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Preface

This volume contains the proceedings of the 5th Symposium on Conformal and
Probabilistic Prediction with Applications (COPA 2016), which was co-organized by
Royal Holloway, University of London, UK, and Centro de Investigaciones
Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain. The
Symposium was held at CIEMAT during April 20–22, 2016.

Conformal prediction is a recently developed framework for complementing the
predictions of machine learning algorithms with reliable measures of confidence. The
framework produces well-calibrated confidence measures for individual examples
without assuming anything more than that the data are generated independently from
the same probability distribution.

Since its development the framework has been applied to many popular techniques,
such as support vector machines, k-nearest neighbors, neural networks, ridge regression
etc., and has been successfully applied to many challenging real world problems, such
as the early detection of ovarian cancer, the classification of leukemia subtypes, the
diagnosis of acute abdominal pain, the assessment of stroke risk, the recognition of
hypoxia in electroencephalograms (EEGs), the prediction of plant promoters, the
prediction of network traffic demand, the estimation of effort for software projects and
the back-calculation of non-linear pavement layer moduli. The framework has also
been extended to additional problem settings such as semi-supervised learning,
anomaly detection, feature selection, outlier detection, change detection in streams, and
active learning. Recent developments in collecting large volumes of data have also
required its adjustment to handle “big data”.

The aim of this symposium is to serve as a forum for the presentation of new and
ongoing work and the exchange of ideas between researchers on any aspect of con-
formal and probabilistic prediction and their applications.

While the previous four annual gatherings (COPA 2012 to COPA 2015) were
devoted mainly to conformal predictors, they also included extensions of conformal
predictors to Venn predictors. The title of this year's event reflects the expanded scope
explicitly and covers all kinds of probabilistic prediction, not only Venn prediction.

The popularity of conformal prediction in the machine-learning community is
growing. As evidence of this we can mention the following events that took place after
COPA 2015. In June 2015, a special issue on “Conformal Prediction and its Appli-
cations” of the Annals of Mathematics and Artificial Intelligence (Volume 74, Issues 1–
2) was published. In July 2015, Henrik Boström, Alexander Gammerman, Ulf
Johansson, Lars Carlsson, and Henrik Linusson presented the tutorial “Conformal
Prediction: A Valid Approach to Confidence Predictions” at the 2015 International
Joint Conference on Neural Networks (Killarney, Ireland). An EU Horizon 2020
project on drug design that started in September 2015 adopted conformal prediction as
one of the main tools for selecting useful chemical compounds. In December 2015, an
Indo-UK workshop on “Mathematical Foundations of Probabilistic Conformal



Prediction and Its Applications in Machine Learning” was held at the Indian Institute of
Technology in Hyderabad, India. In January 2016, there was a session on
“Data-Intensive Methods and Conformal Predictions” at the International Conference
on Pharmaceutical Bioinformatics (ICPB 2016) in Pattaya, Thailand.

Overall, 14 papers were accepted for presentation at the symposium after being
reviewed by at least two independent academic referees. The authors of these papers
come from 11 different countries, namely: Austria, Cyprus, Italy, The Netherlands,
Russia, Spain, Sweden, Switzerland, Ukraine, the UK and the USA.

The volume is divided into three parts. The first part presents the invited paper
“Learning with Intelligent Teacher” by Vladimir iapnik and Rauf Izmailov, devoted to
learning with privileged information and emphasizing the role of the teacher in the
learning process.

The second part is devoted to the theory of conformal prediction. The two papers in
this part investigate various criteria of efficiency used in conformal prediction (Vla-
dimir Vovk, Valentina Fedorova, Ilia Nouretdinov, and Alexander Gammerman) and
introduce a universal probability-free version of conformal predictors (Vladimir Vovk
and Dusko Pavlovic).

The core of the book is formed by the third part, containing experimental papers
describing various applications of conformal prediction. This part opens by “Conformal
Predictors for Compound Activity Prediction” (Paolo Toccaceli, Ilia Nouretdinov and
Alexander Gammerman), applying conformal prediction to big and imbalanced data-
sets in the field of drug discovery. The following paper, “Conformal Prediction of
Disruptions from Scratch: Application to an ITER Scenario” by Raul Moreno, Jesús
Vega, and Sebastian Dormido-Canto, demonstrates advantages of conformal prediction
over the conventional methodology in the field of nuclear fusion. In “Evaluation of a
Variance-Based Nonconformity Measure for Regression Forests” Henrik Boström,
Henrik Linusson, Tuve Löfström and Ulf Johansson continue their empirical investi-
gation of conformal prediction based on random forests; their new algorithms achieve
impressive computational efficiency while retaining predictive efficiency. This part is
concluded by four papers proposing valuable extensions of the framework of conformal
prediction in various directions. First, Antonis Lambrou and Harris Papadopoulos
(“Binary Relevance Multi-label Conformal Predictor”) extend the framework to
multi-label classification. The second extension is proposed by Andrea Murari, Saeed
Talebzadeh, Jesús Vega, Emmanuele Peluso, Michela Gelfusa, Michele Lungaroni, and
Pasqualino Gaudio in “A Metric to Improve the Robustness of Conformal Predictors in
the Presence of Error Bars”: now all data, including the attributes of the objects to be
labelled, are not precise but are obtained using a noisy measurement procedure. The
third paper, by Shuang Zhou, Evgueni Smirnov, Ralf Peeters, and Gijs Schoenmakers
(“Decision Trees for Instance Transfer”), applies the ideas of conformal prediction to
the case where the test data are generated from a distribution different from that
generating the training data. Finally, Giovanni Cherubin and Ilia Nouretdinov (“Hidden
Markov Models with Confidence”) extend the methodology of conformal prediction to
the popular setting of hidden Markov models.

The third part contains theoretical and experimental papers in general machine
learning. It opens by two theoretical papers, “Variable Fidelity Regression Using Low
Fidelity Function Blackbox, and Sparsification” by Alexey Zaytsev and “Effective
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Design for Sobol Indices Estimation Based on Polynomial Chaos Expansions” by
Evgeny Burnaev, Ivan Panin, and Bruno Sudret. Apart from theoretical results, both
papers provide convincing empirical validation. The next two papers are devoted to
two different, both very important, applications: medicine (“Joint Prediction of Chronic
Conditions Onset: Comparing Multivariate Probits with Multiclass Support Vector
Machines” by Shima Ghassem Pour and Federico Girosi) and information security
(“Method of Learning Malware Behavior Scripts by Sequential Pattern Mining” by
Alexandra Moldavskaya, Victoria Ruvinskaya, and Evgeniy Berkovich). The final
paper, “Extended Regression on Manifolds Estimation” by Alexander Kuleshov and
Alexander Bernstein, solves several interrelated problems in the area of regression on
manifolds.

We are very grateful to the Program and Organizing Committees; the success of the
symposium would have been impossible without their hard work. We are also indebted
to the sponsors: Royal Holloway, University of London, and CIEMAT. Our special
thanks to Yandex for their help and support in organizing the symposium and the
special Alexey Chervonenkis Memorial Lecture.

March 2016 Alexander Gammerman
Zhiyuan Luo
Jesús Vega

Vladimir Vovk
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Learning with Intelligent Teacher

Vladimir Vapnik1,2 and Rauf Izmailov3(B)

1 Columbia University, New York, NY, USA
vladimir.vapnik@gmail.com

2 AI Research Lab, Facebook, New York, NY, USA
3 Applied Communication Sciences, Basking Ridge, NJ, USA

rizmailov@appcomsci.com

Abstract. The paper considers several topics on learning with
privileged information: (1) general machine learning models, where priv-
ileged information is positioned as the main mechanism to improve their
convergence properties, (2) existing and novel approaches to leverage
that privileged information, (3) algorithmic realization of one of these
(namely, knowledge transfer) approaches, and its performance charac-
teristics, illustrated on simple synthetic examples.

Keywords: Intelligent teacher · Privileged information · Similarity con-
trol · Knowledge transfer · Knowledge representation · Frames · Support
vector machines · SVM+ · Classification · Learning theory · Kernel func-
tions · Regression

1 Introduction

The classical machine learning paradigm considers a simple scheme: given a set
of training examples, find, in a given set of functions, the one that approximates
the unknown decision rule in the best possible way. In such a paradigm, Teacher
does not play an important role.

In human learning, however, the role of Teacher is important: along with
examples, Teacher provides students with explanations, comments, comparisons,
metaphors, and so on.

This paper considers the model of learning that includes the so-called Intelli-
gent Teacher, who supplies Student with intelligent (privileged) information dur-
ing training session. This privileged information exists for almost any learning
problem and this information can significantly accelerate the learning process.
In the learning paradigm called Learning Using Privileged Information (LUPI),
Intelligent Teacher provides additional (privileged) information x∗ about train-
ing example x at the training stage (when Teacher interacts with Student). The

V. Vapnik—This material is based upon work partially supported by AFRL and
DARPA under contract FA8750-14-C-0008 and the work partially supported by
AFRL under contract FA9550-15-1-0502. Any opinions, findings and/or conclusions
in this material are those of the authors and do not necessarily reflect the views of
AFRL and DARPA.

c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-33395-3 1



4 V. Vapnik and R. Izmailov

important point in this paradigm is that privileged information is not available
at the test stage (when Student operates without supervision of Teacher). LUPI
was initially introduced in [15,16]; subsequent work targeted various implemen-
tation issues of this paradigm [9] and its applications to a wide range of prob-
lems [3,4,10,12,19].

Formally, the classical paradigm of machine learning is described as follows:
given a set of iid pairs (training data)

(x1, y1), . . . , (x�, y�), xi ∈ X, yi ∈ {−1,+1}, (1)

generated according to a fixed but unknown probability measure P (x, y) =
P (y|x)P (x)(), find, in a given set of indicator functions f(x, α), α ∈ Λ, the
function y = f(x, α∗) that minimizes the probability of incorrect classifications
(incorrect values of y ∈ {−1,+1}). In this model, each vector xi ∈ X is a descrip-
tion of an example generated according to an unknown generator P (x) of random
vectors xi, and yi ∈ {−1,+1} is its classification defined by Teacher according
to an unknown conditional probability P (y|x). The goal is to find the function
y = f(x, α∗) that guarantees the smallest probability of incorrect classifications.
That is, the goal is to find the function which minimizes the risk functional

R(α) =
1
2

∫
|y − f(x, α)|dP (x, y), (2)

in the given set of indicator functions f(x, α), α ∈ Λ when the probability
measure P (x, y) = P (y|x)P (x) is unknown but training data (1) are given.

The LUPI paradigm describes a more complex model: given a set of iid
triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�), xi ∈ X, x∗

i ∈ X∗, yi ∈ {−1,+1}, (3)

generated according to a fixed but unknown probability measure P (x, x∗, y) =
P (x∗, y|x)P (x), find, in a given set of indicator functions f(x, α), α ∈ Λ, the
function y = f(x, α∗) that guarantees the smallest probability of incorrect
classifications (2). In this model, each vector xi ∈ X is a description of an
example generated according to an unknown generator P (x) of random vec-
tors xi, and Intelligent Teacher generates both its label yi ∈ {−1,+1} and the
privileged information x∗

i using some unknown conditional probability function
P (x∗

i , yi|xi).
In the LUPI paradigm, we have exactly the same goal of minimizing (2)

as in the classical paradigm, i.e., to find the best classification function in the
admissible set. However, during the training stage, we have more information,
i.e., we have triplets (x, x∗, y) instead of pairs (x, y) as in the classical paradigm.
The additional information x∗ ∈ X∗ belongs to space X∗ which is, generally
speaking, different from X.

The paper is organized in the following way. In Sect. 2, we outline general
models of information theory and their relation to models of learning. In Sect. 3,
we explain how privileged information can significantly accelerate the rate of
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learning (i.e., accelerate the convergence) when the notion of classical learn-
ing model is expanded appropriately to incorporate privileged information. In
Sect. 4, we argue that structures in the space of privileged information reflect
more fundamental properties of learning and thus can potentially improve the
performance of learning methods even further. We outline a general knowledge
transfer framework for realization of that improvement in Sect. 5. In Sect. 6,
we present some specific algorithms implementing elements of that framework
and illustrate their various properties on synthetic examples We conclude with
Sect. 7, in which we summarize our results and outline potential next steps in
this research.

2 Brute Force and Intelligent Models

In this section, we show how the general setting of machine learning problems
creates a background for introduction of the concept of privileged information.

According to Kolmogorov [7], there exist three categories of integer numbers.

1. Ordinary numbers: those numbers n that we use in our everyday life. For
simplicity, let these numbers be between 1 and one billion.

2. Large numbers: those numbers N that are between one billion and 2n

(where n belongs to the category of ordinary numbers).
3. Huge numbers: those numbers H that are greater than 2N = 22

n

(where
N belongs to the category of large numbers).

Kolmogorov argued that the ordinary integers n correspond to the number
of items we can handle realistically, say the number of examples in a learning
problem. We cannot realistically handle large numbers (say large number of
examples in a learning problem), but we can still treat them efficiently in our
theoretical reasoning using mathematics; however, huge numbers are beyond
our reach. In this paper, we describe methods that potentially might operate in
huge sets of functions. In contrast to methods based on mathematical models and
suitable for large numbers (which we call “brute force” methods), these methods
include intelligent agents and thus can be viewed as “intelligent methods”.

Basic Shannon Model. Suppose that our goal is to find one function among
large number N of different functions by making ordinary number of queries
that return the reply “yes” or “no” (thus providing one bit of information).
Theoretically, we can find the desired function among N functions by making
n queries, where n = log2 N (for simplicity, we assume that N is an integer
power of 2). Indeed, we can split the set of N functions into two subsets and
make query to which subset the desired function belongs: to the first one (reply
+1) or to the second one (reply −1). After obtaining the reply from the query,
we can remove the subset which does not contain the desired function, split the
remaining part into two subsets, and continue in the same fashion, removing half
of the remaining functions after each reply. So after n = log2 N queries we will
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find the function. It is easy to see that one cannot guarantee that it is possible
to find the desired function by making less than

n = log2 N =
ln N

ln 2
(4)

queries. This also means that one cannot find one function from the set of huge
number H = 2N of functions: this would require to make too many (namely N)
queries, which is unrealistic.

Basic Model using Language of Learning Theory. Let us repeat this rea-
soning for pattern recognition model. Suppose that our set y = f(x, αt), t =
1, . . . , N is a finite set of binary functions in x ∈ Rn. That is, f(x, αt) ∈
{−1,+1}. Suppose that we can construct such vector x1 ∈ Rn that half of func-
tions take value f(x1, α

∗
t1) = +1 and another half take value f(x1, αt1) = −1.

Then the query for the label of vector x1 provides the first element of training
data (x1, y1). As before, we remove half of the functions that replied −y1 and
continue this process. After collecting at most n = lnN/ ln 2 elements of training
examples, we obtain the desired function.

First Modification of the Learning Model. To find the function in frame-
work of basic model requires solution of a difficult problem: on any step of the
procedure to find a vectors xi that splits the remaining set of functions into two
equal parts (suppose that such a vector exists). To simplify our model, consider
the situation where vectors x are results of random iid trial with a fixed (but
unknown) probability measure p(x), and for any x we can query for its label
y. After each query, we remove the functions that return −y on x. The main
problem for this model is to determine how many queries about labels one has to
make1 to find the function that is ε-close to the desired one with probability 1−η
(recall that the desired function is any function among those that do not make
errors, and ε-closeness is defined with respect to measure p(x)). The answer to
this problem constitutes a special case of the VC theory [13,14]: the number of
the required queries is at most

� =
ln N − ln η

ε
. (5)

This expression differs from bound (4) by a constant: (ε)−1 instead of (ln 2)−1.
After this number of queries, any function in the remaining set is ε-close to the
desired one. This bound cannot be improved.

Second Modification of the Basic Model. So far, we considered the situ-
ation when the set of N functions includes the one that does not makes errors.

1 In other words, how large should be the number � of training examples
(x1, y1), ..., (x�, y�).



Learning with Intelligent Teacher 7

Now we relax this assumption: any function in our set of N functions can make
errors. Our problem is to find the function than provides the smallest probability
of error with respect to probability measure p(x).

Now we cannot use the method for choosing the desired function defined
in the first model: removing from the consideration the functions from the set
that disagree with classification of query. We will use another (a more general)
algorithm which selects such function among N of them that make the smallest
number of disagreements with the query reply (i.e., minimizes the empirical loss)
on the training set

(x1, y1), . . . , (x�, y�).

In order to guarantee that we will select an ε-close function to the best in the
set of N elements with probability 1 − η, one has to make at most

� =
ln N − ln η

ε2

queries. Again, in this modification, the main term lnN remains the same but
constant (ε)−2 is different from the constant in (5). This bound cannot be
improved.

Third Modification (VC Model). Consider now the set of functions f(x, α),
α ∈ Λ with infinite number of elements. Generally speaking, in this situation
one cannot guarantee that it is possible to obtain a good approximation even
if we have a large number of training examples. Recall that in the more simple
situation with a set that contains finite but huge number of functions H = 22

n

,
one needs 2n examples, which is far beyond our reach. Nevertheless, if infinite
set of functions has finite VC dimension V Cdim, then ε-close solution can be
found with probability 1 − η using at most

� =
V Cdim − ln η

ε

observations, if the desired function does not make errors; otherwise, if errors
are allowed,

� =
V Cdim − ln η

ε2

observations are required. Note that this bound matches the form of bound (5),
where the value of VC dimension replaces the logarithm of the number of func-
tions in the set. This bound cannot be improved.

The finiteness of the VC dimension of the set of functions defines the nec-
essary and sufficient conditions of learnability (consistency) of empirical risk
minimization method. This means that VC dimension characterizes not just the
quantity of elements of the set, it characterizes something else, namely, the mea-
sure of diversity of the set of functions: the set of functions must be not too
diverse.

The structural risk minimization principle that uses structure on the nested
subsets of functions with finite VC dimension (defined on the sets of functions
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which closure can have infinite VC dimension) guarantees convergence of risk to
the best possible risk for this structure [13,14].

To summarize, we have outlined the best bounds for general machine learn-
ing models and stated that they cannot be improved. In other words, in order
to improve these bounds, the models themselves will have to be changed. The
specific model change that we are concerned with in this paper is provided by
the notion of privileged information, which is described and explored in the
subsequent sections.

3 Privileged Information As Learning Acceleration

The learning models described in the previous section can be solved by different
methods. In particular, SVM algorithms with universal kernels realize structural
risk minimization method and thus are universally consistent. This means that
the VC theory completely solves the problem of learning from examples pro-
viding not only the necessary and sufficient conditions of learnability but also
an effective practical algorithm for machine learning. The rate described by this
theory cannot be improved essentially (without additional information).

The intriguing question in VC theory was why the number of examples one
needs to construct ε-close hyperplane in separable case (when training data can
be separated without errors) and unseparable case (when training data cannot
be separated without errors) vary so much in their corresponding constants (ε−1

and ε−2).
For SVM algorithm, this effect can be explained by noticing that, in the sep-

arable case, using � examples one has to estimate n parameters w of hyperplane,
while in the non-separable case, one has to estimate, along with parameters n
of hyperplane w, the additional � values of slacks (making the total number of
parameters to be estimated larger than number of examples). This, however, can
addressed by a special SVM+ algorithm within the LUPI framework [15,16]. In
that framework, Intelligent Teacher supplies Student with triplets

(x1, x
∗, y1), . . . , (x�, x

∗
� , y�)

where xi ∈ X∗, whereas, in the classical setting of the problem, Student uses
training pairs

(x1, y1), . . . , (x�, y�)

where vector xi ∈ X is generated by the generator of random events p(x) and
Teacher supplies Student with the label yi ∈ {−1,+1}. In contrast to classical
setting, in the LUPI paradigm, Intelligent Teacher supplies Student with triplets
(xi, x

∗
i , yi) where vector x∗

i ∈ X∗ and label y are generated by conditional prob-
ability p(x∗, y|x). Formally, by providing both vector x∗ ∈ X∗ and label yi for
any example xi, Intelligent Teacher can supply Student with more than one bit
of information, so the rate of convergence can be faster.

Indeed, as was shown in [15,16], this SVM+ approach in LUPI can improve
the constant from ε−2 to ε−1. The recent LUPI papers [17,18] introduced more
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important approaches that could be potentially used for further improvement
of convergence. In order to use such mechanisms effectively, Intelligent Teacher
has to possess some knowledge that can describe physical model of events better
than x. In the subsequent sections, we describe these ideas in greater detail.

4 Space of Privileged Information

Let us suppose that Intelligent Teacher has some knowledge about the solution of
a specific pattern recognition problem and would like to transfer this knowledge
to Student. For example, Teacher can reliably recognize cancer in biopsy images
(in a pixel space X) and would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distin-
guishes cancer (f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the
pixel space X. Unfortunately, Teacher does not know this function explicitly (it
only exists as a neural net in Teacher’s brain), so how can Teacher transfer this
construction to Student? Below, we describe a possible mechanism for solving
this problem; we call this mechanism knowledge transfer.

Suppose that Teacher believes in some theoretical model on which the knowl-
edge of Teacher is based. For cancer model, he or she believes that it is a result
of uncontrolled multiplication of the cancer cells (cells of type B) which replace
normal cells (cells of type A). Looking at a biopsy image, Teacher tries to gener-
ate privileged information that reflects his or her belief in development of such s
process; Teacher can describe the image as:

Aggressive proliferation of cells of type B into cells of type A.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the of standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher is developing a specialized language that is appro-
priate for description x∗

i of cancer development using the model he believes in.
Using this language, Teacher supplies Student with privileged information x∗

i for
the image xi by generating training triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�). (6)

The first two elements of these triplets are descriptions of an image in two
languages: in language X (vectors xi in pixel space), and in language X∗ (vectors
x∗

i in the space of privileged information), developed for Teacher’s understanding
of cancer model.

Note that the language of pixel space is universal (it can be used for descrip-
tion of many different visual objects; for example, in the pixel space, one can
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distinguish between male and female faces), while the language used for describ-
ing privileged information is very specialized: it reflects just a model of cancer
development. This has an important consequence: the set of admissible functions
in space X has to be rich (has a large VC dimension), while the set of admissible
functions in space X∗ may be not rich (has a small VC dimension).

One can consider two related pattern recognition problems using triplets (6):

1. The problem of constructing a rule y = f(x) for classification of biopsy in the
pixel space X using data

(x1, y1), . . . , (x�, y�). (7)

2. The problem of constructing a rule y = f∗(x∗) for classification of biopsy in
the space X∗ using data

(x∗
1, y1), . . . , (x

∗
� , y�). (8)

Suppose that language X∗ is so good that it allows to create a rule y = f∗
� (x∗)

that classifies vectors x∗ corresponding to vectors x with the same level of accu-
racy as the best rule y = f�(x) for classifying data in the pixel space.2

Since the VC dimension of the admissible rules in a special space X∗ is much
smaller than the VC dimension of the admissible rules in the universal space X
and since, the number of examples � is the same in both cases, the bounds on
error rate for the rule y = f∗

� (x∗) in X∗ will be better3 than those for the rule
y = f�(x) in X. That is, generally speaking, the classification rule y = f∗

� (x∗)
will be more accurate than classification rule y = f�(x).

As a result, the following problem arises: how one can use the knowledge of
the rule y = f∗

� (x∗) in space X∗ to improve the accuracy of the desired rule
y = f�(x) in space X? A general framework for that is outlined in the next
section.

5 Knowledge Transfer from Privileged Space

As already described, knowledge transfer approach deals with iid training exam-
ples generated by some unknown generator P (x), x ∈ X and Intelligent Teacher
who supplies vectors x with information (x∗, y|x) according to some (unknown)
Intelligent generator P (x∗, y|x), x∗ ∈ X∗, y ∈ {−1,+1}, forming training triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�). (9)

2 The rule constructed in space X∗ cannot be better than the best possible rule in
space X, since all information originates in space X.

3 According to VC theory, the guaranteed bound on accuracy of the chosen rule
depends only on two factors: frequency of errors on training set and VC dimen-
sion of admissible set of functions.
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Consider two pattern recognition problems in decision and privileged spaces:

1. Pattern recognition problem defined in spaceX: Using data, (x1, y1), . . . ,
(x�, y�), find in set of functions f(x, α), α ∈ Λ the rule y = sgn{f�(x)} that
minimizes the probability of test errors (in space X).

2. Pattern recognition problem defined in space X∗: Using data, (x∗
1, y1), . . . ,

(x∗
� , y�), find in set of functions f∗(x∗, α∗), α∗ ∈ Λ∗ the rule y = sgn{f∗

� (x∗)}
that minimizes the probability of test errors (in space X∗).

Suppose that, in space X∗, one can find a rule y = sgn{f∗
� (x∗)} that is,

with probability 1 − η, is better than the corresponding rule y = sgn{f�(x)} in
space X. Also, suppose that we are looking for our rule in the form

f∗
� (x∗) =

�∑
i=1

yiαiK
∗
i (x∗) + b∗, (10)

where α∗
i , i = 1, . . . , � and b∗ are parameters, and Ki are some functions in X∗.

The question is whether the knowledge of a good rule (10) in space X∗ can be
used to find a good rule

s = f�(x) =
�∑

i=1

yiαiK(xi, x) + b (11)

in space X.
As was described in the previous section for the problem of cancer diagnostics,

since pixel space X is universal and space of descriptions X∗ reflects just the
model of cancer development4, the VC dimension of admissible set of functions in
X space has to be much bigger than VC dimension of admissible set of functions
in X∗. Therefore, with probability 1 − η, the guaranteed quality of the rule
constructed from � examples in space X∗ will be better than the quality of the
rule constructed from � examples in space X. That is why a transfer of a rule
from space X∗ into space X can be helpful.

In order to describe knowledge transfer, consider two fundamental concepts
of knowledge representation used in Artificial Intelligence [1]:

1. Frames (fragments) of the knowledge.
2. Structural connections of the frames (fragments) in the knowledge.

The actual realization of frames and structures of knowledge can be done using
different methods. For example, we can call the frames in the knowledge the
smallest number of the vectors u∗

1 . . . , u∗
m from space X∗ that can approximate5

the main part of the rule (10):

f∗
� (x∗) − b∗ =

�∑
i=1

yiα
∗
i K

∗(x∗
i , x

∗) ≈
m∑

k=1

β∗
kK∗(u∗

k, x∗). (12)

4 In this example generator P (x∗, y|x) is intelligent since for any picture of the event
x it describes the essence of the event. Using description of the essence of the event
makes classification of the event an easy problem.

5 In machine learning, they are called the reduced number of support vectors [2].
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We then call the functions K∗(u∗
k, x∗), k = 1, . . . , m the frames (fragments) of

knowledge. Our knowledge

f∗
� (x∗) =

m∑
k=1

β∗
kK∗(u∗

k, x∗) + b

is defined as a linear combination of the frames.
In the described terms, knowledge transfer from X∗ into X requires the

following:

1. To find the fundamental elements of knowledge u∗
1, ..., u

∗
m in space X∗.

2. To find frames (m functions) K∗(u∗
1, x

∗), ...,K∗(u∗
m, x∗) in space X∗.

3. To find the functions φ1(x), . . . , φm(x) in space X such that

φk(xi) ≈ K∗(u∗
k, x∗

i ) (13)

holds true for almost all pairs (xi, x
∗
i ) generated by Intelligent Teacher that

uses some (unknown) generator P (x∗, y|x).

Note that the capacity of the set of functions from which φk(x) are to be chosen
can be smaller than that of the capacity of the set of functions from which the
classification function y = f�(x) is chosen (function φk(x) approximates just
one fragment of knowledge, not the entire knowledge as function y = f∗

� (x∗),
which is a linear combination (12) of frames). Also, estimates of all the functions
φ1(x), ..., φm(x) are done using different pairs as training sets of the same size
�. We hope that transfer of m fragments of knowledge from space X∗ into space
X can be done with higher accuracy than estimating function y = f�(x) from
data (7).

After finding approximation of frames in space X, the knowledge about the
rule obtained in space X∗ can be approximated in space X as

f�(x) ≈
m∑

k=1

δkφk(x) + b∗,

where coefficients δk = α∗
k (taken from (10)) if approximations (13) are accurate.

Otherwise, coefficients δk can be estimated from the training data.
More generally, in order to transfer knowledge from space X∗ to space X one

has to make the following two transformations in the training triplets (9):

1. Transform n-dimensional vectors of xi = (x1
i , . . . , x

n
i )T into k-dimensional vec-

tors Fxi = (φ1(xi), . . . , φk(xi))T . In order to transform vector x, one con-
structs m-dimensional space as follows: for any frame K∗(x∗, x∗

s), s = 1, . . . , k
in space X∗, one construct it image (function) φs(x) in space X that defines
the relationship

φs(x) =
∫

K(x∗
s , x

∗)P (x∗|x)dx∗, s = 1, . . . , k.
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This requires to solve the following regression estimation problem: given data

(x1, z
s
1), . . . , (x�, z

s
� ), where zs

i = K(x∗
s, x

∗
i ),

find regression functions φs(x), s = 1, ..., k, forming the space
F(x) = (φ1(x), . . . , φk(x))T .

2. Use the target values s∗
i obtained for x∗

i in rule (10) instead of the values
yi given for xi in triplet (9), i.e., replace target value yi in triplets (9) with
scores s∗

i given (10).

Thus the knowledge transfer algorithm transforms the training triplet6

((Fx1, x
∗
1, s

∗
1), . . . , (Fx�, x

∗
� , s

∗
� )), (14)

and then uses triplets (14) instead of triplets (9).

6 Feature-Based Algorithm for Knowledge Transfer

In this section, we present scalable algorithms of knowledge transfer in LUPI
based on multivariate regressions of privileged features as functions of decision
variables; we also illustrate the algorithms’ performance and their properties on
synthetic examples.

We assume again that we are given a set of iid triplets

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�), xi ∈ X = Rn, x∗

i ∈ X∗ = Rm, yi ∈ {−1,+1},

generated according to a fixed but unknown probability measure P (x, x∗, y).
Our training dataset consists of � decision vectors x1, . . ., x� from n-dimensional
decision space X = Rn and corresponding � privileged vectors x∗

1, . . ., x∗
� from

m-dimensional privileged space X∗ = Rm.
In order to create knowledge transfer from space X∗, we use training data

x1, . . ., x� to construct m multivariate regression functions φi(x1, . . . , xn), where
i = 1, . . . ,m, from n-dimensional decision space X to each of our m privileged
features. Various types of regression could be used for that purpose, such as
linear ridge regression or nonlinear kernel regression. After those regressions
φi are constructed, we replace, for each j = 1, . . . , � and each i = 1, . . . , m,
the ith coordinate of jth privileged vector x∗

j with its regressed approximation
φi(x1

j , . . . , x
n
j ). In the next step, we construct the modified training dataset,

consisting of m-dimensional regression-based replacements of privileged vectors.
As a result, our modified training data will form the matrix⎛

⎜⎜⎝
y1 φ1(x1

1, . . . , x
n
1 ) · · · φm(x1

1, . . . , x
n
1 )

y2 φ1(x1
2, . . . , x

n
2 ) · · · φm(x1

2, . . . , x
n
2 )

· · · · · · · · · · · ·
y� φ1(x1

� , . . . , x
n
� ) · · · φm(x1

� , . . . , x
n
� )

⎞
⎟⎟⎠ .

Then, we apply some standard SVM algorithm to this modified training data
and construct an m-dimensional decision rule. This rule can be used to classify
any n-dimensional test vector z = (z1, . . . , zn) by executing the following steps:
6 In the simplified version, pairs (Fxi, s

∗
i ), i = 1, . . . , �..
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1. Using previously constructed (at the training stage) m multivariate regres-
sions φ1, . . . , φm, compute m approximations to the unavailable privileged
variables (coordinates) and form the m-dimensional vector

z∗ = (φ1(z1, . . . , zn), φ2(z1, . . . , zn), . . . , φm(z1, . . . , zn)).

2. Apply the constructed m-dimensional SVM decision rule to this
m-dimensional augmented test vector z∗.

The described algorithm of knowledge transfer completely solves the main
scalability problem of SVM+ algorithm, which was not practical for problems
with more than several hundred training samples. Indeed, for larger number of
samples, the SVM+ matrix for quadratic programming becomes ill-conditioned
and larger number of parameters makes the problem of SVM+ parameter selec-
tion very time consuming [9]. In contrast to that, while the described knowl-
edge transfer algorithm requires an additional step of calculating m multivari-
ate regressions, which takes some limited time, this regression computation is
performed only once during the whole process of parameter optimization (i.e.,
during grid search), and, most importantly, the augmented training data are
then processed with any standard scalable SVM implementation.

In order to illustrate properties of the described knowledge transfer LUPI
algorithm, consider its performance on the following simple synthetic example.

For training dataset, we generated � two-dimensional random points (x1, x2),
uniformly distributed in the square [−1,+1] × [−1,+1]. Each point (x1, x2) was
labeled with y = sgn(x1 + x2). Both dimensions of these points were treated as
standard decision features. In addition, for each point (x1, x2), we generated the
value x3 = x1 + x2 + εW , where ε is the noise parameter, and W is an N(0, 1)-
distributed random number; x3 was treated as a privileged variable. Therefore,
in this model, the privileged variable x3 is more or less closely (depending on
the noise level ε) related to the label of the decision vector (x1, x2).

We considered the following three types of classification scenarios:

– SVM on decision features: Training points (x1, x2) belong to the two-
dimensional decision space, and RBF SVM is used to create the decision rule.

– Knowledge transfer LUPI: Training points (x1, x2) belong to the two-
dimensional decision space, while privileged feature (x3

1, . . . , x
3
�)

T belongs to
the one-dimensional privileged space; knowledge transfer from privileged fea-
ture x3 to the space of decision features (x1

1, . . . , x
1
�)

T and (x2
1, . . . , x

2
�)

T is real-
ized with linear ridge regression. After augmenting x1 and x2 with regressed
value of x3, we construct the RBF SVM decision rule in the one-dimensional
decision space.

– SVM on privileged features: Training points (x3) belong to the one-
dimensional decision space, and RBF SVM is used to create the decision
rule.

For each of these scenarios, the error rate of the constructed decision rule
was measured on the test dataset, generated according to the same distribu-
tion and containing (for statistical reliability of results) 10,000 two-dimensional
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points (x1, x2). In our experiments, for each value of � (selected as 10, 20, 40) and
each value of ε (selected as 0.01, 0.1, 1.0), we generated 10 random realizations
of training datasets of � samples each. For each of these 10×3×3 = 90 datasets,
we ran all three classification scenarios (SVM on decision features, Knowledge
trasnfer LUPI, and SVM on privileged features). Two parameters for RBF ker-
nels (utilized in all three scenarios), namely SVM penalty parameter C and RBF
kernel parameter γ, were selected using 6-fold cross-validation error rate over the
two-dimensional grid of both parameters C and γ. In that grid, log2(C) ranged
of from −5 to +5 with step 0.5, and log2(γ) ranged +6 to −6 with step 0.5 (thus
the whole grid consisted of 21 × 25 = 525 pairs of tested parameters C and γ).

Table 1. Performance of SVMs and LUPI on synthetic example.

noise=0.01

training size 10 training size 20 training size 40

SVM on decision features 22.53 % 7.12 % 5.45 %

Knowledge transfer LUPI 10.10 % 2.32 % 1.77 %

SVM on privileged features 10.07 % 2.32 % 1.94 %

noise=0.1

training size 10 training size 20 training size 40

SVM on decision features 22.53 % 7.12 % 5.45 %

Knowledge transfer LUPI 10.22 % 2.30 % 2.06 %

SVM on privileged features 9.97 % 2.72 % 2.07 %

noise=1.0

training size 10 training size 20 training size 40

SVM on decision features 22.53 % 7.12 % 5.45 %

Knowledge transfer LUPI 18.24 % 5.74 % 3.44 %

SVM on privileged features 22.80 % 15.97 % 13.23 %

The averaged (over 10 realizations) error rates are shown in Table 1. The
collected results suggest the following conclusions:

1. Knowledge Transfer LUPI improves the performance of Standard SVM on
decision features (often significantly, in relative terms) in all of the considered
scenarios. This relative improvement depends on interplay of noise and size
of training sample.

2. For larger values of noise and/or larger training sizes, we observe that Knowl-
edge Transfer LUPI can be even better that SVM on privileged features. While
appearing counter-intuitive (an approximated (regressed) value turns out to
be better for classification that the real one), this effect is due to the nature
of synthetic distribution we used for this example. Indeed, for a large noise,
the regressed privileged variable approximates the label function sgn(x1+x2)
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much more accurately (especially for large training size) than the actual data
available during the training (since the accurate regression filters out most
of the noise in the data). It also demonstrates the value of proper learning
the structures of privileged space (with linear regression, in this example):
if we learn these structures well, we might be able to improve performance
significantly, even beyond the one delivered by SVM on privileged features.

Note that this is just one possible way to apply the idea of feature-based
knowledge transfer. In many realistic examples, it is prudent not to switch com-
pletely from decision features to regressed privileged ones, but rather use both
types of features in concatenation, thus forming the matrix of augmented train-
ing data ⎛

⎜⎜⎝
y1 x1

1 · · · xn
1 φ1(x1

1, . . . , x
n
1 ) · · · φm(x1

1, . . . , x
n
1 )

y2 x1
2 · · · xn

2 φ1(x1
2, . . . , x

n
2 ) · · · φm(x1

2, . . . , x
n
2 )

· · · · · · · · · · · · · · · · · · · · ·
y� x1

� · · · xn
� φ1(x1

� , . . . , x
n
� ) · · · φm(x1

� , . . . , x
n
� )

⎞
⎟⎟⎠ .

In this version of knowledge transfer LUPI, we apply some standard SVM algo-
rithm to this augmented training data and construct an (n + m)-dimensional
decision rule. This rule is then used to classify any test n-dimensional test vec-
tor z = (z1, . . . , zn) by executing the following steps:

1. Using previously constructed (at the training stage) m multivariate regres-
sions φ1, . . . , φm, compute m approximations to the unavailable privileged
variables (coordinates) and form the m-dimensional vector

z∗ = (φ1(z1, . . . , zn), φ2(z1, . . . , zn), . . . , φm(z1, . . . , zn)).

2. Concatenate the n-dimensional test vector z with this m-dimensional vector
z∗ to form augmented (n + m)-dimensional vector

(zz∗) = (z1, . . . , zn, φ1(z1, . . . , zn), φ2(z1, . . . , zn), . . . , φm(z1, . . . , zn))

3. Apply the (n+m)-dimensional SVM decision rule to this (n+m)-dimensional
augmented test vector (zz∗).

In order to illustrate this version of knowledge transfer LUPI, we explored
another synthetic dataset, derived from dataset “Parkinsons” in [8]. Since none
of 22 features of “Parkinsons” dataset is privileged, we created several artificial
scenarios emulating the presence of privileged information in that dataset. Specif-
ically, we ordered “Parkinsons” features according to the values of their mutual
information (with first features having the lowest mutual information, while the
last features having the largest one). Then, for several values of parameter k,
we treated the last k features as privileged ones, with the first 22 − k features
being treated as decision ones. Since our ordering was based on mutual informa-
tion, these experiments corresponded to privileged spaces of various dimensions
and various relevance levels for classification. For each considered value of k,
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we generated 20 pairs of training and test subsets, containing, respectively 75 %
and 25 % of elements of the “Parkinsons” dataset. For each of these pairs, we
considered the following four types of classification scenarios:

– RBF SVM on 22 − k decision features;
– Knowledge transfer LUPI based on constructing k multivariate regressions

from 22 − k decision features to each of k privileged ones, replacing the cor-
responding values in privileged vectors with their regressed approximations,
and training RBF SVM on the augmented dataset consisting of 22 features;

– RBF SVM on k privileged features;
– RBF SVM on k all features.

In all these experiments, the parameters for RBF kernels were selected in the
same way as for previous synthetic example.

Table 2. Performance of SVMs and LUPI on modified “Parkinsons” example.

k SVM on decision
features

Knowledge
transfer LUPI

SVM on privileged
features

SVM on all features

1 9.18 % 8.77 % 21.12 % 7.92 %

2 11.33 % 10.21 % 18.37 % 7.92 %

3 12.24 % 9.67 % 12.96 % 7.92 %

4 15.20 % 13.47 % 13.06 % 7.92 %

5 16.22 % 13.78 % 12.40 % 7.92 %

6 16.35 % 12.36 % 11.71 % 7.92 %

7 16.81 % 13.55 % 11.63 % 7.92 %

8 17.02 % 14.12 % 11.12 % 7.92 %

9 17.50 % 13.16 % 10.98 % 7.92 %

10 17.91 % 15.61 % 10.71 % 7.92 %

The averaged (over 20 realizations) error rates for these scenarios are shown
in Table 2. The collected results suggest the following conclusions:

1. Knowledge Transfer LUPI improves the performance of Standard SVM on
decision features (often significantly, in relative terms) in all of the considered
scenarios. The error rates of LUPI are between SVMs constructed on decision
features and on all features. In other words, if the error rate of SVM on
decision features is B, while the error rate of SVM on all features is C, the
error rate A of LUPI satisfies the bounds C < A < B. So one can evaluate
the efficiency of LUPI approach by computing the metric (B − A)/(B − C),
which describes how much of the performance gap B − C can be recovered
by LUPI. In Table 2, this metric varies between 23 % and 59 %. Generally,
in realistic examples, the typical value for this LUPI efficiency metric is in
the ballpark of 35 %. Also note that if the gap B − C is small compared to
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C, it means that the privileged information is not particularly relevant; in
that case, it is likely hopeless to apply LUPI anyway: there is little space for
improvement for that. It is probably safe to start looking for LUPI solution
if the gap B − C is at least 1.5 − 2 times larger than C.

2. The error rate of SVM on privileged features only becomes better than that
of SVM on decision features for values of k larger than 3. This suggests that
it is safer to rely on both decision and regressed privileged features in LUPI
construction, since privileged features alone may not be sufficient to replace
the classification information contained in decision features.

7 Conclusions

In this paper, we presented several properties of privileged information includ-
ing its role in machine learning, its structure, and its applications. We extended
the previous research in the area of privileged information by highlighting struc-
tures in the space of privileged information and various mechanisms that can
leverage those structures for producing better solutions of pattern recognition
problems. In particular, we presented a simple scalable algorithm for knowledge
transfer, which avoids the scalability problem of current SVM+ implementations
of LUPI. This algorithm is just a first step in the proposed direction, and its fur-
ther improvements (especially concerning proper selection of relevant privileged
features) will be the subject of future work.
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Abstract. We study optimal conformity measures for various criteria
of efficiency in an idealised setting. This leads to an important class of
criteria of efficiency that we call probabilistic; it turns out that the most
standard criteria of efficiency used in literature on conformal prediction
are not probabilistic.
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1 Introduction

Conformal prediction is a method of generating prediction sets that are guaran-
teed to have a prespecified coverage probability; in this sense conformal predic-
tors have guaranteed validity. Different conformal predictors, however, widely
differ in their efficiency, by which we mean the narrowness, in some sense, of
their prediction sets. Empirical investigation of the efficiency of various confor-
mal predictors is becoming a popular area of research: see, e.g., [1,11] (and the
COPA Proceedings, 2012–2015). This paper points out that the standard criteria
of efficiency used in literature have a serious disadvantage, and we define a class
of criteria of efficiency, called “probabilistic”, that do not share this disadvan-
tage. In two recent papers [3,5] two probabilistic criteria have been introduced,
and in this paper we introduce two more and argue that probabilistic criteria
should be used in place of more standard ones. We concentrate on the case of
classification only (the label space is finite).

Surprisingly few criteria of efficiency have been used in literature, and even
fewer have been studied theoretically. We can speak of the efficiency of individual
predictions or of the overall efficiency of predictions on a test sequence; the latter
is usually (in particular, in this paper) defined by averaging the efficiency over
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the individual test examples, and so in this introductory section we only discuss
the former. This section assumes that the reader knows the basic definitions of
the theory of conformal prediction, but they will be given in Sect. 2, which can
be consulted now.

The two criteria for efficiency of a prediction that have been used most often
in literature (in, e.g., the references given above) are:

– The confidence and credibility of the prediction (see, e.g., [14], p. 96; intro-
duced in [12]). This criterion does not depend on the choice of a significance
level ε.

– Whether the prediction is a singleton (the ideal case), multiple (an ineffi-
cient prediction), or empty (a superefficient prediction) at a given significance
level ε. This criterion was introduced in [10], Sect. 7.2, and used extensively
in [14].

The other two criteria that have been used are the sum of the p-values for all
potential labels (this does not depend on the significance level) and the size of
the prediction set at a given significance level: see the papers [3,5].

In this paper we introduce six other criteria of efficiency (Sect. 2). We then
discuss (in Sects. 3, 4 and 5) the conformity measures that optimise each of the
ten criteria when the data-generating distribution is known; this sheds light on
the kind of behaviour implicitly encouraged by the criteria even in the realis-
tic case where the data-generating distribution is unknown. As we point out
in Sect. 5, probabilistic criteria of efficiency are conceptually similar to “proper
scoring rules” in probability forecasting [2,4], and this is our main motivation
for their detailed study in this paper. After that we briefly illustrate the empir-
ical behaviour of two of the criteria for standard conformal predictors and a
benchmark data set (Sect. 6).

