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Abstract. The paper considers several topics on learning with
privileged information: (1) general machine learning models, where priv-
ileged information is positioned as the main mechanism to improve their
convergence properties, (2) existing and novel approaches to leverage
that privileged information, (3) algorithmic realization of one of these
(namely, knowledge transfer) approaches, and its performance charac-
teristics, illustrated on simple synthetic examples.
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1 Introduction

The classical machine learning paradigm considers a simple scheme: given a set
of training examples, find, in a given set of functions, the one that approximates
the unknown decision rule in the best possible way. In such a paradigm, Teacher
does not play an important role.

In human learning, however, the role of Teacher is important: along with
examples, Teacher provides students with explanations, comments, comparisons,
metaphors, and so on.

This paper considers the model of learning that includes the so-called Intelli-
gent Teacher, who supplies Student with intelligent (privileged) information dur-
ing training session. This privileged information exists for almost any learning
problem and this information can significantly accelerate the learning process.
In the learning paradigm called Learning Using Privileged Information (LUPI),
Intelligent Teacher provides additional (privileged) information x∗ about train-
ing example x at the training stage (when Teacher interacts with Student). The
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important point in this paradigm is that privileged information is not available
at the test stage (when Student operates without supervision of Teacher). LUPI
was initially introduced in [15,16]; subsequent work targeted various implemen-
tation issues of this paradigm [9] and its applications to a wide range of prob-
lems [3,4,10,12,19].

Formally, the classical paradigm of machine learning is described as follows:
given a set of iid pairs (training data)

(x1, y1), . . . , (x�, y�), xi ∈ X, yi ∈ {−1,+1}, (1)

generated according to a fixed but unknown probability measure P (x, y) =
P (y|x)P (x)(), find, in a given set of indicator functions f(x, α), α ∈ Λ, the
function y = f(x, α∗) that minimizes the probability of incorrect classifications
(incorrect values of y ∈ {−1,+1}). In this model, each vector xi ∈ X is a descrip-
tion of an example generated according to an unknown generator P (x) of random
vectors xi, and yi ∈ {−1,+1} is its classification defined by Teacher according
to an unknown conditional probability P (y|x). The goal is to find the function
y = f(x, α∗) that guarantees the smallest probability of incorrect classifications.
That is, the goal is to find the function which minimizes the risk functional

R(α) =
1
2

∫
|y − f(x, α)|dP (x, y), (2)

in the given set of indicator functions f(x, α), α ∈ Λ when the probability
measure P (x, y) = P (y|x)P (x) is unknown but training data (1) are given.

The LUPI paradigm describes a more complex model: given a set of iid
triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�), xi ∈ X, x∗

i ∈ X∗, yi ∈ {−1,+1}, (3)

generated according to a fixed but unknown probability measure P (x, x∗, y) =
P (x∗, y|x)P (x), find, in a given set of indicator functions f(x, α), α ∈ Λ, the
function y = f(x, α∗) that guarantees the smallest probability of incorrect
classifications (2). In this model, each vector xi ∈ X is a description of an
example generated according to an unknown generator P (x) of random vec-
tors xi, and Intelligent Teacher generates both its label yi ∈ {−1,+1} and the
privileged information x∗

i using some unknown conditional probability function
P (x∗

i , yi|xi).
In the LUPI paradigm, we have exactly the same goal of minimizing (2)

as in the classical paradigm, i.e., to find the best classification function in the
admissible set. However, during the training stage, we have more information,
i.e., we have triplets (x, x∗, y) instead of pairs (x, y) as in the classical paradigm.
The additional information x∗ ∈ X∗ belongs to space X∗ which is, generally
speaking, different from X.

The paper is organized in the following way. In Sect. 2, we outline general
models of information theory and their relation to models of learning. In Sect. 3,
we explain how privileged information can significantly accelerate the rate of
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learning (i.e., accelerate the convergence) when the notion of classical learn-
ing model is expanded appropriately to incorporate privileged information. In
Sect. 4, we argue that structures in the space of privileged information reflect
more fundamental properties of learning and thus can potentially improve the
performance of learning methods even further. We outline a general knowledge
transfer framework for realization of that improvement in Sect. 5. In Sect. 6,
we present some specific algorithms implementing elements of that framework
and illustrate their various properties on synthetic examples We conclude with
Sect. 7, in which we summarize our results and outline potential next steps in
this research.

2 Brute Force and Intelligent Models

In this section, we show how the general setting of machine learning problems
creates a background for introduction of the concept of privileged information.

