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Abstract. Conformal predictors, currently applied to many problems in various
fields determine precise levels of confidence in new predictions on the basis only
of the information present in the past data, without making recourse to any
assumptions except that the examples are generated independently from the
same probability distribution. In this paper, the robustness of their results is
assessed for the cases in which the data are affected by error bars. This is the
situation typical of the physical sciences, whose data are often the results of
complex measurement procedures, unavoidably affected by noise. Assuming the
noise presents a normal distribution, the Geodesic Distance on Gaussian Man-
ifolds provides a statistical principled and quite effective method to handle the
uncertainty in the data. A series of numerical tests prove that adopting this
metric in conformal predictors improves significantly their performance, com-
pared to the Euclidean distance, even for relatively low levels of noise.

Keywords: Conformal predictors � Geodesic distance � Inference methods �
Error bars

1 Conformal Predictors and Measurement Errors

Machine-learning methods work often very well and have found many applications in
both the public and the private sector. On the other hand, the reliability of their per-
formance is typically proven asymptotically and is therefore not very useful in practice.
Conformal predictors, which perform competitively in terms of success rates, include
from their conception simple and useful measures of confidence [1]. Conformal pre-
diction can be based on any technique of point prediction for classification or regression,
including support-vector machines, decision trees, neural networks and Bayesian
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methods. Starting from the point prediction tool, the conformal predictor consists of
building a nonconformity measure, which determines how unusual an example is rel-
ative to previous examples. The conformal algorithm, based on the statistical concept of
the p-values, turns this nonconformity measure into prediction regions. Given a non-
conformity measure, the conformal algorithm produces a prediction region Uε for every
probability of error ε. The region Uε is a (1−ε)-prediction region; it classifies the next
example with probability at least 1−ε. Therefore conformal predictors are conservatively
valid, which means that the probability they make a mistake when their output is at
confidence level 1−ε is not greater than ε.

In most of the non-conformity measures utilised by conformal predictors, the
Euclidean distance is implicitly assumed to be the proper metric to adopt in the cal-
culation of the non-conformity measure and the p-values. The Euclidean distance has a
precise geometrical meaning and a very long historical pedigree. However, it implicitly
requires considering all data as single infinitely precise values. This assumption can be
appropriate in other applications but it is obviously not the case in physics, since all the
measurements typically present an error bar. An alternative idea is to use a new distance
between data, which would take into account the measurement uncertainties. The causes
of uncertainties in the measurements are typically many, which from a statistical point of
view can be considered random variables. As a consequence, their global contribution
can be often modelled as a noise of normal distribution. The idea, behind the approach
proposed in this paper, consists therefore of considering the measurements not as points,
but as Gaussian distributions [2]. Modelling measurements not as point values, but as
Gaussian distributions, requires defining a distance between Gaussians. This distance
must be the Geodesic on the Gaussian Manifold (GDGM) of the measurements and can
be expressed as a closed formula (see Sect. 3) [3]. As shown in the rest of the paper,
adopting this geodesic distance can increase significantly the accuracy of traditional
conformal predictors, even when the data are affected by a very limited level of noise.

With regard to the structure of the paper, next Section provides a short introduction
to the general framework of conformal prediction. The mathematical background to the
main mathematical tool introduced in the paper: the Geodesic Distance on Gaussian
Manifolds, is the subject of Sect. 3. The proposed method is assessed with a series of
numerical tests using a toy model described in Sect. 4. Section 5 reports in detail the
results of the numerical tests. Conclusions and lines of future work are provided in the
last Section of the paper.

2 The Framework of Conformal Prediction for Classification

The task of classification basically consists of attributing objects to different classes.
Mathematically this can be formalised by considering successive ordered pairs (x1, y1),
(x2, y2)…….which are called examples. Each example consists of an object xi and its
label yi, where the former represents the feature vector that describes the object i. The
objects are elements of a measurable space X called the object space; the labels are
elements of a measurable space Y called the label space. It is common practice to adopt
a more compact notation, according to which zi indicate the ordered pair (xi, yi), and
Z := X xY is defined as the example space.
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Many machine learning tools are available to perform classification. On the other
hand, as mentioned earlier, the vast majority of them cannot easily quantify the quality
of their predictions. On the contrary, conformal predictors have been conceived
explicitly to quantify the reliability of their predictions. They achieve this on the basis
of the past examples. To this end, for each new sample to classify, it is necessary to
measure how different the new one is from the old examples. In this perspective, a
nonconformity measure is defined, which allows calculating a nonconformity score to
estimate how different a new example is from a bag of old ones. A bag of size n ϵ N is a
collection of n elements some of which may be identical. In this paper, the nota-
tion < z1,…, zn > indicates a bag of n elements.

