
A Locally Sequential Globally Asynchronous
Net from Maximality-Based Labelled
Transition System

Adel Benamira and Djamel-Eddine Saidouni

Abstract Given a maximality-based labelled transition system, in this paper we

show that such system can be decomposed and considered as distributed compo-

nents, where each component is a sequential behaviour. In a distributed context, the

synchronisation between components is interpreted as an asynchronous interaction.

Hence, sequential maximality-based labelled transition systems are represented as

locally sequential globally asynchronous nets.

Keywords Maximality semantics ⋅ Bisimulation relation ⋅ Distributed systems ⋅
Petri nets ⋅ LSGA nets

1 Introduction

In [6, 7], distributed systems have been defined as a system which consists of sequen-

tial components that reside on different locations. These components evolve concur-

rently. The interactions between components are asynchronous communications.

Nowadays formal methods are frequently used in different areas during the devel-

opment of concurrent applications. Their use allows the verification of application

properties before their implementation. In general verification processes are based

on centralized algorithms. However these applications may be implemented on a

distributed system where the synchronization between the different components are

implemented as asynchronous communication. Hence the following questions have

been emerged: which specifications may be implemented on a distributed system ?

A. Benamira (✉) ⋅ D.-E. Saidouni

MISC Laboratory, Abdelhamid Mehri University, 25000 Constantine, Algeria

e-mail: benamira.adel@univ-guelma.dz

D.-E. Saidouni

e-mail: djamel.saidouni@univ-constantine2.dz

A. Benamira

Computer Science Department, University of 08 May 45, 24000 Guelma, Algeria

© Springer International Publishing Switzerland 2016

S. Chikhi et al. (eds.), Modelling and Implementation
of Complex Systems, Lecture Notes in Networks and Systems 1,

DOI 10.1007/978-3-319-33410-3_22

311

312 A. Benamira and D.-E. Saidouni

(a) (b)

Fig. 1 LSGA net of Petri net. a Petri net N. b LSGA net of N

and what is the suitable equivalence relation to compare the behaviour of a cen-

tralised applications with their distributed implementations?

In the Petri nets framework, Glabbeek et al. [6, 7] gave a precise characterisation

of distributable nets and their definition by corresponding class of Petri nets, called

LSGA nets (Locally Sequential Globally Asynchronous nets). The ST-bisimulation

relation has been proved the suitable equivalence relation between the Petri net spec-

ification and their LSGA nets [5, 11, 12].

Figure 1 gives an example of a Petri net with one among its distributed imple-

mentations.

Remark that the proposed result is closed to Petri nets model, the use of another

specification model requires the definition of a new approach (see Fig. 2) for the

generation of distributed implementations (LSGA) from a given specifications. To

generalize the result to any input specification model we define a distributed imple-

mentation from a semantics
1

model rather than a specification model.

The ST-semantics is originally defined in [11] over Petri nets. In this semantics,

non atomic actions are split into starts and ends sub actions. In the literature, the ST-

semantics has been applied to process algebras [1, 8]. Another concurrency seman-

tics model, named Maximality-based Labeled Transition System (MLTS), has been

defined and used for expressing the semantics of process algebras and P/T Petri nets

1
Which compatible to the ST-idea, indeed the validation of a distributed implementation is based

on the ST-bisimulation.

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 313

Fig. 2 Specific and generic generation of LSGA specification

with the hypothesis that actions are not necessarily atomic [2–4, 9, 10], i.e. actions

are abstractions of finite processes and may elapse in time. The main interest of

maximality-based labelled transition system model is that it can be implemented

and used for verifying correctness properties without splitting actions into starts and

ends sub actions. In this paper, we describe how a MLTS may be seen as a dis-

tributed components (sub-MLTS) where synchronizations between components are

asynchronous as for LSGA.

Consider the Petri net of Fig. 1a. By applying the approach of [9], the correspond-

ing maximality-based labelled transition system of this Petri net is given by Fig. 3.

314 A. Benamira and D.-E. Saidouni

Fig. 3 A MLTS

At first, from [4] we can recall that a maximality-based labelled transition system

is given by a graph labelled on both states and transitions. Each state is labelled by

a set of event names. Each event name identifies the start of execution of an action

(eventually under execution) which occurred before this state. This action is said to

be potentially under execution in this state. A transition between two states si and sj
is labelled by a 3-uple (M, a, x) (denoted Max) where x is the event name identifying

the start of execution of the action a and M denotes the set of event names repre-

senting some causes of the action a. Elements of M belong to state si. Occurrence of

this transition terminates actions identified by M, thus, the set of event names corre-

sponding to state sj is that of si from which we subtract the set M and add the event

name x. Formal definition of a maximality-based labelled transition system will be

given in Sect. 2.2.

In the initial state (state s0) of the maximality-based transition system of Fig. 3,

no action is running, from where the association of the empty set with this state.

