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Abstract. We consider the problem of training a Hidden Markov Model
(HMM) from fully observable data and predicting the hidden states of an
observed sequence. Our attention is focused to applications that require
a list of potential sequences as a prediction. We propose a novel method
based on Conformal Prediction (CP) that, for an arbitrary confidence
level 1 − ε, produces a list of candidate sequences that contains the cor-
rect sequence of hidden states with probability at least 1−ε. We present
experimental results that confirm this holds in practice. We compare our
method with the standard approach (i.e.: the use of Maximum Likeli-
hood and the List–Viterbi algorithm), which suffers from violations to
the assumed distribution. We discuss advantages and limitations of our
method, and suggest future directions.
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1 Introduction

Hidden Markov Models (HMMs) are statistical models that have had a great
impact in numerous fields since their introduction. They have been widely
applied to diverse fields, ranging from Cryptanalysis to Speech Analysis, and
they are the state-of-the-art in many applications such as Speech Recognition [4].

The idea behind HMMs is that there exists a time evolving “hidden” process,
which we cannot directly observe, and an observable random variable, whose
values are related in probability to those of the hidden process. HMMs can
be discrete, if the observed process can only take a finite number of values,
or continuous, if it takes values from an infinite set. This paper will focus on
continuous HMMs. The following problems are of fundamental interest to real-
world applications of HMMs: (i) what is the probability that a sequence of
observations was generated by an HMM (evaluation); (ii) what is the hidden
sequence that produced a sequence of observations (decoding); (iii) how can we
estimate the parameters for an HMM from empirical observations (learning).

This paper considers the learning and decoding problems when fully observ-
able data is available and a list of sequences is required as a prediction. That
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is, it assumes a training set that contains data from both the hidden and the
observable processes, and it aims at producing, for a new observed sequence, a
list of candidate hidden sequences.

The standard approach to this problem is to assume a distribution for the
emission probabilities of the HMM, to estimate the parameters of the model by
using Maximum Likelihood, and to use the List–Viterbi algorithm [5] to produce
a list of candidate sequences. However, the standard approach: (i) requires to
manually trim the size of the list in order to achieve the desired level of accuracy,
and (ii) can have bad performances if the data does not follow the assumed
probability distribution.

We propose a novel approach that: (i) guarantees the accuracy is as good as,
or better than, a chosen confidence level, and (ii) makes no assumptions on the
probability distribution of the examples, as long as they are exchangeable. The
method works in two phases. In the first phase, it uses Conformal Prediction
(CP) [9] to replace the estimation of emission probabilities. It accepts a signifi-
cance level ε as a parameter, and produces a list of candidate hidden sequences
that is guaranteed to contain the correct sequence with probability of at least
1 − ε (validity guarantee). In the second phase, it ranks the candidate sequences
by their likelihood, using estimates of the initial and transmission probabilities.
The method returns the list of candidate hidden sequences sorted with respect
to their rank. While this paper focuses on continuous HMMs, this method can
work on both discrete and continuous HMMs.

Originally, CP worked under the assumption of exchangeability, a weaker
property than i.i.d., on training and test data. CP performs well, and gives
valid confident prediction under this assumption. However, applying HMM goes
beyond exchangeability. The book [9] suggests On-line Compression Models as
an extension for various other assumptions including Markov Model (Chap. 8.6).
However, this is not directly applicable to HMMs.

We perform experiments to verify the validity guarantee of the method. We
also provide a comparison with the standard method. Experiments are made:
(i) under optimal conditions for the standard method (i.e.: the data reflect the
assumptions it made), (ii) violating the distribution assumed by the standard
method. Results show that, while the standard method gives a better accuracy
when the assumed emission probability distribution is correct, its performances
strongly suffer when this assumption is violated. The method we propose does
not depend on the underlying distribution, and provides the desired accuracy
level under different distributions of data. Furthermore, it is able to keep the
size of the prediction set small under both conditions (efficiency criterion).

We conclude our analysis discussing advantages and limitations of the method
and suggesting future research directions.

