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Abstract. In a previous large-scale empirical evaluation of conformal
regression approaches, random forests using out-of-bag instances for cal-
ibration together with a k-nearest neighbor-based nonconformity mea-
sure, was shown to obtain state-of-the-art performance with respect to
efficiency, i.e., average size of prediction regions. However, the use of the
nearest-neighbor procedure not only requires that all training data have
to be retained in conjunction with the underlying model, but also that a
significant computational overhead is incurred, during both training and
testing. In this study, a more straightforward nonconformity measure
is investigated, where the difficulty estimate employed for normaliza-
tion is based on the variance of the predictions made by the trees in
a forest. A large-scale empirical evaluation is presented, showing that
both the nearest-neighbor-based and the variance-based measures signif-
icantly outperform a standard (non-normalized) nonconformity measure,
while no significant difference in efficiency between the two normalized
approaches is observed. Moreover, the evaluation shows that state-of-the-
art performance is achieved by the variance-based measure at a computa-
tional cost that is several orders of magnitude lower than when employing
the nearest-neighbor-based nonconformity measure.

Keywords: Conformal prediction · Nonconformity measures ·
Regression · Random forests

1 Introduction

When employing the conformal prediction (CP) framework [13], the probabil-
ity of making incorrect predictions is bounded by a user-provided confidence
threshold. Rather than just providing a single bound on the prediction error for
examples drawn from the underlying distribution, CP allows for providing dif-
ferent bounds for different instances, something which may be valuable in many
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different scenarios. For example, in the medical domain, the ability to assess the
confidence in predictions related to individual patients, rather than at the group
level, may be crucial input for decisions concerning alternative treatments for a
specific patient.

CP relies on real-valued functions, called nonconformity measures, that pro-
vide estimates for how different a new example is from a set of old examples. It
is possible to design many different nonconformity functions for a specific pre-
dictive model, and each will result in a different conformal predictor. All such
conformal predictors will be valid i.e., the probability of excluding the correct
label will be less than one minus the confidence level. However, there may be
significant differences in terms of efficiency, i.e., the sizes of output prediction
regions, meaning that the informativeness of the output of different conformal
predictors may vary substantially. For classification, efficiency is often measured
as the (average) number of labels present in the prediction sets, while for regres-
sion, which is the focus of this paper, efficiency is most commonly measured as
the (average) size of the intervals.

CP was originally introduced as a transductive approach [5], which requires
the learning of a new model for each new test instance to be predicted. Since this
in many cases may be computationally prohibitive, inductive conformal predic-
tion (ICP) was suggested [13]. In ICP, which is the focus of this study, a single
model is learned from the training data and that model is then used for pre-
dicting all test instances. In ICP, however, the calculation of the nonconformity
scores (normally) requires comparing predicted values with true target values
not seen during training, and the standard procedure to achieve this is to set
aside a separate subset of the training examples, called the calibration set. How-
ever, when the underlying model is an ensemble constructed using bagging, such
as a random forest [3], there is also an option to use out-of-bag estimates for the
calibration, effectively allowing all training data to be used for constructing the
underlying model, something which has been exploited in the context of ICP for
bagged ANNs [7] and random forests [6].

Until recently, most studies on ICP conformal regression have focused on
one specific underlying model, using a limited number of data sets, making
them serve mainly as proofs-of-concept rather than allowing for drawing sta-
tistically valid conclusions; see e.g., [8,10]. The apparent need for larger studies
evaluating techniques for producing efficient conformal predictors, motivated the
study in [6], in which the use of a random forest as the underlying model was
compared to existing state-of-the-art conformal regressors, based on neural net-
works [9] and k-nearest neighbors [11]. A number of nonconformity measures
were investigated, including the option to use out-of-bag estimates for the nec-
essary calibration. The results in [6] showed that for almost all confidence levels
and using both standard and normalized nonconformity functions, a random
forest conformal predictor calibrated using a normalized nonconformity function
based on out-of-bag errors of neighboring instances, produced significantly more
efficient conformal predictors than the existing alternatives.