From state s0, actions a and b can start their execution independently, their starts are

respectively identified by event names x and y. a and b can be launched in any order.

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 315

The set {x} (resp. {y}) in state s1 (resp. s2) stipulates that the action a (resp. b) are

potentially under execution in this state. The set {x, y} in s3 shows that actions a and

b can be executed simultaneously.

Note that when the system is in state s1, while the action a has not been terminated

yet, the only evolution concerns the start of b. However,when a and b terminate, we

can start the action c caused by a and b since the action c which is dependent from

the end of a and b. When c terminates, we can start the action d or e. Resulting states

are respectively s5 and s6. We can observe that from state s5(resp. s6), the start of

e(resp. d) is always possible. The set {u, v} in s7 shows that actions d and e can be

executed simultaneously.

We proceed by defining basic notions of LSGA nets and MLTSs in Sect. 2. In

Sect. 3, we show how to decompose a MLTS in set of sequential components such

that their interaction defines the initial MLTS, from which we have a direct transfor-

mation to LSGA net. This paper is ended by some conclusions of this work.

2 Preliminaries

2.1 Distributed Systems

From [6, 7], a distributed system is defined as follow:

∙ A distributed system consists of components residing on different locations.

∙ Components work concurrently.

∙ Components only allow sequential behaviour.

∙ Interactions between components are only possible by explicit communications.

∙ Communication between components is time consuming and asynchronous.

Asynchronous communication is the only interaction mechanism in a distributed

system for exchanging signals or information.

∙ The sending of a message happens always strictly before its receipt (there is a

causal relation between sending and receiving a message).

∙ A sending component sends without regarding the state of the receiver; in particu-

lar there is no need to synchronise with a receiving component. After sending the

sender continues its behaviour independently of receipt of the message.

In the next, the formal definition of distributed systems in terms of Petri nets

[6, 7] is introduced with given the precise characterisation of distributed Petri net.

Definition 1 A (labelled, marked) Petri net is a tuple N = (S,T ,F, I,L) where:

∙ S and T are disjoint sets (of places and transitions),

∙ F ∶ (S × T ∪ T × S) → 𝕀ℕ (the flow relation including arc weights),

∙ I ∶ S → 𝕀ℕ (the initial marking), and

∙ L ∶ T ⟶ A, for A a set of actions, the labelling function.

316 A. Benamira and D.-E. Saidouni

Definition 2 A multiset over a set S is a function M ∶ S ⟶ 𝕀ℕ, i.e. M ∈ 𝕀ℕS
. For

multisets M and N over S write M ≤ N if M(s) ≤ N(s) for all s ∈ S. M + N ∈ 𝕀ℕS

is the multiset with (M + N)(s) = M(s) + N(s), and M − N is the function given by

(M − N)(s) = M(s) − N(s) (it is not always a multiset). The function 0 ∶ S ⟶ 𝕀ℕ
given by 0(s) = 0 for all s ∈ S is the empty multiset. A multisetM ∈ 𝕀ℕS

withM(s) ≤
1 for all s ∈ S is identified with the set {s ∈ S|M(s) = 1}. A multiset M over S is

finite if {s ∈ S|M(s) > 1} is finite. Let (S) denote the collection of finite multisets

over S.

Definition 3 For a finite multiset U ∶ T ⟶ 𝕀ℕ of transitions in a Petri net, let
∙U,U∙ ∶ S ⟶ 𝕀ℕ be the multisets of input and output places of U, given by

∙U(s) =
𝛴t∈TF(s, t).U(t) and U∙(s) = 𝛴t∈TU(t).F(t, s) for all s ∈ S.

U is enabled under a marking M if
∙U ≤ M. In that case U can fire under M,

yielding the marking M′ = M −∙ U + U∙
, written M

U
⟶ M′

or M[U⟩M′
.

Definition 4 The concurrency relation ⌣⊆ T2
is given by t ⌣ u ⇔ ∃M ∈ [M0⟩.M

[{t}[]{u}⟩ such that [] is a conflict relation. N is a structural conflict net iff for all

t, u ∈ T with t ⌣ u we have
∙t ∩∙ u = 𝜙.

For example, the net of Fig. 4 [6, 7], has not a structural conflict net because

[] = {(t1, t2); (t2, t3)}. In the other hand, the net of Fig. 1a is it ([] = 𝜙).

A distributed Petri net is a Petri net in which a transition and all its input places

reside on the same location and location actions can only occur sequentially. The

function D ∶ S ∪ T → Loc (Loc a set of locations) is defined to associate localities

to the elements of a net.

The system of Fig. 5 is a distributed Petri net with Loc = {1, 2} and D = {(s1, 1),
(t1, 1), (s3, 1), (s4, 1), (t3, 1), (s6, 1), (s2, 2), (t2, 2), (s5, 2), (s7, 2), (t4, 2), (s8, 2)}.