2 Hidden Markov Models

We consider a discrete–time Markov chain qt, with finite state space. That is, qt

is a random process that at time t = 1, 2, ... takes values in a finite set of states
S, and for which holds the Markov property:
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P (qt = st|qt−1 = st−1, qt−2 = st−2, ..., q1 = s1) = P (qt = st|qt−1 = st−1),

for si ∈ S; informally, this property means that the transition of qt from one
state to the next one only depends on its current state.

In a Hidden Markov Model (HMM) there exists a “hidden” Markov chain
qt, as the one we described, whose values are generally unobservable. Whilst we
cannot directly observe qt, we have access to a random variable vt, whose value
at time t depends in probability on the state of qt. The variable vt takes values
in a measurable space O. In a discrete HMM O is finite, in a continuous one
it is infinite. This paper will focus on the continuous case. Figure 1 shows the
structure of an HMM.

A continuous HMM is defined by a transition probability matrix A, emis-
sion probability densities B, and initial probabilities Π. Follows a description of
them. A transition probability matrix is a matrix A = {αij}, where αij is the
probability that the hidden process makes a transition from state si to state sj :

αij = P (qt = sj |qt−1 = si).

We assume that, for each hidden state sj ∈ S, the conditional distribution:

P (vt|qt = sj)

has a density function bj on O. B = {bj}, for all sj ∈ S, is the set of emission
probability densities. We also define the initial probabilities Π = {πi}, where:

πi = P (q1 = si).

We call observations the values ot ∈ O taken by the observable random
variable vt. We refer to a sequence of contiguous observations as

x = (o1, o2, ...),

where ot ∈ O is the value taken by vt at time t. Analogously, we write

h = (s1, s2, ...),

to indicate a sequence of hidden states. We use the notation x(j) when referring
to the j-th element of a sequence x; for example, x(j) = oj for the sequence

Fig. 1. Structure of an HMM, observed at time t = 1, 2, ..., �. A Markov chain qt

is hidden, and makes transitions between states si ∈ S with respect to a transition
probability matrix A. We can observe a random variable vt, whose values oi ∈ O
depend in probability on the current state of qt; B defines the emission probabilities
from a state to the observation.
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mentioned above. Similarly, h(j) is the j-th element of the sequence h. In the
formulation of the problem (Sect. 3) we will assume that we can fully observe an
HMM for � time during a training phase. This operation produces an observable
sequence x = (o1, o2, ..., o�), and a hidden sequence h = (s1, s2, ..., s�).

3 Problem Setting and Evaluation Criteria

We assume we can fully observe an HMM in a training phase. In this phase we
collect a multiset of n pairs:

{(xi, hi)},

where xi = (o1, o2, ..., o�i), ot ∈ O, is a sequence of observations, and hi =
(s1, s2, ..., s�i), st ∈ S, is the respective sequence of hidden states. We assume
|xi| > 1, for i = 1, 2, ..., n, but we do not require that |xi| = |xj | for i �= j.

In a test phase we are given a new sequence of observations xn+1, whose
corresponding hidden sequence hn+1 is unknown to us. Our goal is to predict a
list of candidate hidden sequences Ĥ, sorted by their likelihood, that contains
the correct hidden sequence.

We consider three evaluation criteria for the problem:
Accuracy : an error is made when the correct sequence is not in the prediction
set Ĥ. Let η be the number of errors committed in n predictions, accuracy is:

1 − η

n
.

Efficiency : is the average size of the prediction set (see N criterion in [8]). This
criterion is crucial to the problem: a perfect accuracy can be achieved by trivially
returning the list of all the possible sequences of length � = |xn+1|; however, it
is more difficult to achieve a good accuracy while keeping small the size of |Ĥ|.
Average Position (AP): this criterion evaluates the goodness of the ranking
scores we associate with the predicted sequences. AP is the average position
that the correct sequence takes within the sorted prediction list Ĥ.

