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Abstract We present a detailed analysis of interest rate derivatives valuation under
credit risk and collateral modeling. We show how the credit and collateral extended
valuation framework in Pallavicini et al. (2011) can be helpful in defining the key
market rates underlying the multiple interest rate curves that characterize current
interest rate markets. We introduce the collateralized valuation measures and for-
mulate a consistent realistic dynamics for the rates emerging from our analysis. We
point out limitations of multiple curve models with deterministic basis considering
valuation of particularly sensitive products such as basis swaps.

Keywords Multiple curves - Evaluation adjustments + Basis swaps + Collateral -
HIM model

1 Introduction

After the onset of the crisis in 2007, all market instruments are quoted by taking
into account, more or less implicitly, credit- and collateral-related adjustments. As
a consequence, when approaching modeling problems one has to carefully check
standard theoretical assumptions which often ignore credit and liquidity issues. One
has to go back to market processes and fundamental instruments by limiting oneself
to use models based on products and quantities that are available on the market.
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Referring to market observables and processes is the only means we have to validate
our theoretical assumptions, so as to drop them if in contrast with observations. This
general recipe is what is guiding us in this paper, where we try to adapt interest rate
models for valuation to the current landscape.

A detailed analysis of the updated valuation problem one faces when including
credit risk and collateral modeling (and further funding costs) has been presented
elsewhere in this volume, see for example [6, 7]. We refer to those papers and
references therein for a detailed discussion. Here we focus our updated valuation
framework to consider the following key points: (i) focus on interest rate derivatives;
(i1) understand how the updated valuation framework can be helpful in defining the
key market rates underlying the multiple interest rate curves that characterize current
interest rate markets; (iii) define collateralized valuation measures; (iv) formulate a
consistent realistic dynamics for the rates emerging from the above analysis; (v) show
how the framework can be applied to valuation of particularly sensitive products
such as basis swaps under credit risk and collateral posting;(vi) point out limitations
in some current market practices such as explaining the multiple curves through
deterministic fudge factors or shifts where the option embedded in the credit valuation
adjustment (CVA) calculation would be priced without any volatility. For an extended
version of this paper we remand to [3]. This paper is an extended and refined version
of ideas originally appeared in [24].

2 Valuation Equation with Credit and Collateral

Classical interest-rate models were formulated to satisfy no-arbitrage relationships
by construction, which allowed one to price and hedge forward-rate agreements in
terms of risk-free zero-coupon bonds. Starting from summer 2007, with the spreading
of the credit crunch, market quotes of forward rates and zero-coupon bonds began
to violate usual no-arbitrage relationships. The main driver of such behavior was the
liquidity crisis reducing the credit lines along with the fear of an imminent systemic
break-down. As a result the impact of counterparty risk on market prices could not
be considered negligible any more.

This is the first of many examples of relationships that broke down with the cri-
sis. Assumptions and approximations stemming from valuation theory should be
replaced by strategies implemented with market instruments. For instance, inclu-
sion of CVA for interest-rate instruments, such as those analyzed in [8], breaks the
relationship between risk-free zero-coupon bonds and LIBOR forward rates. Also,
funding in domestic currency on different time horizons must include counterparty
risk adjustments and liquidity issues, see [15], breaking again this relationship. We
thus have, against the earlier standard theory,
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where P;(T) is a zero-coupon bond price at time ¢ for maturity 7', L is the LIBOR rate
and F is the related LIBOR forward rate. A direct consequence is the impossibility
to describe all LIBOR rates in terms of a unique zero-coupon yield curve. Indeed,
since 2009 and even earlier, we had evidence that the money market for the Euro
area was moving to a multi-curve setting. See [1, 19, 20, 27].

2.1 Valuation Framework

In order to value a financial product (for example a derivative contract), we have to
discount all the cash flows occurring after the trading position is entered. We follow
the approach of [25, 26] and we specialize it to the case of interest-rate derivatives,
where collateralization usually happens on a daily basis, and where gap risk is not
large. Hence we prefer to present such results when cash flows are modeled as
happening in a continuous time-grid, since this simplifies notation and calculations.
We refer to the two names involved in the financial contract and subject to default
risk as investor (also called name “I”’) and counterparty (also called name “C”). We
denote by 7/, and 7, respectively, the default times of the investor and counterparty.
We fix the portfolio time horizon T > 0, and fix the risk-neutral valuation model
(82,4, Q), with a filtration (%;),e[0.77 such that t¢, 7, are (¢4),c[0.11-stopping times.
We denote by E, [ -] the conditional expectation under Q given %, and by E_ [ -]
the conditional expectation under Q given the stopped filtration ¢;,. We exclude the
possibility of simultaneous defaults, and define the first default event between the
two parties as the stopping time 7 := ¢ A 75 .

