semeraro [33], and Guil-
laume [21]. A stochastic correlation model was considered in Fonseca et al. [19].
A framework for modeling dependence in finance using copulas was described in
Cherubini et al. [14]. The pricing of basket options in these advanced multivariate
stock price models is not a straightforward task. There are several attempts to derive
closed form approximations for the price of a basket option in a non-Gaussian world.
In Linders and Stassen [31], approximate basket option prices in a multivariate Vari-
ance Gamma model are derived, whereas Xu and Zheng [48, 49] consider a local
volatility jump diffusion model. McWilliams [38] derives approximations for the
basket option price in a stochastic delay model. Upper and lower bounds for basket
option prices in a general class of stock price models with known joint characteristic
function of the logreturns are derived in Caldana et al. [10].

In this paper we start from the one-factor Lévy model introduced in Albrecher
et al. [1] to build a multivariate stock price model with correlated Lévy marginals.
Stock prices are assumed to be driven by an idiosyncratic and a systematic factor.
The idea of using a common market factor is not new in the literature and goes back
to Vasicek [47]. Conditional on the common (or market) factor, the stock prices are
independent. We show that our model generalizes the Gaussian model (with single
correlation). Indeed, the idiosyncratic and systematic components are constructed
from a Lévy process. Employing a Brownian motion in that construction delivers the
Gaussian copula model, but other Lévy models arise by employing different Lévy
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processes like VG, NIG, Meixner, etc. As a result, this new one-factor Lévy model
is more flexible and can capture other types of dependence.

The correlation is by construction always positive and, moreover, we assume
a single correlation. Stocks can, in reality, be negatively correlated and correla-
tions between different stocks will differ. From a tractability point of view, however,
reporting a single correlation number is often preferred over n(n − 1)/2 pairwise
correlations. The single correlation can be interpreted as a mean level of correlation
and provides information about the general dependence among the stocks compos-
ing the basket. Such a single correlation appears, for example, in the construction of
a correlation swap. Therefore, our framework may have applications in the pricing
of such correlation products. Furthermore, calibrating a full correlation matrix may
require an unrealistically large amount of data if the index consists of many stocks.

In the first part of this paper, we consider the problem of finding accurate approx-
imations for the price of a basket option in the one-factor Lévy model. In order to
value a basket option, the distribution of this basket has to be determined. However,
the basket is a weighted sum of dependent stock prices and its distribution function
is in general unknown or too complex to work with. Our valuation formula for the
basket option is based on a moment-matching approximation. To be more precise,
the (unknown) basket distribution is replaced by a shifted random variable having
the same first three moments than the original basket. This idea was first proposed in
Brigo et al. [7], where the Gaussian copula model was considered. Numerical exam-
ples illustrating the accuracy and the sensitivity of the approximation are provided.

In the second part of the paper we show how the well-established notions of
implied volatility and implied correlation can be generalized in our multivariate
Lévy model. We assume that a finite number of options, written on the basket and
the components, are traded. The prices of these derivatives are observable and will
be used to calibrate the parameters of our stock price model. An advantage of our
modeling framework is that each stock is described by a volatility parameter and that
the marginal parameters can be calibrated separately from the correlation parameter.
Wegive numerical examples to showhow touse the vanilla option curves to determine
an implied Lévy volatility for each stock based on a Normal, VG, NIG, and Meixner
process and determine basket option prices for different choices of the correlation
parameter.

An implied Lévy correlation estimate arises when we tune the single correla-
tion parameter such that the model price exactly hits the market price of a basket
option for a given strike. We determine implied correlation levels for the stocks
composing the Dow Jones Industrial Average in a Gaussian and a Variance Gamma
setting. We observe that implied correlation depends on the strike and in the VG
model, this implied Lévy correlation smile is flatter than in the Gaussian copula
model. The standard technique to price non-traded basket options (or other multi-
asset derivatives) is by interpolating on the implied correlation curve. It is shown in
Linders and Schoutens [30] that in the Gaussian copula model, this technique can
sometimes lead to non-meaningful correlation values. We show that the Lévy ver-
sion of the implied correlation solves this problem (at least to some extent). Several
papers consider the problem of measuring implied correlation between stock prices;
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see e.g. Fonseca et al. [19], Tavin [46], Ballotta et al. [4], and Austing [2]. Our
approach is different in that we determine implied correlation estimates in the one-
factor Lévy model using multi-asset derivatives consisting of many assets (30 assets
for the Dow Jones). When considering multi-asset derivatives with a low dimension,
determining the model prices of these multi-asset derivatives becomes much more
tractable. A related paper is Linders and Stassen [31], where the authors also use
high-dimensional multi-asset derivative prices for calibrating a multivariate stock
price model. However, whereas the current paper models the stock returns using
correlated Lévy distributions, the cited paper uses time-changed Brownian motions
with a common time change.

2 The One-Factor Lévy Model

We consider a market where n stocks are traded. The price level of stock j at some
future time t, 0 ≤ t ≤ T is denoted by Sj(t). Dividends are assumed to be paid
continuously and the dividend yield of stock j is constant and deterministic over
time. We denote this dividend yield by qj. The current time is t = 0. We fix a future
timeT andwe always consider the randomvariables Sj(T) denoting the time-T prices
of the different stocks involved. The price level of a basket of stocks at time T is
denoted by S(T) and given by

S(T) =
n∑

j=1

wjSj(T),

where wj > 0 are weights which are fixed upfront. In case the basket represents the
price of the Dow Jones, the weights are all equal. If this single weight is denoted by
w, then 1/w is referred to as the Dow Jones Divisor.1 The pay-off of a basket option
with strike K and maturity T is given by (S(T) − K)+, where (x)+ = max(x, 0).
The price of this basket option is denoted by C[K, T ]. We assume that the market
is arbitrage-free and that there exists a risk-neutral pricing measure Q such that the
basket option price C[K, T ] can be expressed as the discounted risk-neutral expected
value. In this pricing formula, discounting is performed using the risk-free interest
rate r, which is, for simplicity, assumed to be deterministic and constant over time.
Throughout the paper, we always assume that all expectations we encounter are
well-defined and finite.

1More information and the current value of the Dow Jones Divisor can be found here: http://www.
djindexes.com.

http://www.djindexes.com
http://www.djindexes.com
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2.1 The Model

The most straightforward way to model dependent stock prices is to use a Black
and Scholes model for the marginals and connect them with a Gaussian copula. A
crucial (and simplifying) assumption in this approach is the normality assumption. It
is well-known that log returns do not pass the test for normality. Indeed, log returns
exhibit a skewed and leptokurtic distribution which cannot be captured by a normal
distribution; see e.g. Schoutens [43].

We generalize the Gaussian copula approach by allowing the risk factors to be
distributed according to any infinitely divisible distributionwith known characteristic
function. This larger class of distributions increases the flexibility to find a more
realistic distribution for the log returns. InAlbrecher et al. [1] a similar frameworkwas
considered for pricing CDO tranches; see also Baxter [5]. The Variance Gamma case
was considered in Moosbrucker [40, 41], whereas Guillaume et al. [22] consider the
pricing of CDO-squared tranches in this one-factor Lévy model. A unified approach
for theseCIIDmodels (conditionally independent and identically distributed) is given
in Mai et al. [36].

Consider an infinitely divisible distribution for which the characteristic function
is denoted by φ. A stochastic process X can be built using this distribution. Such a
process is called a Lévy process with mother distribution having the characteristic
function φ. The Lévy process X = {X(t)|t ≥ 0} based on this infinitely divisible dis-
tribution starts at zero and has independent and stationary increments. Furthermore,
for s, t ≥ 0 the characteristic function of the increment X(t + s) − X(t) is φs.

