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Abstract This paper proposes a new selfish gene algorithm called the Replaces
and Never Penalizes Selfish Gene Algorithm (RNPSGA). This new variant of
selfish gene algorithm replaces the alleles of the less fit individual by the alleles of
the fittest rather than penalizing them. The intensification of the search is then
increased. The proposed algorithm is tested under some famous benchmark func-
tions and compared to the standard selfish gene algorithm. We analyzes also the
quality of convergence, the accuracy, the stability and the processing time of the
proposed algorithm. We design by Solidwork a new virtual model of the humanoid
robot hanging on the bar. The model is controlled using Simscape/Matlab. The
proposed algorithm is then applied to the designed humanoid robot. The objective is
to realize the gymnastic movements on the bar. An intelligent LQR controller is
proposed to stabilize the swing-up of the robot.

Keywords Selfish gene ⋅ Computational intelligence ⋅ Humanoid ⋅ Robots ⋅
Gymnastic ⋅ Solidworks/Simmechanic ⋅ LQR ⋅ Optimal control

1 Introduction

The evolutionary algorithms are a stochastic search and optimization algorithms
inspired from the Darwinian theory of evolution. This kind of computing started in
the middle of twentieth century by means of the influence of several works [1, 2]. In
the last decades this field have motivated many researchers and scientists who had
contributed to its amazing progress. The evolutionary algorithms can be subdivided
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into four subfields: evolution strategies [3], evolutionary programming [4], genetic
programming [5] and genetic algorithms [6]. As genetic algorithms imitate the
process of natural selection of the survival of the fittest, they use a population of
individuals that generates offspring by means of crossover and mutation operators.
In each generation the algorithm selects the fittest individuals to survive for the next
generation. Several variants have been developed and proposed in the literature
[7–9]. The basic differences between them is in their representation of chromo-
somes, their crossover operators, their mutation operators and their selection
strategy. In evolutionary algorithms, we are principally interested by the intensifi-
cation and the diversification of the search process [10]. The crossover operator
allows the transfer of genetic information between individuals, hence it helps for the
intensification of the search. The mutation adds new information into genotypes and
helps the algorithm to explore different regions of search space and to avoid local
optimums. The mutations diversify the search process and are indispensable to
guaranty the convergence of the algorithm [11]. On 1989, the British biologist
Richard Dawkins reformulates the theory of evolution in terms of genes rather than
individuals [12]. We call his theory: the selfish gene theory. Dawkins suggests that
evolution of spaces is based on genes. The body that have the biological spaces is
created by genes to assure their duplication (their own survival).

En 1998 Corno et al. developed a new genetic algorithm based on the theory of
Richard Dawkins. The algorithm is called the Selfish Gene Algorithm (SGA) [13].
This algorithm is focalized on genes and uses a pool of genes called the virtual
population rather than a population of individuals. As this algorithm is central for
our study we give a formal precise definition. Its pseudo code is shown in Fig. 1.

In SGA, the alleles compete for loci. It has each one a probability of selection
that measures the chances that has an allele to be selected to form one of the
individuals used in the tournament selection. The algorithm uses tournament
selection to compare two individuals between them. The alleles of the winner of the
tournament are rewarded by incrementing their selection probabilities. And the
alleles of the failed individual are penalized by decreasing their selection proba-
bilities. If one of the individual selected is fitter than the best ever found, it replaces
it.

In this paper we propose a novel selfish gene algorithm called the Replaces and
Never Penalizes Selfish Gene Algorithm (RNP-SGA). This algorithm does not
penalize the alleles. The idea behind this variant is to replace the alleles of the fit
less individual by the alleles of the fittest (the winner of the tournament). The rest of
this paper is organized as fallow. In the next section we introduce the proposed
algorithm. In section three we analyze and compare the RNP-SGA and the SGA in
terms of quality of convergence, accuracy, stability and the time consumption. The
fourth section is devoted to studying, modeling and controlling of a gymnastic
humanoid robot on the bar. We use the proposed algorithm to optimize an LQR
controller designed to assure the movement of swing-up on the bar. Section five
conclude this paper.
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2 The Replaces and Never Penalize Selfish Gene
Algorithm

