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Abstract. We construct a universal prediction system in the spirit of
Popper’s falsifiability and Kolmogorov complexity. This prediction sys-
tem does not depend on any statistical assumptions, but under the IID
assumption it dominates, although in a rather weak sense, conformal
prediction.
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Not for nothing do we call the laws of nature “laws”:

the more they prohibit, the more they say.
———————————————————————

The Logic of Scientific Discovery
Karl Popper

1 Introduction

In this paper we consider the problem of predicting labels, assumed to be binary,
of a sequence of objects. This is an online version of the standard problem
of binary classification. Namely, we will be interested in infinite sequences of
observations

ω = (z1, z2, . . .) = ((x1, y1), (x2, y2), . . .) ∈ (X × 2)∞

(also called infinite data sequences), where X is an object space and 2 := {0, 1}.
For simplicity, we will assume that X is a given finite set of, say, binary strings
(the intuition being that finite objects can always be encoded as binary strings).

Finite sequences σ ∈ (X × 2)∗ of observations will be called finite data
sequences. If σ1, σ2 are two finite data sequences, their concatenation will be
denoted (σ1, σ2); σ2 is also allowed to be an element of X × 2. A standard par-
tial order on (X× 2)∗ is defined as follows: σ1 � σ2 means that σ1 is a prefix of
σ2; σ1 � σ2 means that σ1 � σ2 and σ1 �= σ2.

We use the notation N := {1, 2, . . .} for the set of positive integers and
N0 := {0, 1, 2, . . .} for the set of nonnegative integers. If ω ∈ (X × 2)∞ and
n ∈ N0, ωn ∈ (X × 2)n is the prefix of ω of length n.
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A situation is a concatenation (σ, x) ∈ (X×2)∗ ×X of a finite data sequence
σ and an object x; our task in the situation (σ, x) is to be able to predict the label
of the new object x given the sequence σ of labelled objects. Given a situation
s = (σ, x) and a label y ∈ 2, we let (s, y) stand for the finite data sequence
(σ, (x, y)), which is the concatenation of s and y.

2 Laws of Nature as Prediction Systems

According to Popper’s [1] view of the philosophy of science, scientific laws of
nature should be falsifiable: if a finite sequence of observations contradicts such
a law, we should be able to detect it. (Popper often preferred to talk about
scientific theories or statements instead of laws of nature.) The empirical content
of a law of nature is the set of its potential falsifiers ([1], Sects. 31 and 35). We
start from formalizing this notion in our toy setting, interpreting the requirement
that we should be able to detect falsification as that we should be able to detect
it eventually.

Formally, we define a law of nature L to be a recursively enumerable prefix-
free subset of (X × 2)∗ (where prefix-free means that σ2 /∈ L whenever σ1 ∈ L
and σ1 � σ2). Intuitively, these are the potential falsifiers, i.e., sequences of
observations prohibited by the law of nature. The requirement of being recur-
sively enumerable is implicit in the notion of a falsifier, and the requirement
of being prefix-free reflects the fact that extensions of prohibited sequences of
observations are automatically prohibited and there is no need to mention them
in the definition.

A law of nature L gives rise to a prediction system: in a situation s = (σ, x)
it predicts that the label y ∈ 2 of the new object x will be an element of

ΠL(s) := {y ∈ 2 | (s, y) /∈ L} . (1)

There are three possibilities in each situation s:

– The law of nature makes a prediction, either 0 or 1, in situation s when the
prediction set (1) is of size 1, |ΠL(s)| = 1.

– The prediction set is empty, |ΠL(s)| = 0, which means that the law of nature
has been falsified.

– The law of nature refrains from making a prediction when |ΠL(s)| = 2. This
can happen in two cases:
• the law of nature was falsified in past: σ′ ∈ L for some σ′ � σ;
• the law of nature has not been falsified as yet.

