
Method of Learning Malware Behavior Scripts
by Sequential Pattern Mining

A.V. Moldavskaya(B), V.M. Ruvinskaya, and E.L. Berkovich

Department of System Software, Odessa National Polytechnic University,
1, Shevchenko Avenue, Odessa 65044, Ukraine

amme4od@mail.ru, iolnlen@te.net.ua, evg.berkovich@gmail.com

Abstract. Scripts are the knowledge representation model. To our
knowledge, there were no machine learning methods for it. In this work
we propose a method of discovering script goals and putting them into
an order. It is based on sequential pattern mining and regular expres-
sions. This method has been validated by experiments set on malware
behavior data. The results show that the discovered goals and their order
correspond with expected malware behavior.

Keywords: Scripts · Knowledge representation · Sequential pattern
mining · Malware

1 Introduction

Scripts, as the form of knowledge representation, were first proposed during 1970s
[1], and yet since that time there wasn’t much progress in projecting automated
systems based on scripts. The reason for this is in the lack of methods of machine
learning for this form of knowledge representation. This leaded to the limited
usage of the whole scripts knowledge model. Our aim is to develop such a method.
As far as we know, the literature has not discussed the usage of machine learning
methods for obtaining a scripts knowledge model.

In Sect. 2, we explore the relevant work which started the theory of scripts.
In Sect. 3, we analyze the requirements for a script-based knowledge system. In
Sect. 4, we give the description of our method which suggests using sequential
pattern mining for learning scripts from a sequence set. As the example field of
knowledge, we choose the malicious software and its behavior. The behavior of
malicious software often follows the so-called lifecycle, as found, for example, in
[13]. The lifecycle describes the typical action sequence performed by a malware
of a certain class. This resembles the scripts, therefore we find it appropriate to
use scripts for modeling the malware lifecycle. Currently, the knowledge about
generalized malware lifecycles (to not be confused with precise behavior knowl-
edge) is only processed manually, as we show in our previous work [2]. Therefore,
our choice of knowledge field is, firstly, for explaining and then experimentally
testing our method; and secondly, for solving the issue with automated extrac-
tion of malware lifecycle models from raw data. In Sects. 4.1, 4.2 and 4.3 we
c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 196–207, 2016.
DOI: 10.1007/978-3-319-33395-3 14

Method of Learning Malware Behavior Scripts by Sequential Pattern Mining 197

provide and explain the results of experiments, showing sequential pattern min-
ing of malware behavior and script learning based on the sequential patterns.
Finally, in Sect. 5 we conclude the paper.

2 Related Work

The idea of scripts has two different interpretations: by Schank and by Minsky.
Both of them we’re comparing in [2]. Basically, Minsky’s concept is closer to the
frame knowledge model while Schank’s is more free-standing. In this paper, we
will follow Schank’s model. Firstly, we make a short summary of this model, as
described in [1–3].

Script is the structured knowledge representation model, used for represent-
ing the typical behaviors in some context. The structure of script resembles the
one of frames model, except its purpose is to describe the sequences of actions
or events. Scripts are used for modeling the human perception, human inference
and natural language comprehension. They allow considering the context of the
events, which opens the possibility to fill in for the missing parts of incoming
information.

Scripts consist of a wide range of component elements, with the most fun-
damental one being the goal. By achieving goals, the described behavior moves
on. The goal can include following elements [1]:

1. The action, which is necessary to complete for achieving the goal
2. The object affected by the action
3. The actor, or the source of performing the action
4. The direction of the action

A basic script is the sequence of goals performed by one actor, representing the
single typical behavior in a pre-described context. The generalized goals can
be broken into more specific subgoals. A more complicated script can represent
multiple behaviors, thus, can include multiple actors. In this case, the notion of
role is introduced. The role is the typical behavior of the actor, performed in a
certain context. It must be noted that the name of the actor is not important
for a script-based analyzing system, and only the role is analyzed.

By further complicating the script, it’s possible to group the large, branching
goal sequences into scenes. A scene is a group of goals, united by being related
to a certain area of the script’s context. Scenes describe the typical behaviors
for such areas.