Definition 5 A Petri netN = (S,T ,F, I,L) is distributed iff there exists a distribution

D such that:

1. ∀s ∈ S, t ∈ T .s ∈∙ t ⇒ D(t) = D(s),
2. ∀t, u ∈ T .t ⌣ u ⇒ D(t) ≠ D(u).

Fig. 4 N has not a structural

conflict s0 s1

t1 : a t2 : b t3 : c

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 317

s1

s3 s4

s2

s6

s5s7

s8

t1 : a t2 : b

t3 : c

t4 : e

Location1 Location2

Fig. 5 Distributed Petri net

Proposition 1 Every distributed Petri net is a structural conflict net.

Definition 6 Let N = (S,T ,F,M0,L) be a net, I,O ⊆ S, I ∩ O = 𝜙 and O∙ = 𝜙.

1. (N, I,O) is a component with interface (I,O).
2. (N, I,O) is a sequential component with interface (I,O) iff ∃Q ⊆ S ⧵ (I ∪ O) with

∀t ∈ T .|∙t ↾ Q| = 1 ∧ |t∙ ↾ Q| = 1 and |M0 ↾ Q| = 1. A ↾ Y denotes the signed

multiset over Y defined by (A ↾ Y)(x) = A(x) for all x ∈ Y .

 = (N, I,O) can be regarded as a component of distributed system equipped with

a mailbox I and an address O outside , the first is introduced to receive messages

and the second to send messages.

Definition 7 Let 𝔎 be an index set.

Let ((Sk,Tk,Fk,M0K ,Lk), Ik,Ok) with k ∈ 𝔎 be components with interface such

that (Sk ∪ Tk) ∩ (Sl ∪ Tl) = (Ik ∪ Ok) ∩ (Il ∪ Ol) for all k, l ∈ 𝔎 with k ≠ l and Ik ∩
Il = 𝜙 for all k, l ∈ 𝔎 with k ≠ l. Then the asynchronous parallel of these compo-

nents is defined by

318 A. Benamira and D.-E. Saidouni

∥k∈𝔎 ((Sk,Tk,Fk,M0K ,Lk), Ik,Ok) = ((S,T ,F,M0,L), I,O)

with S = ∪k∈𝔎Sk,T = ∪k∈𝔎Tk,F = ∪k∈𝔎Fk,M0 = ∪k∈𝔎M0k, l = ∪k∈𝔎lk, I = ∪k∈𝔎Ik
and O = ∪k∈𝔎Ok ∪k∈𝔎 Ik.

Definition 8 A Petri netN is an LSGA net iff there exists an index set𝔎 and sequen-

tial components with interface k, k ∈ 𝔎, such that (N, I,O) =∥i∈𝔎 k for some I and

O.

We can see that the net of Fig. 5 as an LSGA net with two sequential components

C1 and C2 such that C1 = (N1, {s4}, {s7}) and C2 = (N2, {s7}, {s4}) with:

∙ N1 = (S1,T1,MS1,LT1) such that S1 = {s1, s3, s4, s6, s7} and T1 = {t1, t3}.

∙ N2 = (S2,T2,MS2,LT2) such that S2 = {s2, s4, s5, s7, s8} and T2 = {t2, t4}.

From [7], every LSGA net is distributed net and every LSGA net is a structural

conflict net.

2.2 Maximality-Based Labeled Transition Systems

A maximality-based labelled transition system is given by a graph labelled on both

states and transitions. Each state is labelled by a set of event names. Each event

name identifies the start of execution of an action (eventually under execution) which

occurred before this state. This action is said to be potentially under execution in

this state. A transition between two states si and sj is labelled by a 3-uple (M, a, x)
(denoted Max) where x is the event name identifying the start of execution of the

action a and M denotes the set of event names representing some causes of the action

a. Elements of M belong to state si. Occurrence of this transition terminates actions

identified by M, thus, the set of event names corresponding to state sj is that of si
from which we subtract the set M and add the event name x.

Definition 9 Let  be a countable set of event names, a maximality-based labeled

transition system of support  is a tuple (𝛺, 𝜆, 𝜇, 𝜉, 𝜓) with:

(a) ∙ 𝛺 = (S,T , 𝛼, 𝛽, s0) is a transition system such that:

– S is the set of states in which the system can be found, this set can be finite

or infinite.

– T is the set of transitions indicating state switch that the system can achieve,

this set can be finite or infinite.

– 𝛼 and 𝛽 are two applications of T in S such that for all transition t we have:

𝛼(t) is the origin of the transition and 𝛽(t) its goal.

– s0 is the initial state of the transition system 𝛺.

∙ (𝛺, 𝜆) is a transition system labeled by the function 𝜆 on an alphabetAct called

support of (𝛺, 𝜆). In the other words 𝜆 ∶ T → Act.