Assume that the random variable L has an infinitely divisible distribution and
denote its characteristic function by φL. Consider the Lévy process
X = {X(t)|t ∈ [0, 1]} based on the distribution L. We assume that the process is stan-
dardized, i.e.E[X(1)] = 0 andVar[X(1)] = 1. One can then show that Var[X(t)] = t,
for t ≥ 0. Define also a series of independent and standardized processes Xj ={
Xj(t)|t ∈ [0, 1]}, for j = 1, 2, . . . , n. The process Xj is based on an infinitely divis-
ible distribution Lj with characteristic function φLj . Furthermore, the processes
X1, X2, . . . , Xn are independent from X. Take ρ ∈ [0, 1]. The r.v. Aj is defined by

Aj = X(ρ) + Xj(1 − ρ), j = 1, 2, . . . n. (1)

In this construction,X(ρ) andXj(1 − ρ) are random variables having the characteris-
tic functionφ

ρ

L andφ
1−ρ

Lj
, respectively. Denote the characteristic function ofAj byφAj .

Because the processes X and Xj are independent and standardized, we immediately
find that

E[Aj] = 0, Var[Aj] = 1 and φAj (t) = φ
ρ

L (t)φ1−ρ

Lj
(t), for j = 1, 2, . . . , n. (2)

Note that if X and Xj are both Lévy processes based on the same mother distribution

L, we obtain the equality Aj
d= L.
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The parameter ρ describes the correlation between Ai and Aj, if i �= j. Indeed, it
was proven in Albrecher et al. [1] that in case Aj, j = 1, 2, . . . , n is defined by (1),
we have that

Corr
[
Ai, Aj

] = ρ. (3)

We model the stock price levels Sj(T) at time T for j = 1, 2, . . . , n as follows

Sj(T) = Sj(0)e
μjT+σj

√
TAj , j = 1, 2, . . . , n, (4)

whereμj ∈ R andσj > 0.Note that in this setting, each time-T stock price ismodeled
as the exponential of a Lévy process. Furthermore, a driftμj and a volatility parameter
σj are added to match the characteristics of stock j. Our model, which we will call the
one-factor Lévy model, can be considered as a generalization of the Gaussian model.
Indeed, instead of a normal distribution, we allow for a Lévy distribution, while the
Gaussian copula is generalized to a Lévy-based copula.2 This model can also, at
least to some extent, be considered as a generalization to the multidimensional case
of the model proposed in Corcuera et al. [17] and the parameter σj in (4) can then
be interpreted as the Lévy space (implied) volatility of stock j. The idea of building
a multivariate asset model by taking a linear combination of a systematic and an
idiosyncratic process can also be found in Kawai [26] and Ballotta and Bonfiglioli
[3].

2.2 The Risk-Neutral Stock Price Processes

If we take

μj = (r − qj) − 1

T
logφL

(
−iσj

√
T
)

, (5)

we find that
E[Sj(T)] = e(r−qj)T Sj(0), j = 1, 2, . . . , n.

From expression (5) we conclude that the risk-neutral dynamics of the stocks in the
one-factor Lévy model are given by

Sj(T) = Sj(0)e
(r−qj−ωj)T+σj

√
TAj , j = 1, 2, . . . , n, (6)

where ωj = logφL

(
−iσj

√
T
)

/T . We always assume ωj to be finite. The first three

moments of Sj(T) can be expressed in terms of the characteristic function φAj . By

2The Lévy-based copula refers to the copula between the r.v.’s A1, A2, . . . , An and is different from
the Lévy copula introduced in Kallsen and Tankov [25].



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 341

the martingale property, we have that E
[
Sj(T)

] = Sj(0)e(r−qj)T . The risk-neutral
variance Var

[
Sj(T)

]
can be written as follows

Var
[
Sj(T)

] = Sj(0)
2e2(r−qj)T

(
e−2ωjTφAj

(
−i2σj

√
T
)

− 1
)

.

The second and third moment of Sj(T) are given by:

E
[
Sj(T)2

] = E[Sj(T)]2
φAj

(
−i2σj

√
T
)

φAj

(
−iσj

√
T
)2 ,

E
[
Sj(T)3

] = E[Sj(T)]3
φAj

(
−i3σj

√
T
)

φAj

(
−iσj

√
T
)3 .

We always assume that these quantities are finite. If the processXj hasmother distrib-
ution L, we can replace φAj by φL in expression (5) and in the formulas forE

[
Sj(T)2

]

and E
[
Sj(T)3

]
. From here on, we always assume that all Lévy processes are built on

the same mother distribution. However, all results remain to hold in the more general
case.

3 A Three-Moments-Matching Approximation

In order to price a basket option, one has to know the distribution of the random sum
S(T), which is a weighted sum of dependent random variables. This distribution is in
most situations unknown or too cumbersome to work with. Therefore, we search for
a new random variable which is sufficiently ‘close’ to the original random variable,
but which is more attractive to work with. More concretely, we introduce in this
section a new approach for approximating C[K, T ] by replacing the sum S(T) with
an appropriate random variable S̃(T) which has a simpler structure, but for which
the first three moments coincide with the first three moments of the original basket
S(T). This moment-matching approach was also considered in Brigo et al. [7] for
the multivariate Black and Scholes model.

Consider the Lévy process Y = {Y(t) | 0 ≤ t ≤ 1} with infinitely divisible distri-
bution L. Furthermore, we define the random variable A as

A = Y(1).

In this case, the characteristic function ofA is given byφL . The sum S(T) is aweighted
sum of dependent random variables and its cdf is unknown.We approximate the sum
S(T) by S̃(T), defined by
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S̃(T) = S̄(T) + λ, (7)

where λ ∈ R and

S̄(T) = S(0) exp
{
(μ̄ − ω̄)T + σ̄

√
TA
}

. (8)

The parameter μ̄ ∈ R determines the drift and σ̄ > 0 is the volatility parameter.
These parameters, as well as the shifting parameter λ, are determined such that the
first three moments of S̃(T) coincide with the corresponding moments of the real
basket S(T). The parameter ω̄, defined as follows

ω̄ = 1

T
logφL

(
−iσ̄

√
T
)

,

is assumed to be finite.

3.1 Matching the First Three Moments

Thefirst threemoments of the basketS(T) are denoted bym1, m2, andm3 respectively.
In the following lemma, we express the moments m1, m2, and m3 in terms of the
characteristic function φL and the marginal parameters. A proof of this lemma is
provided in the appendix.

Lemma 1 Consider the one-factor Lévy model (6) with infinitely divisible mother
distribution L. The first two moments m1 and m2 of the basket S(T) can be expressed
as follows

m1 =
n∑

j=1

wjE
[
Sj(T)

]
, (9)

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

⎛

⎝
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

⎞

⎠
ρj,k

,(10)

where

ρj,k =
{

ρ, if j �= k;
1, if j = k.

The third moment m3 of the basket S(T) is given by
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m3 =
n∑

j=1

n∑

k=1

n∑

l=1

wjwkwlE
[
Sj(T)

]
E [Sk(T)]E [Sl(T)]

×
φL

(
−i
(
σj + σk + σl

)√
T
)ρ

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
)Aj,k,l, (11)

where

Aj,k,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
))1−ρ

, if j �= k, k �= l and j �= l;
(
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσl

√
T
))1−ρ

, if j = k, k �= l;
(
φL

(
−i(σk + σl)

√
T
)

φL

(
−iσj

√
T
))1−ρ

, if j �= k, k = l;
(
φL

(
−i(σj + σl)

√
T
)

φL

(
−iσk

√
T
))1−ρ

, if j = l, k �= l;
φL

(
−i
(
σj + σk + σl

)√
T
)1−ρ

, if j = k = l.

InSect. 2.2wederived thefirst threemoments for each stock j, j = 1, 2, . . . , n. Taking
into account the similarity between the price Sj(T) defined in (6) and the approximate
r.v. S̄(T), defined in (8), we can determine the first three moments of S̄(T):

E
[
S̄(T)

] = S(0)eμ̄T =: ξ,

E
[
S̄(T)2

] = E
[
S̄(T)

]2 φL

(
−i2σ̄

√
T
)

φL

(
−iσ̄

√
T
)2 =: ξ 2α,

E
[
S̄(T)3

] = E
[
S̄(T)

]3 φL

(
−i3σ̄

√
T
)

φL

(
−iσ̄

√
T
)3 =: ξ 3β.