4 Standard Approach

The standard approach to the problem is as follows: a family of probability
distributions is assumed for emissions; the parameters of these distributions and
initial and transition probabilities are estimated from training data by using
Maximum Likelihood; then, the List–Viterbi algorithm is applied, for a certain
value of k, to predict the sequence of hidden states. The List–Viterbi algorithm
returns a list of k candidate sequences. If the application requires some confidence
that the correct sequence is in the predicted list, experiments need to be done
to determine which value of k gives the desired accuracy.

This section presents the Maximum Likelihood method to estimate the para-
meters of an HMM from fully observed data (observations and hidden states),
and the List–Viterbi algorithm [5], an extension of the Viterbi algorithm [1,7],
which outputs the k best sequences.
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4.1 Maximum Likelihood Method for Estimating A, B, Π

Let Z = {(xi, hi)}, for i = 1, 2, ..., n, be a multiset of observed sequences xi and
corresponding hidden sequences hi. We shall use this multiset for estimating A,
B, Π. Let S be the set of hidden states, and N its size.

Initial Probabilities. Initial probabilities Π can be estimated as follows:

Π = {πj} =

{
|{i : h

(1)
i = sj (xi, hi) ∈ Z}|

n

}
j = 1, 2, ..., N.

Transition Probabilities. Let Z ′ be a multiset of pairs composed of the hidden
state at time t and the hidden state at time t + 1. We derive Z ′ as:

Z ′ = {(x(t)
i , x

(t+1)
i )} t = 1, 2, ..., (�i − 1) (xi, hi) ∈ Z,

where �i = |xi|. The probability of transitioning from si to sj is estimated as:

αij =
|{(st, st+1) ∈ Z ′ : st = si ∧ st+1 = sj}|

|{(st, st+1) ∈ Z ′ : st = si}| ,

and is done for all i = 1, 2, ..., N and j = 1, 2, ..., N . The transition probability
matrix is A = {αij}.

Emission Probabilities. Estimation of emission probability densities B =
{bj}, for sj ∈ S depends on the chosen probability density. A typical choice is
the Normal density function: bj ∼ N (μj , σj), for some mean μj and standard
deviation σj .

Let Z ′′ be a multiset of pairs composed of an observable state and the cor-
responding hidden state:

Z ′′ = {(x(j)
i , h

(j)
i )} j = 1, 2, ..., �i (xi, hi) ∈ Z,

where �i = |xi|. We estimate the parameters for bj (e.g.: μj , σj for a Normal
density) on the multiset:

{o : (o, s) ∈ Z ′′ ∧ s = sj}.

4.2 Viterbi Algorithm

The Viterbi algorithm computes the most likely sequence of states ĥ for an
observed sequence x = (o1, o2, ..., o�), given an HMM (A,B,Π).

At each step t = 1, 2, ..., � the Viterbi algorithm computes, for each state
si ∈ S, the probability Vt(si) of the most likely sequence for which qt = si. It
first initialises:

V1(si) = P (o1|q1 = si)P (q1 = si) si ∈ S,
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where P (o1|q1 = si) = bsi
(o1), and P (q1 = si) = πi. Then, for each step t > 1,

it sets the probability of being at state si at time t, Vt(si) to:

Vt(si) = P (ot|qt = si)max
sj∈S

P (qt = si|qt−1 = sj)Vt−1(sj),

for all si ∈ S. We remark that P (ot|qt = si) = bsi
(ot) and P (qt = si|qt−1 =

sj) = αji. Vt(si) represents the probability of being in state si at time t, given
that the most likely path to reach si was followed by the HMM.

The most likely sequence can be obtained by using back pointers to the best
path taking to each state, for time t = 1, 2, ..., �.

4.3 List–Viterbi Algorithm

The List–Viterbi algorithm is an extension of the Viterbi algorithm, which out-
puts the k most likely hidden sequences for the observed sequence x.

The algorithm works as the Viterbi algorithm, but each variable Vt(si), for
t > 1, is a vector of length k; the j-th element of vector Vt(si) is the likelihood
of the j-th most likely sequence that takes to state si at time t. At each step
t > 2, all the k|S| likelihoods are considered, and only the best k are kept for the
next step. The List–Viterbi algorithm returns a list of the most likely sequences,
which are obtained by using back pointers to the k best paths. The sequences of
the prediction list are sorted by their likelihood.