Given a nonconformity measure A and a bag < z1,…,zn > , the nonconformity score
can be calculated as:

ai := A z1; . . .; zi�1; ziþ 1; . . .; znh i; zið Þ ð1Þ

for each example zi in the bag. Because nonconformity measures are not absolute but
relative, the numerical value of ai does not, by itself, determines how unusual zi is
according to the measure A. To really quantify how unusual a sample is, it is necessary
to compare aI with the nonconformity measures aj of the other members of the bag.
The p-value is a convenient and statistically sound way of calculating how anomalous a
new example is. By definition the p-value is the fraction

Pval ¼ #fj ¼ 1; . . .; n : aj � aig
n

ð2Þ

This indicator, which lies between 1/n and 1, is the fraction of the examples in the
bag as non conforming as zi and in literature is called p-value of the element zi (pval(zi)).
The symbol “#” stands in fact for the number of elements “j” in the collection having a
nonconformity score higher or at least the same nonconformity of the element “i”. The
lower the p-value, i.e. the closer to its lower bound 1/n (“j” includes “i” in fact) for

Fig. 1. Examples to illustrate how the GDGM determines the distance between two Gaussians.
The two couples of pdf in the figure have the same mean but different σ. The geodesic distance
between the two with higher σ is much smaller.
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large n, the more non conforming zi is and the more likely it can be considered as an
outlier; this means that zi is not representative of the typical member of the bag. If the
p-value is large, i.e. close to its upper bound 1, then zi is very conforming or very
representative of the typical member of the bag. The new sample is attributed to the
class with the highest p-value.

On the basis of the p-values, conformal predictors allow calculating, for each new
classification, two indicators, confidence and credibility, which quantify the reliability
of the prediction. Credibility is defined as the largest p-value; confidence is defined as
1-2nd largest p-value. Confidence can be interpreted as the probability that the pre-
diction, corresponding to the maximal p-value, is correct. A low credibility, typically
less than 0.05, intuitively means that either the training set is non random or the test
object is not representative of the training set. If the maximum p-value appears in more
than one class, an ambiguity is present and the algorithm is not able to classify the
sample. It is important to emphasize that confidence and credibility of the prediction
play an analogous role to the observed level of significance in statistical parameter
tests.

3 Geodesic Distance on Gaussian Manifolds

As mentioned in the previous section, in the natural sciences the data available are
typically the result of experimental measurements. In this context, all measurements are
affected by uncertainties referred to as error bars. The sources of this uncertainty are
normally quite many and therefore it is more than reasonable to assume that the pdf of
the noise is normal. Each measurement can therefore be modelled as a probability
density function (pdf) of the Gaussian type, determined by its mean μ and its standard
deviation σ:

pðx; l; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp �ðx� lÞ2
2r2

" #

ð3Þ

It is normal practice to assume that the experimental measured value is the mean of
the pdf, since this is the most likely value of the pdf. The standard deviation can be
determined independently from the knowledge of the instrumentation.

The set of normal distributions can therefore be modelled as a two dimensional
space, or better a two dimensional manifold, parameterized by l and r. Modelling
measurements not as point values, but as Gaussian distributions, requires defining a
distance between Gaussians. The most appropriate definition of distance between
Gaussian distributions is the geodesic distance (GDGM), on the probabilistic manifold
containing the data, which is not a Euclidean but a Riemannian space. This geodesic
distance on the Gaussian manifold can be calculated using the Fischer-Rao metric
[3, 4]. For two univariate Gaussian distributions (p1(x|μ1, σ1)) and (p2(x|μ2, σ2)),
parameterised by their mean li and standard deviations σi(i = 1, 2), the geodesic
distance GDGM is given by:
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GDðp1jj p2Þ ¼
ffiffiffi
2

p
ln
1þ d
1� d

¼ 2
ffiffiffi
2

p
tanh�1d;where d ¼ ½ðl1 � l2Þ2 þ 2ðr1 � r2Þ2

ðl1 � l2Þ2 þ 2ðr1 þ r2Þ2
�12

ð4Þ

As will be shown in detail in the next sections, the replacement of the Euclidean
distance with the GDGM improves significantly the robustness of the classification
compared to the case of the Euclidean distance. In Fig. 1 a graphical example of the
improvement obtained using the metric in Eq. (4) is shown. Considering a Cartesian
coordinate system (μ, σ), where each point represents a Gaussian distribution, the Eucli-
dean distance between the four points, so between the four distributions, is higher between
the two wider distributions. On the other hand, considering the Geodesic Distance, the
lower distance is obtained considering the wider distributions. This behaviour reflects
the physical interpretation according to which physical quantities having higher error bars,
are to be considered closer and more similar than those with narrower error bars.