We only consider the case of randomised (“smoothed”) conformal predictors:
the case of deterministic predictors may lead to packing problems without an
explicit solution (this is the case, e.g., for the N criterion defined below). The
situation here is analogous to the Neyman–Pearson lemma: cf. [7], Sect. 3.2.

2 Criteria of Efficiency for Conformal Predictors
and Transducers

Let X be a measurable space (the object space) and Y be a finite set equipped
with the discrete σ-algebra (the label space); the example space is defined to be
Z := X × Y. A conformity measure is a measurable function A that assigns
to every finite sequence (z1, . . . , zn) ∈ Z∗ of examples a same-length sequence
(α1, . . . , αn) of real numbers and that is equivariant with respect to permuta-
tions: for any n and any permutation π of {1, . . . , n},

(α1, . . . , αn) = A(z1, . . . , zn) =⇒ (
απ(1), . . . , απ(n)

)
= A

(
zπ(1), . . . , zπ(n)

)
.

The conformal predictor determined by A is defined by

Γε(z1, . . . , zl, x) := {y | py > ε} , (1)
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where (z1, . . . , zl) ∈ Z∗ is a training sequence, x is a test object, ε ∈ (0, 1) is a
given significance level, for each y ∈ Y the corresponding p-value py is defined by

py :=
1

l + 1

∣∣{i = 1, . . . , l + 1 | αy
i < αy

l+1

}∣∣
+

τ

l + 1

∣∣{i = 1, . . . , l + 1 | αy
i = αy

l+1

}∣∣ , (2)

τ is a random number distributed uniformly on the interval [0, 1] (even con-
ditionally on all the examples), and the corresponding sequence of conformity
scores is defined by

(αy
1 , . . . , αy

l , αy
l+1) := A(z1, . . . , zl, (x, y)).

Notice that the system of prediction sets (1) output by a conformal predictor is
decreasing in ε, or nested.

The conformal transducer determined by A outputs the system of p-values
(py | y ∈ Y) defined by (2) for each training sequence (z1, . . . , zl) of examples
and each test object x. (This is just a different representation of the conformal
predictor.)

The standard property of validity for conformal predictors and transducers
is that the p-values py are distributed uniformly on [0, 1] when the examples
z1, . . . , zl, (x, y) are generated independently from the same probability distrib-
ution Q on Z (see, e.g., [14], Proposition 2.8). This implies that the probability
of error, y /∈ Γε(z1, . . . , zl, x), is ε at any significance level ε.

Suppose we are given a test sequence (zl+1, . . . , zl+k) and would like to use it
to measure the efficiency of the predictions derived from the training sequence
(z1, . . . , zl). (The efficiency of conformal predictors means that the prediction
sets they output tend to be small, and the efficiency of conformal transducers
means that the p-values that they output tend to be small.) For each test example
zi = (xi, yi), i = l + 1, . . . , l + k, we have a nested family (Γε

i | ε ∈ (0, 1)) of
subsets of Y and a system of p-values (py

i | y ∈ Y). In this paper we will discuss
ten criteria of efficiency for such a family or a system, but some of them will
depend, additionally, on the observed labels yi of the test examples. We start
from the prior criteria, which do not depend on the observed test labels.

2.1 Basic Criteria

We will discuss two kinds of criteria: those applicable to the prediction sets Γε
i

and so depending on the significance level ε and those applicable to systems of
p-values (py

i | y ∈ Y) and so independent of ε. The simplest criteria of efficiency
are:

– The S criterion (with “S” standing for “sum”) measures efficiency by the
average sum

1
k

l+k∑
i=l+1

∑
y

py
i (3)

of the p-values; small values are preferable for this criterion. It is ε-free.
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– The N criterion uses the average size

1
k

l+k∑
i=l+1

|Γε
i |

of the prediction sets (“N” stands for “number”: the size of a prediction set is
the number of labels in it). Small values are preferable. Under this criterion
the efficiency is a function of the significance level ε.

Both these criteria are prior. The S criterion was introduced in [3] and the N
criterion was introduced independently in [3,5], although the analogue of the
N criterion for regression (where the size of a prediction set is defined to be
its Lebesgue measure) had been used earlier in [9] (whose arXiv version was
published in 2012).

2.2 Other Prior Criteria

A disadvantage of the basic criteria is that they look too stringent. Even for
a very efficient conformal transducer, we cannot expect all p-values py to be
small: the p-value corresponding to the true label will not be small with high
probability; and even for a very efficient conformal predictor we cannot expect
the size of its prediction set to be zero: with high probability it will contain
the true label. The other prior criteria are less stringent. The ones that do not
depend on the significance level are:

– The U criterion (with “U” standing for “unconfidence”) uses the average
unconfidence

1
k

l+k∑
i=l+1

min
y

max
y′ �=y

py′
i (4)

over the test sequence, where the unconfidence for a test object xi is the
second largest p-value miny maxy′ �=y py′

i ; small values of (4) are preferable.
The U criterion in this form was introduced in [3], but it is equivalent to using
the average confidence (one minus unconfidence), which is very common.
If two conformal transducers have the same average unconfidence (which is
presumably a rare event), the criterion compares the average credibilities

1
k

l+k∑
i=l+1

max
y

py
i (5)

where the credibility for a test object xi is the largest p-value maxy py
i ; smaller

values of (5) are preferable. (Intuitively, a small credibility is a warning that
the test object is unusual, and since such a warning presents useful information
and the probability of a warning is guaranteed to be small, we want to be
warned as often as possible.)
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– The F criterion uses the average fuzziness

1
k

l+k∑
i=l+1

(∑
y

py
i − max

y
py

i

)
, (6)

where the fuzziness for a test object xi is defined as the sum of all p-values
apart from a largest one, i.e., as

∑
y py

i − maxy py
i ; smaller values of (6) are

preferable. If two conformal transducers lead to the same average fuzziness, the
criterion compares the average credibilities (5), with smaller values preferable.

Their counterparts depending on the significance level are:

– The M criterion uses the percentage of objects xi in the test sequence for
which the prediction set Γε

i at significance level ε is multiple, i.e., contains
more than one label. Smaller values are preferable. As a formula, the criterion
prefers smaller

1
k

l+k∑
i=l+1

1{|Γε
i |>1}, (7)

where 1E denotes the indicator function of the event E (taking value 1 if
E happens and 0 if not). When the percentage (7) of multiple predictions
is the same for two conformal predictors (which is a common situation: the
percentage can well be zero), the M criterion compares the percentages

1
k

l+k∑
i=l+1

1{Γε
i=∅} (8)

of empty predictions (larger values are preferable). This is a widely used cri-
terion. (In particular, it was used in [14] and papers preceding it.)

– The E criterion (where “E” stands for “excess”) uses the average (over the
test sequence, as usual) amount the size of the prediction set exceeds 1. In
other words, the criterion gives the average number of excess labels in the
prediction sets as compared with the ideal situation of one-element prediction
sets. Smaller values are preferable for this criterion. As a formula, the criterion
prefers smaller

1
k

l+k∑
i=l+1

(|Γε
i | − 1)+ ,

where t+ := max(t, 0). When these averages coincide for two conformal pre-
dictors, we compare the percentages (8) of empty predictions; larger values
are preferable.

2.3 Observed Criteria

The prior criteria discussed in the previous subsection treat the largest p-value,
or prediction sets of size 1, in a special way. The corresponding criteria of this
subsection attempt to achieve the same goal by using the observed label.
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These are the observed counterparts of the non-basic prior ε-free criteria:

– The OU (“observed unconfidence”) criterion uses the average observed uncon-
fidence

1
k

l+k∑
i=l+1

max
y �=yi

py
i

over the test sequence, where the observed unconfidence for a test example
(xi, yi) is the largest p-value py

i for the false labels y �= yi. Smaller values are
preferable for this test.

– The OF (“observed fuzziness”) criterion uses the average sum of the p-values
for the false labels, i.e.,

1
k

l+k∑
i=l+1

∑
y �=yi

py
i ; (9)

smaller values are preferable.

The counterparts of the last group depending on the significance level ε are:

– The OM criterion uses the percentage of observed multiple predictions

1
k

l+k∑
i=l+1

1{Γε
i\{yi}�=∅}

in the test sequence, where an observed multiple prediction is defined to be a
prediction set including a false label. Smaller values are preferable.

– The OE criterion (OE standing for “observed excess”) uses the average
number

1
k

l+k∑
i=l+1

|Γε
i \ {yi}|

of false labels included in the prediction sets at significance level ε; smaller
values are preferable.

Table 1. The ten criteria studied in this paper: the two basic ones in the upper section;
the four other prior ones in the middle section; and the four observed ones in the lower
section

ε-free ε-dependent

S (sum of p-values) N (number of labels)

U (unconfidence) M (multiple)

F (fuzziness) E (excess)

OU (observed unconfidence) OM (observed multiple)

OF (observed fuzziness) OE (observed excess)
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The ten criteria used in this paper are given in Table 1. Half of the criteria
depend on the significance level ε, and the other half are the respective ε-free
versions.

In the case of binary classification problems, |Y| = 2, the number of different
criteria of efficiency in Table 1 reduces to six: the criteria not separated by a
vertical or horizontal line (namely, U and F, OU and OF, M and E, and OM
and OE) coincide.

3 Optimal Idealised Conformity Measures for a Known
Probability Distribution

Starting from this section we consider the limiting case of infinitely long training
and test sequences (and we will return to the realistic finitary case only in Sect. 6,
where we describe our empirical studies). To formalise the intuition of an infi-
nitely long training sequence, we assume that the prediction algorithm is directly
given the data-generating probability distribution Q on Z instead of being given
a training sequence. Instead of conformity measures we will use idealised con-
formity measures: functions A(Q, z) of Q ∈ P(Z) (where P(Z) is the set of all
probability measures on Z) and z ∈ Z. We will fix the data-generating distri-
bution Q for the rest of the paper, and so write the corresponding conformity
scores as A(z). The idealised conformal predictor corresponding to A outputs
the following prediction set Γε(x) for each object x ∈ X and each significance
level ε ∈ (0, 1). For each potential label y ∈ Y for x define the corresponding
p-value as

py = p(x, y) := Q{z ∈ Z | A(z) < A(x, y)} + τQ{z ∈ Z | A(z) = A(x, y)} (10)

(it would be more correct to write A((x, y)) and Q({. . .}), but we often omit
pairs of parentheses when there is no danger of ambiguity), where τ is a random
number distributed uniformly on [0, 1]. (The same random number τ is used
in (10) for all (x, y).) The prediction set is

Γε(x) := {y ∈ Y | p(x, y) > ε} . (11)

The idealised conformal transducer corresponding to A outputs for each object
x ∈ X the system of p-values (py | y ∈ Y) defined by (10); in the idealised case
we will usually use the alternative notation p(x, y) for py.

The standard properties of validity for conformal transducers and predictors
mentioned in the previous section simplify in this idealised case as follows:

– If (x, y) is generated from Q, p(x, y) is distributed uniformly on [0, 1].
– Therefore, at each significance level ε the idealised conformal predictor makes

an error with probability ε.

The test sequence being infinitely long is formalised by replacing the use of a
test sequence in the criteria of efficiency by averaging with respect to the data-
generating probability distribution Q. In the case of the top two and bottom two
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criteria in Table 1 (the ones set in italics) this is done as follows. Let us write
Γε

A(x) for the Γε(x) in (11) and pA(x, y) for the p(x, y) in (10) to indicate the
dependence on the choice of the idealised conformity measure A. An idealised
conformity measure A is:

– S-optimal if, for any idealised conformity measure B,

Ex,τ

∑
y∈Y

pA(x, y) ≤ Ex,τ

∑
y∈Y

pB(x, y),

where the notation Ex,τ refers to the expected value when x and τ are inde-
pendent, x ∼ QX, and τ ∼ U ; QX is the marginal distribution of Q on X,
and U is the uniform distribution on [0, 1];

– N-optimal if, for any idealised conformity measure B and any significance
level ε,

Ex,τ |Γε
A(x)| ≤ Ex,τ |Γε

B(x)| ;
– OF-optimal if, for any idealised conformity measure B,

E(x,y),τ

∑
y′ �=y

pA(x, y′) ≤ E(x,y),τ

∑
y′ �=y

pB(x, y′),

where the lower index (x, y) in E(x,y),τ refers to averaging over (x, y) ∼ Q
(with (x, y) and τ independent);

– OE-optimal if, for any idealised conformity measure B and any significance
level ε,

E(x,y),τ |Γε
A(x) \ {y}| ≤ E(x,y),τ |Γε

B(x) \ {y}| .
We will define the idealised versions of the other six criteria listed in Table 1 in
Sect. 5.

4 Probabilistic Criteria of Efficiency

Our goal in this section is to characterise the optimal idealised conformity mea-
sures for the four criteria of efficiency that are set in italics in Table 1. We will
assume in the rest of the paper that the set X is finite (from the practical point
of view, this is not a restriction); since we consider the case of classification,
|Y| < ∞, this implies that the whole example space Z is finite. Without loss of
generality, we also assume that the data-generating probability distribution Q
satisfies QX(x) > 0 for all x ∈ X (we often omit curly braces in expressions such
as QX({x})): we can always omit the xs for which QX(x) = 0.

The conditional probability (CP) idealised conformity measure is

A(x, y) := Q(y | x) :=
Q(x, y)
QX(x)

. (12)
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This idealised conformity measure was introduced by an anonymous referee of the
conference version of [3], but its non-idealised analogue in the case of regression
had been used in [9] (following [8] and literature on minimum volume prediction).
We say that an idealised conformity measure A is a refinement of an idealised
conformity measure B if

B(z1) < B(z2) =⇒ A(z1) < A(z2) (13)

for all z1, z2 ∈ Z. Let R(CP) be the set of all refinements of the CP idealised
conformity measure. If C is a criterion of efficiency (one of the ten criteria in
Table 1), we let O(C) stand for the set of all C-optimal idealised conformity
measures.

Theorem 1. O(S) = O(OF) = O(N) = O(OE) = R(CP).

We say that an efficiency criterion is probabilistic if the CP idealised confor-
mity measure is optimal for it. Theorem 1 shows that four of our ten criteria are
probabilistic, namely S, N, OF, and OE (they are set in italics in Table 1). In the
next section we will see that in general the other six criteria are not probabilistic.
The intuition behind probabilistic criteria will be briefly discussed also in the
next section.

Proof (of Theorem 1). In this proof we partly follow [15], which simplified our
original proof (considering, however, the case of label-conditional idealised con-
formal predictors and transducers).

We start from proving R(CP) = O(N). Let A be any idealised conformity
measure. Fix for a moment a significance level ε. For each example (x, y) ∈ Z,
let P (x, y) be the probability that the idealised conformal predictor based on
A makes an error on the example (x, y) at the significance level ε, i.e., the
probability of y /∈ Γε

A(x). It is clear from (10) and (11) that P takes at most
three possible values (0, 1, and an intermediate value) and that

∑
x,y

Q(x, y)P (x, y) = ε (14)

(which just reflects the fact that the probability of error is ε). Vice versa, any P
satisfying these properties will also satisfy

∀(x, y) : P (x, y) = P(x,y),τ (y /∈ Γε
A(x))

for some A. Let us see when we will have A ∈ O(N) (A is an N-optimal idealised
conformity measure). Define Q′ to be the probability measure on Z such that
Q′

X = QX and Q′(y | x) = 1/ |Y| does not depend on y. The N criterion at
significance level ε for A can be evaluated as

Ex,τ |Γε
A(x)| = |Y|

⎛
⎝1 −

∑
(x,y)

Q′(x, y)P (x, y)

⎞
⎠;
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this expression should be minimised, i.e.,
∑

(x,y) Q′(x, y)P (x, y) should be max-
imised, under the restriction (14). Let us apply the Neyman–Pearson fundamen-
tal lemma ([7], Sect. 3.2, Theorem 1) using Q as the null and Q′ as the alternative
hypotheses. We can see that Ex,τ |Γε

A(x)| takes its maximal value if and only if
there exist thresholds k1 = k1(ε), k2 = k2(ε), and k3 = k3(ε) such that:

– Q{(x, y) | Q(y | x) < k1} < ε ≤ Q{(x, y) | Q(y | x) ≤ k1},
– k2 < k3,
– A(x, y) < k2 if Q(y | x) < k1,
– k2 < A(x, y) < k3 if Q(y | x) = k1,
– A(x, y) > k3 if Q(y | x) > k1.

This will be true for all ε if and only if Q(y | x) is a function of A(x, y) (meaning
that there exists a function F such that, for all (x, y), Q(y | x) = F (A(x, y))).
This completes the proof of R(CP) = O(N).

Next we show that O(N) = O(S). We will use the equality between the
extreme terms of

∑
y∈Y

p(x, y) =
∑
y∈Y

∫ 1

0

1{p(x,y)>ε} dε

=
∫ 1

0

∑
y∈Y

1{p(x,y)>ε} dε =
∫ 1

0

|Γε(x)| dε, (15)

which implies

Ex,τ

∑
y∈Y

p(x, y) =
∫ 1

0

Ex,τ |Γε(x)| dε. (16)

We can see that A ∈ O(S) whenever A ∈ O(N): indeed, any N-optimal idealised
conformity measure minimises the expectation Ex,τ |Γε(x)| on the right-hand
side of (16) for all ε simultaneously, and so minimises the whole right-hand-side,
and so minimises the left-hand-side. On the other hand, A /∈ O(S) whenever
A /∈ O(N): indeed, if an idealised conformity measure fails to minimise the
expectation Ex,τ |Γε(x)| on the right-hand side of (16) for some ε, it fails to
do so for all ε in a non-empty open interval (because of the right-continuity of
Ex,τ |Γε(x)| in ε, which follows from the Lebesgue dominated convergence the-
orem and the right-continuity of |Γε(x)| = |Γε(x, τ)| in ε for a fixed τ), and
therefore, it does not minimise the right-hand side of (16) (any N-optimal ide-
alised conformity measure, such as the CP idealised conformity measure, will give
a smaller value), and therefore, it does not minimise the left-hand side of (16).

The equality O(S) = O(OF) follows from

Ex,τ

∑
y

p(x, y) = E(x,y),τ

∑
y′ �=y

p(x, y′) +
1
2
,

where we have used the fact that p(x, y) is distributed uniformly on [0, 1] when
((x, y), τ) ∼ Q × U (see [14]).
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Finally, we notice that O(N) = O(OE). Indeed, for any significance level ε,

Ex,τ |Γε(x)| = E(x,y),τ |Γε(x) \ {y}| + (1 − ε),

again using the fact that p(x, y) is distributed uniformly on [0, 1] and so
P(x,y),τ (y ∈ Γε(x)) = 1 − ε. 	

Remark 1. The statement O(S) = R(CP) of Theorem 1 can be generalised to
the criterion Sφ preferring small values of

1
k

l+k∑
i=l+1

∑
y

φ(py
i )

(instead of (3)), where φ : [0, 1] → R is a fixed continuously differentiable strictly
increasing function, not necessarily the identity function. Namely, we still have
O(Sφ) = R(CP). Indeed, we can assume, without loss of generality, that φ(0) = 0
and φ(1) = 1 and replace (15) by

∑
y∈Y

φ(p(x, y)) =
∑
y∈Y

∫ 1

0

1{φ(p(x,y))>ε} dε =
∫ 1

0

∑
y∈Y

1{p(x,y)>φ−1(ε)} dε

=
∫ 1

0

∣∣∣Γφ−1(ε)(x)
∣∣∣ dε =

∫ 1

0

∣∣∣Γε′
(x)

∣∣∣ φ′(ε′) dε′,

where φ′ is the (continuous) derivative of φ, and then use the same argument as
before.

5 Criteria of Efficiency that are Not Probabilistic

Now we define the idealised analogues of the six criteria that are not set in italics
in Table 1. An idealised conformity measure A is:

– U-optimal if, for any idealised conformity measure B, we have either

Ex,τ min
y

max
y′ �=y

pA(x, y′) < Ex,τ min
y

max
y′ �=y

pB(x, y′)

or both
Ex,τ min

y
max
y′ �=y

pA(x, y′) = Ex,τ min
y

max
y′ �=y

pB(x, y′)

and
Ex,τ max

y
pA(x, y) ≤ Ex,τ max

y
pB(x, y);

– M-optimal if, for any idealised conformity measure B and any significance
level ε, we have either

Px,τ (|Γε
A(x)| > 1) < Px,τ (|Γε

B(x)| > 1)

or both
Px,τ (|Γε

A(x)| > 1) = Px,τ (|Γε
B(x)| > 1)

and
Px,τ (|Γε

A(x)| = 0) ≥ Px,τ (|Γε
B(x)| = 0);
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– F-optimal if, for any idealised conformity measure B, we have either

Ex,τ

(∑
y

pA(x, y) − max
y

pA(x, y)
)

< Ex,τ

(∑
y

pB(x, y) − max
y

pB(x, y)
)

or both

Ex,τ

(∑
y

pA(x, y) − max
y

pA(x, y)
)

= Ex,τ

(∑
y

pB(x, y) − max
y

pB(x, y)
)

and
Ex,τ max

y
pA(x, y) ≤ Ex,τ max

y
pB(x, y);

– E-optimal if, for any idealised conformity measure B and any significance
level ε, we have either

Ex,τ

(
(|Γε

A(x)| − 1)+
)

< Ex,τ

(
(|Γε

B(x)| − 1)+
)

or both
Ex,τ

(
(|Γε

A(x)| − 1)+
)

= Ex,τ

(
(|Γε

B(x)| − 1)+
)

and
Px,τ (|Γε

A(x)| = 0) ≥ Px,τ (|Γε
B(x)| = 0);

– OU-optimal if, for any idealised conformity measure B,

E(x,y),τ max
y′ �=y

pA(x, y′) ≤ E(x,y),τ max
y′ �=y

pB(x, y′);

– OM-optimal if, for any idealised conformity measure B and any significance
level ε,

P(x,y),τ (Γε
A(x) \ {y} �= ∅) ≤ P(x,y),τ (Γε

B(x) \ {y} �= ∅).

In the following three definitions we follow [14], Chap. 3. The predictability of
x ∈ X is

f(x) := max
y∈Y

Q(y | x).

A choice function ŷ : X → Y is defined by the condition

∀x ∈ X : f(x) = Q(ŷ(x) | x).

Define the signed predictability idealised conformity measure corresponding to
ŷ by

A(x, y) :=

{
f(x) if y = ŷ(x)
−f(x) if not;

a signed predictability (SP) idealised conformity measure is the signed pre-
dictability idealised conformity measure corresponding to some choice function.

For the following two theorems we will need to modify the notion of refine-
ment. Let R′(SP) be the set of all idealised conformity measures A such that
there exists an SP idealised conformity measure B that satisfies both (13) and

B(x, y1) = B(x, y2) =⇒ A(x, y1) = A(x, y2)

for all x ∈ X and y1, y2 ∈ Y.
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Theorem 2. O(U) = O(M) = R′(SP).

We omit the proofs of Theorems 2–4 in this version of the paper.
Define the MCP (modified conditional probability) idealised conformity mea-

sure corresponding to a choice function ŷ by

A(x, y) :=

{
Q(y | x) if y = ŷ(x)
Q(y | x) − 1 if not;

an MCP idealised conformity measure is an idealised conformity measure cor-
responding to some choice function; R′(MCP) is defined analogously to R′(SP)
but using MCP rather than SP idealised conformity measures.

Theorem 3. O(F) = O(E) = R′(MCP).

The modified signed predictability idealised conformity measure is defined by

A(x, y) :=

⎧⎪⎨
⎪⎩

f(x) if f(x) > 1/2 and y = ŷ(x)
0 if f(x) ≤ 1/2
−f(x) if f(x) > 1/2 and y �= ŷ(x),

where f is the predictability function; notice that this definition is unaffected by
the choice of the choice function. Somewhat informally and assuming |Y| > 2 (we
are in the situation of Theorem 1 when |Y| = 2), we define a set R′′(MSP) in the
same way as R′(MSP) (analogously to R′(SP)) except that for A ∈ R′′(MSP),
f(x) = 1/2, and y �= ŷ(x) we allow A(x, y) < A(x, ŷ(x)).

Theorem 4. If |Y| > 2, O(OU) = O(OM) = R′′(MSP).

Theorems 2–4 show that the six criteria that are not set in italics in Table 1
are not probabilistic (except for OU and OM when |Y| = 2, of course). Criteria
of efficiency that are not probabilistic are somewhat analogous to “improper
scoring rules” in probability forecasting (see, e.g., [2,4]). The optimal idealised
conformity measures for the criteria of efficiency given in this paper that are not
probabilistic have clear disadvantages, such as:

– They depend on the arbitrary choice of a choice function. In many cases
there is a unique choice function, but the possibility of non-uniqueness is still
awkward.

– They encourage “strategic behaviour” (such as ignoring the differences, which
may be very substantial, between potential labels other than ŷ(x) for a test
object x when using the M criterion).

However, we do not use the terminology “proper/improper” in the case of crite-
ria of efficiency for conformal prediction since it is conceivable that some non-
probabilistic criteria of efficiency may turn out to be useful.
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Fig. 1. Examples of hand-written digits in the USPS data set.

6 Empirical Study

In this section we demonstrate differences between two of our ε-free criteria, OF
(probabilistic) and U (standard but not probabilistic) on the USPS data set of
hand-written digits ([6]; examples of such digits are given in Fig. 1, which is a
subset of Fig. 2 in [6]). We use the original split of the data set into the training
and test sets. Our programs are written in R, and the results presented in the
figures below are for the seed 0 of the R random number generator; however, we
observe similar results in experiments with other seeds.

The problem is to classify hand-written digits, the labels are elements of
{0, . . . , 9}, and the objects are elements of R256, where the 256 numbers represent
the brightness of pixels in 16×16 pictures. We normalise each object by applying
the same affine transformation (depending on the object) to each of its pixels
making the mean brightness of the pixels in the picture equal to 0 and making
its standard deviation equal to 1. The sizes of the training and test sets are 7291
and 2007, respectively.

We evaluate six conformal predictors using the two criteria of efficiency. Fix
a metric on the object space R

256; in our experiments we use tangent distance
(as implemented by Daniel Keysers) and Euclidean distance. Given a sequence
of examples (z1, . . . , zn), zi = (xi, yi), we consider the following three ways of
computing conformity scores: for i = 1, . . . , n,

– αi :=
∑K

j=1 d �=
j /

∑K
j=1 d=

j , where d �=
j are the distances, sorted in the increasing

order, from xi to the objects in (z1, . . . , zn) with labels different from yi (so
that d �=

1 is the smallest distance from xi to an object xj with yj �= yi), and
d=

j are the distances, sorted in the increasing order, from xi to the objects in
(z1, . . . , zi−1, zi+1, . . . , zn) labelled as yi (so that d=

1 is the smallest distance
from xi to an object xj with j �= i and yj = yi). We refer to this confor-
mity measure as the KNN-ratio conformity measure; it has one parameter,
K, whose range is {1, . . . , 50} in our experiments (so that we always have
K � n).

– αi := Ni/K, where Ni is the number of objects labelled as yi among the K
nearest neighbours of xi (when dK = dK+1 in the ordered list d1, . . . , dn−1 of
the distances from xi to the other objects, we choose the nearest neighbours
randomly among zj with yj = yi and with xj at a distance of dK from xi).
This conformity measure is a KNN counterpart of the CP idealised conformity
measure (cf. (12)), and we will refer to it as the KNN-CP conformity measure;
its parameter K is in the range {2, . . . , 50} in our experiments.
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Fig. 2. Top plot: average unconfidence for the USPS data set (for different values
of parameters). Bottom plot: average observed fuzziness for the USPS data set. In
black-and-white the lines of the same type (dotted, solid, or dashed) corresponding
to Euclidean and tangent distances can always be distinguished by their position: the
former is above the latter.

– finally, we define fi := maxy(Ny
i /K), where Ny

i is the number of objects
labelled as y among the K nearest neighbours of xi, ŷi ∈ arg maxy(Ny

i /K)
(chosen randomly from arg maxy(Ny

i /K) if |arg maxy(Ny
i /K)| > 1), and

αi :=

{
fi if yi = ŷi

−fi otherwise;

this is the KNN-SP conformity measure.
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The three kinds of conformity measures combined with the two metrics (tangent
and Euclidean) give six conformal predictors.

Figure 2 gives the average unconfidence (4) (top panel) and the average
observed fuzziness (9) (bottom panel) over the test sequence (so that k = 2007)
for a range of the values of the parameter K. Each of the six lines corresponds
to one of the conformal predictors, as shown in the legends; in black-and-white
the lines of the same type (dotted, solid, or dashed) corresponding to Euclidean
and tangent distances can always be distinguished by their position: the former
is above the latter.

The best results are for the KNN-ratio conformity measure combined with
tangent distance for small values of the parameter K. For the two other types
of conformity measures their relative evaluation changes depending on the kind
of a criterion used to measure efficiency: as expected, the KNN-CP conformal
predictors are better under the OF criterion, whereas the KNN-SP conformal
predictors are better under the U criterion (cf. Theorems 1 and 2), if we ignore
small values of K (when the probability estimates Ny

i /K are very unreliable).

7 Conclusion

This paper investigates properties of various criteria of efficiency of conformal
prediction in the case of classification. It would be interesting to transfer, to the
extent possible, this paper’s results to the cases of:

Regression. The sum of p-values (as used in the S criterion) now becomes
the integral under the p-value as function of the label y of the text example,
and the size of a prediction set becomes its Lebesgue measure (considered,
as already mentioned, in [9] in the non-idealised case). Whereas the latter is
typically finite, ensuring the convergence of the former is less straightforward.
Anomaly detection. A first step in this direction is made in [13], which
considers the average p-value as its criterion of efficiency.

Other natural directions of further research include:

– Extensions of our results to infinite, including non-discrete, X.
– Extensions to Mondrian conformal predictors. In the case of label-conditional

conformal predictors and probabilistic criteria, this was started in [15].
– Extensions to non-idealised conformal predictors.
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Abstract. We construct a universal prediction system in the spirit of
Popper’s falsifiability and Kolmogorov complexity. This prediction sys-
tem does not depend on any statistical assumptions, but under the IID
assumption it dominates, although in a rather weak sense, conformal
prediction.

Keywords: Conformal prediction · Prediction systems · Probability-
free · Universal prediction

Not for nothing do we call the laws of nature “laws”:

the more they prohibit, the more they say.
———————————————————————

The Logic of Scientific Discovery
Karl Popper

1 Introduction

In this paper we consider the problem of predicting labels, assumed to be binary,
of a sequence of objects. This is an online version of the standard problem
of binary classification. Namely, we will be interested in infinite sequences of
observations

ω = (z1, z2, . . .) = ((x1, y1), (x2, y2), . . .) ∈ (X × 2)∞

(also called infinite data sequences), where X is an object space and 2 := {0, 1}.
For simplicity, we will assume that X is a given finite set of, say, binary strings
(the intuition being that finite objects can always be encoded as binary strings).

Finite sequences σ ∈ (X × 2)∗ of observations will be called finite data
sequences. If σ1, σ2 are two finite data sequences, their concatenation will be
denoted (σ1, σ2); σ2 is also allowed to be an element of X × 2. A standard par-
tial order on (X× 2)∗ is defined as follows: σ1 � σ2 means that σ1 is a prefix of
σ2; σ1 � σ2 means that σ1 � σ2 and σ1 �= σ2.

We use the notation N := {1, 2, . . .} for the set of positive integers and
N0 := {0, 1, 2, . . .} for the set of nonnegative integers. If ω ∈ (X × 2)∞ and
n ∈ N0, ωn ∈ (X × 2)n is the prefix of ω of length n.
c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 40–47, 2016.
DOI: 10.1007/978-3-319-33395-3 3
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A situation is a concatenation (σ, x) ∈ (X×2)∗ ×X of a finite data sequence
σ and an object x; our task in the situation (σ, x) is to be able to predict the label
of the new object x given the sequence σ of labelled objects. Given a situation
s = (σ, x) and a label y ∈ 2, we let (s, y) stand for the finite data sequence
(σ, (x, y)), which is the concatenation of s and y.

2 Laws of Nature as Prediction Systems

According to Popper’s [1] view of the philosophy of science, scientific laws of
nature should be falsifiable: if a finite sequence of observations contradicts such
a law, we should be able to detect it. (Popper often preferred to talk about
scientific theories or statements instead of laws of nature.) The empirical content
of a law of nature is the set of its potential falsifiers ([1], Sects. 31 and 35). We
start from formalizing this notion in our toy setting, interpreting the requirement
that we should be able to detect falsification as that we should be able to detect
it eventually.

Formally, we define a law of nature L to be a recursively enumerable prefix-
free subset of (X × 2)∗ (where prefix-free means that σ2 /∈ L whenever σ1 ∈ L
and σ1 � σ2). Intuitively, these are the potential falsifiers, i.e., sequences of
observations prohibited by the law of nature. The requirement of being recur-
sively enumerable is implicit in the notion of a falsifier, and the requirement
of being prefix-free reflects the fact that extensions of prohibited sequences of
observations are automatically prohibited and there is no need to mention them
in the definition.

A law of nature L gives rise to a prediction system: in a situation s = (σ, x)
it predicts that the label y ∈ 2 of the new object x will be an element of

ΠL(s) := {y ∈ 2 | (s, y) /∈ L} . (1)

There are three possibilities in each situation s:

– The law of nature makes a prediction, either 0 or 1, in situation s when the
prediction set (1) is of size 1, |ΠL(s)| = 1.

– The prediction set is empty, |ΠL(s)| = 0, which means that the law of nature
has been falsified.

– The law of nature refrains from making a prediction when |ΠL(s)| = 2. This
can happen in two cases:
• the law of nature was falsified in past: σ′ ∈ L for some σ′ � σ;
• the law of nature has not been falsified as yet.

3 Strong Prediction Systems

The notion of a law of nature is static; experience tells us that laws of nature
eventually fail and are replaced by other laws. Popper represented his picture of
this process by formulas (“evolutionary schemas”) similar to

PS1 → TT1 → EE1 → PS2 → · · · (2)
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(introduced in his 1965 talk on which [2], Chap. 6, is based and also discussed in
several other places in [2,3]; in our notation we follow Wikipedia). In response to
a problem situation PS, a tentative theory TT is subjected to attempts at error
elimination EE, whose success leads to a new problem situation PS and scientists
come up with a new tentative theory TT, etc. In our toy version of this process,
tentative theories are laws of nature, problem situations are situations in which
our current law of nature becomes falsified, and there are no active attempts at
error elimination (so that error elimination simply consists in waiting until the
current law of nature becomes falsified).

If L and L′ are laws of nature, we define L � L′ to mean that for any σ′ ∈ L′

there exists σ ∈ L such that σ � σ′. To formalize the philosophical picture (2),
we define a strong prediction system L to be a nested sequence L1 � L2 � · · ·
of laws of nature L1, L2, . . . that are jointly recursively enumerable, in the sense
of the set {(σ, n) ∈ (X × 2)∗ × N | σ ∈ Ln} being recursively enumerable.

The interpretation of a strong prediction system L = (L1, L2, . . .) is that L1

is the initial law of nature used for predicting the labels of new objects until it is
falsified; as soon as it is falsified we start looking for and then using for prediction
the following law of nature L2 until it is falsified in its turn, etc. Therefore, the
prediction set in a situation s = (σ, x) is natural to define as the set

ΠL(s) := {y ∈ 2 | (s, y) /∈ ∪∞
n=1Ln} . (3)

As before, it is possible that ΠL(s) = ∅.
Fix a situation s = (σ, x) ∈ (X×2)∗ ×X. Let n = n(s) be the largest integer

such that s has a prefix in Ln. It is possible that n = 0 (when s does not have
such prefixes), but if n ≥ 1, s will also have prefixes in Ln−1, . . . , L1, by the
definition of a strong prediction system. Then Ln+1 will be the current law of
nature; all earlier laws, Ln, Ln−1, . . . , L1, have been falsified. The prediction (3)
in situation s is then interpreted as the set of all observations y that are not
prohibited by the current law Ln+1.

In the spirit of the theory of Kolmogorov complexity, we would like to have a
universal prediction system. However, we are not aware of any useful notion of a
universal strong prediction system. Therefore, in the next section we will introduce
a wider notion of a prediction system that does not have this disadvantage.

4 Weak Prediction Systems and Universal Prediction

A weak prediction system L is defined to be a sequence (not required to be
nested in any sense) L1, L2, . . . of laws of nature Ln ⊆ (X× 2)∗ that are jointly
recursively enumerable.

Remark 1. Popper’s evolutionary schema (2) was the simplest one that he con-
sidered; his more complicated ones, such as
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PS1

↗ TTa → EEa → PS2a → · · ·
→ TTb → EEb → PS2b → · · ·
↘ TTc → EEc → PS2c → · · ·

(cf. [2], pp. 243 and 287), give rise to weak rather than strong prediction systems.

In the rest of this paper we will omit “weak” in “weak prediction system”.
The most basic way of using a prediction system L for making a prediction in
situation s = (σ, x) is as follows. Decide on the maximum number N of errors
you are willing to make. Ignore all Ln apart from L1, . . . , LN in L, so that the
prediction set in situation s is

ΠN
L (s) := {y ∈ 2 | ∀n ∈ {1, . . . , N} : (s, y) /∈ Ln} .

Notice that this way we are guaranteed to make at most N mistakes: making a
mistake eliminates at least one law in the list {L1, . . . , LN}.

Similarly to the usual theory of conformal prediction, another way of pack-
aging L’s prediction in situation s is, instead of choosing the threshold (or level)
N in advance, to allow the user to apply her own threshold: in a situation s, for
each y ∈ 2 report the attained level

πs
L(y) := min {n ∈ N | (s, y) ∈ Ln} (4)

(with min ∅ := ∞). The user whose threshold is N will then consider y ∈ 2 with
πs

L(y) ≤ N as prohibited in s. Notice that the function (4) is upper semicom-
putable (for a fixed L).

The strength of a prediction system L = (L1, L2, . . .) at level N is determined
by its N -part

L≤N :=
N⋃

n=1

Ln.

At level N , the prediction system L prohibits y ∈ 2 as continuation of a situation
s if and only if (s, y) ∈ L≤N .

The following lemma says that there exists a universal prediction system,
in the sense that it is stronger than any other prediction system if we ignore a
multiplicative increase in the number of errors made.

Lemma 1. There is a universal prediction system U , in the sense that for any
prediction system L there exists a constant C > 0 such that, for any N ,

L≤N ⊆ U≤CN . (5)

Proof. Let L1,L2, . . . be a recursive enumeration of all prediction systems; their
component laws of nature will be denoted (Lk

1 , L
k
2 , . . .) := Lk. For each n ∈ N,

define the nth component Un of U = (U1, U2, . . .) as follows. Let the binary
representation of n be

(a, 0, 1, . . . , 1), (6)
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where a is a binary string (starting from 1) and the number of 1 s in the 1, . . . , 1
is k − 1 ∈ N0 (this sentence is the definition of a = a(n) and k = k(n) in terms
of n). If the binary representation of n does not contain any 0s, a and k are
undefined, and we set Un := ∅. Otherwise, set

Un := Lk
A,

where A ∈ N is the number whose binary representation is a. In other words, U
consists of the components of Lk, k ∈ N; namely, Lk

1 is placed in U as U3×2k−1−1

and then Lk
2 , L

k
3 , . . . are placed at intervals of 2k:

U3×2k−1−1+2k(i−1) = Lk
i , i = 1, 2, . . . .

It is easy to see that
Lk

≤N ⊆ U≤3×2k−1−1+2k(N−1), (7)

which is stronger than (5). ��
Let us fix a universal prediction system U . By K(L) we will denote the

smallest prefix complexity of the programs for computing a prediction system
L. The following lemma makes (5) uniform in L showing how C depends on L.

Lemma 2. There is a constant C > 0 such that, for any prediction system L
and any N , the universal prediction system U satisfies

L≤N ⊆ U≤C2K(L)N . (8)

Proof. Follow the proof of Lemma 1 replacing the “code” (0, 1, . . . , 1) for Lk

in (6) by any prefix-free description of Lk (with its bits written in the reverse
order). Then the modification

Lk
≤N ⊆ U≤2k′+1−1+2k′ (N−1)

of (7) with k′ := K(Lk) implies that (8) holds for some universal prediction
system, which, when combined with the statement of Lemma 1, implies that (8)
holds for our chosen universal prediction system U . ��

This is a corollary for laws of nature:

Corollary 1. There is a constant C such that, for any law of nature L, the
universal prediction system U satisfies

L ⊆ U≤C2K(L) . (9)

Proof. We can regard laws of nature L to be a special case of prediction systems
identifying L with L := (L,L, . . .). It remains to apply Lemma 2 to L setting
N := 1. ��
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We can equivalently rewrite (5), (8), and (9) as

ΠCN
U (s) ⊆ ΠN

L (s), (10)

ΠC2K(L)N
U (s) ⊆ ΠN

L (s), (11)

and

ΠC2K(L)

U (s) ⊆ ΠL(s), (12)

respectively, for all situations s. Intuitively, (10) says that the prediction sets
output by the universal prediction system are at least as precise as the prediction
sets output by any other prediction system L if we ignore a constant factor in
specifying the level N ; and (11) and (12) indicate the dependence of the constant
factor on L.

5 Universal Conformal Prediction under the IID
Assumption

Comparison of prediction systems and conformal predictors is hampered by the
fact that the latter are designed for the case where we have a constant amount
of noise for each observation, and so we expect the number of errors to grow
linearly rather than staying bounded. In this situation a reasonable prediction set
is ΠεN

L (s), where N is the number of observations in the situation s. For a small
ε using ΠεN

L (s) means that we trust the prediction system whose percentage of
errors so far is at most ε.

Up to this point our exposition has been completely probability-free, but
in the rest of this section we will consider the special case where the data are
generated in the IID manner. For simplicity, we will only consider computable
conformity measures that take values in the set Q of rational numbers.

Corollary 2. Let Γ be a conformal predictor based on a computable conformity
measure taking values in Q. Then there exists C > 0 such that, for almost all
infinite sequences of observations ω = ((x1, y1), (x2, y2), . . .) ∈ (X× 2)∞ and all
significance levels ε ∈ (0, 1), from some N on we will have

Π
CNε ln2(1+1/ε)
U ((ωN , xN+1)) ⊆ Γ ε((ωN , xN+1)). (13)

This corollary asserts that the prediction set output by the universal pre-
diction system is at least as precise as the prediction set output by Γ if we
increase slightly the significance level: from ε to Cε ln2(1 + 1/ε). It involves not
just multiplying by a constant (as is the case for (5) and (8)–(12)) but also the
logarithmic term ln2(1 + 1/ε).

It is easy to see that we can replace the C in (13) by C2K(Γ ), where C
now does not depend on Γ (and K(Γ ) is the smallest prefix complexity of the
programs for computing the conformity measure on which Γ is based).
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Proof (of Corollary 2). Let
ε′ := 2�log ε�+1,

where log stands for the base 2 logarithm. (Intuitively, we simplify ε, in the sense
of Kolmogorov complexity, by replacing it by a number of the form 2−m for an
integer m, and make it at least twice as large as the original ε.) Define a prediction
system (both weak and strong) L as, essentially, Γ ε′

; formally, L := (L1, L2, . . .)
and Ln is defined to be the set of all ωN , where ω ranges over the infinite data
sequences and N over N, such that the set

{
i ∈ {1, . . . , N} | yi /∈ Γ ε′

((ωi−1, xi))
}

is of size n and contains N . The prediction system L is determined by ε′, so that
K(L) does not exceed (apart from the usual additive constant) K(ε′). By the
standard validity property of conformal predictors ([6], Corollary 1.1), Hoeffd-
ing’s inequality, and the Borel–Cantelli lemma,

Πε′N
L ((ωN , xN+1)) ⊆ Γ ε((ωN , xN+1)) (14)

from some N on almost surely. By Lemma 2 (in the form of (11)),

ΠC12
K(ε′)ε′N

U ((ωN , xN+1)) ⊆ Πε′N
L ((ωN , xN+1)) (15)

for all N . The statement (13) of the corollary is obtained by combining (14),
(15), and

2K(ε′) ≤ C2 ln2(1 + 1/ε).

To check the last inequality, remember that ε′ = 2−m for an integer m, which
we assume to be positive, without loss of generality; therefore, our task reduces
to checking that

2K(m) ≤ C3 ln2(1 + 2m),

i.e.,
2K(m) ≤ C4m

2.

Since 2−K(m) is the universal semimeasure on the positive integers (see, e.g., [5],
Theorem 7.29), we even have

2K(m) ≤ C5m(log m)(log log m) · · · (log · · · log m),

where the product contains all factors that are greater than 1 (see [4],
Appendix A). ��

6 Conclusion

In this note we have ignored the computational resources, first of all, the required
computation time and space (memory). Developing versions of our definitions
and results taking into account the time of computations is a natural next step. In
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analogy with the theory of Kolmogorov complexity, we expect that the simplest
and most elegant results will be obtained for computational models that are
more flexible than Turing machines, such as Kolmogorov–Uspensky algorithms
and Schönhage machines.
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Abstract. The paper presents an application of Conformal Predictors
to a chemoinformatics problem of identifying activities of chemical com-
pounds. The paper addresses some specific challenges of this domain:
a large number of compounds (training examples), high-dimensionality
of feature space, sparseness and a strong class imbalance. A variant of
conformal predictors called Inductive Mondrian Conformal Predictor is
applied to deal with these challenges. Results are presented for several
non-conformity measures (NCM) extracted from underlying algorithms
and different kernels. A number of performance measures are used in
order to demonstrate the flexibility of Inductive Mondrian Conformal
Predictors in dealing with such a complex set of data.

