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Abstract In this chapter we discuss the definition, construction, interpolation and
application of curves. We will discuss discount curves, a tool for the valuation of
deterministic cash-flows and forward curves, a tool for the valuation of linear cash-
flows of an index. A curve is mainly a tool to interpolate certain basic financial
products (zero coupon bonds, FRAs) with respect to maturity date and fixing date,
such that it can be used to value products, which can be represented as linear func-
tions of possibly interpolated values of a discount or forward curve. For this, the
chosen interpolation method and interpolation entity plays an important role. Distin-
guishing forward curves from discount curves (representing the collateralization of
the forward) motivates an alternative interpolation method, namely interpolation of
the forward value (the product of the forward and the discount factor). In addition,
treating forward curves as native curves (instead of representing them by pseudo-
discount curves) will avoid other problems, like that of overlapping instruments.
Besides the interpolation, we discuss the calibration of the curves for which we give
a generic object-oriented implementation in Fries (Curve calibration.Object-oriented
reference implementation, 2010–2015, [11]).We give some numerical results, which
have been obtained using this implementation and conclude with a remark on how to
define term-structure models (analog to a LIBORmarket model) based on the defini-
tion of the performance index of an accrual account associated with a discount curve.
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1 Introduction

Dynamic multi-curve term structure models, as the one discussed in this book, often
use given interest rate curves as initial data. The classical (single curve) example is
the HJM oder LMM model, where

df (t, T) = μ(t, T)dt + Σ(t, T)dW (t), f (t0, T) = f0(T).

While research on multi-curve interest rates models was and is very active, see,
e.g., [5, 6, 15, 20–22], references therein and the other chapters of in this book,
the construction of the initial interest rate curve, here f0(T), naturally does not get a
similar strong attention. However, a good curve construction is of high importance
for practitioners, since it has a strong impact on the delta-hedge (that is, the first-order
interest rate risk).

Themarket standard of (forward) curve construction is to calibrate an interpolated
curve to given market instruments, often via an iterative procedure (bootstrapping).
With respect to the interpolation of (interest rate) forward curves, a common approach
is to represent a forward curve in terms of (pseudo-)discount factors (aka. synthetic
discount factors) and apply an interpolation scheme on these discount factors. While
this approach is in general not backed by an economic concept, it also introduces
several (self-made) problems, e.g., the interpolation of (so-called) overlapping instru-
ments, see Sect. 5.3.

In this paper we focus on the curve construction, provide an open source imple-
mentation and suggest appealing alternative interpolation schemes motivated from
themulti-curve setup: direct interpolation of the forward curve or direct interpolation
of the forward value curve, where the forward value is the product of a forward and
the associated discount factor. While linear interpolation of the forward is a common
scheme,1 the interpolation of the forward value appears to be a new approach.

Nevertheless, the paper puts both methods on a solid foundation by deriving
the schemes from the multi-curve definition of forward curves. Both interpolation
schemes ease some of the complications associated with synthetic discount factors.

Once the curves and interpolations are defined, we are considering the problem
of calibrating a set of curves to given market quotes. The value of an instrument
is in general determined by a whole collection of curves, e.g., one or two discount
curves and zero or more forward curves. To simplify the implementation, we define
a generalized swap, which allows to represent most calibration instruments (FRAs,
swaps, tenor basis swaps, cross-currency swaps, etc.) by a single class.

1Some trading systems, like Murex, do offer it as an option.
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2 Foundations, Assumptions, Notation

Under well-known assumptions the valuation of a future cash flow can be written as
an expectation,2 that is the time t0-value V (t0) is

V (t0) = N(t0) · EQN

(
V (T)

N(T)
| Ft0

)
for t0 ≤ T , (1)

where V (T) is the time T cash-flow, N is the value process of a traded asset (or col-
lateral account) which can serve as a numéraire andQN is the equivalent martingale
measure associated with N . Equation (1) is the starting point for curve construction
in the following sense: If the above valuation formula holds, then the value of a linear
function of future cash-flows is the linear function of the values of the single cash
flows. In other words: we can represent the valuation of so-called linear products
by a basis consisting of the values of elementary products. This basis of elementary
products is the set of curves, where “the curve” is formed by the parameter T .

Note that here and in the following, we consider the valuation for a fixed t0. We
are not concerned with the description of a dynamic model (describing t �→ V (t) as
a stochastic process).

Definition 1 Let I denote an index, that is, I(T) is anFT -measurable random vari-
able and d > 0 is some payment offset, then we define the (time t0-)valuation curve
with respect to T as the map

T �→ C(T) := N(t0) · EQN

(
I(T)

N(T + d)
| Ft0

)
. (2)

For I ≡ 1 and d = 0 the curve in (2) represents the curve of (synthetical) zero-
coupon bond prices T �→ P(T; t0), also known as discount curve.3 For arbitrary
indices I (with fixed payment offset d4), the curve T �→ C(T)/P(T; t0) is known as
the forward curve. Obviously both curves depend on N and t0.

Note that the specific stochastic behavior of I and N does not play a role when
looking at t0 only in the sense that we are only interested in the time t0-expectation.
That is, we could define t �→ N(t) and t �→ I(t) to be Ft0 -measurable for all times
t and still generate any given discount curve and forward curve, respectively. There

2Since we are only considering the linearity of the valuation at a fixed time t0, we just require that
some fundamental theorem of asset pricing holds, for example, assuming that the price processes
are locally bounded semi-martingales and the no free lunch with vanishing risk condition holds, [7].
3We will use the notation P(T ; t) (instead of the more common P(t, T)) for a the time-t value
of zero-coupon bond maturing in T , since we consider t = t0 as fixed. Sometimes we even drop
the argument and just write P(T). Similar for forward curves. The curves considered here are
parametrized by T for a fixed time t.
4In practice the payment offset may depend on t0 and T due to business day adjustments. Our
implementation handles this, but to ease notation we drop the dependence here.
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is no arbitrage constraint with respect to t yet, since for different t the index I(t)
represents different assets (underlyings).