According to Kolmogorov [7], there exist three categories of integer numbers.

1. Ordinary numbers: those numbers n that we use in our everyday life. For
simplicity, let these numbers be between 1 and one billion.

2. Large numbers: those numbers N that are between one billion and 2n

(where n belongs to the category of ordinary numbers).
3. Huge numbers: those numbers H that are greater than 2N = 22

n

(where
N belongs to the category of large numbers).

Kolmogorov argued that the ordinary integers n correspond to the number
of items we can handle realistically, say the number of examples in a learning
problem. We cannot realistically handle large numbers (say large number of
examples in a learning problem), but we can still treat them efficiently in our
theoretical reasoning using mathematics; however, huge numbers are beyond
our reach. In this paper, we describe methods that potentially might operate in
huge sets of functions. In contrast to methods based on mathematical models and
suitable for large numbers (which we call “brute force” methods), these methods
include intelligent agents and thus can be viewed as “intelligent methods”.

Basic Shannon Model. Suppose that our goal is to find one function among
large number N of different functions by making ordinary number of queries
that return the reply “yes” or “no” (thus providing one bit of information).
Theoretically, we can find the desired function among N functions by making
n queries, where n = log2 N (for simplicity, we assume that N is an integer
power of 2). Indeed, we can split the set of N functions into two subsets and
make query to which subset the desired function belongs: to the first one (reply
+1) or to the second one (reply −1). After obtaining the reply from the query,
we can remove the subset which does not contain the desired function, split the
remaining part into two subsets, and continue in the same fashion, removing half
of the remaining functions after each reply. So after n = log2 N queries we will
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find the function. It is easy to see that one cannot guarantee that it is possible
to find the desired function by making less than

n = log2 N =
ln N

ln 2
(4)

queries. This also means that one cannot find one function from the set of huge
number H = 2N of functions: this would require to make too many (namely N)
queries, which is unrealistic.

Basic Model using Language of Learning Theory. Let us repeat this rea-
soning for pattern recognition model. Suppose that our set y = f(x, αt), t =
1, . . . , N is a finite set of binary functions in x ∈ Rn. That is, f(x, αt) ∈
{−1,+1}. Suppose that we can construct such vector x1 ∈ Rn that half of func-
tions take value f(x1, α

∗
t1) = +1 and another half take value f(x1, αt1) = −1.

Then the query for the label of vector x1 provides the first element of training
data (x1, y1). As before, we remove half of the functions that replied −y1 and
continue this process. After collecting at most n = lnN/ ln 2 elements of training
examples, we obtain the desired function.

First Modification of the Learning Model. To find the function in frame-
work of basic model requires solution of a difficult problem: on any step of the
procedure to find a vectors xi that splits the remaining set of functions into two
equal parts (suppose that such a vector exists). To simplify our model, consider
the situation where vectors x are results of random iid trial with a fixed (but
unknown) probability measure p(x), and for any x we can query for its label
y. After each query, we remove the functions that return −y on x. The main
problem for this model is to determine how many queries about labels one has to
make1 to find the function that is ε-close to the desired one with probability 1−η
(recall that the desired function is any function among those that do not make
errors, and ε-closeness is defined with respect to measure p(x)). The answer to
this problem constitutes a special case of the VC theory [13,14]: the number of
the required queries is at most

� =
ln N − ln η

ε
. (5)

This expression differs from bound (4) by a constant: (ε)−1 instead of (ln 2)−1.
After this number of queries, any function in the remaining set is ε-close to the
desired one. This bound cannot be improved.

Second Modification of the Basic Model. So far, we considered the situ-
ation when the set of N functions includes the one that does not makes errors.

1 In other words, how large should be the number � of training examples
(x1, y1), ..., (x�, y�).
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Now we relax this assumption: any function in our set of N functions can make
errors. Our problem is to find the function than provides the smallest probability
of error with respect to probability measure p(x).

Now we cannot use the method for choosing the desired function defined
in the first model: removing from the consideration the functions from the set
that disagree with classification of query. We will use another (a more general)
algorithm which selects such function among N of them that make the smallest
number of disagreements with the query reply (i.e., minimizes the empirical loss)
on the training set

(x1, y1), . . . , (x�, y�).

In order to guarantee that we will select an ε-close function to the best in the
set of N elements with probability 1 − η, one has to make at most

� =
ln N − ln η

ε2

queries. Again, in this modification, the main term lnN remains the same but
constant (ε)−2 is different from the constant in (5). This bound cannot be
improved.