3 Strong Prediction Systems

The notion of a law of nature is static; experience tells us that laws of nature
eventually fail and are replaced by other laws. Popper represented his picture of
this process by formulas (“evolutionary schemas”) similar to

PS1 → TT1 → EE1 → PS2 → · · · (2)
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(introduced in his 1965 talk on which [2], Chap. 6, is based and also discussed in
several other places in [2,3]; in our notation we follow Wikipedia). In response to
a problem situation PS, a tentative theory TT is subjected to attempts at error
elimination EE, whose success leads to a new problem situation PS and scientists
come up with a new tentative theory TT, etc. In our toy version of this process,
tentative theories are laws of nature, problem situations are situations in which
our current law of nature becomes falsified, and there are no active attempts at
error elimination (so that error elimination simply consists in waiting until the
current law of nature becomes falsified).

If L and L′ are laws of nature, we define L � L′ to mean that for any σ′ ∈ L′

there exists σ ∈ L such that σ � σ′. To formalize the philosophical picture (2),
we define a strong prediction system L to be a nested sequence L1 � L2 � · · ·
of laws of nature L1, L2, . . . that are jointly recursively enumerable, in the sense
of the set {(σ, n) ∈ (X × 2)∗ × N | σ ∈ Ln} being recursively enumerable.

The interpretation of a strong prediction system L = (L1, L2, . . .) is that L1

is the initial law of nature used for predicting the labels of new objects until it is
falsified; as soon as it is falsified we start looking for and then using for prediction
the following law of nature L2 until it is falsified in its turn, etc. Therefore, the
prediction set in a situation s = (σ, x) is natural to define as the set

ΠL(s) := {y ∈ 2 | (s, y) /∈ ∪∞
n=1Ln} . (3)

As before, it is possible that ΠL(s) = ∅.
Fix a situation s = (σ, x) ∈ (X×2)∗ ×X. Let n = n(s) be the largest integer

such that s has a prefix in Ln. It is possible that n = 0 (when s does not have
such prefixes), but if n ≥ 1, s will also have prefixes in Ln−1, . . . , L1, by the
definition of a strong prediction system. Then Ln+1 will be the current law of
nature; all earlier laws, Ln, Ln−1, . . . , L1, have been falsified. The prediction (3)
in situation s is then interpreted as the set of all observations y that are not
prohibited by the current law Ln+1.

In the spirit of the theory of Kolmogorov complexity, we would like to have a
universal prediction system. However, we are not aware of any useful notion of a
universal strong prediction system. Therefore, in the next section we will introduce
a wider notion of a prediction system that does not have this disadvantage.

4 Weak Prediction Systems and Universal Prediction

A weak prediction system L is defined to be a sequence (not required to be
nested in any sense) L1, L2, . . . of laws of nature Ln ⊆ (X× 2)∗ that are jointly
recursively enumerable.

Remark 1. Popper’s evolutionary schema (2) was the simplest one that he con-
sidered; his more complicated ones, such as
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PS1

↗ TTa → EEa → PS2a → · · ·
→ TTb → EEb → PS2b → · · ·
↘ TTc → EEc → PS2c → · · ·

(cf. [2], pp. 243 and 287), give rise to weak rather than strong prediction systems.

In the rest of this paper we will omit “weak” in “weak prediction system”.
The most basic way of using a prediction system L for making a prediction in
situation s = (σ, x) is as follows. Decide on the maximum number N of errors
you are willing to make. Ignore all Ln apart from L1, . . . , LN in L, so that the
prediction set in situation s is

ΠN
L (s) := {y ∈ 2 | ∀n ∈ {1, . . . , N} : (s, y) /∈ Ln} .

Notice that this way we are guaranteed to make at most N mistakes: making a
mistake eliminates at least one law in the list {L1, . . . , LN}.