Thus, with respect to the processes 1/N and I/N we just require that they fulfill
regularity assumptions such that (2) exists.5

On the other hand, the interpretation of the curve as a curve of valuations in
the sense of (2) does play a role, when we consider the construction of the curve
via interpolation of observed market prices. Here, the linearity of the expectation
operator E allows to link market prices to different points of the curve.

Curves, like discount curves and forward curves solve, among others, two impor-
tant problems:

• Valuation of linear instruments. This is performed by decomposing instruments
into the value of single cash flows (zero coupon bonds and FRAs), which then
allows to synthesize the valuation of linear functions of the individual cash flows
(e.g., swaps).

• Valuation of a time T cash-flow as interpolation of valuations of cash flows at
discrete times {Ti}n

i=0 (where Ti ≥ t0 for all i), e.g., swaps referencing cash flows
on illiquid maturities.

Thus, curves are simply a methodology to interpolate on the cash flows with respect
to their payment time.6 Apart from this, the curves also represent the initial data
for advanced term structure models (like the LIBOR market model). Hence, care-
ful construction of curves is also key to (interest rate) derivatives valuation, when
interpolated curves are the initial values of a dynamic model.

For details on the evolution of multi-curve construction see the recent book by
Henrard, [18] (citing a preprint of the present paper). A very detailed description
of multi-curve bootstrapping, which also details market conventions and convexity
adjustments of the calibration instruments, can be found in [2]. For market conven-
tions also see [17]. Here, we do not consider a possible convexity adjustment due
to different market conventions (they should be part of the valuation formulas) and
rather focus on the curves and their interpolation schemes. Also, we do not need to
consider a bootstrapping, since we set up the calibration as a system of equations
passed to a multi-dimensional optimization algorithm.

Usually (and here), the curves are used to interpolate at the fixed time t0 only. If a
curve interpolation should also be used for times t > t0 within a dynamicmulti-curve
model, then this may impose additional constraints on the admissible interpolations
schemes. For example, (2) implies that linear interpolation of time-t zero-coupon
bond prices for t > t0 implies linear interpolation of the time-t zero-coupon bond
prices, which in turn implies a special interpolation of forward rates in a LIBORmar-
ket model, see Sect. 19.5 in [10]. In this case the linear interpolation of the discount
curve and forward value curve would not introduce an arbitrage violation, given that

5For example, let 1/N and I/N be Itô stochastic processes with integrable drift and bounded
quadratic variation.
6This also applies to forward curve, see below, although in these cases there is also an associated
fixing time of an index and it is maybe more consistent to parametrize the curve w.r.t. the fixing of
the index.
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the interpolation points are the same for all times. In practice term-structure models
are often constructed with their own curve interpolations, such that the interpolation
used for the initial data differs from the interpolation used for the simulated curves
(while the model is still calibrated and arbitrage-free given that the drift is specified
accordingly). In the following we focus on the interpolation of the initial data—that
is, the time-t0 curves, which is of greater importance for the deltas of interpolated
products, where only the linear part matters.

In the above valuation formula (1) it is assumed that V and N are expressed in the
same currency. If the two are in different currency, one of them has to be converted
by an exchange rate, which we will denote by FX. Let V be in currency U2 and the
numéraire N in currency U1, then the valuation formula is given by

V (t0) = FX
U2
U1 (t0) · N(t0) · EQN

(
V (T)

FX
U2
U1 (T) · N(T)

| Ft0

)
,

where FX
U2
U1 (t) denotes the time t exchange rate for one unit of currency U1 into one

unit of currency U2. Furthermore, FX
U1
U2 =

(
FX

U2
U1

)−1
.

As discussed in [12], the valuation of a collateralized claim can be written as
an expectation with respect to a specific numéraire, namely the collateral account
N = NC.7 We denote the currency of the collateral numéraire by [C]. Let U denote
the currency of the cash flow V (T). Assume that the cash flow V (T) is collateralized
by units of NC. In this case the Eq. (1) holds with the numéraire N = NC, U2 = U,
U1 = [C] (given that V (t) is the collateral amount in the account NC).

Remark 1 From the above we see that collateralization in a different currency can
be interpreted twofold:

1. We may consider a payment converted to collateral currency and valued with
respect to the collateral numéraire NC, or, alternatively,

2. we may consider a payment in the currency U collateralized with respect to the
collateral account NU,C := FX

U
[C] · NC.

We will adopt the latter interpretation, which will also make the valuation look more
consistent8

V (t0) = NU,C(t0) · EQU,NC
(

V (T)

NU,C(T)
| Ft0

)
. (3)

Note that this interpretation will then give rise to a new discount curve: the discount
curve associated with NU,C, being the discount curve of a foreign currency (U) cash
flow collateralized by a C.

7See also [8, 14].
8As has been noted in [12], the measures agree, i.e., QU,NC = QNC

.
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Remark 2 For an uncollateralized product the role of the collateral account is taken
by the funding account and the corresponding numéraire is the funding account.
Since the valuation formulas are identical to the case of a “special” collateral account
(agreeing with the funding account), we will consider an uncollateralized product as
a product with a different collateralization.

In the following we use the notation U for the currency unit of a cash flow, i.e.,
we may consider U = 1e or U = 1$. We will need this notation only when we
consider cross-currency basis swaps. The symbols V and N (as well as P defined
below) will denote value processes including the corresponding currency unit, e.g.,
V (t0) = 0.25e. The symbol V refers to the value of the product under consideration,
while N denotes the numéraire, e.g., the OIS accrued collateral account. The symbol
X denotes a real number while I denotes a real valued stochastic process, both can
be considered as rates, i.e., unit-less indices, e.g., X = 2.5%. For example X will
denote the fix rate in a swap, I will denote the floating rate index in a swap,U denotes
the currency unit of the two legs, N will be used to define the discount factor and the
value of the swap. The value of the swap is then denoted by V .