However, the use of a nonconformity measure based on the k nearest neigh-
bors requires that access has to be provided to all training instances even at the
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time the model is deployed, something which occasionally may limit the useful-
ness of the approach, e.g., when there are size constraints, such as on mobile
devices, or when data is highly sensitive and may not be re-distributed. An even
more important constraint may be the computation time, both for training and
testing. The computational cost of calculating the average error of the k nearest
neighbors for each example in the training set is quadratic in the number of
examples, hence incurring a substantial additional cost for employing the con-
formal framework, which may be a limiting factor in particular when handling
large training sets. Even for testing, there is an additional cost when using the
nearest neighbor nonconformity measure, since the distance of each test instance
to all training instances needs to be calculated. To increase the applicability of
conformal regression using random forests, there is hence a need for noncon-
formity measures with lower computational cost. One such candidate approach
is to estimate the difficulty of an instance, not by averaging the errors of its
neighbors, but by utilizing the fact that each prediction of a random forest is
formed by averaging votes of the individual trees in the forest. For difficult cases,
one would expect a larger degree of disagreement among the trees, i.e., a higher
variance among the individual predictions, than for easier cases. In other words,
the variance could be used as an estimate of the difficulty. In fact, this idea is not
entirely novel, but was already investigated for k-nearest neighbor regressors in
[11], where the variance of the target value of the k neighbors was one of several
proposed estimates of difficulty. The main question of this study is whether or
not this is an effective approach for forests of regression trees.

In the next section, we formalize the conformal regression framework. In
Sect. 3, we describe the current state-of-the-art approach for conformal regres-
sion, i.e., random forests using out-of-bag errors of neighboring instances, as
well as the proposed approach, which instead of employing the nearest neigh-
bor procedure uses the variance of the predictions made by the individual trees
to normalize the prediction regions. The setup for, and the results from, the
empirical investigation are presented in Sect. 4. Finally, we summarize the main
conclusions from the study and outline directions for future work in Sect. 5.

2 Background

Predictions of a conformal regressor take the form of real-valued intervals (a, b),
where P (a ≤ y ≤ b) ≥ 1 − δ for a test pattern x with true output value y
and a user-specified significance level δ. To produce such prediction intervals,
a conformal regressor utilizes a nonconformity measure, which is a real-valued
function that measures the strangeness of an example (x, y). This nonconfor-
mity measure is typically based on the prediction error of a traditional machine
learning model, called the underlying model of the conformal regressor. Based on
the nonconformity scores of examples with known labels, a conformal predictor
uses hypothesis testing to reject (or fail to reject) tentative output values ỹ ∈ R

at significance δ. For regression problems, the nonconformity measure is most
often simply the absolute prediction error [9–11],
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αi = A(xi, yi, h) = |yi − ŷi| = |yi − h(xi)|, (1)

where h is the underlying model trained on the problem in question, e.g., a
regression tree, a neural network or an ensemble model.

To train an inductive conformal regressor, the following procedure is normally
used:

1. Divide the training set Z = {(x1, y1), ..., (xl, yl)} into two disjoint subsets Zt

(a proper training set) and Zc (a calibration set):
– Zt = {(x1, y1), ..., (xm, ym)}
– Zc = {(xm+1, ym+1), ..., (xl, yl)}

2. Train the underlying model h using Zt.
3. Use the nonconformity measure, e.g. (1), to measure the nonconformity of

the examples in Zc, obtaining a list, sorted in descending order, of calibration
scores S = α1, ..., αq where q = |Zc|.
When a new test instance xj arrives, a prediction region is constructed as

follows:

1. Obtain a prediction ŷj = h(xj).
2. Find the calibration score αs(δ) where s(δ) = �δ(q + 1)�.
3. Using the (partial) inverse of the nonconformity measure, obtain the largest

error that is consistent with δ, i.e., A−1(αs(δ)). This is the maximum error
made by h on xj with confidence 1 − δ.

If the nonconformity measure in (1) is used, the predictive step simply trans-
lates into a prediction region for xj being constructed as

Ŷ δ
j = ŷj ± αs(δ), (2)

since, with probability 1 − δ, the underlying model h will not make an absolute
prediction error greater than αs(δ).