These expressions can now be used to determine the first three moments of the
approximate r.v. S̃(T):

E
[̃
S(T)

] = E
[
S̄(T)

]+ λ,

E
[̃
S(T)2

] = E
[
S̄(T)2

]+ λ2 + 2λE
[
S̄(T)

]
,

E
[̃
S(T)3

] = E
[
S̄(T)3

]+ λ3 + 3λ2E
[
S̄(T)

]+ 3λE
[
S̄(T)2

]
.

Determining the parameters μ̄, σ̄ and the shifting parameter λ by matching the first
three moments, results in the following set of equations

m1 = ξ + λ,

m2 = ξ 2α + λ2 + 2λξ,

m3 = ξ 3β + λ3 + 3λ2ξ + 3λξ 2α.
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These equations can be recast in the following set of equations

λ = m1 − ξ,

ξ 2 = m2 − m2
1

α − 1
,

0 =
(

m2 − m2
1

α − 1

)3/2

(β + 2 − 3α) + 3m1m2 − 2m3
1 − m3.

Remember that α and β are defined by

α =
φL

(
−i2σ̄

√
T
)

φL

(
−iσ̄

√
T
)2 and β =

φL

(
−i3σ̄

√
T
)

φL

(
−iσ̄

√
T
)3 .

Solving the third equation results in the parameter σ̄ . Note that this equation does
not always have a solution. This issue was also discussed in Brigo et al. [7] for the
Gaussian copula case. However, in our numerical studies we did not encounter any
numerical problems. If we know σ̄ , we can also determine ξ and λ from the first two
equations. Next, the drift μ̄ can be determined from

μ̄ = 1

T
log

ξ

S(0)
.

3.2 Approximate Basket Option Pricing

The price of a basket option with strikeK andmaturity T is denoted byC[K, T ]. This
unknown price is approximated in this section by CMM[K, T ], which is defined as

CMM[K, T ] = e−rTE

[(̃
S(T) − K

)
+
]
.

Using expression (7) for S̃(T), the price CMM[K, T ] can be expressed as

CMM[K, T ] = e−rTE

[(
S̄(T) − (K − λ)

)
+
]
.

Note that the distribution of S̄(T) is also depending on the choice of λ. In order to
determine the priceCMM[K, T ], we should be able to price an option written on S̄(T),
with a shifted strike K − λ. Determining the approximation CMM[K, T ] using the
Carr–Madan formula requires knowledge about the characteristic function φlog S̄(T)

of log S̄(T):

φlog S̄(T)(u) = E

[
eiu log S̄(T)

]
.
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Using expression (8) we find that

φlog S̄(T)(u) = E

[
exp

{
iu
(
log S(0) + (μ̄ − ω̄)T + σ̄

√
TA
)}]

.

The characteristic function of A is φL, from which we find that

φlog S̄(T)(u) = exp {iu (log S(0) + (μ̄ − ω̄)T)} φL

(
uσ̄

√
T
)

.

Note that nowhere in this section we used the assumption that the basket weights
wj are strictly positive. Therefore, the three-moments-matching approach proposed
in this section can also be used to price, e.g. spread options. However, for pricing
spread options, alternative methods exist; see e.g. Carmona and Durrleman [11],
Hurd and Zhou [24] and Caldana and Fusai [9].

3.3 The FFT Method and Basket Option Pricing

Consider the random variable X. In this section we show that if the characteristic
function φlogX of this r.v. X is known, one can approximate the discounted stop-loss
premium

e−rTE
[
(X − K)+

]
,

for any K > 0.
Let α > 0 and assume that E

[
Xα+1

]
exists and is finite. It was proven in Carr and

Madan [13] that the price e−rTE
[
(X − K)+

]
can be expressed as follows

e−rTE
[
(X − K)+

] = e−α log(K)

π

∫ +∞

0
exp {−iv log(K)} g(v)dv, (12)

where

g(v) = e−rTφlogX (v − (α + 1)i)
α2 + α − v2 + i(2α + 1)v

. (13)

The approximation CMM[K, T ]was introduced in Sect. 3 and the random variable
X now denotes the moment-matching approximation S̃(T) = S̄(T) + λ. The approx-
imation CMM[K, T ] can then be determined as the option price written on S̄(T) and
with shifted strike price K − λ.
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Table 1 Overview of infinitely divisible distributions

Gaussian Variance Gamma

Parameters μ ∈ R, σ > 0 μ, θ ∈ R, σ, ν > 0

Notation N (μ, σ 2)σ V G(σ, ν, θ, μ)

φ(u) eiuμ+ 1
2 σ 2uσ eiuμ

(
1 − iuθν + u2σ 2ν/2

)−1/ν

Mean μ μ + θ

Variance σ 2 σ 2
σ + νθ2

Standardized version N (0, 1) V G(κσ, ν, κθ,−κθ)

where κ = 1√
σ 2+θ2σ ν

Normal Inverse Gaussian Meixner

Parameters α, δ > 0, β ∈ (−α, α), μ ∈ R α, δ > 0, β ∈ (−π, π), μ ∈ R

Notation NIG(α, β, δ, μ) MX(α, β, δ, μ)

φ(u) e
iuμ−δ

(√
α2−(β+iu)2−

√
α2−β2

σ

)

eiuμ
(

cos(β/2)
cosh((αu−iβ)/2)

)2δ

Mean μ + δβ√
α2−β2

σ

μ + αδ tan(β/2)

Variance α2δ
(
α2 − β2

)−3/2
cos−2(β/2)α2

σ δ/2

Standardized version NIG
(
α, β, (α2 − β2)3/2,

−(α2−β2)β

α2

)
MX

(
α, β,

2 cos2( β
2 )

α2
σ

,
− sin(β)

α

)

4 Examples and Numerical Illustrations

The Gaussian copula model with equicorrelation is a member of our class of one-
factor Lévy models. In this section we discuss how to build the Gaussian, Variance
Gamma, Normal Inverse Gaussian, and Meixner models. However, the reader is
invited to construct one-factor Lévymodels based on other Lévy-based distributions;
e.g. CGMY, Generalized hyperbolic, etc. distributions.

Table1 summarizes the Gaussian, Variance Gamma, Normal Inverse Gaussian,
and the Meixner distributions, which are all infinitely divisible. In the last row, it is
shown how to construct a standardized version for each of these distributions. We
assume that L is distributed according to one of these standardized distributions.
Hence, L has zero mean and unit variance. Furthermore, the characteristic function
φL of L is given in closed form. We can then define the Lévy processes X and
Xj, j = 1, 2, . . . , n based on the mother distribution L. The random variables Aj,
j = 1, 2, . . . , n, are modeled using expression (1).
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Table 2 Basket option prices in the one-factor VG model with S1(0) = 40, S2(0) = 50, S3(0) =
60, S4(0) = 70, and ρ = 0

K Cmc[K, T ] CMM [K, T ] Length CI

σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

50 6.5748 6.5676 4.27E-03

55 2.4363 2.4781 3.05E-03

60 0.2651 0.2280 9.29E-04

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5

55 4.1046 4.2089 6.31E-03

60 1.7774 1.7976 4.13E-03

65 0.5474 0.4637 2.16E-03

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8

60 3.2417 3.3371 7.16E-03

65 1.6806 1.6429 5.08E-03

70 0.7581 0.6375 3.30E-03

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9

55 5.5067 5.6719 9.44E-03

60 3.2266 3.3305 7.31E-03

65 1.6972 1.6750 5.26E-03

70 0.7889 0.6830 3.52E-03

4.1 Variance Gamma

Although pricing basket option under a normality assumption is tractable from a
computational point of view, it introduces a high degree of model risk; see e.g. Leoni
and Schoutens [28]. The Variance Gamma distribution has already been proposed as
a more flexible alternative to the Brownian setting; see e.g. Madan and Seneta [34]
and Madan et al. [35].