3 Discount Curves

Consider a fixed constant cash flow X, paid in currency U in time T , collateralized
by an account C. Since X is a constant and the expectation operator is linear, we can
express the time-t0 value V (t0) of this cash flow as

V (t0) = X · PU,C(T; t0), (4)

where

PU,C(T; t0) := NU,C(t0) · EQNU,C
(

1 · U

NU,C(T)
| Ft0

)
(5)

defines the value of a theoretical zero coupon bond. Note that Eq. (4) can be used in
two ways. First, for given market prices we may determine PU,C(T; t0)—that is we
calibrate the curve T �→ PU,C(T; t0). Second, for given PU,C(T; t0) we may value a
constant cash flow.

This defines the discount curve:

Definition 2 Let PU,C(T; t0) denote the time t0 value expressed in currency unit U
of a unit cash-flow of 1 unit of the currency U in T , collateralized by a collateral
account C. In this case we call T �→ PU,C(T; t0) given by (5) the discount curve for
cash flows in currency U collateralized by the account C.

Remark 3 By assumption (of a frictionless no-arbitrage market, (1)) the value of a
fixed constant future cash-flow X is a linear function of its amount. Hence, we have
that the time t0 value of a cash flow X in T and currency U, collateralized with an
account C is
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X · PU,C(T; t0).

In other words, the discount curve allows us to valuate all fixed (deterministic) cash
flows in a given currency, collateralized by a given account.

The discount factor PU,C(T; t0) represents the price of an (idealized) zero-coupon
bond. Although a zero-coupon bond is usually not a market-traded asset, we may
representmarket-traded coupon bonds as a linear combination of zero-coupon bonds,
and vice versa. If C denotes some cash-collateral account, there is no such thing as
a collateralized bond, but in that case PU,C(T; t0) has the natural interpretation of
representing the time-t value of a collateralized unit currency time-T cash flow. In
any case, PU,C(T; t0) can be considered a linear function of traded asset (within its
collateralization scheme).

4 Forward Curves

The same approach can now be applied to a payoff of a cash flow X · I(T1), paid in
currency U in time T2 (T1 ≤ T2), collateralized by account C, where X is a constant
and I is an adapted process representing index.9 Its value is

V (t0) = NU,C(t0) · EQNU,C
(

X · I(T1) · U

NU,C(T2)
| Ft0

)
.

We can express the value as V (t0) = X · FU,C
I (T1, T2; t0) · PU,C(T2; t0), where

FU,C
I (T1, T2; t0) = NU,C(t0) · EQNU,C

(
I(T1) · U

NU,C(T2)
| Ft0

) /
PU,C(T2; t0). (6)

This definition allows us to derive FU,C
I (T1, T2; t0) from given market prices.

Conversely, given PU,C(T2; t0) and FU,C
I (T1, T2; t0) we may value all linear payoff

functions of I(T1) paid in T2.
In (6) the forward depends on thefixing timeT1 and the payment timeT2.However,

the offset of the payment time from the fixing time d = T2 − T1 can be viewed
as a property of the index (a constant) and hence, the forward represents a curve
T �→ FU,C

I (T , T + d; t0).

Definition 3 Let t �→ I(t) denote an index, that is I is an adapted stochastic real
valued process. Let

V U,C
I (T , T + d; t0) := NU,C(t0) · EQNU,C

(
I(T) · U

NU,C(T + d)
| Ft0

)

9Examples for I are LIBOR rates or the performance of an EONIA accrual account.
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denote the time t0-value of a payment of I(T) paid in T + d in currency U, collat-
eralized by an account C (where d ≥ 0). We assume that I and N is such that the
expectation exists for all T . Then we define the forward of a payment of I(T) paid
in T + d in currency U, collateralized by an account C as

FU,C
I (T; t0) := V U,C

I (T , T + d; t0)

PU,C(T + d; t0)
.

Remark 4 The forward curve allows us to value a future payment of the index I by

V U,C
I (T , T + d; t0) = FU,C

I (T; t0) · PU,C(T + d; t0)

and by assumption (of a frictionless no-arbitrage market, (1)), the forward curve
allows us to evaluate all linear cash flows X · I (in currency U, collateralized by an
account C) by X · FU,C

I (T; t0) · PU,C(T + d; t0).
Note thatFU,C

I is not a classical single curve forward rate, related to some discount
curve. Due to our definition of the forward curve, the curve includes all valuation
effects related to the index, in particular a possible convexity adjustment. For exam-
ple: if we would consider an in-arrears index and an in-advance index we would
obtain two different forward curves which differ by the in-arrears convexity adjust-
ment!

4.1 Performance Index of a Discount Curve
(or “Self-Discounting”)

The OIS swap pays the performance of an account, accruing with the overnight rate,
that is:

Definition 4 (Overnight Index Swap) Let NC(t) denote the account accruing at the
overnight rate r(t), NC(t0) = 1U, i.e. on a given time discretization (accrual periods)
{ti}n

i=0

NC(tk) :=
k∏

i=0

(1 + r(ti)Δti) ≈ exp

(∫ tk

t0

r(s)ds

)
.

The overnight index swap pays a fix coupon and receives the performance ICi of the
accrual account, that is

ICi (Ti, Ti+1) := NC(Ti+1)

NC(Ti)
− 1.

in Ti+1 with a quarterly tenor T0, T1, . . ..
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The time-t0 linear forward of the index above is PU,C(Ti;t0)−PU,C(Ti+1;t0)
PU,C(Ti+1;t0) (and dividing

by Ti+1 − Ti this gives the linear forward rate). Hence, this is the same situation as
for single curve interest rate theory swaps.

The OIS swap is collateralized with respect to the account NC. Due to this, it is
sometimes called “self-discounted”. However, we may give an appealing alternative
view, defining the forward curve from the discount curve (and not the other way
around):

Let us consider a discount factor curve PU,C(T; t) as seen in time t. The curve
allows the definition of a special index, namely the performance rate of the collateral
account C in currency U over a period of period length d:
Let IC(Ti) := 1−PU,C(Ti+d;Ti)

PU,C(Ti+d;Ti)
, where PU,C(Ti + d; Ti) is the discount factor for the

maturity Ti + d as seen in time Ti. The index IC(Ti) is the payment we have to receive
in Ti + d collateralized with respect to the collateral accountC, such that 1 + IC(Ti)

in Ti+1 has the same value as 1 in Ti. This index has a special property, namely that
its forward can be expressed in terms of the discount factor curve PU,C too: The time
t0 forward of IC(Ti) is FU,C(Ti; t0) where

FU,C(Ti; t0) · PU,C(Ti + d; t0) = NU,C(t0) · EQNU,C
(

IC(Ti) · U

NU,C(Ti + d)
| Ft0

)

= PU,C(Ti; t0) − PU,C(Ti + d; t0).