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 319

∙ 𝜓 ∶ S → 2 is a function which associates to each state the finite set of max-

imal event names present in this state.
2

∙ 𝜇 ∶ T → 2 is a function which associates to each transition the finite set of

event names corresponding to actions that have already begun their execution

and the end of their executions enables this transition.

∙ 𝜉 ∶ T →  is a function which associates to each transition the event name

identifying its occurrence.

(b) such that 𝜓(s0) = 𝜙 and for all transition t, 𝜇(t) ⊆ 𝜓(𝛼(t)), 𝜉(t) ∉ 𝜓(𝛼(t)) − 𝜇(t)
and 𝜓(𝛽(t)) = (𝜓(𝛼(t)) − 𝜇(t)) ∪ 𝜉(t)

In what follows, we use the following assumptions:

∙ In this present paper we suppose the uniqueness of event name.

∙ Let mlts = (𝛺, 𝜆, 𝜇, 𝜉, 𝜓) a maximality-based labeled transition system such that

𝛺 = ⟨S,T , 𝛼, 𝛽, s0⟩. t ∈ T is a transition for which 𝛼(t) = s, 𝛽(t) = s′, 𝜆(t) = a,

𝜇(t) = E and 𝜉(t) = x . The transition t will be noted s Eax⟶ s′.
∙ The set of Maximality-based labelled transition systems is noted 𝔐𝔩𝔱𝔰.

3 LSGA Net from MLTS

In this section, we assume a given mlts = (𝛺, 𝜆, 𝜇, 𝜉, 𝜓) to be a maximality-based

labelled transition system over  such that 𝛺 = ⟨S,T , 𝛼, 𝛽, s0⟩.
Firstly, we define a partition of  such that the only interaction between theirs

elements is the synchronous interaction and each element represents a sequential

behaviour.
3

In the other words, we decompose mlts into a set of sequential MLTSs

so that their parallel composition is a MLTS that is the initial MLTS.

Secondly, for each sequential MLTS we define a component net with interface.

The asynchronous parallel composition of the all component nets, which associated

to the initial MLTS, defines a LSGA net.

3.1 Generation of Sequential MLTSs Set

In the following, we define two fundamental relations with which the is structured

in the way that the sequential behaviour is clearly deduced from global behaviour.

Definition 10

∙ The direct causality relation ≤⊆ 2
is given by x ≤ y if and only if ∃s

Eay
⟶ s′

such that x ∈ E.

∙ the independence relation ‖ ⊆ 2
is given by x‖y if and only if ∃s ∈ S such that

x, y ∈ 𝜓(s).

22 denotes the part sets of .

3
Which equivalent to the notion of a sequential component of distributed system.

320 A. Benamira and D.-E. Saidouni

We note that the relation ≤ is not transitive: let s
E1
ax

⟶ s1 ⋯
Ep ay
⟶ sp ⋯

En az⟶ sn. The

assertion (x ∈ Ep) ∧ (x ≤ y) ∧ (x, y ∈ En) ∧ (y ≤ z) does never satisfied indeed x ∉
𝜓(sp) (see Definition 9(b)), hence x ≤ y ∧ y ≤ z ⇏ x ≤ z.

The conflict relation [] ⊆ 2
is given by x[]y if and only if x ≰ y and y ≰ x and

, in the other words, the conflict has been deduced from basic relations ≤ and

‖. We tell that (,≤, ‖) is a set of events  which is structured by ≤ and ‖.

mlts is a structural conflict if and only if ∄x, y ∈  ∶ x[]y. Throughout the rest

of this section, we restrict
4

our study to structural conflict MLTS.

Next, we define a set of concepts with which we characterise the structure

(,≤, ‖).
Let x ∈ , event x is a synchronous point if and only if:

∙ ∃t ∶ s Eax⟶ s′ ∈ T such that |E| ≥ 2 or

∙ |{s ∣ ∀t ∶ s′
Eay
⟶ s ∈ T ∧ x ∈ E}| ≥ 2.

Let 𝕊 ∶  ⟶ 2, the notation 𝕊


is the set of all synchronous and branch-out

points in .

In the system of Fig. 3, the event z is both synchronous and branch-out point, the

event z is a synchronous point indeed the action c is dependent to the end of a and

b, and it is a branch-out point as the end of c causes the execution of d or e.

Let 𝜎 ⊆  such that x1 ≤ x2 ≤ ⋯ ≤ xn, 𝜎 is a sequence if and only if 𝜎 ∩ 𝕊


=
𝜙. Let 𝜎1 = {x11, x12,… , x1n} and 𝜎2 = {x21, x22,… , x2m} two not empty sequences,

the order 𝜎1 ≤ 𝜎2 is defined if and only if x1n ≤ x21.

The sequence 𝜎 is a full sequence if and only if ∃y ∉ 𝕊


∧ ∃x ∈ 𝜎 such that

x ≤ y or y ≤ x then y ∈ 𝜎. Let 𝔽 ∶  ⟶ 2×
, the notation 𝔽


is the set of all

full sequences in .