We consider two numerical examples where L has a Variance Gamma distri-
bution with parameters σ = 0.5695, ν = 0.75, θ = −0.9492, μ = 0.9492. Table2
contains the numerical values for the first illustration, where a four-basket option pay-

ing
(
1
4

∑4
j=1 Sj(T) − K

)

+
at time T is considered. We use the following parameter

values: r = 6%, T = 0.5, ρ = 0 and S1(0) = 40, S2(0) = 50, S3(0) = 60, S4(0) =
70. These parameter values are also used in Sect. 5 of Korn and Zeytun [27]. We
denote by Cmc[K, T ] the corresponding Monte Carlo estimate for the price C[K, T ].
Here, 107 number of simulations are used. The approximation of the basket option
price C[K, T ] using the moment-matching approach outlined in Sect. 3 is denoted
by CMM[K, T ]. A comparison between the empirical density and the approximate
density is provided in Fig. 1.

In the second example, we consider the basket S (T) = w1X1 (T) + w2X2 (T) ,

written on two non-dividend paying stocks. We use as parameter values the ones
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also used in Sect. 7 of Deelstra et al. [18], hence r = 5%, X1 (0) = X2 (0) = 100,
and w1 = w2 = 0.5. Table3 gives numerical values for these basket options. Note
that strike prices are expressed in terms of forward moneyness. A basket strike
price K has forward moneyness equal to K/E [S] . We can conclude that the three-
moments-matching approximation gives acceptable results. For far out-of-the-money
call options, the approximation is not always able to closely approximate the real
basket option price.

We also investigate the sensitivity with respect to the Variance Gamma parameters
σ, ν, and θ and to the correlation parameter ρ. We consider a basket option consisting
of 3 stocks, i.e. n = 3. From Tables2 and 3, we observe that the error is the biggest
in case we consider different marginal volatilities and the option under consideration
is an out-of-the-money basket call. Therefore, we put σ1 = 0.2, σ2 = 0.4, σ3 = 0.6
and we determine the prices Cmc[K, T ] and CMM[K, T ] for K = 105.13. The other
parameter values are: r = 0.05, ρ = 0.5, w1 = w2 = w3 = 1/3 and T = 1. The first
panel of Fig. 2 shows the relative error for varying σ . The second panel of Fig. 2
shows the relative error in function of ν. The sensitivity with respect to θ is shown
in the third panel of Fig. 2. Finally, the fourth panel of Fig. 2 shows the relative error
in function of ρ.

The numerical results show that the approximations do not always manage to
closely approximate the true basket option price. Especially when some of the
volatilities deviate substantially from the other ones, the accuracy of the approxi-
mation deteriorates. The dysfunctioning of the moment-matching approximation in
the Gaussian copula model was already reported in Brigo et al. [7]. However, in
order to calibrate the Lévy copula model to available option data, the availability of
a basket option pricing formula which can be evaluated in a fast way, is of crucial
importance. Table4 shows the CPU times3 for the one-factor VGmodel for different
basket dimensions. The calculation time of approximate basket option prices when
100 stocks are involved is less than one second. Therefore, the moment-matching
approximation is a good candidate for calibrating the one-factor Lévy model.

4.2 Pricing Basket Options

In this subsection we explain how to determine the price of a basket option in a
realistic situation where option prices of the components of the basket are available
and used to calibrate the marginal parameters. In our example, the basket under
consideration consists of 2 major stock market indices (n = 2), the S&P500 and the
Nasdaq:

Basket = w1S&P 500 + w2Nasdaq.

The pricing date is February 19, 2009 and we determine prices for the Normal, VG,
NIG, and Meixner case. The details of the basket are listed in Table5. The weights

3The numerical illustrations are performed on an Intel Core i7, 2.70GHz.
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Fig. 1 Probability density function of the real basket (solid line) and the approximate basket (dashed
line). The basket option consists of 4 stocks and r = 0.06, ρ = 0, T = 1/2, w1 = w2 = w3 = w4 =
1
4 . All volatility parameters are equal to σ
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Fig. 2 Relative error in the one-factor VG model for the three-moments-matching approximation.
The basket option consists of 3 stocks and r = 0.05, ρ = 0.5, T = 1, σ1 = 0.2, σ2 = 0.4, σ3 =
0.6, w1 = w2 = w3 = 1

3 . The strike price is K = 105.13. In the benchmark model, the VG para-
meters are σ = 0.57, ν = 0.75, θ = −0.95, μ = 0.95

w1 and w2 are chosen such that the initial price S(0) of the basket is equal to 100.
The maturity of the basket option is equal to 30 days.

The S&P 500 and Nasdaq option curves are denoted by C1 and C2, respec-
tively. These option curves are only partially known. The traded strikes for curve
Cj are denoted by Ki,j, i = 1, 2, . . . , Nj, where Nj > 1. If the volatilities σ1 and σ2
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Table 3 Basket option prices in the one-factor VGmodel with r = 0.05, w1 = w2 = 0.5, X1(0) =
X2(0) = 100 and σ1 = σ2

T ρ σ1 Cmc[K, T ] CMM [K, T ] Length CI

K = 115.64 1 0.3 0.2 1.3995 1.3113 4.08E-03

0.4 5.5724 5.6267 1.26E-02

0.7 0.2 1.8963 1.8706 4.96E-03

0.4 6.9451 7.0095 1.47E-02

K = 127.80 3 0.3 0.2 4.4427 4.4565 1.14E-02

0.4 11.3138 11.5920 2.77E-02

0.7 0.2 5.6002 5.6368 1.34E-02

0.4 13.7444 13.9336 3.23E-02

K = 105.13 1 0.3 0.2 5.5312 5.5965 8.78E-03

0.4 10.1471 10.3515 1.73E-02

0.7 0.2 6.327 6.3731 9.74E-03

0.4 11.7163 11.8379 1.95E-02

K = 116.18 3 0.3 0.2 8.9833 9.1489 1.66E-02

0.4 15.8784 16.2498 3.27E-02

0.7 0.2 10.3513 10.4528 1.86E-02

0.4 18.4042 18.6214 3.73E-02

K = 94.61 1 0.3 0.2 12.3514 12.4371 1.29E-02

0.4 16.213 16.4493 2.17E-02

0.7 0.2 13.0696 13.1269 1.40E-02

0.4 17.7431 17.8690 2.40E-02

K = 104.57 3 0.3 0.2 15.1888 15.3869 2.15E-02

0.4 21.3994 21.7592 3.76E-02

0.7 0.2 16.5069 16.6232 2.36E-02

0.4 23.8489 24.0507 4.23E-02

and the characteristic function φL of the mother distribution L are known, we can
determine the model price of an option on asset j with strike K and maturity T . This
price is denoted by Cmodel

j [K, T;Θ, σj], where Θ denotes the vector containing the
model parameters of L. Given the systematic component, the stocks are independent.
Therefore, we can use the observed option curves C1 and C2 to calibrate the model
parameters as follows:

Algorithm 1 (Determining the parameters Θ and σj of the one-factor Lévy model)

Step 1: Choose a parameter vector Θ .
Step 2: For each stock j = 1, 2, . . . , n, determine the volatility σj as follows:

σj = argmin
σ

1

Nj

Nj∑

i=1

∣∣∣Cmodel
j [Ki,j, T;Θ, σ ] − Cj[Ki,j]

∣∣∣
Cj[Ki,j] ,



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 351

Table 4 The CPU time (in seconds) for the one-factor VGmodel for increasing basket dimension n

n CPU TIMES

Moment Matching

5 0.1991

10 0.1994

20 0.1922

30 0.2043

40 0.2335

50 0.2888

60 0.3705

70 0.4789

80 0.5909

90 0.6862

100 0.8680

The following parameters are used: r = 0.05, T = 1, ρ = 0.5, wj = 1
n , σj = 0.4, qj = 0, Sj(0) =

100, for j = 1, 2, . . . , n. The basket strike is K = 105.13

Table 5 Input data for the basket option

Date Feb 19, 2009

Maturity March 21, 2009

S&P 500 Nasdaq

Forward 777.76 1116.72

Weights 0.06419 0.0428

Step 3: Determine the total error:

error =
n∑

j=1

1

Nj

Nj∑

i=1

∣∣∣Cmodel
j [Ki,j, T;Θ, σj] − Cj[Ki,j]

∣∣∣
Cj[Ki,j] .