We will also consider the market sub-filtration (.%,),( that one obtains implicitly
by assuming a separable structure for the complete market filtration (¢;)>0. % is then
generated by the pure default-free market filtration .%, and by the filtration generated
by all the relevant default times monitored up to ¢ (see for example [2]).

We introduce a risk-free rate r associated with the risk-neutral measure. We there-
fore need to define the related stochastic discount factor D(z, u, r) that in general will
denote the risk-neutral default-free discount factor, given by the ratio

D(t,u,r) = B;/B,, dB,=rBdt,

where B is the bank account numeraire, driven by the risk-free instantaneous interest
rate r, and associated to the risk-neutral measure Q. This rate r; is assumed to be
(%) 1ej0.1) adapted and is the key variable in all pre-crisis term structure modeling.

We now want to price a collateralized derivative contract, and in particular we
assume that collateral re-hypothecation is allowed, as done in practice (see [4] for a
discussion on re-hypothecation). We thus write directly the adjustment payout terms
as carry costs cash flows, each accruing at the relevant rate, namely the price V; of a
derivative contract, inclusive of collateralized credit and debit risk, margining costs,
can be derived by following [25, 26], and is given by:
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T
Vt =E |:/ D(l, u; I’) (1{u<r}d77u + l{redu}eu + (ru - cu)Cudu) |gti| (2)
t

where

e 1, is the coupon process of the product, without credit or debit risk and without
collateral cash flows;

e C, is the collateral process, and we use the convention that C, > 0 while / is the
collateral receiver and C,, < 0 when [ is the collateral poster. (r, — ¢,)C, are the
collateral margining costs and the collateral rate is defined as ¢, := ¢;" 1{c,=0) +
¢; lic, <0y with c* defined in the CSA contract. In general we may assume the
processes ¢, ¢~ to be adapted to the default-free filtration .%,.

e 0, =6,(C,¢) is the on-default cash flow process that depends on the collateral
process C, and the close-out value &,.! It is primarily this term that originates the
credit and debit valuation adjustments (CVA/DVA) terms, that may also embed
collateral and gap risk due to the jump at default of the value of the considered
deal (e.g. in a credit derivative), see for example [5].

Notice that the above valuation equation (2) is not suited for explicit numerical
evaluations, since the right-hand side is still depending on the derivative price via the
indicators within the collateral rates and possibly via the close-out term, leading to
recursive/nonlinear features. We could resort to numerical solutions, as in [11], but,
since our goal is valuing interest-rate derivatives, we prefer to further specialize the
valuation equation for such deals.

2.2 The Master Equation Under Change of Filtration

In this first work we develop our analysis without considering a dependence between
the default times if not through their spreads, or more precisely by assuming that
the default times are .% -conditionally independent. Moreover, we assume that the
collateral account and the close-out processes are .% -adapted. Thus, we can simplify
the valuation equation given by (2) by switching to the default-free market filtration.
By following the filtration switching formula in [2], we introduce for any ¥;-adapted
process X; a unique .#;-adapted process X;, defined such that 1z~ X; = lz=1X:.
Hence, we can write the pre-default price process as given by 1{;.,V, = V, where
the right-hand side is given in Eq.(2) and where V, is .%;-adapted. Before changing
filtration, we have to specify the form of the close-out payoft:

Or =¢e1(t,T) — lizc<)LGDc (e (7, T) — Cr)+ — g <z} LGDy (e (7, T) — Co) ™

IThe closeout value is the residual value of the contract at default time and the CSA specifies the
way it should be computed.
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where LGD < 1 is the loss given default, (x)* indicates the positive part of x and

(x)” = —(—x)™". For an extended discussion of the term @, we refer to [3]. Moreover,
to derive an explicit valuation formula we assume that gap risk is not present, namely
V.— = V;, and we consider a particular form for collateral and close-out prices,

namely we model the close-out value as

T
8.Y(tv T) = ]E [/ D(tv u, r)dﬂ:u |%} ’ Ct ialgt(t’ T)
t

with 0 < o; < 1 and where «; is .%,-adapted. This means that the close-out is the
risk-free mark to market at first default time and the collateral is a fraction «; of the
close-out value. An alternative approximation that does not impose a proportionality
between the account value processes can be found in [9]. We obtain, by switching to
the default-free market filtration .7 the following.?

