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Abstract. We consider construction of surrogate models based on vari-
able fidelity samples generated by a high fidelity function (an exact repre-
sentation of some physical phenomenon) and by a low fidelity function (a
coarse approximation of the exact representation). A surrogate model is
constructed to replace the computationally expensive high fidelity func-
tion. For such tasks Gaussian processes are generally used. However, if
the sample size reaches a few thousands points, a direct application of
Gaussian process regression becomes impractical due to high computa-
tional costs. We propose two approaches to circumvent this difficulty.
The first approach uses approximation of sample covariance matrices
based on the Nyström method. The second approach relies on the fact
that engineers often can evaluate a low fidelity function on the fly at any
point using some blackbox; thus each time calculating prediction of a
high fidelity function at some point, we can update the surrogate model
with the low fidelity function value at this point. So, we avoid issues
related to the inversion of large covariance matrices — as we can con-
struct model using only a moderate low fidelity sample size. We applied
developed methods to a real problem, dealing with an optimization of
the shape of a rotating disk.

Keywords: Multifidelity data · Gaussian process · Nonlinear
regression · Nyström approximation · Cokriging

1 Introduction

Nowadays most advanced engineers encounter the problem of a surrogate model
construction, when it is required to replace an expensive high fidelity function
with an inexpensive but precise surrogate model [17]. Typically, to accomplish
such a task one generates a sample of points and values of the corresponding high
fidelity function at these points, and then using the generated sample and the
machinery of regression analysis one constructs a surrogate model. Among var-
ious surrogate model construction techniques, the Gaussian process regression
remains an attractive approach, as the machinery of this method provides a non-
linear regression model with prediction uncertainty estimate [17,37]). Moreover,
Gaussian process framework provides straightforward solutions for classification
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[43], adaptive design of experiments [9] and surrogate based optimization [21]
problems.

Another nice property of Gaussian process regression is the ability to treat
variable fidelity data (see for example [12,16,22,27,28,35]): one can construct
a surrogate model of a high fidelity function using data from high and low
fidelity sources (e.g., a high fidelity function can be modeled by an experiment
in a wind tunnel, and the low fidelity function can be realized by a computer
simulation of the same physical process) and then use this model for surrogate-
based optimization. Similar approaches are used for multiple output Gaussian
processes modeling [2,8,11,25].

Straightforward maximum likelihood estimation of Gaussian process regres-
sion model parameters and application of model to new points require inversion
of the covariance matrix of the sample [18]. The covariance matrix of the sample
is a square matrix with number of both rows and columns equal to the sample
size n. Consequently, as typically the covariance matrix has no specific structure,
we need O(n2) to store the covariance matrix and O(n3) to invert it. Due to this
computational complexity usually not more than a few thousands of points are
used when training Gaussian Process regression. As a sample generated using
the low fidelity function is often large, because the evaluation of a low fidelity
function is significantly cheaper than that of a high fidelity function, the problem
is even worse for variable fidelity data.

Currently there are several ways to avoid inversion of the full covariance
matrix in Gaussian process regression. Using of Nyström approximation [13]
of the covariance matrix has remained a popular approach to do large sample
Gaussian process regression inference for more than 10 years [18,36,41]. The
idea is to select a subsample of the full sample for which we can do Gaussian
process regression inference, and then approximate the full sample covariance
matrix and inverse of the full sample covariance matrix by combination of the
covariance matrix for selected subsample and covariance between points in the
selected subsample and in the full sample. Another approach consists of usage
of Bayesian approximate inference to estimate the full sample likelihood with
an easy-to-calculate expression [24,42]. Rather popular approach with proved
theoretical properties is covariance tapering [19,38]: we suppose that covariance
function equals zero for points with distance above the taper parameters, so we
obtain sparse covariance matrices, and can proceed them with routines specific
to sparse matrices. Hierarchical models move away the computational burden, as
they split the sample to separate subsamples, which leads to covariance matrix
with specific structure [5,33,39]. However, exact inference is possible if data
have some specific structure: for example, [6] has developed an exact inference
scheme to construct Gaussian process regression. Another example that works
with variable fidelity data of big size with specific structure (we aggregate many
low fidelity uncalibrated models using observations at the same points) was
presented in [11]. However, as far as we know there are no approaches to large
scale variable fidelity Gaussian process regression for data without any specific
structure.
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Another issue with Gaussian process regression lies in its bad extrapolation
properties, since the model prediction at a new point is the weighted sum of val-
ues at given training points with weights defined by covariances between points
[37]; i.e., the prediction can be determined only locally near the training points,
and we need to be careful with points that are far away from the training sample.