Schank proposes enriching the script model even further, by:

1. Adding parameters (modifiers, etc.)
2. Creating categories of scenes and roles
3. Establishing the relations between roles
4. Adding obstacles and distractions

198 A.V. Moldavskaya et al.

Obstacles and distractions are two wide class of elements found in the incom-
ing information. They are not included in the scripts, because they represent an
unexpected external action. Obstacles are the elements which forbid the achieve-
ment of the current goal. Distractions are the new unknown goals which interrupt
the script following process.

The described features show that scripts open wide possibilities for hierar-
chic organization of its elements, while still maintaining their order. Following
this overview, we compared scripts with alternative existing knowledge repre-
sentation models, as described in [5]. Frames model is the closest to scripts. The
difference is, the objective of frames is to deeply describe the context, while the
objective of scripts is to deeply describe the sequences of actions taken within
the context. Production rules resemble scripts as well, in the sense that both
represent the sequences of some kinds of events. Yet scripts, as it was shown
above, feature a number of context-describing parameters, which do not exist
in the production rules model. As the result, the inference based on production
rules is unable to consider the context – which is exactly the purpose of script-
based inference [1]. Semantic networks do not quite resemble scripts, as they do
not represent the sequences, just the semantic connections. The common part
between scripts and semantic networks is the support for hierarchy.

We’ve compared the scripts with other knowledge representation models fol-
lowing the comparison methodic described in [6]. As the result, we’ve marked out
the merits and demerits of representing knowledge with scripts. Among the mer-
its, the clearness for human perception and the universality for knowledge fields
can be noted. Among the dismerits, the most significant one is the complexity
of model learning and the lack of methods to perform it. The main problem
of scripts, as Schenk mentions it [3], is the necessity to manually input large
amount of data to create the script set. Nevertheless, the manually made scripts
are used for building models in the fields related to human perception, linguistics
mostly [7,8].

3 The Features of a Script-Based Expert System

The purpose behind a script-based expert system, reasoning system or a script-
based decision making system is to expand the incomplete input data by infer-
ence, thus discovering new knowledge. For that, the system must solve the fol-
lowing tasks:

1. Accept the set of learning samples, convert it into a set of scripts and store
the resulting set

2. Estimate the context of the input and choose the appropriate script, on which
the inference will be based

3. Make correlations between the input an the chosen script, while completing
the lacking information via inference

4. Take obstacles and distractions into account, in case the area of application
demands it

Method of Learning Malware Behavior Scripts by Sequential Pattern Mining 199

The most important function of such a system is its ability to perform machine
learning, meaning that it would build scripts from raw data.

4 The Machine Learning Method for Scripts

Humans are able to interpret the context, because they know the typical regular-
ities and patterns. These regularities are known from observing the environment
and the typical events, which occur regularly. This leads to the idea that a script,
being the representation of typical events or actions, should be learned from a
dataset of events or actions. The machine learning process should be able to
derive the generalized, typical sequences. The dataset must have a number of
action sequences which happened in the same context in question, or were per-
formed by the role in question. All of these sequences can be different in details,
but generally they, being typical, will represent the same situation.

Therefore, to create the method of script machine learning it is necessary to
solve two tasks:

1. Discover the regularities, or patterns from the action sequence dataset and
convert them into goals and subgoals.

2. Arrange the goals and subgoals in sequence corresponding to the original
dataset to obtain a script.

In this paper, the task of finding the regularities in sequences is solved with
data mining methods – more specifically, sequential pattern mining methods.
These methods did not exist in the years when scripts theory was proposed
and expanded, and the computation capabilities of computer systems did not
allow processing large data – which is not the question now. Firstly, we make
an overview of sequential pattern mining and explore its potential for script
learning.

4.1 Sequential Pattern Mining Overview

Sequential pattern mining is the branch of data mining. The object of analysis
for sequential pattern mining is a set of sequences. A sequence is an ordered
list of itemsets. An itemset is a non-empty set of items [9]. An example of a
sequence: S = 〈{a},{a,b,c}, {b}, {b, c}, {a, d}〉. If an itemset is composed of
items representing the events, then the events within the itemset would be the
ones occurring simultaneously. A sequence representing events only coming one
after another will be represented with itemsets of one item each.