Repeat these three steps until the parameter vector Θ is found for which
the total error is minimal. The corresponding volatilities σ1, σ2, . . . , σn are
called the implied Lévy volatilities.

Only a limited number of option quotes is required to calibrate the one-factor Lévy
model. Indeed, the parameter vector Θ can be determined using all available option
quotes. Additional, one volatility parameter has to be determined for each stock.
However, other methodologies for determiningΘ exist. For example, one can fix the
parameter Θ upfront, as is shown in Sect. 5.2. In such a situation, only one implied
Lévy volatility has to be calibrated for each stock.

The calibrated parameters together with the calibration error are listed in Table6.
Note that the relative error in the VG, Meixner, and NIG case is significantly smaller
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Table 6 One-factor Lévy models: Calibrated model parameters

Model Calibration
error (%)

Model Parameters Volatilities

Normal 10.89 μnormal σnormal σ1 σ2

0 1 0.2821 0.2734

VG 2.83 σV G νV G θV G

0.3477 0.49322 −0.3919 0.3716 0.3628

Meixner 2.81 αMeixner βMeixner

1.1689 −1.6761 0.3799 0.3709

NIG 2.89 αNIG βNIG

2.2768 −1.4951 0.3863 0.3772

Table 7 Basket option prices for the basket given in Table5

ρ K CBLS[K, T ] CV G[K, T ] CMeixner[K, T ] CNIG[K, T ]
0.1 90 10.1783 10.7380 10.7893 10.8087

95 5.9457 6.7092 6.7482 6.7418

100 2.8401 3.4755 3.4843 3.4642

105 1.0724 1.3375 1.3381 1.3374

110 0.3158 0.3613 0.3690 0.3766

120 0.0133 0.0198 0.0204 0.0197

0.5 90 10.3557 11.1445 11.2037 11.2169

95 6.3160 7.2359 7.2754 7.2605

100 3.3139 4.0376 4.0436 4.0154

105 1.4699 1.7870 1.7798 1.7706

110 0.5480 0.5857 0.5907 0.5980

120 0.0461 0.0419 0.0421 0.0415

0.8 90 10.5000 11.4203 11.4837 11.4932

95 6.5745 7.5877 7.6280 7.6091

100 3.6292 4.4229 4.4287 4.3970

105 1.7462 2.1247 2.1149 2.1010

110 0.7301 0.7923 0.7954 0.8015

120 0.0852 0.0726 0.0726 0.0723

The time to maturity is 30 days

than in the normal case. Using the calibrated parameters for the mother distribution
L together with the volatility parameters σ1 and σ2, we can determine basket option
prices in the different model settings. Note that here and in the sequel of the paper,
we always use the three-moments-matching approximation for determining basket
option prices. We put T = 30 days and consider the cases where the correlation
parameter ρ is given by 0.1, 0.5, and 0.8. The corresponding basket option prices are
listed in Table7. One can observe from the table that eachmodel generates a different
basket option price, i.e. there is model risk. However, the difference between the
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Fig. 3 Implied market and model volatilities for February 19, 2009 for the S&P 500 (left) and the
Nasdaq (right), with time to maturity 30 days

Gaussian and the non-Gaussianmodels is muchmore pronounced than the difference
within the non-Gaussian models. We also find that using normally distributed log
returns, one underestimates the basket option prices. Indeed, the basket option prices
CV G[K, T ], CMeixner[K, T ] and CNIG[K, T ] are larger than CBLS[K, T ]. In the next
section, however, we encounter situations where the Gaussian basket option price
is larger than the corresponding VG price for out-of-the-money options. The reason
for this behavior is that marginal log returns in the non-Gaussian situations are
negatively skewed, whereas these distributions are symmetric in the Gaussian case.
This skewness results in a lower probability of ending in the money for options with
a sufficiently large strike (Fig. 3).

5 Implied Lévy Correlation

In Sect. 4.2 we showed how the basket option formulas can be used to obtain basket
option prices in the Lévy copula model. The parameter vector Θ describing the
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mother distribution L and the implied Lévy volatility parameters σj can be calibrated
using the observed vanilla option curves Cj[K, T ] of the stocks composing the basket
S(T); see Algorithm 1. In this section we show how an implied Lévy correlation
estimate ρ can be obtained if in addition to the vanilla options, market prices for a
basket option are also available.

We assume that S(T) represents the time-T price of a stock market index. Exam-
ples of such stock market indices are the Dow Jones, S&P 500, EUROSTOXX 50,
and so on. Furthermore, options on S(T) are traded and their prices are observable
for a finite number of strikes. In this situation, pricing these index options is not a
real issue; we denote the market price of an index option with maturity T and strike
K by C[K, T ]. Assume now that the stocks composing the index can be described by
the one-factor Lévy model (6). If the parameter vector Θ and the marginal volatil-
ity vector σ = (σ1, σ2, . . . , σn) are determined using Algorithm 1, the model price
Cmodel[K, T; σ ,Θ, ρ] for the basket option only depends on the choice of the cor-
relation ρ. An implied correlation estimate for ρ arises when we match the model
price with the observed index option price.

Definition 1 (Implied Lévy correlation) Consider the one-factor Lévymodel defined
in (6). The implied Lévy correlation of the index S(T) with moneyness π =
S(T)/S(0), denoted by ρ [π ], is defined by the following equation:

Cmodel
[
K, T; σ ,Θ, ρ [π ]

] = C[K, T ], (14)

where σ contains the marginal implied volatilities and Θ is the parameter vector
of L.

Determining an implied correlation estimate ρ [K/S(0)] requires an inversion of the
pricing formula ρ → Cmodel[K, T; σ ,Θ, ρ]. However, the basket option price is not
given in a closed form and determining this price using Monte Carlo simulation
would result in a slow procedure. If we determine Cmodel[K, T; σ ,Θ, ρ] using the
three-moments-matching approach, implied correlations can be determined in a fast
and efficient way. The idea of determining implied correlation estimates based on an
approximate basket option pricing formula was already proposed in Chicago Board
Options Exchange [15], Cont and Deguest [16], Linders and Schoutens [30], and
Linders and Stassen [31].

Note that in case we take L to be the standard normal distribution, ρ[π ] is an
implied Gaussian correlation; see e.g. Chicago Board Options Exchange [15] and
Skintzi and Refenes [45]. Equation (14) can be considered as a generalization of the
implied Gaussian correlation. Indeed, instead of determining the single correlation
parameter in a multivariate model with normal log returns and a Gaussian copula,
we can now extend the model to the situation where the log returns follow a Lévy
distribution. A similar idea was proposed in Garcia et al. [20] and further studied in
Masol and Schoutens [37]. In these papers, Lévy base correlation is defined using
CDS and CDO prices.

The proposed methodology for determining implied correlation estimates can
also be applied to other multi-asset derivatives. For example, implied correlation
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estimates can be extracted from traded spread options [46], best-of basket options
[19], and quanto options [4]. Implied correlation estimates based on various multi-
asset products are discussed in Austing [2].