It must be noted that when using (1) and (2), the conformal regressor will, for
any specific significance level δ, always produce prediction intervals of the same
size for every xj ; i.e., the error bounds will not be dependent on properties of a
specific test instance. It is, however, possible to introduce normalized nonconfor-
mity measures, where the absolute error is divided by a term σi that is dependent
on the prediction instance, usually corresponding to the estimated difficulty of the
underlying model for making a correct prediction for that instance; see e.g., [9,11]:

αi =
|yi − ŷi|

σi
. (3)

With normalized nonconformity measures, the prediction interval for xj is:

Ŷ δ
j = ŷj ± αs(δ)σj . (4)

The motivation for employing normalized nonconformity functions is that
instances estimated to be easier to predict will be assigned narrower intervals
than instances that are judged to be more difficult. It should be noted that there
are several ways to estimate the difficulty; one suggestion is to train another
model for predicting the errors; see e.g., [9]. Other approaches use properties of
the underlying model; see e.g., [11].
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3 Methods

In this section, we describe the approach for regression conformal prediction
using random forests. In particular, we describe three nonconformity measures
that will be compared in the empirical investigation: (i) a standard (non-
normalized) nonconformity measure, (ii) a nonconformity measure where the
difficulty is estimated by the average error of the nearest neighbors, which was
shown to result in state-of-the-art performance in [6], and (iii) a variance-based
nonconformity measure, originally proposed for k-nearest neighbor classifiers in
[11], which previously has not been evaluated for random forests.

3.1 Regression Conformal Prediction using Random Forests

A random forest [3] is an ensemble consisting of random trees, which are decision
trees generated in a specific way. In order to introduce the necessary diversity,
each random tree is trained on a bootstrap replicate [2], and only a random-
ized subset of the attributes are available for the algorithm when optimizing
each interior split. The instances that were missing in the bootstrap replicate,
for a specific tree, are said to be out-of-bag (oob) for that tree. In this study,
and similar to [6], we will investigate nonconformity functions that are based
on absolute errors, see (1) and (3), where oob instances are used for calculating
calibration scores, instead of using a separate calibration set. This means that
for each instance in the original training set, only those trees in the generated
forest for which the instance is oob, are used for generating the prediction, i.e.,
instead of ŷi = h(xi) in (1) and (3), where h is a random forest, ŷi = hi(xi),
where hi ⊆ h. The expected number of trees used to form an oob prediction
is approximately 0.368 of the original number of trees, since the probability of
including a training example in a bootstrap replicate is about 0.632 [2], leading
to that prediction errors on the oob instances can be expected to be at least
as large as for independent test instances when using the entire forest, since
the underlying model used for the calibration is weaker. Hence, as argued in
[6], calculating non-conformity scores using oob instances should lead to valid,
although conservative, prediction regions. It should be noted that since all train-
ing data can be used for constructing the underlying models, these are typically
stronger than the corresponding models trained on a subset, i.e., when excluding
the calibration instances, something which was demonstrated in [6] to result in
significant efficiency improvements.

3.2 Non-normalized Nonconformity Measure

The first nonconformity measure employs (2), i.e., there is no normalization, so
all prediction regions will have identical sizes. It must be noted, however, that
out-of-bag instances are used for the calibration instead of a separate calibration
set, making it possible to use all available instances for both the training and
the calibration. More specifically, when producing the nonconformity score for
a calibration instance zi, the ensemble used for producing the prediction ŷi

consists of all trees that were not trained using zi, i.e., zi was out-of-bag for
those trees.
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3.3 Nearest Neighbor-Based Normalization

The second nonconformity measure employs normalization using (3), i.e., the
sizes of the prediction regions vary depending on the estimated difficulty of the
instances. Inspired by nonconformity measures proposed for k-nearest neighbor
classifiers [11], this nonconformity measure estimates difficulty by the (out-of-
bag) error of the k nearest neighbors, with the obvious motivation that low
errors for neighboring instances imply a relatively easy part of the feature space.
The exact number of neighbors to use is optimized (between 1 and 45) for each
training set (more precisely, for each fold, when performing cross-validation), and
the k resulting in the smallest average interval size of the resulting conformal
regressor is chosen.