Keywords: Conformal prediction · Confidence estimation · Chemoin-
formatics · Non-conformity measure

1 Introduction

Compound Activity Prediction is one of the key research areas of Chemoinfor-
matics. It is of critical interest for the pharmaceutical industry, as it promises
to cut down the costs of the initial screening of compounds by reducing the
number of lab tests needed to identify a bioactive compound. The focus is on
providing a set of potentially active compounds that is significantly “enriched”
in terms of prevalence of bioactive compounds compared to a purely random
sample of the compounds under consideration. The paper is an extension of our
work presented in [16].

While it is true that this objective in itself could be helped with the classical
machine learning techniques that usually provide a bare prediction, the hedged
predictions made by Conformal Predictors (CP) provide some additional infor-
mation that can be used advantageously in a number of respects.

First, CPs will supply the valid measures of confidence in the prediction of
bioactivities of the compounds. Second, they can provide prediction and confi-
dence for individual compounds. Third, they can allow the ranking of compounds
to optimize the experimental testing of given samples. Finally, the user can con-
trol the number of errors and other performance measures like precision and
recall by setting up a required level of confidence in the prediction.
c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 51–66, 2016.
DOI: 10.1007/978-3-319-33395-3 4
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2 Machine Learning Background

2.1 Conformal Predictors

Conformal Predictors described in [7,11,12] revolve around the notion of Con-
formity (or rather of Non-Conformity).

Intuitively, one way of viewing the problem of classification is to assign a label
ŷ to a new object x so that the example (x, ŷ) does not look out of place among
the training examples (x1, y1), (x2, y2), . . . , (x�, y�). To find how “strange” the
new example is in comparison with the training set, we use the Non-Conformity
Measure (NCM) to measure (x, ŷ).

The advantage of approaching classification in this way is that this leads to
a novel way to quantify the uncertainty of the prediction, under some rather
general hypotheses.

A Non-Conformity Measure can be extracted from any machine learning
algorithm, although there is no universal method to choose it. Note that we
are not necessarily interested in the actual classification resulting from such
“underlying” machine learning algorithm. What we are really interested in is an
indication of how “unusual” an example appears, given a training set.

Armed with an NCM, it is possible to compute for any example (x, y) a p-
value that reflects how good the new example from the test set fits (or conforms)
with the training set. A more accurate and formal statement is: for a chosen
ε ∈ [0, 1] it is possible to compute p-values for test objects so that they are
(in the long run) smaller than ε with probability at most ε. Note that the key
assumption here is that the examples in the training set and the test objects
are independent and identically distributed (in fact, even a weaker requirement
of exchangeability is sufficient).

The idea is then to compute for a test object a p-value of every possible
choice of the label.

Once the p-values are computed, they can be put to use in one of the following
ways:

– Given a significance level, ε, a region predictor outputs for each test object
the set of labels (i.e., a region in the label space) such that the actual label
is not in the set no more than a fraction ε of the times. If the prediction set
consists of more than one label, the prediction is called uncertain, whereas if
there are no labels in the prediction set, the prediction is empty.

– Alternatively, a forced prediction (chosen by the largest p-value) is given,
alongside with its credibility (the largest p-value) and confidence (the com-
plement to 1 of the second largest p-value).

2.2 Inductive Mondrian Conformal Predictors

In order to apply conformal predictors to both big and imbalanced datasets, we
combine two variants of conformal predictors from [7,12]: Inductive (to reduce
computational complexity) and Mondrian (to deal with imbalanced data sets)
Conformal Predictors.
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To combine the Mondrian Conformal Prediction with that of Inductive Con-
formal Prediction, we have to revise the definition of p-value for the Mondrian
case so that it incorporates the changes brought about by splitting the training
set and evaluating the αi only in the calibration set.

It is customary to split the training set at index h so that examples with
index i ≤ h constitute the proper training set and examples with index i > h
(and i ≤ �) constitute the calibration set.

The p-values for a hypothesis y�+1 = y about the label of x�+1 are defined as

p(y) =
|{i = h + 1, . . . , � + 1 : yi = y, αi ≥ α�+1}|

|{i = h + 1, . . . , � + 1 : yi = y}|
In other words, the formula above considers only αi associated with those exam-
ples in the calibration set that have the same label as that of the completion we
are currently considering (note that also α�+1 is included in the set of αi used
for the comparison). As in the previous forms of p-value, the fraction of such αi

that are greater than or equal to α�+1 is the p-value.
Finally, it is important to note that Inductive Conformal Predictors can be

applied under less restrictive conditions. The requirement of i.i.d. can in fact be
dropped for the proper training set, as the i.i.d. property is relevant only for the
populations on which we calculate and compare the αi, that is, the calibration
and testing set.

This will allow us to use NCM based on such methods as Cascade SVM
(described in Sect. 3.1), including a stage of splitting big data into parts.

3 Application to Compound Activity Prediction

To evaluate the performance of CP for Compound Activity Prediction in a real-
istic scenario, we sourced the data sets from a public-domain repository of High
Throughput assays, PubChem BioAssay [19].

The data sets on PubChem identify a compound with its CID (a unique
compound identifier that can be used to access the chemical data of the com-
pound in another PubChem database) and provide the result of the assay as
Active/Inactive as well as providing the actual measurements on which the result
was derived, e.g. viability (percentage of cells alive) of the sample after exposure
to the compound.

To apply machine learning techniques to this problem, the compounds must
be described in terms of a number of numerical attributes. There are several
approaches to do this. The one that was followed in this study is to compute
signature descriptors [6,13]. Each signature corresponds to the number of occur-
rences of a given labelled subgraph in the molecule graph, with subgraphs limited
to those with a given depth. In this exercise the signature descriptors1 had at

1 The signature descriptors and other types of descriptors (e.g. circular descriptors)
can be computed with the CDK Java package or any of its adaptations such as the
RCDK package for the R statistical software.
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most height 3. Examples can be found in [17]. The resulting data set is a sparse
matrix of attributes (the signatures, on the columns) and examples (the com-
pounds, on the rows).

We evaluated Conformal Predictors first with various underlying algorithms
on the smallest of the data sets and then with various data sets using the under-
lying algorithm that performed best in previous set of tests.

3.1 Underlying Algorithms

As a first step in the study, we set out to extract relevant non-conformity mea-
sures from different underlying algorithms: Support Vector Machines (SVM),
Nearest Neighbours, Näıve Bayes. The Non Conformity Measures for each of the
three underlying algorithms are listed in Table 1.

Table 1. The non conformity measures for the three underlying algorithms

Underlying Non conformity Comment

measure αi

SVM −yid(xi) (signed) distance from separating hyperplane

kNN
∑(k)

j �=i:yj=yi
d(xj , xi)

∑(k)
j �=i:yj �=yi

d(xj , xi)

here the summation is on the k smallest values of d(xj , xi)

Näıve Bayes −log p(yi = c|xi) p is the posterior probability estimated by Näıve Bayes

There are a number of considerations arising from the application of each of
these algorithms to Compound Activity Prediction.

SVM. The usage of SVM in this domain poses a number of challenges. First of
all, the number of training examples was large enough to create a problem for
our computational resources. The scaling of SVM to large data sets is indeed
an active research area [2,5,14,15], especially in the case of non-linear kernels2.
We turned our attention to a simple approach proposed by Graf et al. [9], called
Cascade SVM.

The sizes of the training sets considered here are too large to be handled
comfortably by generally available SVM implementations, such as libsvm [4].
The approach we follow could be construed as a form of training set editing.
Vapnik proved formally that it is possible to decompose the training into an
n-ary tree of SVM trainings. The first layer of SVMs is trained on training sets
obtained as a partition of the overall training set. Each SVM in the first layer
outputs its set of support vectors (SVs) which is generally smaller than the
training set. In the second layer, each SVM takes as training set the merging

2 In the case of linear SVM, it is possible to tackle the formulation of the quadratic
optimization problem at the heart of the SVM in the primal and solve it with tech-
niques such as Stochastic Gradient Descent or L-BFGS, which lend themselves well
to being distributed across an array of computational nodes.
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of n of the SVs sets found in the first layer. Each layer requires fewer SVMs.
The process is repeated until a layer requires only one SVM. The set of SVs
emerging from the last layer is not necessarily the same that would be obtained
by training on the whole set (but it is often a good approximation). If one wants
to obtain that set, the whole training tree should be executed again, but this
time the SVs obtained at the last layer would be merged into each of the initial
training blocks. A new set of SVs would then be obtained at the end of the tree
of SVMs. If this new set is the same as the one in the previous iteration, this is
the desired set. If not, the process is repeated once more. In [9] it was proved
that the process converges and that it converges to the same set of SVs that one
would obtain by training on the whole training set in one go.

To give an intuitive justification, the fundamental observation is that the
SVM decision function is entirely defined just by the Support Vectors. It is as
if these examples contained all the information necessary for the classification.
Moreover, if we had a training set composed only of the SVs, we would have
obtained the same decision function. So, one might as well remove the non-SVs
altogether from the training set.

In experiments discussed here, we followed a simplified approach. Instead of
a tree of SVMs, we opted for a linear arrangement as shown in Fig. 1.

Fig. 1. Linear Cascade SVM. At each step, the set of Support Vectors from the previous
stage is merged with a block of training examples from the partition of the original
training set. This is used as training set for an SVM, whose SVs are then fed to the
next stage.

While we have no theoretical support for this semi-online variant of the Cas-
cade SVM, the method appears to work satisfactorily in practice on the data
sets we used.
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The class imbalance was addressed with the use of per-class weighting of
the C hyperparameter, which results in a different penalization of the margin
violations. The per-class weight was set inversely proportional to the class rep-
resentation in the training set.

Another problem is the choice of an appropriate kernel. While we appreciated
the computational advantages of linear SVM, we also believed that it was not
necessarily the best choice for the specific problem. It can easily be observed that
the nature of the representation of the training objects (as discrete features) war-
ranted approaches similar to those used in Information Retrieval, where objects
are described in terms of occurrences of patterns (bags of words). The topic of
similarity searching in chemistry is an active one and there are many alternative
proposals (see [1]). We used as a kernel a notion called Tanimoto similarity.3 The
Tanimoto similarity extends the well-known Jaccard coefficient in the sense that
whereas the Jaccard coefficient considers only presence or absence of a pattern,
the Tanimoto similarity takes into account the counts of the occurrences.

To explore further the benefits of non-linear kernels, we also tried out a kernel
consisting of the composition the Tanimoto similarity with Gaussian RBF.

Table 2 provides the definitions of the kernels used in this study.

Table 2. SVM kernels definitions (where A = (a1, . . . , ad), B = (b1, . . . , bd) are two
objects, each described by a vector of d counts)

Tanimoto coefficient T (A, B) =
∑d

i=1 min(ai,bi)∑d
i=1(ai+bi)−

∑d
i=1 min(ai,bi)

Tanimoto with Gaussian RBF TG(A, B) = e
− |T (A,A)+T (B,B)−2T (A,B)|

γ

Näıve Bayes. Näıve Bayes and more specifically Multinomial Näıve Bayes are
widely regarded as effective classifiers when features are discrete (for instance,
in text classification), despite their relative simplicity. This made Multinomial
Näıve Bayes a natural choice for the problem at issue here.

In addition, Näıve Bayes has a potential of providing some guidance for
feature selection, via the computed posterior probabilities. This is of particular
interest in the domain of Compound Activity Prediction, as it may provide
insight as to the molecular structures that are associated with Activity in a
given assay. This knowledge could steer further testing in the direction of a class
of compounds with higher probability of Activity.

Nearest Neighbours. We chose Nearest Neighbours because of its good per-
formance in a wide variety of domains. In principle, the performance of Nearest
Neighbours could be severely affected by the high-dimensionality of the training
set (Table 3 shows how in one of the data sets used in this study the number of
attributes exceeds by ≈20 % the number of examples), but some preliminary small-
scale experiments did not show that this causes the “curse of dimensionality”.
3 See [8] for a proof that Tanimoto Similarity is a kernel.
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3.2 Tools and Computational Resources

The choice of the tools for these experiments was influenced primarily by the
exploratory nature of this work. For this reason, tools, programming languages
and environments that support interactivity and rapid prototyping were pre-
ferred to those that enable optimal CPU and memory efficiency.

The language adopted was Python 3.4 and the majority of programming
was done using IPython Notebooks in the Jupyter environment. The overall
format turned out to be very effective for capturing results (and for their future
reproducibility).

Several third-party libraries were used. The computations were run initially
on a local server (8 cores with 32GB of RAM, running OpenSuSE) and in later
stages on a supercomputer (the IT4I Salomon cluster located in Ostrava, Czech
Republic). The Salomon cluster is based on the SGI ICE X system and comprises
1008 computational nodes (plus a number of login nodes), each with 24 cores (2
12-core Intel Xeon E5-2680v3 2.5 GHz processors) and 128 GB RAM, connected
via high-speed 7D Enhanced hypercube InfiniBand FDR and Ethernet networks.
It currently ranks at #48 in the top500.org list of supercomputers and at #14
in Europe.4

Parallelization and computation distribution relied on the ipyparallel [3]
package, which is a high-level framework for the coordination of remote exe-
cution of Python functions on a generic collection of nodes (cores or separate
servers). While ipyparallel may not be highly optimized, it aims at provid-
ing a convenient environment for distributed computing well integrated with
IPython and Jupyter and has a learning curve that is not as steep as that of the
alternative frameworks common in High Performance Computing (OpenMPI, for
example). In particular, ipyparallel, in addition to allowing the start-up and
shut-down of a cluster comprising a controller and a number of engines where
the actual processing (each is a separate process running a Python interpreter)
is performed via integration with the job scheduling infrastructure present on
Salomon (PBS, Portable Batch System), took care of the details such as data
serialization/deserialization and transfer, load balancing, job tracking, exception
propagation, etc. thereby hiding much of the complexity of parallelization. One
key characteristic of ipyparallel is that, while it provides primitives for map()
and reduce(), it does not constrain the choice to those two, leaving the imple-
menter free to select the most appropriate parallel programming design patterns
for the specific problem (see [20] for a reference on the subject).

In this work, parallelization was exploited to speed up the computation of the
Gram matrix or of the decision function for the SVMs or the matrix of distances for
kNN. In either case, the overall task was partitioned in smaller chunks that were
then assigned to engines, which would then asynchronously return the result. Also,
parallelization was used for SVM cross-validation, but at a coarser granularity, i.e.
one engine per SVM training with a parameter. Data transfers were minimized by
making use of shared memory where possible and appropriate. A key speed-up was

4 According to https://www.sgi.com/company info/newsroom/press releases/2015/
september/salomon.html.

https://www.sgi.com/company_info/newsroom/press_releases/2015/september/salomon.html
https://www.sgi.com/company_info/newsroom/press_releases/2015/september/salomon.html
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achieved by using pre-computed kernels (computed once only) when performing
Cross-Validation with respect to the hyperparameter C.

3.3 Results

To assess the relative merits of the different underlying algorithms, we applied
Inductive Mondrian Conformal Predictors on data set AID827, whose charac-
teristics are listed in Table 3.

Table 3. Characteristics of the AID827 data set

Total number of examples 138,287

Number of features 165,786 High dimensionality

Number of non-zero entries 7,711,571

Density of the data set 0.034 % High sparsity

Active compounds 1,658 High imbalance (1.2 %)

Inactive compounds 136,629

Unique set of signatures 137,901 Low degeneracy

The test was articulated in 20 cycles of training and evaluation. In each
cycle, a test set of 10,000 examples was extracted at random. The remaining
examples were split randomly into a proper training set of 100,000 examples
and a calibration set with the balance of the examples (28,387).

During the SVM training, 5-fold stratified Cross Validation was performed at
every stage of the Cascade to select an optimal value for the hyperparameter C.
Also, per-class weights were assigned to cater for the high class imbalance in the
data, so that a higher penalization was applied to violators in the less represented
class.

In Multinomial Näıve Bayes too, Cross Validation was used to choose an
optimal value for the smoothing parameter.

The results are listed in Table 4, which presents the classification arising from
the region predictor for ε = 0.01. The numbers are averages over the 20 cycles
of training and testing.

Note that a compound is classified as Active (resp. Inactive) if and only if
Active (resp. Inactive) is the only label in the prediction set. When both labels
are in the prediction, the prediction is considered Uncertain.

It has to be noted at this stage that there does not seem to be an established
consensus on what the best performance criteria are in the domain of Compound
Activity Prediction (see for instance [10]), although Precision (fraction of actual
Actives among compounds predicted as Active) and Recall (fraction of all the
Active compounds that are among those predicted as Active) seem to be generally
relevant. In addition, it is worth pointing out that these (and many others) criteria
of performance should be considered as generalisations of classical performance cri-
teria since they include dependence of the results on the required confidence level.
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Table 4. CP results for AID827 with significance ε = 0.01. All results are averages
over 20 runs, using the same test sets of 10,000 objects across the different underlying
algorithms. “Active predicted Active” is the (average) count of actually Active test
examples that were predicted Active by Conformal Prediction. Uncertain predictions
occur when both labels are output by the region predictor. Empty predictions occur
when both labels can be rejected at the chosen significance level. For the specific
significance level chosen here, there were never empty predictions.

Underlying Active
pred.
Active

Inactive
pred.
Active

Inactive
pred.
Inactive

Active
pred.
Inactive

Empty
pred.

Uncertain

Näıve Bayes 38.20 104.30 183.30 1.10 0 9673.10

3NN 43.95 100.55 361.55 0.80 0 9493.15

Cascade SVM

- Linear 34.20 99.00 591.85 1.20 0 9273.75

- RBF kernel 47.20 101.80 1126.75 1.80 0 8722.45

- Tanimoto kernel 48.45 97.65 986.85 0.80 0 8866.25

- Tanimoto-RBF kernel 47.65 94.10 1044.90 0.95 0 8812.40

Table 5. CP results for AID827 using SVM with Tanimoto+RBF kernel for different
significance levels. The “Active Error Rate” is the ratio of “Active predicted Inactive”
to the total number of Active test examples. The “Inactive Error Rate” is the ratio of
“Inactive predicted Active” to the total number of Inactive test examples.

Significance Active
pred.
Active

Inactive
pred.
Active

Inactive
pred.
Inactive

Active
pred.
Inactive

Empty
pred.

Uncertain Active
Error
Rate

Inactive
Error
Rate

1% 47.65 94.10 1044.90 0.95 0.0 8812.40 0.82% 0.95%

5% 67.20 490.40 3091.75 5.20 0.0 6345.45 4.52% 4.96%

10% 76.15 999.25 4703.75 10.60 0.0 4210.25 9.22% 10.11%

15% 82.10 1484.85 6021.80 17.30 0.0 2393.95 15.04% 15.02%

20% 86.55 1982.25 6928.95 22.80 0.0 979.45 19.83% 20.05%

At the shown significance level of ε = 0.01, 34% of the compounds predicted
as active by Inductive Mondrian Conformal Prediction using Tanimoto composed
with Gaussian RBF were actually Active compared to a prevalence of Actives
in the data set of just 1.2%. At the same time, the Recall was ≈41 % (ratio of
Actives in the prediction to total Actives in the test set).

We selected Cascade SVM with Tanimoto+RBF as the most promising
underlying algorithm on the basis of the combination of its high Recall (for
Actives) and high Precision (for Actives), assuming that the intended applica-
tion is indeed to output a selection of compounds that has a high prevalence of
Active compounds.

Note that in Table 4 the values similar to ones of confusion matrix are calcu-
lated only for certain predictions. In this representation, the concrete meaning
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of the property of class-based validity can be clearly illustrated as in Table 5:
the two rightmost columns report the prediction error rate for each label, where
by prediction error we mean the occurrence of “the actual label not being in the
predictions set”. When there are no Empty predictions, the Active Error rate is
the ratio of the number of “Active predicted Inactive” to the number of Active
examples in the test set (which was 115 on average).

Figure 2 shows the test objects according to the base-10 logarithm of their
pactive and pinactive. The dashed lines represent the thresholds for p-value set
at 0.01, i.e. the significance value ε used in Table 4. The two dashed lines parti-
tion the plane in 4 regions, corresponding to the region prediction being Active
(pactive > ε and pinactive ≤ ε), Inactive (pactive ≤ ε and pinactive > ε), Empty
(pactive ≤ ε and pinactive ≤ ε), Uncertain (pactive > ε and pinactive > ε).

Fig. 2. Test objects plotted by the base-10 log of their pactive and pinactive. Note that
many test objects are overlapping. Note that some of the examples may have identical
p-values, so for example 1135 objects predicted as “Inactives” are presented as 4 points
on this plot.

As we said in Sect. 2.1, the alternative is forced prediction with individual
confidence and credibility.

It is clear that there are several benefits accruing from using Conformal
Predictors. For instance, a high p-value for the Active hypothesis might suggest
that Activity cannot be ruled out, but the same compound may exhibit also a
high p-value for the Inactive hypothesis, which would actually mean that neither
hypothesis could be discounted.

In this specific context it can be argued that the p-values for Active hypoth-
esis are more important. They can be used to rank the test compounds like it
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was done in [18] for ranking potential interaction. A high p-value for the Active
hypothesis might suggest that Activity cannot be ruled out. For example it is
possible to output the prediction list of all compounds with p-values above a
threshold ε = 0.01. A concrete activity which is not yet discovered will be cov-
ered by this list with probability 0.99. All the rest examples are classified as
Non-Active with confidence 0.99 or larger.

Special attention should be also paid to low credibility examples where both
p-values are small. Intuitively, low credibility means that either the training
set is non-random or the test object is not representative of the training set.
For such examples, the label assignment does not conform to the training data.
They may be considered as anomalies or examples of compound types not enough
represented in the training set. This may suggest that it would be beneficial to the
overall performance of the classifier to perform a lab test for those compounds
and include the results in training set. Typically credibility will not be low
provided the data set was generated independently from the same distribution:
the probability that credibility will be less than some threshold ε (such as 1 %)
is less than ε.

Finally, Conformal Predictors provide the user with the additional degree
of freedom of the significance or confidence level. By varying either of those
two parameters, a different trade-off between Precision and Recall or any of
the other metrics that are of interest can be chosen. Figure 3 illustrates this
point with two examples. The Precision and Recall shown in the two panes
were calculated on the test examples predicted Active which exceeded both a
Credibility threshold and a given the Confidence threshold. In the left pane, the
Credibility threshold was fixed and the Confidence threshold was varied; vice
versa in the right pane.

3.4 Application to Different Data Sets

We applied Inductive Conformal Predictors with underlying SVM using Tan-
imoto+RBF kernel to other data sets extracted from PubChem BioAssay to
verify if the same performance would be achieved for assays covering a range of

Fig. 3. Trade-off between Precision and Recall by varying credibility or confidence
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quite different biological targets and to what extent the performance would vary
with differences in training set size, imbalance, and sparseness of the training
set. The main characteristics of the data sets are reported in Table 6.

As in the previous set of experiments, 20 cycles of training and testing were
performed and the results averaged over them. In each cycle, a test set of 10,000
examples was set aside and the rest was split between calibration set (≈30,000)
and proper training set. The results are reported in Table 7.

It can be seen that five data sets differ in their hardness for machine learn-
ing some of the produce more uncertain predictions using the same algorithms,
number of examples and the same significance level.

Table 6. Data sets and their characteristics. Density refers to the percentage of non-
zero entries in the full matrix of ‘Number of Compounds × Number of Features’
elements

Data set Assay description Number of

compounds

Number of

features

Actives

(%)

Density

(%)

827 High throughput screen to

identify compounds that

suppress the growth of

cells with a deletion of the

PTEN tumor suppressor

138,287 165,786 1.2% 0.034%

1461 qHTS assay for antagonists of

the neuropeptide S

receptor: cAMP signal

transduction

208,069 211,474 1.11% 0.026%

1974 Fluorescence

polarization-based

counterscreen for RBBP9

inhibitors: primary

biochemical high

throughput screening assay

to identify inhibitors of the

oxidoreductase glutathione

S-transferase omega

1(GSTO1)

302,310 237,837 1.05% 0.024%

2553 High throughput screening of

inhibitors of transient

receptor potential cation

channel C6 (TRPC6)

305,308 236,508 1.06% 0.024%

2716 Luminescence microorganism

primary HTS to identify

inhibitors of the

SUMOylation pathway

using a temperature

sensitive growth reversal

mutant Mot1-301

298,996 237,811 1.02% 0.024%
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Table 7. Results of the application of Mondrian ICP with ε = 0.01 using SVM with
Tanimoto+RBF as underlying. Test set size: 10,000

DataSet Active
pred.
Active

Inactive
pred.
Active

Inactive
pred.
Inactive

Active
pred.
Inactive

Empty
pred.

Uncertain

827 47.65 94.10 1044.90 0.95 0 8812.40

1461 29.45 101.30 1891.10 1.20 0 7976.95

1974 62.50 97.40 880.85 1.00 0 8958.25

2553 34.00 101.00 337.90 1.00 0 9526.10

2716 3.55 98.20 97.00 1.00 0 9800.25

3.5 Mondrian ICP with Different εactive and εinactive

When applying Mondrian ICP, there is no constraint to use the same significance
ε for the two labels. There may be an advantage in allowing different “error”
rates for the two labels given that the focus might be in identifying Actives
rather than Inactives.

This allows to vary relative importance of the two kinds of errors. Validity
of Mondrian machines implies that the expected number of certain but wrong
predictions is bounded by εact for (true) actives and by εinact for (true) non-
actives. It is interesting to study its effect also on the precision and recall (within
certain prediction).

Fig. 4. Trade-off between Precision and Recall by varying εinact
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Fig. 5. Precision vs. Recall: three methods

Figure 4 shows the trade-off between Precision and Recall that results from
varying εinact.

For very low values of the significance ε, a large number of test examples
have pact > εact as well as pinact > εinact. For these test examples, we have an
‘Uncertain’ prediction.

As we increase εinact, fewer examples have a pinact larger than εinact. So
‘Inactive’ is not chosen any longer as a label for those examples. If they happen
to have a pact > εact, they switch from ’Uncertain’ to being predicted as ‘Active’
(in the other case, they would become ‘Empty’ predictions).

Figure 5 shows how Precision varies with Recall using three methods: varying
the threshold applied to the Decision Function of the underlying SVM, varying
the significance εinact for the Inactive class, varying the credibility. The three
methods give similar results.

4 Conclusions

This paper summarized a methodology of applying conformal prediction to big
and imbalanced data with several underlying methods like nearest neighbours,
Bayes, SVM and various kernels. The results have been compared from the point
of view of efficiency of various methods and various sizes of the data sets.

The paper also presents results of using Inductive Mondrian Conformal Pre-
dictors with different significance levels for different classes.

The most interesting direction of the future extension is to study the possible
strategies of active learning (or experimental design). In this paper one of the
criteria of performance is a number of uncertain predictions. It might be useful to
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select among them the compounds that should be checked experimentally first –
in other words the most “promising” compounds. How to select though may
depend on practical scenarios of further learning and on comparative efficiency
of different active learning strategies.
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Abstract. This article shows a conformal prediction application to dis-
ruption prediction from scratch. Considering data from ILW experimen-
tal campaigns (both hydrogen and deuterium campaigns), a one-layer
disruption predictor has been tested from scratch. The results show a rel-
evant improvement where the success rate (rate of disruptions predicted
correctly) increases and the false alarm rate (rate of non-disruptive dis-
charges misclassified) decreases, using conformal prediction (CP) rather
than conventional methodology from scratch. CP from scratch achieves
a success rate of 100 % with the first model and only one disruptive
discharge.

Keywords: SVM · Conformal predictor · Disruption · Nuclear fusion

1 Introduction

Disruptions are plasma instabilities which lead the loss of the confinement and
an abrupt drop of the plasma current [1,2]. The device is exposed to intense
heat loads when the confinement is lost, hence, the first wall and plasma facing
components can be seriously damaged by the high temperature and current.
For this reason, disruptions are a serious problem at tokamak devices for the
damage and the limit in the range of operation in current and density. Plasma
can disrupt suddenly in a few milliseconds without precursors, or several plasma
instabilities can finish disrupting in hundreds millisecond.

The concepts avoidance and mitigation are used to overcome disruptions. The
first term is related to the scenario development and the plasma operational space
free of disruptions [2,3], meanwhile the second term is referred to any action to
reduce the harmful effect of disruptions and achieve a safe plasma shut-down
[4–8]. Notwithstanding a successful avoidance and/or mitigation require an effi-
cient prediction, it means, to have a reliable real-time disruption predictor during
the experiments.

JET Contributors—See the Appendix of F. Romanelli et al., Proceedings of the 25th
IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.
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The prediction of the incoming disruption with enough time to carry out
mitigation actions plays an increasingly important role in the current and future
devices. Nowadays, the largest nuclear fusion device is JET (Joint European
Torus) until ITER (International Thermonuclear Experimental Reactor) oper-
ations begin. JET was operating with a Carbon fibre composite (CFC) wall
until it was replaced by the new metallic ITER-like wall (ILW). Currently the
closest approach to ITER is JET, unless the operational range is not the same.
Although the development of more robust operational scenarios has reduced the
JET disruption rate over the last decade from about 15–10 % to below 4% [9];
disruptions probably will not be completely avoidable. ITER aims to operate
with a disruption rate of 1% or less. This rate is big enough to cause large
damage on the device. To characterize plasma physics of disruption for their
prediction is not a trivial task. The complexity of developing a physic driven
system is due to the lack of theoretical knowledge on disruption phenomena, the
large number of parameters involved in this stability and the non linear relation
between them. Therefore, several data driven systems have been developed in
the last 15 years, mainly based on neural networks and support vector machines
(SVM), and they have been employed as an alternative approximation to detect
the phenomena. Machine learning techniques are highly adaptable to disrup-
tions because the instability can be considered as a classification problem. For
this reason, the majority of research on disruption prediction has been based
on data-driven models during the last years. Up to now, the data-driven archi-
tecture implemented in the real-time network of an experimental device that
has provided the best detection rates has been APODIS at JET [10]. APODIS
depend on a large database of past discharges to create models able to predict
disruptions. However, next generation of tokamaks such as ITER and DEMO
must be able to predict disruption from scratch, it means from the beginning of
the operation with an absolutely lack of past discharges. Recently, two different
works have dealt with the development of adaptive data-driven predictors from
scratch to learn from the incoming data with good results: APODIS architecture
from scratch [11] and probabilistic Venn’s predictor [12].

Following this line of research, this paper provides an approach from scratch
applying conformal prediction using a simple one-layer predictor reproducing a
possible ITER scenario.

2 Conformal Prediction Review

A. Gammerman et al. introduced conformal prediction (CP) in [13], assigning
values of confidence to predictions made by SVM. Then a complete theory on
CP was developed where prediction algorithms (nearest-neighbor, SVM, ridge
regression...) can be transformed into randomness tests and, therefore, be used
for producing hedge predictions. Given an initial data set and an error probability
ε, the new samples xn+1 are evaluated obtaining a prediction ŷ, which produces a
set of labels y that also contains the label yn+1 with probability 1−ε [14]. Firstly,
the concept of nonconformity measure is defined. It is a measure which represents
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how different is a new incoming sample from a bag of initial samples. Given a
nonconformity measure A and a subset Zn = z1, ..., zn, it can be calculated
how different is a new sample zn+1 from Zn. In [15], it can be seen that this
nonconformity value is computed as αn+1 = A(Zn, zn+1). However, the value of
αn+1 does not tell how different is the sample zn+1, so that it is necessary to
compare αn+1 with the nonconformity values α1, ..., αn from the samples of the
subset Zn. This comparison is called p-value:

#i = 1, ..., n : α1 ≥ αn + 1
n + 1

This fraction is the p-value of the sample zn+1. If this p-value is small, it
means close to 1/n + 1 , then zn+1 is nonconforming (an outlier); while if the
p-value is large, it means close to 1, then zn+1 is conforming. Nonconformity
measures can be computed in several different ways, and each one defines a con-
formal predictor. In a classification problem with k classes, the p-value for the
sample zn+1 has to be computed k times. Therefore, it is considered that sample
zn+1 belongs to each one of the k classes and there will be k p-values. According
to [16], the highest p-value, P1, determines the class predicted by the algorithm;
and the second highest p-value, P2, defines the confidence in prediction: P1 is the
credibility and 1−P2 is the confidence. The credibility serves as indicator of how
suitable the training data are for classifying the example; while the confidence
tells how likely each prediction is of being correct. This is the transductive CP
approach, where the label of sample zn+1 is directly predicted using the training
set. The computation is carried out for each test sample, and unfortunately it
means a high computational cost. On the other hand, the inductive approach,
extracts from the initial training set a general rule. This general rule is called
model or decision rule and it is used to carry out the prediction of the new incom-
ing samples. The CP is a transductive algorithm which can be highly inefficient
for large data sets, so that there is an inductive CP approach. Nevertheless, a
transductive approach is used in this work because disruption prediction from
scratch begins the analysis with absolutely lack of previous information.

3 Databases and One-layer Predictor

This study considers a database formed by discharges (37 non-intentional dis-
ruptions and 110 non-disruptive discharges) from the JET hydrogen exper-
imental campaign (September–October 2014) with the metallic ILW; and a
database formed by discharges (351 non-intentional disruptions and 892 non-
disruptive discharges) from the JET deuterium ILW experimental campaigns
(July–September 2013). Intentional disruptions have been discarded from the
database. Since they are programmed and forced to occur at a predefined instant
of a discharge, plasma does not evolve naturally and their analysis may mislead
a machine learning system.

Following previous studies [10,11,17], data have been processed calculating
feature vectors which contain 2 values per signal: the standard deviation of the
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Discrete Fourier Transform (discarding the DC component) computed over the
past 32 ms of each signal, and the mean value of the amplitude calculated for
that previous 32 ms. All signals have been processed following a strict real-time
simulation, which means that it can be exactly reproduced under online con-
ditions. The predictor chosen is the one-layer predictor obtained in [18]. This
predictor is based on SVM with RBF kernel using libsvm in Matlab. This pre-
dictor uses only 3 signals (it means 6 features): plasma current, mode lock and
plasma internal inductance. The disruptive samples considered correspond to
the last 64 ms before the disruption time, it means, two disruptive samples per
disruptive discharge ((64ms, 32ms], (32ms, Tdis]). On the other hand, the non-
disruptive samples selected are all samples from sample-23 until the last sample
per safe discharge.

4 From Scratch Methodology

Following previous works [10,11], the problem to be solved is a binary clas-
sification but this methodology can be extrapolated to multi-class problems.
The number of non-disruptive discharges is much higher than the number of
disruptive discharges. In this sense, the fusion databases to develop disruption
predictors are highly unbalanced. From scratch methodology trains models as
discharges are produced, this means that discharges are used in chronological
order as they occur. Regardless of the balanced or unbalanced data, it has to be
established when a retraining is required to improve the predictor.

The first model is obtained after the first disruption and, from that moment,
all discharges are analyzed in chronological order until the next missed alarm,
it means, the next disruption which has not been predicted correctly. After a
missed alarm, a new training set is created to incorporate new knowledge.

The approach selected in this work is unbalanced training data sets: it will
be taken all the disruptive and non-disruptive discharges available until this
moment. It is important to note that we are considering unbalanced number of
discharges, the number of samples used in each disruptive and non-disruptive
discharge follow the process explain previously.

5 ITER Scenario: One-layer Predictor from Scratch

In ITER views, the first operations will be carried out in hydrogen and helium
because these plasmas have a lower power threshold to create the first ITER
H-mode plasmas. At this point, an analysis from scratch, taking as the initial
campaign the JET hydrogen campaign (September–October 2014) and then the
rest ILW campaigns in chronological order (September 2011–September 2014),
is developed to test a possible application to ITER.

As explained previously in Sects. 3 and 4, the one-layer predictor has
been chosen to perform this analysis from scratch. Therefore, a first model is
trained when the first disruption happens. This model is used until a new dis-
ruption is missed, at this point a new model is trained with all the previous
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data (all previous non-disruptive discharges and non-intentional disruptions).
Hydrogen and deuterium campaigns have been tested from scratch separately.
It can be seen in Fig. 1 the ILW deuterium campaigns results, 24 models have
been developed (it means 24 missed alarms of 351 non-intentional disruptions)
reaching a success rate of 93.43% and a false alarm rate of 2.47%. On the other
hand, the performance on ILW hydrogen campaign, illustrated in Fig. 2, shows
an erratic behavior training 4 models for 36 non-intentional disruptions, reach-
ing a success rate of 91.67% and false alarm rate of 60.91%. Further analysis
should be done to analyze the increment of false alarm rate, notwithstanding
it can be understood as a consequence of the differences between hydrogen and
deuterium experimental campaigns; and the less amount of data available on
hydrogen campaign.

Fig. 1. Results for one-layer predictor from scratch on ILW deuterium campaigns. Red
line illustrates false alarm rate and blue line corresponds to success rate. Red/Blue
points correspond to disruptive discharges where a new model is trained. (Color figure
online)

6 ITER Scenario: One-layer Conformal Predictor from
Scratch

The previous section shows on hydrogen campaign from scratch a success rate
of 91.67% and false alarm rate of 60.91%. The high false alarm rate means a
bad performance; consequently, conformal predictor framework has been applied
on this problem. The one-layer predictor is applied using transductive conformal
prediction. The non-conformity measure will be the distance from the separating
hyper plane, in the case of libsvm it will be the variable called decision values:

αi =
{−|D(xi)| if xi is well classified

|D(xi)| otherwise
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Fig. 2. Results for one-layer predictor from scratch on ILW hydrogen campaigns. Red
line illustrates false alarm rate and blue line corresponds to success rate. Red/Blue
points correspond to disruptive discharges where a new model is trained. (Color figure
online)

Each new incoming sample is considered firstly as non-disruptive and then
as disruptive following the theory explained in Sect. 2:

Label prediction: = label of largest p-value.
Credibility: = Largest p-value (max(pyj), j = 1, ...,M).
Confidence: = 1−2nd largest p-value.

Fig. 3. Results for one-layer CP from scratch on ILW hydrogen campaigns. Green line
represents 30 ms before the disruption time. It can be seen that 100 % of success rate
is achieved with a warning time larger than 30 ms before disruption time (Color figure
online).
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In this framework, the one-layer CP only needs one model, it means only one
disruptive discharge, to reach a success rate of 100% (36/36) with a false alarm
rate of 20% (36/110), see Fig. 3. The 100% of the cases are predicted with a
warning time larger than 30 ms before disruption time, it can be seen clearly in
Fig. 3, where the green line represents 30 ms before the disruption time. Despite
the improvement on the results, the false alarm rate is still high. It is important
to note that the methodology from scratch chosen in this study, retrains a model
every missed alarm. Future work is proposed in the following section to minimize
false alarm rate.

7 Discussion and Future Work

ITER cannot wait for several disruptions to have a reliable predictor. Further-
more, current ITER requirements aims a success rate ≥ 95% and minimize
the number of false alarms. This study provides a first ITER scenario on disrup-
tion prediction. The performance of one-layer predictor from scratch shows good
results in terms of success rate and false alarm rate during deuterium campaigns.
However, the performance on hydrogen campaigns reaches a good success rate
but high false alarm rate. The first results using CP from scratch in disruption
prediction show a notable improvement: the success rate increases until 100%
while false alarm decreases from 60% to 20% with no retraining. Only the first
model is necessary under retraining conditions stablished: the system trains a
new model every missed alarm. This study is being extended to the rest of the
ILW campaigns in order to test the performance of CP from scratch with larger
amount of data.

On the other hand, as mentioned previously in Sect. 6, CP from scratch on
hydrogen campaigns obtains high success rate and reduces the false alarm rate
from 60% to 20%. This rate is still high for ITER, however due to from scratch
methodology chosen (a new model is trained after every missed alarm), the false
alarm rate could be improved considering false alarms as retraining condition.
For this reason, it is being studied the use of credibility and confidence as feature
selection technique for disruptive and non-disruptive samples to improve the
results.
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Abstract. In a previous large-scale empirical evaluation of conformal
regression approaches, random forests using out-of-bag instances for cal-
ibration together with a k-nearest neighbor-based nonconformity mea-
sure, was shown to obtain state-of-the-art performance with respect to
efficiency, i.e., average size of prediction regions. However, the use of the
nearest-neighbor procedure not only requires that all training data have
to be retained in conjunction with the underlying model, but also that a
significant computational overhead is incurred, during both training and
testing. In this study, a more straightforward nonconformity measure
is investigated, where the difficulty estimate employed for normaliza-
tion is based on the variance of the predictions made by the trees in
a forest. A large-scale empirical evaluation is presented, showing that
both the nearest-neighbor-based and the variance-based measures signif-
icantly outperform a standard (non-normalized) nonconformity measure,
while no significant difference in efficiency between the two normalized
approaches is observed. Moreover, the evaluation shows that state-of-the-
art performance is achieved by the variance-based measure at a computa-
tional cost that is several orders of magnitude lower than when employing
the nearest-neighbor-based nonconformity measure.

Keywords: Conformal prediction · Nonconformity measures ·
Regression · Random forests

1 Introduction

When employing the conformal prediction (CP) framework [13], the probabil-
ity of making incorrect predictions is bounded by a user-provided confidence
threshold. Rather than just providing a single bound on the prediction error for
examples drawn from the underlying distribution, CP allows for providing dif-
ferent bounds for different instances, something which may be valuable in many
c© Springer International Publishing Switzerland 2016
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different scenarios. For example, in the medical domain, the ability to assess the
confidence in predictions related to individual patients, rather than at the group
level, may be crucial input for decisions concerning alternative treatments for a
specific patient.

CP relies on real-valued functions, called nonconformity measures, that pro-
vide estimates for how different a new example is from a set of old examples. It
is possible to design many different nonconformity functions for a specific pre-
dictive model, and each will result in a different conformal predictor. All such
conformal predictors will be valid i.e., the probability of excluding the correct
label will be less than one minus the confidence level. However, there may be
significant differences in terms of efficiency, i.e., the sizes of output prediction
regions, meaning that the informativeness of the output of different conformal
predictors may vary substantially. For classification, efficiency is often measured
as the (average) number of labels present in the prediction sets, while for regres-
sion, which is the focus of this paper, efficiency is most commonly measured as
the (average) size of the intervals.

CP was originally introduced as a transductive approach [5], which requires
the learning of a new model for each new test instance to be predicted. Since this
in many cases may be computationally prohibitive, inductive conformal predic-
tion (ICP) was suggested [13]. In ICP, which is the focus of this study, a single
model is learned from the training data and that model is then used for pre-
dicting all test instances. In ICP, however, the calculation of the nonconformity
scores (normally) requires comparing predicted values with true target values
not seen during training, and the standard procedure to achieve this is to set
aside a separate subset of the training examples, called the calibration set. How-
ever, when the underlying model is an ensemble constructed using bagging, such
as a random forest [3], there is also an option to use out-of-bag estimates for the
calibration, effectively allowing all training data to be used for constructing the
underlying model, something which has been exploited in the context of ICP for
bagged ANNs [7] and random forests [6].

Until recently, most studies on ICP conformal regression have focused on
one specific underlying model, using a limited number of data sets, making
them serve mainly as proofs-of-concept rather than allowing for drawing sta-
tistically valid conclusions; see e.g., [8,10]. The apparent need for larger studies
evaluating techniques for producing efficient conformal predictors, motivated the
study in [6], in which the use of a random forest as the underlying model was
compared to existing state-of-the-art conformal regressors, based on neural net-
works [9] and k-nearest neighbors [11]. A number of nonconformity measures
were investigated, including the option to use out-of-bag estimates for the nec-
essary calibration. The results in [6] showed that for almost all confidence levels
and using both standard and normalized nonconformity functions, a random
forest conformal predictor calibrated using a normalized nonconformity function
based on out-of-bag errors of neighboring instances, produced significantly more
efficient conformal predictors than the existing alternatives.

However, the use of a nonconformity measure based on the k nearest neigh-
bors requires that access has to be provided to all training instances even at the
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time the model is deployed, something which occasionally may limit the useful-
ness of the approach, e.g., when there are size constraints, such as on mobile
devices, or when data is highly sensitive and may not be re-distributed. An even
more important constraint may be the computation time, both for training and
testing. The computational cost of calculating the average error of the k nearest
neighbors for each example in the training set is quadratic in the number of
examples, hence incurring a substantial additional cost for employing the con-
formal framework, which may be a limiting factor in particular when handling
large training sets. Even for testing, there is an additional cost when using the
nearest neighbor nonconformity measure, since the distance of each test instance
to all training instances needs to be calculated. To increase the applicability of
conformal regression using random forests, there is hence a need for noncon-
formity measures with lower computational cost. One such candidate approach
is to estimate the difficulty of an instance, not by averaging the errors of its
neighbors, but by utilizing the fact that each prediction of a random forest is
formed by averaging votes of the individual trees in the forest. For difficult cases,
one would expect a larger degree of disagreement among the trees, i.e., a higher
variance among the individual predictions, than for easier cases. In other words,
the variance could be used as an estimate of the difficulty. In fact, this idea is not
entirely novel, but was already investigated for k-nearest neighbor regressors in
[11], where the variance of the target value of the k neighbors was one of several
proposed estimates of difficulty. The main question of this study is whether or
not this is an effective approach for forests of regression trees.