Let 𝜎1 = {x11, x12,… , x1n} and 𝜎2 = {x21, x22,… , x2m} be two not empty full

sequences, the order 𝜎1 ≤𝕊 𝜎2 is defined if and only if ∃x ∈ 𝕊


∶ x1n ≤ x ≤ x2m,

the set (𝔽

,≤𝕊) is a partial order. The relation 𝜎1‖𝜎2 is introduced if and only if

x11‖x21.

The next lemma says that  is well structured w.r.t definition of full sequences.

Lemma 1 The full sequences over  have the following proprieties.

1. For each not empty full sequences 𝜎1, 𝜎2 ∈ 𝔽

:

(a) 𝜎1‖𝜎2 ⇒ ∀x ∈ 𝜎1,∀y ∈ 𝜎2 ∶ x‖y.
(b) 𝜎1 ≤𝕊 𝜎2 ∨ 𝜎2 ≤𝕊 𝜎1 ∨ 𝜎1‖𝜎2.
(c) (𝜎1 ≤ {x} ∧ 𝜎1 ≤ {y}) ⇒ (x = y).
(d) ({x} ≤ 𝜎1 ∧ {y} ≤ 𝜎1) ⇒ (x = y).

2. For each not empty full sequences 𝜎1, 𝜎2, 𝜎3 ∈ 𝔽

:

(a) (𝜎1 ≤𝕊 𝜎2 ∧ 𝜎3 ≤𝕊 𝜎2) ⇒ ∃x ∈ 𝕊


such that 𝜎1 ≤ {x} ≤ 𝜎2 ∧ 𝜎3 ≤ {x} ≤

𝜎2.

4
From the fact that every LSGA net is a structural conflict net.

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 321

(b) (𝜎1 ≤𝕊 𝜎2 ∧ 𝜎1 ≤𝕊 𝜎3) ⇒ ∃x ∈ 𝕊


such that 𝜎1 ≤ {x} ≤ 𝜎2 ∧ 𝜎1 ≤ {x} ≤

𝜎3.

Proof Let 𝜎1 = {x11, x12,… , x1n} and 𝜎2 = {x21, x22,… , x2m}.

∙ For Property 1(a): we proceed by absurd. If ∃u ∈ 𝜎1 and ∃v ∈ 𝜎2 such that u ≤

v we have a contradiction. Let x11 ≤ x12 ≤ ⋯ x1i ≤ u with (i ≤ n) and u ≤ v we

have x11 ≤ x12 ≤ ⋯ x1i ≤ v. So we have x21 ≤ v and x11 ≤ v, in other words, v is a

synchronous event, which contradicts the definition of a full sequence 𝜎2. Similar

if v ≤ u, we have u as a synchronous event.

∙ For Property 1(b): from the fact that we have only one case from x11 ≤ x21, x21 ≤
x11 and x11‖x21, and by definition of≤ and ‖, we have one from 𝜎1 ≤𝕊 𝜎2, 𝜎2 ≤𝕊 𝜎1
and 𝜎1‖𝜎2.

∙ For Property 1(c): by absurd, ∃x, y ∈ 𝕊


∶ x ≠ y such that 𝜎1 ≤ {x} and 𝜎1 ≤ {y}
hence x1n ≤ {x} and x1n ≤ {y}. So x1n is a branch-out point, in the other words,

we have a contradiction to the definition of a full sequence 𝜎1.

∙ Proof of Property 1(d) is similar to proof of Property 1(c).

∙ For Property 2(a): holds from Property 1(c) and definition of 𝔽


.

∙ For Property 2(b): holds from Property 1(d) and definition of 𝔽


.

In the next, we present, in the first, how generate a maximality-based labeled tran-

sition system from a given full sequence. In the second, the synchronous parallel

operator of maximality-based labeled transition systems is defined.

Definition 11 Let 𝜎 = {x1, x2,… , xn} sequence in  such that x1 ≤ x2 ≤ ⋯ ≤ xn.

The construction (𝜎) = (𝛺
𝜎

, 𝜆
𝜎

, 𝜇
𝜎

, 𝜉
𝜎

, 𝜓
𝜎

) is a maximality-based labeled transi-

tion system such that 𝛺
𝜎

=
⟨
S
𝜎

,T
𝜎

, 𝛼
𝜎

, 𝛽
𝜎

, s0
𝜎

⟩
such that:

∙ s0
𝜎

𝜙

ax1⟶ s1 ∈ T
𝜎

which, in the mlts of the origin, the beginning of execution of

a ∈ Act is associated to event x1 .

∙ ∀i ∈ 2… n ∶ si−1
{xi−1}

axi⟶ si ∈ T
𝜎

which, in the mlts of the origin, the beginning of

execution of a ∈ Act is associated to event xi.