Consequently this index has the special property that its forward can be expressed
by the associated discount factors evaluated at different maturities.

Definition 5 (Forward associated with a Discount Curve) Let PU,C(Ti + d; t0)
denote a discount curve. For a given period length d we define the forward
Fd,U,C(Ti; t0) as

Fd,U,C(Ti; t0) := PU,C(Ti; t0) − PU,C(Ti + d; t0)

PU,C(Ti + d; t0) · d
. (7)

Fd,U,C(Ti; t0) is the forward associated with the performance index of PU,C over a
period of length d.

Remark 5 The above definition relates a forward curve and discount factor curve.
Note however, that we define a forward from a discount factor curve and that this
definition is backed by a clear interpretation of the underlying index. Conversely,
we may define a discount curve from a forward curve “implicitly” such that the
relation (7) holds. Note however, that a generalization of this relation should be
considered with care, since the associated product may not exist.

The definition above is an idealization in the sense that we assume that interval
points over which the performance is measured correspond to the payment dates.
In practice (EONIA is an example) there might be some small deviations from this
assumption (e.g. payment offsets of a few days). In this case (7) does not hold (but
may be still considered an approximation).
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Products like the OIS swaps are sometimes called “self-discounting” since the
discounting is performed on a curve corresponding to the index they fix. From the
above, we find an alternative (and maybe more natural) interpretation, namely that
the swap pays the performance index of its collateral account, i.e., it pays the index
associated with the discount curve.

5 Interpolation of Curves

In this section we consider a discount curve PU,C and an associated forward curve
FU,C. To simplify notation we set D(T) := PU,C(T; t0) and F(T) := FU,C(T; t0).

Forwards and discount factors are linked together by Definition 3, which says
that the time-t0 value of a forward contract V (t0, T) with fixing in T is the product
of the forward F(T) and the associated discount factor D(T + d), i.e., V (t0, T) =
F(T) · D(T + d). Note that T �→ V (t0, T) and T �→ D(T) are value curves, i.e., for
a fixed T the quantities V (t0, T) and D(T) are values of financial products. However,
F(T) is a derived quantity, the forward.

Since V and D represent values of financial products, there is a natural interpre-
tation for a linear interpolation of different values V (Ti) and of different values of
D(Ti), since this would correspond to a portfolio of such products. Note that defining
an interpolationmethod for V andD implies a (possible more complex) interpolation
method of F.

On the other hand, it is common practice to define an interpolation method for a
rate curve (both forward curve and discount factor curve) via zero rates, sometimes
even regardless of the nature of the curve, which then implies the interpolation of the
value curvesD andV . Someof these interpolationswill result in natural interpolations
on the value process V , others not. Other examples for interpolations of F and D are:

• log-linear interpolation of the forward, log-linear interpolation of the discount
factor: the case is equivalent to log-linear interpolation of the value.

• linear interpolation of the forward, log-linear interpolation of the discount factor:
the case is equivalent with a linear interpolation of the value, with an interpolation
weight being a function of the discount factor ratio.

In [16] interpolations on the discount factors, on the logarithm of discount factors,
on the yield and directly on the forwards were discussed. Highlighting some disad-
vantages of cubic splines, they introduced two new interpolation methods (monotone
convex spline andminimal cubic spline) which overcomemost of the shortfalls of the
other interpolations. In [19] some issues of these methods were pointed out, favoring
a harmonic spline interpolation. In [1] a modified Bessel spline on the logarithm of
the discount factors was proposed.

Based on the formal setup presented in the present paper, the stability of cumulated
error of a dynamic hedge was considered as a criterion for the interpolation methods
and compared for a large collection of methods in [13].
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At this point, we would like to stress the importance of the interpolation entity,
that is, whether we interpolate on a forward or on a synthetic discount factor (in
the sense of Definition 5). While the interpolation method (e.g., linear compared to
spline) is often in the focus (discussing locality versus smoothness, [16]), the choice
of the interpolation entity has a strong impact on the delta hedge, see Table1.

Depending on the application, it is popular to represent a curve by a paramet-
ric curve. This is done especially for discount curves. Examples are the Nelson–
Siegel (NS) and the Nelson–Siegel–Svensson (NSS) parametrization. Our bench-
mark implementation in [11] allows to use NS or NSS in the calibration.10

5.1 Implementing the Interpolation of a Curve: Interpolation
Method and Interpolation Entities

In this paper we focus on interpolation schemes based on given interpolation points.
Implementing the interpolation of a curve that way, it is convenient to distinguish the
interpolation method, e.g., linear interpolation of interpolation points {(Ti, xi)}, and
the interpolation entity, that is, a (bijective) transformation from (T , x) to the actual
curve. For example, for discount curves one might consider a linear interpolation
of the zero rate. In this case the interpolation method is linear interpolation and
the interpolation entity is (T , x(T)) = (T ,

log(D(T))

T ) for T > 0, where D denotes
the discount curve. Given 0 < Ti ≤ T ≤ Ti+1 and discount factors D(Tj), a linear
interpolation of the zero rates would then imply the interpolation

D(T) := exp

((
T − Ti

Ti+1 − Ti

log(D(Ti+1))

Ti+1
+ Ti+1 − T

Ti+1 − Ti

log(D(Ti))

Ti

)
· T

)
.

In our benchmark implementation [11], this functionality is provided for a large
number of interpolation methods (constant, linear, Akima, spline, etc.) and interpo-
lation entities (value, log-value, log-value-per-time) by the class net.finmath.
marketdata.model.curves.Curve.11 For forward curves we provide two
additional interpolation entities: forward and synthetic discount factor (see below).