In the next section, we formalize the conformal regression framework. In
Sect. 3, we describe the current state-of-the-art approach for conformal regres-
sion, i.e., random forests using out-of-bag errors of neighboring instances, as
well as the proposed approach, which instead of employing the nearest neigh-
bor procedure uses the variance of the predictions made by the individual trees
to normalize the prediction regions. The setup for, and the results from, the
empirical investigation are presented in Sect. 4. Finally, we summarize the main
conclusions from the study and outline directions for future work in Sect. 5.

2 Background

Predictions of a conformal regressor take the form of real-valued intervals (a, b),
where P (a ≤ y ≤ b) ≥ 1 − δ for a test pattern x with true output value y
and a user-specified significance level δ. To produce such prediction intervals,
a conformal regressor utilizes a nonconformity measure, which is a real-valued
function that measures the strangeness of an example (x, y). This nonconfor-
mity measure is typically based on the prediction error of a traditional machine
learning model, called the underlying model of the conformal regressor. Based on
the nonconformity scores of examples with known labels, a conformal predictor
uses hypothesis testing to reject (or fail to reject) tentative output values ỹ ∈ R

at significance δ. For regression problems, the nonconformity measure is most
often simply the absolute prediction error [9–11],
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αi = A(xi, yi, h) = |yi − ŷi| = |yi − h(xi)|, (1)

where h is the underlying model trained on the problem in question, e.g., a
regression tree, a neural network or an ensemble model.

To train an inductive conformal regressor, the following procedure is normally
used:

1. Divide the training set Z = {(x1, y1), ..., (xl, yl)} into two disjoint subsets Zt

(a proper training set) and Zc (a calibration set):
– Zt = {(x1, y1), ..., (xm, ym)}
– Zc = {(xm+1, ym+1), ..., (xl, yl)}

2. Train the underlying model h using Zt.
3. Use the nonconformity measure, e.g. (1), to measure the nonconformity of

the examples in Zc, obtaining a list, sorted in descending order, of calibration
scores S = α1, ..., αq where q = |Zc|.
When a new test instance xj arrives, a prediction region is constructed as

follows:

1. Obtain a prediction ŷj = h(xj).
2. Find the calibration score αs(δ) where s(δ) = �δ(q + 1)�.
3. Using the (partial) inverse of the nonconformity measure, obtain the largest

error that is consistent with δ, i.e., A−1(αs(δ)). This is the maximum error
made by h on xj with confidence 1 − δ.

If the nonconformity measure in (1) is used, the predictive step simply trans-
lates into a prediction region for xj being constructed as

Ŷ δ
j = ŷj ± αs(δ), (2)

since, with probability 1 − δ, the underlying model h will not make an absolute
prediction error greater than αs(δ).

It must be noted that when using (1) and (2), the conformal regressor will, for
any specific significance level δ, always produce prediction intervals of the same
size for every xj ; i.e., the error bounds will not be dependent on properties of a
specific test instance. It is, however, possible to introduce normalized nonconfor-
mity measures, where the absolute error is divided by a term σi that is dependent
on the prediction instance, usually corresponding to the estimated difficulty of the
underlying model for making a correct prediction for that instance; see e.g., [9,11]:

αi =
|yi − ŷi|

σi
. (3)

With normalized nonconformity measures, the prediction interval for xj is:

Ŷ δ
j = ŷj ± αs(δ)σj . (4)

The motivation for employing normalized nonconformity functions is that
instances estimated to be easier to predict will be assigned narrower intervals
than instances that are judged to be more difficult. It should be noted that there
are several ways to estimate the difficulty; one suggestion is to train another
model for predicting the errors; see e.g., [9]. Other approaches use properties of
the underlying model; see e.g., [11].
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3 Methods

In this section, we describe the approach for regression conformal prediction
using random forests. In particular, we describe three nonconformity measures
that will be compared in the empirical investigation: (i) a standard (non-
normalized) nonconformity measure, (ii) a nonconformity measure where the
difficulty is estimated by the average error of the nearest neighbors, which was
shown to result in state-of-the-art performance in [6], and (iii) a variance-based
nonconformity measure, originally proposed for k-nearest neighbor classifiers in
[11], which previously has not been evaluated for random forests.

3.1 Regression Conformal Prediction using Random Forests

A random forest [3] is an ensemble consisting of random trees, which are decision
trees generated in a specific way. In order to introduce the necessary diversity,
each random tree is trained on a bootstrap replicate [2], and only a random-
ized subset of the attributes are available for the algorithm when optimizing
each interior split. The instances that were missing in the bootstrap replicate,
for a specific tree, are said to be out-of-bag (oob) for that tree. In this study,
and similar to [6], we will investigate nonconformity functions that are based
on absolute errors, see (1) and (3), where oob instances are used for calculating
calibration scores, instead of using a separate calibration set. This means that
for each instance in the original training set, only those trees in the generated
forest for which the instance is oob, are used for generating the prediction, i.e.,
instead of ŷi = h(xi) in (1) and (3), where h is a random forest, ŷi = hi(xi),
where hi ⊆ h. The expected number of trees used to form an oob prediction
is approximately 0.368 of the original number of trees, since the probability of
including a training example in a bootstrap replicate is about 0.632 [2], leading
to that prediction errors on the oob instances can be expected to be at least
as large as for independent test instances when using the entire forest, since
the underlying model used for the calibration is weaker. Hence, as argued in
[6], calculating non-conformity scores using oob instances should lead to valid,
although conservative, prediction regions. It should be noted that since all train-
ing data can be used for constructing the underlying models, these are typically
stronger than the corresponding models trained on a subset, i.e., when excluding
the calibration instances, something which was demonstrated in [6] to result in
significant efficiency improvements.

3.2 Non-normalized Nonconformity Measure

The first nonconformity measure employs (2), i.e., there is no normalization, so
all prediction regions will have identical sizes. It must be noted, however, that
out-of-bag instances are used for the calibration instead of a separate calibration
set, making it possible to use all available instances for both the training and
the calibration. More specifically, when producing the nonconformity score for
a calibration instance zi, the ensemble used for producing the prediction ŷi

consists of all trees that were not trained using zi, i.e., zi was out-of-bag for
those trees.
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3.3 Nearest Neighbor-Based Normalization

The second nonconformity measure employs normalization using (3), i.e., the
sizes of the prediction regions vary depending on the estimated difficulty of the
instances. Inspired by nonconformity measures proposed for k-nearest neighbor
classifiers [11], this nonconformity measure estimates difficulty by the (out-of-
bag) error of the k nearest neighbors, with the obvious motivation that low
errors for neighboring instances imply a relatively easy part of the feature space.
The exact number of neighbors to use is optimized (between 1 and 45) for each
training set (more precisely, for each fold, when performing cross-validation), and
the k resulting in the smallest average interval size of the resulting conformal
regressor is chosen.

The resulting nonconformity measure for an instance (xi, yi) is:

αi =
|yi − ŷi|
μi + β

(5)

where μi is an estimate of the difficulty and β is a parameter, used to control
the sensitivity of the nonconformity measure. The difficulty estimate for this
particular nonconformity measure is the average, distance-weighted, out-of-bag
error of the k nearest neighbors:

μi =
∑k

n=1 on/dn∑k
n=1 1/dn

(6)

where {o1, . . . , ok} are the out-of-bag errors of the k nearest neighbors and
{d1, . . . , dk} are the Euclidean distances of the nearest neighbors to xi plus a
small term ε (to avoid division by zero).

Using this nonconformity function, the prediction intervals become:

Ŷ δ
j = ŷj ± αs(δ)(μj + β) (7)

When used with random forests and out-of-bag calibration, this nonconfor-
mity measure was in [6] shown to outperform all competing approaches, including
conformal regressors based on neural networks [9] and k-nearest neighbors [11].
Hence, this particular configuration may be considered as the current state-of-
the-art for inductive conformal regression.

3.4 Variance-Based Normalization

The third, and last, nonconformity measure that is evaluated in this study esti-
mates difficulty by the variance of the predictions of the individual trees in the
forest. The motivation for this difficulty estimator is that for easier instances, one
may expect a higher degree of agreement among the trees in the forest. This non-
conformity measure has, again, been studied in the context of k-nearest neighbor
classifiers [11], but has not previously been investigated for conformal regressors
using random forests. This measure is on the same form as the previous (5), but
where μi now corresponds to the variance of the individual predictions for an
instance (xi, yi):
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μi =
∑s

n=1 p2n
s

−
(∑s

n=1 pn

s

)2

(8)

where {p1, . . . , ps} are the predictions of the trees in the forest for which the
instance (xi, yi) is out-of-bag.

Using this nonconformity measure, the prediction intervals are, as for the
previous measure, calculated using (7).

4 Empirical Evaluation

In this section, we first describe the experimental setup, i.e., what algorithms,
datasets and performance metrics have been chosen, and then report the results
from the experiment.

4.1 Experimental Setup

For the empirical investigation, all competing methods were re-implemented in
the Julia language1, and a large-scale study, using 33 publicly available data
sets from the UCI [1] and Delve [12] repositories, was performed. The considered
data sets are small to medium sized; ranging from approximately 500 to 10000
instances. To allow for comparing sizes of prediction regions with the entire
output space, the target variable was normalized for each dataset by:

ỹi =
ymax − yi

ymax − ymin
(9)

where ymax and ymin are the highest and lowest output values, respectively,
for the dataset. The same normalization was employed also for each input vari-
able, to avoid choice of scale having an impact when calculating Euclidean dis-
tances for the nearest neighbor-based nonconformity measure. The latter has
neither any effect on the other nonconformity measures nor on the underlying
random forest models, i.e., the predictive performance is unaffected.

Regarding parameter values, similar settings as in [6] were employed for all
data sets and methods. Specifically, all random forests consisted of 500 random
trees, the sensitivity parameter β was set to 0.01 while the parameter ε was set
to 0.001. A ten-fold cross validation scheme was adopted with all reported values
being averaged over the ten folds. Results are reported for three confidence levels:
90 %, 95 % and 99 %.

For each method and dataset in the experiments, the error rate, i.e., the
fraction of target values in the test set that fall outside the predicted regions,
and the efficiency, i.e., the size of the predicted intervals, are measured. For valid
conformal predictors, the error rate should not (in the long run) be higher than
one minus the chosen confidence threshold. Hence, by investigating the error
rate, we may confirm (or reject) that a certain conformal predictor actually is
valid. Note that this is here considered to be a binary property, i.e., we do not
1 www.julialang.org.

www.julialang.org
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consider one method to be more valid than another. Given that we have a set
of valid regression conformal predictors, the perhaps most interesting aspect to
compare is the size of the predicted regions, as this directly corresponds to how
informative these regions are. Such a comparison could be done in different ways,
e.g., comparing extreme values, but we have similar to [6] opted for comparing
the average sizes over all prediction regions.

In order to allow for a comparison of the computational cost for generat-
ing and applying the different nonconformity measures, i.e., during training and
testing, respectively, the CPU times for these activities were recorded, separately
from the time taken to build the forests and obtaining predictions from the indi-
vidual trees. In the experiment, a DELL T7910 with two 14-core 2.6 GHz CPUs
(E5-2697v3) with 64 GB RAM was employed. The generation and application of
all nonconformity measures was performed on a single core only, while the forest
construction and predictions utilized all cores in parallel2.

To analyze any differences in efficiency between the two normalized
approaches, the correlation coefficient between the estimated difficulty of the
test instances and the actual prediction error are reported for each method. The
expectation is that a higher correlation leads to more efficient predictions.

4.2 Experimental Results

Table 1 shows the error rates, i.e., the fraction of test instances for which the true
target value falls outside the predicted region, of three methods utilizing different
nonconformity functions: using no normalization (M1); using nearest-neighbor
normalization (M2); and, using variance-based normalization (M3). Looking at
these results, it is apparent that all three methods behave as expected for valid
predictors: the error rates, for each data set, lie close to the predetermined
significance level.

A statistical analysis of the error rates at the three confidence levels presented
(90 %, 95 % and 99 %), using a Friedman test followed by a Nemenyi post-hoc
test (with alpha=0.05) [4], shows that: (i) M3 has a significantly lower error
rate than both M1 and M2 for the 90% level, (ii) M3 has a significantly lower
error rate than M1 for the 95% level, and (iii) M3 has a significantly lower error
rate than M2 for the 99% confidence level. Hence, the variance-based approach
clearly seems to be the most conservative of the three methods.

Looking at the interval sizes tabulated in Table 2, while remembering that the
output was normalized so that an interval size of 1.0 would cover the entire range
of the target values, it can be seen from the averaged values that the best method
at the 90% confidence level returned prediction regions covering, approximately,
21% of the range. The corresponding average values for the 95% and 99%
confidence levels are (approximately) 26% and 38%, respectively. Clearly, these
prediction regions must be considered informative. An analysis of the interval
sizes, using the same statistical test as earlier, reveals that there is no significant
difference between M2 and M3 for any of the three confidence levels, while both

2 The Julia implementation can be obtained from the first author upon request.
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Table 1. Error rates

Confidence dataset \ Technique 0.90 0.95 0.99

M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone .099 .101 .104 .050 .053 .049 .010 .013 .010

anacalt .099 .082 .094 .047 .036 .047 .008 .012 .009

bank8fh .100 .099 .098 .049 .050 .047 .011 .011 .009

bank8fm .099 .098 .093 .049 .049 .048 .010 .010 .009

bank8nh .100 .101 .098 .050 .051 .050 .010 .011 .010

bank8nm .100 .102 .098 .050 .051 .048 .009 .011 .010

boston .107 .101 .099 .049 .042 .036 .008 .010 .010

comp .096 .100 .098 .049 .050 .050 .010 .011 .010

concreate .098 .081 .100 .050 .044 .049 .010 .008 .008

cooling .095 .092 .092 .052 .050 .050 .012 .013 .012

deltaA .101 .103 .100 .050 .051 .049 .009 .010 .010

deltaE .099 .103 .099 .051 .053 .048 .010 .012 .010

friedm .097 .098 .093 .050 .046 .050 .008 .004 .007

heating .102 .081 .092 .050 .048 .053 .005 .006 .009

istanbul .105 .108 .099 .050 .052 .050 .007 .011 .007

kin8fh .099 .098 .099 .050 .049 .049 .010 .009 .009

kin8fm .099 .094 .094 .049 .043 .047 .010 .007 .009

kin8nh .099 .100 .098 .049 .048 .048 .009 .009 .008

kin8nm .096 .092 .096 .049 .047 .047 .010 .009 .008

laser .098 .088 .090 .047 .041 .049 .009 .009 .007

mg .097 .097 .095 .046 .055 .051 .009 .013 .012

mortage .091 .087 .091 .044 .034 .044 .009 .007 .008

plastic .101 .107 .098 .052 .050 .050 .008 .015 .007

puma8fh .097 .100 .097 .050 .051 .048 .009 .011 .010

puma8fm .100 .099 .100 .050 .051 .049 .009 .010 .008

puma8nh .100 .102 .096 .051 .050 .047 .010 .010 .009

puma8nm .095 .096 .095 .048 .049 .046 .009 .011 .009

quakes .100 .107 .096 .051 .060 .053 .014 .026 .019

stock .094 .088 .099 .046 .040 .046 .008 .003 .009

treasury .099 .095 .103 .048 .042 .045 .011 .012 .010

wineRed .101 .104 .098 .051 .054 .048 .009 .014 .010

wineWhite .103 .107 .101 .048 .053 .047 .011 .011 .008

wizmir .095 .106 .089 .047 .046 .045 .010 .012 .012

Mean .099 .097 .097 .049 .048 .048 .009 .011 .009

Mean rank 2.26 2.21 1.53 2.32 2.03 1.65 1.95 2.39 1.65
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Table 2. Region sizes.

Confidence dataset \ Technique 0.90 0.95 0.99

M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone .234 .214 .214 .321 .274 .282 .544 .463 .495

anacalt .139 .081 .107 .258 .092 .126 .501 .190 .221

bank8fh .300 .290 .268 .377 .361 .342 .533 .538 .585

bank8fm .139 .131 .123 .175 .158 .145 .251 .211 .191

bank8nh .322 .307 .281 .447 .420 .414 .789 .744 .782

bank8nm .145 .121 .111 .210 .160 .141 .399 .245 .217

boston .193 .192 .200 .276 .254 .253 .605 .432 .418

comp .086 .077 .083 .114 .098 .107 .187 .153 .170

concreate .204 .208 .184 .258 .270 .235 .475 .473 .362

cooling .170 .107 .150 .216 .124 .184 .287 .146 .243

deltaA .117 .108 .113 .154 .139 .141 .260 .212 .228

deltaE .174 .170 .172 .215 .215 .214 .315 .305 .304

friedm .215 .205 .217 .258 .243 .269 .360 .319 .406

heating .070 .058 .065 .087 .068 .078 .168 .094 .102

istanbul .260 .247 .257 .318 .315 .336 .491 .497 .494

kin8fh .241 .240 .240 .291 .285 .285 .398 .372 .375

kin8fm .134 .123 .132 .166 .144 .160 .245 .183 .218

kin8nh .413 .404 .408 .488 .472 .478 .622 .595 .613

kin8nm .331 .303 .321 .396 .350 .374 .527 .445 .478

laser .044 .039 .041 .085 .054 .059 .330 .150 .141

mg .243 .172 .163 .341 .221 .201 .596 .322 .336

mortage .022 .019 .021 .036 .027 .032 .073 .044 .059

plastic .549 .545 .592 .644 .637 .734 .807 .851 .943

puma8fh .470 .446 .444 .565 .532 .529 .741 .724 .754

puma8fm .210 .204 .201 .254 .243 .240 .341 .323 .322

puma8nh .438 .427 .416 .543 .518 .503 .731 .697 .697

puma8nm .202 .199 .201 .243 .238 .233 .345 .328 .310

quakes .556 .540 .605 .705 .681 .751 1.000 .900 .942

stock .076 .074 .074 .093 .089 .088 .158 .131 .124

treasury .026 .022 .025 .042 .030 .039 .088 .051 .071

wineRed .366 .375 .336 .495 .499 .452 .734 .721 .636

wineWhite .321 .320 .289 .416 .420 .372 .644 .662 .551

wizmir .059 .058 .059 .074 .072 .073 .139 .126 .125

Mean .226 .213 .216 .290 .264 .269 .445 .383 .391

Mean rank 2.79 1.42 1.79 2.76 1.61 1.64 2.73 1.55 1.73
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M2 and M3 result in significantly smaller interval sizes than M1 for all three
confidence levels (with p-values much smaller than 0.01).

Table 3 displays execution times for the three different methods tested. First
listed is the total time (in seconds) for the tasks common to all methods of
training the underlying model (random forest), collecting out-of-bag predictions
and obtaining the individual predictions for the test instances. As expected,
only small variations are observed, since these tasks are identical for all three
approaches.

Second, the total number of seconds required to generate the nonconformity
measure using the out-of-bag instances is listed. Here, there is a clear difference
between the three methods. M1 requires only that the errors on the out-of-bag
instances are computed and ordered, which is a fairly quick operation. M2, on the
other hand, requires an extra (particularly costly) step of making, for each out-
of-bag instance, an additional prediction using the nearest-neighbor procedure
to calculate the normalization term of the nonconformity measure. Finally, M3,
for which normalization does not require any additional predictive step, the
calculation of nonconformity scores comes with very little overhead compared to
the non-normalized variant M1.

Listed in the third column is the total time (in seconds) required to cal-
culate prediction regions for the test set. Again, the time required for making
predictions using the variance-based M3 is only marginally longer than for the
non-normalized M1, while M2 again incurs a very large overhead.

It should be noted that the observed execution times are dependent on the
particular implementation of the algorithms, and possibly some of the perfor-
mance differences could be reduced by carefully optimizing the code. However,
there is an inherent difference in computational complexity of the underlying
algorithms, which will not disappear even with smarter implementations. Com-
paring the computational cost that is specific to performing conformal predic-
tion, i.e., not including the time for building and obtaining predictions from
the underlying model, the variance-based approach is in this experiment several
orders of magnitude faster than the nearest neighbor approach (the former is
on average over twenty thousand times faster than the latter) and this gap will
most likely remain wide even with a substantially more efficient implementation
of the k-nearest neighbor procedure.

Finally, in order to investigate how well the difficulty estimates employed by
the nearest-neighbor and the variance-based approaches actually work, we inves-
tigated the correlation coefficients between μi + β and the test error for the two
normalized approaches. The results are displayed in Table 4. When testing for
significant differences, the p-value is 0.056 in favor of M3 over M2, hence indi-
cating that variance in fact may be a more effective way of ordering instances
according to expected test error than employing the nearest-neighbor procedure.
This difference obviously does not directly carry over to a corresponding differ-
ence in region size, as the latter was found above to be insignificant (Table 2).
However, the importance of correctly ranking the instances according to diffi-
culty is demonstrated by the fact that the method with the highest correlation
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Table 3. Time taken (in seconds) to build and obtain predictions from the underlying
models (identical tasks for all methods), to generate the nonconformity functions and
to calculate prediction regions for the test set

Dataset \ Technique Common tasks Calibration Application

M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone 2.91 3.02 2.98 .002 35.1 .003 .000 4.00 .000

anacalt 1.02 .98 1.03 .002 31.8 .003 .000 3.62 .000

bank8fh 6.54 6.60 6.74 .003 151.8 .005 .000 17.19 .000

bank8fm 6.67 6.67 6.78 .005 150.3 .005 .000 17.11 .000

bank8nh 6.47 6.54 6.49 .005 151.0 .006 .000 17.24 .000

bank8nm 6.36 6.43 6.53 .003 150.9 .005 .000 17.21 .000

boston .34 .33 .33 .000 .4 .000 .000 .05 .000

comp 6.67 6.83 6.90 .003 150.3 .007 .000 17.17 .000

concreate .63 .64 .62 .000 1.7 .001 .000 .19 .000

cooling .26 .27 .27 .000 1.0 .001 .000 .11 .000

deltaA 5.35 5.38 5.31 .011 108.5 .005 .000 12.40 .000

deltaE 7.15 7.36 7.37 .004 207.1 .007 .000 23.78 .001

friedm .77 .78 .77 .000 2.3 .001 .000 .27 .000

heating .27 .28 .27 .000 .9 .001 .000 .10 .000

istanbul .36 .36 .36 .000 .5 .000 .000 .05 .000

kin8fh 5.93 5.96 6.19 .003 148.0 .007 .000 16.91 .000

kin8fm 5.94 6.06 6.09 .003 147.6 .005 .000 16.85 .001

kin8nh 6.21 6.26 6.29 .003 147.3 .006 .000 16.89 .000

kin8nm 6.07 6.10 6.18 .003 149.2 .007 .000 17.07 .000

laser .64 .63 .63 .000 1.7 .001 .000 .19 .000

mg .93 .94 .95 .001 3.2 .001 .000 .36 .000

mortage .74 .73 .74 .000 1.8 .001 .000 .20 .000

plastic .49 .50 .49 .001 4.7 .001 .000 .53 .000

puma8fh 6.24 6.31 6.33 .004 149.6 .006 .000 17.04 .000

puma8fm 6.51 6.26 6.26 .003 150.0 .005 .000 17.14 .000

puma8nh 6.22 6.33 6.21 .005 148.7 .006 .000 17.00 .000

puma8nm 6.11 6.22 6.19 .003 146.2 .005 .000 16.71 .000

quakes 1.53 1.48 1.49 .001 8.3 .001 .000 .94 .000

stock .62 .61 .64 .000 1.5 .001 .000 .17 .000

treasury .71 .71 .72 .000 1.9 .001 .000 .23 .000

wineRed .90 .90 .93 .001 4.5 .002 .000 .51 .000

wineWhite 3.32 3.24 3.25 .002 50.6 .017 .000 5.82 .000

wizmir 1.05 1.06 1.06 .001 3.6 .001 .000 .40 .000

Mean 3.39 3.42 3.44 .002 73.1 .004 .000 8.35 .000

Mean rank 1.73 2.03 2.24 1.03 3.00 1.97 1.00 3.00 2.00
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Table 4. Correlation between difficulty and test error

Dataset \ Technique Correlation

M2 M3

abalone .360 .372

anacalt .853 .825

bank8fh .172 .300

bank8fm .404 .498

bank8nh .196 .272

bank8nm .602 .670

boston .361 .429

comp .443 .346

concreate .352 .450

cooling .821 .649

deltaA .414 .425

deltaE .176 .204

friedm .348 .040

heating .701 .628

istanbul .072 .129

kin8fh .221 .226

kin8fm .557 .272

kin8nh .248 .224

kin8nm .468 .317

laser .571 .695

mg .668 .764

mortage .667 .652

plastic -.082 -.082

puma8fh .264 .298

puma8fm .234 .274

puma8nh .241 .345

puma8nm .222 .256

quakes .133 .156

stock .397 .348

treasury .713 .594

wineRed .238 .423

wineWhite .257 .435

wizmir .193 .214

Mean .378 .383

Mean rank 1.67 1.33
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coefficient of the two for each dataset, also produces the smallest average predic-
tion region for 21 out of 33 cases. The probability of observing this (or a larger)
number is only 0.081 if the resulting region size would be independent of this
correlation.

5 Concluding Remarks

In this paper, we have presented a large-scale empirical evaluation of conformal
regression approaches using random forests with out-of-bag calibration. We have
compared a variance-based nonconformity measure, which has previously not
been evaluated in this context, to a standard (non-normalized) nonconformity
measure as well as to one measure based on k-nearest neighbors, which previ-
ously was found to give state-of-the-art performance. The experimental results
in this study show that both the nearest-neighbor-based and the variance-based
measures significantly outperform the non-normalized measure, while no signifi-
cant difference in efficiency between the two normalized approaches is observed.
Moreover, the evaluation shows that state-of-the-art performance is achieved by
the variance-based measure at a computational cost that is several orders of
magnitude lower than when employing the nearest-neighbor-based nonconfor-
mity measure.

There are several possible directions for future research. One direction con-
cerns refining the rather straightforward difficulty estimate further, e.g., by not
only considering variance of the ensemble member predictions, but also esti-
mates of uncertainty for the individual predictions. Other directions for future
research include investigating ways of combining several different difficulty esti-
mates and evaluating the alternative nonconformity measures for other ensemble
approaches for which out-of-bag estimates can be obtained.
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Abstract. The Conformal Prediction (CP) framework can be used for
obtaining reliable confidence measures in Machine Learning applications.
The confidence measures are guaranteed to be valid under the assump-
tion that the data used are identically and independently distributed
(i.i.d.). In this work, we extend the CP framework for multi-label clas-
sification, where an instance can belong to multiple classes in parallel.
Applications include image tagging, document classification, and music
classification. We give an overview of the Conformal Prediction frame-
work, and we describe the developed Binary Relevance Multi-Label Con-
formal Predictor (BR-MLCP). We propose a new measure of confidence
using Chebyshev’s inequality together with the hamming loss metric.
Our experimental results demonstrate the reliability of our new confi-
dence measure.

Keywords: Multi-label · Conformal prediction · Confidence measures

1 Introduction

Conformal Predictors (CPs) [1] are algorithms that can provide predictions com-
plemented with reliable confidence measures, which are guaranteed to be valid
under the assumption that the data used are identically and independently dis-
tributed (i.i.d.). The CP framework was first proposed in [2] and a more recent
description can be found in [3]. CPs are built using classical machine learning
algorithms, called underlying algorithms, and complement the predictions of the
underlying algorithms with measures of confidence. Many CPs have been built to
date, based on various algorithms such as Support Vector Machines [4], k-Nearest
Neighbours [5], and Random Forests [6]. The CP framework has been success-
fully applied to medical diagnostic problems, such as ovarian cancer diagnosis [7],
breast cancer diagnosis [8], and acute abdominal pain diagnosis [9,10]. Other
extensions of CPs include information fusion [11], and feature selection [12].

The CP framework can be extended to multi-label classification, where a
data instance can be associated with multiple classes in parallel and the predic-
tions of such data may accommodate more than one labels. Applications include
c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 90–104, 2016.
DOI: 10.1007/978-3-319-33395-3 7
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image tagging, document classification, gene function categorization, and music
classification. For example, in document classification, a specific document which
contains both religious and political issues can have both labels: one label for
class “politics”, and one for class “religion”. Multi-label algorithms are gener-
ally categorized into two groups based on the transformation method that is
used. One group is using Pattern Transformation (PT), where the multi-labelled
data are split into several single labelled data, and then traditional machine
learning algorithms can be applied for classification. The second group is using
Algorithmic Adaptation (AA), where the underlying algorithm is transformed
in order to construct a mutli-label classifier. An overview of multi-label classi-
fication is provided in [13]. In a related study, a CP was developed for multi-
label classification using powersets [15]. The powerset method (which falls into
the PT group) transforms the multi-label classification task into single label
classification by mapping each combination of the available labels into single
labelled classes. Another study, which follows another PT approach, can be
found in [16,17], where the multi-labelled data are decomposed into multiple
binary labelled datasets (Binary Relevance approach), and a CP is applied on
each subset.

In this paper, we extend the work in [17], and we propose a confidence
measure using the hamming loss metric, which is the most common evaluation
measure in the setting of multi-label classification. Our proposed confidence mea-
sure allows us to produce multi-label prediction regions with at most ε chance
of having a hamming loss more than some threshold h. In other words, we can
guarantee under i.i.d. assumption, that hamming loss in our multi-label predic-
tions will not exceed h given some confidence 1− ε. In the next sections, we give
an overview of the CP framework, we describe the developed Binary Relevance
Multi-Label Conformal Predictor (BR-MLCP), and we provide an upper bound
of hamming loss using the CP framework and Chebychev’s inequality. Finally, we
provide experimental results that demonstrate the reliability of our confidence
measure.

2 Conformal Prediction Framework

Provided a training dataset, CPs output predictions for new instances together
with valid confidence measures, based on the assumption that the given data
are identically and independently distributed (i.i.d.). CPs generate prediction
regions (sets of possible labels for a new instance), such that the error rate
of the prediction regions is guaranteed to not exceed a given significance level
in the long run. Additionally, CPs can be configured to output single predic-
tions (instead of prediction regions), together with valid confidence measures.
We explain how this is done in the following paragraphs.

A training set is of the form {(x1, y1), . . . , (xn, yn)}, where xi is a vector of
real-valued attributes and yi ∈ {Y1, Y2, . . . , Yc} is a label given to the instance
xi. Given a new instance xn+1 with unknown label, the target is to find the
likelihood of correctness for each possible label Yg ∈ {Y1, Y2, . . . , Yc} that can be
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given to xn+1. A set of steps are performed for each assumed label, in order to
obtain the likelihood:

1. The new instance xn+1 is appended in the training set together with the
assumed label Yg.

2. An underlying machine learning algorithm is trained on the extended training
set

{(x1, y1), . . . , (xn+1, Yg)}. (1)

3. The underlying algorithm is transformed in order to generate a non-
conformity score for each of the instances in (1). A non-conformity score
indicates how different (or strange) an instance xi is for its given label yi,
compared to the other instances in (1).

4. The following p-value function is used to calculate how likely the assumed
label is of being correct:

p(Yg) =
#{i = 1, . . . , n + 1 : ai ≥ an+1}

n + 1
, (2)

which compares the non-conformity score an+1 of (xn+1, Yg) with all the other
non-conformity scores of the rest of the instances in the extended training set.

Given the true label yn+1, the p-value function in (2), satisfies the following
property for all probability distributions and for any significance level ε:

P (p(yn+1) ≤ ε) ≤ ε. (3)

In fact, the p-value function is a test function which measures how likely the
dataset is of being i.i.d. If the p-value is lower than a given ε, it is because we
either have non i.i.d. data, or because some event has happened with probability
less than or equal to ε. Based on the assumption that the data are i.i.d., we
realise that if we include in our predictions all assumed labels that are assigned
a p-value greater than a given significance level ε, then the probability of missing
the true label of an instance will be less than or equal ε. In the case that all
p-values are less than ε, the label with the highest p-value is included to ensure
that the prediction regions will always contain at least one prediction. This step
does not increase the probability of error. The definition of a prediction region
is given as

R = {Yg : p(Yg) > ε} ∪
{

arg max
g=1,...,c

(p(Yg))
}

. (4)

In the long run, these regions will make errors at a rate of at most ε. There-
fore, the confidence is calculated as 1−ε. The formal definition of the Conformal
Predictor algorithm is given in Algorithm 1.

By preference, we may output only single labels (forced predictions) instead
of prediction regions. In forced prediction, only the label with the highest p-
value is given as a prediction, together with a confidence measure which is 1
minus the second largest p-value. The confidence measure indicates how likely
the prediction is of being correct, with respect to the rest of the possible labels.
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Algorithm 1. Conformal Predictor
Input: training set {(x1, y1), . . . , (xn, yn)}, new instance xn+1, possible labels

Yg ∈ {Y1, Y2, . . . , Yc}, significance level ε
for g = 1 to c do

Train the underlying algorithm on the extended set
{(x1, y1), . . . , (xn, yn), (xn+1, Yg)};
Supply the input patterns x1, . . . , xn+1 to the underlying algorithm to
obtain the respective non-conformity scores a1, . . . , an+1;

Calculate the p-value p(Yg) =
#{i=1,...,l+1:ai≥an+1}

n+1
;

end
Output:

Prediction Region R = {Yg : p(Yg) > ε} ∪ {arg maxg=1,...,c(p(Yg))}

2.1 Non-conformity

The k-Nearest Neighbours (k-NN) method computes the distance of a test
instance from the other instances that are provided in the training set, and
finds its k nearest instances. The prediction of the algorithm is the class of the
majority of the k instances. In the case of building a CP based on k-NN (k-NN-
CP), we use the distances of the k nearest instances to define a non-conformity
measure. The simplest approach is to calculate the total of distances of the k
instances that belong to the class of instance xi, since the nearer the instance is
to its class, the less strange it is. Nonetheless, for a more efficient non-conformity
measure we also take into consideration the distances of the k nearest instances
that belong to other classes, since the nearer the instance xi is to the other
classes the more strange it is. We build a k-NN-CP using the non-conformity
measure defined in [18]:

ai =

∑
j=1,...,k sij∑
j=1,...,k oij

, (5)

where sij is the jth shortest distance of xi from the instances of the same class,
and oij is the jth shortest distance of xi from the instances of other classes.

3 Developed Algorithm

In multi-label classification, a training set of the form D = {(x1, ψ1), ..., (xn, ψn)}
is given, where xi is an input vector of real-valued attributes, and the instances
can be labelled as ψi ⊆ {

Y 1 × Y 2 × ... × Y c
}
, where each Y g ∈ {

y1
g , y0

g

}
.

Instances that belong to class Y g are labelled y1
g , and y0

g otherwise. One possible
approach to solve a multi-label problem is to decompose it into c single-label
binary classification problems (Binary Relevance approach in [17]). The original
dataset D is copied into datasets D1, ...,Dc, and for each Dg we label as y1

g the
instances that originally have label y1

g in the multi-label ψi, and y0
g otherwise.
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We use a CP on each dataset Dg separately, and given a new instance xn+1

and a desirable significance level εg, each CP provides a prediction region rg

for class Y g (as in usual single-label classification). The prediction region rg

states whether the new instance belongs to class Y g or not, or whether there
is uncertainty at the given significance level. We then combine all rg to provide
the prediction region for the multi-label classification task:

R = r1 × ... × rc. (6)

As shown in property (3), the probability of each rg missing the true binary
label for class Y g, given a significance level εg, is at most εg. According to the
Bonferroni general inequality, which can be applied for multiple tests, we may
state that the probability of the true multi-label ψn+1 not being in R is at most
the sum of the upper bound probabilities of the individual rg sets missing the
true binary label:

P (ψn+1 �∈ R) ≤
c∑

g=1

εg. (7)

Therefore, we have multi-label prediction regions, for which the error rate is

ε ≤
c∑

g=1

εg. (8)

Therefore, for a confidence level 1 − ε in R we set the significance level for each
rg, g = 1, . . . , c to

εg =
ε

c
. (9)

Alternatively, we may set each εg to the second largest p-value provided by
each CP, such that each rg contains a single prediction for the new instance.
Thus, the final prediction region R will also contain a single multi-label, which
can be considered as a forced prediction for the new instance. The prediction of
the multi-label can be complemented with confidence measure 1 − ε. The algo-
rithm of the Binary Relevance Multi-Label Conformal Predictor (BR-MLCP) is
given in [17] and in Algorithm 2.

3.1 Prediction Regions Based on Hamming Loss

In inequality (8), we consider the error rate with respect to each multi-label
prediction as a whole prediction. If the prediction contains even a single binary
miss-classification, then the whole multi-label prediction is considered wrong. A
more common evaluation metric used for multi-label prediction is the hamming
loss metric. Given two sets a and b their hamming loss is calculated as

H(a, b) = # {g : ag �= bg} . (10)

Given the true multi-label ψi of an instance xi, and a prediction region Ri, the
hamming loss of Ri is defined as

HL(ψi, Ri) = min
π∈Ri

H(ψi, π), (11)
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Algorithm 2. Binary Relevance Multi-Label Conformal Predictor (BR-
MLCP[17])
Input: training set D = {(x1, ψ1), ..., (xn, ψn)}, new instance xn+1, possible

labels
{
Y 1, Y 2, ..., Y c

}
, significance level ε

for g = 1 to c do
for b = 0 to 1 do

Dg =
{
(x1, Y

g
1 ), ..., (xn, Y g

n ), (xn+1, y
b
g)
}
;

Train the underlying algorithm on the extended set Dg;
Supply the input patterns x1, . . . , xn+1 to the underlying algorithm to
obtain the respective non- conformity scores a1, . . . , an+1;

Calculate the p-value p(yb
g) =

#{i=1,...,l+1:ai≥an+1}
n+1

;

end

rg =
{
yb
g : p(yb

g) > ε/c
} ∪ {arg maxg=1,...,c(p(yb

g))
}
;

end
Output:

Prediction Region R = r1 × ... × rc.

where π is a multi-label prediction contained in prediction region Ri. We can
state that an error occurs only when the hamming loss of a prediction region is
above a pre-defined value. Let us denote for g = 1, ..., c, eg = 1 if there is a loss
in the prediction of class Y g, and eg = 0 otherwise. By setting the significance
level of the gth CP to εg for g = 1, . . . , c, we have

P (e1 = 1) ≤ ε1; ...;P (ec = 1) ≤ εc. (12)

If we allow a hamming loss level h, then the overall prediction is wrong when
e1 + ... + ec ≥ h + 1 by definition. As a result of (12), the expected value of
e1 + ... + ec is at most ε1 + ... + εc. Consequently, by Chebyshev’s inequality
we get:

P (e1 + ... + ec ≥ h + 1) ≤ ε1 + ... + εc

h + 1
. (13)

In order to show that the upper bound in (13) is optimal, let us assume the case
where ε1 = · · · = εc, and

P

(
c∑

g=1

eg = m

)
= 0, (14)

for m > 0 and m �= h + 1. This means that the probability of each possible
combination of exactly h + 1 losses becomes

εg

Ch
c−1

, (15)

since each eg has at most probability εg and this is divided between the Ch
c−1

possible combinations of other losses, which together with eg result in exactly
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h+1 losses. There are Ch+1
c possible combinations that give exactly h+1 losses,

therefore the total probability of having a hamming loss of more than h is

εg

(Ch
c−1)

· Ch+1
c =

cεg

(h + 1)
. (16)

This is equal to (13) when ε1 = · · · = εc.
As a result of (13) in order to produce multi-label prediction regions with at

most ε chance of having a hamming loss more than h, the significance level of
the gth CP for g = 1, . . . , c could be set to

εg =
ε(h + 1)

c
. (17)

Alternatively, we can consider the percentage of hamming loss as an error
measure. Let us define hamming loss HP as the percentage of errors amongst
all predicted labels. By property (3), the probability of each loss in H(ψi, Ri) is
at most εg, and using equation (7), the percentage of hamming loss is

HP ≤
c∑

g=1

εg

c
. (18)

Therefore, we may provide prediction regions such that the percentage of ham-
ming loss will be at most HP , at a confidence level 1 − HP . This measure of
confidence can also be found in [16].

4 Experiments on Multi-label Datasets

In this section, we evaluate the BR-MLCP and the proposed confidence measure.
In our evaluation process, we copy the original datasets into binary class datasets
as explained in Sect. 3, and for each subset we apply the Correlation-Based
Feature Selection (CBFS) method in order to reduce the number of features. We
then apply 10-fold cross validation on each of the reduced datasets. The folds are
identical for all datasets. Each test instance on each dataset is given a possible
label (y1

g or y0
g), and the test instance is added to the training set. The underlying

algorithm is trained on the extended training-set and provides non-conformity
scores. A p-value is then generated for each possible binary label given to the
test instance. Once we have p-values from all CPs, we apply equation (6) to
provide a prediction region for the test instance, given a pre-defined confidence
level, or a forced prediction.

4.1 Music into Emotions

We experiment on a multi-label dataset for classifying music into emotions [14].
The Music Emotions dataset contains 593 songs with a total of 72 rhythmic
and timbre features in each song. There are 6 possible classes that each song
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can belong to. The classes and the number of instances in each one are listed
in Table 1. As baseline, we provide the average hamming loss of our forced pre-
dictions which is 18.77 %. This result is comparable with the results provided
in [14], which give an overall hamming loss of 19.43 % for the related Binary
Relevance algorithm.

Table 1. Class distribution for the Emotions dataset.

Label Class # of instances

1 amazed-surprised 173

2 happy-pleased 166

3 relaxing-calm 264

4 quiet-still 148

5 sad-lonely 168

6 angry-fearful 189

Confidence level 95% 90% 80% 70%

Error rate 4.28% 8.50% 17.34% 26.16%

Fig. 1. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective error rates on the Emotions dataset.

In Fig. 1, we provide the results of the BR-MLCP using (8). The figure shows
the distribution of the prediction regions according to the number of uncertain
labels, at four different levels of confidence (95 %, 90 %, 80 %, and 70 %). When
a prediction region has 0 uncertain labels, the size of the prediction region is
1 (contains a single multi-label prediction). When we have 1 uncertain label,
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the prediction region size is 2, since the region contains a multi-label prediction
for each of the 2 possible values of the uncertain binary label. Generally, for n
uncertain binary labels, the prediction region size is 2n. The error rates presented
in Fig. 1 demonstrate the validity of the BR-MLCP, since they are always below
the rate given by the confidence level. Thus, we demonstrate the ability to control
the error rate of BR-MLCP. Nevertheless, when we have a high confidence level,
we lose some certainty in the predictions. In the figure, we can see that for
95 % level of confidence the number of certain predictions is 0, and a significant
percentage of predictions contained all 6 labels as uncertain labels. The algorithm
provides uncertain results when there is not enough information to give a single
result for a given confidence level.

It is admitted that for a multi-label problem, the error measure that was
defined in (8) is strict. Nonetheless, if we lower the confidence level, we get more
certainty in the predictions. For example, at 80 % and 70 % levels of confidence,
we have a significant amount of prediction regions with less uncertain labels.

Confidence level 95% 90% 80% 70%

HP 4.87% 9.91% 17.54% 18.77%

Fig. 2. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective hamming loss on the Emotions dataset.

In Fig. 2, we provide the results of the BR-MLCP using (18). Here the error
measure is less strict, and thus we get satisfactory certainty in our prediction
regions. The error is measured in terms of hamming loss. As shown in the figure,
the hamming loss in the prediction regions does not exceed the allowed rate
given by the confidence level. Therefore, we demonstrate that the BR-MLCP
can control the hamming loss in the prediction regions and provide useful pre-
diction regions. Additionally, the hamming loss at 70 % confidence does not
exceed 18.77 %. We also notice that at this confidence level, we have 100 % cer-
tain predictions.
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Confidence level 95% 90% 80% 70%

h > 1 0.49% 1.43% 5.53% 12.01%

Fig. 3. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective error rates (using (13) with h = 1) on the
Emotions dataset.

Confidence level 95% 90% 80% 70%

h > 2 0.02% 0.19% 1.45% 4.76%

Fig. 4. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective error rates (using (13) with h = 2) on the
Emotions dataset.
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Confidence level 95% 90% 80% 70%

Error rate 3.41% 7.32% 14.72% 20.63%

Fig. 5. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective error rates on the Yeast dataset.

In Fig. 3, we provide the results of the BR-MLCP using (13). Here, we have
an error when the hamming loss h of a prediction region exceeds 1. The results
demonstrate the validity of the BR-MLCP using equation (13). We consider a
multi-label prediction as a correct classification when there is at most 1 wrong
label. Thus, we have better certainty in the results compared with the results
given in Fig. 1. In Fig. 4, we provide the results when we set h > 2. As expected,
this less strict metric allows for more certainty in the results. At 70 % confidence,
we have near 50 % certain predictions (with 0 uncertain labels), whereas in the
previous case when h > 1, the certainty at 70 % confidence was around 25 %.