5 Prediction with Confidence for HMMs

This section introduces a method to train an HMM from fully observable data
and to make a prediction for a new observed sequence. The method outputs a
list of candidate hidden sequences Ĥ, sorted with respect to their likelihood;
Ĥ contains the correct sequence with probability at least 1 − ε, for a chosen
significance level ε.

The method operates in two phases. In the first phase, the algorithm:

1. uses training data to create a training set Ztrain of pairs (oi, si), for observa-
tions oi ∈ O and respective hidden states si ∈ S;

2. considers each observation oj of the test sequence individually, and uses CP
and the training set Ztrain to determine a set of candidate hidden states Ĥj

for that observation; when doing this, hidden states are considered as the
labels to predict;

3. produces the list Ĥ of all the hidden sequences that can be generated by using
one state from Ĥ1 as a first state, one from Ĥ2 as a second state, and so on;

Figure 2 offers a graphical overview of the first phase.
The second phase is concerned with sorting the list of candidate hidden

sequences Ĥ by their likelihood. In this phase the algorithm computes Maxi-
mum Likelihood estimates of initial and transition probabilities. It computes a
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ranking score for each sequence, using the Maximum Likelihood estimates, as
the probability of the hidden Markov chain qt to produce that sequence. The
algorithm returns a list Ĥ of sequences, sorted with respect to their ranking
scores.

We introduce CP, and present the method into details.

5.1 Conformal Prediction

CP is a statistical framework that allows to edge predictions with respect to a
confidence level [2,6,9]. Let zi = (oi, si), for i = 1, 2, ..., n, be pairs of observation
and respective hidden state, and ε ∈ [0, 1] a significance level. We identify a hid-
den state with the label to predict. CP produces, for a new observation on+1, a
set of candidate labels Γ ε. The validity property of CP guarantees that Γ ε con-
tains the correct label, sn+1, with probability 1− ε, for an arbitrary significance
level1. We call 1 − ε confidence level.

Nonconformity Measure. CP works for a nonconformity measure:

A : O(∗) × O �→ R.

The function A accepts a multiset of observations and a new observation, and
returns a scalar (nonconformity score) that indicates how strange the new obser-
vation is respect to the multiset. Any function in the form of A guarantees the
validity of the method. However, some functions may provide a better efficiency
in the terms described in Sect. 3.

In our analysis, we consider the k-Nearest Neighbours (k-NN) nonconformity
measure, which is computed as follows. Let O be a multiset of observations,
on+1 a new observation, and δi the i-th smallest distance between on+1 and the
observations in O. The k-NN nonconformity measure is:

A(O, on+1) =
k∑

j=1

δi,

where k is the chosen number of neighbours. In experiments we will use the
k-NN nonconformity measure with k = 1.

CP in Multi–label Setting. Different formulations of CP exist. We consider
the multi–label setting, where we are given examples (oi, si) of observation oi ∈ O
and label si ∈ S, and CP returns, for a new observation, a set of candidate labels
Γ ε ⊆ S.

Algorithm 1 describes CP in this setting. We write:

Γ ε = CP (on+1, Z,A, ε)
1 This paper will write CP implicitly indicating Smooth CP. The difference is that

standard CP would guarantee ε to be an upper bound of errors [9].
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to indicate a call to this algorithm for a new observation on+1, a training set
Z, nonconformity measure A, and significance level ε. Thanks to the validity
property of CP, Γ ε is guaranteed to contain the correct label for on+1 with
probability 1 − ε.

Algorithm 1. Smooth Conformal Prediction in multi–label setting.
Require: Multiset of examples Z = {z1, z2, ..., zk}, where each example zi is a pair

(oi, si) of an observation oi ∈ O and a label si ∈ S, nonconformity measure A,
significance level ε, new observation ok+1.