Third Modification (VC Model). Consider now the set of functions f(x, α),
α ∈ Λ with infinite number of elements. Generally speaking, in this situation
one cannot guarantee that it is possible to obtain a good approximation even
if we have a large number of training examples. Recall that in the more simple
situation with a set that contains finite but huge number of functions H = 22

n

,
one needs 2n examples, which is far beyond our reach. Nevertheless, if infinite
set of functions has finite VC dimension V Cdim, then ε-close solution can be
found with probability 1 − η using at most

� =
V Cdim − ln η

ε

observations, if the desired function does not make errors; otherwise, if errors
are allowed,

� =
V Cdim − ln η

ε2

observations are required. Note that this bound matches the form of bound (5),
where the value of VC dimension replaces the logarithm of the number of func-
tions in the set. This bound cannot be improved.

The finiteness of the VC dimension of the set of functions defines the nec-
essary and sufficient conditions of learnability (consistency) of empirical risk
minimization method. This means that VC dimension characterizes not just the
quantity of elements of the set, it characterizes something else, namely, the mea-
sure of diversity of the set of functions: the set of functions must be not too
diverse.

The structural risk minimization principle that uses structure on the nested
subsets of functions with finite VC dimension (defined on the sets of functions
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which closure can have infinite VC dimension) guarantees convergence of risk to
the best possible risk for this structure [13,14].

To summarize, we have outlined the best bounds for general machine learn-
ing models and stated that they cannot be improved. In other words, in order
to improve these bounds, the models themselves will have to be changed. The
specific model change that we are concerned with in this paper is provided by
the notion of privileged information, which is described and explored in the
subsequent sections.

3 Privileged Information As Learning Acceleration

The learning models described in the previous section can be solved by different
methods. In particular, SVM algorithms with universal kernels realize structural
risk minimization method and thus are universally consistent. This means that
the VC theory completely solves the problem of learning from examples pro-
viding not only the necessary and sufficient conditions of learnability but also
an effective practical algorithm for machine learning. The rate described by this
theory cannot be improved essentially (without additional information).

The intriguing question in VC theory was why the number of examples one
needs to construct ε-close hyperplane in separable case (when training data can
be separated without errors) and unseparable case (when training data cannot
be separated without errors) vary so much in their corresponding constants (ε−1

and ε−2).
For SVM algorithm, this effect can be explained by noticing that, in the sep-

arable case, using � examples one has to estimate n parameters w of hyperplane,
while in the non-separable case, one has to estimate, along with parameters n
of hyperplane w, the additional � values of slacks (making the total number of
parameters to be estimated larger than number of examples). This, however, can
addressed by a special SVM+ algorithm within the LUPI framework [15,16]. In
that framework, Intelligent Teacher supplies Student with triplets

(x1, x
∗, y1), . . . , (x�, x

∗
� , y�)

where xi ∈ X∗, whereas, in the classical setting of the problem, Student uses
training pairs

(x1, y1), . . . , (x�, y�)

where vector xi ∈ X is generated by the generator of random events p(x) and
Teacher supplies Student with the label yi ∈ {−1,+1}. In contrast to classical
setting, in the LUPI paradigm, Intelligent Teacher supplies Student with triplets
(xi, x

∗
i , yi) where vector x∗

i ∈ X∗ and label y are generated by conditional prob-
ability p(x∗, y|x). Formally, by providing both vector x∗ ∈ X∗ and label yi for
any example xi, Intelligent Teacher can supply Student with more than one bit
of information, so the rate of convergence can be faster.

Indeed, as was shown in [15,16], this SVM+ approach in LUPI can improve
the constant from ε−2 to ε−1. The recent LUPI papers [17,18] introduced more
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important approaches that could be potentially used for further improvement
of convergence. In order to use such mechanisms effectively, Intelligent Teacher
has to possess some knowledge that can describe physical model of events better
than x. In the subsequent sections, we describe these ideas in greater detail.

4 Space of Privileged Information

Let us suppose that Intelligent Teacher has some knowledge about the solution of
a specific pattern recognition problem and would like to transfer this knowledge
to Student. For example, Teacher can reliably recognize cancer in biopsy images
(in a pixel space X) and would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distin-
guishes cancer (f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the
pixel space X. Unfortunately, Teacher does not know this function explicitly (it
only exists as a neural net in Teacher’s brain), so how can Teacher transfer this
construction to Student? Below, we describe a possible mechanism for solving
this problem; we call this mechanism knowledge transfer.