The goal of sequential pattern mining is to obtain common subsequences
from the initial sequence set [10]. These subsequences are named the sequen-
tial patterns. The evaluation of how common a subsequence is depends on the
chosen method of mining, but generally it is based on the support parameter
sup(P), where P stands for the supported pattern. The support indicates how
many sequences from the initial set contain a candidate subsequence, i.e. the
subsequence which is checked for being a sequential pattern. Once the support

200 A.V. Moldavskaya et al.

for a subsequence in question hits a certain pre-defined ceiling, the subsequence
is considered to be a sequential pattern, and gets placed into the output set.

The main problem of sequential pattern mining, as [10] summarizes, is the
output set size. The large amount of patterns makes it difficult to interpret the
results. Because of that, it’s common to only seek for the patterns with more
narrow definitions, which also tightens the requirements for a candidate subse-
quence to qualify as a sequential pattern. For example, the sequential pattern
Pa is closed, if there is no other sequential pattern Pb which would be a super-
sequence for Pa while sup(Pa) = sup(Pb) [11]. Narrowing the definition even
further, we can get the maximal sequential pattern, as described in [10,11]. The
sequential pattern Pa is maximal, if there is no other sequential pattern Pb which
would be the supersequence for Pa . The support is not considered while mining
the maximal sequential patterns. So, from a candidate sequences set 〈Pa , Pb〉,
if sup(Pa)>sup(Pb), and Pa ⊂ Pb , then Pa and Pb are both closed sequential
patterns, but only Pb is a maximal sequential pattern.

4.2 Method of Learning Scripts from Sequential Patterns

The purpose of the following method is to discover and build a set of hierarchic
scripts consisting of goals and subgoals in a pre-described context. The method
solves both tasks that we’ve set in Sect. 3. The described method is explained on
malware behavior data, although can be extended to handle any kind of behavior
data presented in sequences of actions.

The idea behind the method is to apply a two-steps approach. In Step 1, the
generalized goals in the form of patterns are discovered by applying sequential
pattern mining to the behavior set. The behavior set consists of action sequences.
In Step 2, these goals are put in order by referring back to the order of similar
actions in the behavior set. The result of these two steps is a set of two-layered
hierarchic scripts. The steps can be reiterated for adding new layers to the hier-
archy by discovering even more generalized goals.

Let input set D0
b of size m be a 0th layer behavior set. In our example, it

is, specifically, a malware behavior reports set. Every report is a sequence of
WinAPI function names, called by a malware during its execution – i.e. the
actions. D0

b is analyzed with a chosen algorithm of sequential pattern mining,
and the pattern set D1

p of size n is discovered as the result. The exact value of n
depends on the chosen algorithm and the initial parameters of mining process.
We will call D1

p = {p11 . . . p1n} a 1st layer patterns set, its items we will call
1st layer patterns. The patterns consist of items, specifically WinAPI function
names in our case. These items we will call 0th layer items. Both layers are
shown on Fig. 1. In terms of scripts, we consider D1

p being a set of generalized
goals consisting of actions from the 0th layer.

In step two, we propose using regular expressions to solve the task of dis-
covering the order of goals. For the discovered set D1

p = p11 . . . p1n, a regular
expression is created:

p11|p12| . . . |p1n (R1)

Method of Learning Malware Behavior Scripts by Sequential Pattern Mining 201

Fig. 1. An example of 1st level pattern set, with one of the patterns of length k being
expanded on 0th layer

R1 is applied to the behavior set D0
b . This allows discovering the behavior set

D1
b of size m1, consisting of ordered sequences of sequential patterns as items.

In terms of scripts, D1
b consists of scripts, which have a number of goals put in

order. Every one of these goals is achieved by performing a sequence of subgoals,
each of a size of one action. Therefore, D1

b is the output of our method and the
set of scripts.

For creating the next layer of the script, D1
b is taken as the initial behavior

set. After applying a chosen sequential pattern mining algorithm, the set of
patterns D2

p of size n2 is received: D2
p = {p21 . . . p2n}. D2

p consists of sequences
made from 1st layer patterns as the items. These sequences, {p21 . . . p2n2}, we will
call 2nd layer patterns (see Fig. 2).

Fig. 2. An example of 2nd layer pattern set, with one of the 2nd layer patterns of
length k2 being expanded on 1st layer. One of this pattern’s items, being a pattern
itself, is expanded into 0th layer.