Create empty list Γ ε.
for ŝ in S do

Set provisionally Z = {z1, .., zk, (ok+1, ŝ)}
Oŝ ← {oi|(oi, si) ∈ Z, si = ŝ}
for i ← 1, 2, ..., k + 1 do

αi ← A(Oŝ \ oi, oi)
end for
τ ← Uni(0, 1) � Sample τ from the uniform distribution in [0, 1].

pk ← |{i:αi>αk}|+|{i:αi=αk}|τ
k

if pk > ε then
Add ŝ to list Γ ε

end if
end for
return Γ ε

5.2 Prediction with Confidence for HMMs

We are provided with a multiset of pairs Z = {(xi, hi)}, for i = 1, 2, ..., n, of
observable and respective hidden sequences (Sect. 3). We are also given a test
sequence xn+1 = (o1, o2, ..., o�), whose corresponding hidden sequence hn+1 is
unknown to us. Follows a description of the method for making a prediction
with confidence for hn+1.

The method is composed of two phases, that we shall call Confident Predic-
tion and Ranking. The former aims at producing a list of candidate sequences
Ĥ that contains hn+1. The latter computes the likelihoods (ranking scores) of
the sequences in Ĥ, and returns the list sorted with respect to them.

Confident Prediction. The first phase uses information about the relation
between hidden states and observations to make a list prediction for a new
sequence.

We create a multiset of pairs of observation and respective hidden state:

Ztrain = {(x(k)
i , h

(k)
i )} k = 1, 2, ..., �i (xi, hi) ∈ Z,

where �i is the length of the i-th sequence. We will consider Ztrain as a training
set, where hidden states are the labels to predict from observations.
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We individually consider each observation oj = x
(j)
n+1 from the sequence xn+1,

for j = 1, 2, ..., �, and look for candidate hidden states for it. Specifically, we use
CP and the training set Ztrain to predict a set of labels (hidden states) Ĥj for
the observation oj :

Ĥj = CP
(
oj , Ztrain, A,

ε

�

)
,

where CP is Smooth CP in multi–label setting (Algorithm1). Any nonconfor-
mity measure A in the form described in Sect. 5.1 is allowed, but some noncon-
formity measures may provide a better efficiency. The result of this operation is
a set Ĥj containing candidate hidden states for the observation oj . We assume
exchangeability on the elements of the multiset:

Ztrain ∪ (x(j)
n+1, h

(j)
n+1).

Then, thanks to the validity property of CP, Ĥj contains the correct hidden
state h

(j)
n+1 with probability 1 − ε

� .
We iterate this operation for each observation oj of the sequence xn+1 =

(o1, o2, ..., o�), obtaining the sets Ĥ1, Ĥ2, ..., Ĥ�. We obtain � sets of candidate
hidden states, each one indicating candidate states for a position in the sequence.

We produce all the sequences of length � having as a first state one state from
Ĥ1, as a second state one from Ĥ2, and so on. This means we take the Cartesian
product of these sets:

Ĥ = Ĥ1 × Ĥ2 × ... × Ĥ�.

We call Ĥ the prediction list. The probability that hn+1 is in Ĥ is:

P (hn+1 ∈ Ĥ) ≥ 1 − ε,

for an arbitrary significance level ε ∈ [0, 1]. A proof of this is given in Appendix.

Ranking. The second phase of the algorithm focuses on ranking the sequences
of Ĥ with respect to their likelihood.

We estimate initial and transition probabilities (A,Π) using Maximum Likeli-
hood (Sect. 4.1). Then we compute a ranking score σ(ĥ), for the hidden sequence
ĥ ∈ Ĥ, ĥ = (s1, s2, ..., s�), as the probability that the hidden process of the HMM
produced that sequence:

σ(ĥ) = P (ĥ|Π,A) = P (s1) ·
�−1∏
t=1

P (st|st−1)

= πs1 ·
�−1∏
t=1

αst−1st
;

here πs1 is the initial probability for state s1, αst−1st
is the probability of tran-

sitioning from state st−1 to state st.
We return the list Ĥ sorted with respect to the ranking scores of its sequences.