4 A Toy Model

To exemplify and prove the usefulness of the method proposed in this paper, a series of
numerical test has been performed. They are based on a toy model already introduced
in [5]. The simplicity of the model allows appreciating both the nature of the problem
and the advantages of adopting the proposed metric, the GDGM. The classification task
consists of classifying points on a straight line, on which three classes have been
defined. The problem is represented graphically in Fig. 2. The aim is to classify the new
point Q with confidence and credibility.

For the purpose of this example, the classification is based on the nearest neigh-
bour. Mathematically, given a “bag” {z1,…,zn−1}, where each zi consists of a feature
vector xi and a non-numerical label yi, when a new example zn = (xn, yn) becomes
available for classification, its feature vector xn is known but its label yn is not. The
nearest-neighbour method finds the xi closest to xn and its label yi becomes the pre-
diction of yn. A natural way to measure the nonconformity of the new example zn with
respect to the old examples zi consists of comparing x’s distances to old objects with
the same label to its distance to old objects with a different label. For example, the
nonconformity scores can be defined as:

ai ¼ dsl
ddl

ð5Þ

dsl ¼ min xj � xi
�� �� : 1� j� n& j 6¼ i& yj ¼ yi

� �

ddl ¼ min xj � xi
�� �� : 1� j� n& j 6¼ i& yj 6¼ yi

� �

For the new point Q = 14.85 shown in Fig. 2 (the non-conformity measurement is
presented in Table 1), therefore the P values credibility and confidence assume the
values 1 and 0.9844, respectively; and point Q belongs to Class C.
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Fig. 2. The toy model. A new point Q must be classified as belonging to class A, B or C.

Table 1. Non-conformity measurements for point Q = 14.85

Object i 𝛼 𝑖 𝑓𝑌= 𝐴 𝛼 𝑖 𝑓𝑌= 𝐵 𝛼 𝑖 𝑓𝑌= 𝐶 Object i 𝛼 𝑖 𝑓𝑌= 𝐴 𝛼 𝑖 𝑓𝑌= 𝐵 𝛼 𝑖 𝑓𝑌= 𝐶
1 0.0625 0.0625 0.0625 10 0.0833 0.0833 0.0833

1.25 0.0667 0.0667 0.0667 10.25 0.0909 0.0909 0.0909
1.5 0.0714 0.0714 0.0714 10.5 0.1 0.1 0.1

1.75 0.0769 0.0769 0.0769 10.75 0.1111 0.1111 0.1111
2 0.0833 0.0833 0.0833 11 0.125 0.125 0.125

2.25 0.0909 0.0909 0.0909 11.25 0.1429 0.1429 0.1429
2.5 0.1 0.1 0.1 11.5 0.1667 0.1667 0.1667

2.75 0.1111 0.1111 0.1111 11.75 0.2 0.2 0.2
3 0.125 0.125 0.125 12 0.25 0.25 0.25

3.25 0.1429 0.1429 0.1429 13 0.25 0.25 0.25
3.5 0.1667 0.1667 0.1667 13.25 0.2 0.2 0.2

3.75 0.2 0.2 0.2 13.5 0.1852 0.1852 0.1667
4 0.25 0.25 0.25 13.75 0.2273 0.2273 0.1429
5 0.25 0.25 0.25 14 0.2941 0.2941 0.125

5.25 0.2 0.2 0.2 14.25 0.4167 0.4167 0.1111
5.5 0.1667 0.1667 0.1667 14.5 0.7143 0.7143 0.1

5.75 0.1429 0.1429 0.1429 14.75 2.5 2.5 0.0364
6 0.125 0.125 0.125 15 1.6667 1.6667 0.05

6.25 0.1111 0.1111 0.1111 15.25 0.625 0.625 0.0769
6.5 0.1 0.1 0.1 15.5 0.3846 0.3846 0.0714

6.75 0.0909 0.0909 0.0909 15.75 0.2778 0.2778 0.0667
7 0.0833 0.0833 0.0833 16 0.2174 0.2174 0.0625

7.25 0.0769 0.0769 0.0769 16.25 0.1786 0.1786 0.0588
7.5 0.0714 0.0714 0.0714 16.5 0.1515 0.1515 0.0556

7.75 0.0667 0.0667 0.0667 16.75 0.1316 0.1316 0.0526
8 0.0625 0.0625 0.0625 17 0.1163 0.1163 0.05