The resulting nonconformity measure for an instance (xi, yi) is:

αi =
|yi − ŷi|
μi + β

(5)

where μi is an estimate of the difficulty and β is a parameter, used to control
the sensitivity of the nonconformity measure. The difficulty estimate for this
particular nonconformity measure is the average, distance-weighted, out-of-bag
error of the k nearest neighbors:

μi =
∑k

n=1 on/dn
∑k

n=1 1/dn

(6)

where {o1, . . . , ok} are the out-of-bag errors of the k nearest neighbors and
{d1, . . . , dk} are the Euclidean distances of the nearest neighbors to xi plus a
small term ε (to avoid division by zero).

Using this nonconformity function, the prediction intervals become:

Ŷ δ
j = ŷj ± αs(δ)(μj + β) (7)

When used with random forests and out-of-bag calibration, this nonconfor-
mity measure was in [6] shown to outperform all competing approaches, including
conformal regressors based on neural networks [9] and k-nearest neighbors [11].
Hence, this particular configuration may be considered as the current state-of-
the-art for inductive conformal regression.

3.4 Variance-Based Normalization

The third, and last, nonconformity measure that is evaluated in this study esti-
mates difficulty by the variance of the predictions of the individual trees in the
forest. The motivation for this difficulty estimator is that for easier instances, one
may expect a higher degree of agreement among the trees in the forest. This non-
conformity measure has, again, been studied in the context of k-nearest neighbor
classifiers [11], but has not previously been investigated for conformal regressors
using random forests. This measure is on the same form as the previous (5), but
where μi now corresponds to the variance of the individual predictions for an
instance (xi, yi):
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μi =
∑s

n=1 p2n
s

−
(∑s

n=1 pn

s

)2

(8)

where {p1, . . . , ps} are the predictions of the trees in the forest for which the
instance (xi, yi) is out-of-bag.

Using this nonconformity measure, the prediction intervals are, as for the
previous measure, calculated using (7).

4 Empirical Evaluation

In this section, we first describe the experimental setup, i.e., what algorithms,
datasets and performance metrics have been chosen, and then report the results
from the experiment.

4.1 Experimental Setup

For the empirical investigation, all competing methods were re-implemented in
the Julia language1, and a large-scale study, using 33 publicly available data
sets from the UCI [1] and Delve [12] repositories, was performed. The considered
data sets are small to medium sized; ranging from approximately 500 to 10000
instances. To allow for comparing sizes of prediction regions with the entire
output space, the target variable was normalized for each dataset by:

ỹi =
ymax − yi

ymax − ymin
(9)

where ymax and ymin are the highest and lowest output values, respectively,
for the dataset. The same normalization was employed also for each input vari-
able, to avoid choice of scale having an impact when calculating Euclidean dis-
tances for the nearest neighbor-based nonconformity measure. The latter has
neither any effect on the other nonconformity measures nor on the underlying
random forest models, i.e., the predictive performance is unaffected.

Regarding parameter values, similar settings as in [6] were employed for all
data sets and methods. Specifically, all random forests consisted of 500 random
trees, the sensitivity parameter β was set to 0.01 while the parameter ε was set
to 0.001. A ten-fold cross validation scheme was adopted with all reported values
being averaged over the ten folds. Results are reported for three confidence levels:
90 %, 95 % and 99 %.

For each method and dataset in the experiments, the error rate, i.e., the
fraction of target values in the test set that fall outside the predicted regions,
and the efficiency, i.e., the size of the predicted intervals, are measured. For valid
conformal predictors, the error rate should not (in the long run) be higher than
one minus the chosen confidence threshold. Hence, by investigating the error
rate, we may confirm (or reject) that a certain conformal predictor actually is
valid. Note that this is here considered to be a binary property, i.e., we do not
1 www.julialang.org.

www.julialang.org
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consider one method to be more valid than another. Given that we have a set
of valid regression conformal predictors, the perhaps most interesting aspect to
compare is the size of the predicted regions, as this directly corresponds to how
informative these regions are. Such a comparison could be done in different ways,
e.g., comparing extreme values, but we have similar to [6] opted for comparing
the average sizes over all prediction regions.