We propose two approaches that mitigate the sample size limitation and
improve the extrapolation properties of variable fidelity Gaussian process regres-
sion. The first approach uses the Nyström approximation to the covariance matri-
ces and relies on the results obtained for a single fidelity data in the Sparse
Gaussian process regression framework [18]. The main idea of the second app-
roach is to use the low fidelity function blackbox during the model evaluation,
so one can evaluate a low fidelity function on the fly only at the points where
it is required to approximate a high fidelity function and use these evaluations
to update the surrogate model predictions. While, for simple heuristic models
it is a common practice to use a low fidelity function blackbox [1,29,40,44,45],
Gaussian process regression doesn’t support usage of such an approach in a
direct way. As we are able to evaluate the low fidelity function at any point
from the design space, we avoid usage of large sample to cover all the design
space. Instead, it is sufficient only to get enough points to estimate parameters
of Gaussian process regression model.

For proposed approaches we investigate their computational complexity and
compare their accuracy using real and artificial data. The real problem at hand is
optimization of a rotating disk in an aircraft engine. The problem of a disk shape
optimization remains challenging and often involves usage of surrogate modeling
[15,26], so it is required to construct accurate surrogate models for maximal
stress and radial displacement of the disk used then for surrogate optimization.
We compare four approaches to construct the rotating disk surrogate models:
Gaussian process (kriging), Gaussian process for variable fidelity data (cokriging)
and our approaches — Gaussian process for variable fidelity data with usage of a
low fidelity blackbox and large scale variable fidelity Gaussian process regression.

The paper is organized as follows:

– Section 2 describes the Gaussian process regression framework;
– Section 3 outlines the Variable fidelity Gaussian process regression framework;
– Section 4 proposes an approach to construct Sparse Gaussian process regres-

sion for variable fidelity data;
– Section 5 describes our approach to Variable Fidelity Gaussian process regres-

sion with a low fidelity function blackbox;
– Section 6 provides the results of computational experiments for both real and

artificial data,
– Conclusions are given in Sect. 7.

In Appendix we provide proofs of some technical statements and details on
low and high fidelity models for rotating disk problem.
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2 Gaussian Process Regression for a Single Fidelity Data

We consider a single training sample D = (X,y) = {xi, yi = y(xi)}n
i=1, where

points x ∈ X ⊆ R
d and a function value y(x) ∈ R. We assume that y(x) =

f(x) + ε, where f(x) is a realization of a Gaussian process, and ε is a Gaussian
white noise with variance σ2. The goal is to construct a surrogate model for the
target function f(x).

The mean value and the covariance function

k(x,x′) = cov(f(x), f(x′)) = E (f(x) − E(f(x))) (f(x′) − E(f(x′)))

completely define the Gaussian process f(x). Without loss of generality we
assume its mean value to be zero. We also assume that the covariance function
belongs to some parametric family {kθ(x,x′),θ ∈ Θ ⊆ R

p}; i.e., k(x,x′) =
kθ(x,x′) for some θ ∈ Θ. Thus y(x) is also a Gaussian process [37] with zero
mean and covariance function cov(y(x), y(x′)) = kθ(x,x′) + σ2δ(x − x′), where
δ(x − x′) is the delta function. Example of a covariance function, widely used
in applications, is the multivariate squared exponential covariance function [37]
kθ(x,x′) = θ2

0 exp
(
−∑d

k=1 θ2
k(xk − x′

k)2
)
.

The covariance function parameters θ and the variance σ2 are known as fully
specifying the data model. We use the Maximum Likelihood Estimation (MLE)
of θ and σ2 [7,37] to fit the model; i.e., we maximize the logarithm of the training
sample likelihood

log p(y|X,θ, σ2) = −1
2

(
n log 2π + log |K| + yTK−1y

) → max
θ,σ2

, (1)

where K = {kθ(xi,xj)+σ2δ(xi −xj)}n
i,j=1 is the matrix of covariances between

values y(X) of the training sample and |K| is the determinant of K. σ2 plays
the role of a regularization parameter for the kernel matrix {kθ(xi,xj)}n

i,j=1,
being a matrix of covariances between values f(X). The recent theoretical work
[10] and the experimental works [4,46] suggest that, under general assumptions,
MLE parameters estimates θ̂ are accurate even if the sample size is limited and
the model is misspecified.

