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Abstract Risks from natural hazards such as floods, droughts, earthquakes, and
landslides are rising due to increasing populations living in more marginal areas and
climatic variability, but our ability to provide warnings and mitigation strategies at
short, medium, and long timescales is often challenged by the lack of ground
observations in the most vulnerable areas. Satellite remote sensing offers unique
global observational capabilities that can provide key insight into the multi-faceted
topics of disaster hazard and risk assessment, response, and recovery in a way that
ground-based systems cannot do alone. From the vantage point of space, satellite
platforms can provide estimates of important hazard-related variables, but have
varying degrees of accuracies and spatial resolutions. In some cases these data are
used to support direct disaster response such as maps showing the spatial extent of
the disaster or impact analyses from detecting pre- and post-event changes on the
landscape. Examples of such direct support include the disastrous flood events in
Malawi in January 2015 and in the southwestern United States in May and June
2015, and the devastating high-magnitude earthquake that hit Nepal in April 2015
(National Planning Commission 2015).
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1 Overview

Timely responses during such disasters are often enabled by data and tools that
were developed with data from Earth observing satellites leveraging the rapid
dissemination of satellite information. For example, NASA and the Dartmouth
Flood Observatory use direct observations of flood water extent from instruments
like the moderate resolution imaging spectroradiometer (MODIS) on NASA’s Terra
and Aqua satellites and these data are available within hours of acquisition. This
method complements modeling efforts such as the Global Flood Monitoring System
(GFMS, http://flood.umd.edu) that uses near-real-time satellite-based precipitation
information to model potential flood inundation, allowing scientists to compare
results and ultimately improve their flood estimates. The availability of optical
imagery such as from EO-1, Landsat, or commercial imagery from Digital Globe
allows for rapid mapping of landslides following a major trigger, such as the
Gorkha Earthquake in Nepal in April, 2015. The mapping efforts provided
important information to aid in disaster response and recovery efforts.

Looking to the future, the challenge and question is how best to link Earth
Observation (EO) imagery and products together to provide more robust hazard
assessment and monitoring systems. Ensuring sustainable value and use of the
many platforms, data, and tools offered by satellites and the scientific community
requires an intimate engagement between the latter and a wide range of stakeholders
(Hossain 2015). This issue has become imminent in recent years, as the strong
interplay between human activity and nature drives change on almost all continents.
There have been success stories that took advantage of the science and observations
afforded by satellites to have spectacular societal impacts or provide unprecedented
assistance during major disasters.

Despite the gradual development of more mature remote sensing technology and
satellite missions for routine environmental monitoring, there is a general lack of
capacity building needed in most regions to take fullest advantage of the tremendous
influx of satellite environmental data that are and will become available in the near
future. In order to unlock the observational capability of satellites to enhance and
accelerate societal applications around the world, scientists, stakeholders, and
humanitarian and development agencies need to collaborate closer and ensure sus-
tainable synergies. These partnerships and relationships take time to develop and must
be nurtured to most effectively transition scientific research to real-world applications.
In reality, these collaborations are typically slow and can prove difficult to establish. For
disaster assessment and response, there is a wealth of timely data that can significantly
contribute to improving rapid hazard response and recovery; however, few communi-
ties are able to take full advantage of these remote sensing data and products. Therefore,
a goal looking to the future is to collaborate and coordinate information from an ever
increasing number of satellite missions and work with the spectrum of users to more
effectively convert data and science into actionable products for better decision-making.

This chapter outlines several examples, where the intersection of remote sensing
data and science has had a significant impact on applications and decision-making
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and has been used to assist relief services during disasters. The following sections
describe the role Earth Observation (EO) data play in landslide monitoring,
earthquake disaster response (using the Nepal 2015 disaster), and in assisting flood
relief services in the Lower Zambezi (in collaboration with the United Nations
World Food Programme). We recapture these success stories and report current and
future prospects as well as challenges.

2 Landslide Hazard Assessment and Monitoring Using
Remotely Sensed Data

2.1 Introduction

Mass movements, including debris flows, landslides, mudflows, rockfalls, etc.,
(herein referred to as landslides) occur in every country on earth and cause thou-
sands of fatalities and significant destruction each year (Petley 2011; Kirschbaum
et al. 2015c). Landslides can range in size from a few meters to several kilometers.
They occur over a broad range of lithologies, morphologies, hydrologic settings,
and climate zones and can be triggered by intense or prolonged rainfall, earth-
quakes, rapid freezing and thawing of the surface, and anthropogenic activities,
among others (Fig. 1). The location, size, and timing of landslide events can be
extremely challenging to forecast or evaluate because of the local scales at which
they occur and the complex interactions these events have with triggering events.

EO data have played an important role in advancing the mapping and hazard
assessment capabilities over local to global scales. However, there remain some
limitations to effectively applying these data to landslide mapping, monitoring, and
hazard assessment. Building capacity to better utilize EO data for landslide
assessment has been developing over the past decade, and significant advancements
have been made to better utilize remote sensing data for landslide hazard

Fig. 1 Global Landslide Catalog (2007–2015) developed at NASA showing number of fatalities
for reported events. The Global Landslide Catalog was compiled from media reports, online
disaster databases and other sources and contains nearly 7000 events (see Kirschbaum et al. 2010)
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assessment. However, there remain some challenges in effectively applying EO data
for actionable landslide hazard information. This section provides a few examples
of current activities in landslide mapping, monitoring, and hazard assessment and
suggests some of the opportunities and challenges of the landslide hazard mapping
community in utilizing and building capacity to use EO data.

2.2 Current and Past Approaches

There are many different approaches to landslide hazard assessment and monitoring.
One approach to estimating landslide behavior is using a deterministic model to focus
on site-specific analysis at a local (hillslope) scale (e.g. Iverson 2000; Baum et al.
2010). In this approach, one needs to account for the way that extreme rainfall interacts
with topography, how the water infiltrates the surface and how the subsurface
responds to the increased presence of water. These different interactions can vary
significantly over one to several meters. The surface and triggering information needed
to successfully monitor and assess the hazard is typically obtained from in situ sources
(e.g., rain gauges, soil moisture sensors, local high-resolution digital elevation models)
and is rarely available from EO data at the resolution needed to conduct the analyses.