5.2 Interpolation Time

For both, parametric curves (like NSS) and non-parametric interpolation schemes, it
is important to specify the convention used to transform product maturities (dates)
to real numbers (time T ). For example, we might use a daycount convention (like

10Seehttp://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurve
NelsonSiegelSvensson.html.
11See http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/Curve.html.

http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurveNelsonSiegelSvensson.html
http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurveNelsonSiegelSvensson.html
http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/Curve.html


238 C.P. Fries

ACT/365) and measure T as a daycount fraction between evaluation date and matu-
rity date, that is T := dcf(evaluation date,maturity date). Clearly, a change in the
time parametrization will change the interpretation of the curve parameters (for a
parametric curve). Also, some daycount convention actually introduces non-linear
time transformations.

5.3 Interpolation of Forward Curves

5.3.1 The Classical Approach

For forward curves, a common approach is to consider an interpolation of the forward
as an independent entity (like for the discount curve). For interest rate forwards, a
popular interpolation scheme (coming from the single curve interpretation of interest
rates forwards) is to represent the forward in terms of synthetic discount factors.
That is, if d denotes a period length associated with the forward and if F(Ti) is
given forTi = i · d, then onemight consider interpolation of (pseudo-)discount factor
DF(Ti) := ∏i−1

k=0(1 + F(Tk) · d)−1, possibly considering another transformation on
DF(T) to define the actual interpolation entity. See [3] for a corresponding multi-
curves bootstrap algorithm.

It is obvious that this definition of the interpolation entity for forward curve is
complex, results in problems for non-equidistant interpolation points and is—without
further assumptions—not backed by a meaningful interpretation. First, in a multi-
curve setup this approach lacks an economic justification. Second, it may introduce
problems:

• The common approach of a linear interpolation of the logarithm of the synthetic
discount factor representing the forward curve results in an almost piecewise con-
stant interpolation of the forward, see [13]. This may result into “jumps” when
products are aging.

• The use of synthetic discount factors defines a forward with fixing time T in terms
of (interpolated) discount factors at times T and T + d (where d is the period
length). The method is a common practice (also considered in [1]). However,
considering forwards for overlapping periods, this may introduce oscillations and
result in implausible delta-hedges (see Table1).

5.3.2 Alternative Interpolation Schemes for Forward Curves

The definition of the forward curve in the multi-curve setup suggests an appealing
alternative for the creation of an interpolated forward: Like a discount factor curve,
the curve V (T) = F(T) · D(T + d) represents the value of a financial product.
Hence, we may consider the interpolation of V like we did for the curve D. For
example, if we consider linear interpolation of the value curve V , we interpolate
the forward curve F by considering the interpolation entity F(T) · D(T + d) with a
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given discount curve D, i.e., we have

F(T) := 1

D(T + d)

(
T − Ti

Ti+1 − Ti
F(Ti+1)D(Ti+1 + d) + Ti+1 − T

Ti+1 − Ti
F(Ti)D(Ti + d)

)

for Ti ≤ T ≤ Ti+1 and given points F(Tj).
Given that log-linear interpolation is a popular interpolation scheme for discount

curves one may consider log-linear interpolation of V . This interpolation scheme has
the restriction that the forward is required to be positive. Since negative interest rates
are possible, this interpolation scheme is not appropriate for interest rate curves.

5.4 Assessment of the Interpolation Method

The assessment of the quality of performance of an interpolation method is difficult.
Some basic criteria (like continuity, locality, etc.) have been reviewed in [16]. Local-
ity, i.e., how does a local change in input data affect the curve, is a desired property
from a hedging perspective. In [13] a long-term dynamic hedging is used to asses the
performance of an interpolation scheme. The results in [13] suggest that among the
local methods, linear interpolation of the forward curve and log-linear interpolation
of the discount curve were the best performing schemes when using the cumulated
dynamic hedge error as a primary criterion.

6 Implementation of the Calibration of Curves

A curve (discount curve or forward curve) is used to encode values of market instru-
ments. A forward curve together with its associated discount curve, allows to value
all linear products (linear payoffs) in the corresponding currency under the corre-
sponding collateralization.

The standard way to calibrate a curve is, hence, to obtain given market values of
(linear) instruments (e.g., swaps). For each market value a single “point” in a single
curve is calibrated. Hence the total number of calibrated curve interpolation points
(aggregated across all curves) equals the number of market instruments.

By “sorting” and combining the calibration instruments, the corresponding equa-
tions can be brought into the form of a system of equations with a triangular structure,
i.e., the value of the nth calibration instrument only depends on the first n curve points.
This allows for an iterative construction of the curve.

However, here (and in the associated reference implementation [11]) we pro-
pose the calibration of the curves using a multi-variate optimization algorithm,
like the Levenberg–Marquardt algorithm or a Differential Evolution algorithm. This
approach brings several advantages, e.g., the freedom to specify the calibration instru-
ments and the ability to extend the approach to over-determined systems of equations.
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In addition, we can handle the case of curve-interdependence, for example to cali-
brate certain discount curves from cross-currency swaps. This comes at the cost of
slower performance in terms of required calculation time.

What remains is to specify the valuation equations for the calibration instruments.
To simplify implementation,wemaygeneralize the definition of a “swap” comprising
plain swaps, tenor basis swaps and cross-currency swaps.

6.1 Generalized Definition of a Swap

Many of the following calibration instruments (from OIS swaps to cross-currency
basis-swaps) fit under a generalized definition of a swap. The swap consists of two
legs. Each leg consists of several periods [Ti, Ti+1]. To ease notation, we do not
distinguish between period start time, period end time, fixing time of the index
and payment time. We assume that for the period [Ti, Ti+1] index fixing is in Ti

and payment is in Ti+1. This is done purely to ease notation, the generalization to
distinguished times is straightforward.