A larger score gives a higher position in the list.
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Fig. 2. The first phase of prediction with confidence for HMMs. A test sequence
o1, o2, ..., o� is observed. We apply CP individually to each observation oj using a train-
ing multiset of observations and respective hidden states. This returns, for each oj of
the sequence, a list of candidate hidden states Ĥj . We produce the list Ĥ of all the
sequences that can be generated by using one of Ĥ1 = {s1, s2} as the first state, one
of Ĥ2 = {s1, s2, s3} as the second state, and so on. In the second phase the sequences
are ranked with respect to their initial and transition probability estimates.

6 Experiments

In this section we show that the validity property of our method holds in practice.
This means that, for different significance levels ε, the method keeps an error
which is always smaller or equal to ε. Furthermore, we present an experimental
comparison of our method with the standard approach. Similarly to what [3]
did when comparing the Bayes approach and CP, we experiment with these
methods under two settings: (i) emission probabilities follow the distribution
assumed by the standard approach (optimality for the standard approach), (ii)
emissions violate this distribution. This approach needs generating two datasets
that fulfill these requirements. We refer to these datasets as HMM-NORM and
HMM-GMM . HMM-NORM was generated by a continuous HMM, for which
emission probabilities were normally distributed. HMM-GMM was generated by
a continuous HMM, which used mixtures of Normal distributions (GMM) as
emission probability densities. Construction details are in Appendix.

In experiments, we consider an on–line setting, where the correct sequence
is provided after prediction, and the predicted example is added to the training
set. Our training set starts from 4 observed sequences and reaches 2000.

6.1 Validity of the Method

The method we propose is valid, in the sense that it produces a prediction set
that contains the correct sequence with probability at least 1−ε, for an arbitrary
significance level ε. A proof of this is Appendix.

We apply our method to the data for significance levels: (0.01, 0.05, 0.1),
and nonconformity measure k-NN, for k = 1. Figure 3 shows the cumulative
error of the method in this setting. We observe that the validity property holds
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empirically: the error tends to be equal or smaller than the significance levels,
for a chosen level.

Figure 4 compares the significance level and the respective empirical error
that was achieved. This plot shows that the empirical error is smaller than the
significance level for each value.

Fig. 3. Cumulative error of our method on the HMM-NORM dataset. The validity is
respected empirically for each significance level. We refer to our method as CP-HMM .

6.2 Comparison with the Standard Approach

We compare our method with the standard approach on datasets HMM-NORM
and HMM-GMM . We assume Normal distribution for the emission probabilities
of the standard approach. Consequently, HMM-NORM represents the optimal
conditions for the standard approach. HMM-GMM violates its assumptions.

Accuracy for the Same Size of Prediction Set. We measure the accuracy
of our method and of the standard approach when producing a set of predictions
of the same size. In order to do this we first run our method for some significance
level (ε = 0.01), we record the size of the prediction list Ĥ, and we run the List–
Viterbi algorithm for k = |Ĥ|. Results of this experiment on HMM-NORM and
HMM-GMM are shown in Fig. 5.

We observe that the standard approach achieves the best accuracy under
optimal conditions (Fig. 5(a)). In this case, our method achieves a slightly worse
accuracy than the standard approach. However, when the assumptions of the
standard approach are violated (i.e.: emission probabilities are not normally
distributed), its error increases considerably (Fig. 5(b)). Nonetheless, our method
is able to keep the same accuracy as before (see Fig. 5(b)). This suggests that
our method may be applied to a wider range of cases, where estimating the
probability distribution of emissions is non–trivial.
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Fig. 4. Average error achieved by our method, for different significance levels. The
empirical error tends to be smaller than ε. We refer to our method as CP-HMM .

(a) HMM-NORM dataset (b) HMM-GMM dataset

Fig. 5. Cumulative error of our method (which we call, for brevity, CP-HMM ) and
the standard approach, when they produce a prediction set of the same size. The left
figure shows results under optimal conditions for the standard approach. The right
figure shows what happens when its assumptions are violated.

Average Position. In this experiment we determined the Average Position
(AP) of our method and of the standard method. Namely, we determined which
of the two methods puts the correct prediction closer to the top of their prediction
lists. This criterion helps to understand what is the smallest size of the prediction
list that achieves perfect accuracy. A smaller AP indicates a better performance.