Statistical landslide hazard mapping approaches relate potential causal factors (e.g.,
slope, soil type, distance to drainage, geology) with past local or regional landslide
inventories using methods such as logistic regression (e.g. Dai et al. 2004; Ayalew and
Yamagishi 2005; Mathew et al. 2009), artificial neural networks (e.g. Ermini et al.
2005; Melchiorre et al. 2008; Pradhan and Lee 2010), or frequency ratio (e.g., Lee and
Pradhan 2007; Kirschbaum et al. 2012). These approaches usually produce a static
susceptibility map that provides information on the relative or probabilistic potential
for landslide activity in a specific area. These studies have ranged from local to global
scales and in many cases rely on EO data for homogenous surface inputs.

A third approach that focuses on landslide hazard monitoring considers the
timing of landslides triggered by rainfall using an archive of previous events.
Techniques consider the intensity of rainfall over short to prolonged periods by
relating the intensity and duration (I-D) of a storm with previous landslide occur-
rence. I-D thresholds have been derived statistically and empirically on the global
(Caine 1980; Hong et al. 2006; Guzzetti et al. 2008), regional (Dahal and Hasegawa
2008; Brunetti et al. 2010; Saito et al. 2010), and local scales (Larsen and Simon
1993; Saito et al. 2010). Typically, these I-D thresholds utilize in situ networks of
rain gauges but some studies have considered the feasibility of applying
satellite-based precipitation to estimate thresholds over broader areas (Rossi et al.
2014; Kirschbaum et al. 2015a).

A common theme in all landslide studies is the need for landslide inventories
with sufficient information to validate landslide monitoring and hazard assessment
systems. Unfortunately, there is a dearth of this information in general and openly
available data in particular. Unlike monitoring networks for hurricanes or earth-
quakes, global systems have not been created to routinely identify the location,
timing, and extent of landslide events. Different types of landslide maps can be
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prepared depending on the purpose of the inventory and extent of the study area.
Traditional landslide inventory methods include obtaining a series of aerial photos
and conducting field surveys to compile a database of landslides for a particular
area over time. Optical remote sensing data has been applied to assess the landslide
density, areal extent, and frequency (Petley et al. 2002; Hervas et al. 2003). Other
sensors, such as Synthetic Aperture Radar techniques, are being used more often to
locally evaluate displacement of landslides and changes over time (Mazzanti 2011).
Freely available EO data provide a significant potential capability to this field for
improved and more systematic landslide inventory mapping and analysis.

2.3 Application of EO Data in Landslide Studies

The increased availability, accessibility, and resolution of remote sensing data has
provided new opportunities to explore issues of landslide mapping, hazard assess-
ment, and monitoring at a range of spatial scales. Table 1 highlights some of the EO
datasets that have been utilized for landslide hazard assessment and monitoring from
NASA’s fleet. Of the surface variables responsible for slope failures, elevation (and
its derived products) remains the most important variable in nearly every model for
landslide hazard assessment and monitoring. In terms of NASA data, the Shuttle
Radar Topography Mission (SRTM, Farr et al. (2007)) has produced data that have
now been released at 3-arc s which can be used to derive slope, curvature, aspect,
distance to drainage, etc. State variables that provide both the preconditions and
triggering conditions for landslides include soil moisture information from the Soil
Moisture Active Passive (SMAP) mission and precipitation from GPM. The pres-
ence of past burned areas can increase the susceptibility for landslides due to veg-
etation loss. This data can be obtained from the moderate resolution imaging
spectroradiometer (MODIS) both for past burned areas and active fires.

Finally, an important component of all landslide studies is a robust landslide
inventory to validate the landslide model or identify previous instability. Optical
imagery such as Landsat, EO-1, or ASTER can provide valuable information over
the landscape with the advantages of repeat overpasses (Landsat) or the ability to
task specific areas (EO-1 and ASTER). High-resolution commercial imagery pro-
vides additional information to classify specific landslides on a slope, but can be
limited by the availability and cost. Lastly, SAR capabilities have been used to
identify elevation changes from repeat overpasses, but the techniques are not yet
widely used for larger area landslide inventory mapping.

2.4 Regional Landslide Hazard Assessment and Monitoring
in Central America

One of the challenges with utilizing remotely sensed EO data within a landslide
hazard assessment or monitoring system is the scale at which the study is
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undertaken. Studies are frequently limited to an area where there is sufficient in situ
information to fully parameterize the model. We present a case study here for a
regional landslide “nowcasting” system that has been developed over Central
America utilizing primarily NASA EO data.

2.4.1 Model Description

The Landslide Hazard Assessment for Situational Awareness (LHASA) model was
implemented in Central America and the Caribbean by integrating a regional sus-
ceptibility map and satellite-based rainfall estimates into a binary decision tree,
considering both daily and antecedent rainfall (Kirschbaum et al. 2015a). LHASA
produces a pixel-by-pixel nowcast in near-real time at a resolution of 30 arc s to
identify areas of moderate and high landslide hazard. The main goal of this system
is to provide a set of tools at the regional level to characterize areas of potential
landslide hazard that emergency response agencies, other in country groups or
international aid organizations can use to improve their situational awareness and
focus attention in areas that may need support.