Similarly to the usual theory of conformal prediction, another way of pack-
aging L’s prediction in situation s is, instead of choosing the threshold (or level)
N in advance, to allow the user to apply her own threshold: in a situation s, for
each y ∈ 2 report the attained level

πs
L(y) := min {n ∈ N | (s, y) ∈ Ln} (4)

(with min ∅ := ∞). The user whose threshold is N will then consider y ∈ 2 with
πs

L(y) ≤ N as prohibited in s. Notice that the function (4) is upper semicom-
putable (for a fixed L).

The strength of a prediction system L = (L1, L2, . . .) at level N is determined
by its N -part

L≤N :=
N⋃

n=1

Ln.

At level N , the prediction system L prohibits y ∈ 2 as continuation of a situation
s if and only if (s, y) ∈ L≤N .

The following lemma says that there exists a universal prediction system,
in the sense that it is stronger than any other prediction system if we ignore a
multiplicative increase in the number of errors made.

Lemma 1. There is a universal prediction system U , in the sense that for any
prediction system L there exists a constant C > 0 such that, for any N ,

L≤N ⊆ U≤CN . (5)

Proof. Let L1,L2, . . . be a recursive enumeration of all prediction systems; their
component laws of nature will be denoted (Lk

1 , L
k
2 , . . .) := Lk. For each n ∈ N,

define the nth component Un of U = (U1, U2, . . .) as follows. Let the binary
representation of n be

(a, 0, 1, . . . , 1), (6)
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where a is a binary string (starting from 1) and the number of 1 s in the 1, . . . , 1
is k − 1 ∈ N0 (this sentence is the definition of a = a(n) and k = k(n) in terms
of n). If the binary representation of n does not contain any 0s, a and k are
undefined, and we set Un := ∅. Otherwise, set

Un := Lk
A,

where A ∈ N is the number whose binary representation is a. In other words, U
consists of the components of Lk, k ∈ N; namely, Lk

1 is placed in U as U3×2k−1−1

and then Lk
2 , L

k
3 , . . . are placed at intervals of 2k:

U3×2k−1−1+2k(i−1) = Lk
i , i = 1, 2, . . . .

It is easy to see that
Lk

≤N ⊆ U≤3×2k−1−1+2k(N−1), (7)

which is stronger than (5). ��
Let us fix a universal prediction system U . By K(L) we will denote the

smallest prefix complexity of the programs for computing a prediction system
L. The following lemma makes (5) uniform in L showing how C depends on L.

Lemma 2. There is a constant C > 0 such that, for any prediction system L
and any N , the universal prediction system U satisfies

L≤N ⊆ U≤C2K(L)N . (8)

Proof. Follow the proof of Lemma 1 replacing the “code” (0, 1, . . . , 1) for Lk

in (6) by any prefix-free description of Lk (with its bits written in the reverse
order). Then the modification

Lk
≤N ⊆ U≤2k′+1−1+2k′ (N−1)

of (7) with k′ := K(Lk) implies that (8) holds for some universal prediction
system, which, when combined with the statement of Lemma 1, implies that (8)
holds for our chosen universal prediction system U . ��

This is a corollary for laws of nature:

Corollary 1. There is a constant C such that, for any law of nature L, the
universal prediction system U satisfies

L ⊆ U≤C2K(L) . (9)

Proof. We can regard laws of nature L to be a special case of prediction systems
identifying L with L := (L,L, . . .). It remains to apply Lemma 2 to L setting
N := 1. ��
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We can equivalently rewrite (5), (8), and (9) as

ΠCN
U (s) ⊆ ΠN

L (s), (10)

ΠC2K(L)N
U (s) ⊆ ΠN

L (s), (11)

and

ΠC2K(L)

U (s) ⊆ ΠL(s), (12)

respectively, for all situations s. Intuitively, (10) says that the prediction sets
output by the universal prediction system are at least as precise as the prediction
sets output by any other prediction system L if we ignore a constant factor in
specifying the level N ; and (11) and (12) indicate the dependence of the constant
factor on L.