8.25 0.0588 0.0588 0.0588 17.25 0.1042 0.1042 0.0476
8.5 0.0556 0.0556 0.0556 17.5 0.0943 0.0943 0.0455

8.75 0.0588 0.0588 0.0588 17.75 0.0862 0.0862 0.0435
9 0.0625 0.0625 0.0625 18 0.0794 0.0794 0.0417

9.25 0.0667 0.0667 0.0667 14.85 108.5 … …
9.5 0.0714 0.0714 0.0714 14.85 … 28.5 …

9.75 0.0769 0.0769 0.0769 14.85 … … 0.0351
Continue ---------> p-value 0.0156 0.0156 1
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In the previous example, the conformity measure of Eq. (5) has been calculated
using the Euclidean distance between the various points. All the derived quantities are
therefore also based on this metric. In the case of measurements affected by noise, the
Euclidean metric is not adequate and adopting the GDGM provides several improve-
ments as discussed in the next section.

5 Results of the Numerical Tests

In order to assess the potential of the GDGM metric to counteract the effect of noise, a
series of systematic tests has been performed using the toy model introduced in the
previous section. To this end, a series of points have been automatically generated
along the straight line of Fig. 2. These are to be considered the right values of the
physical quantity to measure. Then Gaussian noise, with zero mean and standard
deviations equals to a percentage (10 %,20 %,…) of the value itself, has been added to
the previously generated points. Adding this noise to the data provides the actual values
to be considered as the available measurements, affected by additive noise of Gaussian
distribution. These points have been then classified with the nonconformity measure
based on the next neighbour criterion using both the Euclidean distance and the
GDGM. The results have been reported in Table 2 for the Euclidean distance as metric
and in Table 3 for the GDGM as metric.

Table 2. Classification using the Euclidean distance to calculate the nearest neighbour. The first
column reports the accuracy (Acc.); the second the credibility (Cred.) and the third the confidence
(Conf). The following column reports the same quantities but for different levels of noise. The
top of the table reports the average values for all the 50 points.
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Table 2. (Continued)
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Table 3. Classification using the Geodesic Distance on Gaussian Manifolds distance to calculate
the nearest neighbour. The first column reports the accuracy (Acc.); the second the credibility
(Cred.) and the third the confidence (Conf). The following column reports the same quantities but
for different levels of noise. The top of the table reports the average values for all the 50 points.
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The results reported in Tables 2 and 3 indicate that the GDGM provides a clear
improvement in the success rate of the classification. Table 2 shows how the perfor-
mance of conformal predictors degrade with increasing levels of noise. It is important
also to notice how the indicators of the quality of the prediction, confidence and
credibility, tend to overestimate the reliability of the classification when significant
level of noise is present. Table 3 reports the clear improvement in both performance
and reliability of the quality indicators when the Euclidean distance is replaced with
GDGM. Another important consideration is the fact that, adopting the GDGM metric
does not cause any degradation of performance when the data are not affected by noise.

Table 3. (Continued)
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6 Conclusions

In many applications of conformal predictors, the Euclidean distance is explicitly or
implicitly adopted as the right metric. In the case of experimental measurements typical
of the physical sciences, the data are affected by noise of normal distribution. In this
situation, the GDGM proves to be a better metric, to be used in the definition of the
non-conformity measure. The calculation of the nonconformity measure and of the
p-values using the GDGM provides significantly more reliable classifications, by
reducing the adverse effects of the noise. The reported results using the GDGM have
been obtained using a desktop computer with two Xeon E5520 @2.27 GHz processors
and 24 GB of RAM, and required an average of one minute for each test performed, for
a total of 50 min for all 50 points. The computational cost is therefore very similar to
the one required to perform the calculations with the Euclidean distance.

With regard to future developments, it would be important to apply the same
approach to different pdfs: particularly relevant would be the case of the Poisson
distribution, since in practice many detectors work in photon counting or particle
counting mode. Another very interesting application would be the case in which the pdf
of the noise is not known. This situation has practical applications because in many
experimental situations the uncertainties in the measurements can be quantified with an
interval but without any additional specification. Therefore the real value is expected to
fall in a certain interval but no additional information is available. In this case the
implementation of an appropriate form of uncertain probability is expected to produce
improvements in the classification of conformal predictors comparable to the case of
the GDGM for the case of measurements affected by Gaussian noise.

In terms of practical applications, the mathematics of conformal predictors can be
applied to most classifiers, including Fuzzy ones [6]. Therefore the approach can be of
extreme help in all the cases, such as disruptions in Tokamaks, where classification is a
particularly problematic and difficult task also due to the uncertainties in the mea-
surements [7, 8].
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