Table 1 Example of some NASA and other EO data and products useful for landslide hazard
assessment (acronyms need to be spelled out—SRTM, SMAP, MODIS, GPW V3)

Data type EO data set Resolution Extent Source

Elevation Shuttle Radar
Topography Mission
(SRTM)

30 arc-s
(*90 m)
and 3-arc
s
(*30 m)

65°
N-S

http://www2.jpl.nasa.
gov/srtm/

Forest
cover and
loss

Global Forest Change
2000–2013

30
m/99.6 %

Global http://glad.umd.edu/
projects/gfm/

Rainfall Global Precipitation
Measurement
(GPM) mission
Integrated Multi-satellitE
Retrievals for GPM
(IMERG)

0.1°,
30-min

65°
N-S

http://pmm.nasa.gov

Soil
moisture

Soil Moisture Active
Passive (SMAP)

Population LandScan and Gridded
Population of the world,
version 3 (GPW V3)

1 km Global http://web.ornl.gov/sci/
landscan/; http://sedac.
ciesin.columbia.edu/
data/collection/gpw-v3

Active fire
and
burned
areas

Moderate Resolution
Imaging
Spectroradiometer
(MODIS)

1 km Global http://modis-fire.umd.
edu/
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The landslide susceptibility map going into the LHASA model was developed
for Central America and the Caribbean islands by combining three globally
available datasets (slope, soil type and road networks) and one regional dataset
(fault zones) using a fuzzy overlay methodology (Kirschbaum et al. 2015b). This
primarily heuristic model allows for flexibility both in testing a range of different
contributing variables as well as incorporating information from landslide inven-
tories that greatly vary in their size, spatiotemporal scope, and collection methods.
The resulting susceptibility map provides a relative indication of landslide sus-
ceptibility across the over 700,000 km2 considered at a resolution of 30 arc s
(Fig. 2). We tested a range of satellite-derived products including SRTM DEM,
forest cover derived from MODIS and AVHRR. After a modified sensitivity
analysis, slope, topsoil clay content, presence of roads, and distance to fault zones
were included as variables in the susceptibility map.

To provide an indication of potential timing of the landslide activity, TRMM
Multi-satellite Precipitation Analysis (TMPA) data was evaluated over its entire
archive at the time (2000–2014). An antecedent rainfall index (ARI) was calculated
to account for pre-event soil moisture and both daily rainfall and antecedent rainfall
percentiles were computed for each 0.25° × 0.25° pixel. Using landslide infor-
mation obtained from the Global Landslide Catalog (Kirschbaum et al. 2010,
2015c), the study then computed precipitation thresholds based on the occurrence

Fig. 2 Landslide susceptibility map for Central America and the Caribbean showing very low to
very high susceptibility. Source Kirschbaum et al. (2015a)
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of rainfall at the reported landslide locations. A decision tree framework was
established to generate moderate hazard, high hazard, or Null nowcasts based on the
thresholds for susceptibility, ARI, and daily rainfall (Fig. 3).

The model is updated every day and is currently running in a prototype mode at:
http://ojo-streamer.herokuapp.com/meso. This system provides information on all
of the input variables (precipitation, susceptibility, and resulting nowcasts), so that
individual users can diagnose the conditions at their location of interest as well as
see what LHASA generates for potential nowcasts.

2.4.2 Applications and Challenges

The landslide system developed for Central America has a flexible framework that
is customizable for other regions with a small level of effort. Currently, this system
has been applied in a prototype form in Nepal and Peru. This workflow is also
currently being expanded to a global model utilizing a similar approach.

This system provides an overview of potential landslide activity at both regional
and soon global perspectives that currently does not exist. By coupling an indi-
cation of susceptibility with the intensity of recent rainfall at that pixel, it provides a
regional perspective that can provide valuable situational awareness to a range of
different end users including the international aid organizations such as the

Fig. 3 LHASA Decision tree model. Source Kirschbaum et al. (2015a)
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International Federation of the Red Cross,1 global disaster centers such as the
Pacific Disaster Center,2 the intelligence and military communities, and others. The
framework in which the LHASA system is housed can also allow users to easily
extract the underlying data from this model including remotely sensed precipitation,
susceptibility, and landslide nowcasts in a variety of different formats.

The challenges in this system lie in the broad regional and global frameworks on
which this system was designed. Due to its coarse spatial resolution (*0.01° or
approximately 1 km), it has limited applicability for local emergency response
groups who may need more detailed, slope-specific information. There is always
the potential for increasing the resolution of this product in some areas, however, a
major challenge stems from the current resolution of triggering data, namely pre-
cipitation, as well as the relative dearth of landslide inventories for model cali-
bration and validation.

2.5 Conclusions

Landslide hazard assessment and monitoring is rarely undertaken at regional or
global scales due to the prevailing methodologies that predominately utilize in situ
data as well as the techniques that require detailed landslide inventories and trig-
gering data. Of all the limitations of conducting landslide hazard assessment over
larger areas and making full use of remotely sensed data, the most challenging
element to overcome is the paucity of landslide inventory data beyond site-specific
local studies. Optical imagery from EO-1, Landsat imagery can fill a critical need to
better identify large landslides. Commercial imagery, such as from DigitalGlobe,
provides higher resolution data to map an area. While optical methods are at the
mercy of cloudless skies, SAR capabilities can penetrate clouds and allow for
detection of changes on a landscape on the order of centimeters. All of these remote
sensing capabilities have been used before for landslide detection; however, there is
still a need for established, globally acknowledged mapping standards and guide-
lines to better utilize remote sensing imagery for landslide inventory assessment.
Systems such as LHASA demonstrate the feasibility of applying remotely sensed
data in a regional or global context to increase awareness, better understand the
triggering conditions and ultimately improve response to landslide activity.

1www.ifrc.org/.
2http://www.pdc.org/.

Role of Earth Observation Data in Disaster Response … 127

http://www.ifrc.org/
http://www.pdc.org/


3 Nepal 2015 Earthquake: Addressing International
Development Challenges Through Scientific Networks

3.1 Introduction

Reaping the societal benefits that Earth Observation Systems (EOS) takes concerted
efforts on the part of scientists and managers to understand the specific needs of
beneficiaries. It also requires a clear understanding of entry points for EOS products
and tools in decision-making processes. This not only requires a well-informed user
group (potential beneficiaries) but also a group of applied scientists and capacity
builders who can translate societal needs into possible data- or application-informed
solutions. At the nexus of international development and applied sciences is
SERVIR, a joint effort led by the U.S. National Aeronautics and Space
Administration (NASA) and the U.S. Agency for International Development
(USAID), along with international organizations around the world who have great
capacity in connecting challenges posed by environmental, climate change, and
disaster management with scientific data and products. A capacity building project,
SERVIR strengthens developing countries’ abilities to access and apply Earth
observation data to manage challenges in the areas of food security, water resources,
land use change, and natural disasters.3