Using estimates of θ and σ2 we can calculate the posterior mean and the
covariances of y(x) at new points playing, respectively, the role of a prediction
and its uncertainty. The posterior mean E(y(X∗)|y(X)) at the new points X∗ =
{x∗

i }n∗
i=1 has the form

ŷ(X∗) = K(X∗,X)K−1y, (2)

where K(X∗,X) = {k(x∗
i ,xj)}i=1,...,n∗,j=1,...,n are the covariances between the

values y(X∗) and y(X). The posterior covariance matrix V (X∗) = E
[
(y(X∗) −

Ey(X∗))T (y(X∗) − Ey(X∗)) | y(X)
]

has the form

V (X∗) = K(X∗,X∗) − K(X∗,X)K−1K(X,X∗), (3)

where K(X∗,X∗) = {k(x∗
i ,x

∗
j )+σ2δ(x∗

i −x∗
j )}n∗

i,j=1 is the matrix of covariances
between values y(X∗).
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3 Variable Fidelity Gaussian Process Regression

Now we consider the case of variable fidelity data: there are a sample of the low
fidelity function Dl = (Xl,yl) =

{
xl

i, yl(xl
i)

}nl

i=1
and a sample of the high fidelity

function Dh = (Xh,yh) =
{
xh

i , yh(xh
i )

}nh

i=1
with xl

i,x
h
i ∈ R

d, yl(x), yh(x) ∈ R.
The low fidelity function yl(x) and the high fidelity function yh(x) model the
same physical phenomenon, but with different fidelities.

With the use of samples of the low and the high fidelity functions our aim
is to construct, as accurately as possible, a surrogate model ŷh(x) ≈ yh(x) of
the high fidelity function; moreover, we also need an uncertainty estimate of the
prediction.

If data come from two sources of different fidelities, then an appropriate
model should be used. We assume that the following variable fidelity data model
holds true [16]:

yl(x) = fl(x) + εl, yh(x) = ρyl(x) + yd(x),

where yd(x) = fd(x) + εd. fl(x), fd(x) are realizations of independent Gaussian
processes with zero means and covariance functions kl(x,x′) and kd(x,x′),
respectively, and εl, εd are Gaussian white noise processes with variances σ2

l

and σ2
d, respectively. We also set X =

(
Xl

Xh

)
, y =

(
yl

yh

)
. Then the posterior

mean of the high-fidelity values at new points has the form

ŷh(X∗) = K(X∗,X)K−1y, (4)

where

K(X∗,X) =
(
ρKl(X∗,Xl) ρ2Kl(X∗,Xh) + Kd(X∗,Xh)

)
,

K(X,X) =
(

Kl(Xl,Xl) ρKl(Xl,Xh)
ρKl(Xh,Xl) ρ2Kl(Xh,Xh) + Kd(Xh,Xh)

)
,

Kl(Xa,Xb), Kd(Xa,Xb) are the matrices of pairwise covariances for the
Gaussian processes yl(x) and yd(x) for points from some samples Xa and Xb,
respectively. The posterior covariance matrix is as follows:

V (X∗) = ρ2Kl(X∗,X∗) + Kd(X∗,X∗) − K(X∗,X)K−1 (K(X∗,X))T
. (5)

To estimate covariance function parameters and noise variances for Gaussian
processes fl(x) and fd(x) we use the following common algorithm [16]:
1. Estimate the parameters of the covariance function kl(x,x) using the algo-

rithm from Sect. 2 with sample D = Dl,
2. Calculate the posterior mean estimates ŷl(x) of the Gaussian process yl(x)

for x ∈ Xh,
3. Estimate the parameters of the Gaussian process yd(x) with the covariance

function kd(x,x′) and parameter ρ by maximizing likelihood (1) with D =
Ddiff = (Xh,yd = yh − ρŷl(Xh)) and k(x,x′) = kd(x,x′).