Proposition 1 (Master equation under .% -conditionally independent default times,
no gap risk and .7, measurable payout ;) Under the above assumption, Valuation
Equation (2) is further specified as V; = 1z~ V;

T
V, =¢,(t,T) + E [ / D(t, u; r + M) (ry — c)oyen(u, T)du | 32,}
T
-E [/ D(t, u; r + MAS (1 — a,)LGD¢ (e, (u, T))  du | y‘,}
T
—E [/ D(t,u;r+ )L))Li(l — o, )LGD;(e,(u, T)) du | ﬁ,i|

where we introduced the pre-default intensity A of the investor and the pre-default
intensity AS of the counterparty as

l{t,>t}k{dt =Q{redt |1y>t, %}, l{,c>t}ktcdz =Q{rcedt |tc >t %)}

along with their sum A, and the discount factor for any rate x,, namely D(t, T, x) :=
T
exp{— [, xudu}.

3 Valuing Collateralized Interest-Rate Derivatives

As we mentioned in the introduction, we will base our analysis on real market
processes. All liquid market quotes on the money market (MM) correspond to instru-
ments with daily collateralization at overnight rate (e;), both for the investor and the
counterparty, namely ¢, = e, .

2We refer to [3] and [6] for a precise derivation of the proposition.
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Notice that the collateral accrual rate is symmetric, so that we no longer have a
dependency of the accrual rates on the collateral price, as opposed to the general
master equation case. Moreover, we further assume r, = ¢, .

This makes sense because e, being an overnight rate, it embeds a low counterparty
risk and can be considered a good proxy for the risk-free rate r,. We will describe
some of these MM instruments, such as OIS and Interest Rate Swaps (IRS), along
with their underlying market rates, in the following sections. For the remaining of
this section we adopt the perfect collateralization approximation of Eq. (1) to derive
the valuation equations for OIS and IRS products, hence assuming no gap-risk,
while in the numeric experiments of Sect.4 we will consider also uncollateralized
deals. Furthermore, we assume that daily collateralization can be considered as a
continuous-dividend perfect collateralization. See [4] for a discussion on the impact
of discrete-time collateralization on interest-rate derivatives.

3.1 Overnight Rates and OIS

Among other instruments, the MM usually quotes the prices of overnight indexed
swaps (OIS). Such contracts exchange a fix-payment leg with a floating leg pay-
ing a discretely compounded rate based on the same overnight rate used for their
collateralization. Since we are going to price OIS under the assumption of perfect
collateralization, namely we are assuming that daily collateralization may be viewed
as done on a continuous basis, we approximate also daily compounding in OIS float-
ing leg with continuous compounding, which is reasonable when there is no gap
risk. Hence the discounted payoff of a one-period OIS with tenor x and maturity 7'

is given by
T
D, T,e) (1 + xK — exp [/ e du ])
T—x

where K is the fixed rate payed by the OIS. Furthermore, we can introduce the (par)
fix rates K = E;(T, x; e) that make the one-period OIS contract fair, namely priced
0 at time ¢. They are implicitly defined via

T
VOIS (K) ::]E[(Hxl{—exp[/ euduDD(t, T;e) Wﬂ
T

—X

with VOIS (E,(T, x; e)) = 0 leading to

3)

1 (P,(T—x; e) )
E(T,x;e) = - (2% 4
X

Pi(T; e)
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where we define collateralized zero-coupon bonds? as
P(T;e) :=E[D(, T;e) | F]. “4)

One-period OIS rates E, (T, x; e), along with multi-period ones, are actively traded
on the market. Notice that we can bootstrap collateralized zero-coupon bond prices
from OIS quotes.