4.2 Gene Function Classification

We have experimented on a relatively larger dataset in order to evaluate the
BR-MLCP method. We have used a dataset for yeast (Saccharomyces cerevisiae)
gene function classification [19]. The dataset contains 2417 genes with 103 fea-
tures in each gene. Each instance can be classified into 14 possible functional
groups. Since one gene can have many functional classes this is a multi-label
problem. We apply the same evaluation process on this dataset as with the
Emotions Dataset. The baseline hamming loss with forced predictions on this
dataset was 19.32 %, which is comparable with the best hamming loss of 19.5 %
reported in [19].

In Fig. 5, we provide the results of the BR-MLCP using (8). As shown in the
figure, the percentage of prediction regions which contained a certain multi-label
prediction is near 5 %. This is true for any given confidence level. As explained
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Confidence level 95% 90% 80% 70%

HP 4.71% 9.16% 16.22% 18.99%

Fig. 6. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective hamming loss on the Yeast dataset.

Confidence level 95% 90% 80% 70%

h > 1 1.75% 3.90% 8.97% 14.97%

Fig. 7. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective error rates (using (13) with h = 1) on the
Yeast dataset.
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Confidence level 95% 90% 80% 70%

h > 2 0.62% 1.41% 4.41% 8.52%

Fig. 8. Percentages of prediction regions with number of uncertain labels for different
levels of confidence, and their respective error rates (using (13) with h = 2) on the
Yeast dataset.

previously, using (8) as an error measure can be very strict for multi-label prob-
lems. This becomes more clear when the number of classes is larger. Nevertheless,
the BR-MLCP can still provide valid prediction regions, as it is demonstrated
by the error rates provided with the results.

In Fig. 6, we use the hamming loss measure defined in (18). Here, the results
are promising. For 70 % confidence, we have around 90 % of certain multi-label
predictions, and for 80 % confidence, we have approximately 40 % certainty rates.
This demonstrates that we can predict for a given number of cases a multi-label
classification with hamming loss less than the given confidence level. As it is
expected, the hamming loss for any given confidence level is below the allowed
rate, since we use the CP framework.

In Fig. 7, we test the BR-MLCP with the hamming loss measure defined (13).
As the number of classes is larger, the error measure for h > 1 can be considered
strict, and thus the results are similar to that of Fig. 5. The strictness of h > 1
loss is also reflected on the error rates which are shown in Fig. 7. The rates are
much lower than the expected allowed rate given by each confidence level. In
Fig. 8 where we set h > 2, the results have slightly improved, yet the number of
certain predictions is very low.

5 Conclusion

The CP framework provides reliable measures of confidence to predictions of
Machine Learning algorithms. We gave an overview of CP and the extended
MLCP framework. We have applied the BR-MLCP algorithm on two multi-
label datasets: one for classifying music into emotions, and another for Yeast
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gene function classification. We have experimented with three measures of error.
Hamming loss, which is a widely used measure of error for multi-label problems,
was shown to give more informative prediction regions in the sense that the size
of the prediction regions was much smaller. Our defined hamming loss confidence
measure has allowed us to control the hamming loss in our predictions, while
keeping the error rates below or near the pre-set level. In the future, we would
like to conduct more experiments with a variety of hamming loss values for the
proposed confidence measure. Additionally, we would like to examine the use of
other techniques as underlying algorithms combined with ways of addressing the
class imbalance problem resulting from the BR transformation that was used in
our work.
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Abstract. Conformal predictors, currently applied to many problems in various
fields determine precise levels of confidence in new predictions on the basis only
of the information present in the past data, without making recourse to any
assumptions except that the examples are generated independently from the
same probability distribution. In this paper, the robustness of their results is
assessed for the cases in which the data are affected by error bars. This is the
situation typical of the physical sciences, whose data are often the results of
complex measurement procedures, unavoidably affected by noise. Assuming the
noise presents a normal distribution, the Geodesic Distance on Gaussian Man-
ifolds provides a statistical principled and quite effective method to handle the
uncertainty in the data. A series of numerical tests prove that adopting this
metric in conformal predictors improves significantly their performance, com-
pared to the Euclidean distance, even for relatively low levels of noise.

Keywords: Conformal predictors � Geodesic distance � Inference methods �
Error bars

1 Conformal Predictors and Measurement Errors

Machine-learning methods work often very well and have found many applications in
both the public and the private sector. On the other hand, the reliability of their per-
formance is typically proven asymptotically and is therefore not very useful in practice.
Conformal predictors, which perform competitively in terms of success rates, include
from their conception simple and useful measures of confidence [1]. Conformal pre-
diction can be based on any technique of point prediction for classification or regression,
including support-vector machines, decision trees, neural networks and Bayesian
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methods. Starting from the point prediction tool, the conformal predictor consists of
building a nonconformity measure, which determines how unusual an example is rel-
ative to previous examples. The conformal algorithm, based on the statistical concept of
the p-values, turns this nonconformity measure into prediction regions. Given a non-
conformity measure, the conformal algorithm produces a prediction region Uε for every
probability of error ε. The region Uε is a (1−ε)-prediction region; it classifies the next
example with probability at least 1−ε. Therefore conformal predictors are conservatively
valid, which means that the probability they make a mistake when their output is at
confidence level 1−ε is not greater than ε.

In most of the non-conformity measures utilised by conformal predictors, the
Euclidean distance is implicitly assumed to be the proper metric to adopt in the cal-
culation of the non-conformity measure and the p-values. The Euclidean distance has a
precise geometrical meaning and a very long historical pedigree. However, it implicitly
requires considering all data as single infinitely precise values. This assumption can be
appropriate in other applications but it is obviously not the case in physics, since all the
measurements typically present an error bar. An alternative idea is to use a new distance
between data, which would take into account the measurement uncertainties. The causes
of uncertainties in the measurements are typically many, which from a statistical point of
view can be considered random variables. As a consequence, their global contribution
can be often modelled as a noise of normal distribution. The idea, behind the approach
proposed in this paper, consists therefore of considering the measurements not as points,
but as Gaussian distributions [2]. Modelling measurements not as point values, but as
Gaussian distributions, requires defining a distance between Gaussians. This distance
must be the Geodesic on the Gaussian Manifold (GDGM) of the measurements and can
be expressed as a closed formula (see Sect. 3) [3]. As shown in the rest of the paper,
adopting this geodesic distance can increase significantly the accuracy of traditional
conformal predictors, even when the data are affected by a very limited level of noise.

With regard to the structure of the paper, next Section provides a short introduction
to the general framework of conformal prediction. The mathematical background to the
main mathematical tool introduced in the paper: the Geodesic Distance on Gaussian
Manifolds, is the subject of Sect. 3. The proposed method is assessed with a series of
numerical tests using a toy model described in Sect. 4. Section 5 reports in detail the
results of the numerical tests. Conclusions and lines of future work are provided in the
last Section of the paper.

2 The Framework of Conformal Prediction for Classification

The task of classification basically consists of attributing objects to different classes.
Mathematically this can be formalised by considering successive ordered pairs (x1, y1),
(x2, y2)…….which are called examples. Each example consists of an object xi and its
label yi, where the former represents the feature vector that describes the object i. The
objects are elements of a measurable space X called the object space; the labels are
elements of a measurable space Y called the label space. It is common practice to adopt
a more compact notation, according to which zi indicate the ordered pair (xi, yi), and
Z := X xY is defined as the example space.
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Many machine learning tools are available to perform classification. On the other
hand, as mentioned earlier, the vast majority of them cannot easily quantify the quality
of their predictions. On the contrary, conformal predictors have been conceived
explicitly to quantify the reliability of their predictions. They achieve this on the basis
of the past examples. To this end, for each new sample to classify, it is necessary to
measure how different the new one is from the old examples. In this perspective, a
nonconformity measure is defined, which allows calculating a nonconformity score to
estimate how different a new example is from a bag of old ones. A bag of size n ϵ N is a
collection of n elements some of which may be identical. In this paper, the nota-
tion < z1,…, zn > indicates a bag of n elements.

Given a nonconformity measure A and a bag < z1,…,zn > , the nonconformity score
can be calculated as:

ai := A z1; . . .; zi�1; ziþ 1; . . .; znh i; zið Þ ð1Þ

for each example zi in the bag. Because nonconformity measures are not absolute but
relative, the numerical value of ai does not, by itself, determines how unusual zi is
according to the measure A. To really quantify how unusual a sample is, it is necessary
to compare aI with the nonconformity measures aj of the other members of the bag.
The p-value is a convenient and statistically sound way of calculating how anomalous a
new example is. By definition the p-value is the fraction

Pval ¼ #fj ¼ 1; . . .; n : aj � aig
n

ð2Þ

This indicator, which lies between 1/n and 1, is the fraction of the examples in the
bag as non conforming as zi and in literature is called p-value of the element zi (pval(zi)).
The symbol “#” stands in fact for the number of elements “j” in the collection having a
nonconformity score higher or at least the same nonconformity of the element “i”. The
lower the p-value, i.e. the closer to its lower bound 1/n (“j” includes “i” in fact) for

Fig. 1. Examples to illustrate how the GDGM determines the distance between two Gaussians.
The two couples of pdf in the figure have the same mean but different σ. The geodesic distance
between the two with higher σ is much smaller.
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large n, the more non conforming zi is and the more likely it can be considered as an
outlier; this means that zi is not representative of the typical member of the bag. If the
p-value is large, i.e. close to its upper bound 1, then zi is very conforming or very
representative of the typical member of the bag. The new sample is attributed to the
class with the highest p-value.

On the basis of the p-values, conformal predictors allow calculating, for each new
classification, two indicators, confidence and credibility, which quantify the reliability
of the prediction. Credibility is defined as the largest p-value; confidence is defined as
1-2nd largest p-value. Confidence can be interpreted as the probability that the pre-
diction, corresponding to the maximal p-value, is correct. A low credibility, typically
less than 0.05, intuitively means that either the training set is non random or the test
object is not representative of the training set. If the maximum p-value appears in more
than one class, an ambiguity is present and the algorithm is not able to classify the
sample. It is important to emphasize that confidence and credibility of the prediction
play an analogous role to the observed level of significance in statistical parameter
tests.

3 Geodesic Distance on Gaussian Manifolds

As mentioned in the previous section, in the natural sciences the data available are
typically the result of experimental measurements. In this context, all measurements are
affected by uncertainties referred to as error bars. The sources of this uncertainty are
normally quite many and therefore it is more than reasonable to assume that the pdf of
the noise is normal. Each measurement can therefore be modelled as a probability
density function (pdf) of the Gaussian type, determined by its mean μ and its standard
deviation σ:

pðx; l; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp �ðx� lÞ2
2r2

" #

ð3Þ

It is normal practice to assume that the experimental measured value is the mean of
the pdf, since this is the most likely value of the pdf. The standard deviation can be
determined independently from the knowledge of the instrumentation.

The set of normal distributions can therefore be modelled as a two dimensional
space, or better a two dimensional manifold, parameterized by l and r. Modelling
measurements not as point values, but as Gaussian distributions, requires defining a
distance between Gaussians. The most appropriate definition of distance between
Gaussian distributions is the geodesic distance (GDGM), on the probabilistic manifold
containing the data, which is not a Euclidean but a Riemannian space. This geodesic
distance on the Gaussian manifold can be calculated using the Fischer-Rao metric
[3, 4]. For two univariate Gaussian distributions (p1(x|μ1, σ1)) and (p2(x|μ2, σ2)),
parameterised by their mean li and standard deviations σi(i = 1, 2), the geodesic
distance GDGM is given by:
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GDðp1jj p2Þ ¼
ffiffiffi
2

p
ln
1þ d
1� d

¼ 2
ffiffiffi
2

p
tanh�1d;where d ¼ ½ðl1 � l2Þ2 þ 2ðr1 � r2Þ2

ðl1 � l2Þ2 þ 2ðr1 þ r2Þ2
�12

ð4Þ

As will be shown in detail in the next sections, the replacement of the Euclidean
distance with the GDGM improves significantly the robustness of the classification
compared to the case of the Euclidean distance. In Fig. 1 a graphical example of the
improvement obtained using the metric in Eq. (4) is shown. Considering a Cartesian
coordinate system (μ, σ), where each point represents a Gaussian distribution, the Eucli-
dean distance between the four points, so between the four distributions, is higher between
the two wider distributions. On the other hand, considering the Geodesic Distance, the
lower distance is obtained considering the wider distributions. This behaviour reflects
the physical interpretation according to which physical quantities having higher error bars,
are to be considered closer and more similar than those with narrower error bars.

4 A Toy Model

To exemplify and prove the usefulness of the method proposed in this paper, a series of
numerical test has been performed. They are based on a toy model already introduced
in [5]. The simplicity of the model allows appreciating both the nature of the problem
and the advantages of adopting the proposed metric, the GDGM. The classification task
consists of classifying points on a straight line, on which three classes have been
defined. The problem is represented graphically in Fig. 2. The aim is to classify the new
point Q with confidence and credibility.

For the purpose of this example, the classification is based on the nearest neigh-
bour. Mathematically, given a “bag” {z1,…,zn−1}, where each zi consists of a feature
vector xi and a non-numerical label yi, when a new example zn = (xn, yn) becomes
available for classification, its feature vector xn is known but its label yn is not. The
nearest-neighbour method finds the xi closest to xn and its label yi becomes the pre-
diction of yn. A natural way to measure the nonconformity of the new example zn with
respect to the old examples zi consists of comparing x’s distances to old objects with
the same label to its distance to old objects with a different label. For example, the
nonconformity scores can be defined as:

ai ¼ dsl
ddl

ð5Þ

dsl ¼ min xj � xi
�� �� : 1� j� n& j 6¼ i& yj ¼ yi

� �

ddl ¼ min xj � xi
�� �� : 1� j� n& j 6¼ i& yj 6¼ yi

� �

For the new point Q = 14.85 shown in Fig. 2 (the non-conformity measurement is
presented in Table 1), therefore the P values credibility and confidence assume the
values 1 and 0.9844, respectively; and point Q belongs to Class C.
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Fig. 2. The toy model. A new point Q must be classified as belonging to class A, B or C.

Table 1. Non-conformity measurements for point Q = 14.85

Object i 𝛼 𝑖 𝑓𝑌= 𝐴 𝛼 𝑖 𝑓𝑌= 𝐵 𝛼 𝑖 𝑓𝑌= 𝐶 Object i 𝛼 𝑖 𝑓𝑌= 𝐴 𝛼 𝑖 𝑓𝑌= 𝐵 𝛼 𝑖 𝑓𝑌= 𝐶
1 0.0625 0.0625 0.0625 10 0.0833 0.0833 0.0833

1.25 0.0667 0.0667 0.0667 10.25 0.0909 0.0909 0.0909
1.5 0.0714 0.0714 0.0714 10.5 0.1 0.1 0.1

1.75 0.0769 0.0769 0.0769 10.75 0.1111 0.1111 0.1111
2 0.0833 0.0833 0.0833 11 0.125 0.125 0.125

2.25 0.0909 0.0909 0.0909 11.25 0.1429 0.1429 0.1429
2.5 0.1 0.1 0.1 11.5 0.1667 0.1667 0.1667

2.75 0.1111 0.1111 0.1111 11.75 0.2 0.2 0.2
3 0.125 0.125 0.125 12 0.25 0.25 0.25

3.25 0.1429 0.1429 0.1429 13 0.25 0.25 0.25
3.5 0.1667 0.1667 0.1667 13.25 0.2 0.2 0.2

3.75 0.2 0.2 0.2 13.5 0.1852 0.1852 0.1667
4 0.25 0.25 0.25 13.75 0.2273 0.2273 0.1429
5 0.25 0.25 0.25 14 0.2941 0.2941 0.125

5.25 0.2 0.2 0.2 14.25 0.4167 0.4167 0.1111
5.5 0.1667 0.1667 0.1667 14.5 0.7143 0.7143 0.1

5.75 0.1429 0.1429 0.1429 14.75 2.5 2.5 0.0364
6 0.125 0.125 0.125 15 1.6667 1.6667 0.05

6.25 0.1111 0.1111 0.1111 15.25 0.625 0.625 0.0769
6.5 0.1 0.1 0.1 15.5 0.3846 0.3846 0.0714

6.75 0.0909 0.0909 0.0909 15.75 0.2778 0.2778 0.0667
7 0.0833 0.0833 0.0833 16 0.2174 0.2174 0.0625

7.25 0.0769 0.0769 0.0769 16.25 0.1786 0.1786 0.0588
7.5 0.0714 0.0714 0.0714 16.5 0.1515 0.1515 0.0556

7.75 0.0667 0.0667 0.0667 16.75 0.1316 0.1316 0.0526
8 0.0625 0.0625 0.0625 17 0.1163 0.1163 0.05

8.25 0.0588 0.0588 0.0588 17.25 0.1042 0.1042 0.0476
8.5 0.0556 0.0556 0.0556 17.5 0.0943 0.0943 0.0455

8.75 0.0588 0.0588 0.0588 17.75 0.0862 0.0862 0.0435
9 0.0625 0.0625 0.0625 18 0.0794 0.0794 0.0417

9.25 0.0667 0.0667 0.0667 14.85 108.5 … …
9.5 0.0714 0.0714 0.0714 14.85 … 28.5 …

9.75 0.0769 0.0769 0.0769 14.85 … … 0.0351
Continue ---------> p-value 0.0156 0.0156 1
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In the previous example, the conformity measure of Eq. (5) has been calculated
using the Euclidean distance between the various points. All the derived quantities are
therefore also based on this metric. In the case of measurements affected by noise, the
Euclidean metric is not adequate and adopting the GDGM provides several improve-
ments as discussed in the next section.

5 Results of the Numerical Tests

In order to assess the potential of the GDGM metric to counteract the effect of noise, a
series of systematic tests has been performed using the toy model introduced in the
previous section. To this end, a series of points have been automatically generated
along the straight line of Fig. 2. These are to be considered the right values of the
physical quantity to measure. Then Gaussian noise, with zero mean and standard
deviations equals to a percentage (10 %,20 %,…) of the value itself, has been added to
the previously generated points. Adding this noise to the data provides the actual values
to be considered as the available measurements, affected by additive noise of Gaussian
distribution. These points have been then classified with the nonconformity measure
based on the next neighbour criterion using both the Euclidean distance and the
GDGM. The results have been reported in Table 2 for the Euclidean distance as metric
and in Table 3 for the GDGM as metric.

Table 2. Classification using the Euclidean distance to calculate the nearest neighbour. The first
column reports the accuracy (Acc.); the second the credibility (Cred.) and the third the confidence
(Conf). The following column reports the same quantities but for different levels of noise. The
top of the table reports the average values for all the 50 points.
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Table 2. (Continued)
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Table 3. Classification using the Geodesic Distance on Gaussian Manifolds distance to calculate
the nearest neighbour. The first column reports the accuracy (Acc.); the second the credibility
(Cred.) and the third the confidence (Conf). The following column reports the same quantities but
for different levels of noise. The top of the table reports the average values for all the 50 points.
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The results reported in Tables 2 and 3 indicate that the GDGM provides a clear
improvement in the success rate of the classification. Table 2 shows how the perfor-
mance of conformal predictors degrade with increasing levels of noise. It is important
also to notice how the indicators of the quality of the prediction, confidence and
credibility, tend to overestimate the reliability of the classification when significant
level of noise is present. Table 3 reports the clear improvement in both performance
and reliability of the quality indicators when the Euclidean distance is replaced with
GDGM. Another important consideration is the fact that, adopting the GDGM metric
does not cause any degradation of performance when the data are not affected by noise.

Table 3. (Continued)
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6 Conclusions

In many applications of conformal predictors, the Euclidean distance is explicitly or
implicitly adopted as the right metric. In the case of experimental measurements typical
of the physical sciences, the data are affected by noise of normal distribution. In this
situation, the GDGM proves to be a better metric, to be used in the definition of the
non-conformity measure. The calculation of the nonconformity measure and of the
p-values using the GDGM provides significantly more reliable classifications, by
reducing the adverse effects of the noise. The reported results using the GDGM have
been obtained using a desktop computer with two Xeon E5520 @2.27 GHz processors
and 24 GB of RAM, and required an average of one minute for each test performed, for
a total of 50 min for all 50 points. The computational cost is therefore very similar to
the one required to perform the calculations with the Euclidean distance.

With regard to future developments, it would be important to apply the same
approach to different pdfs: particularly relevant would be the case of the Poisson
distribution, since in practice many detectors work in photon counting or particle
counting mode. Another very interesting application would be the case in which the pdf
of the noise is not known. This situation has practical applications because in many
experimental situations the uncertainties in the measurements can be quantified with an
interval but without any additional specification. Therefore the real value is expected to
fall in a certain interval but no additional information is available. In this case the
implementation of an appropriate form of uncertain probability is expected to produce
improvements in the classification of conformal predictors comparable to the case of
the GDGM for the case of measurements affected by Gaussian noise.

In terms of practical applications, the mathematics of conformal predictors can be
applied to most classifiers, including Fuzzy ones [6]. Therefore the approach can be of
extreme help in all the cases, such as disruptions in Tokamaks, where classification is a
particularly problematic and difficult task also due to the uncertainties in the mea-
surements [7, 8].
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Abstract. Instance-transfer learning has emerged as a promising learn-
ing framework to boost performance of predictive models for a target
domain by exploiting data from source domains. The success of the
framework depends on the relevance of the source data to the target data.
This paper proposes a decision-tree approach for instance transfer when
the source and target data are relevant with respect to a strict subset
of input features. Experimental results on real-world data sets demon-
strate that the proposed approach outperforms existing instance-transfer
approaches when the source and target data are partially related.

1 Introduction

Instance transfer has received significant attention in transfer learning during the
last decade [7]. The goal is to improve the predictive models for a target domain
by exploiting data from a (closely) related source domain. The framework is most
attractive when the size of target training sample is relatively small and plenty of
labeled instances from the source domain are available. The main assumption in
instance transfer is that the target domain and the source domain are represented
by the same features and share the same class labels, but differ in the underlying
distributions [7]. As a result, the main research questions arising in the field of
instance transfer are: (1) how to determine the relevance of the source domain
to the target domain; and (2) how to select source instances for transfer.

Instance transfer is typically multi-variate [4,5,12,13]. It employs the entire
set of features used to represent the data when evaluating the relatedness
between target and source domains, and when deciding which source instances
to transfer. Although this is a quite reasonable strategy, it may fail when the
target and source domains are related only with respect to a strict subset of
the features. In this situation, current instance-transfer approaches (e.g. TrAd-
aBoost [4]) result in either transferring sub-optimal source instances, or training
the predictive models on the target sample only.

This paper addresses the aforementioned problem. It proposes a decision-tree
approach to instance transfer when the target and source domains are related to
each other w.r.t. a subset of the input features. The proposed approach induces
decision trees using the standard decision tree algorithm. Instance transfer is
realized on the level of feature selection for test nodes of the decision trees.
c© Springer International Publishing Switzerland 2016
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More precisely, for each feature the approach first applies the conformal predic-
tion framework [9] to evaluate the relevance of each source instance to the target
ones w.r.t that feature, and then selects source instances on a given significance
level. Discriminating power of the feature is estimated afterwards on the tar-
get instances and the selected source instances using some measures (e.g. Gain
Ratio)1. Once the estimations of all the features have been done, the approach
selects the feature with the maximal discriminating power for the corresponding
node of the tree. We note that decision tree induction consists of a series of such
feature selection steps. Thus, our decision-tree approach is essentially a multi-
variate approach to instance transfer that employs an univariate feature-selection
operator. This operator does actual instance transfer and does it differently for
different features.

Our decision-tree approach is unlikely to suffer from negative instance trans-
fer, which is defined as a situation in which transferring source instances actually
degrades the generalization performance of the predictive model for the target
domain [7]. The reason is obvious: when the target and source domains are unre-
lated for any feature there will be no transfer for that feature. However, when the
decision tree overfits the training data, the number of target instances associated
with a test node tends to be small. In this case the source relevance estimation
might become inaccurate. To address this issue we introduce a parameter that
controls the minimum number of target instances per test node when instance
transfer is allowed.

The remainder of this paper is structured as follows. Section 2 formalizes
the task of instance transfer and gives a sketch of decision tree approaches to
instance transfer. Sections 3 and 4 serve as introduction to decision trees and the
conformal prediction framework respectively. Section 5 presents the proposed
instance-transfer decision trees in detail. An experimental analysis is given in
Sect. 6. Finally, Sect. 7 concludes the paper.

2 Task Formalization and Solutions

Let X be a k-dimensional space with k features Xi, i ∈ {1, 2...k}, and Y be a
class set. We consider a target distribution PT over the labeled space (X × Y ).
The target sample T is a set {(x1, y1), (x2, y2), . . . , (xm, ym)} of m independently
and identically distributed (i.i.d) instances drawn from PT . Given a test instance
xm+1 ∈ X, the target classification task is to find an estimate ŷ ∈ Y for the true
class of xm+1 according to PT .

Now consider another distribution over (X × Y ), namely the source distri-
bution PS . Under the i.i.d assumption we generate a source sample S as a set
{(x1, y1), (x2, y2), . . . , (xn, yn)} of n instances drawn from PS . Assuming that PT

and PS are different but similar in some sense, we define the instance-transfer
classification task as a classification task with an auxiliary source sample S in
addition to the target sample T . We note that the class of a new (target) test
1 In this context we note that the discriminating-power estimations of different features

can be based on different subsets of source instances.
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instance is estimated according to the target distribution PT . This implies that
source instances only serve as auxiliary training data for the classification of
unseen target instances.

In this paper, we propose two approaches to embed instance transfer into
decision trees induction:

– Prior Selection: selecting the most relevant source instances prior to decision
tree induction using the entire set of features. More specifically, we first select
a source subset S′ ⊆ S whose members are likely to be generated by the target
distribution PT , and then add S′ in the training sample, i.e. S′ ∪T is used for
training the decision trees. Note that the selected source set is not tailored to
any feature.

– Dynamic Selection: selecting the most relevant source instances for each
feature Xi, (i = 1, 2...k) at any test node N during the induction process.
The selected source instances constitute a new subset S′

i ⊆ S specific to the
target data TN (associated with node N) and the feature Xi being considered.
In doing so, the discriminating power of feature Xi is estimated based on the
combined training sample S′

i∪TN . Note that the source selection is dynamic in
the sense that it selects different source sets for different features and different
decision nodes.

Both of the aforementioned approaches are applicable when the target and
source domains are related w.r.t the entire set of features. When the target and
source domains are related only with respect to a subset of the input features,
the prior selection may either transfer sub-optimal source instances, or discard
the source instances completely. On the contrary, the dynamic selection allows
for transferring instances with respect to a subset of related features. In this
manner, overall transfer performance can be improved.

In the paper, we advocate the dynamic selection approach due to its more
general applicability. It tailors the selection of source instances to each feature
and accommodates the node-specific needs of decision trees.

3 Decision Trees

Decision trees are one of the most widely applied techniques for classification
[8]. A decision tree is defined recursively as a leaf node assigning a class or a test
node with a decision tree for each test outcome. A decision tree is induced in a
top-down manner from a training sample. The algorithm can be written almost
entirely as a single recursive method BuildTree, as shown in Algorithm 1.

We define three functions to be used in the Algorithm1:

– Terminate(T ) is a boolean function that returns true if sample T satisfies a
stopping criterion, or false otherwise.

– DiscriminatingPower(T , Xj) is a real value function that returns an esti-
mation of the discriminating power of feature Xj on sample T .

– Split(T , Xj) is a function that splits sample T into subsamples according to
feature Xj .
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The decision tree induction starts by calling the BuildTree function on the
entire training sample T . The function first tests whether the training sample
satisfies a stopping criterion (e.g., entropy = 0). If so, it creates a leaf node and
then stores the number sy of training instances in T for each class y ∈ Y that
arrive at this node. Otherwise, the function creates a test node N with some test
that splits the sample into subsamples for all possible test outcomes. To decide
which feature should be tested at node N , each feature is evaluated based on its
discriminating power. An ideal split should form subsamples that exhibit class
purity, i.e. each subsample should contain instances belonging to only one class.
Once evaluations of all features have been obtained, the one with best discrim-
inating power is selected and used as the test at node N . A descendant of the
test node N is then created for each possible value of the selected feature, and
the training instances are sorted to the appropriate descendant nodes (i.e. down
the branch corresponding to the instances’s value of this feature). For each of
the subsample generated by the split, function BuildTree is recursively called.
Each call generates a subtree which root is then attached as a child to the prin-
cipal node N .

Algorithm 1. Decision Tree Induction
Input: Training sample T ⊆ X × Y
Output: Node N

1: function BuildTree(T )
2: if Terminate(T ) then
3: Return a leaf node N with number sy of instances for each class y ∈ Y .
4: else
5: Create a test node N .
6: for each feature Xj ∈ X do
7: DPj :=DiscriminatingPower(T , Xj).
8: end for
9: Choose the feature Xj with maximal DPj as the test feature for node N .

10: TargetSubsets := Split(T, Xtest).
11: for each Ti ∈ TargetSubsets do
12: ni:=BuildTree(Ti);
13: Assign ni as a child to node N .
14: end for
15: Return N .
16: end if
17: end function

Decision trees classify any instance x ∈ X in a top-down manner as well:
starting at the root of a tree and moving through it until a leaf node is encoun-
tered. The scores sy over all the classes y ∈ Y associated with the leaf node are
normalized to estimate class probability distribution {py}y∈Y over Y for that
instance x.
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4 Conformal Prediction Framework

The conformal prediction has been proposed in [11]. It uses past experiences to
determine precise levels of confidence in new predictions in one domain (let say
the target domain) [10]. Let us consider the target sample T as a sequence of
m labeled training instances and let xm+1 be a new test instance. A conformal
predictor provides an estimation ym+1 of the class for xm+1 by utilizing a con-
formity test for the null hypothesis “the sequence T ∗ = T ∪ {(xm+1, ym+1} is
generated by the target distribution PT under the exchangeability assumption2”.

The test is based on nonconformity scores αi of instances (xi, yi) ∈ T ∗.
The nonconformity score αi is a value indicating how unusual instance (xi, yi)
is with respect to all instances in the sequence T ∗ \ {(xi, yi)}. To compute a
nonconformity score for an instance, we need an instance nonconformity function
A. If (X × Y )(∗) denotes the set of all sequences defined over (X × Y ), then
the instance nonconformity function A is a mapping from (X × Y )(∗) × (X ×
Y ) to R+ ∪ {+∞} and it indicates how unusual an instance (xi, yi) is for the
sequence T ∗ \ {(xi, yi)}. We note that any instance nonconformity function has
to produce the same result for an instance independently on the permutations of
the sequence T ∗ (otherwise, the instance will have |T ∗|! possible nonconformity
scores).

The nonconformity score αm+1 of the test instance (xm+1, ym+1) is used as
a test statistic. Under the null hypothesis, the p-value of the test is calculated
as the fraction of instances in T ∗ that are associated with nonconformity scores
that are as extreme as or more than αm+1 (as shown in Eq. 1). The larger the
p-value is, the more likely to observe this value of the test statistic under the
null hypothesis, and the more confidence, therefore, we have in the prediction
ym+1.

t(T ∗, (xm+1, ym+1)) =
#{i = 1, ...,m + 1 : αi ≥ αm+1}

m + 1
(1)

In the context of instance transfer, we consider the source sample S as a
sequence consisting of n labeled source instances. We are interested in estimat-
ing the relevance of any instance (xj , yj) ∈ S to the target sample. With this
purpose, the conformity test can be applied for the null hypothesis “the sequence
T ∗ = T ∪ {(xj , yj)} is generated by the same distribution under the exchange-
ability assumption”. Analogously, the p-value of the test can be computed by
Eq. 1. The larger the p-value is, the more likely the source instance (xj , yj) is
generated by the same distribution as target ones. We regard a source instance
as a relevant instance and transfer it if its p-value is equal to or greater than a
given significance level εt.

2 The exchangeability assumption states that the joint probability distributions of a
sequence of random variables and any of its permutations coincide. It is weaker than
the i.i.d assumption.



Decision Trees for Instance Transfer 121

5 Instance Transfer with Decision Trees

Our algorithm for instance transfer induces a decision tree using the standard
decision tree algorithm (shown in Algorithm 1). The difference lies in the usage
of source instances. That is, our algorithm allows for transferring relevant source
instances when estimating the discriminating power of features for a test node.
In doing so, a function Transfer DiscriminatingPower is proposed to replace
the DiscriminatingPower in Algorithm 1. The proposed function is detailed
in Algorithm 2.

Algorithm 2. Transfer DiscriminatingPower
Input: Target sample T ⊆ X × Y , Source sample S ⊆ X × Y ,

Feature Xi, Nonconformity function A, Significance level εt,
Minimum number λ of target instances per class for instance transfer.

Output: Discriminating power of feature Xi

1: if the number of instances in T for any class y ∈ Y is smaller than λ then
return DiscriminatingPower(T , Xi).

2: else
3: Build projection Ti of T in Xi × Y .
4: Build projection Si of S in Xi × Y .
5: Set the relevant source subset S′

i = ∅.
6: for each source instance (xi

j , yj) ∈ Si do
7: Set sample T ∗ equal to Ti ∪ {(xi

j , yj)}.
8: for each instance (xk, yk) ∈ T ∗ do
9: Compute nonconformity score

αk := A(T ∗\{(xk, yk)}, (xk, yk)).

10: end for
11: Compute p-value p equal to t(T ∗, (xi

j , yj))
12: if p ≥ εt then
13: Add (xi

j , yj) to S′
i

14: end if
15: end for

return DiscriminatingPower(Ti ∪ S′
i, Xi)

16: end if

The function starts with checking if there are sufficient number of target
instances per class belonging to node N for instance transfer. In case of not
enough target instances available (i.e. the size of any class is smaller than λ),
instance transfer is not performed and the discriminating power of feature Xi

is estimated based on the target sample only. That is because the estimations
of relevance of source instances to the target sample can be inaccurate due to
the lack of sufficient target instances. If there are sufficient target instances, a
subsample of source instances is selected for feature Xi based on their instance
p-values computed by the conformal prediction framework. To be more specific,
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the function first builds projections Ti and Si for the target and source sam-
ples respectively in a bivariate space (Xi × Y ). Then for each source instance
(xi

j , yj) ∈ Si, the function tests if the sequence T ∗ = Ti ∪ (xi
j , yj) is generated

by the same distribution under the exchangeablity assumption. To that end,
the nonconformity scores for every instances in T ∗ are computed by instance
nonconformity function A. The p-value is then computed by the p-value func-
tion introduced in Sect. 4. If the p-value is greater than or equal to εt, instance
(xi

j , yj) is added to the relevant subset S′
i. Once all relevant source instances

are added, the discriminating power of Xi is estimated on Ti ∪ S′
i using some

standard functions (e.g. Information Gain).

6 Experiment

This section presents our experimental results and initial conclusions. We first
introduce the instance-transfer tasks under study in Subsect. 6.1. The experiment
setup is provided in Subsect. 6.2. In Subsect. 6.3, we analyze the generalization
performance of the proposed instance-transfer decision trees. Subsection 6.4 dis-
cusses the influence of parameter λ that controls the minimum number of target
instances per class when instance transfer is allowed.

6.1 Instance-Transfer Classification Tasks

In our experiments, we considered five instance-transfer classification tasks
defined on real-world data sets that are commonly used in transfer learning
research. Each task was given with a target sample and a source sample. Table 1
shows the descriptions of every data sets. The tasks are described below.

• The first instance-transfer task was the landmine detection task [1]. It is a task
of detecting landmine in different landmine fields. There are 29 data samples
from 29 landmine fields. The 29 samples have different distributions due to
various ground surface conditions. For example, Mine 1 to 15 correspond to
foliated regions, while Mine 16 to 29 correspond to regions that have bare
earth. In our experiment, Mine 29 was used as the target sample and Mine
1 was used as the source sample. To better fit the scenario that target and
source samples are related w.r.t a subset of the input features, we manipulated
the marginal distribution of the feature with highest gain ratio of the source
sample by adding randomly generated noise.

• The second instance-transfer task was to estimate correct/incorrect diagnosis
for a patient treated by a medical doctor [13]. The data consists of records of
patients treated by two different doctors. Each patient’s record was regarded
as an instance that represented by 8 bio-markers and a class label indicating
whether the corresponding doctor had provided correct/incorrect diagnosis.
Those instances were grouped according to the doctors. We used the group
with comparably small size as the target sample while the other one as the
source sample.
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• The third instance-transfer task was the handwritten digital recognition task
from the USPS corpus [6]. It is a task of recognizing handwritten digits (0
to 9) automatically scanned from envelopes by the U.S. Postal Service. We
applied Principal component analysis (PCA) to project the original 16 × 16
gray scale images to a feature space of 10 dimensions. The digit IDs (0–9) were
considered as classes. A target sample and a source sample were randomly
drawn from the transformed USPS corpus. Random noise was added into two
features corresponding to highest eigenvalues of the source sample, thus the
target and source samples were related w.r.t a subset of features.

• The fourth instance-transfer task was wine quality classification task [2]. This
task is based on a collection of instances related to red and white variants of
Portuguese wine. Each instance is represented by 11 physiochemical features
(e.g. PH values) and a grade given by experts between 0 (very bad) and 10
(very excellent). In our experiments, we defined a multi-class classification
task based on the grades, i.e. labeling the instances with grade 0 to 4, 5 to
6, and 7 to 10 as “poor”, “normal”, and “excellent”, respectively. A random
sample from red wine was used as the target sample and a random sample of
white wine was used as the source sample. To better fit our partially related
scenario, noise was added to two features with high gain ratios of the source
sample.

• The last instance-transfer task was student performance prediction task [3].
It is a task of predicting students’ achievements in Mathematics of two Por-
tuguese schools: Gabriel Pereira and Mousinho da Silveira. Each instance is
represented by a series of demographic, social, and school related features and
a final grade. In our experiments, we defined a binary classification task on
the final grades, i.e. pass or not pass the exam. We used instances from school
Mousinho da Silveira as the target sample, and instances from school Gabriel
Pereira as the source sample.

6.2 Experiment Setup

For all classification tasks, we employed three instance-transfer classifiers: (1)
the proposed instance-transfer decision trees that employ dynamic selection of
source instances, denoted as DS-DT; (2) instance-transfer decision trees that
employ prior selection of source instances, denoted as PS-DT; (3) TrAdaBoost
[4], which is one of the most commonly used instance-transfer algorithms. Stan-
dard decision trees were employed by TradaBoost as base learners. The iteration
number in TrAdaBoost was set to 10. The minimal number λ of target instances
per class in DS-DT was set to 10. All decision trees were induced using the well-
known decision tree algorithm C4.5 [8]. The discriminating power of features
was evaluated in terms of Gain Ratio, which is featured in C4.5.

To set up the source instance selection procedure we needed to set up the
instance nonconformity function. This setup was done depending on the type
of feature. For numerical features, the nearest-neighbor instance nonconformity
function [9] was employed. For a target sample T and an instance (xi, yi), the
nearest neighbor instance nonconformity function ANN outputs a nonconformity



124 S. Zhou et al.

Table 1. Descriptions of the data sets for instance-transfer classification tasks

Task Number of Size
class |T | |S|

Landmine 2 449 690

Medical center 2 81 453

Wine quality 3 159 1499

USPS 10 183 1820

Student performance 2 46 349

score
∑k

j=1 d+
ij∑k

j=1 d−
ij

, where k is the number of nearest neighbors, d+ij is the j-th shortest

distance from xi to some instances in T having the same class label as xi, and
d−
ij is the j-th shortest distance from xi to some instances in T having different

class labels. For nominal features, the nonconformity score of an instance (xi, yi)
w.r.t a sample T is computed based on the posterior probability distribution of
T as follows:

∑
ȳ∈Y \{y} P (ȳ|x)

P (y|x) , where P (y|x) is the normalized count of class y

given feature x.
The method of evaluation was repeated 10-fold cross validation on the target

samples; i.e., the source samples were used as auxiliary ones. The generalization
performance of the instance-transfer classifiers was evaluated using Area Under
the ROC Curve (AUC). The performance of C4.5 decision trees for the case
of no instance transfer was used as baseline. Paired t-test was performed on
significance level εe = 0.05 to find significantly better(worse) results w.r.t the
baseline classifier.

6.3 Experimental Results

We experimentally compared the performance of DS-DT, PS-DT and TrAd-
aBoost on all aforementioned instance-transfer tasks. The results are given in
Table 2. The AUCs of DS-DT and PS-DT are given on significance level εt for
source selection ranging from 0 to 1 with step 0.1. Note that there is only one
result of TrAdaBoost provided for each task. That is because TrAdaBoost does
not employ any significance level as a parameter. In Table 2, significant negative
transfer is marked with “-”, while performance that is statistically better than
the baseline is marked with “*”.

As is shown in Table 2, DS-DT gives statistically better results compared to
the baseline in most of the experiments and never results in negative transfer. PS-
DT gives less significant improvement in all tasks and even results in negative
transfer on some significance level εt for the USPS and student performance
tasks. Comparing DS-DT to PS-DT on each significance level εt, we observe that
DS-DT outperforms or performs equally well as PS-DT most of the time. This
observation is especially visible for the wine quality and student performance
tasks. Among these three classifiers, TrAdaBoost achieves the least appealing
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Table 2. AUCs of DS-DT, PS-DT and TrAdaBoost for five real-world tasks. ∗(−)
denotes significantly better(worse) results w.r.t the baseline classifier C 4.5.

results. It only gives significant improvement for the student performance task,
but no improvement at all for other four tasks. Therefore, we conclude that
when the target and source samples are related with respect to a strict subset
of features, DS-DT is more robust. It does not suffer from negative transfer and
achieves better results compared with the other two classifiers.

6.4 Influence of Minimum Size of Target Sample for Transfer

In this subsection, we investigated the effect of the minimum size λ of target
sample per class that allows for instance transfer. The main idea of this parame-
ter is to avoid inaccurate estimations of p-values due to a small target sample.
Figure 1 presents the performance of DS-DT classifiers employing λ ranging from
10 to 50 with step 10 for the wine quality task. On the x-axis is significance level
εt ∈ [0, 1] with step 0.1. The plots show the average AUCs of DS-DT classifiers
that perform instance transfer at corresponding significance levels.

The plots show that the performance of DS-DT improves as the value of λ
increases from 10 to 30. That is because the estimations of relevance of source
instances to the target sample become more accurate as the size of target training
sample gets bigger. However, the AUCs drop down when λ is raised to 40. The
reason is that instance transfer is only allowed at high-level nodes of the tree
when λ is set to 40. Therefore, the final model benefits less from instance transfer.
When λ increases to 50 or even greater numbers, there is no instance transfer
at all.

Moreover, we note that DS-DT suffers less from irrelevant source instances as
the value of λ increases. When the significance level εt is set to a small number
(e.g. 0 to 0.2), the performance of DS-DT drops down due to the inclusion of
a big amount of irrelevant source instances. Especially when the size of target
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Fig. 1. AUCs of DS-DT classifiers with different λ for the wine quality task.

sample is small, the finally model is skewed to the source distribution. That
explains why the DS-DT with lower λ (e.g. λ = 10 or 20) achieves much worse
results than the ones with higher λ at significance level εt equals 0 to 0.2.

7 Conclusions

Instance transfer has found successful applications in various tasks where the
target and source domains are closely related. However, in many real-world sce-
narios, the target and source domains are partially related, i.e. they are related
with respect to part of the features. In this paper we showed that instance
transfer can be done with respect to a subset of features. For that purpose we
proposed a decision tree approach that employs instance transfer on the level of
feature selection at test nodes of the trees. Our approach differentiates itself with
the existing approaches through allowing for dynamic and feature-specific source
instance selection. Experimental results on five real-world data sets demonstrate
that the approach outperforms existing instance-transfer algorithms when the
source and target data are related with respect to a subset of features.
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Abstract. We consider the problem of training a Hidden Markov Model
(HMM) from fully observable data and predicting the hidden states of an
observed sequence. Our attention is focused to applications that require
a list of potential sequences as a prediction. We propose a novel method
based on Conformal Prediction (CP) that, for an arbitrary confidence
level 1 − ε, produces a list of candidate sequences that contains the cor-
rect sequence of hidden states with probability at least 1−ε. We present
experimental results that confirm this holds in practice. We compare our
method with the standard approach (i.e.: the use of Maximum Likeli-
hood and the List–Viterbi algorithm), which suffers from violations to
the assumed distribution. We discuss advantages and limitations of our
method, and suggest future directions.

Keywords: Conformal Prediction · Hidden Markov Models ·
List–Viterbi algorithm

1 Introduction

Hidden Markov Models (HMMs) are statistical models that have had a great
impact in numerous fields since their introduction. They have been widely
applied to diverse fields, ranging from Cryptanalysis to Speech Analysis, and
they are the state-of-the-art in many applications such as Speech Recognition [4].

The idea behind HMMs is that there exists a time evolving “hidden” process,
which we cannot directly observe, and an observable random variable, whose
values are related in probability to those of the hidden process. HMMs can
be discrete, if the observed process can only take a finite number of values,
or continuous, if it takes values from an infinite set. This paper will focus on
continuous HMMs. The following problems are of fundamental interest to real-
world applications of HMMs: (i) what is the probability that a sequence of
observations was generated by an HMM (evaluation); (ii) what is the hidden
sequence that produced a sequence of observations (decoding); (iii) how can we
estimate the parameters for an HMM from empirical observations (learning).