To do this, SERVIR has created a network of scientists, technologists, trainers,
and decision-makers, who collaborate to use Earth observations and geospatial
technologies to codevelop solutions to environmental challenges. Foci of SERVIR
efforts are in regional hubs, which are international organizations or consortia that
have been selected for their history and experience of using GIS and remote sensing
for environmental challenges. SERVIR hubs function to apply appropriate science
and cutting edge technologies to plug into or become part of existing decision
support systems. Active SERVIR regions include Eastern & Southern Africa, led by
the Regional Centre for Mapping of Resources for Development (RCMRD; http://
www.rcmrd.org/), the Hindu Kush Himalaya region, led by the International Centre
for Integrated Mountain Development (ICIMOD; http://www.icimod.org/), and the
Lower Mekong region served by a consortium of the Asian Disaster Preparedness
Center (ADPC; http://www.adpc.net/), Spatial Informatics Group, Stockholm
Environment Institute, and Deltares. USAID regional and bilateral missions play an
active role in funding the hubs and articulating the development challenges, while a
Science Coordination Office (SCO, previously called a the SERVIR Coordination
Office (CO)) at NASA provides scientific and technical backstopping to hubs and
manages an Applied Sciences Team (AST). This AST works to address end-user
needs in SERVIR regions in direct collaboration with hubs. SERVIR addresses a
wide variety of thematic areas, focusing on food security, land cover/land use and
ecosystems, water and water-related disasters, and weather and climate.

3https://www.servirglobal.net/.
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Given its position to accelerate applications of EO data in decision-making
contexts in many regions of the world, SERVIR has been leveraged in many cases
to provide technical input into emergency mapping and disaster response support,
often in the form of rapid satellite image acquisition and interpretation (Boccardo
2013). Some of the earliest and strongest demands for information have come from
fire mapping needs (Lewis 2009). Applications and customizations of
satellite-based fire information are often taken up very quickly by environmental
management and disaster management communities, likely for two reasons: first,
the high applicability and accessibility of the Fire Information for Resource
Management System (FIRMS) (Davies et al. 2009) and MODIS active fire products
(Giglio 2010; Justice et al. 2011), and second, a close understanding of the chal-
lenges that forest and fire managers face. To further facilitate design and opera-
tionalization of such systems, applications have been cofunded and codeveloped
between SERVIR hubs and with government ministries and departments them-
selves. Summaries and examples of disaster response support provided in
Mesoamerica, Eastern and Southern Africa, and the Hindu Kush Himalaya can be
found in Bajracharya et al. (2014), Flores Cordova et al. (2012), Gurung et al.
(2014), Graves et al. (2005), Hardin et al. (2005), Macharia et al. (2010) and Wang
et al. (2011). Throughout the communication and collaboration that occurs during
needs assessments, product development, and iterations thereof, a vibrant network
of scientists, technologists, managers, trainers, development professionals, and
decision-makers, have been formed. The remainder of this section focuses on the
description on one of the many subnetworks that we argue allowed for a successful
integration of Earth observations into disaster response support.

3.2 Role of Earth Observations in the 2015 Nepal
Earthquake Facilitated by SERVIR Network

The 25 April 2015 magnitude 7.8 earthquake and aftershocks (including the 12
May 2015 magnitude 7.3 aftershock) in Nepal led to over 9000 deaths, widespread
damage to buildings and infrastructure, over 4000 landslides, avalanches, and other
economic ramifications (National Planning Commission 2015; Kargel et al. 2016).
Immediately following the earthquake, ICIMOD and the participants in the
SERVIR network came into play to provide EOS-derived products to inform
decision-makers the extent and magnitude of the impact, particularly around the
state of geohazards (ICIMOD 2015).

Before the earthquake, though, a preexisting network of science data product
providers and end users existed (Fig. 4). During the earthquake, ICIMOD and the
NASA/SERVIR Coordination Office leveraged the preexisting network to connect
ICIMOD and government agencies in Nepal with an even broader network of
science data product providers (Fig. 5). Some 40 volunteer landslide mappers in the
U.S., organized by the University of Arizona, NASA, and USGS; and another 40 or
so volunteer mappers in Nepal, organized by ICIMOD, were able to put EOS
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products to immediate use by plugging into this strong network that ICIMOD and
SERVIR had developed over the previous 5 years. The main audiences for
value-added products were the Ministry of Home Affairs, Prime Minister’s Office,

Fig. 4 Network connections before earthquake response (prior to April 2015). Orange Disaster
response coordination, Purple Science/technical collaboration, Gray Project management
connection, Blue Imaging needs communicated and images provided, Red Landslide mapping,
Green Value-added products demanded and provided

Fig. 5 Network connections during earthquake response (April–June 2015). The demand for
situational awareness that satellite images and their analysis provide mushroomed during the
earthquake response. The surge in landslide mapping efforts (red) produced information and
products that were readily transferred through a previously existing network, allowing them to
reach government and nongovernment end users in Nepal
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and numerous other government agencies in Nepal. USAID offices in Washington,
D.C., and in Nepal provided crucial funding and project management support,
while the NASA/SERVIR CO connected Earth science data users in Nepal to a vast
network of Earth scientists within NASA and outward through its affiliates.

Figures 4 and 5 depict lenses of NASA/SERVIR and ICIMOD for the event
response. It is important to note that there were even more collaborators with
ICIMOD from other countries, more connections between Nepal and the US, more
connections between ICIMOD and other Nepal agencies, and more connections
between International Charter and international space agencies, than depicted here.

What is the lesson learned here? When it comes to reaping benefits of EO data
around the world, networks are not formed overnight. Meaningful responses to
disasters rely on existing networks of scientific and technical collaboration, as
presented in this brief case study. As of late October 2015, 5760 ad hoc products
and 5840 images have been contributed to the USGS Hazard Data Distribution
System, the US’s platform for organizing and disseminating its contributions to the
Charter (USGS 2015). The absorption and use of such a volume of products and
satellite images require significant capacity to translate these intermediate outputs
into actionable information.