Definition 12 Letmlts1 = (𝛺1, 𝜆1, 𝜇1, 𝜉1, 𝜓1) andmlts2 = (𝛺2, 𝜆2, 𝜇2, 𝜉2, 𝜓2) be two

maximality-based labeled transition systems such that

𝛺1 =
⟨
S1,T1, 𝛼1, 𝛽1, s10

⟩
and 𝛺2 =

⟨
S2,T2, 𝛼2, 𝛽2, s20

⟩
. The synchronous parallel of

mlts1 and mlts2 over L ⊆  is defined by mlts1|[L]|mlts2 = (𝛺, 𝜆, 𝜇, 𝜉, 𝜓) such that

𝛺 = ⟨S,T , 𝛼, 𝛽, s0⟩ with:

1. s0 = (s10, s
2
0).

2. S = S1 × S2.

3. 𝜓(S) = 𝜓(S1) ∪ 𝜓(S2).
4. ∀s Eax⟶ s′ ∈ T1 such that x ∉ L ⇒ ∀s′′ ∈ S2 ∶ (s, s′′) Eax⟶ (s′, s′′) ∈ T .

5. ∀s Eax⟶ s′ ∈ T2 such that x ∉ L ⇒ ∀s′′ ∈ S1 ∶ (s′′, s) Eax⟶ (s′′, s′) ∈ T .

6. ∀s1
E1
ax

⟶ s′1 ∈ T1 and ∀s2
E2
ax

⟶ s′2 ∈ T2 such that x ∈ L ⇒ (s1, s2)
E1∪E2

ax
⟶ (s′1, s

′
2) ∈

T .

322 A. Benamira and D.-E. Saidouni

Lemma 2 The synchronous parallel operator have the following proprieties.

1. For each 𝜎1, 𝜎2 ∈ 𝔽


such that 𝜎1‖𝜎2:

(a) mlts′ = (𝜎1)|[]|(𝜎2) such that 𝔽
′ = {𝜎1, 𝜎2} and 𝕊′ = 𝜙.

(b) if 𝜎1 ≤ {x} ∧ 𝜎2 ≤ {x} thenmlts′ = (𝜎1 ≤ {x})|[{x}]|(𝜎2 ≤ {y}) such that
𝔽
′ = {𝜎1, 𝜎2} and 𝕊

′ = {x}.
(c) if 𝜎1 ≤ {x} ∧ 𝜎2 ≤ {y} then mlts′ = (𝜎1 ≤ {x})|[{x, y}]|(𝜎2 ≤ {y}) such

that 𝔽
′ = {𝜎1, 𝜎2} and 𝕊

′ = {x, y}.

2. For each 𝜎1, 𝜎2, 𝜎3 ∈ 𝔽

:

(a) if 𝜎1 ≤ 𝜎2 ∧ 𝜎3 ≤ 𝜎2 which 𝜎1 ≤ {x} ≤ 𝜎2 ∧ 𝜎3 ≤ {x} ≤ 𝜎2 then mlts′ =
(𝜎1 ≤ {x})|[{x}]|({x} ≤ 𝜎2)|[{x}]|(𝜎3 ≤ {x}) such that 𝔽

′ = {𝜎1, 𝜎2,
𝜎3} and 𝕊′ = {x}.

(b) if 𝜎1 ≤ 𝜎2 ∧ 𝜎1 ≤ 𝜎3 which 𝜎1 ≤ {x} ≤ 𝜎2 ∧ 𝜎1 ≤ {x} ≤ 𝜎3 then mlts′ =
(𝜎1 ≤ {x})|[{x}]|({x} ≤ 𝜎2)|[{x}]|({x} ≤ 𝜎3) such that 𝔽

′ = {𝜎1, 𝜎2,
𝜎3} and 𝕊′ = {x}.

3. For each 1 = 𝜎0 ≤ {x1} ≤ 𝜎1 ≤ {x2}⋯ ≤ {xn} ≤ 𝜎n and
2 = 𝜎

′
0 ≤ {y1} ≤ 𝜎

′
1 ≤ {y2}⋯ ≤ {yn} ≤ 𝜎

′
m,

mlts′ = (1)|[{x1 … xn, y0 … ym}]|(2) such that
𝔽
′ = {𝜎1 … 𝜎n, 𝜎

′
0 … 𝜎

′
m} and 𝕊′ = {x1 … xn, y0 … ym}.

It is straightforward to prove Lemma 2 by Definitions 11 and 12.

Lemma 2 means that the synchronous parallel operator is an identity function

over 𝔽


× 𝔽


× 𝕊


. Consequently, the synchronous parallel operator of all paths

of (𝔽

,≤𝕊) is the initial MLTS. Therefore, we can take each path with theirs syn-

chronous points as sequential component. Hence, mlts has been decomposed into a

set of sequential MLTSs so that their parallel composition is the initial MLTS.