202 A.V. Moldavskaya et al.

It is to be noted that the algorithm for sequential pattern mining on this
step is not necessarily the same as on the previous one, when D1

p was discovered.
The work of an algorithm and its results depend on the length of sequences and
the input set size. For D2

b , as we experimentally discovered, these will be smaller
than for D1

b .
At the next step, the proper order of 2nd layer patterns from D2

p is to be
discovered. For the discovered set D2

p = {p21 . . . p2n2}, a regular expression is
created:

p21|p22| . . . |p2n (R2)

The regular expression R2 is applied to the behavior set D1
b . The result is

the behavior set D2
b of size m2. This set consists of sequences made from 2nd

layer patterns as items (see Fig. 3.):

Fig. 3. Behavior set, expanded level by level

To sum it up, the method uses the sequential patterns set D1
p discovered from

sequences set D0
b and from them it discovers the set of sequences of higher level

D1
b , thus making it possible to use the sequential mining. In the terms of scripts,

D2
b is the set of hierarchic scripts. Every discovered behavior b21 . . . b2m2 is an

hierarchic script. The pre-described context is the malware class from which the
behavior reports were taken.

The actor of the discovered scripts, in our case, is the malware which per-
formed the behavior sequences (or a whole malware class, if the set is based on
different specimens of a single class at once). The context is the set of parameters
for the report-generating system used on the stage of forming the initial behavior
set D0

b . The actor and the context are pre-defined, and not discovered via the
mining process, hence we don’t mention them across the method description.

4.3 Experimental Evaluation

This subsection demonstrates the application of our method on real raw data
on malware behavior. The experiments were done in two phases. Firstly, we dis-
covered the sequential patterns from sequences representing malware behaviors.

Method of Learning Malware Behavior Scripts by Sequential Pattern Mining 203

For that, we use the existing sequential pattern mining methods. Secondly, we
built the scripts based on these discovered patterns. This is done with the usage
of our method, as proposed in Sect. 4.2.

The experiment was set with the usage for following data and instruments.
The initial behavior datasets corresponded with malware classes. They were
formed from the collection of malware behavior reports obtained in [12], which
contained 3 157 reports in XML format, presented as WinAPI names sequences.
The collection embraces the phases of malware lifecycle which do not require
network interaction. The data went through simple preprocessing before applying
the sequential pattern mining methods. For creating an input dataset D0

b for
every malware class, we purged the reports of unknown class malwares as well
as the reports of malware families consisting of less than 3 reports. As the result,
the input datasets were of following size: Backdoor – 595, Virus – 94, Worm –
224, P2P-Worm – 179, Trojan – 277.

The chosen algorithms of sequential pattern mining were CloSpan and ClaSP,
which both discover closed sequential patterns. The difference is the method of
data mapping. CloSpan maps the data into a tree, while ClaSP utilizes vertical
data representation, which allows higher speed but generates different candidate
sequences [11].

We’ve set the minimal pattern length as 3, meaning that shorter patterns will
be purged from the output set. The experiments were held independently from
each other, meaning that the discovered patterns were not purged by overlap-
ping. The quantities of 1st layer patterns discovered by CloSpan with according
support settings are shown in Table 1.

Table 1. 1st layer patterns, discovered by CloSpan

Class Total Patterns discovered, support 100%–50%

100% 90% 80% 70% 60% 50%

Backdoor 595 0 0 1 49 389 N/A

Virus 94 0 0 0 2 9 12

Worm 224 0 1 8 11 90 998

P2P-Worm 179 0 3 45 253 688 N/A

Trojan 277 0 10 21 38 243 626

The quantities of 1st layer patterns discovered by ClaSP with according sup-
port settings are shown in Table 2.

Next, we set an experiment to discover the 2nd layer patterns. For the input,
we used the sets of patterns discovered by ClaSP from P2P-Worm and Trojan
malware classes, support value 50 %. These were the largest sets obtained at the
previous experiment. We applied ClaSP and CloSpan with support 100 %-30 %.
The quantities of discovered 2nd layer patterns as the result of this experiment
are shown in Tables 3 and 4.