3.3 Conclusions

Much is left to be done toward standardization for international disaster response
(McCann and Cordi 2011), but certainly a strong history of collaboration and
vibrant network of collaborators eases the connections between how Earth obser-
vations can play a role in meeting the demands during disaster response. Even
though the network analysis presented is from specific project and organizational
lenses, it is telling to see how many “connections” there were before the crisis.
Also, many more connections were made during the crisis, but it is difficult to know
whether the same quantity and quality of connections could have been made during
the crisis response had there not been the previous network connectivity. Without
such prior connections and capacities, we hypothesize that there would not have
been as effective a response from the EO side.

4 Mapping and Predicting Flood Hazard in the Lower
Zambezi for the Humanitarian Aid Sector

4.1 The Situation

The Zambezi River is the fourth largest river in Africa and is an important source
for biodiversity, agriculture and hydroelectric power. The river flows into the Indian
Ocean and through eight countries (Zambia, Angola, Namibia, Botswana,
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Zimbabwe, Mozambique, Malawi, and Tanzania) in the southeast of the continent.
Some of the most important wetlands in Africa are linked to the Zambezi River,
while agricultural production is governed by the variability in river storage and
flows. The basin encompasses humid, arid, and semiarid regions, with the flow
regime being controlled by seasonal rainfall that causes the area to be seasonally
flooded. Estimates of population within the Zambezi River Basin (ZRB) range from
30 to 40 million people, the majority of whom live in rural areas.4 Very frequently,
almost every year, moderate to high-magnitude floods put millions of people and
their livelihoods at risk (Table 2). Over the past two decades, large floods have
affected an estimated 17 million people (see Table 2) and led to significant crop
damages with persisting consequences.

Table 2 Flood data for all countries in the ZRB over the last 20 years

Year Occurrences Total
deaths

Affected Injured Homeless Total
affected

Total
damage in °
000

1995 5 24 5350 0 23300 28650 0

1997 4 118 808028 0 2104 810132 0

1998 5 101 1,319,600 0 0 1,319,600 20,789

1999 2 23 72,000 0 0 72,000 12,400

2000 11 955 4,913,776 28 108,800 5,022,604 508,100

2001 9 218 1,945,904 5 200 1,946,109 46,300

2002 5 26 397,540 0 500 398,040 0

2003 12 73 565,500 3 12,825 578,328 200,000

2004 7 30 558,345 13 1,700 560,058 0

2005 6 18 53,373 12 63,500 116,885 0

2006 7 13 2,300 28 37,725 40,053 8,490

2007 16 209 2,223,362 0 12,159 2,235,521 171,000

2008 7 151 188,780 15 1,942 190,737 0

2009 10 223 1,246,395 0 5,065 1,251,460 0

2010 8 38 261,185 31 78,875 340,091 0

2011 16 290 798,491 201 6,876 805,568 12,000

2012 4 14 91,385 0 0 91,385 0

2013 8 285 380,120 76 0 380,196 30,000

2014 9 50 145,555 2 20,000 165,557 20,000

2015 5 432 768,881 645 595 770,121 0

Total 156 3,291 16,745,870 1,059 376,166 17,123,095 1,029,079

Note that a value of 0 may denote data not available. Source EMDAT http://www.emdat.be/
advanced_search/index.html

4World Bank: http://siteresources.worldbank.org/INTAFRICA/Resources/Zambezi_MSIOA_-_
Vol_1_-_Summary_Report.pdf; WWF: http://wwf.panda.org/about_our_earth/about_freshwater/
rivers/zambezi/.
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The countries within the ZRB and in particular the downstream country of
Mozambique with its vast delta area, suffer from weak infrastructure and resources
and thus lack the foundational data required to establish effective flood manage-
ment, mitigation, and relief services plans, let alone an operative flood forecasting
system. Despite some local flood forecasting efforts in the ZRB, according to the
World Meteorological Organization (WMO) there is currently no integrated flood
warning system in the basin, primarily due to poor communication facilities and
limited exchange of information and data in real time (WMO 2009). Furthermore,
flow and water level measurement stations are exiguous in most countries in the
region.

This general lack of information regarding the most serious and regular natural
hazard in the region exacerbates the challenges faced by humanitarian emergency
response to flood events. The United Nations World Food Programme (WFP) is the
food aid arm of the UN and one of the largest providers of disaster assistance to the
region. In addition to rapid emergency food aid, WFP also provides additional
logistics and emergency telecommunications assistance to organizations that are
part of the overall flood response. Reliable maps showing the extent of rivers and
floodplain inundation as well as associated effects on critical infrastructure provide
maximum situational awareness in support of preparedness, response, and recovery
activities.

Ideally, these types of situational or logistics operational planning maps (Fig. 6)
should be delivered in near-real time to WFP field officers on the ground. At
present, the only consistently and freely available flood maps delivered in near-real
time are provided by a unique global flood monitoring system funded by NASA
using daily images from the Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard NASA’s Terra spacecraft (as illustrated in Fig. 7). With com-
posite MODIS images, NASA produces cloud-free maps showing the precise
locations of flooded areas where there may be concomitant (and significant) pop-
ulation displacement. NASA also makes the raw GIS data available for download
enabling overlay of the MODIS analysis on operational planning maps. These maps
are used by WFP staff to pinpoint the worst-hit areas. With the new composite
images, there is a dramatic increase in mapping accuracy as well as a daily timeline
of the progression or recession of the flood waters. Observations of floodplain
inundation over time allow disaster relief agencies like WFP to identify serious
flood events and allocate resources and direct operations accordingly.