In order to allow for a comparison of the computational cost for generat-
ing and applying the different nonconformity measures, i.e., during training and
testing, respectively, the CPU times for these activities were recorded, separately
from the time taken to build the forests and obtaining predictions from the indi-
vidual trees. In the experiment, a DELL T7910 with two 14-core 2.6 GHz CPUs
(E5-2697v3) with 64 GB RAM was employed. The generation and application of
all nonconformity measures was performed on a single core only, while the forest
construction and predictions utilized all cores in parallel2.

To analyze any differences in efficiency between the two normalized
approaches, the correlation coefficient between the estimated difficulty of the
test instances and the actual prediction error are reported for each method. The
expectation is that a higher correlation leads to more efficient predictions.

4.2 Experimental Results

Table 1 shows the error rates, i.e., the fraction of test instances for which the true
target value falls outside the predicted region, of three methods utilizing different
nonconformity functions: using no normalization (M1); using nearest-neighbor
normalization (M2); and, using variance-based normalization (M3). Looking at
these results, it is apparent that all three methods behave as expected for valid
predictors: the error rates, for each data set, lie close to the predetermined
significance level.

A statistical analysis of the error rates at the three confidence levels presented
(90 %, 95 % and 99 %), using a Friedman test followed by a Nemenyi post-hoc
test (with alpha=0.05) [4], shows that: (i) M3 has a significantly lower error
rate than both M1 and M2 for the 90% level, (ii) M3 has a significantly lower
error rate than M1 for the 95% level, and (iii) M3 has a significantly lower error
rate than M2 for the 99% confidence level. Hence, the variance-based approach
clearly seems to be the most conservative of the three methods.

Looking at the interval sizes tabulated in Table 2, while remembering that the
output was normalized so that an interval size of 1.0 would cover the entire range
of the target values, it can be seen from the averaged values that the best method
at the 90% confidence level returned prediction regions covering, approximately,
21% of the range. The corresponding average values for the 95% and 99%
confidence levels are (approximately) 26% and 38%, respectively. Clearly, these
prediction regions must be considered informative. An analysis of the interval
sizes, using the same statistical test as earlier, reveals that there is no significant
difference between M2 and M3 for any of the three confidence levels, while both

2 The Julia implementation can be obtained from the first author upon request.
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Table 1. Error rates

Confidence dataset \ Technique 0.90 0.95 0.99

M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone .099 .101 .104 .050 .053 .049 .010 .013 .010