5.1 Variance Gamma

In order to illustrate the proposed methodology for determining implied Lévy corre-
lation estimates, we use the Dow Jones Industrial Average (DJ). The DJ is composed
of 30 underlying stocks and for each underlying we have a finite number of option
prices to which we can calibrate the parameter vectorΘ and the Lévy volatility para-
meters σj. Using the available vanilla option data for June 20, 2008, we will work out
the Gaussian and the Variance Gamma case.4 Note that options on components of the
Dow Jones are of American type. In the sequel, we assume that the American option
price is a good proxy for the corresponding European option price. This assumption
is justified because we use short term and out-of-the-money options.

The single volatility parameter σj is determined for stock j by minimizing the rel-
ative error between the model and the market vanilla option prices; see Algorithm 1.
Assuming a normal distribution for L, this volatility parameter is denoted by σ BLS

j ,
whereas the notation σ V G

j , j = 1, 2, . . . , n is used for the VG model. For June 20,
2008, the parameter vector Θ for the VG copula model is given in Table9 and the
implied volatilities are listed in Table8. Figure4 shows the model (Gaussian and
VG) and market prices for General Electric and IBM, both members of the Dow
Jones, based on the implied volatility parameters listed in Table8. We observe that
the Variance Gamma copula model is more suitable in capturing the dynamics of the
components of the Dow Jones than the Gaussian copula model.

Given the volatility parameters for the Variance Gamma case and the normal case,
listed in Table8, the implied correlation defined by Eq. (14) can be determined based
on the availableDow Jones index options on June 20, 2008. For a given index strikeK ,
the moneyness π is defined as π = K/S(0). The implied Gaussian correlation (also
called Black and Scholes correlation) is denoted by ρBLS [π ] and the corresponding
implied Lévy correlation, based on a VG distribution, is denoted by ρV G [π ]. In order
to match the vanilla option curves more closely, we take into account the implied
volatility smile and use a volatility parameter with moneyness π for each stock j,
which we denote by σj[π ]. For a detailed and step-by-step plan for the calculation
of these volatility parameters, we refer to Linders and Schoutens [30].

Figure5 shows that both the implied Black and Scholes and implied Lévy cor-
relation depend on the moneyness π . However, for low strikes, we observe that
ρV G [π ] < ρBLS [π ], whereas the opposite inequality holds for large strikes, making
the implied Lévy correlation curve less steep than its Black and Scholes counterpart.
In Linders and Schoutens [30], the authors discuss the shortcomings of the implied
Black and Scholes correlation and show that implied Black and Scholes correlations

4All data used for calibration are extracted from an internal database of the KU Leuven.
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Table 8 Implied Variance Gamma volatilities σ V G
j and implied Black and Scholes volatilities σBLS

j
for June 20, 2008

Stock σ V G
j σBLS

j

Alcoa Incorporated 0.6509 0.5743

American Express Company 0.4923 0.4477

American International Group 0.5488 0.4849

Bank of America 0.6003 0.5482

Boeing Corporation 0.3259 0.2927

Caterpillar 0.3009 0.2671

JP Morgan 0.5023 0.4448

Chevron 0.3252 0.3062

Citigroup 0.6429 0.5684

Coca Cola Company 0.2559 0.2343

Walt Disney Company 0.3157 0.2810

DuPont 0.2739 0.2438

Exxon Mobile 0.2938 0.2609

General Electric 0.3698 0.3300

General Motors 0.9148 0.8092

Hewlet–Packard 0.3035 0.2704

Home Depot 0.3604 0.3255

Intel 0.4281 0.3839

IBM 0.2874 0.2509

Johnson & Johnson 0.1741 0.1592

McDonald’s 0.2508 0.2235

Merck & Company 0.3181 0.2896

Microsoft 0.3453 0.3068

3M 0.2435 0.2202

Pfizer 0.2779 0.2572

Procter & Gamble 0.1870 0.1671

AT&T 0.3013 0.2688

United Technologies 0.2721 0.2434

Verizon 0.3116 0.2847

Wal-Mart Stores 0.2701 0.2397

can become larger than one for low strike prices. Our more general approach and
using the implied Lévy correlation solves this problem at least to some extent. Indeed,
the region where the implied correlation stays below 1 is much larger for the flatter
implied Lévy correlation curve than for its Black and Scholes counterpart. We also
observe that near the at-the-money strikes, VG and Black and Scholes correlation
estimates are comparable, which may be a sign that in this region, the use of implied
Black and Scholes correlation (as defined in Linders and Schoutens [30]) is justi-
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Table 9 Calibrated VG parameters for different trading days

VG Parameters

S(0) T (days) σ ν θ

March 25,
2008

125.33 25 0.2981 0.5741 −0.1827

April 18, 2008 128.49 29 0.3606 0.5247 −0.2102

June 20, 2008 118.43 29 0.3587 0.4683 −0.1879

July 18, 2008 114.97 29 0.2639 0.5222 −0.1641

August 20,
2008

114.17 31 0.2467 0.3770 −0.1887
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Fig. 4 Option prices and implied volatilities (model and market) for Exxon Mobile and IBM on
June 20, 2008 based on the parameters listed in Table8. The time to maturity is 30 days

fied. Figure7 shows implied correlation curves for March, April, July and August,
2008. In all these situations, the time to maturity is close to 30 days. The calibrated
parameters for each trading day are listed in Table9.

We determine the implied correlation ρV G[π ] such that model and market
quote for an index option with moneyness π = K/S(0) coincide. However, the
model price is determined using the three-moments-matching approximation and
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Fig. 5 Implied correlation
smile for the Dow Jones,
based on a Gaussian (dots)
and a one-factor Variance
Gamma model (crosses) for
June 20, 2008

0.8 0.85 0.9 0.95 1 1.05
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Moneyness

Implied Lévy correlation

Implied Lévy correlation

Implied Black & Scholes correlation

may deviate from the real model price. Indeed, we determine ρV G[π ] such that
CMM

[
K, T; σ ,Θ, ρ [π ]

] = C[K, T ]. In order to test if the implied correlation esti-
mate obtained is accurate, we determine the model price Cmc

[
K, T; σ ,Θ, ρ [π ]

]

using Monte Carlo simulation, where we plug in the volatility parameters and the
implied correlation parameters. The results are listed in Table10 and shown in Fig. 6.
We observe that model and market prices are not exactly equal, but the error is still
acceptable.

5.2 Double Exponential

In the previous subsection, we showed that the Lévy copula model allows for deter-
mining robust implied correlation estimates. However, calibrating this model can
be a computational challenging task. Indeed, in case we deal with the Dow Jones
Industrial Average, there are 30 underlying stocks and each stock has approximately
5 traded option prices. Calibrating the parameter vector Θ and the volatility para-
meters σj has to be done simultaneously. This contrasts sharply with the Gaussian
copula model, where the calibration can be done stock per stock.

In this subsection we consider a model with the computational attractive calibra-
tion property of the Gaussian copula model, but without imposing any normality
assumption on the marginal log returns. To be more precise, given the convincing
arguments exposed in Fig. 7 we would like to keep L a V G(σ, ν, θ, μ) distribution.
However, we do not calibrate the parameter vector Θ = (σ, ν, θ, μ) to the vanilla
option curves, but we fix these parameters upfront as follows

μ = 0, θ = 0, ν = 1 and σ = 1.
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Table 10 Market quotes for Dow Jones Index options for different basket strikes on June 20, 2008

Basket strikes Market call prices Implied VG
correlation

VG call prices

94 24.45 0.8633 24.4608

95 23.45 0.8253 23.4794

96 22.475 0.786 22.4899

97 21.475 0.7358 21.4887

98 20.5 0.7062 20.5303

99 19.5 0.6757 19.5308

100 18.525 0.6546 18.5551

101 17.55 0.6203 17.5705

102 16.575 0.6101 16.6062

103 15.6 0.5778 15.6313

104 14.65 0.5668 14.6954

105 13.675 0.5386 13.7209

106 12.725 0.5266 12.7672

107 11.8 0.5164 11.8280

108 10.85 0.4973 10.8922

109 9.95 0.4989 9.9961

110 9.05 0.484 9.0813

111 8.2 0.4809 8.2202

112 7.35 0.4719 7.3519

113 6.525 0.4656 6.5193

114 5.7 0.4527 5.6755

115 4.95 0.4467 4.8908

116 4.225 0.4389 4.1554

117 3.575 0.4344 3.4788

118 2.935 0.4162 2.8118

119 2.375 0.4068 2.2337

120 1.88 0.3976 1.7227

121 1.435 0.3798 1.2977

122 1.065 0.3636 0.9549

123 0.765 0.3399 0.6906

124 0.52 0.3147 0.4793

125 0.36 0.3029 0.3517

126 0.22 0.2702 0.2321

127 0.125 0.2357 0.1479

For each price we find the corresponding implied correlation and the model price using a one-factor
Variance Gamma model with parameters listed in Table9
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Fig. 6 Dow Jones option prices: Market prices (circles) and the model prices using a one-factor
Variance Gamma model and the implied VG correlation smile (crosses) for June 20, 2008
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In this setting, L is a standardized distribution and its characteristic function φL is
given by

φL(u) = 1

1 + u2
2

, u ∈ R.