Definition 6 (Swap Leg) A swap leg pays a multiple α of the index I fixed in Ti

plus some fixed payment X, both in currency unit U collateralized by the collateral
account C and paid in time Ti+1. Here α and X are constants (possibly zero). The
value of the swap leg can be expressed in terms of forwards and discount factors as

V U,C
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑
i=0

(
αFU,C(Ti) + X

) · PU,C(Ti+1),

whereFU,C denotes the forward curve of the index I paid in currencyU collateralized
with respect to C and PU,C denotes the corresponding discount curve.

A swap leg with notional exchange has the payments as in Definition 6 together
with an additional payment of −1 in Ti and +1 in Ti+1. The value of the swap leg
with notional exchange can be expressed in terms of forwards and discount factors
as

V U,C
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑
i=0

((
αFU,C(Ti) + X

) · PU,C(Ti+1)

+PU,C(Ti+1) − PU,C(Ti)
)
,

whereFU,C denotes the forward curve of the index I paid in currencyU collateralized
with respect to C and PU,C denotes the corresponding discount curve.

Definition 7 (Swap) A swap exchanges the payments of two swap legs, the receiver
leg and the payer leg. We allow that the legs have different indices, different fixed
payments, different payment times, different currency units, but are collateralized
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with respect to the same account C. The swaps receive a swap leg with value
V U1,C

SwapLeg(α1I1, X1, {T 1
i }n1

i=0) and pay a leg with value V U2,C
SwapLeg(α2I2, X2, {T 2

i }). Since
the currency unit of the two legs may be different, the value of the swap in currency
U1 is

VSwap = V U1,C
SwapLeg(α1I1, X1, {T 1

i }n1
i=0) − V U2,C

SwapLeg(α2I2, X2, {T 2
i }n2

i=0) · FX
U1
U2

Many instruments can be represented (and hence valued) in this form. We will
now list a few of them.

6.2 Calibration of Discount Curve to Swap Paying
the Collateral Rate (aka. Self-Discounted Swaps)

Discount curves can be calibrated to swaps paying the performance index of their
collateral account. For example, a swap as in Definition 7 where both legs pay in the
same currency U = U1 = U2. In a receiver swap the receiver leg pays a fixed rate
C, and the payer leg pays an index I . Thus the value of the swap can be expressed in
terms of the discount factors PU,C(Ti+1; t) only, which allows to calibrate this curve
using these swaps. Overnight index swaps are an example.

For the swap paying the performance of the collateral account we have

X1 = C = const. = given, X2 = 0,

FU1,C
1 (T 1

i ; t0) = 0, FU2,C
2 (T 2

i ; t0) = PU,C(T 2
i ; t0) − PU,C(T 2

i+1; t0)

PU,C(T 2
i+1; t0)(T 2

i+1 − T 2
i )

,

PU1,C
1 = PU,C = calibrated, PU2,C

2 = PU,C = calibrated.

In a situation where the number of interpolation points matches the number of swaps
(e.g., a bootstrapping), we calibrate the time T discount factor PU,C(T; t0) with
T = max(T 1

n , T 2
n ) being the last payment time from a given swap.

6.3 Calibration of Forward Curves

Given a calibrated discount curvePU,C weconsider a swapwith payments in currency
U collateralized with respect to the account C, paying some index I and receiving
some fixed cash flow C. An example is swaps paying the 3M LIBOR rate. For such
a swap we have
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X1 = C = const. = given, X2 = 0,
FU1,C
1 (T 1

i ) = 0, FU2,C
2 (T 2

i ) = FU,C(T 2
i ) = calibrated,

PU1,C
1 = PU,C = given, PU2,C

2 = PU,C = given.

From one such swap we calibrate the time T forward FU,C(T) of I(T)with T = T 2
n−1

(the last fixing time).
Given a calibrated discount curvePU,C and a calibrate forward curveFU,C

1 belong-
ing to the index I1, both in currency U and collateralized with respect to the account
C, we consider a swap collateralized with respect to the account C, paying some
index I2 = I in currency U, receiving the index I1 in currency U. An example is
tenor basis swaps paying the 6M LIBOR rate, receiving the 3M LIBOR rate. For
such a swap we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = FU,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = FU,C
2 (T 2

i ) = calibrated,
PU1,C
1 = PU,C = given, PU2,C

2 = PU,C = given.

From one such swap we calibrate the time T forward FU,C
2 (T) of I(T)with T = T 2

n−1
(the last fixing time of index I2).

6.4 Calibration of Discount Curves When Payment
and Collateral Currency Differ

6.4.1 Fixed Payment in Other Currency

Given a calibrated discount curve PU1,C we consider a swap collateralized with
respect to the account C, paying some index I1 in currency U1, and receiving some
fixed cash flow C2 in currency U2. An example for such a swap is a cross-currency
swappayingfloating index I in collateral currency and receivingfixedC2 in a different
currency.12 For such a swap we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = FU1,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = 0,
PU1,C
1 = PU1,C = given, PU2,C

2 = PU2,C = calibrated.

We calibrate the discount factor PU2,C(T; t0) with T = T 2
n (last payment time in

currency U2).

12Usually cross-currency swaps exchange two floating indices, we will consider this case below.
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6.4.2 Float Payment in Other Currency

If instead of a fixed payment we have that an index I2 is paid in an other currency
U2 we may encounter the problem that the swap has two unknowns, namely the
discount curve PU2,C for payments in currency U2 collateralized with respect to C
and the forward curve FU2,C

2 of the index I2 paid in currency U2 collateralized with
respect to C. The two curves can be obtained jointly from two different swaps: first
a fix-versus-float swaps in currency U2 collateralized by C, and second, a cross-
currency swap exchanging the index I2 with an index I1 in currency U1 for which
the forward FU1,C

1 is known. For the first instrument we denote the fixed payment by
C1, C2. For the second instrument we denote the fixed payment by s1, s2 (usually a
spread). For the first instrument we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = 0, FU2,C
2 (T 2

i ) = FU2,C
2 (T 2

i ) = calibrated,
PU1,C
1 = PU2,C

2 = calibrated, PU2,C
2 = calibrated.

For the second swap we have

X1 = s1 = const. = given, X2 = s2 = const. = given,
FU1,C
1 (T 1

i ) = FU1,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = FU2,C
2 (T 2

i ) = calibrated,
PU1,C
1 = given, PU2,C

2 = calibrated.