anacalt .099 .082 .094 .047 .036 .047 .008 .012 .009

bank8fh .100 .099 .098 .049 .050 .047 .011 .011 .009

bank8fm .099 .098 .093 .049 .049 .048 .010 .010 .009

bank8nh .100 .101 .098 .050 .051 .050 .010 .011 .010

bank8nm .100 .102 .098 .050 .051 .048 .009 .011 .010

boston .107 .101 .099 .049 .042 .036 .008 .010 .010

comp .096 .100 .098 .049 .050 .050 .010 .011 .010

concreate .098 .081 .100 .050 .044 .049 .010 .008 .008

cooling .095 .092 .092 .052 .050 .050 .012 .013 .012

deltaA .101 .103 .100 .050 .051 .049 .009 .010 .010

deltaE .099 .103 .099 .051 .053 .048 .010 .012 .010

friedm .097 .098 .093 .050 .046 .050 .008 .004 .007

heating .102 .081 .092 .050 .048 .053 .005 .006 .009

istanbul .105 .108 .099 .050 .052 .050 .007 .011 .007

kin8fh .099 .098 .099 .050 .049 .049 .010 .009 .009

kin8fm .099 .094 .094 .049 .043 .047 .010 .007 .009

kin8nh .099 .100 .098 .049 .048 .048 .009 .009 .008

kin8nm .096 .092 .096 .049 .047 .047 .010 .009 .008

laser .098 .088 .090 .047 .041 .049 .009 .009 .007

mg .097 .097 .095 .046 .055 .051 .009 .013 .012

mortage .091 .087 .091 .044 .034 .044 .009 .007 .008

plastic .101 .107 .098 .052 .050 .050 .008 .015 .007

puma8fh .097 .100 .097 .050 .051 .048 .009 .011 .010

puma8fm .100 .099 .100 .050 .051 .049 .009 .010 .008

puma8nh .100 .102 .096 .051 .050 .047 .010 .010 .009

puma8nm .095 .096 .095 .048 .049 .046 .009 .011 .009

quakes .100 .107 .096 .051 .060 .053 .014 .026 .019

stock .094 .088 .099 .046 .040 .046 .008 .003 .009

treasury .099 .095 .103 .048 .042 .045 .011 .012 .010

wineRed .101 .104 .098 .051 .054 .048 .009 .014 .010

wineWhite .103 .107 .101 .048 .053 .047 .011 .011 .008

wizmir .095 .106 .089 .047 .046 .045 .010 .012 .012

Mean .099 .097 .097 .049 .048 .048 .009 .011 .009

Mean rank 2.26 2.21 1.53 2.32 2.03 1.65 1.95 2.39 1.65
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Table 2. Region sizes.

Confidence dataset \ Technique 0.90 0.95 0.99

M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone .234 .214 .214 .321 .274 .282 .544 .463 .495

anacalt .139 .081 .107 .258 .092 .126 .501 .190 .221

bank8fh .300 .290 .268 .377 .361 .342 .533 .538 .585

bank8fm .139 .131 .123 .175 .158 .145 .251 .211 .191

bank8nh .322 .307 .281 .447 .420 .414 .789 .744 .782

bank8nm .145 .121 .111 .210 .160 .141 .399 .245 .217

boston .193 .192 .200 .276 .254 .253 .605 .432 .418

comp .086 .077 .083 .114 .098 .107 .187 .153 .170

concreate .204 .208 .184 .258 .270 .235 .475 .473 .362

cooling .170 .107 .150 .216 .124 .184 .287 .146 .243

deltaA .117 .108 .113 .154 .139 .141 .260 .212 .228

deltaE .174 .170 .172 .215 .215 .214 .315 .305 .304

friedm .215 .205 .217 .258 .243 .269 .360 .319 .406

heating .070 .058 .065 .087 .068 .078 .168 .094 .102

istanbul .260 .247 .257 .318 .315 .336 .491 .497 .494

kin8fh .241 .240 .240 .291 .285 .285 .398 .372 .375

kin8fm .134 .123 .132 .166 .144 .160 .245 .183 .218

kin8nh .413 .404 .408 .488 .472 .478 .622 .595 .613

kin8nm .331 .303 .321 .396 .350 .374 .527 .445 .478

laser .044 .039 .041 .085 .054 .059 .330 .150 .141

mg .243 .172 .163 .341 .221 .201 .596 .322 .336

mortage .022 .019 .021 .036 .027 .032 .073 .044 .059

plastic .549 .545 .592 .644 .637 .734 .807 .851 .943

puma8fh .470 .446 .444 .565 .532 .529 .741 .724 .754

puma8fm .210 .204 .201 .254 .243 .240 .341 .323 .322

puma8nh .438 .427 .416 .543 .518 .503 .731 .697 .697

puma8nm .202 .199 .201 .243 .238 .233 .345 .328 .310

quakes .556 .540 .605 .705 .681 .751 1.000 .900 .942

stock .076 .074 .074 .093 .089 .088 .158 .131 .124

treasury .026 .022 .025 .042 .030 .039 .088 .051 .071

wineRed .366 .375 .336 .495 .499 .452 .734 .721 .636

wineWhite .321 .320 .289 .416 .420 .372 .644 .662 .551

wizmir .059 .058 .059 .074 .072 .073 .139 .126 .125

Mean .226 .213 .216 .290 .264 .269 .445 .383 .391

Mean rank 2.79 1.42 1.79 2.76 1.61 1.64 2.73 1.55 1.73
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M2 and M3 result in significantly smaller interval sizes than M1 for all three
confidence levels (with p-values much smaller than 0.01).