In the following, we give a formal definition of a decomposition.

Definition 13 Let Y = {𝜎0, 𝜎1,… , 𝜎n} be a path in (𝔽

,≤𝕊) and

S = {s0, s1,… , sn−1} be a subset of𝕊


such that = 𝜎0 ≤ s0 ≤ 𝜎1 ≤ s1 ⋯ ,≤ sn−1 ≤
𝜎n. The sequence  is an element of ℂ() if and only if:

∀′ ∈ ℂ() ∶ ′ ∩  ⊆ 𝕊


.

An element of ℂ() is an alternative sequence of full sequence and elements

of 𝕊


.

For example, given mlts of Fig. 3 with 𝔽


= {{x}, {y}, {u}, {v}} and 𝕊


= {z}.

We have a multi-possible decomposition of mlts:
ℂ() = {{x, z, u}, {y, z, v}} or ℂ() = {{x, z, v}, {y, z, u}}.

({x, z, u})|[{z}]|({y, z, v} = mlts = ({x, z, v})|[{z}]|({y, z, u}

Theorem 1 Let mlts = (𝛺, 𝜆, 𝜇, 𝜉, 𝜓) to be a maximality-based labeled transition
system such that 𝛺 = ⟨S,T , 𝛼, 𝛽, s0⟩ and let (,≤, ‖) associated to mlts.

mlts = ()

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 323

With() = (1)|[𝕊
]|(2)|[𝕊

]|(3)…(n−1)|[𝕊
]|(n)whichi ∈

ℂ(),  is a synchronous parallel composition of all elements of ℂ().

Proof Holds by the fact that the structure of  is preserved by the synchronous

parallel operator |[⋯]| (see Lemma 2).

3.2 Generation of LSGA

From the definition of ℂ(), we can have a distribution of  in different localities

D such that for each 1,2 ∈ ℂ


and for each events x and y of 1 and for each event

z in 2 ∶ D(x) = D(y) ≠ D(z).5 In the other words, we can transform each  ∈ ℂ


to a component net with interface, thereafter we have a LSGA net.

To transform the synchronous to asynchronous interaction between 1,2 ∈ ℂ


such that 1 ∩ 2 = S ≠ 𝜙 we must redefine the sequences 1,2 as follow ∀s ∈
S ⟹ (s ∈ 1 ∧ s ∉ 2) ∨ (s ∉ 1 ∧ s ∈ 2).

In the following, we give a formal definition of the transformation of the synchro-

nous to asynchronous interaction.

Definition 14 Let 𝔸


be a set of the asynchronous components generated from

ℂ


. We can define 𝔸


as follow:

∙ ∀1,2 ∈ 𝔸


⟹ 1 ∩2 = 𝜙 and

∙ ∀1,2 ∈ ℂ


such that 1 ∩ 2 = S ≠ 𝜙, we have 1 = (1 ⧵ S) ∪ S1 and 2 =
(2 ⧵ S) ∪ S2 such that S = S1 ∪ S2.

Definition 15 Let  ∈ 𝔸() which  = c0 ≤ c1 ≤ c2 ≤ ⋯ ≤ cn. Let ℭ𝔦𝔬() =
(N, I,O) be a component net with interface such that N = (S,T ,F,M0,L) be a Petri

net and:

∙ For each cj ∈ 𝔽


which cj = xj1 ≤ xj2 ≤ ⋯ ≤ xjm:

– xji ∈ T with i ∈ {1…m}.

– sji ∈ S with i ∈ {0…m}.

– F(xji, sji) = 1 ∧ F(sj(i−1), xji) = 1 with i ∈ {1…m}.

∙ For each synchronous point cj ∈ 𝕊


which cj = {x}:

– x ∈ T ,

– ijk ∈ I with k ∈ {0… |Left(x)| − 1} such that Left(x) = {y|∀y ∈  ⋅ y ≥ x},

– ojk ∈ O with k ∈ {1… |right(x)| − 1} such that right(x) = {y|∀y ∈  ⋅ x ≥
y},

– F(s(j−1)p, x) = 1 such that p = |cj−1| + 1 and ∀ijk ∈ I ∶ F(ijk, x) = 1
– F(x, s(j+1)p) = 1 such that p = |cj+1| + 1 and ∀ojk ∈ O ∶ F(x, ojk) = 1.

∙ s00 = M0.

5
From the fact that for each 1,2 ∈ ℂ


and for each event x of 1 and event y in 2 such that

x, y ∉ 𝕊


:x‖y.

324 A. Benamira and D.-E. Saidouni

Definition 16 The asynchronous parallel composition of all element i ∈ 𝔸() is

a LSGA i.e. sga()) =∥i∈𝕀ℕ ℭ𝔦𝔬(i) for all i ∈ 𝔸().

By Definition 16 and Theorem 1 it follows:

Lemma 3 Let mlts to be a maximality-based labeled transition system over. Let
mlts′ to be a correspondingmaximality-based labeled transition system ofsga():
mlts = mlts′.