As we have big enough sample of low fidelity data, we assume that we can
get precise estimates of parameters of covariance function kl(x,x), so we don’t
need to refine these estimates using high fidelity data.
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4 Sparse Gaussian Process Regression

To perform inference for Variable Fidelity Gaussian process regression we have
to invert the sample covariance matrix of size n × n, where n = nh + nl. This
operation is of complexity O(n3), so for samples of sizes larger than few thou-
sands points we cannot construct a Gaussian process regression in a reasonable
time.

In order to construct a Gaussian process regression for large sample sizes we
propose to use an approximation to the exact inference. The Nyström approxi-
mation [18] of all involved matrices K(X∗,X), K and K(X∗,X∗) allows one to
obtain such an approximation.

Letus select fromthe initial sampleasubsampleX1 =
(
X1

l

X1
h

)
,y1 =

(
yl(X1

l )
yh(X1

h)

)

of base points with the size n1 = n1
h + n1

l to be small enough so we can perform
an exact inference for it. The simplest, rather robust and efficient way for this
is to perform uniform random selection without repetitions among points from
the initial samples.

Hence, by definition,

K11 =
(

Kl(X1
l ,X

1
l ) ρKl(X1

l ,X
1
h)

ρKl(X1
h,X1

l ) ρ2Kl(X1
h,X1

h) + Kd(X1
h,X1

h)

)
,

K1 =
(

Kl(X1
l ,Xl) ρKl(X1

l ,Xh)
ρKl(X1

h,Xl) ρ2Kl(X1
h,Xh) + Kd(X1

h,Xh)

)
,

K∗
1 =

(
ρKl(X∗,X1

l ) ρ2Kl(X∗,X1
h) + Kd(X∗,X1

h)
)

for some new points X∗ = {x∗
i }n∗

i=1 and so using the Nyström approximation we
get approximations of the matrices K(X∗,X), K and K(X∗,X∗), respectively:

K̂(X∗,X) = K∗
1K

−1
11 K1, K̂ = (K1)TK−1

11 K1, K̂(X∗,X∗) = K∗
1K

−1
11 (K∗

1)
T .

We set

R =

(
1
σl
Inl

0
0 1√

ρ2σ2
l +σ2

d

Inh

)
,

where Ik is the identity matrix of size k, C1 = RK1 and V = C1V−T
11 , V11 is

the Cholesky decomposition of K11.

Theorem 1. For the posterior mean and the posterior covariance matrix the
following Nystrom approximations hold

ŷNy
h (X∗) = K∗

1V
−1
11 (In1 + VTV)−1VTRy, (6)

V
Ny (X∗) = K∗

1V
−1
11 (In1 + VTV)−1V−T

11 K∗
1
T + (ρ2σ2

l + σ2
d)In∗ . (7)

Theorem 2. The computational complexities of the posterior mean and the pos-
terior covariance matrix calculation using (6) and (7) at one point are O(nn2

1).

Proof of these theorems are in AppendixA.
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5 Gaussian Process Regression for Multifidelity Data
with Blackbox for Low Fidelity Function

Suppose that we have a blackbox for the low fidelity function yl(x); i.e., the
blackbox estimates the low fidelity function value at any point from the design
space X ⊆ R

d on the fly. Let us assume that we have already constructed a
Variable fidelity Gaussian processes surrogate model and can calculate predic-
tions using (4) and (5). We can’t use huge sample of low fidelity function values
at corresponding points due to typical computational limitations for Gaussian
process regression. Instead, in order to improve an accuracy of these predictions
we can update the posterior mean and the posterior variance of yh(x) at a new
point x with the low fidelity function value yl(x) at this point, as calculated by
the blackbox. Let us describe a computationally efficient procedure to calculate
the update.

We set

kl(x,X) =
(

Kl(x,Xl)
ρKl(x,Xh)

)
,

where x is a some new point. For a sample with an additional point x included
we get an expanded covariance matrix:

Kexp =
(
K kl

kT
l kl(x,x)

)
.

Suppose we know the Cholesky decompositions L and L−1 of the initial train-
ing sample covariance matrix K and its inverse K−1, respectively. To calculate
the posterior mean and the posterior variance for the expanded model we will
update these Cholesky decompositions and then update the posterior mean and
the posterior variance values.