Suppose that Teacher believes in some theoretical model on which the knowl-
edge of Teacher is based. For cancer model, he or she believes that it is a result
of uncontrolled multiplication of the cancer cells (cells of type B) which replace
normal cells (cells of type A). Looking at a biopsy image, Teacher tries to gener-
ate privileged information that reflects his or her belief in development of such s
process; Teacher can describe the image as:

Aggressive proliferation of cells of type B into cells of type A.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the of standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher is developing a specialized language that is appro-
priate for description x∗

i of cancer development using the model he believes in.
Using this language, Teacher supplies Student with privileged information x∗

i for
the image xi by generating training triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�). (6)

The first two elements of these triplets are descriptions of an image in two
languages: in language X (vectors xi in pixel space), and in language X∗ (vectors
x∗

i in the space of privileged information), developed for Teacher’s understanding
of cancer model.

Note that the language of pixel space is universal (it can be used for descrip-
tion of many different visual objects; for example, in the pixel space, one can
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distinguish between male and female faces), while the language used for describ-
ing privileged information is very specialized: it reflects just a model of cancer
development. This has an important consequence: the set of admissible functions
in space X has to be rich (has a large VC dimension), while the set of admissible
functions in space X∗ may be not rich (has a small VC dimension).

One can consider two related pattern recognition problems using triplets (6):

1. The problem of constructing a rule y = f(x) for classification of biopsy in the
pixel space X using data

(x1, y1), . . . , (x�, y�). (7)

2. The problem of constructing a rule y = f∗(x∗) for classification of biopsy in
the space X∗ using data

(x∗
1, y1), . . . , (x

∗
� , y�). (8)

Suppose that language X∗ is so good that it allows to create a rule y = f∗
� (x∗)

that classifies vectors x∗ corresponding to vectors x with the same level of accu-
racy as the best rule y = f�(x) for classifying data in the pixel space.2

Since the VC dimension of the admissible rules in a special space X∗ is much
smaller than the VC dimension of the admissible rules in the universal space X
and since, the number of examples � is the same in both cases, the bounds on
error rate for the rule y = f∗

� (x∗) in X∗ will be better3 than those for the rule
y = f�(x) in X. That is, generally speaking, the classification rule y = f∗

� (x∗)
will be more accurate than classification rule y = f�(x).

As a result, the following problem arises: how one can use the knowledge of
the rule y = f∗

� (x∗) in space X∗ to improve the accuracy of the desired rule
y = f�(x) in space X? A general framework for that is outlined in the next
section.

5 Knowledge Transfer from Privileged Space

As already described, knowledge transfer approach deals with iid training exam-
ples generated by some unknown generator P (x), x ∈ X and Intelligent Teacher
who supplies vectors x with information (x∗, y|x) according to some (unknown)
Intelligent generator P (x∗, y|x), x∗ ∈ X∗, y ∈ {−1,+1}, forming training triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�). (9)

2 The rule constructed in space X∗ cannot be better than the best possible rule in
space X, since all information originates in space X.

3 According to VC theory, the guaranteed bound on accuracy of the chosen rule
depends only on two factors: frequency of errors on training set and VC dimen-
sion of admissible set of functions.
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Consider two pattern recognition problems in decision and privileged spaces:

1. Pattern recognition problem defined in spaceX: Using data, (x1, y1), . . . ,
(x�, y�), find in set of functions f(x, α), α ∈ Λ the rule y = sgn{f�(x)} that
minimizes the probability of test errors (in space X).

2. Pattern recognition problem defined in space X∗: Using data, (x∗
1, y1), . . . ,

(x∗
� , y�), find in set of functions f∗(x∗, α∗), α∗ ∈ Λ∗ the rule y = sgn{f∗

� (x∗)}
that minimizes the probability of test errors (in space X∗).

Suppose that, in space X∗, one can find a rule y = sgn{f∗
� (x∗)} that is,

with probability 1 − η, is better than the corresponding rule y = sgn{f�(x)} in
space X. Also, suppose that we are looking for our rule in the form

f∗
� (x∗) =

�∑
i=1

yiαiK
∗
i (x∗) + b∗, (10)

where α∗
i , i = 1, . . . , � and b∗ are parameters, and Ki are some functions in X∗.