From its characteristic function, we see that L has a Standard Double Exponential
distribution, also called Laplace distribution, and its pdf fL is given by

fL(u) =
√
2

2
e− |u|√

2

The Standard Double Exponential distribution is symmetric and centered around
zero, while it has variance 1. Note, however, that it is straightforward to generalize
this distribution such that it has center μ and variance σ 2. Moreover, the kurtosis of
this Double Exponential distribution is 6.

By using the Double Exponential distribution instead of the more general
Variance Gamma distribution, some flexibility is lost for modeling the marginals.
However, the Double Exponential distribution is still a much better distribution for
modeling the stock returns than the normal distribution. Moreover, in this simplified
setting, the only parameters to be calibrated are the marginal volatility parameters,
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Fig. 8 Implied correlation smiles in the one-factor Variance Gamma and the Double Exponential
model
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which we denote by σ DE
j , and the correlation parameter ρDE . Similar to the Gaussian

copula model, calibrating the volatility parameter σ DE
j only requires the option curve

of stock j. As a result, the time to calibrate the Double Exponential copula model is
comparable to its Gaussian counterpart and much shorter than the general Variance
Gamma copula model.

Consider the DJ on March 25, 2008. The time to maturity is 25 days. We deter-
mine the implied marginal volatility parameter for each stock in a one-factor Vari-
ance Gamma model and a Double Exponential framework. Given this information,
we can determine the prices CV G[K, T ] and CDE[K, T ] for a basket option in a
Variance-Gamma and a Double Exponential model, respectively. Figure8 shows the
implied Variance Gamma and the Double Exponential correlations. We observe that
the implied correlation based on a one-factor VG model is larger than its Double
Exponential counterpart for a moneyness bigger than one, whereas both implied
correlation estimates are relatively close to each other in the other situation.

6 Conclusion

In this paper we introduced a one-factor Lévy model and we proposed a three-
moments-matching approximation for pricing basket options. Well-known
distributions like the Normal, Variance Gamma, NIG, Meixner, etc., can be used in
this one-factor Lévy model. We calibrate these different models to market data and
determine basket option prices for the different model settings. Our newly designed
(approximate) basket option pricing formula can be used to define implied Lévy
correlation. The one-factor Lévy model provides a flexible framework for deriving
implied correlation estimates in different model settings. Indeed, by employing a
Brownian motion and a Variance Gamma process in our model, we can determine
Gaussian and VG-implied correlation estimates, respectively. We observe that the
VG implied correlation is an improvement of the Gaussian-implied correlation.
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Appendix: Proof of Lemma 1

The proof for expression (9) is straightforward.
Starting from the multinomial theorem, we can write the second moment m2 as

follows

m2 = E
[
(w1S1(T) + w2S2(T) + . . . wnSn(T))2

]

= E

⎡

⎣
∑

i1+i2+...+in=2

2

i1!i2! . . . in!
n∏

j=1

(
wjSj(T)

)ij

⎤

⎦ .

Considering the cases (in = 0), (in = 1) and (in = 2) separately, we find

m2 = E

⎡

⎣

⎛

⎝
n−1∑

j=1

wjSj(T)

⎞

⎠
2

+ 2wnSn(T)

n−1∑

j=1

wjSj(T) + w2
j S2

n(T)

⎤

⎦ .

Continuing recursively gives

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)Sk(T)

]
. (15)

We then find that

m2 =
n∑

j=1

n∑

k=1

wjwkSj(0)Sk(0)

×E

[
exp

{
(2r − qj − qk − ωj − ωk)T + (σjAj + σkAk)

√
T
}]

=
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E [Sk(T)]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)E

[
exp

{
(σjAj + σkAk)

√
T
}]

.

In the last step,we used theExpressionωj = logφL

(
iσj

√
T
)

/T . Ifwe use expression

(1) to decompose Aj and Ak in the common component X(ρ) and the independent
components Xj(1 − ρ) and Xk(1 − ρ), we find the following expression for m2

m2 =
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E
[
Sk(T)

]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)E

[
e(σj+σk )X(ρ)eσj

√
TXj(1−ρ)eσk

√
TXk (1−ρ)

]
.

The r.v. X(ρ) is independent from Xj(1 − ρ) and Xk(1 − ρ). Furthermore, the char-
acteristic function of X(ρ) is φ

ρ

L , which results in
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m2 =
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E [Sk(T)]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)φL

(
−i(σj + σk)

√
T
)ρ

×E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)

]
.

If j �= k, Xj(1 − ρ) and Xk(1 − ρ) are i.i.d. with characteristic function φ
1−ρ

L , which
gives the following expression for m2:

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

⎛

⎝
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

⎞

⎠
ρ

.

If j = k, we find that

E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)

]
= φL

(
−i
(
σj + σk

)√
T
)

,

which gives

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
) .

This proves expression (10) for m2.
We can write m3 as follows

m3 = E

⎡

⎣

⎛

⎝
n∑

j=1

wjSj(T)

⎞

⎠
3⎤
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⎞

⎠
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wlSl(T)

⎤

⎦ .

Using expression (15), we find the following Expression for m3:

m3 = E

⎡

⎣

⎛

⎝
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n∑
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wjwkSj(T)Sk(t)
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=
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n∑

l=1
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[
Sj(T)Sk(T)Sl(T)

]
.
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Similar calculations as for m2 result in

m3 =
n∑

j=1

n∑

k=1

n∑

l=1

wjwkwlE
[
Sj(T)

]
E [Sk(T)]E [Sl(T)]

×
φL

(
−i(σj + σk + σl)

√
T
)ρ

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
)Aj,k,l,

where

Aj,k,l = E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)eσl

√
TXl(1−ρ)

]
.

Differentiating between the situations (j = k = l), (j = k, k �= l), (j �= k, k = l),
(j �= k, k �= l, j = l) and (j �= k �= l, j �= l), we find expression (11).