3.2 LIBOR Rates, IRS and Basis Swaps

LIBOR rates (L,(T)) used to be linked to the term structure of default-free interlink
interest rates in a fundamental way. In the classical term structure theory, LIBOR
rates would satisfy fundamental no-arbitrage conditions with respect to zero-coupon
bonds that we no longer consider to hold, as we pointed out earlier in (1). We
now deal with a new definition of forward LIBOR rates that may take into account
collateralization. LIBOR rates are still the indices used as reference rate for many
collateralized interest-rate derivatives (IRS, basis swaps, ...). IRS contracts swap a
fix-payment leg with a floating leg paying simply compounded LIBOR rates. IRS
contracts are collateralized at overnight rate e,. Thus, a discounted one-period IRS
payoff with maturity 7 and tenor x is given by

D, T, e)x(K — Lr—x(T))
where K is the fix rate payed by the IRS. Furthermore, we can introduce the (par) fix
rates K = F;(T, x; e) that render the one-period IRS contract fair, i.e. priced at zero.
They are implicitly defined via

VIS(K) :=E [ 0K — xLr () D(t, T; ) | 7]

with VRS (F,(T, x; e)) = 0, leading to the following definition of forward LIBOR rate

o _E[L(DDG Ti0) | 7] E[Lr (D, Tse) | 7]
Fi(T, x0) = E[D@, T;e) | %] - P(T; )

The above definition may be simplified by a suitable choice of the measure
under which we take the expectation. In particular, we can consider the following
Radon—Nikodym derivative, defining the collateralized T-forward measure Q7¢,

3Notice that we are only defining a price process for hypothetical collateralized zero-coupon bond.
We are not assuming that collateralized bonds are assets traded on the market.
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dQ"¢|  E[D(.T:e) |.%] D(.1:e)P(T:e)
dQ |z Py(T; e)  P(Tie)

Z,(T;e) =

which is a positive Q-martingale, normalized so that Zy(T’; ) = 1.

Thus, for any payoff ¢, perfectly collateralized at overnight rate e¢;, we can
express prices as expectations under the collateralized 7T-forward measure and in
particular, we can write LIBOR forward rates as

E[Lr.(T)D, T; ) | 7]
E[D(, T;e) | 7]

F (T, x;e) := =E"[Lr (D) |.%]. (5

One-period forward rates F,(T, x; e), along with multi-period ones (swap rates),
are actively traded on the market. Once collateralized zero-coupon bonds are derived,
we can bootstrap forward rate curves from such quotes. See, for instance, [1] or [27]
for a discussion on bootstrapping algorithms.

Basis swaps are an interesting product that became more popular after the market
switched to a multi-curve structure. In fact, in a basis swap there are two floating
legs, one pays a LIBOR rate with a certain tenor and the other pays the LIBOR rate
with a shorter tenor plus a spread that makes the contract fair at inception. More
precisely, the payoff of a basis swap whose legs pay respectively a LIBOR rate with
tenors x < y with maturity 7 = nx = my is given by

> DT — (n—i)x, )x(Lr—u-i-1x(T — (n — )x) + K)
i=1
=D DT = (m = )y, O¥Lr—n—j1y (T = (m — j)y).
J=1

It is clear that apart from being traded per se, this instrument is naturally present in
the banks portfolios as result of the netting of opposite swap positions with different
tenors.

3.3 Modeling Constraints

Our aim is to set up a multiple-curve dynamical model starting from collateralized
zero-coupon bonds P;(T'; e), and LIBOR forward rates F; (T, x; ). As we have seen
we can bootstrap the initial curves for such quantities from directly observed quotes
in the market. Now, we wish to propose a dynamics that preserves the martingale
properties satisfied by such quantities. Thus, without loss of generality, we can define
collateralized zero-coupon bonds under the Q measure as

dP,(T; e) = P,(T; e) (et dt — ol (T; e)* de)
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and LIBOR forward rates under the Q7*¢ measure as
dF(T,x; e) = ol (T, x; e)* dz"**

where W€ and Z7+¢ are correlated standard (column) vector* Brownian motions with
correlation matrix p, and the volatility vector processes o” and o* may depend on
bonds and forward LIBOR rates themselves.

The following definition of f,(T, e) is not strictly necessary, and we could keep
working with bonds P,(T; e), using their dynamics. However, as it is customary
in interest rate theory to model rates rather than bonds, we may try to formulate
quantities that are closer to the standard HIM framework. In this sense we can define
instantaneous forward rates f;(T’; ), by starting from (collateralized) zero-coupon
bonds, as given by

fi(T; e) == —arlog P,(T; e)

We can derive instantaneous forward-rate dynamics by Itd lemma, and we obtain the
following dynamics under the Q7*¢ measure

dfi(T; e) = o(T; ) dW, ¢, o(T;e) :=dral(T;e)

where the W7:¢s are Brownian motions and partial differentiation is meant to be
applied component-wise.