The challenge faced by both the humanitarian aid sector and the scientific
community is twofold: (1) the data received by the flood response teams need to be
actionable information (timely, clear, simple to understand and compatible with
standard mapping software such as ESRI) and (2) should not provide a determin-
istic, but a probable range of floodplain inundation variables (volume, area, depths),
preferably with long lead times, in the form of a simple early warning system. This
would allow humanitarian aid agencies such as WFP to more effectively allocate
and preposition resources that would ensure the most efficient aid distribution and
emergency response. Also, it would allow local and national authorities in the
region to ensure sustainable management in the areas of food security and water

Role of Earth Observation Data in Disaster Response … 133



Fig. 6 Example of a map sent to field response teams in the humanitarian aid sector, in this case
by WFP. This map shows flood evolution in the Lower Zambezi based on MODIS satellite
imagery for the event in February 2008. The map was produced by the Information Technology for
Humanitarian Assistance, Cooperation and Action (ITHACA) Institute in Turin, Italy. ITHACA is
one of the top-level academic institutions who are enabling WFP to take advantage of recent
advances in remote sensing technology. With this type of help, WFP has rapid access to satellite
imagery analysis of disaster areas. The detailed maps help guide and inform its humanitarian
operations
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supply. Most importantly, it would provide the potentially affected communities
time to prepare accordingly.

4.2 The Challenge

4.2.1 The Scientific World: Thriving to Do It Right

With flood frequency likely to increase as a result of altered precipitation patterns
triggered by climate change, there is a growing demand for more data and, at the
same time, improved flood inundation modeling. This is essential for the devel-
opment of more reliable flood forecasting systems over large scales that account for
errors and inconsistencies in both observations and modeling. It is clear that there is
an ever increasing abundance of forecast models and data that predict the

Fig. 7 Inundation surrounds the Zambezi River in the image in b, captured by the MODIS on
February 10, 2007. Mozambique was experiencing its worst floods in 6 years when the Zambezi
overtopped its banks in January and February 2007, reported the United Nations Office for the
Coordination of Humanitarian Affairs (OCHA). As of February 12, 2007, an estimated 29 people
had died and 60,000 had been evacuated from the riverbanks. These images show the lower
Zambezi where it meets the Shire River flowing south from Malawi, one of the most severely
affected regions in Mozambique. The image in b provides a remarkably cloud-free view of the
floods, while the image in a, taken on December 31, 2006, shows the region before the rain started
in January. Images such as these are provided by the MODIS Rapid Response Team and the
Dartmouth Flood Observatory (http://floodobservatory.colorado.edu) on a daily basis (© NASA
Earth Observatory)
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magnitude, frequency, and impacts of extreme weather events, such as floods.
Recent and ongoing advances in Numerical Weather System (NWS) model
development (ECMWF models, NOAA NCEP models, and WRF models) can
provide forecasts of rainfall fields and even streamflow at a high spatial resolution
that can deliver accurate information at the appropriate regional and basin scale for
hydrology.

However, predicting flood inundation in 2-D in near-real time and particularly
with long lead times (i.e. 10 + days) as required by flood relief services is still a
major challenge and only a couple of flood inundation models are actually capable
of delivering data at (local) scales appropriate for flood disaster management and
emergency response, let alone in near-real time. Over the last few decades, there
have been major advances in the fields of remote sensing, numerical weather
prediction, and flood inundation modeling (Pappenberger et al. 2005). At the same
time, there are currently attempts to roll out models on a continental to global scale
(Thielen et al. 2009; Alfieri et al. 2013; Pappenberger et al. 2012; Paiva et al. 2011,
2013; Winsemius et al. 2013). In this context, see in particular Sampson et al.
(2015) for an illustration of the type of 2-D flood hazard model used in Schumann
et al. (2013) for flood inundation forecasting in the Lower Zambezi.

These models, with a few exceptions, predict at a point discharge level with
relatively little attention to accuracy at the appropriate inundation model grid scale.
Typical grid resolutions of continental or global scale models dealing with flood
inundation processes are in the order of a few tens of square kilometers (Yamazaki
et al. 2011; Pappenberger et al. 2012), which is often too coarse to resolve inun-
dation pattern details necessary to understand associated local risks. The type of
hydrodynamic model presented by Paiva et al. (2013) in an Amazon River case
study moves certainly in the right direction in terms of large-scale hydrology and
in-channel hydrodynamics but it employs a simple fill operation for the floodplain
with prediction of storage volume only. Since the model lacks floodplain hydrau-
lics, it cannot reproduce inundation area dynamically. In addition to these short-
comings, most models employed in flood forecasting and mapping use simple flow
routing schemes that only account for the kinematic force term in hydrodynamics
but ignore diffusion and backwater effects.

Consequently, during many major flood events particularly in coastal areas, such
as Cyclone Eline associated with the devastating floods in Mozambique in 2000 or
the Hurricane Sandy and Katrina events in the U.S., commonly used flood models
are inadequate. This is worsened by the fact that oftentimes downstream
coastal-ocean boundaries in inland inundation models are not represented correctly
or missing altogether. The main reason for this is not because such estuary models
do not exist but rather that accurate representation of boundary conditions is needed
at very high spatial resolution. Advances in computing only made this possible very
recently. In addition, there is a gap between the coastal and riverine scientific
communities as these two fields employ computer models that, despite solving very
similar hydrodynamic equations, require different forcing and input data.

In an attempt to overcome some of the challenges noted, Schumann et al. (2013)
built a first large-scale flood inundation forecasting model for data-poor regions and
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tested it on the Lower Zambezi basin. In their application, the Variable Infiltration
Capacity (VIC) hydrology model (Liang et al. 1994) is forced with medium-range
weather forecast reanalysis data to provide flow at entry points to a flood model.
The flood model applied is the computationally efficient 2-D hydrodynamic model,
LISFLOOD-FP (Bates et al. 2010), complemented with a subgrid channel formu-
lation (Neal et al. 2012) to generate flood inundation variables for the Lower
Zambezi basin. Their forecast system (Fig. 8) showed good performance levels in
both in-channel water levels during the calibration phase (18 cm in error) and
flooded area predictions during the validation phase (86 % fit compared to a
Landsat image of the 2007 event).