The question is whether the knowledge of a good rule (10) in space X∗ can be
used to find a good rule

s = f�(x) =
�∑

i=1

yiαiK(xi, x) + b (11)

in space X.
As was described in the previous section for the problem of cancer diagnostics,

since pixel space X is universal and space of descriptions X∗ reflects just the
model of cancer development4, the VC dimension of admissible set of functions in
X space has to be much bigger than VC dimension of admissible set of functions
in X∗. Therefore, with probability 1 − η, the guaranteed quality of the rule
constructed from � examples in space X∗ will be better than the quality of the
rule constructed from � examples in space X. That is why a transfer of a rule
from space X∗ into space X can be helpful.

In order to describe knowledge transfer, consider two fundamental concepts
of knowledge representation used in Artificial Intelligence [1]:

1. Frames (fragments) of the knowledge.
2. Structural connections of the frames (fragments) in the knowledge.

The actual realization of frames and structures of knowledge can be done using
different methods. For example, we can call the frames in the knowledge the
smallest number of the vectors u∗

1 . . . , u∗
m from space X∗ that can approximate5

the main part of the rule (10):

f∗
� (x∗) − b∗ =

�∑
i=1

yiα
∗
i K

∗(x∗
i , x

∗) ≈
m∑

k=1

β∗
kK∗(u∗

k, x∗). (12)

4 In this example generator P (x∗, y|x) is intelligent since for any picture of the event
x it describes the essence of the event. Using description of the essence of the event
makes classification of the event an easy problem.

5 In machine learning, they are called the reduced number of support vectors [2].
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We then call the functions K∗(u∗
k, x∗), k = 1, . . . , m the frames (fragments) of

knowledge. Our knowledge

f∗
� (x∗) =

m∑
k=1

β∗
kK∗(u∗

k, x∗) + b

is defined as a linear combination of the frames.
In the described terms, knowledge transfer from X∗ into X requires the

following:

1. To find the fundamental elements of knowledge u∗
1, ..., u

∗
m in space X∗.

2. To find frames (m functions) K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space X∗.

3. To find the functions φ1(x), . . . , φm(x) in space X such that

φk(xi) ≈ K∗(u∗
k, x∗

i ) (13)

holds true for almost all pairs (xi, x
∗
i ) generated by Intelligent Teacher that

uses some (unknown) generator P (x∗, y|x).

Note that the capacity of the set of functions from which φk(x) are to be chosen
can be smaller than that of the capacity of the set of functions from which the
classification function y = f�(x) is chosen (function φk(x) approximates just
one fragment of knowledge, not the entire knowledge as function y = f∗

� (x∗),
which is a linear combination (12) of frames). Also, estimates of all the functions
φ1(x), ..., φm(x) are done using different pairs as training sets of the same size
�. We hope that transfer of m fragments of knowledge from space X∗ into space
X can be done with higher accuracy than estimating function y = f�(x) from
data (7).

After finding approximation of frames in space X, the knowledge about the
rule obtained in space X∗ can be approximated in space X as

f�(x) ≈
m∑

k=1

δkφk(x) + b∗,

where coefficients δk = α∗
k (taken from (10)) if approximations (13) are accurate.

Otherwise, coefficients δk can be estimated from the training data.
More generally, in order to transfer knowledge from space X∗ to space X one

has to make the following two transformations in the training triplets (9):

1. Transform n-dimensional vectors of xi = (x1
i , . . . , x

n
i )T into k-dimensional vec-

tors Fxi = (φ1(xi), . . . , φk(xi))T . In order to transform vector x, one con-
structs m-dimensional space as follows: for any frame K∗(x∗, x∗

s), s = 1, . . . , k
in space X∗, one construct it image (function) φs(x) in space X that defines
the relationship

φs(x) =
∫

K(x∗
s , x

∗)P (x∗|x)dx∗, s = 1, . . . , k.
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This requires to solve the following regression estimation problem: given data

(x1, z
s
1), . . . , (x�, z

s
� ), where zs

i = K(x∗
s, x

∗
i ),

find regression functions φs(x), s = 1, ..., k, forming the space
F(x) = (φ1(x), . . . , φk(x))T .

2. Use the target values s∗
i obtained for x∗

i in rule (10) instead of the values
yi given for xi in triplet (9), i.e., replace target value yi in triplets (9) with
scores s∗

i given (10).

Thus the knowledge transfer algorithm transforms the training triplet6

((Fx1, x
∗
1, s

∗
1), . . . , (Fx�, x

∗
� , s

∗
� )), (14)

and then uses triplets (14) instead of triplets (9).

6 Feature-Based Algorithm for Knowledge Transfer

In this section, we present scalable algorithms of knowledge transfer in LUPI
based on multivariate regressions of privileged features as functions of decision
variables; we also illustrate the algorithms’ performance and their properties on
synthetic examples.