If we have an n×n matrix Kn and the Cholesky decomposition of it, we can
get the updated Cholesky decomposition of the matrix Kn+1 of size (n+1)×(n+
1) if the initial matrix is in the upper left corner of the new matrix Kn+1 with
computational complexity O(n2) using a common routine [20]. To update inverse
of the Cholesky decomposition we also need O(n2) operations, as it differs from
the initial Cholesky decomposition only in the last row and is lower triangular.
Therefore, we can calculate the matrix K−1

exp in O(n2) operations.
The expanded vector of covariances between the new point x and the initial

training sample has the form

kexp =

⎛
⎝

ρKl(x,Xl)
ρ2Kl(x,Xh) + Kd(x,Xh)

ρkl(x,x)

⎞
⎠ .

Using the value yl(x) calculated by the blackbox, we set yexp =
(
yT , yl(x)

)T
.

Then the updated expressions for the posterior mean and the posterior variance
are as follows:

ŷexp
h (x) = kexpK−1

expyexp, (8)

Vexp (x) = ρ2Kl(x,x) + Kd(x,x) − kT
expK

−1
expkexp. (9)
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As the Cholesky decomposition for the updated model differs only in the last
row we can calculate (8) and (9) in O(n2) operations.

The total computational complexity is the sum of the computational com-
plexities of the Cholesky decomposition update and the posterior mean and
the posterior variance recalculation, so for a Variable fidelity Gaussian process
regression with a blackbox, representing the low fidelity function, the following
assertions holds.

Theorem 3. Suppose we know the Cholesky decompositions L and L−1 of the
initial training sample covariance matrix K and its inverse K−1, respectively.
Then we can calculate the posterior mean ŷexp

h (x) via (8) and the variance
Vexp (x) via (9) in O(n2) operations, where n = nl + nh.

As we add only one point to the initial training sample, we expect that
estimate of parameters of Gaussian processes model remains accurate enough.
While it can be reasonable to add many points in some cases, this issue raises the
complex question on how and when we should re-estimate Gaussian processes
parameters as we add more points. Using blackbox for the low fidelity func-
tion we can get significantly more accurate approximation with small additional
computational cost.

6 Numerical Examples

In this section we consider several problems: two artificial problems and a real
applied problem of surrogate model construction for a rotating disk from an
aircraft engine. We compare the four approaches below for a surrogate model
construction; two latter approaches are introduced above:

– GP — Gaussian Process Regression using only high fidelity data,
– VFGP — Variable Fidelity Gaussian Process Regression using high and low

fidelity data,
– SVFGP — Sparse VFGP, which is a version of VFGP for the case of large

training samples introduced in Sect. 4,
– BB VFGP — VFGP with the low fidelity function realized by a black box

introduced in Sect. 5. In experiments we use the same design of experiments
as in case of VFGP, while for model update for each new point we use low
fidelity function value at this point.

As a covariance function for a Gaussian process regression we use the mul-
tivariate squared exponential covariance function, see [37]. To regularize the
problem and avoid inversion of large ill-conditioned matrices, we impose a prior
distribution of nugget term in Bayesian way [7], so we are sure that for all four
approaches we avoid problems with poor estimation of parameters for Gaussian
Processes for large samples due to computational issues (linked with small values
of regularization parameter σ2 (nugget effect) [31,34]). To estimate parameters
in SVFGP we use only a selected subsample of points, while we use the full
sample to predict values at new points.
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To measure the accuracy of the obtained surrogate models we use an RRMS
error estimated by k-fold cross-validation procedure [23] if not specified other-
wise. Note that we use low fidelity point for training only if the same point
doesn’t belong to the selected high fidelity test design if not specified otherwise.
For a single target variable and a test sample Dtest = {xtest

i , ytest
i = fh(xtest

i )}nt
i=1

the RRMS error for a surrogate model ŷ(x) equals to

RRMS(Dtest, ŷ) =

√∑nt

i=1(ŷh(xtest
i ) − ytest

i )2∑nt

i=1(y − ytest
i )2

,

here y = 1
nt

∑nt

i=1 ytest
i . The value of the RRMS error typically lies between 0

and 1. Accurate models have RRMS values close to 0, while inaccurate models
have RRMS values close to or greater than 1.

6.1 Artificial Problem with Big Sample Size

To benchmark proposed approaches we use an artificial function with multiple
local peculiarities and input dimension d = 6, so we really need rather big sample
to get an accurate surrogate model. As a high fidelity function yh(x) and a low
fidelity function yl(x) we use

yh(x) = 20 +
d∑

i=1

(x2
i − 10 cos(2πxi)) + εh, x ∈ [0, 1]d,

yl(x) = yh(x) + 0.2
d∑

i=1

(xi + 1)2 + εl, x ∈ [0, 1]d.