Hence, we can summarize our modeling assumptions in the following way. Since
linear products (OIS, IRS, basis swaps...) can be expressed in terms of simpler quan-
tities, namely collateralized zero-coupon bonds P,(T’; ¢) and LIBOR forward rates
F,(T, x; e), we focus on their modeling. The initial term structures for collateralized
products may be bootstrapped from market data, and for volatility and dynamics, we
can write rates dynamics by enforcing suitable no-arbitrage martingale properties,
namely

dfi(T; e) = o(T; e) -dWI¢, dF/(T,x;e) = ol (T, x;e)-dz!*. (6)

As we explained in the introduction, this is where the multiple curve picture
finally shows up: we have a curve with LIBOR-based forward rates F;(T, x; e),
that are collateral adjusted expectation of LIBOR market rates Ly, (T) we take as
primitive rates from the market, and we have instantaneous forward rates f; (T'; e) that
are OIS-based rates. OIS rates f;(T'; e) are driven by collateral fees, whereas LIBOR
forward rates F,(T, x; e) are driven both by collateral rates and by the primitive
LIBOR market rates.

“In the following we will consider N-dimensional vectors as N x 1 matrices. Moreover, given a
matrix A, we will indicate A* its transpose, and if B is another conformable matrix we indicate AB
the usual matrix product.
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4 Interest-Rate Modeling

We can now specialize our modeling assumptions to define a model for interest-rate
derivatives which is on one hand flexible enough to calibrate the quotes of the MM,
and on the other hand robust. Our aim is to use an HIM framework using a single
family of Markov processes to describe all the term structures and interest rate curves
we are interested in.

In the literature many authors proposed generalizations of the HIM framework to
include multiple yield curves. In particular, we cite the works of [12—-14, 16, 20-23].
A survey of the literature can be found in [17].

In such works the problem is faced in a pragmatic way by considering each forward
rate as a single asset without investigating the microscopical dynamics implied by
liquidity and credit risks. However, the hypothesis of introducing different underlying
assets may lead to over-parametrization issues that affect the calibration procedure.
Indeed, the presence of swap and basis-swap quotes on many different yield curves
is not sufficient, as the market quotes swaption premia only on few yield curves.
For instance, even if the Euro market quotes one-, three-, six- and twelve-month
swap contracts, liquidly traded swaptions are only those indexed to the three-month
(maturity one-year) and the six-month (maturities from two to thirty years) Euribor
rates. Swaptions referring to other Euribor tenors or to overnight rates are not actively
quoted.

In order to solve such problem [23] introduces a parsimonious model to describe
a multi-curve setting by starting from a limited number of (Markov) processes, so
as to extend the logic of the HIM framework to describe with a unique family of
Markov processes all the curves we are interested in.

4.1 Multiple-Curve Collateralized HJM Framework

We follow [22, 23] by reformulating their theory under the Q7*¢ measure. We model
only observed rates as in market model approaches and we consider acommon family
of processes for all the yield curves of a given currency, so that we are able to build
parsimonious yet flexible models. Hence let us summarize the basic requirements
the model must fulfill:

(i) existence of OIS rates, which we can describe in terms of instantaneous forward

rates f;(T; e);

(ii) existence of LIBOR rates assigned by the market, typical underlyings of traded
derivatives, with associated forwards F;(T, x; e);

(ii1) no arbitrage dynamics of the f;(T'; e) and the F,(T, x; e) (both being (T, e)-
forward measure martingales);

(iv) possibility of writing both f;(T'; e) and F;(T, x; ¢) as functions of a common
family of Markov processes, so that we are able to build parsimonious yet
flexible models.
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While the first two points are related to the set of financial quantities we are about to
model, the last two are conditions we impose on their dynamics, and will be granted
by the right choice of model volatilities. Hence, we choose under QT:¢ measure, the
following dynamics:

dfy(T; e) = o, (T)*d W, (7)
dF (T, x;e) = (k(T,x) + F(T, x; e)) X:(T, x)*dW,T;“

where we introduce the families of (stochastic N-dimensional) volatility processes
o,(T) and X,(T, x), the vector of N independent Q7*°-Brownian motions WtT;e,
and the set of deterministic shifts k(7', x), such that lim,_,o xk(7', x) = 1. This limit
condition ensures that the model approaches a standard default- and liquidity-free
HJIM model when the tenor goes to zero. We bootstrap fy(T; e) and Fy (T, x; e) from
market quotes.