We assume again that we are given a set of iid triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�), xi ∈ X = Rn, x∗

i ∈ X∗ = Rm, yi ∈ {−1,+1},

generated according to a fixed but unknown probability measure P (x, x∗, y).
Our training dataset consists of � decision vectors x1, . . ., x� from n-dimensional
decision space X = Rn and corresponding � privileged vectors x∗

1, . . ., x∗
� from

m-dimensional privileged space X∗ = Rm.
In order to create knowledge transfer from space X∗, we use training data

x1, . . ., x� to construct m multivariate regression functions φi(x1, . . . , xn), where
i = 1, . . . ,m, from n-dimensional decision space X to each of our m privileged
features. Various types of regression could be used for that purpose, such as
linear ridge regression or nonlinear kernel regression. After those regressions
φi are constructed, we replace, for each j = 1, . . . , � and each i = 1, . . . , m,
the ith coordinate of jth privileged vector x∗

j with its regressed approximation
φi(x1

j , . . . , x
n
j ). In the next step, we construct the modified training dataset,

consisting of m-dimensional regression-based replacements of privileged vectors.
As a result, our modified training data will form the matrix⎛

⎜⎜⎝
y1 φ1(x1

1, . . . , x
n
1 ) · · · φm(x1

1, . . . , x
n
1 )

y2 φ1(x1
2, . . . , x

n
2 ) · · · φm(x1

2, . . . , x
n
2 )

· · · · · · · · · · · ·
y� φ1(x1

� , . . . , x
n
� ) · · · φm(x1

� , . . . , x
n
� )

⎞
⎟⎟⎠ .

Then, we apply some standard SVM algorithm to this modified training data
and construct an m-dimensional decision rule. This rule can be used to classify
any n-dimensional test vector z = (z1, . . . , zn) by executing the following steps:
6 In the simplified version, pairs (Fxi, s

∗
i ), i = 1, . . . , �..
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1. Using previously constructed (at the training stage) m multivariate regres-
sions φ1, . . . , φm, compute m approximations to the unavailable privileged
variables (coordinates) and form the m-dimensional vector

z∗ = (φ1(z1, . . . , zn), φ2(z1, . . . , zn), . . . , φm(z1, . . . , zn)).

2. Apply the constructed m-dimensional SVM decision rule to this
m-dimensional augmented test vector z∗.

The described algorithm of knowledge transfer completely solves the main
scalability problem of SVM+ algorithm, which was not practical for problems
with more than several hundred training samples. Indeed, for larger number of
samples, the SVM+ matrix for quadratic programming becomes ill-conditioned
and larger number of parameters makes the problem of SVM+ parameter selec-
tion very time consuming [9]. In contrast to that, while the described knowl-
edge transfer algorithm requires an additional step of calculating m multivari-
ate regressions, which takes some limited time, this regression computation is
performed only once during the whole process of parameter optimization (i.e.,
during grid search), and, most importantly, the augmented training data are
then processed with any standard scalable SVM implementation.

In order to illustrate properties of the described knowledge transfer LUPI
algorithm, consider its performance on the following simple synthetic example.

For training dataset, we generated � two-dimensional random points (x1, x2),
uniformly distributed in the square [−1,+1] × [−1,+1]. Each point (x1, x2) was
labeled with y = sgn(x1 + x2). Both dimensions of these points were treated as
standard decision features. In addition, for each point (x1, x2), we generated the
value x3 = x1 + x2 + εW , where ε is the noise parameter, and W is an N(0, 1)-
distributed random number; x3 was treated as a privileged variable. Therefore,
in this model, the privileged variable x3 is more or less closely (depending on
the noise level ε) related to the label of the decision vector (x1, x2).

We considered the following three types of classification scenarios:

– SVM on decision features: Training points (x1, x2) belong to the two-
dimensional decision space, and RBF SVM is used to create the decision rule.

– Knowledge transfer LUPI: Training points (x1, x2) belong to the two-
dimensional decision space, while privileged feature (x3

1, . . . , x
3
�)

T belongs to
the one-dimensional privileged space; knowledge transfer from privileged fea-
ture x3 to the space of decision features (x1

1, . . . , x
1
�)

T and (x2
1, . . . , x

2
�)

T is real-
ized with linear ridge regression. After augmenting x1 and x2 with regressed
value of x3, we construct the RBF SVM decision rule in the one-dimensional
decision space.