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Albrecher, H., Ladoucette, S., Schoutens, W.: A generic one-factor Lévy model for pricing
synthetic CDOs. In: Fu, M., Jarrow, R., Yen, J.-Y., Elliott, R. (eds.) Advances in Mathematical
Finance, pp. 259–277. Applied and Numerical Harmonic Analysis, Birkhäuser Boston (2007)

2. Austing, P.: Smile Pricing Explained. Financial Engineering Explained. Palgrave Macmillan
(2014)

3. Ballotta, L., Bonfiglioli, E.: Multivariate asset models using Lévy processes and applications.
Eur. J. Financ. http://dx.doi.org/10.1080/1351847X.2013.870917 (2014)

4. Ballotta, L., Deelstra, G., Rayée, G.: Extracting the implied correlation from quanto derivatives,
Technical report. working paper (2014)

5. Baxter,M.: Lévy simple structuralmodels. Int. J. Theor.Appl. Financ. (IJTAF) 10(04), 593–606
(2007)

6. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3),
637–654 (1973)

7. Brigo, D., Mercurio, F., Rapisarda, F., Scotti, R.: Approximated moment-matching dynamics
for basket-options pricing. Quant. Financ. 4(1), 1–16 (2004)

8. Brooks, R., Corson, J., Wales, J.D.: The pricing of index options when the underlying assets
all follow a lognormal diffusion. Adv. Futures Options Res. 7 (1994)

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1080/1351847X.2013.870917


366 D. Linders and W. Schoutens

9. Caldana, R., Fusai, G.: A general closed-form spread option pricing formula. J. Bank. Financ.
37(12), 4893–4906 (2013)

10. Caldana, R., Fusai, G., Gnoatto, A., Graselli, M.: General close-form basket option pricing
bounds. Quant. Financ. http://dx.doi.org/10.2139/ssrn.2376134 (2014)

11. Carmona, R., Durrleman, V.: Pricing and hedging spread options. SIAM Rev. 45(4), 627–685
(2003)

12. Carmona, R., Durrleman, V.: Generalizing the Black–Scholes formula to multivariate contin-
gent claims. J. Comput. Financ. 9, 43–67 (2006)

13. Carr, P., Madan, D.B.: Option valuation using the Fast Fourier Transform. J. Comput. Financ.
2, 61–73 (1999)

14. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. The Wiley Finance
Series. Wiley (2004)

15. Chicago Board Options Exchange: CBOE S&P 500 implied correlation index. Working Paper
(2009)

16. Cont, R., Deguest, R.: Equity correlations implied by index options: estimation and model
uncertainty analysis. Math. Financ. 23(3), 496–530 (2013)

17. Corcuera, J.M., Guillaume, F., Leoni, P., Schoutens,W.: Implied Lévy volatility. Quant. Financ.
9(4), 383–393 (2009)

18. Deelstra, G., Liinev, J., Vanmaele, M.: Pricing of arithmetic basket options by conditioning.
Insur. Math. Econ. 34(1), 55–77 (2004)

19. Fonseca, J., Grasselli, M., Tebaldi, C.: Option pricing when correlations are stochastic: an
analytical framework. Rev. Deriv. Res. 10(2), 151–180 (2007)

20. Garcia, J., Goossens, S., Masol, V., Schoutens, W.: Lévy base correlation.Wilmott J. 1, 95–100
(2009)

21. Guillaume, F.: The αVG model for multivariate asset pricing: calibration and extension. Rev.
Deriv. Res. 16(1), 25–52 (2013)

22. Guillaume, F., Jacobs, P., Schoutens, W.: Pricing and hedging of CDO-squared tranches by
using a one factor Lévy model. Int. J. Theor. Appl. Financ. 12(05), 663–685 (2009)

23. Hull, J., White, S.: Efficient procedures for valuing European and American path-dependent
options. J. Deriv. 1(1), 21–31 (1993)

24. Hurd, T.R., Zhou, Z.: A Fourier transform method for spread option pricing. SIAM J. Fin.
Math. 1(1), 142–157 (2010)

25. Kallsen, J., Tankov, P.: Characterization of dependence of multidimensional Lévy processes
using Lévy copulas. J. Multivar. Anal. 97(7), 1551–1572 (2006)

26. Kawai, R.: A multivariate Lévy process model with linear correlation. Quant. Financ. 9(5),
597–606 (2009)

27. Korn, R., Zeytun, S.: Efficient basket Monte Carlo option pricing via a simple analytical
approximation. J. Comput. Appl. Math. 243(1), 48–59 (2013)

28. Leoni, P., Schoutens, W.: Multivariate smiling. Wilmott Magazin. 82–91 (2008)
29. Linders, D.: Pricing index options in a multivariate Black & Scholes model, Research report

AFI-1383 FEB. KU Leuven—Faculty of Business and Economics, Leuven (2013)
30. Linders, D., Schoutens, W.: A framework for robust measurement of implied correlation. J.

Comput. Appl. Math. 271, 39–52 (2014)
31. Linders, D., Stassen, B.: The multivariate Variance Gamma model: basket option pricing and

calibration. Quant. Financ. http://dx.doi.org/10.1080/14697688.2015.1043934 (2015)
32. Luciano, E., Schoutens, W.: A multivariate jump-driven financial asset model. Quant. Financ.

6(5), 385–402 (2006)
33. Luciano, E., Semeraro, P.: Multivariate time changes for Lévy asset models: characterization

and calibration. J. Comput. Appl. Math. 233, 1937–1953 (2010)
34. Madan, D.B., Seneta, E.: The Variance Gamma (V.G.) model for share market returns. J. Bus.

63(4), 511–524 (1990)
35. Madan, D.B., Carr, P., Chang, E.C.: The Variance Gamma process and option pricing. Eur.

Financ. Rev. 2, 79–105 (1998)

http://dx.doi.org/10.2139/ssrn.2376134
http://dx.doi.org/10.1080/14697688.2015.1043934


Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 367

36. Mai, J.-F., Scherer, M., Zagst, R.: CIID frailty models and implied copulas. In: Proceedings of
the workshop Copulae in Mathematical and Quantitative Finance, Cracow, 10-11 July 2012,
Springer, pp. 201–230 (2012)

37. Masol, V., Schoutens, W.: Comparing alternative Lévy base correlation models for pricing and
hedging CDO tranches. Quant. Financ. 11(5), 763–773 (2011)

38. McWilliams, N.: Option pricing techniques understochastic delay models. Ph.D. thesis, Uni-
versity of Edinburgh (2011)

39. Milevsky, M., Posner, S.: A closed-form approximation for valuing basket options. J. Deriv.
5(4), 54–61 (1998)

40. Moosbrucker, T.: Explaining the correlation smile using Variance Gamma distributions. J.
Fixed Income 16(1), 71–87 (2006)

41. Moosbrucker, T.: PricingCDOswith correlated variance gammadistributions, Technical report,
Centre for Financial Research, Univ. of Cologne. colloquium paper (2006)

42. Rubinstein, M.: Implied binomial trees. J. Financ. 49(3), 771–818 (1994)
43. Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. Wiley (2003)
44. Semeraro, P.: A multivariate Variance Gamma model for financial applications. Int. J. Theor.

Appl. Financ. (IJTAF) 11(01), 1–18 (2008)
45. Skintzi, V.D., Refenes, A.N.: Implied correlation index: a new measure of diversification. J.

Futures Mark. 25, 171–197 (2005). doi:10.1002/fut.20137
46. Tavin, B.: Hedging dependence risk with spread options via the power frank and power student

t copulas, Technical report, Université Paris I Panthéon-Sorbonne. Available at SSRN: http://
ssrn.com/abstract=2192430 (2013)

47. Vasicek, O.: Probability of loss on a loan portfolio. KMV Working Paper (1987)
48. Xu, G., Zheng, H.: Basket options valuation for a local volatility jump diffusion model with

the asymptotic expansion method. Insur. Math. Econ. 47(3), 415–422 (2010)
49. Xu, G., Zheng, H.: Lower bound approximation to basket option values for local volatility

jump-diffusion models. Int. J. Theor. Appl. Financ. 17(01), 1450007 (2014)

http://dx.doi.org/10.1002/fut.20137
http://ssrn.com/abstract=2192430
http://ssrn.com/abstract=2192430

	Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model
	1 Introduction
	2 The One-Factor Lévy Model
	2.1 The Model
	2.2 The Risk-Neutral Stock Price Processes

	3 A Three-Moments-Matching Approximation
	3.1 Matching the First Three Moments
	3.2 Approximate Basket Option Pricing
	3.3 The FFT Method and Basket Option Pricing

	4 Examples and Numerical Illustrations
	4.1 Variance Gamma
	4.2 Pricing Basket Options

	5 Implied Lévy Correlation
	5.1 Variance Gamma
	5.2 Double Exponential

	6 Conclusion
	References