5 Universal Conformal Prediction under the IID
Assumption

Comparison of prediction systems and conformal predictors is hampered by the
fact that the latter are designed for the case where we have a constant amount
of noise for each observation, and so we expect the number of errors to grow
linearly rather than staying bounded. In this situation a reasonable prediction set
is ΠεN

L (s), where N is the number of observations in the situation s. For a small
ε using ΠεN

L (s) means that we trust the prediction system whose percentage of
errors so far is at most ε.

Up to this point our exposition has been completely probability-free, but
in the rest of this section we will consider the special case where the data are
generated in the IID manner. For simplicity, we will only consider computable
conformity measures that take values in the set Q of rational numbers.

Corollary 2. Let Γ be a conformal predictor based on a computable conformity
measure taking values in Q. Then there exists C > 0 such that, for almost all
infinite sequences of observations ω = ((x1, y1), (x2, y2), . . .) ∈ (X× 2)∞ and all
significance levels ε ∈ (0, 1), from some N on we will have

Π
CNε ln2(1+1/ε)
U ((ωN , xN+1)) ⊆ Γ ε((ωN , xN+1)). (13)

This corollary asserts that the prediction set output by the universal pre-
diction system is at least as precise as the prediction set output by Γ if we
increase slightly the significance level: from ε to Cε ln2(1 + 1/ε). It involves not
just multiplying by a constant (as is the case for (5) and (8)–(12)) but also the
logarithmic term ln2(1 + 1/ε).

It is easy to see that we can replace the C in (13) by C2K(Γ ), where C
now does not depend on Γ (and K(Γ ) is the smallest prefix complexity of the
programs for computing the conformity measure on which Γ is based).
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Proof (of Corollary 2). Let
ε′ := 2�log ε�+1,

where log stands for the base 2 logarithm. (Intuitively, we simplify ε, in the sense
of Kolmogorov complexity, by replacing it by a number of the form 2−m for an
integer m, and make it at least twice as large as the original ε.) Define a prediction
system (both weak and strong) L as, essentially, Γ ε′

; formally, L := (L1, L2, . . .)
and Ln is defined to be the set of all ωN , where ω ranges over the infinite data
sequences and N over N, such that the set

{
i ∈ {1, . . . , N} | yi /∈ Γ ε′

((ωi−1, xi))
}

is of size n and contains N . The prediction system L is determined by ε′, so that
K(L) does not exceed (apart from the usual additive constant) K(ε′). By the
standard validity property of conformal predictors ([6], Corollary 1.1), Hoeffd-
ing’s inequality, and the Borel–Cantelli lemma,

Πε′N
L ((ωN , xN+1)) ⊆ Γ ε((ωN , xN+1)) (14)

from some N on almost surely. By Lemma 2 (in the form of (11)),

ΠC12
K(ε′)ε′N

U ((ωN , xN+1)) ⊆ Πε′N
L ((ωN , xN+1)) (15)

for all N . The statement (13) of the corollary is obtained by combining (14),
(15), and

2K(ε′) ≤ C2 ln2(1 + 1/ε).

To check the last inequality, remember that ε′ = 2−m for an integer m, which
we assume to be positive, without loss of generality; therefore, our task reduces
to checking that

2K(m) ≤ C3 ln2(1 + 2m),

i.e.,
2K(m) ≤ C4m

2.

Since 2−K(m) is the universal semimeasure on the positive integers (see, e.g., [5],
Theorem 7.29), we even have

2K(m) ≤ C5m(log m)(log log m) · · · (log · · · log m),

where the product contains all factors that are greater than 1 (see [4],
Appendix A). ��

6 Conclusion

In this note we have ignored the computational resources, first of all, the required
computation time and space (memory). Developing versions of our definitions
and results taking into account the time of computations is a natural next step. In
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analogy with the theory of Kolmogorov complexity, we expect that the simplest
and most elegant results will be obtained for computational models that are
more flexible than Turing machines, such as Kolmogorov–Uspensky algorithms
and Schönhage machines.
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