The high fidelity function was corrupted by a Gaussian white noise εh with vari-
ance 0.001, and the low fidelity function was corrupted by a Gaussian white
noise εl with variance 0.002. When preparing samples for experiments we gener-
ate points in [0, 1]d using Latin Hypercube Sampling [32]. To test extrapolation
properties we limit training sample points to the region with range [0, 0.5] instead
of [0, 1] for one of 6 input variables. The high fidelity sample size was nh = 100
and the size of the subsample for SVFGP was n1

l = 1000 in all experiments.
The results were averaged over 5 runs for each considered value of nl. We

thus have

– Table 1 contains RRMS errors for VFGP, SVFGP, and BB VFGP,
– Table 2 contains RRMS errors for VFGP, SVFGP, and BB VFGP in case we

use the surrogate model in extrapolation regime,
– Table 3 provides training times for VFGP, SVFGP and BB VFGP approach.

One can see that RRMS errors of SVFGP are comparable with RRMS errors of
VFGP for the same sample size, while the training time of SVFGP is tremen-
dously smaller when the sample size is equal to 5000, and for SVFGP the training
time increases only slightly when the sample size increases. For BB VFGP train-
ing time in this experiment coincides with that of VFGP, while for 1000 training
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Table 1. Comparison of RRMS errors

nl 1000 3000 5000

VFGP 0.0502 0.0170 0.0058

SVFGP 0.0502 0.0305 0.0260

BB VFGP 0.0010 0.00029 0.00017

Table 2. Comparison of extrapolation RRMS errors

nl 1000 3000 5000

VFGP 0.3636 0.1351 0.1028

SVFGP 0.3636 0.3281 0.3586

BB VFGP 0.000998 0.00113 0.00034

Table 3. Comparison of training times in seconds for Ubuntu PC, Intel-Core i7 with
4 physical cores, 3.4 GHz, 16 Gb RAM.

nl 1000 3000 5000

VFGP 30.46 852.70 7283.27

SVFGP 30.46 33.42 37.50

BB VFGP 30.38 842.97 7672.60

points we get better results with BB VFGP than for 5000 training points and
VFGP. If we calculate prediction in extrapolation regime, we get significantly
better results with BB VFGP.

6.2 Rotating Disk Problem

Now let us compare the approaches to the construction of surrogate models on
a real applied problem of rotating disk surrogate modeling.

Rotating Disk Model Description. A high speed rotating risk is an impor-
tant part of an aircraft engine (see Fig. 1a), three parameters define quality of
the disk: the mass of the disk, the maximal radial displacement umax, the max-
imal stress smax [3,6,30]. It is easy to calculate mass of the disk, as we know
all geometrical parameters of the disk, while surrogate modeling of the maximal
radial displacement and the maximal stress is challenging [26,30]. So the focus
here is on modeling of the maximal radial displacement and the maximal stress.

Used parametrization of the rotating disk geometry consists of 8 parameters:
the radii ri, i = 1, . . . , 6, which control where the thickness of the rotating disk
changes, and the values t1, t3, t5, which control the corresponding changes in
thickness. In the considered surrogate modeling problem we fix the radii r4, r5

and the thickness t3 of a rotating disk, so the input dimension for the surrogate
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(a) Aircraft engine. Rotating disk is denoted by
the bold rectangle at the right side of the figure. (b) Rotating disk geometry

Fig. 1. Rotating disk problem

model is 6. The geometry and the parametrization of the rotating disk are shown
in Fig. 1b.

There are two available solvers for umax and smax calculation. The low fidelity
function is calculated using Ordinary Differential Equations (ODE) solver based
on a simple Runge–Kutta’s method. The high fidelity function is calculated
using Finite Element Model (FEM) solver. A single evaluation of the low fidelity
function takes ∼0.01 s, and a single evaluation of the high fidelity function takes
∼300 s. More detailed comparison of solvers is given in AppendixB.