– SVM on privileged features: Training points (x3) belong to the one-
dimensional decision space, and RBF SVM is used to create the decision
rule.

For each of these scenarios, the error rate of the constructed decision rule
was measured on the test dataset, generated according to the same distribu-
tion and containing (for statistical reliability of results) 10,000 two-dimensional
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points (x1, x2). In our experiments, for each value of � (selected as 10, 20, 40) and
each value of ε (selected as 0.01, 0.1, 1.0), we generated 10 random realizations
of training datasets of � samples each. For each of these 10×3×3 = 90 datasets,
we ran all three classification scenarios (SVM on decision features, Knowledge
trasnfer LUPI, and SVM on privileged features). Two parameters for RBF ker-
nels (utilized in all three scenarios), namely SVM penalty parameter C and RBF
kernel parameter γ, were selected using 6-fold cross-validation error rate over the
two-dimensional grid of both parameters C and γ. In that grid, log2(C) ranged
of from −5 to +5 with step 0.5, and log2(γ) ranged +6 to −6 with step 0.5 (thus
the whole grid consisted of 21 × 25 = 525 pairs of tested parameters C and γ).

Table 1. Performance of SVMs and LUPI on synthetic example.

noise=0.01

training size 10 training size 20 training size 40

SVM on decision features 22.53 % 7.12 % 5.45 %

Knowledge transfer LUPI 10.10 % 2.32 % 1.77 %

SVM on privileged features 10.07 % 2.32 % 1.94 %

noise=0.1

training size 10 training size 20 training size 40

SVM on decision features 22.53 % 7.12 % 5.45 %

Knowledge transfer LUPI 10.22 % 2.30 % 2.06 %

SVM on privileged features 9.97 % 2.72 % 2.07 %

noise=1.0

training size 10 training size 20 training size 40

SVM on decision features 22.53 % 7.12 % 5.45 %

Knowledge transfer LUPI 18.24 % 5.74 % 3.44 %

SVM on privileged features 22.80 % 15.97 % 13.23 %

The averaged (over 10 realizations) error rates are shown in Table 1. The
collected results suggest the following conclusions:

1. Knowledge Transfer LUPI improves the performance of Standard SVM on
decision features (often significantly, in relative terms) in all of the considered
scenarios. This relative improvement depends on interplay of noise and size
of training sample.

2. For larger values of noise and/or larger training sizes, we observe that Knowl-
edge Transfer LUPI can be even better that SVM on privileged features. While
appearing counter-intuitive (an approximated (regressed) value turns out to
be better for classification that the real one), this effect is due to the nature
of synthetic distribution we used for this example. Indeed, for a large noise,
the regressed privileged variable approximates the label function sgn(x1+x2)
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much more accurately (especially for large training size) than the actual data
available during the training (since the accurate regression filters out most
of the noise in the data). It also demonstrates the value of proper learning
the structures of privileged space (with linear regression, in this example):
if we learn these structures well, we might be able to improve performance
significantly, even beyond the one delivered by SVM on privileged features.

Note that this is just one possible way to apply the idea of feature-based
knowledge transfer. In many realistic examples, it is prudent not to switch com-
pletely from decision features to regressed privileged ones, but rather use both
types of features in concatenation, thus forming the matrix of augmented train-
ing data ⎛

⎜⎜⎝
y1 x1

1 · · · xn
1 φ1(x1

1, . . . , x
n
1 ) · · · φm(x1

1, . . . , x
n
1 )

y2 x1
2 · · · xn

2 φ1(x1
2, . . . , x

n
2 ) · · · φm(x1

2, . . . , x
n
2 )

· · · · · · · · · · · · · · · · · · · · ·
y� x1

� · · · xn
� φ1(x1

� , . . . , x
n
� ) · · · φm(x1

� , . . . , x
n
� )

⎞
⎟⎟⎠ .

In this version of knowledge transfer LUPI, we apply some standard SVM algo-
rithm to this augmented training data and construct an (n + m)-dimensional
decision rule. This rule is then used to classify any test n-dimensional test vec-
tor z = (z1, . . . , zn) by executing the following steps:

1. Using previously constructed (at the training stage) m multivariate regres-
sions φ1, . . . , φm, compute m approximations to the unavailable privileged
variables (coordinates) and form the m-dimensional vector

z∗ = (φ1(z1, . . . , zn), φ2(z1, . . . , zn), . . . , φm(z1, . . . , zn)).