In this section we introduce the algorithm called the Replace and Never Penalize
Selfish Gene Algorithm (RNP-SGA). This algorithm is a variant of selfish gene
algorithm. The RNPSGA uses also the tournament selection but it does not penalize
alleles. It rewards the alleles of the winner of the tournament and replaces the alleles
of the failed individual by the alleles of the winner. This action of replacing allows
a duplication of the genes of the winner in the virtual population. Hence, the
intensification of the search process is increased. Actually, the proposed algorithm
by rewarding the “good” alleles through increasing their selection probabilities will
automatically penalize the “bad” ones; their selection probabilities will be relatively
less significant. To assure a good exploration of the search space we increment the
mutation probability. The mutation in RNP-SGA occurs randomly and can affect

__________________________________________________ 
Algorithm1: Selfish Gene Algorithm 
___________________________________________________
1. VP = uniform initialization of the virtual population  
2. P = initialize all probabilities pij to l/ni

3. B = select (VP)  / * assume the best */ 
4. Repeat 
5. / * tournament  */ 
6. G1 = select-individual ( VP,P) ; 
7. G2 = select-individual ( VP,P) ; 
8. if (fitness(G1) > fitness(G2)) then
9.     reward-alleles (G1) ; 
10.     penalize-alleles (G2) ; 
11. / * update best */ 
12. if (fitness(G1) > fitness(B))  then  
a.      B = G1 ; 
13. End if  
14. Else  
15.     reward-alleles (G2) ; 
16.     penalize-alleles (G1) ; 
17. / * update best */ 
18. if (fitness(G2 > fitness(B)) then
19.        B = G2 ; 
20.      End if 
21. End if 
22. until termination condition 
23. return B  

Fig. 1 The pseudo code of SGA [13]
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any gene in the virtual population. The pseudo code of the proposed algorithm is
shown in Fig. 2.

The proposed algorithm uses a virtual population of genes. Each of them has a
probability of selection that measures the chances of the given allele to be selected
into the chromosomes of the individuals selected to compete in the tournament. The
alleles of the winner (the fitter) are duplicated in the virtual population by over-
writing (replacing) those of the failed. This action of overwriting ameliorates the
intensification of the search. To avoid duplication of the same genes in the entire
virtual population long before finding the optimal solution we increment the
probability of mutation.

_________________________________________________________ 
Algorithm 2: Replaces and never penalizes Selfish Gene Algorithm
_________________________________________________________
1. VP = uniform initialization of the virtual population  
2. P = initialize all probabilities pij to l/ni

3. B = select (VP)  / * assume the best  */ 
4. Repeat 
5. / * tournament  */ 
6. G1 = select-individual ( VP, P) ; 
7. G2 = select-individual ( VP, P) ; 
8. if (fitness(G1) > fitness(G2)) then
9.       reward-alleles (G1) ; 
10. / * replace alleles of G2 by those of G1 in VP  */ 
11.     VP(G2)= VP(G1) ; 
12. / * update best */ 
13. if (fitness(G1) > fitness(B))  then  
14.         B = G1 ; 
15.       End if  
16. Else  
17.      reward-alleles (G2) ; 
18. / * replace alleles of G1 by those of G2 in VP  */ 
19.      VP(G1)= VP(G2) ; 
20. / * update best */ 
21. if (fitness(G2 > fitness(B)) then
22.
23.

B= G2 ;
End if

24. End if 
25. / * mutation */ 
26. VP=mutate(VP)
27. until termination condition 
28. return B  
_________________________________________________________ 

Fig. 2 The pseudo code of the proposed RNP-SGA
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Generally, in evolutionary computing we are aimed to give a dynamic change to
the parameters governing the algorithms [11]. So we propose the decreasing of the
probability and step size of mutations to assure good accuracy and quality of
convergence. Now we propose benchmarking of the proposed algorithm. The
results of the simulation tests are shown in next section.

3 Benchmarking of the RNPSGA

3.1 Mathematical Functions

We propose in this section the benchmarking of the proposed algorithm under some
famous benchmark functions. We choose from literature [8, 9] a set of seven
functions. The Table 1 gives the mathematical form of the used benchmark func-
tions. The value of the optimal of all those functions is zero and its position is on
the origin of the D dimensions space.

Table 1 Mathematical form of the test functions

Name and type Mathematical form Interval

Uni modal functions
F1: Sphere function

∑
D

i=1
x2i

[−100,100]

F2: Schwefel’s problem
∑
D

i=1
jxij2 + ∏

D

i=1
jxij2

[−100, 100]

F3: Generalized Rosenbrock function
∑
D− 1

i=1
½100ðxi+1 − x2i Þ2 + ðxi − 1Þ2� [−5.12, 5.12]

Multimodal functions
F4: Generalized Rastrigin function

∑
D

i=1
½x2i − 10 cos 2πxið Þ+10� [−5.12, 5.12]

F5: Generalized Griewank function 1
4000 ∑

D

i=1
x2i − ∏

D

i=1
cosð xiffi

i
p Þ+1

[−600, 600]

F6: Ackley function
− 20 exp − 0.2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

∑
D

i=1
x2i

s !