4 Conclusions

In this paper, we define a distributed implementation from a semantics model rather

than a specification model. We proposed an approach for decomposing a given MLTS

to a set of sequential MLTSs related only by synchronous interactions. This decom-

position has twofold objectives: Firstly, the behaviour of this decomposition and the

initial MLTS are identical; Secondly, the interaction between sequential MLTSs can

be seen as an asynchronous interaction. In other words, our decomposition produces

a distributed system compatible to the definition of R.V. Glabbeek U. Goltz and

J.W. Schicke-Uffmann. For proving this compatibility, we introduced the definition

of a component net with interface from a sequential MLTS.

References

1. Aceto, L., Hennessy, M.: Adding action refinement to a finite process algebra. In: Automata,

Languages and Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July

8–12, 1991, Proceedings, pp. 506–519 (1991)

2. Benamira, A., Saïdouni, D.: Maximality-based labeled transition systems normal form. In:

Modeling Approaches and Algorithms for Advanced Computer Applications, Studies in Com-

putational Intelligence, vol. 488, pp. 337–346. Springer (2013)

3. Bouneb, M., Saïdouni, D., Ilié, J.: A reduced maximality labeled transition system generation

for recursive petri nets. Formal Asp. Comput. 27(5–6), 951–973 (2015). http://dx.doi.org/10.

1007/s00165-015-0341-3

4. Courtiat, J.P., Saïdouni, D.E.: Relating maximality-based semantics to action refinement in

process algebras. In: FORTE, pp. 293–308 (1994)

5. Glabbeek, R.J.V.: The refinement theorem for ST-bisimulation semantics. In: Proceedings IFIP

TC2 Working Conference on Programming Concepts and Methods, Sea of Gallilee, Israel,

April 1990, pp. 27–52. North-Holland (1990)

6. Glabbeek, R.J.V., Goltz, U., Schicke, J.: On synchronous and asynchronous interaction in dis-

tributed systems. In: Mathematical Foundations of Computer Science, 33rd International Sym-

posium, MFCS 2008, Torun, Poland, August 25-29, Proceedings. LNCS, vol. 5162, pp. 16–35.

Springer (2008)

7. Glabbeek, R.J.V., Goltz, U., Schicke-Uffmann, J.: On characterising distributability. Log.

Methods Comput. Sci. 9(3) (2013). http://dx.doi.org/10.2168/LMCS-9(3:17)2013

8. Hennessy, M.: Concurrent testing of processes (extended abstract). In: CONCUR ’92, Third

International Conference on Concurrency Theory, Stony Brook, NY, USA, August 24-27,

1992, Proceedings, pp. 94–107 (1992). http://dx.doi.org/10.1007/BFb0084785

http://dx.doi.org/10.1007/s00165-015-0341-3
http://dx.doi.org/10.1007/s00165-015-0341-3
http://dx.doi.org/10.2168/LMCS-9(3:17)2013
http://dx.doi.org/10.1007/BFb0084785

A Locally Sequential Globally Asynchronous Net from Maximality-Based . . . 325

9. Saïdouni, D.E., Belala, N., Bouneb, M.: Aggregation of transitions in marking graph generation

based on maximality semantics for Petri nets. In: VECoS’2008, University of Leeds, UK. eWiC

Series, The British Computer Society (BCS) (July, 2–3rd 2008). ISSN: 1477-9358

10. Saïdouni, D.E., Belala, N., Bouneb, M.: Maximality-based structural operational semantics for

Petri nets. In: Proceedings of INTELLIGENT SYSTEMS AND AUTOMATION:(CISA’09),

Tunisia. vol. 1107, pp. 269–274. American Institute of Physics (2009). ISBN: 978-0-7354-

0642-1

11. van Glabbeek, R.J., Vaandrager, F.W.: Petri net models for algebraic theories of concurrency.

In: PARLE, Parallel Architectures and Languages Europe, Volume II: Parallel Languages,

Eindhoven, The Netherlands, June 15–19, 1987, Proceedings, pp. 224–242 (1987)

12. Vogler, W.: Bisimulation and action refinement. In: STACS 91, 8th Annual Symposium on

Theoretical Aspects of Computer Science, Hamburg, Germany, February 14–16, 1991, Pro-

ceedings, pp. 309–321 (1991). http://dx.doi.org/10.1007/BFb0020808

http://dx.doi.org/10.1007/BFb0020808

	A Locally Sequential Globally Asynchronous Net from Maximality-Based Labelled Transition System
	1 Introduction
	2 Preliminaries
	2.1 Distributed Systems
	2.2 Maximality-Based Labeled Transition Systems

	3 LSGA Net from MLTS
	3.1 Generation of Sequential MLTSs Set
	3.2 Generation of LSGA

	4 Conclusions
	References