204 A.V. Moldavskaya et al.

Table 2. 1st layer patterns, discovered by ClaSP

Class Total Patterns discovered, support 100%-50%

100% 90% 80% 70% 60% 50%

Backdoor 595 0 0 23 49 389 N/A

Virus 94 0 3 3 5 14 26

Worm 224 0 0 0 11 90 998

P2P-Worm 179 0 3 45 253 688 1268

Trojan 277 0 10 31 71 318 946

Table 3. The results of 2nd layer pattern mining for P2P-Worm class

Algorithm 2nd layer patterns discovered

100% 90% 80% 70% 60% 50% 40% 30%

ClaSP 0 0 0 0 0 0 1 2

CloSpan 0 0 0 0 0 1 1 2

Table 4. The results of 2nd layer pattern mining for Trojan class

Algorithm 2nd layer patterns discovered

100% 90% 80% 70% 60% 50% 40% 30%

ClaSP 0 0 0 0 0 1 1 3

CloSpan 0 0 0 0 0 1 1 4

Consider the specifical example of discovered patterns:
GetProcAddress() – InitializeSecurityDescriptor() – SetSecurityDescriptor-

Dacl() – FreeSid() – GetProcAddress()
This pattern, being a WinAPI names sequence, demonstrates malware’s way

of working with a process security descriptor.
By further applying our method, as described in Sect. 3, we created scripts

that had the discovered patterns as their goals and WinAPI names as subgoals.
As an example, one of the scripts for Agent family of Backdoor class appeared
as following:

1. GetACP – GetProcAddress – LoadLibraryA This pattern corresponds with
the goal of receiving the operational system’s code page.

2. GetProcAddress – InitializeAcl – AddAccessAllowedAce – InitializeSecuri-
tyDescriptor – RegCreateKeyExA – GetProcAddress – LoadLibraryA This
pattern demonstrates how a backdoor achieves the goal of creating the access
restriction, by using the security descriptor and putting it at a register key.

3. GetProcAddress – AllocateAndInitializeSid – InitializeAcl – AddAccessAl-
lowedAce – InitializeSecurityDescriptor – RegCreateKeyExA – GetProcAd-
dress – LoadLibraryA This pattern demonstrates how a backdoor achieves the

Method of Learning Malware Behavior Scripts by Sequential Pattern Mining 205

goal of adding an access restriction, by adding it into an access list, creating
a security descriptor and putting it at a new register key.

4. GetProcAddress – AllocateAndInitializeSid – InitializeAcl – AddAccessAl-
lowedAce – InitializeSecurityDescriptor – RegCreateKeyExA – FreeSid – Get-
ProcAddress – LoadLibraryA

This pattern demonstrates achieving the same goal, but the security descrip-
tor is also set free.

Therefore, if we consider the implications behind the discovered goals, we
receive the following script (Fig. 4):

Fig. 4. The script for malwares of Agent family, Backdoor class.

Consider an example of a 2nd layer pattern discovered from Trojan class by
ClaSP. It consists of two 1st layer patterns:

1. Pattern p11: RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() –
Local-Free() – RegCreateKeyExA() – GetSystemMetrics() – GetModuleFile-
NameA()

2. Pattern p12 : RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA()
– Local-Free() – RegCreateKeyExA() – GetModuleFileNameA() – GetVer-
sion()

This 2nd layer pattern demonstrates how Trojan malwares incor-porate them-
selves into an operational system by consecutively trying to edit the register in
two different ways, as shown in Fig. 5:

Another 2nd layer pattern, consisting of 3 1st level patterns, shows the similar
behavior.

1. RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() – LocalFree() –
Reg-CreateKeyExA() – LoadLibraryA() – RegCloseKey()

2. RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() – LocalFree() –
Reg-CreateKeyExA() – RegOpenKeyExW() – LoadLibraryA()

3. RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() – LocalFree() –
Reg-CreateKeyExA() – LoadLibraryA() – RegOpenKeyExA()

Therefore, these discovered patterns show different chains of complex actions by
which Trojan malwares try to achieve their general goal. The discovered scripts
can be used for better understanding of malware behavior and for intellectually
malware detection systems.

206 A.V. Moldavskaya et al.

Fig. 5. Multi-layered representation of Trojan behavior

5 Conclusion

In this paper, we discussed the method of applying machine learning to Schank’s
scripts model. The previous studies of Schank and co-authors [1,3,4] describe in
detail the main concepts and elements for a script-based knowledge model, yet
they provide no methods of machine learning for it. By reviewing the practical
applications of scripts (for example, [7,8]), we discovered that scripts are still
being formed manually. Our goal was to create a machine learning method which
could’ve solve the task of forming the most basic and necessary script elements
from raw data sequences. For that, we first compared the scripts with other
knowledge representation models. Second, we formulated the requirements for
a self-learning script-based computer system. Basing on these requirements, we
propose the method of script goal mining and ordering. That allowed creating
the hierarchic scripts automatically.