We calibrate the discount factor PU2,C(T; t0) with T = T 2
n and the forward FU2,C

2 (T)
with T = T 2

n−1.

Often market data are not available to calibrate the forward FU2,C
2 , but the forward

FU2,C2
2 collateralized with respect to a different account C2 is available. The two

forwards differ by a possible convexity adjustment. One possible approximation
(which would follow from the assumption that forwards are independent of their
collateralization) is to use FU2,C

2 ≈ FU2,C2
2 .

The joint calibration of the two curves can be decomposed into two independent
calibration steps, which would then allow to re-use a traditional bootstrap algorithm,
see, e.g., [4].

Calibration of Discount Curves as Spread Curves

We consider a swap leg with notional exchange and tenor {Ti}n
i=0, paying an index

I plus some constant X = s(Tn) = const. Here s(Tn) has the interpretation of a
maturity-dependent spread. If this leg is in currency U and with respect to a col-
lateral account (here funding account) D, then its value is

V U,D
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑
i=0

((
αFU,D(Ti) + X

) · PU,D(Ti+1)

+PU,D(Ti+1) − PU,D(Ti)
)
.
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An example of such an instrument is an (uncollateralized) floating rate bond, paying
a 3M rate plus some spread. If we assume that the forward FU,D(Ti) is known, this
instrument can be used to calibrate the discount curve PU,D. In fact I + X represents
the performance of the funding account associated with PU,D.

If the forward FU,D(Ti) is not known, we encounter the same problem as for
cross-currency swaps, namely that the forward curveFU,D(Ti) and the discount curve
PU,D need to be calibrated jointly to two instruments. The first one is a swap which
is collateralized with respect to the funding account D, i.e., it is an uncollateralized
swap. The second is the funding floater.

For the first instrument, the uncollateralized swap, we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU,D
1 (T 1

i ) = 0 = given, FU,D
2 (T 2

i ) = FU,D(T 2
i ) = calibrated,

PU,D
1 = PU,D = calibrated, PU,D

2 = PU,D.

For the second instrument, the funding floating rate bond (uncollateralized swap leg
with notional exchange) we have

X1 = S = const. = given,

FU,D
1 (T 1

i ) = FU,D(T 1
i ) = calibrated,

PU,D
1 = PU,D = calibrated.

Remark 6 The calibration of the funding curve PU,D is analog to the calibration of
the cross-currency discount curve PU2,C.

In the above, we consider the funding floater as a floating rate bond. Note however,
that bonds (in contrast to swaps) do not permit negative coupons, hence they have
an implicit floor. There are ways to solve this problem: either one has to incorporate
an option premium in the calibration procedure (which does require a model for the
volatility) or one considers only market data of fixed bonds together with uncollat-
eralized swaps (which likely requires some assumption since usually this calibration
instrument is not observed). See the following section.

6.5 Lack of Calibration Instruments (for Difference
in Collateralization)

The calibration of cross-currency curves (forward curve and discount curves for
currency U2 with collateralization in currency U1, see Sect. 6.4) and the calibration
of un-collateralized curves (forward curves and discount curves for uncollateral-
ized products, see section “Calibration of Discount Curves as Spread Curves”) may
require market data which are not available, e.g., the forward of an index I paid in
currencyU2 collateralized in a different currency or by a different account. This issue
has been pointed out by [14].
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In this case the curve can be obtained by adding additional assumptions. Two
simple examples are:

• the market rates are assumed to be independent of the type of collateralization, or
• the forward rates are assumed to be independent of the type of collateralization.

The two assumptions lead to different results, since they imply different correlations
which will lead to different (convexity) adjustments. For details on the example
see [11], where a sample calculation with assuming identical market rates for 3M
swaps collateralized in USD-OIS or EUR-OIS results in a difference of around 1 or
2 basis points (0.01%) for the forward curves.

6.6 Implementation

The definition of the various calibration instruments indicated that an iterative boot-
strapping algorithm (there the curve is built in a step-by-step process solving only
one dimensional problems in one variable) is no longer straightforward. This is due
to the interdependence of discount and forward curves. While this problem may be
solved in some cases via a pre-processing (see [4]), we suggest a different route: we
propose to solve the calibration problem via a single optimization run on the full
multi-dimensional problem. This also allows to calibrate curve in the sense of a best
fit in cases where we use more calibration instruments than curve points, resulting
in an overdetermined system.

We provide an object-oriented implementation at [11] implementing the Java
classes forCurves,DiscountCurves,ForwardCurves,Solver,SwapLeg
and Swap.

A detailed discussion of the implementation can be found in the associated
JavaDocs and is left out here to shorten the presentation.

7 Redefining Forward Rate Market Models

Having discussed the setup of curves, we would like to conclude with a remark on
how the curves are integrated into term-structure models, specifically, how the multi-
curve setup harmonizes with a classical single curve standard LIBORmarket model,
which can then be extended to a fully multi-curve model.

If NC denotes an accrual account, i.e., NC is a process with NC(t0) = 1U (e.g., a
collateral account), thenNC defines a discount curve, namely the discount curveT �→
PU,C(T; t0) =: PC(T; t0) of fixed payments made in T , valued in t and collateralized
by units of NC.

Now let {Ti} denote a given tenor discretization. As shown in Sect. 4.1 the
period-[Ti, Ti+1] performance index IC(Ti, Ti+1) of the an accrual account, i.e.,

IC(Ti, Ti+1; Ti) := NC(Ti+1)

NC(Ti)
− 1 has the property that its time t forward (of a payment
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of IC(Ti, Ti+1) made in Ti+1, collateralized in units of NC) (following the definition

of a forward from Definition 3) is given as FU,C(Ti, Ti+1; t) := PC(Ti;t)−PC(Ti+1;t)
PC(Ti+1;t0) .

This relation allows us to create a term-structure model for the curve PC which
has the same structural properties as a standard single curve (LIBOR) market model.