− expð1
D

∑
D

i=1
cosð2πxiÞÞ+ e+1

[−32, 32]

Composite functions
F7: Composite function Composite function CF2 in [14] [−5, 5]
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3.2 Simulation Settings

In order to compare the SGA and the proposed algorithm we give the parameters
used in our experiments:

• The maximum number of iteration N = 40000
• Dimension: three case D = 10, D = 30 and D = 50
• Dimension of VP is set to 50 × D (VP is a matrix)
• Normal distribution mutation: x= x+ σ Nð0, 1Þ
• Probability of mutation μ = 0.01 for SGA and μ = 0.1 for RNPSGA
• segma=0.5ðMax−MinÞ
• segma dump initial=1;
• segma dump final=0.992;

•
segmadump =

N −K
N − 1

� �2

× ðsegma dump initial

− segma dump finalÞ+ segma dump final;
• Dynamic of the standard deviation: segma= segma× segma dump
• Rewording of genes: additive function +0.01
• Penalizing of the genes: subtractive function −0.01

The algorithms are implemented in Matlab 2014a code source. The computer
used for our simulations is Intel® Core™ i5-2350M CPU 2.30 GHz and 8 GB of
RAM. The results and the discussion are on the next subsection.

3.3 Results and Discussion

We experiment the two described algorithms with the functions listed above. The entire
mathematical benchmarks are tested with dimensions 10, 30 and 50. Each function had
been tested for 50 independent runs for the different dimensions shown above.

1. Convergence study: the algorithms used for comparison are stochastic. This
means that their results differ from one run to another. Hence we need to repeat
the same experiment for several times and then we compare the averaged values
found. The detailed results are shown in Table 2. The results given in bold style
mean that the corresponding algorithm has found a better solution, the averaged
value of 50 independent runs, compared to the other. The table give the aver-
aged optimal values found, the standard deviation and the processing time. It
indicates also how many times the algorithm is executed for each instance (N).
The results given in bold style mean that the corresponding algorithm performs
the problem more than the other. We conclude from Table 2 that RNPSGA is
batter that SGA. It gives 90.4762 % of good results. The proposed algorithm can
be compared to more recent and efficient algorithms to measure objectively its
quality (see the results shown in [15–17]).
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2. Algorithms’ stability: the standard deviation is the most used indicator of sta-
bility. It measures the distribution of the results found around the averaged value
of 50 independent runs. We conclude through this measure the accuracy of the
proposed algorithm.

3. Computational time: the time that makes an evolutionary algorithm to generate
the solution is an important factor. In real word applications we search for fast
algorithms. The evolutionary algorithms are not recommended for online

Table 2 Average, standard deviation, number of success for each instance (N) and time
processing of the best fitness values found by RNP-SGA and SGA

Algorithms Function D
F1 F2 F3
10 30 50 10 30 50 10 30 50

RNP-SGA Avr. 0 0 0.001 0 2.E−6 0.94 10.46 65.41 166.2
St. d 0 0 0.006 0 7.E−7 1.51 11.81 36.59 64.49
N 50 50 500 50.0 50.0 50.0 48.0 50.0 50.0
T 3.54 6.58 9.55 3.642 6.726 9.723 3.847 6.912 9.926

SGA Avr. 89.7 4350 14355 1.224 24.04 60.38 98.65 4532. 19768
St. d 91.1 2004. 3301. 0.764 5.726 10.71 61.39 2130. 7089.
N 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0
T 3.57 5.91 8.22 3.605 6.071 8.408 3.807 6.232 8.6

Algorithms Function D
F4 F5 F6
10 30 50 10 30 50 10 30 50

RNP-SGA Avr. 6.72 34.16 76.77 0.012 6.E−4 0.023 0.399 19.11 19.50
St. d 2.49 9.850 14.90 0.015 0.002 0.017 2.794 3.902 2.754
N 37.0 50.0 50.0 50.0 50.0 50.0 49.0 39.0 50.0
T 3.63 6.691 9.699 3.954 6.926 9.914 3.865 6.857 9.823