In order to get a model with a reduced number of common driving factors in the
spirit of HIM approaches, it is sufficient to conveniently tie together the volatility
processes o,(T") and X, (T, x) through a third volatility process o, (u, T, x).

T
o:(T) :=0,T;T,0), X(T,x) :=/ o:(u; T, x) du. (8)
T

—X

Under this parametrization the OIS curve dynamics is the very same as the risk-
free curve in an ordinary HIM framework. Indeed, we have for linearly compounding
forward rates

T
dE(T,x;e) = (1/x + E(T,x;¢)) | o,(u)*du dWT.

T—x

In the generalized version of the HIM framework proposed by [23] we have an
explicit expression for both the collateralized zero-coupon bonds P;(T; e) and the
LIBOR forward rates F; (T, x; e). The first result is a direct consequence of modeling
the OIS curve as the risk-free curve in a standard HIM framework, while the second
result can be achieved only if a particular form of the volatilities is selected. We obtain
this if we generalize the approach of [28] by introducing the following separability

constraint
or(u, T,x) :=h(t)q(u, T,x)g(t, u),

I “ ] 9
g(t,u) :=exp —/a(s)ds , qu;u,0):=1d,

where A, is an N x N matrix process, q(u, T, x) is a deterministic N x N diagonal
matrix function, and a(s) is a deterministic N-dimensional vector function. The
condition on g(u; T, x) being the identity matrix, when 7 = u ensures that a standard
HIM framework holds for collateralized zero-coupon bonds.
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We can work out an explicit expression for the LIBOR forward rates, by plugging
the expression of the volatilities into Eq. (7). We obtain

(k(T, x)+F.(T,x;e) )
B\K(T. %) + Fo(T. x: 0)

1
= G(ta T — X, T; Ts -x)* (Xt + Yt (GO(L tv T) - E G(tv T — X, T; Ts-x))) )
(10)

where the stochastic vector process X; and the auxiliary matrix process Y; are defined
under the Q measure as in the ordinary HIM framework

N t t
X, = Z/o gi(s, 1) (hik,dek,s + (h;khs)ik/ dygi(s,y) dS) ,i=1...N
k=1

t
Y = / gi(s, (W h)ygi(s. ds i, k=1...N
0

and

T, T,

g(t, s)ds, G(t,To,Tl,T,x)=/ q(s, T,x)g(t, s)ds.

To

Go(tv TOa Tl) = /

To

It is worth noting that the integral representation of forward LIBOR volatilities
given by Eq. (8), together with the common separability constraint given in Eq. (9)
are sufficient conditions to ensure the existence of a reconstruction formula for all
OIS and LIBOR forward rates based on the very same family of Markov processes
(see [3)).

We are interested in some specification of this model, in particular a variant of the
Hull and White model (HW), a variant of the Cheyette model (Ch) and the Moreni
and Pallavicini model (MP). The HW model [18] is the simplest one, and is obtained
choosing

ht)=R, qu,T,x)=1d, a(s)=a, K(T,x)i}c (11

where a is a constant vector, and R is the Cholesky decomposition of the correlation
matrix that we want our X, vector to have. In this case we obtain o,(u; T, x) =
R - e7%“=D where the exponential is intended to be component-wise. Then we note
that X; is a mean reverting Gaussian process while the Y; process is deterministic.

In order to model implied volatility smiles, we can add a stochastic volatility
process to our model, as shown in [22]. In particular we can obtain a variant of the
Ch model ([10]), considering a common square-root process for all the entries of 4,
as in [29]. More precisely we replace A(t) in (11) with h(f) = /v,R. With a and R
as before and v, being a process with the following dynamic:
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dvi=n( —v) dt+ vy (1 + (v — l)e_””) \/v_,dZ, , Vo=V (12)

where Z, is a Brownian motion correlated to W,. Obtaining as a volatility process
o(u; T, x) = \/VR- e—au=1

As the last specification of the framework we consider the MP model which uses
a different shift k(7', x), and introduces a dependence on the tenor in the volatility
process.

e

h(t) = JwR, qu.T,x)" =", as)=a, «(T,x)= (13)

With a and R as before and v, being defined by (12). Here we have for the volatility
o(u; T,x) = /VR - em—atu=1)

To better appreciate the difference between the Ch model and the MP model one
could compute the quantity

g+aa+nmza) 1 (;+aa+mwua)
lo

1
Br(x1,x25 €) := —log| 5 - i
2 x T Et+x2,x05€) y HE 4 X1, x05€)

X1

which represents the time-normalized difference between two forward rates with
different tenors and thus can be used as a proxy for the value of a basis swap. We
have that in the HW and in the Ch models S, (x|, x»; e) is deterministic while in the
MP model is a stochastic quantity. This suggests that the MP model should be able
to better capture the dynamics of the basis between two rates with different tenors.
We refer the reader to [3] for a more detailed analysis of the issue, and to [23] for
calibration and valuation examples for the swaptions and cap/floor market.