This paper considers the learning and decoding problems when fully observ-
able data is available and a list of sequences is required as a prediction. That
c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 128–144, 2016.
DOI: 10.1007/978-3-319-33395-3 10
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is, it assumes a training set that contains data from both the hidden and the
observable processes, and it aims at producing, for a new observed sequence, a
list of candidate hidden sequences.

The standard approach to this problem is to assume a distribution for the
emission probabilities of the HMM, to estimate the parameters of the model by
using Maximum Likelihood, and to use the List–Viterbi algorithm [5] to produce
a list of candidate sequences. However, the standard approach: (i) requires to
manually trim the size of the list in order to achieve the desired level of accuracy,
and (ii) can have bad performances if the data does not follow the assumed
probability distribution.

We propose a novel approach that: (i) guarantees the accuracy is as good as,
or better than, a chosen confidence level, and (ii) makes no assumptions on the
probability distribution of the examples, as long as they are exchangeable. The
method works in two phases. In the first phase, it uses Conformal Prediction
(CP) [9] to replace the estimation of emission probabilities. It accepts a signifi-
cance level ε as a parameter, and produces a list of candidate hidden sequences
that is guaranteed to contain the correct sequence with probability of at least
1 − ε (validity guarantee). In the second phase, it ranks the candidate sequences
by their likelihood, using estimates of the initial and transmission probabilities.
The method returns the list of candidate hidden sequences sorted with respect
to their rank. While this paper focuses on continuous HMMs, this method can
work on both discrete and continuous HMMs.

Originally, CP worked under the assumption of exchangeability, a weaker
property than i.i.d., on training and test data. CP performs well, and gives
valid confident prediction under this assumption. However, applying HMM goes
beyond exchangeability. The book [9] suggests On-line Compression Models as
an extension for various other assumptions including Markov Model (Chap. 8.6).
However, this is not directly applicable to HMMs.

We perform experiments to verify the validity guarantee of the method. We
also provide a comparison with the standard method. Experiments are made:
(i) under optimal conditions for the standard method (i.e.: the data reflect the
assumptions it made), (ii) violating the distribution assumed by the standard
method. Results show that, while the standard method gives a better accuracy
when the assumed emission probability distribution is correct, its performances
strongly suffer when this assumption is violated. The method we propose does
not depend on the underlying distribution, and provides the desired accuracy
level under different distributions of data. Furthermore, it is able to keep the
size of the prediction set small under both conditions (efficiency criterion).

We conclude our analysis discussing advantages and limitations of the method
and suggesting future research directions.

2 Hidden Markov Models

We consider a discrete–time Markov chain qt, with finite state space. That is, qt

is a random process that at time t = 1, 2, ... takes values in a finite set of states
S, and for which holds the Markov property:
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P (qt = st|qt−1 = st−1, qt−2 = st−2, ..., q1 = s1) = P (qt = st|qt−1 = st−1),

for si ∈ S; informally, this property means that the transition of qt from one
state to the next one only depends on its current state.

In a Hidden Markov Model (HMM) there exists a “hidden” Markov chain
qt, as the one we described, whose values are generally unobservable. Whilst we
cannot directly observe qt, we have access to a random variable vt, whose value
at time t depends in probability on the state of qt. The variable vt takes values
in a measurable space O. In a discrete HMM O is finite, in a continuous one
it is infinite. This paper will focus on the continuous case. Figure 1 shows the
structure of an HMM.

A continuous HMM is defined by a transition probability matrix A, emis-
sion probability densities B, and initial probabilities Π. Follows a description of
them. A transition probability matrix is a matrix A = {αij}, where αij is the
probability that the hidden process makes a transition from state si to state sj :

αij = P (qt = sj |qt−1 = si).

We assume that, for each hidden state sj ∈ S, the conditional distribution:

P (vt|qt = sj)

has a density function bj on O. B = {bj}, for all sj ∈ S, is the set of emission
probability densities. We also define the initial probabilities Π = {πi}, where:

πi = P (q1 = si).

We call observations the values ot ∈ O taken by the observable random
variable vt. We refer to a sequence of contiguous observations as

x = (o1, o2, ...),

where ot ∈ O is the value taken by vt at time t. Analogously, we write

h = (s1, s2, ...),

to indicate a sequence of hidden states. We use the notation x(j) when referring
to the j-th element of a sequence x; for example, x(j) = oj for the sequence

Fig. 1. Structure of an HMM, observed at time t = 1, 2, ..., �. A Markov chain qt

is hidden, and makes transitions between states si ∈ S with respect to a transition
probability matrix A. We can observe a random variable vt, whose values oi ∈ O
depend in probability on the current state of qt; B defines the emission probabilities
from a state to the observation.
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mentioned above. Similarly, h(j) is the j-th element of the sequence h. In the
formulation of the problem (Sect. 3) we will assume that we can fully observe an
HMM for � time during a training phase. This operation produces an observable
sequence x = (o1, o2, ..., o�), and a hidden sequence h = (s1, s2, ..., s�).

3 Problem Setting and Evaluation Criteria

We assume we can fully observe an HMM in a training phase. In this phase we
collect a multiset of n pairs:

{(xi, hi)},

where xi = (o1, o2, ..., o�i), ot ∈ O, is a sequence of observations, and hi =
(s1, s2, ..., s�i), st ∈ S, is the respective sequence of hidden states. We assume
|xi| > 1, for i = 1, 2, ..., n, but we do not require that |xi| = |xj | for i �= j.

In a test phase we are given a new sequence of observations xn+1, whose
corresponding hidden sequence hn+1 is unknown to us. Our goal is to predict a
list of candidate hidden sequences Ĥ, sorted by their likelihood, that contains
the correct hidden sequence.

We consider three evaluation criteria for the problem:
Accuracy : an error is made when the correct sequence is not in the prediction
set Ĥ. Let η be the number of errors committed in n predictions, accuracy is:

1 − η

n
.

Efficiency : is the average size of the prediction set (see N criterion in [8]). This
criterion is crucial to the problem: a perfect accuracy can be achieved by trivially
returning the list of all the possible sequences of length � = |xn+1|; however, it
is more difficult to achieve a good accuracy while keeping small the size of |Ĥ|.
Average Position (AP): this criterion evaluates the goodness of the ranking
scores we associate with the predicted sequences. AP is the average position
that the correct sequence takes within the sorted prediction list Ĥ.

4 Standard Approach

The standard approach to the problem is as follows: a family of probability
distributions is assumed for emissions; the parameters of these distributions and
initial and transition probabilities are estimated from training data by using
Maximum Likelihood; then, the List–Viterbi algorithm is applied, for a certain
value of k, to predict the sequence of hidden states. The List–Viterbi algorithm
returns a list of k candidate sequences. If the application requires some confidence
that the correct sequence is in the predicted list, experiments need to be done
to determine which value of k gives the desired accuracy.

This section presents the Maximum Likelihood method to estimate the para-
meters of an HMM from fully observed data (observations and hidden states),
and the List–Viterbi algorithm [5], an extension of the Viterbi algorithm [1,7],
which outputs the k best sequences.
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4.1 Maximum Likelihood Method for Estimating A, B, Π

Let Z = {(xi, hi)}, for i = 1, 2, ..., n, be a multiset of observed sequences xi and
corresponding hidden sequences hi. We shall use this multiset for estimating A,
B, Π. Let S be the set of hidden states, and N its size.

Initial Probabilities. Initial probabilities Π can be estimated as follows:

Π = {πj} =

{
|{i : h

(1)
i = sj (xi, hi) ∈ Z}|

n

}
j = 1, 2, ..., N.

Transition Probabilities. Let Z ′ be a multiset of pairs composed of the hidden
state at time t and the hidden state at time t + 1. We derive Z ′ as:

Z ′ = {(x(t)
i , x

(t+1)
i )} t = 1, 2, ..., (�i − 1) (xi, hi) ∈ Z,

where �i = |xi|. The probability of transitioning from si to sj is estimated as:

αij =
|{(st, st+1) ∈ Z ′ : st = si ∧ st+1 = sj}|

|{(st, st+1) ∈ Z ′ : st = si}| ,

and is done for all i = 1, 2, ..., N and j = 1, 2, ..., N . The transition probability
matrix is A = {αij}.

Emission Probabilities. Estimation of emission probability densities B =
{bj}, for sj ∈ S depends on the chosen probability density. A typical choice is
the Normal density function: bj ∼ N (μj , σj), for some mean μj and standard
deviation σj .

Let Z ′′ be a multiset of pairs composed of an observable state and the cor-
responding hidden state:

Z ′′ = {(x(j)
i , h

(j)
i )} j = 1, 2, ..., �i (xi, hi) ∈ Z,

where �i = |xi|. We estimate the parameters for bj (e.g.: μj , σj for a Normal
density) on the multiset:

{o : (o, s) ∈ Z ′′ ∧ s = sj}.

4.2 Viterbi Algorithm

The Viterbi algorithm computes the most likely sequence of states ĥ for an
observed sequence x = (o1, o2, ..., o�), given an HMM (A,B,Π).

At each step t = 1, 2, ..., � the Viterbi algorithm computes, for each state
si ∈ S, the probability Vt(si) of the most likely sequence for which qt = si. It
first initialises:

V1(si) = P (o1|q1 = si)P (q1 = si) si ∈ S,
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where P (o1|q1 = si) = bsi
(o1), and P (q1 = si) = πi. Then, for each step t > 1,

it sets the probability of being at state si at time t, Vt(si) to:

Vt(si) = P (ot|qt = si)max
sj∈S

P (qt = si|qt−1 = sj)Vt−1(sj),

for all si ∈ S. We remark that P (ot|qt = si) = bsi
(ot) and P (qt = si|qt−1 =

sj) = αji. Vt(si) represents the probability of being in state si at time t, given
that the most likely path to reach si was followed by the HMM.

The most likely sequence can be obtained by using back pointers to the best
path taking to each state, for time t = 1, 2, ..., �.

4.3 List–Viterbi Algorithm

The List–Viterbi algorithm is an extension of the Viterbi algorithm, which out-
puts the k most likely hidden sequences for the observed sequence x.

The algorithm works as the Viterbi algorithm, but each variable Vt(si), for
t > 1, is a vector of length k; the j-th element of vector Vt(si) is the likelihood
of the j-th most likely sequence that takes to state si at time t. At each step
t > 2, all the k|S| likelihoods are considered, and only the best k are kept for the
next step. The List–Viterbi algorithm returns a list of the most likely sequences,
which are obtained by using back pointers to the k best paths. The sequences of
the prediction list are sorted by their likelihood.

5 Prediction with Confidence for HMMs

This section introduces a method to train an HMM from fully observable data
and to make a prediction for a new observed sequence. The method outputs a
list of candidate hidden sequences Ĥ, sorted with respect to their likelihood;
Ĥ contains the correct sequence with probability at least 1 − ε, for a chosen
significance level ε.

The method operates in two phases. In the first phase, the algorithm:

1. uses training data to create a training set Ztrain of pairs (oi, si), for observa-
tions oi ∈ O and respective hidden states si ∈ S;

2. considers each observation oj of the test sequence individually, and uses CP
and the training set Ztrain to determine a set of candidate hidden states Ĥj

for that observation; when doing this, hidden states are considered as the
labels to predict;

3. produces the list Ĥ of all the hidden sequences that can be generated by using
one state from Ĥ1 as a first state, one from Ĥ2 as a second state, and so on;

Figure 2 offers a graphical overview of the first phase.
The second phase is concerned with sorting the list of candidate hidden

sequences Ĥ by their likelihood. In this phase the algorithm computes Maxi-
mum Likelihood estimates of initial and transition probabilities. It computes a
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ranking score for each sequence, using the Maximum Likelihood estimates, as
the probability of the hidden Markov chain qt to produce that sequence. The
algorithm returns a list Ĥ of sequences, sorted with respect to their ranking
scores.

We introduce CP, and present the method into details.

5.1 Conformal Prediction

CP is a statistical framework that allows to edge predictions with respect to a
confidence level [2,6,9]. Let zi = (oi, si), for i = 1, 2, ..., n, be pairs of observation
and respective hidden state, and ε ∈ [0, 1] a significance level. We identify a hid-
den state with the label to predict. CP produces, for a new observation on+1, a
set of candidate labels Γ ε. The validity property of CP guarantees that Γ ε con-
tains the correct label, sn+1, with probability 1− ε, for an arbitrary significance
level1. We call 1 − ε confidence level.

Nonconformity Measure. CP works for a nonconformity measure:

A : O(∗) × O �→ R.

The function A accepts a multiset of observations and a new observation, and
returns a scalar (nonconformity score) that indicates how strange the new obser-
vation is respect to the multiset. Any function in the form of A guarantees the
validity of the method. However, some functions may provide a better efficiency
in the terms described in Sect. 3.

In our analysis, we consider the k-Nearest Neighbours (k-NN) nonconformity
measure, which is computed as follows. Let O be a multiset of observations,
on+1 a new observation, and δi the i-th smallest distance between on+1 and the
observations in O. The k-NN nonconformity measure is:

A(O, on+1) =
k∑

j=1

δi,

where k is the chosen number of neighbours. In experiments we will use the
k-NN nonconformity measure with k = 1.

CP in Multi–label Setting. Different formulations of CP exist. We consider
the multi–label setting, where we are given examples (oi, si) of observation oi ∈ O
and label si ∈ S, and CP returns, for a new observation, a set of candidate labels
Γ ε ⊆ S.

Algorithm 1 describes CP in this setting. We write:

Γ ε = CP (on+1, Z,A, ε)
1 This paper will write CP implicitly indicating Smooth CP. The difference is that

standard CP would guarantee ε to be an upper bound of errors [9].



Hidden Markov Models with Confidence 135

to indicate a call to this algorithm for a new observation on+1, a training set
Z, nonconformity measure A, and significance level ε. Thanks to the validity
property of CP, Γ ε is guaranteed to contain the correct label for on+1 with
probability 1 − ε.

Algorithm 1. Smooth Conformal Prediction in multi–label setting.
Require: Multiset of examples Z = {z1, z2, ..., zk}, where each example zi is a pair

(oi, si) of an observation oi ∈ O and a label si ∈ S, nonconformity measure A,
significance level ε, new observation ok+1.

Create empty list Γ ε.
for ŝ in S do

Set provisionally Z = {z1, .., zk, (ok+1, ŝ)}
Oŝ ← {oi|(oi, si) ∈ Z, si = ŝ}
for i ← 1, 2, ..., k + 1 do

αi ← A(Oŝ \ oi, oi)
end for
τ ← Uni(0, 1) � Sample τ from the uniform distribution in [0, 1].

pk ← |{i:αi>αk}|+|{i:αi=αk}|τ
k

if pk > ε then
Add ŝ to list Γ ε

end if
end for
return Γ ε

5.2 Prediction with Confidence for HMMs

We are provided with a multiset of pairs Z = {(xi, hi)}, for i = 1, 2, ..., n, of
observable and respective hidden sequences (Sect. 3). We are also given a test
sequence xn+1 = (o1, o2, ..., o�), whose corresponding hidden sequence hn+1 is
unknown to us. Follows a description of the method for making a prediction
with confidence for hn+1.

The method is composed of two phases, that we shall call Confident Predic-
tion and Ranking. The former aims at producing a list of candidate sequences
Ĥ that contains hn+1. The latter computes the likelihoods (ranking scores) of
the sequences in Ĥ, and returns the list sorted with respect to them.

Confident Prediction. The first phase uses information about the relation
between hidden states and observations to make a list prediction for a new
sequence.

We create a multiset of pairs of observation and respective hidden state:

Ztrain = {(x(k)
i , h

(k)
i )} k = 1, 2, ..., �i (xi, hi) ∈ Z,

where �i is the length of the i-th sequence. We will consider Ztrain as a training
set, where hidden states are the labels to predict from observations.
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We individually consider each observation oj = x
(j)
n+1 from the sequence xn+1,

for j = 1, 2, ..., �, and look for candidate hidden states for it. Specifically, we use
CP and the training set Ztrain to predict a set of labels (hidden states) Ĥj for
the observation oj :

Ĥj = CP
(
oj , Ztrain, A,

ε

�

)
,

where CP is Smooth CP in multi–label setting (Algorithm1). Any nonconfor-
mity measure A in the form described in Sect. 5.1 is allowed, but some noncon-
formity measures may provide a better efficiency. The result of this operation is
a set Ĥj containing candidate hidden states for the observation oj . We assume
exchangeability on the elements of the multiset:

Ztrain ∪ (x(j)
n+1, h

(j)
n+1).

Then, thanks to the validity property of CP, Ĥj contains the correct hidden
state h

(j)
n+1 with probability 1 − ε

� .
We iterate this operation for each observation oj of the sequence xn+1 =

(o1, o2, ..., o�), obtaining the sets Ĥ1, Ĥ2, ..., Ĥ�. We obtain � sets of candidate
hidden states, each one indicating candidate states for a position in the sequence.

We produce all the sequences of length � having as a first state one state from
Ĥ1, as a second state one from Ĥ2, and so on. This means we take the Cartesian
product of these sets:

Ĥ = Ĥ1 × Ĥ2 × ... × Ĥ�.

We call Ĥ the prediction list. The probability that hn+1 is in Ĥ is:

P (hn+1 ∈ Ĥ) ≥ 1 − ε,

for an arbitrary significance level ε ∈ [0, 1]. A proof of this is given in Appendix.

Ranking. The second phase of the algorithm focuses on ranking the sequences
of Ĥ with respect to their likelihood.

We estimate initial and transition probabilities (A,Π) using Maximum Likeli-
hood (Sect. 4.1). Then we compute a ranking score σ(ĥ), for the hidden sequence
ĥ ∈ Ĥ, ĥ = (s1, s2, ..., s�), as the probability that the hidden process of the HMM
produced that sequence:

σ(ĥ) = P (ĥ|Π,A) = P (s1) ·
�−1∏
t=1

P (st|st−1)

= πs1 ·
�−1∏
t=1

αst−1st
;

here πs1 is the initial probability for state s1, αst−1st
is the probability of tran-

sitioning from state st−1 to state st.
We return the list Ĥ sorted with respect to the ranking scores of its sequences.

A larger score gives a higher position in the list.
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Fig. 2. The first phase of prediction with confidence for HMMs. A test sequence
o1, o2, ..., o� is observed. We apply CP individually to each observation oj using a train-
ing multiset of observations and respective hidden states. This returns, for each oj of
the sequence, a list of candidate hidden states Ĥj . We produce the list Ĥ of all the
sequences that can be generated by using one of Ĥ1 = {s1, s2} as the first state, one
of Ĥ2 = {s1, s2, s3} as the second state, and so on. In the second phase the sequences
are ranked with respect to their initial and transition probability estimates.

6 Experiments

In this section we show that the validity property of our method holds in practice.
This means that, for different significance levels ε, the method keeps an error
which is always smaller or equal to ε. Furthermore, we present an experimental
comparison of our method with the standard approach. Similarly to what [3]
did when comparing the Bayes approach and CP, we experiment with these
methods under two settings: (i) emission probabilities follow the distribution
assumed by the standard approach (optimality for the standard approach), (ii)
emissions violate this distribution. This approach needs generating two datasets
that fulfill these requirements. We refer to these datasets as HMM-NORM and
HMM-GMM . HMM-NORM was generated by a continuous HMM, for which
emission probabilities were normally distributed. HMM-GMM was generated by
a continuous HMM, which used mixtures of Normal distributions (GMM) as
emission probability densities. Construction details are in Appendix.

In experiments, we consider an on–line setting, where the correct sequence
is provided after prediction, and the predicted example is added to the training
set. Our training set starts from 4 observed sequences and reaches 2000.

6.1 Validity of the Method

The method we propose is valid, in the sense that it produces a prediction set
that contains the correct sequence with probability at least 1−ε, for an arbitrary
significance level ε. A proof of this is Appendix.

We apply our method to the data for significance levels: (0.01, 0.05, 0.1),
and nonconformity measure k-NN, for k = 1. Figure 3 shows the cumulative
error of the method in this setting. We observe that the validity property holds
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empirically: the error tends to be equal or smaller than the significance levels,
for a chosen level.

Figure 4 compares the significance level and the respective empirical error
that was achieved. This plot shows that the empirical error is smaller than the
significance level for each value.

Fig. 3. Cumulative error of our method on the HMM-NORM dataset. The validity is
respected empirically for each significance level. We refer to our method as CP-HMM .

6.2 Comparison with the Standard Approach

We compare our method with the standard approach on datasets HMM-NORM
and HMM-GMM . We assume Normal distribution for the emission probabilities
of the standard approach. Consequently, HMM-NORM represents the optimal
conditions for the standard approach. HMM-GMM violates its assumptions.

Accuracy for the Same Size of Prediction Set. We measure the accuracy
of our method and of the standard approach when producing a set of predictions
of the same size. In order to do this we first run our method for some significance
level (ε = 0.01), we record the size of the prediction list Ĥ, and we run the List–
Viterbi algorithm for k = |Ĥ|. Results of this experiment on HMM-NORM and
HMM-GMM are shown in Fig. 5.

We observe that the standard approach achieves the best accuracy under
optimal conditions (Fig. 5(a)). In this case, our method achieves a slightly worse
accuracy than the standard approach. However, when the assumptions of the
standard approach are violated (i.e.: emission probabilities are not normally
distributed), its error increases considerably (Fig. 5(b)). Nonetheless, our method
is able to keep the same accuracy as before (see Fig. 5(b)). This suggests that
our method may be applied to a wider range of cases, where estimating the
probability distribution of emissions is non–trivial.
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Fig. 4. Average error achieved by our method, for different significance levels. The
empirical error tends to be smaller than ε. We refer to our method as CP-HMM .

(a) HMM-NORM dataset (b) HMM-GMM dataset

Fig. 5. Cumulative error of our method (which we call, for brevity, CP-HMM ) and
the standard approach, when they produce a prediction set of the same size. The left
figure shows results under optimal conditions for the standard approach. The right
figure shows what happens when its assumptions are violated.

Average Position. In this experiment we determined the Average Position
(AP) of our method and of the standard method. Namely, we determined which
of the two methods puts the correct prediction closer to the top of their prediction
lists. This criterion helps to understand what is the smallest size of the prediction
list that achieves perfect accuracy. A smaller AP indicates a better performance.

Table 1 reports the average position taken by the correct prediction in the
prediction list, when using the List–Viterbi algorithm, and confidence prediction
for HMMs (for significance levels (0.01, 0.05, 0.1)).

We notice that AP of our method tends to get better for higher significance
levels. The standard approach under its optimal conditions is better, in terms of
AP. However, we observe that its AP gets much worse when the data violates its
assumptions (HMM-GMM ). In this case our method is able to perform better.
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Table 1. AP for our method with different ε and for the standard approach. For
brevity, we refer to our method as CP-HMM . The left–hand table shows the results for
the HMM-NORM dataset, when the assumptions of the standard method are satisfied;
the right–hand table shows AP when these are violated (HMM-GMM dataset).

Method AP

Standard Approach 58
CP-HMM ε = 0.01 917
CP-HMM ε = 0.05 208
CP-HMM ε = 0.1 70

Method AP

Standard Approach 294
CP-HMM ε = 0.01 1067
CP-HMM ε = 0.05 337
CP-HMM ε = 0.1 146

7 Conclusions

We proposed a method that trains an HMM from fully observable data and that
outputs a list of candidate hidden sequences for a new observed sequence. The
method guarantees validity, in the sense that its probability of error is smaller
or equal than ε, for an arbitrary ε ∈ [0, 1].

We discuss advantages and limitations of the method with respect to the
standard approach, and suggest future research directions.

7.1 Comparison with the Standard Approach

The standard approach to the problem we considered is to assume probability
distributions for the emissions of the HMM, to estimate the parameters using
Maximum Likelihood, and to use the List–Viterbi algorithm.

One limitation of the List–Viterbi algorithm is that it does not allow to
directly control the accuracy. We thus need trim on experimental data the para-
meter k, that indicates the size of the prediction list, and choose the value that
gives the desired level of accuracy. The method we propose accepts a significance
level ε, and guarantees that its error is upper–bounded by ε. This means that
our method gives a direct control over the errors.

The standard approach is optimal when the correct distributions are
assumed, and the parameters are correctly estimated. However, if the data
assume different probability distributions, its performances strongly deteriorate.
Results on both optimal and non–optimal conditions for the standard method
show that the method we propose is robust independently of the distributions.
For this reason, we suggest that our method may have a wider applicability to
complex cases, where estimating the correct distributions is non–trivial.

As an advantage with respect to the standard method, our method reduces
the state space (first phase of the method, Sect. 5.2). While the standard method
needs to consider any state as a candidate, given an observation, our method
allows to consider only those that conform the distribution. Future work may
try to apply variants of the Viterbi and List–Viterbi algorithms to the result of
the first phase of our method, as a way of reducing their complexity.
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One disadvantage of our method is that CP might return an empty set as
a prediction for an observation. This would cause an empty prediction list. To
overcome this problem, we may modify Algorithm 1 to output some states, even
when none of them conforms. Future research may experiment with this option,
and perhaps verify if this would affect the validity of the method.

7.2 Future Work

Future work may apply our method to real–world problems. The method is
applicable to both discrete and continuous HMMs, and it has the advantages of:
(i) being independent of the probability distributions, and (ii) providing a direct
control on the errors.

Our experiments focused on the k-NN nonconformity measure, but the
method can work for any nonconformity measure (Sect. 5.1). However, as for CP,
some nonconformity measures may provide tighter predictions. Future research
may consider other nonconformity measures, such as Kernel Density Estimation,
and determine if they can achieve better performances.

Our method, in its current form, uses information about transition and emis-
sion probabilities in two separate phases. CP is used in the emission phase only.
Although the method made the prediction better, the following challenge appears
for the future. If an observation of the hidden sequence does not look to come
from its true hidden state (e.g.: there is noise between the hidden process and the
random variable), the method will not consider further information (e.g.: tran-
sition probabilities) when making a prediction. Future research may attempt to
solve this problem. One way is using probabilistic Venn–Machines [9], which may
substitute CP in our method. One advantage of them would be a probabilistic
output, which may be combined with initial and transition probabilities.

Future work may also consider other ways to rank the predicted sequences, in
order to improve the Average Position of the method. The use of Venn–Machines
may be helpful also in this case.

Finally, future research may try to limit the size of the training data to reduce
the complexity of the method (e.g.: Inductive CP).
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A Validity of the Method

We are given a multiset (training set) of sequences {(xi, hi)}, for i = 1, 2, ..., n.
We select a significance level ε ∈ [0, 1]. Let xn+1 be a test sequence and hn+1

the corresponding sequence of hidden states. Our method outputs a prediction
set Ĥ = {h1, h2, ...}. We show that the probability that Ĥ contains the correct
sequence is at least 1 − ε.

Let us construct the following multiset:

Ztrain = {(x(j)
i , h

(j)
i )} j = 1, 2, ...�i i = 1, 2, ..., n,

where �i = |xi| = |hi|.
Let � = |xn+1| = |hn+1|. Let us consider the j-th element of the sequence

xn+1. We assume exchangeability on the multiset

Ztrain ∪ {(x(j)
n+1, h

(j)
n+1)}.

We run:
Ĥj = CP

(
x
(j)
n+1, Ztrain, A,

ε

�

)
,

as defined in Algorithm 1. Thanks to the validity property of Smooth CP [9], the
following holds:

P (h(j)
n+1 /∈ Ĥj) =

ε

�
.

We repeat this for all the observations in xn+1. We define Ĥ as the set of all
the sequences of length � that can be generated by using elements from Ĥ1 as a
first element, elements from Ĥ2 as a second one, and so on. Then we can derive
the probability of error of our method as the probability of the correct sequence
hn+1 of not being in the prediction set as:

P (hn+1 /∈ Ĥ) = P (h(1)
n+1 /∈ Ĥ1 ∨ h

(2)
n+1 /∈ Ĥ2 ∨ ... ∨ h

(�)
n+1 /∈ Ĥ�)

≤
�∑

j=1

P (h(j)
n+1 /∈ Ĥj) = �

ε

�
= ε

�

Follows that 1 − ε is a lower–bound to the probability of error of the method.

B Datasets

B.1 HMM-NORM Dataset

We sampled 2000 sequences of length � = 10. The sequences were generated by
using a continuous HMM with 3 hidden states, S = {s1, s2, s3}, start probabili-
ties Π = {0.6, 0.3, 0.1}, transition probabilities:

A = {αij} =

⎛
⎝0.7 0.2 0.1

0.3 0.5 0.2
0.3 0.3 0.4

⎞
⎠ ,

and emission probabilities: bos1 ∼ N (−2, 0.7), bos2 ∼ N (0, 0.7), bos3 ∼
N (2, 0.7). Figure 6(a) graphically shows the distribution of bos1, bos2, and bos3.
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Fig. 6. Distribution of the emission probabilities for the three hidden states in HMM-
NORM (left–hand figure), and in HMM-GMM (right–hand figure).

B.2 HMM-GMM Dataset

We sampled 2000 sequences of length � = 10. The sequences were generated by
using a continuous HMM with 3 hidden states, S = {s1, s2, s3}, start probabili-
ties Π = {0.6, 0.3, 0.1}, transition probabilities:

A = {αij} =

⎛
⎝0.7 0.2 0.1

0.3 0.5 0.2
0.3 0.3 0.4

⎞
⎠ .

Emission probabilities where given by one mixture of two Normal distributions.
Let G(μ, σ,w) be a mixture of two Normal distribution with means μ = (μ1, μ2),
standard deviations σ = (σ1, σ2), and weights w = (w1, w2). That is:

G(μ, σ,w) =
2∑

i=1

wiN (μi, σi).

Themodelweusedhademissionprobabilities:bos1 ∼ G((0, 2), (0.7, 0.7), (0.7, 0.3)),
bos2 ∼ G((−2,−1), (0.25, 0.25), (0.5, 0.5)), bos3 ∼ G((2, 3), (0.5, 0.3), (0.7, 0.3)).
Figure 6(b) graphically shows the distribution of bos1, bos2, and bos3.
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Function Blackbox and Sparsification
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Abstract. We consider construction of surrogate models based on vari-
able fidelity samples generated by a high fidelity function (an exact repre-
sentation of some physical phenomenon) and by a low fidelity function (a
coarse approximation of the exact representation). A surrogate model is
constructed to replace the computationally expensive high fidelity func-
tion. For such tasks Gaussian processes are generally used. However, if
the sample size reaches a few thousands points, a direct application of
Gaussian process regression becomes impractical due to high computa-
tional costs. We propose two approaches to circumvent this difficulty.
The first approach uses approximation of sample covariance matrices
based on the Nyström method. The second approach relies on the fact
that engineers often can evaluate a low fidelity function on the fly at any
point using some blackbox; thus each time calculating prediction of a
high fidelity function at some point, we can update the surrogate model
with the low fidelity function value at this point. So, we avoid issues
related to the inversion of large covariance matrices — as we can con-
struct model using only a moderate low fidelity sample size. We applied
developed methods to a real problem, dealing with an optimization of
the shape of a rotating disk.

Keywords: Multifidelity data · Gaussian process · Nonlinear
regression · Nyström approximation · Cokriging

1 Introduction

Nowadays most advanced engineers encounter the problem of a surrogate model
construction, when it is required to replace an expensive high fidelity function
with an inexpensive but precise surrogate model [17]. Typically, to accomplish
such a task one generates a sample of points and values of the corresponding high
fidelity function at these points, and then using the generated sample and the
machinery of regression analysis one constructs a surrogate model. Among var-
ious surrogate model construction techniques, the Gaussian process regression
remains an attractive approach, as the machinery of this method provides a non-
linear regression model with prediction uncertainty estimate [17,37]). Moreover,
Gaussian process framework provides straightforward solutions for classification
c© Springer International Publishing Switzerland 2016
A. Gammerman et al. (Eds.): COPA 2016, LNAI 9653, pp. 147–164, 2016.
DOI: 10.1007/978-3-319-33395-3 11
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[43], adaptive design of experiments [9] and surrogate based optimization [21]
problems.

Another nice property of Gaussian process regression is the ability to treat
variable fidelity data (see for example [12,16,22,27,28,35]): one can construct
a surrogate model of a high fidelity function using data from high and low
fidelity sources (e.g., a high fidelity function can be modeled by an experiment
in a wind tunnel, and the low fidelity function can be realized by a computer
simulation of the same physical process) and then use this model for surrogate-
based optimization. Similar approaches are used for multiple output Gaussian
processes modeling [2,8,11,25].

Straightforward maximum likelihood estimation of Gaussian process regres-
sion model parameters and application of model to new points require inversion
of the covariance matrix of the sample [18]. The covariance matrix of the sample
is a square matrix with number of both rows and columns equal to the sample
size n. Consequently, as typically the covariance matrix has no specific structure,
we need O(n2) to store the covariance matrix and O(n3) to invert it. Due to this
computational complexity usually not more than a few thousands of points are
used when training Gaussian Process regression. As a sample generated using
the low fidelity function is often large, because the evaluation of a low fidelity
function is significantly cheaper than that of a high fidelity function, the problem
is even worse for variable fidelity data.

Currently there are several ways to avoid inversion of the full covariance
matrix in Gaussian process regression. Using of Nyström approximation [13]
of the covariance matrix has remained a popular approach to do large sample
Gaussian process regression inference for more than 10 years [18,36,41]. The
idea is to select a subsample of the full sample for which we can do Gaussian
process regression inference, and then approximate the full sample covariance
matrix and inverse of the full sample covariance matrix by combination of the
covariance matrix for selected subsample and covariance between points in the
selected subsample and in the full sample. Another approach consists of usage
of Bayesian approximate inference to estimate the full sample likelihood with
an easy-to-calculate expression [24,42]. Rather popular approach with proved
theoretical properties is covariance tapering [19,38]: we suppose that covariance
function equals zero for points with distance above the taper parameters, so we
obtain sparse covariance matrices, and can proceed them with routines specific
to sparse matrices. Hierarchical models move away the computational burden, as
they split the sample to separate subsamples, which leads to covariance matrix
with specific structure [5,33,39]. However, exact inference is possible if data
have some specific structure: for example, [6] has developed an exact inference
scheme to construct Gaussian process regression. Another example that works
with variable fidelity data of big size with specific structure (we aggregate many
low fidelity uncalibrated models using observations at the same points) was
presented in [11]. However, as far as we know there are no approaches to large
scale variable fidelity Gaussian process regression for data without any specific
structure.
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Another issue with Gaussian process regression lies in its bad extrapolation
properties, since the model prediction at a new point is the weighted sum of val-
ues at given training points with weights defined by covariances between points
[37]; i.e., the prediction can be determined only locally near the training points,
and we need to be careful with points that are far away from the training sample.

We propose two approaches that mitigate the sample size limitation and
improve the extrapolation properties of variable fidelity Gaussian process regres-
sion. The first approach uses the Nyström approximation to the covariance matri-
ces and relies on the results obtained for a single fidelity data in the Sparse
Gaussian process regression framework [18]. The main idea of the second app-
roach is to use the low fidelity function blackbox during the model evaluation,
so one can evaluate a low fidelity function on the fly only at the points where
it is required to approximate a high fidelity function and use these evaluations
to update the surrogate model predictions. While, for simple heuristic models
it is a common practice to use a low fidelity function blackbox [1,29,40,44,45],
Gaussian process regression doesn’t support usage of such an approach in a
direct way. As we are able to evaluate the low fidelity function at any point
from the design space, we avoid usage of large sample to cover all the design
space. Instead, it is sufficient only to get enough points to estimate parameters
of Gaussian process regression model.

For proposed approaches we investigate their computational complexity and
compare their accuracy using real and artificial data. The real problem at hand is
optimization of a rotating disk in an aircraft engine. The problem of a disk shape
optimization remains challenging and often involves usage of surrogate modeling
[15,26], so it is required to construct accurate surrogate models for maximal
stress and radial displacement of the disk used then for surrogate optimization.
We compare four approaches to construct the rotating disk surrogate models:
Gaussian process (kriging), Gaussian process for variable fidelity data (cokriging)
and our approaches — Gaussian process for variable fidelity data with usage of a
low fidelity blackbox and large scale variable fidelity Gaussian process regression.

The paper is organized as follows:

– Section 2 describes the Gaussian process regression framework;
– Section 3 outlines the Variable fidelity Gaussian process regression framework;
– Section 4 proposes an approach to construct Sparse Gaussian process regres-

sion for variable fidelity data;
– Section 5 describes our approach to Variable Fidelity Gaussian process regres-

sion with a low fidelity function blackbox;
– Section 6 provides the results of computational experiments for both real and

artificial data,
– Conclusions are given in Sect. 7.

In Appendix we provide proofs of some technical statements and details on
low and high fidelity models for rotating disk problem.
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2 Gaussian Process Regression for a Single Fidelity Data

We consider a single training sample D = (X,y) = {xi, yi = y(xi)}n
i=1, where

points x ∈ X ⊆ R
d and a function value y(x) ∈ R. We assume that y(x) =

f(x) + ε, where f(x) is a realization of a Gaussian process, and ε is a Gaussian
white noise with variance σ2. The goal is to construct a surrogate model for the
target function f(x).

The mean value and the covariance function

k(x,x′) = cov(f(x), f(x′)) = E (f(x) − E(f(x))) (f(x′) − E(f(x′)))

completely define the Gaussian process f(x). Without loss of generality we
assume its mean value to be zero. We also assume that the covariance function
belongs to some parametric family {kθ(x,x′),θ ∈ Θ ⊆ R

p}; i.e., k(x,x′) =
kθ(x,x′) for some θ ∈ Θ. Thus y(x) is also a Gaussian process [37] with zero
mean and covariance function cov(y(x), y(x′)) = kθ(x,x′) + σ2δ(x − x′), where
δ(x − x′) is the delta function. Example of a covariance function, widely used
in applications, is the multivariate squared exponential covariance function [37]
kθ(x,x′) = θ2

0 exp
(
−∑d

k=1 θ2
k(xk − x′

k)2
)
.

The covariance function parameters θ and the variance σ2 are known as fully
specifying the data model. We use the Maximum Likelihood Estimation (MLE)
of θ and σ2 [7,37] to fit the model; i.e., we maximize the logarithm of the training
sample likelihood

log p(y|X,θ, σ2) = −1
2

(
n log 2π + log |K| + yTK−1y

) → max
θ,σ2

, (1)

where K = {kθ(xi,xj)+σ2δ(xi −xj)}n
i,j=1 is the matrix of covariances between

values y(X) of the training sample and |K| is the determinant of K. σ2 plays
the role of a regularization parameter for the kernel matrix {kθ(xi,xj)}n

i,j=1,
being a matrix of covariances between values f(X). The recent theoretical work
[10] and the experimental works [4,46] suggest that, under general assumptions,
MLE parameters estimates θ̂ are accurate even if the sample size is limited and
the model is misspecified.

Using estimates of θ and σ2 we can calculate the posterior mean and the
covariances of y(x) at new points playing, respectively, the role of a prediction
and its uncertainty. The posterior mean E(y(X∗)|y(X)) at the new points X∗ =
{x∗

i }n∗
i=1 has the form

ŷ(X∗) = K(X∗,X)K−1y, (2)

where K(X∗,X) = {k(x∗
i ,xj)}i=1,...,n∗,j=1,...,n are the covariances between the

values y(X∗) and y(X). The posterior covariance matrix V (X∗) = E
[
(y(X∗) −

Ey(X∗))T (y(X∗) − Ey(X∗)) | y(X)
]

has the form

V (X∗) = K(X∗,X∗) − K(X∗,X)K−1K(X,X∗), (3)

where K(X∗,X∗) = {k(x∗
i ,x

∗
j )+σ2δ(x∗

i −x∗
j )}n∗

i,j=1 is the matrix of covariances
between values y(X∗).
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3 Variable Fidelity Gaussian Process Regression

Now we consider the case of variable fidelity data: there are a sample of the low
fidelity function Dl = (Xl,yl) =

{
xl

i, yl(xl
i)

}nl

i=1
and a sample of the high fidelity

function Dh = (Xh,yh) =
{
xh

i , yh(xh
i )

}nh

i=1
with xl

i,x
h
i ∈ R

d, yl(x), yh(x) ∈ R.
The low fidelity function yl(x) and the high fidelity function yh(x) model the
same physical phenomenon, but with different fidelities.

With the use of samples of the low and the high fidelity functions our aim
is to construct, as accurately as possible, a surrogate model ŷh(x) ≈ yh(x) of
the high fidelity function; moreover, we also need an uncertainty estimate of the
prediction.

If data come from two sources of different fidelities, then an appropriate
model should be used. We assume that the following variable fidelity data model
holds true [16]:

yl(x) = fl(x) + εl, yh(x) = ρyl(x) + yd(x),

where yd(x) = fd(x) + εd. fl(x), fd(x) are realizations of independent Gaussian
processes with zero means and covariance functions kl(x,x′) and kd(x,x′),
respectively, and εl, εd are Gaussian white noise processes with variances σ2

l

and σ2
d, respectively. We also set X =

(
Xl

Xh

)
, y =

(
yl

yh

)
. Then the posterior

mean of the high-fidelity values at new points has the form

ŷh(X∗) = K(X∗,X)K−1y, (4)

where

K(X∗,X) =
(
ρKl(X∗,Xl) ρ2Kl(X∗,Xh) + Kd(X∗,Xh)

)
,

K(X,X) =
(

Kl(Xl,Xl) ρKl(Xl,Xh)
ρKl(Xh,Xl) ρ2Kl(Xh,Xh) + Kd(Xh,Xh)

)
,

Kl(Xa,Xb), Kd(Xa,Xb) are the matrices of pairwise covariances for the
Gaussian processes yl(x) and yd(x) for points from some samples Xa and Xb,
respectively. The posterior covariance matrix is as follows:

V (X∗) = ρ2Kl(X∗,X∗) + Kd(X∗,X∗) − K(X∗,X)K−1 (K(X∗,X))T
. (5)

To estimate covariance function parameters and noise variances for Gaussian
processes fl(x) and fd(x) we use the following common algorithm [16]:
1. Estimate the parameters of the covariance function kl(x,x) using the algo-

rithm from Sect. 2 with sample D = Dl,
2. Calculate the posterior mean estimates ŷl(x) of the Gaussian process yl(x)

for x ∈ Xh,
3. Estimate the parameters of the Gaussian process yd(x) with the covariance

function kd(x,x′) and parameter ρ by maximizing likelihood (1) with D =
Ddiff = (Xh,yd = yh − ρŷl(Xh)) and k(x,x′) = kd(x,x′).

As we have big enough sample of low fidelity data, we assume that we can
get precise estimates of parameters of covariance function kl(x,x), so we don’t
need to refine these estimates using high fidelity data.
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4 Sparse Gaussian Process Regression

To perform inference for Variable Fidelity Gaussian process regression we have
to invert the sample covariance matrix of size n × n, where n = nh + nl. This
operation is of complexity O(n3), so for samples of sizes larger than few thou-
sands points we cannot construct a Gaussian process regression in a reasonable
time.

In order to construct a Gaussian process regression for large sample sizes we
propose to use an approximation to the exact inference. The Nyström approxi-
mation [18] of all involved matrices K(X∗,X), K and K(X∗,X∗) allows one to
obtain such an approximation.

Letus select fromthe initial sampleasubsampleX1 =
(
X1

l

X1
h

)
,y1 =

(
yl(X1

l )
yh(X1

h)

)

of base points with the size n1 = n1
h + n1

l to be small enough so we can perform
an exact inference for it. The simplest, rather robust and efficient way for this
is to perform uniform random selection without repetitions among points from
the initial samples.

Hence, by definition,

K11 =
(

Kl(X1
l ,X

1
l ) ρKl(X1

l ,X
1
h)

ρKl(X1
h,X1

l ) ρ2Kl(X1
h,X1

h) + Kd(X1
h,X1

h)

)
,

K1 =
(

Kl(X1
l ,Xl) ρKl(X1

l ,Xh)
ρKl(X1

h,Xl) ρ2Kl(X1
h,Xh) + Kd(X1

h,Xh)

)
,

K∗
1 =

(
ρKl(X∗,X1

l ) ρ2Kl(X∗,X1
h) + Kd(X∗,X1

h)
)

for some new points X∗ = {x∗
i }n∗

i=1 and so using the Nyström approximation we
get approximations of the matrices K(X∗,X), K and K(X∗,X∗), respectively:

K̂(X∗,X) = K∗
1K

−1
11 K1, K̂ = (K1)TK−1

11 K1, K̂(X∗,X∗) = K∗
1K

−1
11 (K∗

1)
T .

We set

R =

(
1
σl
Inl

0
0 1√

ρ2σ2
l +σ2

d

Inh

)
,

where Ik is the identity matrix of size k, C1 = RK1 and V = C1V−T
11 , V11 is

the Cholesky decomposition of K11.

Theorem 1. For the posterior mean and the posterior covariance matrix the
following Nystrom approximations hold

ŷNy
h (X∗) = K∗

1V
−1
11 (In1 + VTV)−1VTRy, (6)

V
Ny (X∗) = K∗

1V
−1
11 (In1 + VTV)−1V−T

11 K∗
1
T + (ρ2σ2

l + σ2
d)In∗ . (7)

Theorem 2. The computational complexities of the posterior mean and the pos-
terior covariance matrix calculation using (6) and (7) at one point are O(nn2

1).