Table 3 displays execution times for the three different methods tested. First
listed is the total time (in seconds) for the tasks common to all methods of
training the underlying model (random forest), collecting out-of-bag predictions
and obtaining the individual predictions for the test instances. As expected,
only small variations are observed, since these tasks are identical for all three
approaches.

Second, the total number of seconds required to generate the nonconformity
measure using the out-of-bag instances is listed. Here, there is a clear difference
between the three methods. M1 requires only that the errors on the out-of-bag
instances are computed and ordered, which is a fairly quick operation. M2, on the
other hand, requires an extra (particularly costly) step of making, for each out-
of-bag instance, an additional prediction using the nearest-neighbor procedure
to calculate the normalization term of the nonconformity measure. Finally, M3,
for which normalization does not require any additional predictive step, the
calculation of nonconformity scores comes with very little overhead compared to
the non-normalized variant M1.

Listed in the third column is the total time (in seconds) required to cal-
culate prediction regions for the test set. Again, the time required for making
predictions using the variance-based M3 is only marginally longer than for the
non-normalized M1, while M2 again incurs a very large overhead.

It should be noted that the observed execution times are dependent on the
particular implementation of the algorithms, and possibly some of the perfor-
mance differences could be reduced by carefully optimizing the code. However,
there is an inherent difference in computational complexity of the underlying
algorithms, which will not disappear even with smarter implementations. Com-
paring the computational cost that is specific to performing conformal predic-
tion, i.e., not including the time for building and obtaining predictions from
the underlying model, the variance-based approach is in this experiment several
orders of magnitude faster than the nearest neighbor approach (the former is
on average over twenty thousand times faster than the latter) and this gap will
most likely remain wide even with a substantially more efficient implementation
of the k-nearest neighbor procedure.

Finally, in order to investigate how well the difficulty estimates employed by
the nearest-neighbor and the variance-based approaches actually work, we inves-
tigated the correlation coefficients between μi + β and the test error for the two
normalized approaches. The results are displayed in Table 4. When testing for
significant differences, the p-value is 0.056 in favor of M3 over M2, hence indi-
cating that variance in fact may be a more effective way of ordering instances
according to expected test error than employing the nearest-neighbor procedure.
This difference obviously does not directly carry over to a corresponding differ-
ence in region size, as the latter was found above to be insignificant (Table 2).
However, the importance of correctly ranking the instances according to diffi-
culty is demonstrated by the fact that the method with the highest correlation
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Table 3. Time taken (in seconds) to build and obtain predictions from the underlying
models (identical tasks for all methods), to generate the nonconformity functions and
to calculate prediction regions for the test set

Dataset \ Technique Common tasks Calibration Application

M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone 2.91 3.02 2.98 .002 35.1 .003 .000 4.00 .000