Table 1 reports the average position taken by the correct prediction in the
prediction list, when using the List–Viterbi algorithm, and confidence prediction
for HMMs (for significance levels (0.01, 0.05, 0.1)).

We notice that AP of our method tends to get better for higher significance
levels. The standard approach under its optimal conditions is better, in terms of
AP. However, we observe that its AP gets much worse when the data violates its
assumptions (HMM-GMM ). In this case our method is able to perform better.
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Table 1. AP for our method with different ε and for the standard approach. For
brevity, we refer to our method as CP-HMM . The left–hand table shows the results for
the HMM-NORM dataset, when the assumptions of the standard method are satisfied;
the right–hand table shows AP when these are violated (HMM-GMM dataset).

Method AP

Standard Approach 58
CP-HMM ε = 0.01 917
CP-HMM ε = 0.05 208
CP-HMM ε = 0.1 70

Method AP

Standard Approach 294
CP-HMM ε = 0.01 1067
CP-HMM ε = 0.05 337
CP-HMM ε = 0.1 146

7 Conclusions

We proposed a method that trains an HMM from fully observable data and that
outputs a list of candidate hidden sequences for a new observed sequence. The
method guarantees validity, in the sense that its probability of error is smaller
or equal than ε, for an arbitrary ε ∈ [0, 1].

We discuss advantages and limitations of the method with respect to the
standard approach, and suggest future research directions.

7.1 Comparison with the Standard Approach

The standard approach to the problem we considered is to assume probability
distributions for the emissions of the HMM, to estimate the parameters using
Maximum Likelihood, and to use the List–Viterbi algorithm.

One limitation of the List–Viterbi algorithm is that it does not allow to
directly control the accuracy. We thus need trim on experimental data the para-
meter k, that indicates the size of the prediction list, and choose the value that
gives the desired level of accuracy. The method we propose accepts a significance
level ε, and guarantees that its error is upper–bounded by ε. This means that
our method gives a direct control over the errors.

The standard approach is optimal when the correct distributions are
assumed, and the parameters are correctly estimated. However, if the data
assume different probability distributions, its performances strongly deteriorate.
Results on both optimal and non–optimal conditions for the standard method
show that the method we propose is robust independently of the distributions.
For this reason, we suggest that our method may have a wider applicability to
complex cases, where estimating the correct distributions is non–trivial.

As an advantage with respect to the standard method, our method reduces
the state space (first phase of the method, Sect. 5.2). While the standard method
needs to consider any state as a candidate, given an observation, our method
allows to consider only those that conform the distribution. Future work may
try to apply variants of the Viterbi and List–Viterbi algorithms to the result of
the first phase of our method, as a way of reducing their complexity.



Hidden Markov Models with Confidence 141

One disadvantage of our method is that CP might return an empty set as
a prediction for an observation. This would cause an empty prediction list. To
overcome this problem, we may modify Algorithm 1 to output some states, even
when none of them conforms. Future research may experiment with this option,
and perhaps verify if this would affect the validity of the method.

7.2 Future Work

Future work may apply our method to real–world problems. The method is
applicable to both discrete and continuous HMMs, and it has the advantages of:
(i) being independent of the probability distributions, and (ii) providing a direct
control on the errors.

Our experiments focused on the k-NN nonconformity measure, but the
method can work for any nonconformity measure (Sect. 5.1). However, as for CP,
some nonconformity measures may provide tighter predictions. Future research
may consider other nonconformity measures, such as Kernel Density Estimation,
and determine if they can achieve better performances.

Our method, in its current form, uses information about transition and emis-
sion probabilities in two separate phases. CP is used in the emission phase only.
Although the method made the prediction better, the following challenge appears
for the future. If an observation of the hidden sequence does not look to come
from its true hidden state (e.g.: there is noise between the hidden process and the
random variable), the method will not consider further information (e.g.: tran-
sition probabilities) when making a prediction. Future research may attempt to
solve this problem. One way is using probabilistic Venn–Machines [9], which may
substitute CP in our method. One advantage of them would be a probabilistic
output, which may be combined with initial and transition probabilities.