Table 4. RRMS errors for introduced approaches with standard deviations

Output umax

nh 20 40 60 80

GP 0.287 ± 0.039 0.143 ± 0.031 0.082 ± 0.020 0.095 ± 0.023

VFGP 0.212 ± 0.075 0.088 ± 0.009 0.064 ± 0.007 0.068 ± 0.006

SVFGP 0.125 ± 0.029 0.074 ± 0.016 0.041 ± 0.007 0.047 ± 0.011

BB VFGP 0.123 ± 0.019 0.053 ± 0.008 0.030 ± 0.007 0.034 ± 0.006

Output smax

nh 20 40 60 80

GP 0.505 ± 0.10 0.367 ± 0.15 0.251 ± 0.049 0.196 ± 0.014

VFGP 0.363 ± 0.07 0.261 ± 0.06 0.193 ± 0.011 0.123 ± 0.043

SFGP 0.190 ± 0.06 0.122 ± 0.06 0.119 ± 0.015 0.088 ± 0.027

BB VFGP 0.158 ± 0.03 0.162 ± 0.03 0.137 ± 0.024 0.078 ± 0.020
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Surrogate Model Accuracy. In this section we compare our approaches via
SVFGP (Sparse variable fidelity Gaussian processes) and BB VFGP (Blackbox
variable fidelity Gaussian processes) with GP (based only on high fidelity data)
and VFGP baseline methods.

We used Latin Hypercube approach to sample points. Low fidelity training
sample size was 1000, High fidelity training sample size nh was 20, 40, 60, and
80 in different experiments. In order to estimate the accuracy of a high fidelity
function prediction we used the cross-validation procedure, applied to 140 high
fidelity data points (these points contain nh points used for training of surrogate
models). For each fixed sample size nh we used 5 splits of the data to training
and test samples to estimate means and standard deviations. For SVFGP, we
use nl = 5000 low fidelity points in total, and randomly select n1

l = 1000 points
from them as base points.

The results are given in Table 4 for umax and smax outputs: VFGP outper-
forms GP, and both SVFGP and BB VFGP outperform VFGP in terms of
RRMS error. Therefore, we decide which one to use, SVFGP or BB VFGP,
by taking into account whether the blackbox for low fidelity function during a
surrogate model usage is available, or whether one uses the surrogate model in
extrapolation regime, etc.

6.3 Optimization of Rotating Disk Shape

We optimize the shape of the rotating disk described:

m,umax → min
r1,...,r6,t1,t3,t5

, (10)

umax ≤ 0.3, smax ≤ 600,

10 ≤ r1 ≤ 110, 120 ≤ r2 ≤ 140,

150 ≤ r3 ≤ 168, 170 ≤ r4 ≤ 200,

4 ≤ t1 ≤ 50, 4 ≤ t3 ≤ 50,

r5 = 210, r6 = 230, t5 = 32.

The presented problem has multiple objectives, and we are looking for a Pareto
frontier, not a single point.

Single optimization run is the following:

– Generate initial high fidelity sample Dh of 30 points using the Latin Hyper-
cube sampling.

– Construct surrogate models using GP, VFGP, SVFGP and BB VFGP
approaches using the generated high fidelity sample Dh and low fidelity sample
Dl of size 1000 for GP, VFGP and BB VFGP and of size 5000 for SVFGP.

– Solve multiobjective optimization problem at hand using these surrogate mod-
els as the target functions and constraints.

– Calculate true values at Pareto frontiers obtained during optimization using
high fidelity solver to estimate quality of models.
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Fig. 2. Pareto frontiers obtained using optimization of surrogate models constructed
with GP, VFGP, SVFGP and BB VFGP approaches along with the reference Pareto
frontier

Table 5. Optimization results for different surrogate models along with minimal values
for different optimization objectives. Also we present proportion of feasible points in
the final Pareto frontier. The best values are in bold font.

Objective GP VFGP SVFGP BB VFGP

m 16.62 15.69 15.09 15.63

0.8m + 0.2umax 73.65 70.74 70.71 68.10

0.6m + 0.4umax 125.10 117.37 116.21 112.55

0.4m + 0.6umax 176.55 163.89 161.18 156.99

0.2m + 0.8umax 228.00 210.33 206.12 201.44

umax 279.44 256.77 251.05 245.89

Feasible points share 0.54 0.57 0.55 0.75

Due to properties of applied optimization algorithm sizes of Pareto frontiers can
slightly differ for different runs of optimization algorithm, with mean size of
Pareto frontier about 30 points [14]. So we need about 50 runs of high fidelity
function to solve this optimization problem. In order to recover a reference Pareto
frontier we constructed an accurate surrogate model using 5000 high fidelity
points from uniform design over all the design space and additional sampling in
a region where Pareto frontier points are located. So, instead of using a solver
to evaluate an original function during optimization runs we used this surrogate
model.