This model is given by a joint modeling of the processes Li(t) := FU,C(Ti,Ti+1;t)
Ti+1−Ti

, e.g.,

as log-normal processes under the measure QNC
and the additional assumption that

the process PC(Ti; t) is deterministic on its short period t ∈ (Ti−1, Ti].
From these two assumptions it follows that the processes Li have the structure of

a standard LIBOR market model and QNC
corresponds to the spot measure. Indeed

we have
∏i−1

j=0 1 + Lj(Tj) · (Tj+1 − Tj) = NC(Ti).
What we have described is how to use the standard LIBORmarket model as a term

structuremodel for the collateral accountNC (e.g., the OIS curve). Now,modeling all
other rates (including LIBOR) can be performed by modeling (possibly stochastic)
spreads over this curve. This is analog to a defaultable market model.

An alternative is to start with a stochastic model for the forward rates, where now
the forward curve defines the initial value of the model SDEs, and then define the
discount curve (numéraire) via deterministic or stochastic spreads. This approach
has a practical advantage, since for LIBOR rates implied volatilities are more liquid
than for OIS rates. See, e.g., [20] and references therein. An implementation of the
standard LMMwith a deterministic adjustment for the discount curve is provided by
the author at [9].

8 Some Numerical Results

8.1 Impact of the Interpolation Entity of a Forward Curve
on the Delta Hedge

Using our reference implementation [11], we investigate the interpolation of forward
curves using different interpolationmethods and interpolation entities.While interpo-
lation of (synthetic) discount factors is—motivated from its single curve origin—a
very popular interpolation method, it may result in very implausible deltas, if the
curve is constructed from overlapping instruments. Table1 shows the delta of an
8x11 FRA calculated on a curve constructed from 0x3, 1x4, 2x5, 3x6, 4x7, 5x8, 6x9,
7x10, 9x12 FRA (note that the 8x11 is missing in the curve construction). The plausi-
ble hedge would be to use the adjacent 7x10 and 9x12 FRAs. Using the interpolation
entity DISCOUNTFACTORwe find non-zero deltas for instruments prior to the 7x10
FRA, summing up to zero. This effect stems from the error propagation inherent in
the definition of the interpolation entity. The interpolation entity FORWARD does not
show this effect.
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Table 1 The delta of an 7Mx10M FRAwith respect to different calibration instruments, where the
7Mx10M FRA is not part of the calibration instruments, hence interpolates

Risk Factor Delta of an 7Mx10M FRA using the interpolation entity

DISCOUNTFACTOR (%) FORWARD (%)

0Dx3M 44.5 0.0

1Mx4M −95.9 0.0

2Mx5M 52.4 0.0

3Mx6M 44.0 0.0

4Mx7M −97.0 0.0

5Mx8M 52.4 0.0

6Mx9M 47.6 48.4

7Mx10M 0.0 0.0

8Mx11M 51.9 51.6

9Mx12M 0.0 0.0

Different interpolation entities result in very different delta hedges. The popular interpolation entity
of a synthetic discount factor results in counterintuitive hedges. The interpolationmethod isLINEAR
in both cases. It is the choice of the interpolation entity which introduces the effect

8.2 Impact of the Lack of Calibration Instruments
for the Case of a Foreign Swap Collateralized
in Domestic Currency

Based on the curve framework and the calibration instruments defined in this paper
and implemented at [11] we have investigated the impact of the assumptions, which
had to be made due to the lack of calibration instruments for foreign currency swaps.
Since a foreign currency swap collateralized in domestic currency is (currently) not a
liquid instrument, the foreign forward with respect to domestic collateralization can-
not be calibrated. Hence, a model assumption is required. Two possible assumptions
are: (1) the forward rate is independent from its collateralization—that is, use the
foreign forward curve derived from instruments collateralized in foreign currency,
or, (2) the market (swap) rates are independent from its collateralization—that is,
use the foreign market (par-)swap rates form foreign currency swaps collateralized
in foreign currency together with a domestic currency discount curve to calibrate a
foreign currency forward rate curve with respect to domestic collateralization. Both
approaches result in different forward curves. The impact can be assessed using
the spreadsheet available at [11]. For 2012 market data the difference for an USD
forward curve collateralized in EUR can be found to be around two basis points.
While the first assumption (re-using the forward curve) is likely the more natural
one, and maybe a market standard, the calculation shows that the assumption has a
considerable impact on the resulting curve, see Fig. 1.
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Fig. 1 Forward curve (USD-3M) calibrated from swaps with different collateralization (USD-OIS
and EUR-OIS) assuming independence of the market rates of from the type of collateralization

8.3 Impact of the Interpolation Scheme
on the Hedge Efficiency

Also based on the framework presented here, the impact of the different interpolation
schemes has been investigated in [13], where indication was found that among the
local interpolation schemes, it is indeed better to use a different interpolation scheme
for forward curves than for discount curves. For details we refer to [13].

9 Conclusion

We have presented the re-definition of discount curves and forward curves, which
clearly distinguishes the two as different objects (with some relation for the special
case ofOIScurves). This re-definition results in curves, representingvalueswithwell-
defined economic interpretations. We then discussed some interpolation schemes
for these curves, where our re-definition suggests to apply different interpolation
schemes for discount and forward curves. This stands in contrast to the classical
approach where a forward curve had been represented via synthetic discount factors,
using the same interpolation schemes for both types of curves.

We have presented the calibration, defining the calibration instruments. Based on
this, we provide an open source, object-oriented implementation at [11].13

Based on this benchmark implementation it was possible to assess the impact of
assumptions, which had to be made due to the lack of calibration instruments, e.g.,
for the case of cross-currency swaps, and the impact of the different interpolation
schemes. Indication was found that it is better to use a different interpolation scheme
for forward curves than for discount curves. With respect to delta hedges one should

13A complete description of the implementation is given at http://www.finmath.net/finmath-lib,
including source code and numerical examples. They are left out in this paper.

http://www.finmath.net/finmath-lib
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favor forward interpolation over synthetic discount factor interpolation. Among for-
ward interpolation, linear interpolation performed well with respect to the hedge
performance.
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