SGA Avr. 9.24 86.35 212.3 1.700 39.86 137.0 4.825 19.05 17.02
St. d 3.79 16.69 28.35 0.960 13.42 28.85 1.592 1.607 0.046
N 13.0 0.0 0.0 0.0 0.0 0.0 1.0 11.0 0.0
T 3.60 6.091 8.431 3.960 6.278 8.673 3.830 6.181 8.540

Algorithms Function D
F7
10 30 50

RNP-SGA Avr. 108.9 0.040 0.175
St. d 28.88 0.279 0.328
N 44.0 50.0 50.0
T 33.81 39.08 44.92

SGA Avr. 154.6 169.7 226.4
St. d 32.57 14.84 14.47
N 6.0 0.0 0.0
T 34.03 38.66 43.77
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problems in many applications. Add to this that real applications need high time
for an algorithm to generate their solutions. If we compare the time processing
of the proposed algorithm and the SGA, we can conclude that there are no
difference between them. As SGA had been used in real-world applications, the
RNP-SGA can be also used.

4 Realisation of Gymnastic Movement on the Bar
by Humanoid Robot

In this section we propose the utilization of the RNPSGA to realize the swing-up
movement on the bar by a humanoid robot. Firstly we need the dynamic model of
the humanoid robot on the bar. Secondly, we derivate the linear model around the
swing-up position. Then the RNPSGA can be applied to compute the matrix Q and
R for the designing of the optimal LQR controller.

4.1 Virtual Model

We present here the virtual model designed using Solidworks 2014. The complete
model of the humanoid robot hanging on a high bar is represented in Fig. 3. To
control the humanoid robot, we combine between Solidwork and Simscape/Matlab.
The model of the designed robot on Simmechanics/Matlab is shown in Fig. 4.
Therefore, the exact mechanical properties of the humanoid are copied directly from
Solidworks. The details are shown in Table 3.

Fig. 3 Virtual model of the humanoid designed with Solidworks
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4.2 The Nonlinear Dynamic Model of the Gymnastic
Humanoid Robot

The Gymnastic humanoid robot can be seen as being compound of three main links
[15, 18]. The first link represents the arms, the second represents the torso and a
third represents the legs. The joints of the robot are therefore the hands, the
shoulders and the hips. Both shoulders and hips are actuated by two servos in each
side. The hands are not actuated indeed, and therefore the system can be approx-
imated by a three link underactuated pendulum. The dynamic behavior of this
multi-body robotic system can be derived from the classical Euler-Lagrange
equations. The model is represented in Fig. 4.

We precise here the used notations:

• θi is the angle of joint i in respect to the previous link.
• mi is the mass of link i.
• Ii is the inertia of link i.
• τi is the torque actuated on the active joint i.
• Li is the length between joint i and joint i + 1.
• Lci is the length between joint i and the center of gravity of the mass i.

Fig. 4 The humanoid as a
three link underactuated
pendulum

Table 3 Parameters of the
humanoid robot

The link M I lc l

Link 1 8.0076 0.505 0.39874 0.50542
Link 2 31.8146 1.52895 0.23665 0.57
Link 3 21.2453 3.10134 0.48835 0.9767
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The direct cinematic model of the center of mass of each link is:

x1 =Lc1 cosðθ1Þ ð1Þ

y1= Lc1 sin θ1ð Þ ð2Þ

x2 =L1 cosðθ1Þ+ lc2 cosðθ1 + θ2Þ ð3Þ

y2 = L1 sin θ1ð Þ+ Lc2 sin θ1 + θ2ð Þ ð4Þ

x3 = L1 cos θ1ð Þ+L2 cos θ1 + θ2ð Þ+ Lc3 cos θ1 + θ2 + θ3ð Þ ð5Þ

y3 =L1 sin θ1ð Þ+L2 sin θ1 + θ2ð Þ+ Lc3 sin θ1 + θ2 + θ3ð Þ ð6Þ

The Lagrangian of the system is given by:

L= ∑
3

i=1
ðTi −UiÞ ð7Þ

where the kinetic energy T and the potential energy U of links are given by:

T1 =
1
2

m1 x ̇ 21 + y ̇ 21
� �

+ I1θ ̇
2
1

h i
ð8Þ

T2 =
1
2

m2 x ̇ 22 + y ̇ 22
� �

+ I1 θ1̇ + θ2̇Þ
2�

�h
ð9Þ

T3 =
1
2

m2 x ̇ 23 + y ̇ 23
� �

+ I1 θ1̇ + θ2̇ + θ3̇Þ
2�

�h
ð10Þ

U1 =m1gy1 ð11Þ

U2 =m2gy2 ð12Þ

U3 =m3gy3 ð13Þ

The nonlinear model is then derived from Euler-Lagrange equations. We found the
model given by Eq. 14

d11 d12 d13
d21 d22 d23
d31 d32 d33

2
4

3
5 θ ̈1

θ2̈
θ3̈

2
4

3
5+

G1

G2

G3

2
4

3
5+

C1

C2

C3

2
4

3
5=

0
τ1
τ2

2
4

3
5 ð14Þ
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where the inertial terms are:

d11 =A1+ 2m2L1Lc2 cos θ2ð Þ+2m3L1L2 cos θ2ð Þ+2m3L2Lc3 cos θ3ð Þ
+m3L1Lc3 cosðθ2 + θ3Þ

d12 =A2+m2L1Lc2 cosðθ2Þ+m3L1L2 cosðθ2Þ+2m3L2Lc3 cosðθ3Þ
+m3L1Lc3cosðθ2 + θ3Þ

d13 = A3 +m3L2Lc3 cosðθ3Þ+m3L1Lc3 cosðθ2 + θ3Þ

d21 = d12

d22 = A2 + 2m3L2Lc3 cosðθ3Þ

d23 = A3 +m3L2Lc3 cosðθ3Þ

d31 = d13

d32 = d23

d33 = A3 + m3L2Lc3 cos θ3ð Þ

A1 =m1Lc21 + m2L21 +m2Lc22 +m3L21 +m3L22 +m3Lc23 + I1 + I2 + I3

A2 =m2Lc22 +m3L22 +m3Lc23 + I2 + I3

A3 =m3Lc23 + I3

The gravitational terms are:

G1 = B1cosðθ1Þ+B2cosðθ1 + θ2Þ+B4 cosðθ1 + θ2 + θ3Þ

G2 =B3cosðθ1 + θ2Þ+B4 cosðθ1 + θ2 + θ3Þ

G3 =B4 cosðθ1 + θ2 + θ3Þ

B1 = ðm1lc1 +m2l1 +m3l1Þg

B2 = ðm2lc2 +m3l2Þg

B3 = ðm2lc2 +m3l2Þg

B4 =m3lc3g
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And the Corriolis:

C1 = F4 θ2̇ + θ3̇ð Þ 2θ1̇ + θ2̇ + θ3̇ð Þsin θ2 + θ3ð Þ
+F1θ2̇ 2θ1̇ + θ2̇ð Þsin θ2ð Þ+F2q2̇ 2θ1 + θ2ð Þsin θ2ð Þ
+F3θ3̇ 2θ1̇ + 2θ2̇ + θ3̇ð Þsin θ3ð Þ

C2 = −F1θ
2̇
1 sin θ2ð Þ− F2θ

2̇
1 sin q2ð Þ+F3θ3̇ð2θ1̇ + 2θ2̇ + θ3̇Þ sinðθ3Þ

−F4q ̇41 sin θ2 + θ3ð Þ

C3 = − F3 θ1̇ + θ2̇ð Þ2sinðθ3Þ− F4θ
2̇
1 sin θ2 + θ3ð Þ

F1 = −m2L1Lc2, F2 = − m3L1L2, F3 = − m3L2Lc3, F4 = − m3L1Lc3,

4.3 Linearization of the Model

We are interested by the realization of the gymnastic movement. In the literature we
talk about the swing-up control problem [14]. The objective is to realize and to
stabilize the humanoid at the vertical unstable equilibrium position. As the model
derived from Euler-Lagrange equations is highly nonlinear, we derive here the
linearized model around the vertical position.

θ= π
2 0 0
� 	T and θ ̇= 0 0 0½ �T

The linearized model of the humanoid for the vertical unstable equilibrium is
given by the fooling equations:

Dq
..
+Gq=Tτ ð15Þ

d11 d12 d13
d21 d22 d23
d31 d32 d33

2
4

3
5 θ ̈1

θ ̈2
θ ̈3

2
4

3
5+

g11 g12 g13
g21 d22 g23
g31 g32 g33

2
4

3
5 θ1 − π

2
θ2
θ3

2
4

3
5=

0 0
1 0
0 1

2
4

3
5 τ1

τ2


 �
ð16Þ

where:

d11 =A1 + 2m2L1Lc2 + 2m3L1L2 + 2m3L2Lc3 + 2m3L1Lc3

d12 =A2 +m2L1Lc2 +m3L1L2 + 2m3L2Lc3 +m3L1Lc3

d13 =A3 +m3L2Lc3 +m3L1Lc3
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d21 = d12

d22 =A2 + 2m3L2Lc3

d23 =A3 +m3L2Lc3

d31 = d13

d32 = d23

d33 =A3 +m3L2Lc3

g11 =B1 +B2 +B4

g12 =B3 +B4

g12 =B4

g22 = g21 = g12

g33 = g31 = g32 = g23 = g13

4.4 The State Space Model of the Humanoid

The state vector is constituted by the position vector q and q ̇, hence we have:

X = ½ q1 − π
2 q2 q3 q1̇ q2̇ q3̇ �T ð17Þ

The state space model is given by:

x ̇ tð Þ=Ax tð Þ+Bu tð Þ ð18Þ

y tð Þ=Cx tð Þ+Du tð Þ ð19Þ

The matrix A, B, C and D are given by:

A=
0n× n In× n

D− 1G 0n× n


 �
,B=

0n×m

D− 1T


 �
,C= In× n andD=0
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The numerical values of the state space matrix A and B are:

A=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

18.8797 − 21.4186 − 5.1879 0 0 0
− 18.3221 46.7787 8.3809 0 0 0
− 0.2202 − 10.0165 6.1066 0 0 0

2
6666664

3
7777775B=

0 0
0 0
0 0

− 0.2169 0.0326
0.4124 − 0.1147
0.1147 − 0.1410

2
6666664

3
7777775

4.5 Realization of the Gymnastic Movement
by the Humanoid Robot

We propose in this subsection the designing of an intelligent optimal controller to
stabilize the humanoid robot on the vertical unstable position (swing-up control).
Therefore, we design firstly the LQR controller and then we optimize its parameters
(the Q and R) by the RNP-SGA algorithm proposed in this paper and we compare
the results given by RNPSGA and the results found by SGA. The optimization
criterion is derived from the error between the trajectory of the variables X and the
position of the swing up movement. The mathematical formula of this criterion is:

J =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ tf

t0
X tð Þ−X ̂
� �2s

ð20Þ

where X tð Þ is the trajectory of the state is space and X ̂ is the desired position. We

note that bX = π
2 0 0 0 0 0
� 	T . The matrix Q and R are assumed diagonal.

We propose here to compute them using the SGA and the proposed RNPSGA. The
Simscape model is shown in Fig. 5. The result are shown in the next subsection.

4.6 Results and Discussion

We present here the results given by the SGA and the RNPSGA. The algorithms
search for the diagonal elements of the matrix Q and R that minimize the criterion J.
Once Q and R are known, we calculate the feedback K that stabilizes the robot on
the vertical position. In LQR control, we search for K that minimizes the cost
function given by:

C= ∫ x′Qx+ u′Ru+2*x′Nu
� 


dt ð21Þ
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The feedback K is calculated using the algebraic Riccati equation. The low for
the LQR controller is known to be: u tð Þ= − k tð Þx

The results found by SGA and RNP-SGA are summarized in Table 4. The
results found by RNPSGA are better than those found by SGA. The Fig. 6 gives the
allure of the obtained gymnastic movement in virtual 3D space. The allures of the
evolution of optimization process is shown in Fig. 7.

Fig. 5 Simscape model of the gymnastic humanoid robot

Fig. 6 The swing-up
movement obtained

Table 4 The results found by SGA and RNP-SGA

Algorithm Average of J Q R

RNPSGA 0.205 Diag 595.85 0.02 2.00E− 4½
0.013 0.05 972.9751 �

Diag[1.0E−5 1.0E−5]

SGA 0.431 Diag 494 1.0E− 5 1.0E− 5½
1.0E− 5 39.175 968.3 �

Diag[1.0E−5 1.0E−5]
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5 Conclusion

This paper purposes a new variant of selfish gene algorithm called the Replaces and
Never Penalizes Selfish Gene Algorithm (RNP-SGA). The algorithm uses tourna-
ment selection and overwrites the genes of failed individual by the alleles of the
winner of the tournament. As the algorithm duplicates the genes of the winners of
the tournament in the virtual population, then it allows more intensification. The
proposed algorithm is tested firstly for unconstrained optimization problem using
unimodal and multimodal benchmark functions. A statistical study shows its high
performance compared to standard SGA in terms of quality of convergence,
accuracy, stability and processing time. Secondly we test the algorithm on a
humanoid robot. The objective is to stabilize the movement of the swing-up control.
The model of the humanoid robot is designed using Solidwork specifically to do the
movements of the gymnastic on horizontal bar. The results given by RNP-SGA are
compared to those found by SGA.
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