2. Concatenate the n-dimensional test vector z with this m-dimensional vector
z∗ to form augmented (n + m)-dimensional vector

(zz∗) = (z1, . . . , zn, φ1(z1, . . . , zn), φ2(z1, . . . , zn), . . . , φm(z1, . . . , zn))

3. Apply the (n+m)-dimensional SVM decision rule to this (n+m)-dimensional
augmented test vector (zz∗).

In order to illustrate this version of knowledge transfer LUPI, we explored
another synthetic dataset, derived from dataset “Parkinsons” in [8]. Since none
of 22 features of “Parkinsons” dataset is privileged, we created several artificial
scenarios emulating the presence of privileged information in that dataset. Specif-
ically, we ordered “Parkinsons” features according to the values of their mutual
information (with first features having the lowest mutual information, while the
last features having the largest one). Then, for several values of parameter k,
we treated the last k features as privileged ones, with the first 22 − k features
being treated as decision ones. Since our ordering was based on mutual informa-
tion, these experiments corresponded to privileged spaces of various dimensions
and various relevance levels for classification. For each considered value of k,
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we generated 20 pairs of training and test subsets, containing, respectively 75 %
and 25 % of elements of the “Parkinsons” dataset. For each of these pairs, we
considered the following four types of classification scenarios:

– RBF SVM on 22 − k decision features;
– Knowledge transfer LUPI based on constructing k multivariate regressions

from 22 − k decision features to each of k privileged ones, replacing the cor-
responding values in privileged vectors with their regressed approximations,
and training RBF SVM on the augmented dataset consisting of 22 features;

– RBF SVM on k privileged features;
– RBF SVM on k all features.

In all these experiments, the parameters for RBF kernels were selected in the
same way as for previous synthetic example.

Table 2. Performance of SVMs and LUPI on modified “Parkinsons” example.

k SVM on decision
features

Knowledge
transfer LUPI

SVM on privileged
features

SVM on all features

1 9.18 % 8.77 % 21.12 % 7.92 %

2 11.33 % 10.21 % 18.37 % 7.92 %

3 12.24 % 9.67 % 12.96 % 7.92 %

4 15.20 % 13.47 % 13.06 % 7.92 %

5 16.22 % 13.78 % 12.40 % 7.92 %

6 16.35 % 12.36 % 11.71 % 7.92 %

7 16.81 % 13.55 % 11.63 % 7.92 %

8 17.02 % 14.12 % 11.12 % 7.92 %

9 17.50 % 13.16 % 10.98 % 7.92 %

10 17.91 % 15.61 % 10.71 % 7.92 %

The averaged (over 20 realizations) error rates for these scenarios are shown
in Table 2. The collected results suggest the following conclusions:

1. Knowledge Transfer LUPI improves the performance of Standard SVM on
decision features (often significantly, in relative terms) in all of the considered
scenarios. The error rates of LUPI are between SVMs constructed on decision
features and on all features. In other words, if the error rate of SVM on
decision features is B, while the error rate of SVM on all features is C, the
error rate A of LUPI satisfies the bounds C < A < B. So one can evaluate
the efficiency of LUPI approach by computing the metric (B − A)/(B − C),
which describes how much of the performance gap B − C can be recovered
by LUPI. In Table 2, this metric varies between 23 % and 59 %. Generally,
in realistic examples, the typical value for this LUPI efficiency metric is in
the ballpark of 35 %. Also note that if the gap B − C is small compared to
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C, it means that the privileged information is not particularly relevant; in
that case, it is likely hopeless to apply LUPI anyway: there is little space for
improvement for that. It is probably safe to start looking for LUPI solution
if the gap B − C is at least 1.5 − 2 times larger than C.

2. The error rate of SVM on privileged features only becomes better than that
of SVM on decision features for values of k larger than 3. This suggests that
it is safer to rely on both decision and regressed privileged features in LUPI
construction, since privileged features alone may not be sufficient to replace
the classification information contained in decision features.

7 Conclusions

In this paper, we presented several properties of privileged information includ-
ing its role in machine learning, its structure, and its applications. We extended
the previous research in the area of privileged information by highlighting struc-
tures in the space of privileged information and various mechanisms that can
leverage those structures for producing better solutions of pattern recognition
problems. In particular, we presented a simple scalable algorithm for knowledge
transfer, which avoids the scalability problem of current SVM+ implementations
of LUPI. This algorithm is just a first step in the proposed direction, and its fur-
ther improvements (especially concerning proper selection of relevant privileged
features) will be the subject of future work.
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