4.2.2 The Decision-Making World: Delivering Actionable Information

It is clear that there is an ever increasing abundance of extreme event data, from all
kinds of models and observational systems, as well as other types of geospatial data
sets available to describe and quantify the processes, magnitude, frequency, and
impacts from extreme weather and climate change, such as floods. The scientific
community is working to provide an enormous volume of valuable geospatial
datasets to the public that can deliver information at various temporal and spatial
resolutions spanning the entire natural process of an extreme event. This

Fig. 8 Schematic of the calibration of the VIC hydrology model and the setup of the forecast flow
generation (left panel). Illustration of the LISFLOOD-FP flood simulation (1 km resolution) at the
time of the (a) ICESat-1 overpass and (b) Landsat overpass in February 2007, using the VIC
baseline hydrographs shown. ICESat-1 water level locations and Landsat flood edge points are
also shown. The color shading represents flooded area and water depths in m (right panel).
Modified from Schumann et al. (2013)
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information can be in the form of event reanalysis, probabilistic forecast or scenario
projections.

However, this wealth of information is completely under-utilized by emergency
response teams, due to a number of reasons, most of which relate to its relative
novelty: (1) limited time and personnel capacity to understand, extract, process, and
handle new types of geospatial datasets; (2) limited near-real-time data accessibility,
bandwidth, and sharing capacity; (3) incompatibility between user platforms and
geospatial data formats; (4) data availability may be simply unknown and/or data
latency may be inadequate; and (5) limited understanding by scientists and engi-
neers about end user information product and timing needs; and (6) limited feed-
back from end users as to the usefulness and accuracy of the information when the
data is actually made available.

In order to address this frequently encountered mismatch between data avail-
ability and end-user needs, geospatial data layers of extreme event prediction rel-
evant to stakeholders should be delivered in an easily accessible format, through a
user friendly web-based interface such as one that could be provided by Google,
Inc., Amazon.com, Inc. or Environmental Systems Research Institute, Inc. (Esri) for
instance.

4.3 Meeting Midway

4.3.1 Innovation

Flood prediction is a major component of any integrated flood management plan,
which in turn constitutes an essential part of efficient water resources prediction and
management. The Global Flood Working Group (GFWG), a consortium of top
scientists and decision-makers concerned with flooding, has identified the need for
better flood forecasting up to 30-days lead time as one of their primary objectives
and scientific pillars, especially in data-poor regions. A possible way forward may
be to develop a simple and robust satellite-assisted operational early warning sys-
tem that can be used to predict with a long lead time (>30 days) a possible range of
anomalous flood water conditions that can manifest themselves in the form of
inundation area, volume, and depth above the mean condition. In order to achieve
optimal use of such a system for emergency flood relief services, the modeling
framework proposed for the Lower Zambezi area in collaboration with the
humanitarian aid sector (WFP) and through space agency funding support (NASA,
13-THP13-0042) needs to address the following aspects, which makes it unique and
quite different from existing (flood) early warning systems:

• Establishing a very long term record of forecast flood inundation that can be
queried using observed antecedent and present satellite soil moisture data (e.g.
from satellite missions such as ESA’s SMOS or NASA’s SMAP) as well as
forecast rainfall data or forecast flows, or indeed any relevant near-real time
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observed or gauged flood variables for that matter. In fact, one may decide to
use data assimilation techniques, such as presented by Neal et al. (2009) for
example, to augment the model (forecast) accuracies. Figure 4 (Pillar 1)
schematizes one possible modeling framework.

• This flood inundation early warning system or ‘dynamic library’ can be applied
without the need to run models and provides not a deterministic but a probable
range of flood inundation with long lead times.

• The proposed system computes actual floodplain flow processes by solving the
shallow water equation, using LISFLOOD-FP after Bates et al. (2010) and Neal
et al. (2012), and outputs actual flood inundation at high spatial resolution
(1 km). Moreover, it is tuned towards a specific high-risk region and the
decision-making needs of one of the largest humanitarian organizations (WFP),
which is to look at possible flood inundation projections and not only in-channel
flow predictions. This is important since floodwaters exiting the channel will
spread across the terrain and inundate the floodplain where the risk and hazard
then inevitably become localized. Note that most existing regional to global
so-called flood (forecasting) models are often hydrologic models and simulate
in-channel flow only, and oftentimes with only relatively basic water flow
algorithms.

• Easily transitional to end user and flexible for a wide range of water-related
issues. The proposed system is tailored specifically towards easy implementa-
tion in a variety of decision-making operations.

This is the first time such a system is presented for the ZRB and potentially
operated. Currently, neither any operational flood early warning systems nor flood
forecasting model dynamically computes inundation patterns at acceptable resolu-
tions across floodplains in data-poor regions. Furthermore, given that many flood
model runs are performed a priori using a wide range of possible flows, many
inundation scenarios can easily be uploaded to a server made accessible to
humanitarian agencies as well as the scientific community. This allows data queries
to be performed easily and files to be downloaded as needed. Also, such a system
would be straightforward to scale up to a global level (following for example a
model setup similar to that described in Sampson et al. 2015) to address other flood
prone hotspots which require almost yearly attention by emergency responders
(Fig. 9).

4.3.2 The Way Forward

The Current Situation

In order to respond most efficiently to flood events in the region, WFP needs a
reliable long lead-time forecast of high-resolution floodplain inundation for its
decision-making process. At WFP, most of the advanced remote sensing infor-
mation is processed/managed at HQ level in Rome, Italy. Data and maps are made

Role of Earth Observation Data in Disaster Response … 139



available to field offices in order to help with strategic planning for the humanitarian
response. Since computer resources are fairly limited at both HQ and field level, the
WFP relies at the moment heavily on support from both the remote sensing com-
munity and the weather forecast community, primarily in the form of NRT flood
mapping from MODIS, real-time satellite precipitation as well as rainfall forecasts
and the GDACS Global Flood Detection System (Version 2) (GDACS GFDS) run
by the EC-JRC in collaboration with the UN and Dartmouth Flood Observatory
(DFO). However, none of these systems provide forecast on floodplain inundation
despite it being such valuable information. The main reason for this is that the types
of 2-D hydrodynamic models (i.e. flood models) needed to simulate floodplain
inundation at high enough spatial resolutions (at least 1 km grids) cannot currently
be run within an operational forecast mode since these models typically have a high
computational burden and require very accurate topographic boundary conditions.