The examples of obtained Pareto frontiers for a single optimization run is in
Fig. 2. For these runs SVFGP and BB VFGP work better than GP and VFGP.

Results of optimization are in Table 5. We compare minimum values of dif-
ferent weighted sums of two target variables m and umax averaged over 10 runs
of optimization for different initial samples. We obtain the best value of mass
m output using SVFGP algorithm and the best value of umax using BB VFGP
algorithm while optimizations based on GP and VFGP work worse. Also, with
BB VFGP we produce significantly larger amount of feasible points compared to
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GP, VFGP and SVFGP, which typically leads to better Pareto frontier coverage
with similar number of high fidelity blackbox runs.

7 Conclusions

We presented two new approaches to variable fidelity surrogate modeling, which
allow one to perform large sample inference for Variable Fidelity Gaussian
process regression: the first approach approximates the full covariance matrix
of the sample and its inverse, the second approach uses the available low fidelity
black box to update the surrogate model with the low fidelity function value at
the point where one wants to estimate the high fidelity function thus avoiding
requirement to use large low fidelity sample. Using developed approaches we can
perform large sample inference for variable fidelity Gaussian process regression
and construct more accurate surrogate models.
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for proofreading of the article. The research was conducted in IITP RAS and supported
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Appendix

A Proof of Technical Statements

In this section we provide the proofs of the statements of Sect. 4.

Proof (Proof of Statement 1). For the posterior mean we get:
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We use the same approach to derive an equation for the posterior variance:
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Proof (Proof of Statement 2). First of all we have to calculate the matrices V11

and V = RK1V−T
11 . The matrix V11 is of size n1 × n1, so we need O(n3

1) to get
its inverse. To calculate K1V−T

11 we need O(n2
1n) operations. Finally, as R is a

diagonal matrix, we use O(n1n) operations to get V.
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In case n∗ = 1 to get the posterior mean we have to calculate V11(In1 +
VTV)−1VTy. We use O(n2

1n) operations to calculate VTV, to inverse In1 +
VTV we need O(n3

1) operations, to calculate V11(In1 + VTV)−1VT one uses
extra O(n2

1n) operations, and finally to calculate the posterior mean we need
additional O(n1n) operations. Consequently, to calculate the posterior mean we
use O(n2

1n) operations.
In the same way in order to calculate V11(In1+VTV)−1V−1

11 we need O(n2
1n)

operations to calculate (In1 + VTV)−1 and additional O(n3
1) operations to get

the final matrix. Consequently, in order to calculate the posterior variance we
use O(n2

1n) operations.
Finally, we need O(n2

1n) operations to compute the required matrices, and
O(n2

1n), to obtain the posterior mean and the posterior variance from these
precomputed matrices. So, the total computational complexity is O(n2

1n).

B Comparison of Low and High Fidelity Model
for Rotating Disk

There are two available solvers for umax and smax calculation. The low fidelity
function is calculated using Ordinary Differential Equations (ODE) solver based
on a simple Runge–Kutta’s method. The high fidelity function is calculated using
Finite Element Model (FEM) solver from ANSYS.

To compare the solvers we draw the scatter plots of low and high fidelity
values and also plot slices of the corresponding functions. We generate a random
sample of points in a specified design space box, calculate the low and high
fidelity function values and draw the low fidelity function values versus the high
fidelity function values at the same points. The scatter plots are in Fig. 3: the
difference between values increases significantly when the values are increasing.

Fig. 3. Comparison of the high and the low fidelity solvers via scatter plots

For the central point of the design space box with r1 = 0.06, r2 = 0.13, r3 =
0.16, r4 = 0.185, t1 = 0.027, t3 = 0.027 we construct one-dimensional slices by
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Fig. 4. Comparison of the high and the low fidelity solvers via outputs’ slices

varying single input variable in specified bounds. Slices for different input vari-
ables for umax and for smax are given in Fig. 4. In case of umax the high and
the low fidelity functions have the same behaviour, and the low fidelity func-
tion models the high fidelity function accurately. For smax the high and the low
fidelity functions are sometimes different: their behaviours differ for a slice along
r1 input, and local maxima differ for slice along t3 input.
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