Future work may also consider other ways to rank the predicted sequences, in
order to improve the Average Position of the method. The use of Venn–Machines
may be helpful also in this case.

Finally, future research may try to limit the size of the training data to reduce
the complexity of the method (e.g.: Inductive CP).
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A Validity of the Method

We are given a multiset (training set) of sequences {(xi, hi)}, for i = 1, 2, ..., n.
We select a significance level ε ∈ [0, 1]. Let xn+1 be a test sequence and hn+1

the corresponding sequence of hidden states. Our method outputs a prediction
set Ĥ = {h1, h2, ...}. We show that the probability that Ĥ contains the correct
sequence is at least 1 − ε.

Let us construct the following multiset:

Ztrain = {(x(j)
i , h

(j)
i )} j = 1, 2, ...�i i = 1, 2, ..., n,

where �i = |xi| = |hi|.
Let � = |xn+1| = |hn+1|. Let us consider the j-th element of the sequence

xn+1. We assume exchangeability on the multiset

Ztrain ∪ {(x(j)
n+1, h

(j)
n+1)}.

We run:
Ĥj = CP

(
x
(j)
n+1, Ztrain, A,

ε

�

)
,

as defined in Algorithm 1. Thanks to the validity property of Smooth CP [9], the
following holds:

P (h(j)
n+1 /∈ Ĥj) =

ε

�
.

We repeat this for all the observations in xn+1. We define Ĥ as the set of all
the sequences of length � that can be generated by using elements from Ĥ1 as a
first element, elements from Ĥ2 as a second one, and so on. Then we can derive
the probability of error of our method as the probability of the correct sequence
hn+1 of not being in the prediction set as:

P (hn+1 /∈ Ĥ) = P (h(1)
n+1 /∈ Ĥ1 ∨ h

(2)
n+1 /∈ Ĥ2 ∨ ... ∨ h

(�)
n+1 /∈ Ĥ�)

≤
�∑

j=1

P (h(j)
n+1 /∈ Ĥj) = �

ε

�
= ε

�

Follows that 1 − ε is a lower–bound to the probability of error of the method.

B Datasets

B.1 HMM-NORM Dataset

We sampled 2000 sequences of length � = 10. The sequences were generated by
using a continuous HMM with 3 hidden states, S = {s1, s2, s3}, start probabili-
ties Π = {0.6, 0.3, 0.1}, transition probabilities:

A = {αij} =

⎛
⎝0.7 0.2 0.1

0.3 0.5 0.2
0.3 0.3 0.4

⎞
⎠ ,

and emission probabilities: bos1 ∼ N (−2, 0.7), bos2 ∼ N (0, 0.7), bos3 ∼
N (2, 0.7). Figure 6(a) graphically shows the distribution of bos1, bos2, and bos3.
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Fig. 6. Distribution of the emission probabilities for the three hidden states in HMM-
NORM (left–hand figure), and in HMM-GMM (right–hand figure).

B.2 HMM-GMM Dataset

We sampled 2000 sequences of length � = 10. The sequences were generated by
using a continuous HMM with 3 hidden states, S = {s1, s2, s3}, start probabili-
ties Π = {0.6, 0.3, 0.1}, transition probabilities:

A = {αij} =

⎛
⎝0.7 0.2 0.1

0.3 0.5 0.2
0.3 0.3 0.4

⎞
⎠ .

Emission probabilities where given by one mixture of two Normal distributions.
Let G(μ, σ,w) be a mixture of two Normal distribution with means μ = (μ1, μ2),
standard deviations σ = (σ1, σ2), and weights w = (w1, w2). That is:

G(μ, σ,w) =
2∑

i=1

wiN (μi, σi).

Themodelweusedhademissionprobabilities:bos1 ∼ G((0, 2), (0.7, 0.7), (0.7, 0.3)),
bos2 ∼ G((−2,−1), (0.25, 0.25), (0.5, 0.5)), bos3 ∼ G((2, 3), (0.5, 0.3), (0.7, 0.3)).
Figure 6(b) graphically shows the distribution of bos1, bos2, and bos3.
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