4.2 Numerical Results

We apply our framework to simple but relevant products: an IRS and a basis swap. We
analyze the impact of the choice of an interest rate model on the portfolio valuation,
in particular we measure the dependency of the price on the correlations between
interest-rates and credit spreads, the so-called wrong-way risk. We model the market
risks by simulating the following processes in a multiple-curve HIM model under
the pricing measure Q. The overnight rate e¢; and the LIBOR forward rates F;(T'; e)
are simulated according to the dynamics given in Sect.4.1. Maintaining the same
notation of the aforementioned section, we choose N = 2, and for our numerical
experiments we use a HW model, a Ch model and an MP model, all calibrated to
swaption at-the-money volatilities listed on the European market.

As we have already noted, the Ch model introduces a stochastic volatility and
hence has an increased number of parameters with respect to the HW model. The
MP model aims at better modeling the basis between rates with different tenors, while
keeping the model parsimonious in terms of extra parameters with respect to the Ch
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model. In particular the HW model is able to reproduce the ATM quotes but is not
able to correctly reproduce the volatility smile. On the other hand, the introduction of
a stochastic volatility process helps in recovering the market data smile and thus the
Ch and the MP models have similar results in properly fitting the smile. The detailed
results of the calibration are available in [3].

For what concerns the credit part, the default intensities of the investor and the
counterparty are given by two CIR++ processes Al = yi + /() under the Q7** mea-
sure, i.e. they follow

dy = i —yhdi+ ¢\ yidzi | iel c)

where the two Z's are Brownian motions correlated with the W7:s, and they are
calibrated to the market data shown in [4]. In particular, two different market settings
are used in the numerical examples: the medium risk and the high risk settings. The
correlations among the risky factors are induced by correlating the Brownian motions
as in [8].

We now analyze the impact of wrong-way risk on the bilateral adjustment, namely
CVA plus DVA, of IRS and basis swaps when collateralization is switched off, namely
we want to evaluate Eq. (1) when «, = 0. For an extended analysis see [3]. Wrong-
way risk is expressed with respect to the correlation between the default intensities
and a proxy of market risk, namely the short rate e,.

In Fig. 1 we show the variation of the bilateral adjustment for a ten years IRS
receiving a fix rate yearly and paying 6 m Libor twice a year and for a ten years
basis swap receiving 3 m Libor plus spread and paying 6 m Libor. It is clear that for a
product like the IRS, not subject to the basis dynamic, we have that the big difference
among the models is the presence of a stochastic volatility. In fact we can see that
the Ch model and the MP model are almost indistinguishable while the results of
the HW model are different from the stochastic volatility ones. Moreover we can
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Fig. 1 Wrong-way risk for different models. On the horizontal axis correlation among credit and
market risks; on the vertical axis the bilateral adjustment, namely CVA + DVA, in basis points. Left
panel a 10y IRS receiving a fix rate and paying 6 m Libor. Right panel a 10y basis swap receiving
3 m Libor plus spread and paying 6 m Libor. Montecarlo error is displayed where significant
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observe that all the models have the same trend, i.e. the bilateral adjustment grows as
correlation increase. In fact this can be explained by the fact that a higher correlation
means that the deal will be more profitable when it will be more risky (since we are
receiving the fixed rate and paying the floating one), hence the bilateral adjustment
will be bigger.

In the case of a basis swap instead, we see that, as said before, the HW model and
the Ch model do not have a basis dynamic and hence the curve represented is almost
flat. On the other hand the MP model is able to capture the dynamics of the basis and
hence we can see that the more the overnight rate is correlated with the credit risk
the smaller the bilateral adjustment becomes.

We conclude by pointing out that our analysis will be extended to partially col-
lateralized deals in future work. In such a context funding costs enter the picture in a
more comprehensive way. Some initial suggestions in this respect were given in [24].
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