Proof of these theorems are in AppendixA.
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5 Gaussian Process Regression for Multifidelity Data
with Blackbox for Low Fidelity Function

Suppose that we have a blackbox for the low fidelity function yl(x); i.e., the
blackbox estimates the low fidelity function value at any point from the design
space X ⊆ R

d on the fly. Let us assume that we have already constructed a
Variable fidelity Gaussian processes surrogate model and can calculate predic-
tions using (4) and (5). We can’t use huge sample of low fidelity function values
at corresponding points due to typical computational limitations for Gaussian
process regression. Instead, in order to improve an accuracy of these predictions
we can update the posterior mean and the posterior variance of yh(x) at a new
point x with the low fidelity function value yl(x) at this point, as calculated by
the blackbox. Let us describe a computationally efficient procedure to calculate
the update.

We set

kl(x,X) =
(

Kl(x,Xl)
ρKl(x,Xh)

)
,

where x is a some new point. For a sample with an additional point x included
we get an expanded covariance matrix:

Kexp =
(
K kl

kT
l kl(x,x)

)
.

Suppose we know the Cholesky decompositions L and L−1 of the initial train-
ing sample covariance matrix K and its inverse K−1, respectively. To calculate
the posterior mean and the posterior variance for the expanded model we will
update these Cholesky decompositions and then update the posterior mean and
the posterior variance values.

If we have an n×n matrix Kn and the Cholesky decomposition of it, we can
get the updated Cholesky decomposition of the matrix Kn+1 of size (n+1)×(n+
1) if the initial matrix is in the upper left corner of the new matrix Kn+1 with
computational complexity O(n2) using a common routine [20]. To update inverse
of the Cholesky decomposition we also need O(n2) operations, as it differs from
the initial Cholesky decomposition only in the last row and is lower triangular.
Therefore, we can calculate the matrix K−1

exp in O(n2) operations.
The expanded vector of covariances between the new point x and the initial

training sample has the form

kexp =

⎛
⎝ ρKl(x,Xl)

ρ2Kl(x,Xh) + Kd(x,Xh)
ρkl(x,x)

⎞
⎠ .

Using the value yl(x) calculated by the blackbox, we set yexp =
(
yT , yl(x)

)T
.

Then the updated expressions for the posterior mean and the posterior variance
are as follows:

ŷexp
h (x) = kexpK−1

expyexp, (8)

Vexp (x) = ρ2Kl(x,x) + Kd(x,x) − kT
expK

−1
expkexp. (9)
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As the Cholesky decomposition for the updated model differs only in the last
row we can calculate (8) and (9) in O(n2) operations.

The total computational complexity is the sum of the computational com-
plexities of the Cholesky decomposition update and the posterior mean and
the posterior variance recalculation, so for a Variable fidelity Gaussian process
regression with a blackbox, representing the low fidelity function, the following
assertions holds.

Theorem 3. Suppose we know the Cholesky decompositions L and L−1 of the
initial training sample covariance matrix K and its inverse K−1, respectively.
Then we can calculate the posterior mean ŷexp

h (x) via (8) and the variance
Vexp (x) via (9) in O(n2) operations, where n = nl + nh.

As we add only one point to the initial training sample, we expect that
estimate of parameters of Gaussian processes model remains accurate enough.
While it can be reasonable to add many points in some cases, this issue raises the
complex question on how and when we should re-estimate Gaussian processes
parameters as we add more points. Using blackbox for the low fidelity func-
tion we can get significantly more accurate approximation with small additional
computational cost.

6 Numerical Examples

In this section we consider several problems: two artificial problems and a real
applied problem of surrogate model construction for a rotating disk from an
aircraft engine. We compare the four approaches below for a surrogate model
construction; two latter approaches are introduced above:

– GP — Gaussian Process Regression using only high fidelity data,
– VFGP — Variable Fidelity Gaussian Process Regression using high and low

fidelity data,
– SVFGP — Sparse VFGP, which is a version of VFGP for the case of large

training samples introduced in Sect. 4,
– BB VFGP — VFGP with the low fidelity function realized by a black box

introduced in Sect. 5. In experiments we use the same design of experiments
as in case of VFGP, while for model update for each new point we use low
fidelity function value at this point.

As a covariance function for a Gaussian process regression we use the mul-
tivariate squared exponential covariance function, see [37]. To regularize the
problem and avoid inversion of large ill-conditioned matrices, we impose a prior
distribution of nugget term in Bayesian way [7], so we are sure that for all four
approaches we avoid problems with poor estimation of parameters for Gaussian
Processes for large samples due to computational issues (linked with small values
of regularization parameter σ2 (nugget effect) [31,34]). To estimate parameters
in SVFGP we use only a selected subsample of points, while we use the full
sample to predict values at new points.
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To measure the accuracy of the obtained surrogate models we use an RRMS
error estimated by k-fold cross-validation procedure [23] if not specified other-
wise. Note that we use low fidelity point for training only if the same point
doesn’t belong to the selected high fidelity test design if not specified otherwise.
For a single target variable and a test sample Dtest = {xtest

i , ytest
i = fh(xtest

i )}nt
i=1

the RRMS error for a surrogate model ŷ(x) equals to

RRMS(Dtest, ŷ) =

√∑nt

i=1(ŷh(xtest
i ) − ytest

i )2∑nt

i=1(y − ytest
i )2

,

here y = 1
nt

∑nt

i=1 ytest
i . The value of the RRMS error typically lies between 0

and 1. Accurate models have RRMS values close to 0, while inaccurate models
have RRMS values close to or greater than 1.

6.1 Artificial Problem with Big Sample Size

To benchmark proposed approaches we use an artificial function with multiple
local peculiarities and input dimension d = 6, so we really need rather big sample
to get an accurate surrogate model. As a high fidelity function yh(x) and a low
fidelity function yl(x) we use

yh(x) = 20 +
d∑

i=1

(x2
i − 10 cos(2πxi)) + εh, x ∈ [0, 1]d,

yl(x) = yh(x) + 0.2
d∑

i=1

(xi + 1)2 + εl, x ∈ [0, 1]d.

The high fidelity function was corrupted by a Gaussian white noise εh with vari-
ance 0.001, and the low fidelity function was corrupted by a Gaussian white
noise εl with variance 0.002. When preparing samples for experiments we gener-
ate points in [0, 1]d using Latin Hypercube Sampling [32]. To test extrapolation
properties we limit training sample points to the region with range [0, 0.5] instead
of [0, 1] for one of 6 input variables. The high fidelity sample size was nh = 100
and the size of the subsample for SVFGP was n1

l = 1000 in all experiments.
The results were averaged over 5 runs for each considered value of nl. We

thus have

– Table 1 contains RRMS errors for VFGP, SVFGP, and BB VFGP,
– Table 2 contains RRMS errors for VFGP, SVFGP, and BB VFGP in case we

use the surrogate model in extrapolation regime,
– Table 3 provides training times for VFGP, SVFGP and BB VFGP approach.

One can see that RRMS errors of SVFGP are comparable with RRMS errors of
VFGP for the same sample size, while the training time of SVFGP is tremen-
dously smaller when the sample size is equal to 5000, and for SVFGP the training
time increases only slightly when the sample size increases. For BB VFGP train-
ing time in this experiment coincides with that of VFGP, while for 1000 training
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Table 1. Comparison of RRMS errors

nl 1000 3000 5000

VFGP 0.0502 0.0170 0.0058

SVFGP 0.0502 0.0305 0.0260

BB VFGP 0.0010 0.00029 0.00017

Table 2. Comparison of extrapolation RRMS errors

nl 1000 3000 5000

VFGP 0.3636 0.1351 0.1028

SVFGP 0.3636 0.3281 0.3586

BB VFGP 0.000998 0.00113 0.00034

Table 3. Comparison of training times in seconds for Ubuntu PC, Intel-Core i7 with
4 physical cores, 3.4 GHz, 16 Gb RAM.

nl 1000 3000 5000

VFGP 30.46 852.70 7283.27

SVFGP 30.46 33.42 37.50

BB VFGP 30.38 842.97 7672.60

points we get better results with BB VFGP than for 5000 training points and
VFGP. If we calculate prediction in extrapolation regime, we get significantly
better results with BB VFGP.

6.2 Rotating Disk Problem

Now let us compare the approaches to the construction of surrogate models on
a real applied problem of rotating disk surrogate modeling.

Rotating Disk Model Description. A high speed rotating risk is an impor-
tant part of an aircraft engine (see Fig. 1a), three parameters define quality of
the disk: the mass of the disk, the maximal radial displacement umax, the max-
imal stress smax [3,6,30]. It is easy to calculate mass of the disk, as we know
all geometrical parameters of the disk, while surrogate modeling of the maximal
radial displacement and the maximal stress is challenging [26,30]. So the focus
here is on modeling of the maximal radial displacement and the maximal stress.

Used parametrization of the rotating disk geometry consists of 8 parameters:
the radii ri, i = 1, . . . , 6, which control where the thickness of the rotating disk
changes, and the values t1, t3, t5, which control the corresponding changes in
thickness. In the considered surrogate modeling problem we fix the radii r4, r5

and the thickness t3 of a rotating disk, so the input dimension for the surrogate
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(a) Aircraft engine. Rotating disk is denoted by
the bold rectangle at the right side of the figure. (b) Rotating disk geometry

Fig. 1. Rotating disk problem

model is 6. The geometry and the parametrization of the rotating disk are shown
in Fig. 1b.

There are two available solvers for umax and smax calculation. The low fidelity
function is calculated using Ordinary Differential Equations (ODE) solver based
on a simple Runge–Kutta’s method. The high fidelity function is calculated
using Finite Element Model (FEM) solver. A single evaluation of the low fidelity
function takes ∼0.01 s, and a single evaluation of the high fidelity function takes
∼300 s. More detailed comparison of solvers is given in AppendixB.

Table 4. RRMS errors for introduced approaches with standard deviations

Output umax

nh 20 40 60 80

GP 0.287 ± 0.039 0.143 ± 0.031 0.082 ± 0.020 0.095 ± 0.023

VFGP 0.212 ± 0.075 0.088 ± 0.009 0.064 ± 0.007 0.068 ± 0.006

SVFGP 0.125 ± 0.029 0.074 ± 0.016 0.041 ± 0.007 0.047 ± 0.011

BB VFGP 0.123 ± 0.019 0.053 ± 0.008 0.030 ± 0.007 0.034 ± 0.006

Output smax

nh 20 40 60 80

GP 0.505 ± 0.10 0.367 ± 0.15 0.251 ± 0.049 0.196 ± 0.014

VFGP 0.363 ± 0.07 0.261 ± 0.06 0.193 ± 0.011 0.123 ± 0.043

SFGP 0.190 ± 0.06 0.122 ± 0.06 0.119 ± 0.015 0.088 ± 0.027

BB VFGP 0.158 ± 0.03 0.162 ± 0.03 0.137 ± 0.024 0.078 ± 0.020
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Surrogate Model Accuracy. In this section we compare our approaches via
SVFGP (Sparse variable fidelity Gaussian processes) and BB VFGP (Blackbox
variable fidelity Gaussian processes) with GP (based only on high fidelity data)
and VFGP baseline methods.

We used Latin Hypercube approach to sample points. Low fidelity training
sample size was 1000, High fidelity training sample size nh was 20, 40, 60, and
80 in different experiments. In order to estimate the accuracy of a high fidelity
function prediction we used the cross-validation procedure, applied to 140 high
fidelity data points (these points contain nh points used for training of surrogate
models). For each fixed sample size nh we used 5 splits of the data to training
and test samples to estimate means and standard deviations. For SVFGP, we
use nl = 5000 low fidelity points in total, and randomly select n1

l = 1000 points
from them as base points.

The results are given in Table 4 for umax and smax outputs: VFGP outper-
forms GP, and both SVFGP and BB VFGP outperform VFGP in terms of
RRMS error. Therefore, we decide which one to use, SVFGP or BB VFGP,
by taking into account whether the blackbox for low fidelity function during a
surrogate model usage is available, or whether one uses the surrogate model in
extrapolation regime, etc.

6.3 Optimization of Rotating Disk Shape

We optimize the shape of the rotating disk described:

m,umax → min
r1,...,r6,t1,t3,t5

, (10)

umax ≤ 0.3, smax ≤ 600,

10 ≤ r1 ≤ 110, 120 ≤ r2 ≤ 140,

150 ≤ r3 ≤ 168, 170 ≤ r4 ≤ 200,

4 ≤ t1 ≤ 50, 4 ≤ t3 ≤ 50,

r5 = 210, r6 = 230, t5 = 32.

The presented problem has multiple objectives, and we are looking for a Pareto
frontier, not a single point.

Single optimization run is the following:

– Generate initial high fidelity sample Dh of 30 points using the Latin Hyper-
cube sampling.

– Construct surrogate models using GP, VFGP, SVFGP and BB VFGP
approaches using the generated high fidelity sample Dh and low fidelity sample
Dl of size 1000 for GP, VFGP and BB VFGP and of size 5000 for SVFGP.

– Solve multiobjective optimization problem at hand using these surrogate mod-
els as the target functions and constraints.

– Calculate true values at Pareto frontiers obtained during optimization using
high fidelity solver to estimate quality of models.
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Fig. 2. Pareto frontiers obtained using optimization of surrogate models constructed
with GP, VFGP, SVFGP and BB VFGP approaches along with the reference Pareto
frontier

Table 5. Optimization results for different surrogate models along with minimal values
for different optimization objectives. Also we present proportion of feasible points in
the final Pareto frontier. The best values are in bold font.

Objective GP VFGP SVFGP BB VFGP

m 16.62 15.69 15.09 15.63

0.8m + 0.2umax 73.65 70.74 70.71 68.10

0.6m + 0.4umax 125.10 117.37 116.21 112.55

0.4m + 0.6umax 176.55 163.89 161.18 156.99

0.2m + 0.8umax 228.00 210.33 206.12 201.44

umax 279.44 256.77 251.05 245.89

Feasible points share 0.54 0.57 0.55 0.75

Due to properties of applied optimization algorithm sizes of Pareto frontiers can
slightly differ for different runs of optimization algorithm, with mean size of
Pareto frontier about 30 points [14]. So we need about 50 runs of high fidelity
function to solve this optimization problem. In order to recover a reference Pareto
frontier we constructed an accurate surrogate model using 5000 high fidelity
points from uniform design over all the design space and additional sampling in
a region where Pareto frontier points are located. So, instead of using a solver
to evaluate an original function during optimization runs we used this surrogate
model.

The examples of obtained Pareto frontiers for a single optimization run is in
Fig. 2. For these runs SVFGP and BB VFGP work better than GP and VFGP.

Results of optimization are in Table 5. We compare minimum values of dif-
ferent weighted sums of two target variables m and umax averaged over 10 runs
of optimization for different initial samples. We obtain the best value of mass
m output using SVFGP algorithm and the best value of umax using BB VFGP
algorithm while optimizations based on GP and VFGP work worse. Also, with
BB VFGP we produce significantly larger amount of feasible points compared to
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GP, VFGP and SVFGP, which typically leads to better Pareto frontier coverage
with similar number of high fidelity blackbox runs.

7 Conclusions

We presented two new approaches to variable fidelity surrogate modeling, which
allow one to perform large sample inference for Variable Fidelity Gaussian
process regression: the first approach approximates the full covariance matrix
of the sample and its inverse, the second approach uses the available low fidelity
black box to update the surrogate model with the low fidelity function value at
the point where one wants to estimate the high fidelity function thus avoiding
requirement to use large low fidelity sample. Using developed approaches we can
perform large sample inference for variable fidelity Gaussian process regression
and construct more accurate surrogate models.
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Appendix

A Proof of Technical Statements

In this section we provide the proofs of the statements of Sect. 4.

Proof (Proof of Statement 1). For the posterior mean we get:
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We use the same approach to derive an equation for the posterior variance:
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Proof (Proof of Statement 2). First of all we have to calculate the matrices V11

and V = RK1V−T
11 . The matrix V11 is of size n1 × n1, so we need O(n3

1) to get
its inverse. To calculate K1V−T

11 we need O(n2
1n) operations. Finally, as R is a

diagonal matrix, we use O(n1n) operations to get V.
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In case n∗ = 1 to get the posterior mean we have to calculate V11(In1 +
VTV)−1VTy. We use O(n2

1n) operations to calculate VTV, to inverse In1 +
VTV we need O(n3

1) operations, to calculate V11(In1 + VTV)−1VT one uses
extra O(n2

1n) operations, and finally to calculate the posterior mean we need
additional O(n1n) operations. Consequently, to calculate the posterior mean we
use O(n2

1n) operations.
In the same way in order to calculate V11(In1+VTV)−1V−1

11 we need O(n2
1n)

operations to calculate (In1 + VTV)−1 and additional O(n3
1) operations to get

the final matrix. Consequently, in order to calculate the posterior variance we
use O(n2

1n) operations.
Finally, we need O(n2

1n) operations to compute the required matrices, and
O(n2

1n), to obtain the posterior mean and the posterior variance from these
precomputed matrices. So, the total computational complexity is O(n2

1n).

B Comparison of Low and High Fidelity Model
for Rotating Disk

There are two available solvers for umax and smax calculation. The low fidelity
function is calculated using Ordinary Differential Equations (ODE) solver based
on a simple Runge–Kutta’s method. The high fidelity function is calculated using
Finite Element Model (FEM) solver from ANSYS.

To compare the solvers we draw the scatter plots of low and high fidelity
values and also plot slices of the corresponding functions. We generate a random
sample of points in a specified design space box, calculate the low and high
fidelity function values and draw the low fidelity function values versus the high
fidelity function values at the same points. The scatter plots are in Fig. 3: the
difference between values increases significantly when the values are increasing.

Fig. 3. Comparison of the high and the low fidelity solvers via scatter plots

For the central point of the design space box with r1 = 0.06, r2 = 0.13, r3 =
0.16, r4 = 0.185, t1 = 0.027, t3 = 0.027 we construct one-dimensional slices by
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Fig. 4. Comparison of the high and the low fidelity solvers via outputs’ slices

varying single input variable in specified bounds. Slices for different input vari-
ables for umax and for smax are given in Fig. 4. In case of umax the high and
the low fidelity functions have the same behaviour, and the low fidelity func-
tion models the high fidelity function accurately. For smax the high and the low
fidelity functions are sometimes different: their behaviours differ for a slice along
r1 input, and local maxima differ for slice along t3 input.
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Abstract. Sobol’ indices are a common metric of dependency in sensi-
tivity analysis. It is used as a measure of confidence of input variables
influence on the output of the analyzed mathematical model. We con-
sider a problem of selection of experimental design points for Sobol’
indices estimation. Based on the concept of D-optimality, we propose
a method for constructing an adaptive design of experiments, effective
for the calculation of Sobol’ indices from Polynomial Chaos Expansions.
We provide a set of applications that demonstrate the efficiency of the
proposed approach.

Keywords: Design of experiment · Sensitivity analysis · Sobol indices ·
Polynomial chaos expansions · Active learning

1 Introduction

Computational models play an important role in different areas of human activ-
ity [1–3]. Over the past decades, they have become more complex, and there is
an increasing need for special methods for the analysis of computational mod-
els. Sensitivity analysis is an important tool for investigation of computational
models.

Sensitivity analysis tries to find how different model input parameters influ-
ence the model output, what are the most influential parameters and how
to evaluate such effects quantitatively [4]. Sensitivity analysis allows to bet-
ter understand the behavior of computational models. Particularly, it allows us
to separate all input parameters into important (significant), relatively impor-
tant and unimportant (nonsignificant) ones. Important parameters, i.e. para-
meters whose variability has a strong effect on the model output, need to be
controlled more accurately. Complex computational models often suffer from
over-parameterization. By excluding unimportant parameters, we can poten-
tially improve model quality, reduce parametrization (which is of great interest
in the field of meta-modeling) and computational costs [26].
c© Springer International Publishing Switzerland 2016
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Sensitivity analysis includes a wide range of metrics and techniques e.g. the
Morris method [5], linear regression-based methods [6], variance-based methods
[7]. Among others, Sobol’ (sensitivity) indices are a common metric to evaluate
the influence of model parameters [10]. Sobol’ indices describe the portion of
the output variance explained by different input parameters and combinations
thereof. This method is especially useful for the case of nonlinear computational
models [11].

There are two main approaches to evaluation of Sobol’ indices. Monte Carlo
approach (Monte Carlo simulation, FAST [12], SPF scheme [13] and others) is
relatively robust [8], but requires large number of model runs, typically in the
order of 104 for an accurate estimation of each index. Thus, it is impractical for
a number of industrial applications, where each model evaluation is computa-
tionally costly.

Metamodeling approaches for Sobol’ indices estimation allows one to reduce
the necessary number of model runs [6,9]. Following this approach, we replace
the original computational model by an approximating metamodel (also known
as surrogate model or response surface) which is computationally efficient and
has a clear internal structure [26]. The approach consists of the following general
steps: selection of the design of experiment (DoE) and generation of the training
sample set, construction of the metamodel based on the training samples, includ-
ing quality assessment and evaluation of Sobol’ indices (or any other measure)
using the constructed metamodel. Note that the evaluation of indices may be
either based on known internal structure of the metamodel or via Monte Carlo
simulation on the metamodel itself.

In general, a metamodeling approach is more computationally efficient than
a crude Monte Carlo approach, since the cost (in terms of the number of runs of
the costly computational model) reduces to that of the training set (in general,
a few dozens to a few hundreds). However, this approach may be nonrobust and
its accuracy is more difficult for analysis. Indeed, although procedures like cross-
validation [14,26] allow to estimate the quality of metamodels, the accuracy of
complex statistics (e.g. Sobol’ indices), derived from metamodels, has a compli-
cated dependency on the metamodels structure and quality (see e.g. confidence
intervals for Sobol’ indices estimates [15] in case of Gaussian Processes meta-
model [16–18] and bootstrap-based confidence intervals in case of polynomial
chaos expansions [19]).

In this paper, we consider a problem of a design construction for a particu-
lar metamodeling approach: how to select the experimental design for building
a polynomial chaos expansion for further evaluation of Sobol’ indices, that is
effective in terms of the number of computational model runs?

Space-filling designs are commonly used for sensitivity analysis. Methods
like Monte Carlo sampling, Latin Hypercube Sampling (LHS) [20] or sampling
in FAST method [12] try to fill “uniformly” the input parameters space with
design points (points are some realizations of parameters values). These sampling
methods are model free, as they make no assumptions on the computational
model.
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In order to speed up the convergence of indices estimates, we assume that the
computational model is close to its approximating metamodel and exploit knowl-
edge of the metamodel structure. In this paper, we consider Polynomial Chaos
Expansions (PCE) as a metamodel that is commonly used in engineering and other
applications [21]. PCE approximation is based on a series of polynomials (Hermite,
Legendre, Laguerre etc.) that are orthogonal w.r.t. the probability distributions of
corresponding input parameters of the computational model. It allows to calculate
Sobol’ indices analytically from the expansion coefficients [22,23].

In this paper, we address the problem of design of experiments construc-
tion for evaluating Sobol’ indices from a PCE metamodel. Based on asymptotic
considerations, we propose an adaptive algorithm for design and test it on a
set of applied problems. Note that in [33], we investigated the adaptive design
algorithm for the case of a quadratic metamodel (see also [34]). In this paper,
we extend the results for the case of a generalized PCE metamodel and provide
more examples, including real industrial applications.

The paper is organized as follows: in Sect. 2, we review the definition of
sensitivity indices and describe their estimation based on PCE metamodels.
In Sect. 3, asymptotic behavior of indices estimates is obtained. In Sect. 4, we
introduce an optimality criterion and propose a procedure for constructing the
experimental design. In Sect. 5, we provide experimental results, applications
and benchmark with other methods of design construction.

2 Sensitivity Indices and PCE Metamodels

2.1 Sensitivity Indices

Consider a computational model y = f(x), where x = (x1, . . . , xd) ∈ X ⊂ R
d is

a vector of input variables (or parameters or features), y ∈ R
1 is an output

variable and X is a design space. The model f(x) describes the behavior of
some physical system of interest.

We consider the model f(x) as a black-box: no additional knowledge on its
inner structure is assumed. For the selected design of experiments X = {xi ∈
X }n

i=1 ∈ R
n×d we can obtain a set of model responses and form a training

sample

L = {xi, yi = f(xi)}n
i=1 � {X ∈ R

n×d, Y = f(X) ∈ R
n}, (1)

which allows us to investigate properties of the computational model.
Assume there is a prescribed probability distribution H with independent

marginal distributions on the design space X (H = H1 × . . . × Hd). This
distribution represents the uncertainty and/or variability of the input variables,
modelled as a random vector X = {X1, . . . , Xd} with independent components.
In these settings, the model output becomes stochastic variable Y = f(X ).

Assuming that the function f(X ) is square-integrable with respect to distri-
bution H (i.e. E[f2(X )] < +∞)), we have the following unique Sobol’ decom-
position of Y = f(X ) [10] given by
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f(X ) = f0 +
d∑

i=1

fi(Xi) +
∑

1≤i≤j≤d

fij(Xi,Xj) + . . . + f1...d(X1, . . . , Xd),

which satisfies:
E[fu(X u)fv(X v)] = 0, if u �= v,

where u and v are index sets: u,v ⊂ {1, 2, . . . , d}.
Due to orthogonality of the summands, we can decompose the variance of

the model output:

D = V[f(X )] =
∑

u⊂{1,...,d},
u �=0

V[fu(X u)] =
∑

u⊂{1,...,d},
u �=0

Du,

In this expansion Du � V[fu(X u)] is the contribution of summand fu(X u)
to the output variance, also known as partial variance.

Definition 1. The sensitivity index (Sobol’ index) of variable set Xu, u ⊂
{1, . . . , d} is defined as

Su =
Du

D
. (2)

The sensitivity index describes the amount of the total variance explained
by the uncertainties in the subset of model input variables X u.

Remark 1. In this paper, we consider only sensitivity indices of type Si �
S{i}, i = 1, . . . , d, called first-order or main effect sensitivity indices.

2.2 Polynomial Chaos Expansions

Consider a set of multivariate polynomials {Ψα(X ), α ∈ L } that consists of
polynomials Ψα having the form of tensor product

Ψα(X ) =
d∏

i=1

ψ(i)
αi

(Xi), α = {αi ∈ N, i = 1, . . . , d} ∈ L ,

where ψ
(i)
αi is a univariate polynomial of degree αi belonging i-th family (e.g.

Legendre polynomials, Jacobi polynomials, etc.), N = {0, 1, 2, . . .} is the set of
nonnegative integers, L is some fixed set of multi-indices α.

Suppose that univariate polynomials {ψ
(i)
α } are orthogonal w.r.t. i-th mar-

ginal of the probability distribution H , i.e. E[ψ(i)
α (Xi)ψ

(i)
β (Xi)] = 0 if α �= β

for i = 1, . . . , d. Particularly, Legendre polynomials are orthogonal w.r.t. stan-
dard uniform distribution; Hermite polynomials are orthogonal w.r.t. Gaussian
distribution. Due to independence of X ’s components, we obtain that multivari-
ate polynomials {Ψα} are orthogonal w.r.t. the probability distribution H i.e.
E[Ψα(X )Ψβ(X )] = 0 if α �= β.



Effective Design for Sobol Indices Estimation based on PCE 169

Provided E[f2(X )] < +∞, the spectral polynomial chaos expansion of f
reads

f(X ) =
∑

α∈Nd

cαΨα(X ), (3)

where {cα} are coefficients.
In the sequel we consider a PCE approximation fPC(X ) of the model f(X )

obtained by truncating the infinite series to a finite number of terms:

ŷ = fPC(X ) =
∑

α∈L

cαΨα(X ). (4)

By enumerating the elements of L we will also use the alternative form of (4):

ŷ = fPC(X ) =
∑

α∈L

cαΨα(X ) �
P−1∑
j=0

cjΨj(X ) = cT Ψ(X ), P � |L |,

where c = (c0, . . . , cP−1)T is a column vector of coefficients and Ψ (x) : Rd → R
P

is a mapping from the design space to the extended design space defined as
a column vector function Ψ (x) = (Ψ0(x), . . . , ΨP−1(x))T . Note that index j = 0
corresponds to multi-index α = 0 = {0, . . . , 0} i.e.

cj=0 � cα=0, Ψj=0 � Ψα=0 = const.

The set of multi-indices L is determined by the truncation scheme. In this
work, we use hyperbolic truncation scheme [24], which corresponds to

L = {α ∈ N
d : ‖α‖q ≤ p}, ‖α‖q �

(
d∑

i=1

αq
i

)1/q

,

where q ∈ (0, 1] is a fixed parameter and p ∈ N\{0} = {1, 2, 3, . . .} is a fixed
maximal total degree of polynomials. Note that in case of q = 1, we have P =
(d+p)!

d!p! polynomials in L and smaller q leads to a smaller number of polynomials.
There is a number of strategies for calculating the expansion coefficients

cα in (4). In this paper, the least-square (LS) minimization method is used [25].
Expansion coefficients are calculated via minimization of the approximation error
on the training sample L = {xi, yi = f(xi)}n

i=1:

ĉLS = arg min
c∈RP

1
n

n∑
i=1

[
yi − cT Ψ (xi)

]2
. (5)

2.3 PCE Post-processing for Sensitivity Analysis

Consider a PCE model fPC(X ) =
∑

α∈L cαΨα(X ) =
∑P−1

j=0 cjΨj(X ). Accord-
ing to [22], we have an explicit form of Sobol’ indices (main effects) for model
fPC(X ):

Si(c) =

∑
α∈Li

c2αE[Ψ2
α(X )]∑

α∈L∗ c2αE[Ψ2
α(X )]

, i = 1, . . . , d, (6)
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where L∗ � L \{0} and Li ⊂ L is the set of multi-indices α such that only
the index on the i-th position is nonzero: α = {0, . . . , αi, . . . , 0}, αi ∈ N, αi > 0.

Suppose for simplicity that the multivariate polynomials {Ψα(X ), α ∈ L }
are not only orthogonal but also normalized w.r.t. distribution H :

E[Ψα(X )Ψβ(X )] = δαβ, (7)

where δαβ is the Kronecker symbol, i.e. δαβ = 1 if α = β, otherwise δαβ = 0.
Then (6) takes the form

Si(c) =

∑
α∈Li

c2α∑
α∈L∗ c2α

, i = 1, . . . , d. (8)

Thus, (8) gives a simple expression for the calculation of Sobol’ indices for
PCE metamodels. If the original model of interest f(X ) is close to its PCE
approximation fPC(X ), then we can use the expression for indices (8) with
estimated coefficients (5) to approximate Sobol’ indices of the original model:

Ŝi = Si(ĉ) =

∑
α∈Li

ĉ2α∑
α∈L∗ ĉ2α

, i = 1, . . . , d, (9)

where ĉ � ĉLS .

3 Asymptotic Properties

In this section, we consider asymptotic properties of the indices estimates in
Eq. (9) if the coefficients (5) are estimated on noisy data. Unlike (3), the original
model is supposed to be the truncated PC with Gaussian noise:

f(x) = fPC(x) + ε =
P−1∑
j=0

cjΨj(x) + ε = cT Ψ(x) + ε, (10)

where ε ∼ N(0, σ2) is i.i.d. Gaussian noise. Let ĉn be the LS estimate (5) of the
true coefficients vector c based on the training sample L = {xi, yi = f(xi)}n

i=1.
In this section and further, if some variable has index n, then this variable
depends on the training sample (1) of size n; and all expectations and variances
are w.r.t. Gaussian noise.

Define information matrix An ∈ R
P×P as

An =
n∑

i=1

Ψ (xi)ΨT (xi), (11)

and assume that An is not degenerate, i.e. det An �= 0. Then, using standard
results for linear regression coefficients [26,27], we have

Eε[ĉn] = c, Vε[ĉn] = σ2A−1
n
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and
ĉn − c ∼ N (0, σ2A−1

n ). (12)

The following theorem allows to establish asymptotic properties of the indices
estimate based on the model (10) while new examples are added to the training
sample.

Theorem 1. 1. Let us assume that there is an infinite sequence of points in the
design space {xi ∈ X }∞

i=1, such that

1
n

An =
1
n

n∑
i=1

Ψ (xi)ΨT (xi) −→
n→+∞ Σ, (13)

where Σ ∈ R
P×P : Σ = ΣT , det Σ > 0, and new design points be added

successively from this sequence to the design of experiments Xn = {xi}n
i=1.

2. Let the sensitivity indices vector-function be defined by its components (8):

S(ν) = (S1(ν), . . . , Sd(ν))T

and Ŝn � S(ĉn), where ĉn is defined by (5).
3. Assume that for the true coefficients c of the model (10):

det(BΣ−1BT ) �= 0, (14)

where B is the matrix of partial derivatives defined as

B � B(c) =
∂S(ν)

∂ν

∣∣∣∣
ν=c

∈ R
d×P (15)

then

√
n (S(ĉn) − S(c)) D−→

n→+∞ N (0, σ2BΣ−1BT ). (16)

Proof

1. Condition (13) implies that detAn �= 0 starting from some n0. Therefore,
(12) holds true for n ≥ n0. Now, consider only n ≥ n0.

2. From (12) and (13) we have

√
n(ĉn − c) ∼ N (0, σ2(An/n)−1) D−→

n→+∞ N (0, σ2Σ−1).

3. Applying δ-method [28] on vector-function S(ν) at point ν = c, we obtain
required expression (16).

Remark 2. Note that the elements of B have the following form

biβ � ∂Si

∂cβ
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2cβ

∑
α∈L∗ c2α−2cβ

∑
α∈Li

c2α

(∑α∈L∗ c2α)2
, if β ∈ Li,

0, if β = 0 � {0, . . . , 0},
−2cβ

∑
α∈Li

c2α

(∑α∈L∗ c2α)2
, if β /∈ Li ∪ 0,

(17)
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where i = 1, . . . , d and multi-index β ∈ L . The elements of B can be also
represented as

biβ � ∂Si

∂cβ
=

−2cβ∑
α∈L∗ c2α

×

⎧⎪⎨
⎪⎩

Si − 1, if β ∈ Li,

0, if β = 0 � {0, . . . , 0},

Si, if β /∈ Li ∪ 0,

(18)

Remark 3. We can see that the theorem conditions do not depend on the type
of orthonormal polynomials.

4 Design of Experiments Construction

4.1 Preliminary Considerations

Taking into account the results of Theorem 1, the limiting covariance matrix of
the indices estimates depends on

1. Noise variance σ2,
2. True values of PC coefficients c, defining B,
3. Experimental design X, defining Σ.

If we have a sufficiently accurate approximation of the original model, then in
the above assumptions, the asymptotic formula (16) allows to evaluate the quality
of the experimental design. Indeed, generally speaking the smaller the norm of
the covariance matrix ‖σ2BΣ−1BT ‖, the better the estimation of the sensitivity
indices. Theoretically, we could use this formula for constructing an experimental
design that is effective for calculating Sobol’ indices: we could select designs that
minimize the norm of the covariance matrix. However, there are some problems
when proceeding this way:

– The first one relates to the selection of the specific functional for minimiza-
tion. Informally speaking, we need to choose “the norm” associated with the
limiting covariance matrix.

– The second one refers to the fact that we do not know the true values of the
PC model coefficients, defining B; therefore, we will not be able to accurately
evaluate the quality of the design.

The first problem can be solved in different ways. A number of statistical
criteria for design optimality (D-, I-optimality and others, see [29]) are known.
Similar to the work [33], we use the D-optimality criterion, as it a provides com-
putationally efficient procedure for design construction. D-optimal experimental
design minimizes the determinant of the limiting covariance matrix. If the vec-
tor of the estimated parameters is normally distributed then D-optimal design
allows to minimize the volume of the confidence region for this vector.

The second problem is more complex. The optimal design for estimating
sensitivity indices that minimizes the norm of limiting covariance matrix depends
on the true values of the indices, so it can be constructed only if these true values
are known. However, in this case design construction makes no sense.
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The dependency of the optimal design for indices evaluation on the true
model parameters is a consequence of the nonlinearity of the indices estimates
w.r.t. the PC model coefficients. In order to underline this dependency, the term
“locally D-optimal design” is commonly used [30]. In these settings, there are
several approaches, which are usually associated with either some assumptions
about the unknown parameters, or adaptive design construction [30]. We use the
latter approach.

In the case of adaptive designs, new design points are generated sequentially
based on current estimate of the unknown parameters. This allows to avoid a
priori assumptions on these parameters. However, this approach has a problem
with a confidence of the solution found: if at some step of design construction
parameters estimates are significantly different from their true values, then the
design, which is constructed based on these estimates, may lead to new parame-
ters estimates, which are also different from the true values.

In practice, during the construction of adaptive design, the quality of the
approximation model and assumptions on non-degeneracy of results can be
checked at each iteration and one can control and adjust the adaptive strategy.

4.2 Adaptive Algorithm

In this section, we introduce the adaptive algorithm for constructing a design of
experiments that is effective to estimate sensitivity indices based on the asymp-
totic D-optimality criterion (see the algorithm scheme and Fig. 1). As it was
discussed, the main idea of the algorithm is to minimize the confidence region
for indices estimates. At each iteration, we replace the limiting covariance matrix
by its approximation based on the current PC coefficients estimates.

As for initialization, we suppose that there is some initial design, and we
require that this initial design is non-degenerate, i.e. such that the initial infor-
mation matrix A0 is nonsingular (detA0 �= 0). In addition, at each iteration the
non-degeneracy of the matrix BiA

−1
i BT

i , related to the criterion to be minimized,
is checked.

Fig. 1. Adaptive algorithm for constructing an effective experimental design to evaluate
PC-based Sobol’ indices
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Goal: Construct an effective experimental design for the calculation of sensitivity
indices

Parameters: initial and final numbers of points n0 and n in the design; set of candidate
design points Ξ.

Initialization:

– initial training sample {X0, Y0} of size n0, where design X0 = {xi}n0
i=1 ⊂ Ξ defines

a non-degenerate information matrix A0 =
∑n0

i=1 Ψ (xi)Ψ
T (xi);

– B0 = B(ĉ0), obtained using the initial estimates of the coefficients of PC model,
see (15), (17), (18);

Iterations: for all i from 1 to n − n0:

– xi = arg minx∈Ξ det
[
Bi−1(Ai−1 + Ψ (x)Ψ T (x))−1BT

i−1

]

– Ai = Ai−1 + Ψ (xi)Ψ
T (xi)

– Add the new sample point (xi, yi = f(xi)) to the training sample and update
current estimates ĉi of the PCE model coefficients

– Calculate Bi = B(ĉi)

Output: The design of experiment X = X0 ∪ Xadd, where Xadd = {xk}n−n0
k=1

4.3 Details of the Optimization Procedure

The idea behind the proposed optimization procedure is analogous to the idea
of the Fedorov’s algorithm for constructing optimal designs [31].

In order to simplify the optimization problem, we use two well-known iden-
tities:

– Let M be some nonsingular square matrix, t and w be vectors such that
1 + wT M−1t �= 0, then

(M + twT )−1 = M−1 − M−1twT M−1

1 + wT M−1t
. (19)

– Let M be some nonsingular square matrix, t and w be vectors of appropriate
dimensions, then

det(M + twT ) = det(M) · (1 + wT M−1t). (20)

Define D � B(A + Ψ(x)ΨT (x))−1BT , then applying (19), we obtain

det(D) = det

[
BA−1BT − BA−1Ψ (x)ΨT (x)A−1BT

1 + ΨT (x)A−1Ψ (x)

]

� det
[
M − twT

]
, (21)

where M � BA−1BT , t � BA−1Ψ(x)
1+ΨT (x)A−1Ψ(x)

, w � BA−1Ψ (x). Assuming that
matrix M is nonsingular and applying (20), we obtain

det(D) = det(M) · (1 − wT M−1t) → min
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The resulting optimization problem is

wT M−1t → max (22)

or explicitly

(ΨT (x)A−1)BT (BA−1BT )−1B(A−1Ψ(x))
1 + ΨT (x)A−1Ψ(x)

→ max
x∈Ξ

. (23)

5 Benchmark

In this section, we validate the proposed algorithm on a set of computational
models of different input dimensions. Three analytic problems and two indus-
trial problems based on finite element models are considered. Input parameters
(variables) of the considered models have independent uniform and independent
normal distributions. For some models, independent gaussian noise is added to
their outputs.

At first, we form non-degenerate random initial design, and then we use vari-
ous techniques to add new design points iteratively. We compare our method for
design construction (denoted as Adaptive for SI) with the following methods:

– Random method iteratively adds new design points randomly from the set
of candidate design points Ξ;

– Adaptive D-opt iteratively adds new design points that maximize the deter-
minant of the information matrix (11): det An → maxxn∈Ξ [31]. The resulting
design is optimal, in some sense, for estimation of the coefficients of a PCE
model. We compare our method with this approach to prove that it gives
some advantage over usual D-optimality. Strictly speaking, D-optimal design
is not iterative but if we have an initial training sample then the sequential
approach seems natural generalization of a common D-optimal designs.

– LHS. Unlike other considered designs, this method is not iterative as a com-
pletely new design is generated at each step. This method uses Latin Hyper-
cube Sampling, as it is common to compute PCE coefficients.

The metric of design quality is the mean error defined as the distance

between estimated and true indices
√∑d

i=1(Si − Ŝ run
i )2 averaged over runs with

different random initial designs (200–400 runs). We consider not only mean error
but also its variance. Particularly, we use Welch’s t-test [32] to ensure that the
difference of mean distances is statistically significant for the various methods
considered. Note that lower p-values correspond to greater confidence.

In all cases, we assume that the truncation set (retained PCE terms) was
selected before the experiment.

5.1 Analytic Functions

Two analytic functions with uniformly distributed input variables are considered,
namely Sobol and Wing Weight functions. Independent gaussian noise is added
to their outputs to simulate random errors due to measurement uncertainty.
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The Sobol’ function is commonly used for benchmarking methods in global sen-
sitivity analysis

f(x) =
d∏

i=1

|4xi − 2| + ci

1 + ci
,

where xi ∼ U(0, 1). In our case, parameters d = 3, c = (0.0, 1.0, 1.5) are used.
Independent gaussian noise is added to the output of the function. The standard
deviation of noise is 0 (without noise), 0.2 and 1.4 that corresponds to 0%, 28%
and 194% of the function standard deviation due to given uncertainty of the
inputs. Analytical expressions for its sensitivity indices are available in [10].

The Wing Weight function models the weight of aircraft wing [35]

f(x) = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04
(

100tc
cos(Λ)

)−0.3

(NzWdg)0.49

+SwWp,

where 10 input variables and their distributions are defined as: Sw ∼ U(150, 200),
wing area (ft2); Wfw ∼ U(220, 300), weight of fuel in the wing (lb); A ∼ U(6, 10),
aspect ratio; Λ ∼ U(−10, 10), quarter-chord sweep (degrees); q ∼ U(16, 45),
dynamic pressure at cruise (lb/ft2); λ ∼ U(0.5, 1), taper ratio; tc ∼ U(0.08, 0.18),
aerofoil thickness to chord ratio; Nz ∼ U(2.5, 6), ultimate load factor; Wdg ∼
U(1700, 2500), flight design gross weight (lb); Wp ∼ U(0.025, 0.08), paint weight
(lb/ft2). Independent gaussian noise N (0, 5.02) is added to the output of the
function.

Experimental setup for analytic functions is summarized in Table 1. In the exper-
iments, we assume that the set of candidate design points Ξ is a uniform grid in
the d-dimensional hypercube. Note that Ξ affects the quality of optimization.

5.2 Finite Element Models

Case 1: Truss Model. The deterministic computational model, originating from
[36], resembles the displacement V1 of a truss structure with 23 members as
shown in Fig. 2.

10 random variables are considered:

– E1, E2 (Pa) ∼ U(1.68 × 1011, 2.52 × 1011);
– A1 (m2) ∼ U(1.6 × 10−3, 2.4 × 10−3);
– A2 (m2) ∼ U(0.8 × 10−3, 1.2 × 10−3);
– P1 - P6 (N) ∼ U(3.5 × 104, 6.5 × 104);

It is assumed that all the horizontal elements have perfectly correlated
Young’s modulus and cros-sectional areas with each other and so is the case
with the diagonal members.
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Fig. 2. Truss structure with 23 members

Case 2: Heat Transfer Model. We consider the two-dimensional stationary heat
diffusion problem used in [37]. The problem is defined on the square domain D =
(−0.5, 0.5) × (−0.5, 0.5) shown in Fig. 3a, where the temperature field T (z), z ∈
D, is described by the partial differential equation:

−∇(κ(z)∇T (z)) = 500IA(z),

with boundary conditions T = 0 on the top boundary and ∇Tn = 0 on the left,
right and bottom boundaries, where n denotes the vector normal to the boundary;
A = (0.2, 0.3)×(0.2, 0.3) is a square domain within D and IA is the indicator func-
tion of A. The diffusion coefficient, κ(z), is a lognormal random field defined by

κ(z) = exp[ak + bkg(z)],

where g(z) is a standard Gaussian random field and the parameters ak and bk

are such that the mean and standard deviation of κ are μκ = 1 and σκ = 0.3,
respectively. The random field g(z) is characterized by an autocorrelation func-
tion ρ(z, z′) = exp(−‖z − z′‖2/0.22). The quantity of interest, Y , is the average
temperature in the square domain B = (−0.3,−0.2) × (−0.3,−0.2) within D
(see Fig. 3a).