The experiments, set on malware behavior dataset, show the following results.
1st layer patterns obtained, for 5 malware classes and support 90 %: 1, 3 10 (3
classes); support 80 %: 1 to 45 (4 classes); support 70 %: 2 to 253 (5 classes);
support 60 %: 9 to 68 (5 classes); support 50 %: 12 to 1268. 2nd layer patterns
obtained, for 2 malware classes, with support 50 %: 1 each; support 40 % - 1
each, support 30 %: 2 to 4 for each class. With the proposed method of script
learning, the discovered patterns were united into scripts. By analyzing the spe-
cific examples, we saw that the discovered patterns and resulting scripts make
sense and correspond with real malware actions.

The described method was tested only on malware behavior data, however,
it can be of interest in analyzing and mining the behavior-related data of any
nature. There is a wide range of possible future research based on the suggested
method. Our next steps will be towards building a script-based, malware behav-
ior detecting expert system; as well as developing an approach for discovering
cyclic script goals among the normal ones. This research is currently in work,
and seems to be leading us into developing a new kind of sequential patterns.

Method of Learning Malware Behavior Scripts by Sequential Pattern Mining 207

References

1. Schank, R.C., Abelson, R.P.: Scripts, plans and goals. In: Proceedings of the 4th
International Joint Conference on Artificial Intelligence. IJCAI 1975, vol. 1 (1975)

2. Ruvinskaya, V.M., Moldavskaya A.V., Kholovchuk A.O.: Scenarii kak forma pred-
stavlenia znaniy pro povedenie vredonosnyh program (Scripts as a form of represen-
tation of knowledge of malware behavior). Transactions of Kremenchuk Mykhailo
Ostrohradskyi National University 4 (2014)

3. Schank, R.C., Riesbeck, C.K.: Inside Computer Understanding: Five Programs
Plus Miniatures. Psychology Press, New York (2013)

4. Schank, R.C., Abelson, R.P.: Scripts, plans, and knowledge, pp. 151–157. Yale
University (1975)

5. Joseph, Giarratano, Gary, Riley: Expert systems principles and programming, 2nd
edn., p. 321. PWS Publishing Company, Boston (1998)

6. Krisilov, V.A., Poberezhnik S. M., Tarasenko R.A.: Sravnitelniy analiz mode-
ley pred-stableniya znaniy v intellektual’nyh sistemah (Comparative analysis of
the knowledge re-presentation models in artificial intelligence systems). Odes’kyi
Politechnichnyi Universytet. Pratsi, vol. 2, p. 6 (2011)

7. Polatovskaya, O.S.: Freim-scenariy kak tip konceptov (Scene-frame as a concept
type). ISTU Bulletin (2013)

8. Kushneruk, S.L.: Teoriya tekstovyh mirov: perspectivy issledovaniya reklamnoy
kommunikacii. Political Linguistics 25 (2008)

9. Agrawal, R., Srikant, R.: Mining sequential patterns. In: 1995 Proceedings of the
Eleventh International Conference on Data Engineering. IEEE (1995)

10. Gupta, M., Han, J.: Approaches for pattern discovery using sequential data mining.
Pattern Discovery Using Sequence Data Mining: Applications and Studies, pp.
137–154 (2012)

11. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Comput. Surv. (CSUR) 43(1), 3 (2011)

12. Sami, A., et al.: Malware detection based on mining API calls. In: Proceedings of
the 2010 ACM Symposium on Applied Computing. ACM (2010)

13. Chen, Z., et al.: Malware characteristics, threats on the internet ecosystem. J. Syst.
Softw. 85(7), 1650–1672 (2011)

	Method of Learning Malware Behavior Scripts by Sequential Pattern Mining
	1 Introduction
	2 Related Work
	3 The Features of a Script-Based Expert System
	4 The Machine Learning Method for Scripts
	4.1 Sequential Pattern Mining Overview
	4.2 Method of Learning Scripts from Sequential Patterns
	4.3 Experimental Evaluation

	5 Conclusion
	References