A New Approach: Combining Global Flood Model Layers with Satellite
Data for Decision-Makers

Facilitating Satellite Data Use for Decision-Makers: The ‘Early Bird Catches the
Worm’

The NASA Early Adopter Programs (see the chapter on Early Adopter for more
details on page 231) are designed to provide specific support to so-called ‘Early
Adopters’ in prelaunch applied research to facilitate feedback on NASA mission
products (e.g. SMAP, http://smap.jpl.nasa.gov/science/early-adopters) pre-launch,
and accelerate the use of products post-launch. Working with WFP as a SMAP
early adopter, Schumann et al. (2014) started to look into simplifying model output
delivery, extending forecast lead time and augmenting performance. As outlined

Fig. 9 Schematic of the flood inundation forecasting system proposed for the flood prone regions
in the Lower Zambezi basin. Pillar 1 (personal communication, Neal (2014)) presents one possible
modeling framework that can be adopted. Pillar 2 illustrates the ‘dynamic’ library that will be the
output of the modeling in Pillar 1. This library of possible flood inundation scenarios can then be
queried by decision-makers at WFP in our case (Pillar 3)
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earlier, in this particular setup, they used ECMWF archived forecast rainfall to
compute flows that generate daily inundation patterns over a period of about
10 years using the coupled VIC-LISFLOOD-FP forecast model. These simulations
allow generating a library of flood model outputs (inundated area, floodplain water
volume), essentially from a long time series of rainfall data. They then used this
library to correlate and log-regress ECMWF rainfall, satellite soil moisture, and
model output floodplain inundation volume. Subsequently, the regression model is
applied as a predictor for flood inundation variables and conditions. Using both
forecast rainfall and soil moisture conditions to predict flood inundation volume has
much higher skill than using rainfall as a sole predictor (correlation of 0.88 vs. 0.
49). In the Mozambique test case, their regression model had a relative bias of
17 %, with a relative error in predicting the 2007 flood event of 33 %. In other
words, based on rainfall forecasts and satellite soil moisture observations that WFP
would have access to, a simple regression can be queried to predict a range of
plausible floodplain inundation volume and area contained in the library, with a
long lead time. This ‘dynamic library’ could be extended and hosted by the
JRC-UN GDACS GFDS platform, which WFP can easily access and is already
familiar with.
Enabling Free and Seamless Data Access with High-End Web-Based Data Analysis
Platforms

Current efforts can be augmented by including satellite and other observed or
modeled data layers from national agency data centers into web-based data analysis
platforms (e.g. Google Earth Engine) thereby enhancing deliverables that plan to
make satellite-based flood maps and global flood model simulations easily acces-
sible through such online platforms. Multiple data layers, such as for instance
rainfall products from the Global Precipitation Measurement (GPM) mission or soil
moisture fields, can be handled to feed in seamlessly with the already planned data
layers, i.e., flood hazard data from DFO and maps from a global high-resolution
flood hazard model (Fig. 10). The result would be a multilayer flood event hazard
chain ranging from a flood driver layer (i.e., precipitation from the GPM mission)
through flood onset layers (soil moisture products) to flood event hazard layers
(from NRT MODIS combined with global flood model maps). In addition to
making all this available on the platforms such as provided by Google, Inc., one
could envisage employing new ICT technologies to deliver these layers seamlessly
and tailored to targeted, more local, stakeholders. New mature geospatial tech-
nologies can leverage current data system capabilities such as provided by NASA’s
ECHO, NSIDC and EOSDIS (Worldview) for example, and allow interoperability
between multiple interactive map viewers on both mobile and traditional computing
platforms. These solutions are now sustainable and extensible thereby increasing
the efficiency for decision-makers and enabling new users to benefit from Earth
science data.
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5 Outlook

The case studies reported in this chapter illustrate great potential and possible ways
forward on how the scientific community can engage with the stakeholder com-
munity to address most urgent issues, locally, regionally, and globally using EO
data. Such connections could allow meaningful discussion that has up to now been
largely uncoordinated, oftentimes only taking place on a voluntary effort basis.
Such connections are however necessary to globalize and accelerate societal
applications that utilize satellite data. This need is further reinforced by the fact that
although societal benefits from satellite observations share a number of common
features, what works for one region may not necessarily work for another region,
even when the problems are similar.

It is clear that the satellite technology and science communities must engage
with the stakeholder community to discuss what is possible and most urgently
needed. These communities must determine priorities in order to scale up the data
and efforts most efficiently in order to benefit societal applications in the best
possible way (Hossain 2015). In anticipation of even more data and applications
from Earth observing satellites, the Earth science community should engage into
identifying key applications alongside key scientific issues. Using these key
applications as a guide, the Earth science community needs to establish strong
connections with regional stakeholder communities from all around the world,
allowing for more rapid dissemination and discovery of EO data at the local level.

Fig. 10 Illustration of one example of new and innovative solutions/approaches.
a High-resolution map layers of global flood hazard from 1:100 year return period flow based
on the LISFLOOD-FP model (© University of Bristol/SSBN Ltd) made freely available on
Google’s visualization platform for noncommercial use. Here the area of the Lower Zambezi is
shown with flood depth ranging from 1 m (light blue) to 5 m (pink). b MODIS near-real-time
flood map (© DFO) of a river near the northern border of Texas during the devastating floods in
May/June 2015 (in red) overlain on the 1:100 year flood hazard layer from the global flood model
shown in a (in blue). Note that combining satellite observations and models allows to overcome
commonly encountered limitations in real-time flood mapping, such as obstruction by cloud and/or
forest cover as depicted in the image in the top panel in b
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Currently, the scientific community has varying perspectives on how these
technologies and activities should be pursued in the coming years for the benefit of
decision-making and societies in general. Since it will undoubtedly take time and
effort to reach consensus, communities should begin to build stronger collabora-
tions and engage to address the challenges that lie ahead.
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