anacalt 1.02 .98 1.03 .002 31.8 .003 .000 3.62 .000

bank8fh 6.54 6.60 6.74 .003 151.8 .005 .000 17.19 .000

bank8fm 6.67 6.67 6.78 .005 150.3 .005 .000 17.11 .000

bank8nh 6.47 6.54 6.49 .005 151.0 .006 .000 17.24 .000

bank8nm 6.36 6.43 6.53 .003 150.9 .005 .000 17.21 .000

boston .34 .33 .33 .000 .4 .000 .000 .05 .000

comp 6.67 6.83 6.90 .003 150.3 .007 .000 17.17 .000

concreate .63 .64 .62 .000 1.7 .001 .000 .19 .000

cooling .26 .27 .27 .000 1.0 .001 .000 .11 .000

deltaA 5.35 5.38 5.31 .011 108.5 .005 .000 12.40 .000

deltaE 7.15 7.36 7.37 .004 207.1 .007 .000 23.78 .001

friedm .77 .78 .77 .000 2.3 .001 .000 .27 .000

heating .27 .28 .27 .000 .9 .001 .000 .10 .000

istanbul .36 .36 .36 .000 .5 .000 .000 .05 .000

kin8fh 5.93 5.96 6.19 .003 148.0 .007 .000 16.91 .000

kin8fm 5.94 6.06 6.09 .003 147.6 .005 .000 16.85 .001

kin8nh 6.21 6.26 6.29 .003 147.3 .006 .000 16.89 .000

kin8nm 6.07 6.10 6.18 .003 149.2 .007 .000 17.07 .000

laser .64 .63 .63 .000 1.7 .001 .000 .19 .000

mg .93 .94 .95 .001 3.2 .001 .000 .36 .000

mortage .74 .73 .74 .000 1.8 .001 .000 .20 .000

plastic .49 .50 .49 .001 4.7 .001 .000 .53 .000

puma8fh 6.24 6.31 6.33 .004 149.6 .006 .000 17.04 .000

puma8fm 6.51 6.26 6.26 .003 150.0 .005 .000 17.14 .000

puma8nh 6.22 6.33 6.21 .005 148.7 .006 .000 17.00 .000

puma8nm 6.11 6.22 6.19 .003 146.2 .005 .000 16.71 .000

quakes 1.53 1.48 1.49 .001 8.3 .001 .000 .94 .000

stock .62 .61 .64 .000 1.5 .001 .000 .17 .000

treasury .71 .71 .72 .000 1.9 .001 .000 .23 .000

wineRed .90 .90 .93 .001 4.5 .002 .000 .51 .000

wineWhite 3.32 3.24 3.25 .002 50.6 .017 .000 5.82 .000

wizmir 1.05 1.06 1.06 .001 3.6 .001 .000 .40 .000

Mean 3.39 3.42 3.44 .002 73.1 .004 .000 8.35 .000

Mean rank 1.73 2.03 2.24 1.03 3.00 1.97 1.00 3.00 2.00
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Table 4. Correlation between difficulty and test error

Dataset \ Technique Correlation

M2 M3

abalone .360 .372

anacalt .853 .825

bank8fh .172 .300

bank8fm .404 .498

bank8nh .196 .272

bank8nm .602 .670

boston .361 .429

comp .443 .346

concreate .352 .450

cooling .821 .649

deltaA .414 .425

deltaE .176 .204

friedm .348 .040

heating .701 .628

istanbul .072 .129

kin8fh .221 .226

kin8fm .557 .272

kin8nh .248 .224

kin8nm .468 .317

laser .571 .695

mg .668 .764

mortage .667 .652

plastic -.082 -.082

puma8fh .264 .298

puma8fm .234 .274

puma8nh .241 .345

puma8nm .222 .256

quakes .133 .156

stock .397 .348

treasury .713 .594

wineRed .238 .423

wineWhite .257 .435

wizmir .193 .214

Mean .378 .383

Mean rank 1.67 1.33
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coefficient of the two for each dataset, also produces the smallest average predic-
tion region for 21 out of 33 cases. The probability of observing this (or a larger)
number is only 0.081 if the resulting region size would be independent of this
correlation.

5 Concluding Remarks

In this paper, we have presented a large-scale empirical evaluation of conformal
regression approaches using random forests with out-of-bag calibration. We have
compared a variance-based nonconformity measure, which has previously not
been evaluated in this context, to a standard (non-normalized) nonconformity
measure as well as to one measure based on k-nearest neighbors, which previ-
ously was found to give state-of-the-art performance. The experimental results
in this study show that both the nearest-neighbor-based and the variance-based
measures significantly outperform the non-normalized measure, while no signifi-
cant difference in efficiency between the two normalized approaches is observed.
Moreover, the evaluation shows that state-of-the-art performance is achieved by
the variance-based measure at a computational cost that is several orders of
magnitude lower than when employing the nearest-neighbor-based nonconfor-
mity measure.

There are several possible directions for future research. One direction con-
cerns refining the rather straightforward difficulty estimate further, e.g., by not
only considering variance of the ensemble member predictions, but also esti-
mates of uncertainty for the individual predictions. Other directions for future
research include investigating ways of combining several different difficulty esti-
mates and evaluating the alternative nonconformity measures for other ensemble
approaches for which out-of-bag estimates can be obtained.
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