To facilitate solution of the problem, the random field g(z) is represented
using the Expansion Optimal Linear Estimation (EOLE) method [38]. By trun-
cating the EOLE series after the first M terms, g(z) is approximated by

ĝ(z) =
M∑
i=1

ξi√
�i

φT
i Czζ

In the above equation, {ξ1, . . . , ξM} are independent standard normal variables;
Czζ is a vector with elements C(k)

zζ = ρ(z, ζk), where {ζ1, . . . , ζM} are the points
of an appropriately defined mesh in D; and (�i, φi) are the eigenvalues and
eigenvectors of the correlation matrix Cζζ with elements C(k,	)

ζζ = ρ(ζk, ζ	), where
k, � = 1, . . . , n. We select M = 53 in order to satisfy

M∑
i=1

�i/

n∑
i=1

�i ≥ 0.99
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(a) Finite-element mesh (b) Temperature field realizations

Fig. 3. Heat diffusion problem

The underlying deterministic problem is solved with an in-house finite-
element analysis code. The employed finite-element discretization with trian-
gular T3 elements is shown in Fig. 3a. Figure 3b shows the temperature fields
corresponding to two example realizations of the diffusion coefficient.

Experimental Setup. For these finite element models, we assume that the set of
candidate design points Ξ is

– a uniform grid in the 10-dimensional hypercube for Truss model;
– LHS design with normally distributed variables in 53-dimensional space for

Heat transfer model.

Experimental settings for all models are summarized in Table 1.

Table 1. Benchmark settings

Characteristic Sobol WingWeight Truss Heat transfer

Input dimension 3 10 10 53

Input distributions Unif Unif Unif Norm

PCE degree 9 4 4 2

q-norm 0.75 0.75 0.75 0.75

Regressors number 111 176 176 107

Initial design size 150 186 176 108

Added noise std (0, 0.2, 1.4) 5.0 — —

5.3 Results

Figures 4a, b, c, and 5 show results for analytic functions. Figures 6 and 7 present
results for finite element models.
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Fig. 4. Sobol function. 3-dimensional input.
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Fig. 5. WingWeight function. 10-dimensional input

Fig. 6. Truss model. 10-dimensional input

In the presented experiments, the proposed method performs better than
other considered methods in terms of the mean error of estimated indices. Par-
ticularly note its superiority over standard LHS approach that is commonly used
in practice. The difference in mean errors is statistically significant according to
Welch’s t-test.

Comparison of Fig. 4a, b, c with different levels of additive noise shows that
the proposed method is effective when the analyzed function is deterministic or
when the noise level is small.

Because of robust problem statement and limited accuracy of the optimiza-
tion, the algorithm may produce duplicate design points. Actually, it’s a common
situation for locally D-optimal designs [30]. If the computational model is deter-
ministic, one may modify the algorithm, e.g. exclude repeated design points.
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Fig. 7. Heat transfer model. 53-dimensional input

Although high dimensional optimization problems may be computationally
prohibitive, the proposed approach is still useful in high dimensional settings.
We propose to generate a uniform candidate set (e.g. LHS design of large size)
and then choose its subset for the effective calculation of Sobol’ indices using
our adaptive method (see results for Heat transfer model on Fig. 7).

It should be noted that in all presented cases the specification of sufficiently
accurate PCE model (reasonable values for degree and q-norm defining the trun-
cation set) is assumed to be known a priori and the size of the initial training
sample is sufficiently large. If we use an inadequate specification of the PCE
model (e.g. quadratic PCE in case of cubic analyzed function), the method will
perform worse in comparison with methods which do not depend on PCE model
structure. In any case, usage of inadequate PCE models may lead to inaccurate
results. That is why it is very important to control PCE model error during the
design construction. For example, one may use cross-validation for this purpose
[26]. Thus, if the PCE model error increases during design construction this may
indicate that the model specification is inadequate and should be changed.

6 Conclusions

We proposed the design of experiments algorithm for evaluation of Sobol’ indices
from PCE metamodel. The method does not depend on a particular form of
orthonormal polynomials in PCE. It can be used for the case of different distri-
butions of input parameters of the analyzed computational models.

The main idea of the method comes from metamodeling approach. We assume
that the computational model is close to its approximating PCE metamodel
and exploit knowledge of a metamodel structure. This allows us to improve the
evaluation accuracy. All comes with a price: if additional assumptions on the
computational model to provide good performance are not satisfied, one may
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expect accuracy degradation. Fortunately, in practice, we can control approx-
imation quality during design construction and detect that we have selected
inappropriate model. Note that from a theoretical point of view, our asymptotic
considerations (w.r.t. the training sample size) simplify the problem of accuracy
evaluation for the estimated indices.

Our experiments demonstrate: if PCE specification defined by the truncation
scheme is appropriate for the given computational model and the size of the
training sample is sufficiently large, then the proposed method performs better
in comparison with standard approaches for design construction.
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Abstract. We consider the problem of building accurate models that
can predict, in the short term (2–3 years), the onset of one or more chronic
conditions at individual level. Five chronic conditions are considered:
heart disease, stroke, diabetes, hypertension and cancer. Covariates for
the models include standard demographic/socio-economic variables, risk
factors and the presence of the chronic conditions at baseline. We com-
pare two predictive models. The first model is the multivariate probit
(MVP), chosen because it allows to model correlated outcome variables.
The second model is the Multiclass Support Vector Machine (MSVM), a
leading predictive method in machine learning. We use Australian data
from the Social, Economic, and Environmental Factory (SEEF) study,
a follow up to the 45 and Up Study survey, that contains two repeated
observations of 60,000 individuals in NSW, over age 45. We find that
MSVMs predictions have specificity rates similar to those of MVPs, but
sensitivity rates that are on average 12% points larger than those of
MVPs, translating in a large average improvement in sensitivity of 30%.

1 Introduction

While infectious disease continue to pose a threat to world health, in the words
of the World Health Organization “it is the looming epidemics of heart disease,
stroke, cancer and other chronic diseases that for the foreseeable future will take
the greatest toll in deaths and disability”[1]. In fact, already 10 years ago the total
number of people dying from chronic diseases was double that of all infectious
diseases, maternal/perinatal conditions, and nutritional deficiencies combined [1].
The rise of these conditions can be traced to a complex web of interactions of com-
mon factors, such as genes, nutrition and life-style, with socio-economic status.

Since chronic conditions can be very costly but are also preventable there is
great interest in building models that allow to simulate the costs and benefits of
health interventions in this area, and that can be used for planning and policy
purposes by government agencies and other interested stakeholders [2–4].

The risk of developing a chronic condition is highly dependent on factors
such as obesity or smoking and on individual characteristics such as income

c© Springer International Publishing Switzerland 2016
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and education. These factors vary greatly within the population, and therefore
it is particular important to develop models that predict the onset of chronic
conditions at individual level, that can then be used as components of simulation
models to be applied to an entire population [2].

Since chronic conditions are quite correlated (for example diabetes and heart
disease often go together) it is imperative to use models that make joint pre-
dictions, rather than modeling each condition separately. In the biostatistics
literature this is usually done using multivariate probit models (MVP) [5,6].
While MVP are very attractive because they are easily interpretable, they rely
on a very simple and rather restrictive specification and they were designed more
for the purpose of understanding the determinants of the outcomes, rather than
for predicting the future.

From a machine learning viewpoint it is somewhat surprising that there have
not attempts to use more sophisticated, and appropriate, type of models, such
as Support Vector Machines (SVMs) or Deep Learning (DL) methods. We start
to fill this gap by presenting, in this paper, a comparison between the predictive
ability of MVPs and SVMs. We have chosen SVMs to start with mostly because
the biostatistics community is very comfortable with R and at the moment there
is somewhat more support in R for SVMs than for DL.

It is important to underscore that the ability to improve the accuracy of MVP
predictions is not an academic exercise. What is of interest to policy makers is
long term predictions (20 to 30 years), that can only be made by repeatedly
applying shorter term predictions (from one to three years, depending on the
availability of longitudinal data). Therefore even a small improvement in the
accuracy of short-term predictions can result in large reduction in the uncertainty
of the long-term estimates, having a large impact on the policy outcomes.

The rest of this article is organized as follows. Section 2 describes the data
used in our experiment. Section 3 briefly describes the MVP and SVM models.
Section 4 discusses the experimental results and Sect. 5 concludes the paper.

2 Data

In order to build a predictive model of chronic disease it is necessary to have
longitudinal data, in which the same individual has been observed at least twice.
Since we are interested in predicting several chronic conditions at once, and since
the joint prevalence of certain conditions is not very high, the data sets needs to
be quite large in order to capture some of those combinations. There is a dearth
of longitudinal data that can be used for this purpose, and one of the largest
is the Australian Social, Economic, and Environmental Factory (SEEF) study,
a follow up to the 45 and Up Study survey [7]. The approval for this study is
provided by the NSW Population & Health Services Research Ethics Committee
(AU RED reference:HREC/15/CIPHS/4).

The 45 and Up Study survey (www.saxinstitute.org.au), which was carried
out between 2006 and 2009, contains information regarding the health and social
wellbeing of 267,153 individuals aged 45 years and older living in New South

http://www.saxinstitute.org.au
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Wales (NSW), Australia. Eligible individuals, sampled from the Medicare pop-
ulation of NSW, were mailed the questionnaire, an information sheet and a
consent form and provided with a reply paid envelope. The survey over-sampled
individuals aged 80 years and over and residents of rural areas by a factor of
two. In addition, all residents aged 45 years and older in remote areas were sam-
pled. The overall response rate of the 45 and Up Study is 18 %, accounting for
approximately 10 % of all individuals of age 45 years or older living in NSW.
While the response rate is low and participants tended to be of more favor-
able socioeconomic circumstances than average for the age group, previous work
has shown that analytical findings based on internal comparisons, such as odd-
ratios, are generalizable and comparable to those derived from smaller but more
representative population health surveillance [8].

Data captured in the 45 and Up Study baseline include a number of self-
reported chronic conditions such as (ever diagnosed) heart disease, high blood
pressure, diabetes, stroke, asthma, depression and different types of cancer.

Questionnaire data also include information on key potential confounder and
mediating factors, including age, sex, household income, level of education, smok-
ing history, alcohol use, physical activity, height and weight, functional status,
psychological distress, medical and surgical history and dietary habits. A full
description of all the variables available in the 45 and Up Study together with
basic summary statistics can be found elsewhere [7].

The SEEF study data, that include all the original variable in the 45 and Up
Study plus a host of additional variables, were collected in 2010 from a random
sub sample of the baseline 45 and Up Study cohort. One hundred thousands
45 and Up Study participants were mailed an invitation and the SEEF ques-
tionnaire. About 60,000 individuals joined the SEEF study by completing the
consent form and the questionnaire and mailing them to the study coordinating
center.

Our dependent variables are 5 binary variables denoting the presence or
absence of the following chronic conditions at follow-up: heart disease, hyper-
tension, diabetes, stroke, and cancer. These health conditions were self-reported
and based on the responses to survey questions formulated as follows: “Has a
doctor ever told you that you have [name of condition]?”.

Since individuals can develop any of those five conditions we consider the
multi-class problem of predicting in which of the 25 = 32 combinations of con-
ditions individuals will fall at follow-up. We report in Table 1 the size of each
of the 32 classes in the SEEF data. Since some of the classes are very small
and neither of the two methods out-performed the other in those cases, we have
eliminated from our data the classes with fewer than 100 cases (outlined in bold
in Table 1).

The two main risk factors that we used as covariates were obesity and smok-
ing status. Possible values of smoking status are “Not Smoking”, “Smoker” and
“quit smoking”, which are derived from the combined answers to the following
two questions “Have you ever been a regular smoker?” and “Are you a regular
smoker now?”.
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Table 1. Class size (bold font shows the classes which we removed)

Condition Size

No condition 16421

Cancer 11896

Cancer-hypertension 7614

Diabetes 737

Diabetes-Cancer 523

Diabetes-Cancer-Hypertension 1195

Diabetes-Hypertension 1389

Diabetes-Stroke 19

Diabetes-Stroke-Cancer 20

Diabetes-Stroke-Cancer-Hypertension 137

Diabetes-Stroke-Hypertension 95

Heart 1319

Heart-Cancer 1925

Heart-Cancer-Hypertension 2847

Heart-Diabetes 169

Heart-Diabetes-Cancer 251

Heart-Diabetes-Cancer-Hypertension 749

Heart-Diabetes-Hypertension 506

Heart-Diabetes-Stroke 19

Heart-Diabetes-Stroke-Cancer 32

Heart-Diabetes-Stroke-Cancer-Hypertension 343

Heart-Diabetes-Stroke-Hypertension 111

Heart-Hypertension 1787

Heart-Stroke 89

Heart-Stroke-Cancer 154

Heart-Stroke-Cancer-Hypertension 360

Heart-Stroke-Hypertension 197

Hypertension 8475

Stroke 166

Stroke-Cancer 199

Stroke-Cancer-Hypertension 376

Stroke-Hypertension 284

Obesity status was based on the values of the body mass index (BMI), which
is the body weight in kilograms divided by the square of the body height in
meters. We used the standard World Health Organization classification system to
categories individuals as Underweight (BMI < 18.5), Normal (18.5 ≤BMI < 25),
Overweight(25 ≤BMI < 30) and Obese (BMI ≥ 30).



Joint Prediction of Chronic Conditions Onset 189

Additional covariates used in the analysis are the five chronic conditions at
baseline, age category, gender, income, work status, private health insurance
status, Body Mass Index (BMI) and smoking status.

The SEEF study includes many more variables (such as education, dietary
habits or family history) that could be used in the analysis but we have restricted
ourselves to this set because we found that adding more variables did not signif-
icantly improve the predictions.

Since individuals were recruited in the 45 and Up Study over a period of
few years the interval between interviews is not always the same, resulting in
follow-up data being collected between 2 and 4 years after baseline. Therefore
we also included as a covariate the time to follow up, which on average was 2
and half years. The summary statistics for the covariates used in the model are
shown in Table 2.

Table 2. Summary statistics of the SEEF Study. All quantities measured at baseline
except when reported otherwise. Quantities in parenthesis are proportions.

Age
[45,50] (50,55] (55,60] (60,65] (65,70] (70,75] (75,80] (80,85] (85,100]

8902 10302 10196 9115 8007 5197 4132 3062 926
(0.15) (0.17) (0.17) (0.15) (0.13) (0.09) (0.08) (0.05) (0.01)

Income
>20K 20K-30K 30K-40K 40K-50K 50K-70K 70K+

13954 7874 6510 5769 8208 17524
(0.23) (0.13) (0.10) (0.10) (0.14) (0.30)

Health Insurance
No Private Veteran Health

CareCard
Private
Extras

Private
No Extras

9236 1045 9186 30970 9402
(0.15) (0.02) (0.15) ( 0.52) (0.16)

BMI
Normal Obese Overweight Underweight

22780 12344 23950 765
(0.38) (0.21) (0.40) (0.01)

Smoking
Not
smoker

Quit
smoking

Smoker

34910 21485 3444
(0.59) (0.35) (0.06)

Work status
Full Not

working
Part time

18002 29608 12229
(0.30) (0.50) (0.20)

Gender
Female Male

32128 27711
(0.54) (0.46)

Conditions
Heart Diabetes Stroke Cancer Hypertension

7059 4441 1256 22283 20598
(0.12) (0.07) (0.02) (0.37) (0.34)

Conditions at follow-up
Heart Diabetes Stroke Cancer Hypertension

10564 5973 2036 28278 26233
(0.18) (0.10) (0.03) (0.47) (0.44)

3 Methodology

3.1 Multivariate Probit

Let us denote by Y
(1)
iα the binary variable indicating the presence at follow-up of

chronic condition α for individual i, where i = 1, 2, . . . , N with N = 60, 000, and
α = {heart disease,diabetes,hypertension, stroke, cancer}. Let us also denote by
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Y
(0)
iα the corresponding variable measured at baseline, and by Zi ∈ Rd a vector

of other covariates measured at baseline. To simplify the notation we denote by
Y(1)

i (Y(0)
i ) the vectors whose components are Y

(1)
iα (Y (0)

iα ).
The MVP model is a latent variable model with the following specification:

Ŷ(1)
i = ΓY(0)

i + ΘZi + εi, Y
(1)
iα = 1 if Ŷ

(1)
iα > 0, 0 otherwise (1)

εi ∼ N (0, Σ)

where Γ and Θ are matrices of coefficients, of dimensions 5×5 and 5×d respec-
tively, that need to be estimated. The key to the MVP model of Eq. 1 is the
presence of the 5×5 (unknown) covariance matrix Σ. The off-diagonal elements
of its inverse capture the correlations across chronic conditions and the fact that
developing, say, heart disease and diabetes are not independent events. Predic-
tion of the MVP model are performed probabilistically, by feeding samples of
the multivariate normal distribution N (0, Σ), one for each individual, in Eq. 1.

The estimation of the full MVP model is notoriously computationally inten-
sive, although recent advances in computational methods [6] make it much more
approachable. For the purpose of our experiments we have developed an approx-
imation of the traditional method in which we use observed correlation among
chronic conditions to approximate the matrix Σ, which makes the estimation
of the model much simpler. Since we have not observed deterioration in perfor-
mance by using the approximate method, all the experiments performed for the
production of this paper have been performed using the approximation rather
than the full implementation.

3.2 Support Vector Machines

Support Vector Machines (SVMs) have been around the machine learning com-
munity for more than 20 years now [9], and for the sake of brevity we simply refer
the reader to standard textbooks and references [10,11]. SVMs have many attrac-
tive features, but one that should be emphasized in the context of this paper
is that, unlike MVP, they do not rely on distributional assumption regarding
the process that generates the data. Instead, SVMs relies on two key modeling
choices: one is

1. the parameter (usually denoted by C) that controls the penalty associated
with the misclassification of a data point;

2. the kernel, that is associated with the choice of the (possibly infinite dimen-
sional) feature space onto which the input variables are projected [12]. For the
purpose of this paper we have mainly experimented with polynomial kernels
of the form K(xi,xj) = (1 + xi · xj)p, that are uniquely parametrized by the
degree p.

SVMs were originally designed for binary classification problems, but several
extensions exist that allow to deal with multi-class problems.

In the R package we use for the SVM implementation, Kernlab, there are
several options for dealing with multi-class problems [13,14]. We found that for
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this problem best results were obtained by using the “one vs one” approach, in
which one trains K(K − 1)/2 binary classifiers (with K = 32 in our case). Each
of the classifier separates one class from another class, and in order to classify a
new sample, all classifiers are applied and the class that gets the highest number
of votes is selected. While it is not fully clear why the “one vs one” approach
worked better than the alternatives (such as the “one vs all” approach [15]),
the fact that in this particular application many of the events we are trying to
predict are quite rare seems to play a role, since it can lead to very imbalanced
data sets.

4 Experimental Results

4.1 Performance Evaluation Metrics

We used a 10-fold cross-validation approach to estimate the performance of the
MVP and SVM methods. The full data sets was first randomly partitioned in
10 subsets of equal size (approximately 6,000 data points each). For each of the
10 replication trials we withhold one of the 10 partitions and use it for testing,
while the remaining 9 partitions are used for training. For each of the 10 trials we
compute 4 performance measures, and we report the average of the performance
measures over the 10 replications.

As performance measures we report sensitivity and specificity, since they are
the ones most commonly used in health studies, as well as accuracy and the F1
score. We report the definitions below, where TP , TN , FP and FN refer to the
total number of true positives, true negatives, false positives and false negatives
respectively.

Sensitivity =
TP

TP + FN
(2)

Sensitivity (or true positive rate, or recall) is important because it measures the
ability to identify who is going to develop the disease.

Specificity =
TN

TN + FP
(3)

Specificity (or true negative rate) is important because it measures the ability
to identify who is not going to develop the disease.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Accuracy indicates how many samples are correctly classified overall. Accuracy
can be misleading when the dataset is imbalanced. Therefore an alternative
performance measure is the F1 Score, defined as:

F1 Score = 2 × pr

p + r
(5)
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where p is the precision and r is the recall (or sensitivity). Here precision is
defined as the ratio of true positives (TP ) to all predicted positives (TP + FP ).
Since the F1 score is the harmonic mean of precision and recall a high score is
obtained when precision and recall are both high.

4.2 Results

The average of the performance measures over the 10 replication sets for Multi-
class SVMs (MSVMs) and MVP are shown in Figs. 1 and 2. In Fig. 1 we report
specificity and sensitivity for both methods. The key message of this figure is
that while the specificity of the two methods are comparable, the sensitivity
of MSVM is, on average about 12 % points better than the one of multivariate
probit. Since sensitivities are in general not very high, this translates in a large
relative improvement, of approximately 30 %.

A similar pattern is seen on accuracy and F1 scores. With very few exceptions
SVMs are more accurate than MVPs, although by not too much. That the
difference is not great relates to the fact that in most cases the classification

Fig. 1. Comparison between MSVM and MVP using 10-fold cross-validation: sensitiv-
ity and specificity.
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Fig. 2. Comparison between MSVM and MVP using 10-fold cross-validation: accuracy
and F1 score.

problem is quite imbalanced, for which accuracy is not a good performance
measure. The F1 score shows show larger differences between SVMs and MVPs,
which is not surprising since a component of the F1 score is the sensitivity of
the method, that is greatly improved using MSVMs.

5 Lessons Learned

Few lessons have emerged from this study. First of all, independently of which
method we use, predicting who is going to develop some combination of chronic
conditions in the near future, based on a handful of individual characteristics and
the current chronic conditions, is quite hard. While maintaining specificity rates
above 90 %, most of the sensitivity rates, obtained using MSVMs, fell within
50 % and 75 %.

In our experience including additional risk factors, such as diet or family
history, will only lead to marginal improvements. What is likely to have a major
impact on the predictive ability of any method is a more accurate measurement
of people’s health status, such as actual results of pathology and imaging tests.
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Unfortunately it seems unlikely that data sets of this type, that in principle
exist, can be made available to researchers any time soon.

This implies that it is crucial to make the best possible use of the current
data, and that is why the choice of predictive model is highly relevant. Given
that short-term predictions are of particular value in the process of making
long-term predictions, which carry enormous policy implications, even a small
improvement in accuracy could have serious policy implications. Put in this
context, an average improvement in sensitivity of 12 % points, which translates
into a 30 % relative improvement, is enormous.

We do not claim to have produced the best possible classifier, and it is likely
that better methods can be devised, especially if they start taking advantage of
prior information we have on the development of chronic conditions. However
the main lesson learned is that the choice of predictive model can make a big
difference. This seems particular important because in the area of health ana-
lytics we have not seen a high rate of adoption of methods such as SVMs or
Deep Learning, which have proved to be extremely successful in a wide range
of applications. Therefore we hope that this study will be a first step toward a
broader use of methods that carry the potential of leading to large improvement
over the status quo.
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Abstract. Scripts are the knowledge representation model. To our
knowledge, there were no machine learning methods for it. In this work
we propose a method of discovering script goals and putting them into
an order. It is based on sequential pattern mining and regular expres-
sions. This method has been validated by experiments set on malware
behavior data. The results show that the discovered goals and their order
correspond with expected malware behavior.

Keywords: Scripts · Knowledge representation · Sequential pattern
mining · Malware

1 Introduction

Scripts, as the form of knowledge representation, were first proposed during 1970s
[1], and yet since that time there wasn’t much progress in projecting automated
systems based on scripts. The reason for this is in the lack of methods of machine
learning for this form of knowledge representation. This leaded to the limited
usage of the whole scripts knowledge model. Our aim is to develop such a method.
As far as we know, the literature has not discussed the usage of machine learning
methods for obtaining a scripts knowledge model.

In Sect. 2, we explore the relevant work which started the theory of scripts.
In Sect. 3, we analyze the requirements for a script-based knowledge system. In
Sect. 4, we give the description of our method which suggests using sequential
pattern mining for learning scripts from a sequence set. As the example field of
knowledge, we choose the malicious software and its behavior. The behavior of
malicious software often follows the so-called lifecycle, as found, for example, in
[13]. The lifecycle describes the typical action sequence performed by a malware
of a certain class. This resembles the scripts, therefore we find it appropriate to
use scripts for modeling the malware lifecycle. Currently, the knowledge about
generalized malware lifecycles (to not be confused with precise behavior knowl-
edge) is only processed manually, as we show in our previous work [2]. Therefore,
our choice of knowledge field is, firstly, for explaining and then experimentally
testing our method; and secondly, for solving the issue with automated extrac-
tion of malware lifecycle models from raw data. In Sects. 4.1, 4.2 and 4.3 we
c© Springer International Publishing Switzerland 2016
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provide and explain the results of experiments, showing sequential pattern min-
ing of malware behavior and script learning based on the sequential patterns.
Finally, in Sect. 5 we conclude the paper.

2 Related Work

The idea of scripts has two different interpretations: by Schank and by Minsky.
Both of them we’re comparing in [2]. Basically, Minsky’s concept is closer to the
frame knowledge model while Schank’s is more free-standing. In this paper, we
will follow Schank’s model. Firstly, we make a short summary of this model, as
described in [1–3].

Script is the structured knowledge representation model, used for represent-
ing the typical behaviors in some context. The structure of script resembles the
one of frames model, except its purpose is to describe the sequences of actions
or events. Scripts are used for modeling the human perception, human inference
and natural language comprehension. They allow considering the context of the
events, which opens the possibility to fill in for the missing parts of incoming
information.

Scripts consist of a wide range of component elements, with the most fun-
damental one being the goal. By achieving goals, the described behavior moves
on. The goal can include following elements [1]:

1. The action, which is necessary to complete for achieving the goal
2. The object affected by the action
3. The actor, or the source of performing the action
4. The direction of the action

A basic script is the sequence of goals performed by one actor, representing the
single typical behavior in a pre-described context. The generalized goals can
be broken into more specific subgoals. A more complicated script can represent
multiple behaviors, thus, can include multiple actors. In this case, the notion of
role is introduced. The role is the typical behavior of the actor, performed in a
certain context. It must be noted that the name of the actor is not important
for a script-based analyzing system, and only the role is analyzed.

By further complicating the script, it’s possible to group the large, branching
goal sequences into scenes. A scene is a group of goals, united by being related
to a certain area of the script’s context. Scenes describe the typical behaviors
for such areas.

Schank proposes enriching the script model even further, by:

1. Adding parameters (modifiers, etc.)
2. Creating categories of scenes and roles
3. Establishing the relations between roles
4. Adding obstacles and distractions
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Obstacles and distractions are two wide class of elements found in the incom-
ing information. They are not included in the scripts, because they represent an
unexpected external action. Obstacles are the elements which forbid the achieve-
ment of the current goal. Distractions are the new unknown goals which interrupt
the script following process.

The described features show that scripts open wide possibilities for hierar-
chic organization of its elements, while still maintaining their order. Following
this overview, we compared scripts with alternative existing knowledge repre-
sentation models, as described in [5]. Frames model is the closest to scripts. The
difference is, the objective of frames is to deeply describe the context, while the
objective of scripts is to deeply describe the sequences of actions taken within
the context. Production rules resemble scripts as well, in the sense that both
represent the sequences of some kinds of events. Yet scripts, as it was shown
above, feature a number of context-describing parameters, which do not exist
in the production rules model. As the result, the inference based on production
rules is unable to consider the context – which is exactly the purpose of script-
based inference [1]. Semantic networks do not quite resemble scripts, as they do
not represent the sequences, just the semantic connections. The common part
between scripts and semantic networks is the support for hierarchy.

We’ve compared the scripts with other knowledge representation models fol-
lowing the comparison methodic described in [6]. As the result, we’ve marked out
the merits and demerits of representing knowledge with scripts. Among the mer-
its, the clearness for human perception and the universality for knowledge fields
can be noted. Among the dismerits, the most significant one is the complexity
of model learning and the lack of methods to perform it. The main problem
of scripts, as Schenk mentions it [3], is the necessity to manually input large
amount of data to create the script set. Nevertheless, the manually made scripts
are used for building models in the fields related to human perception, linguistics
mostly [7,8].

3 The Features of a Script-Based Expert System

The purpose behind a script-based expert system, reasoning system or a script-
based decision making system is to expand the incomplete input data by infer-
ence, thus discovering new knowledge. For that, the system must solve the fol-
lowing tasks:

1. Accept the set of learning samples, convert it into a set of scripts and store
the resulting set

2. Estimate the context of the input and choose the appropriate script, on which
the inference will be based

3. Make correlations between the input an the chosen script, while completing
the lacking information via inference

4. Take obstacles and distractions into account, in case the area of application
demands it
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The most important function of such a system is its ability to perform machine
learning, meaning that it would build scripts from raw data.

4 The Machine Learning Method for Scripts

Humans are able to interpret the context, because they know the typical regular-
ities and patterns. These regularities are known from observing the environment
and the typical events, which occur regularly. This leads to the idea that a script,
being the representation of typical events or actions, should be learned from a
dataset of events or actions. The machine learning process should be able to
derive the generalized, typical sequences. The dataset must have a number of
action sequences which happened in the same context in question, or were per-
formed by the role in question. All of these sequences can be different in details,
but generally they, being typical, will represent the same situation.

Therefore, to create the method of script machine learning it is necessary to
solve two tasks:

1. Discover the regularities, or patterns from the action sequence dataset and
convert them into goals and subgoals.

2. Arrange the goals and subgoals in sequence corresponding to the original
dataset to obtain a script.

In this paper, the task of finding the regularities in sequences is solved with
data mining methods – more specifically, sequential pattern mining methods.
These methods did not exist in the years when scripts theory was proposed
and expanded, and the computation capabilities of computer systems did not
allow processing large data – which is not the question now. Firstly, we make
an overview of sequential pattern mining and explore its potential for script
learning.

4.1 Sequential Pattern Mining Overview

Sequential pattern mining is the branch of data mining. The object of analysis
for sequential pattern mining is a set of sequences. A sequence is an ordered
list of itemsets. An itemset is a non-empty set of items [9]. An example of a
sequence: S = 〈{a},{a,b,c}, {b}, {b, c}, {a, d}〉. If an itemset is composed of
items representing the events, then the events within the itemset would be the
ones occurring simultaneously. A sequence representing events only coming one
after another will be represented with itemsets of one item each.

The goal of sequential pattern mining is to obtain common subsequences
from the initial sequence set [10]. These subsequences are named the sequen-
tial patterns. The evaluation of how common a subsequence is depends on the
chosen method of mining, but generally it is based on the support parameter
sup(P), where P stands for the supported pattern. The support indicates how
many sequences from the initial set contain a candidate subsequence, i.e. the
subsequence which is checked for being a sequential pattern. Once the support
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for a subsequence in question hits a certain pre-defined ceiling, the subsequence
is considered to be a sequential pattern, and gets placed into the output set.

The main problem of sequential pattern mining, as [10] summarizes, is the
output set size. The large amount of patterns makes it difficult to interpret the
results. Because of that, it’s common to only seek for the patterns with more
narrow definitions, which also tightens the requirements for a candidate subse-
quence to qualify as a sequential pattern. For example, the sequential pattern
Pa is closed, if there is no other sequential pattern Pb which would be a super-
sequence for Pa while sup(Pa) = sup(Pb) [11]. Narrowing the definition even
further, we can get the maximal sequential pattern, as described in [10,11]. The
sequential pattern Pa is maximal, if there is no other sequential pattern Pb which
would be the supersequence for Pa . The support is not considered while mining
the maximal sequential patterns. So, from a candidate sequences set 〈Pa , Pb〉,
if sup(Pa)>sup(Pb), and Pa ⊂ Pb , then Pa and Pb are both closed sequential
patterns, but only Pb is a maximal sequential pattern.

4.2 Method of Learning Scripts from Sequential Patterns

The purpose of the following method is to discover and build a set of hierarchic
scripts consisting of goals and subgoals in a pre-described context. The method
solves both tasks that we’ve set in Sect. 3. The described method is explained on
malware behavior data, although can be extended to handle any kind of behavior
data presented in sequences of actions.

The idea behind the method is to apply a two-steps approach. In Step 1, the
generalized goals in the form of patterns are discovered by applying sequential
pattern mining to the behavior set. The behavior set consists of action sequences.
In Step 2, these goals are put in order by referring back to the order of similar
actions in the behavior set. The result of these two steps is a set of two-layered
hierarchic scripts. The steps can be reiterated for adding new layers to the hier-
archy by discovering even more generalized goals.

Let input set D0
b of size m be a 0th layer behavior set. In our example, it

is, specifically, a malware behavior reports set. Every report is a sequence of
WinAPI function names, called by a malware during its execution – i.e. the
actions. D0

b is analyzed with a chosen algorithm of sequential pattern mining,
and the pattern set D1

p of size n is discovered as the result. The exact value of n
depends on the chosen algorithm and the initial parameters of mining process.
We will call D1

p = {p11 . . . p1n} a 1st layer patterns set, its items we will call
1st layer patterns. The patterns consist of items, specifically WinAPI function
names in our case. These items we will call 0th layer items. Both layers are
shown on Fig. 1. In terms of scripts, we consider D1

p being a set of generalized
goals consisting of actions from the 0th layer.

In step two, we propose using regular expressions to solve the task of dis-
covering the order of goals. For the discovered set D1

p = p11 . . . p1n, a regular
expression is created:

p11|p12| . . . |p1n (R1)
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Fig. 1. An example of 1st level pattern set, with one of the patterns of length k being
expanded on 0th layer

R1 is applied to the behavior set D0
b . This allows discovering the behavior set

D1
b of size m1, consisting of ordered sequences of sequential patterns as items.

In terms of scripts, D1
b consists of scripts, which have a number of goals put in

order. Every one of these goals is achieved by performing a sequence of subgoals,
each of a size of one action. Therefore, D1

b is the output of our method and the
set of scripts.

For creating the next layer of the script, D1
b is taken as the initial behavior

set. After applying a chosen sequential pattern mining algorithm, the set of
patterns D2

p of size n2 is received: D2
p = {p21 . . . p2n}. D2

p consists of sequences
made from 1st layer patterns as the items. These sequences, {p21 . . . p2n2}, we will
call 2nd layer patterns (see Fig. 2).

Fig. 2. An example of 2nd layer pattern set, with one of the 2nd layer patterns of
length k2 being expanded on 1st layer. One of this pattern’s items, being a pattern
itself, is expanded into 0th layer.
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It is to be noted that the algorithm for sequential pattern mining on this
step is not necessarily the same as on the previous one, when D1

p was discovered.
The work of an algorithm and its results depend on the length of sequences and
the input set size. For D2

b , as we experimentally discovered, these will be smaller
than for D1

b .
At the next step, the proper order of 2nd layer patterns from D2

p is to be
discovered. For the discovered set D2

p = {p21 . . . p2n2}, a regular expression is
created:

p21|p22| . . . |p2n (R2)

The regular expression R2 is applied to the behavior set D1
b . The result is

the behavior set D2
b of size m2. This set consists of sequences made from 2nd

layer patterns as items (see Fig. 3.):

Fig. 3. Behavior set, expanded level by level

To sum it up, the method uses the sequential patterns set D1
p discovered from

sequences set D0
b and from them it discovers the set of sequences of higher level

D1
b , thus making it possible to use the sequential mining. In the terms of scripts,

D2
b is the set of hierarchic scripts. Every discovered behavior b21 . . . b2m2 is an

hierarchic script. The pre-described context is the malware class from which the
behavior reports were taken.

The actor of the discovered scripts, in our case, is the malware which per-
formed the behavior sequences (or a whole malware class, if the set is based on
different specimens of a single class at once). The context is the set of parameters
for the report-generating system used on the stage of forming the initial behavior
set D0

b . The actor and the context are pre-defined, and not discovered via the
mining process, hence we don’t mention them across the method description.

4.3 Experimental Evaluation

This subsection demonstrates the application of our method on real raw data
on malware behavior. The experiments were done in two phases. Firstly, we dis-
covered the sequential patterns from sequences representing malware behaviors.
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For that, we use the existing sequential pattern mining methods. Secondly, we
built the scripts based on these discovered patterns. This is done with the usage
of our method, as proposed in Sect. 4.2.

The experiment was set with the usage for following data and instruments.
The initial behavior datasets corresponded with malware classes. They were
formed from the collection of malware behavior reports obtained in [12], which
contained 3 157 reports in XML format, presented as WinAPI names sequences.
The collection embraces the phases of malware lifecycle which do not require
network interaction. The data went through simple preprocessing before applying
the sequential pattern mining methods. For creating an input dataset D0

b for
every malware class, we purged the reports of unknown class malwares as well
as the reports of malware families consisting of less than 3 reports. As the result,
the input datasets were of following size: Backdoor – 595, Virus – 94, Worm –
224, P2P-Worm – 179, Trojan – 277.

The chosen algorithms of sequential pattern mining were CloSpan and ClaSP,
which both discover closed sequential patterns. The difference is the method of
data mapping. CloSpan maps the data into a tree, while ClaSP utilizes vertical
data representation, which allows higher speed but generates different candidate
sequences [11].

We’ve set the minimal pattern length as 3, meaning that shorter patterns will
be purged from the output set. The experiments were held independently from
each other, meaning that the discovered patterns were not purged by overlap-
ping. The quantities of 1st layer patterns discovered by CloSpan with according
support settings are shown in Table 1.

Table 1. 1st layer patterns, discovered by CloSpan

Class Total Patterns discovered, support 100%–50%

100% 90% 80% 70% 60% 50%

Backdoor 595 0 0 1 49 389 N/A

Virus 94 0 0 0 2 9 12

Worm 224 0 1 8 11 90 998

P2P-Worm 179 0 3 45 253 688 N/A

Trojan 277 0 10 21 38 243 626

The quantities of 1st layer patterns discovered by ClaSP with according sup-
port settings are shown in Table 2.

Next, we set an experiment to discover the 2nd layer patterns. For the input,
we used the sets of patterns discovered by ClaSP from P2P-Worm and Trojan
malware classes, support value 50 %. These were the largest sets obtained at the
previous experiment. We applied ClaSP and CloSpan with support 100 %-30 %.
The quantities of discovered 2nd layer patterns as the result of this experiment
are shown in Tables 3 and 4.
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Table 2. 1st layer patterns, discovered by ClaSP

Class Total Patterns discovered, support 100%-50%

100% 90% 80% 70% 60% 50%

Backdoor 595 0 0 23 49 389 N/A

Virus 94 0 3 3 5 14 26

Worm 224 0 0 0 11 90 998

P2P-Worm 179 0 3 45 253 688 1268

Trojan 277 0 10 31 71 318 946

Table 3. The results of 2nd layer pattern mining for P2P-Worm class

Algorithm 2nd layer patterns discovered

100% 90% 80% 70% 60% 50% 40% 30%

ClaSP 0 0 0 0 0 0 1 2

CloSpan 0 0 0 0 0 1 1 2

Table 4. The results of 2nd layer pattern mining for Trojan class

Algorithm 2nd layer patterns discovered

100% 90% 80% 70% 60% 50% 40% 30%

ClaSP 0 0 0 0 0 1 1 3

CloSpan 0 0 0 0 0 1 1 4

Consider the specifical example of discovered patterns:
GetProcAddress() – InitializeSecurityDescriptor() – SetSecurityDescriptor-

Dacl() – FreeSid() – GetProcAddress()
This pattern, being a WinAPI names sequence, demonstrates malware’s way

of working with a process security descriptor.
By further applying our method, as described in Sect. 3, we created scripts

that had the discovered patterns as their goals and WinAPI names as subgoals.
As an example, one of the scripts for Agent family of Backdoor class appeared
as following:

1. GetACP – GetProcAddress – LoadLibraryA This pattern corresponds with
the goal of receiving the operational system’s code page.

2. GetProcAddress – InitializeAcl – AddAccessAllowedAce – InitializeSecuri-
tyDescriptor – RegCreateKeyExA – GetProcAddress – LoadLibraryA This
pattern demonstrates how a backdoor achieves the goal of creating the access
restriction, by using the security descriptor and putting it at a register key.

3. GetProcAddress – AllocateAndInitializeSid – InitializeAcl – AddAccessAl-
lowedAce – InitializeSecurityDescriptor – RegCreateKeyExA – GetProcAd-
dress – LoadLibraryA This pattern demonstrates how a backdoor achieves the
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goal of adding an access restriction, by adding it into an access list, creating
a security descriptor and putting it at a new register key.

4. GetProcAddress – AllocateAndInitializeSid – InitializeAcl – AddAccessAl-
lowedAce – InitializeSecurityDescriptor – RegCreateKeyExA – FreeSid – Get-
ProcAddress – LoadLibraryA

This pattern demonstrates achieving the same goal, but the security descrip-
tor is also set free.

Therefore, if we consider the implications behind the discovered goals, we
receive the following script (Fig. 4):

Fig. 4. The script for malwares of Agent family, Backdoor class.

Consider an example of a 2nd layer pattern discovered from Trojan class by
ClaSP. It consists of two 1st layer patterns:

1. Pattern p11: RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() –
Local-Free() – RegCreateKeyExA() – GetSystemMetrics() – GetModuleFile-
NameA()

2. Pattern p12 : RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA()
– Local-Free() – RegCreateKeyExA() – GetModuleFileNameA() – GetVer-
sion()

This 2nd layer pattern demonstrates how Trojan malwares incor-porate them-
selves into an operational system by consecutively trying to edit the register in
two different ways, as shown in Fig. 5:

Another 2nd layer pattern, consisting of 3 1st level patterns, shows the similar
behavior.

1. RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() – LocalFree() –
Reg-CreateKeyExA() – LoadLibraryA() – RegCloseKey()

2. RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() – LocalFree() –
Reg-CreateKeyExA() – RegOpenKeyExW() – LoadLibraryA()

3. RegOpenKeyExW() – LoadLibraryA() – RegOpenKeyExA() – LocalFree() –
Reg-CreateKeyExA() – LoadLibraryA() – RegOpenKeyExA()

Therefore, these discovered patterns show different chains of complex actions by
which Trojan malwares try to achieve their general goal. The discovered scripts
can be used for better understanding of malware behavior and for intellectually
malware detection systems.
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Fig. 5. Multi-layered representation of Trojan behavior

5 Conclusion

In this paper, we discussed the method of applying machine learning to Schank’s
scripts model. The previous studies of Schank and co-authors [1,3,4] describe in
detail the main concepts and elements for a script-based knowledge model, yet
they provide no methods of machine learning for it. By reviewing the practical
applications of scripts (for example, [7,8]), we discovered that scripts are still
being formed manually. Our goal was to create a machine learning method which
could’ve solve the task of forming the most basic and necessary script elements
from raw data sequences. For that, we first compared the scripts with other
knowledge representation models. Second, we formulated the requirements for
a self-learning script-based computer system. Basing on these requirements, we
propose the method of script goal mining and ordering. That allowed creating
the hierarchic scripts automatically.

The experiments, set on malware behavior dataset, show the following results.
1st layer patterns obtained, for 5 malware classes and support 90 %: 1, 3 10 (3
classes); support 80 %: 1 to 45 (4 classes); support 70 %: 2 to 253 (5 classes);
support 60 %: 9 to 68 (5 classes); support 50 %: 12 to 1268. 2nd layer patterns
obtained, for 2 malware classes, with support 50 %: 1 each; support 40 % - 1
each, support 30 %: 2 to 4 for each class. With the proposed method of script
learning, the discovered patterns were united into scripts. By analyzing the spe-
cific examples, we saw that the discovered patterns and resulting scripts make
sense and correspond with real malware actions.

The described method was tested only on malware behavior data, however,
it can be of interest in analyzing and mining the behavior-related data of any
nature. There is a wide range of possible future research based on the suggested
method. Our next steps will be towards building a script-based, malware behav-
ior detecting expert system; as well as developing an approach for discovering
cyclic script goals among the normal ones. This research is currently in work,
and seems to be leading us into developing a new kind of sequential patterns.
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Abstract. Let f(X) be unknown smooth function which maps p-dimensional
manifold-valued inputs X, whose values lie on unknown Input manifold M of
lower dimensionality q < p embedded in an ambient high-dimensional space Rp,
to m-dimensional outputs. Regression on manifold problem is to estimate a
triple (f(X), Jf(X), M), which includes Jacobian Jf of the mapping f, from given
sample consisting of ‘input-output’ pairs. If some mapping h transforms Input
manifold M to q-dimensional Feature space Yh = h(M) and satisfies certain
conditions, initial estimating problem can be reduced to Regression on feature
space problem consisting in estimating of triple (gf(y), Jg,f(y), Yh) in which
unknown function gf(y) depends on low-dimensional features y = h(X) and
satisfies the condition gf(h(X)) ≈ f(X), and Jg,f is its Jacobian. The paper con-
siders such Extended problem and presents geometrically motivated method for
estimating both triples from given sample.

Keywords: Regression on manifolds � Regression on feature space � Input
manifold estimation � Jacobian estimation � Tangent bundle manifold learning

1 Introduction

1.1 Regression Estimation

Regression estimation is a part of Statistical Learning whose general goal is finding a
predictive function based on data [1–3]. Common regression estimation problem is as
follows. Let T = f(X) be an unknown smooth mapping from its domain of definition
M lying in input Euclidean space Rp to m-dimensional output Euclidean space Rm.
Given training ‘input-output’ sample

Zn ¼ Zi ¼ Xi

Ti ¼ fðXiÞ
� �

; i ¼ 1; 2; . . .; n
� �

; ð1Þ

the problem is to construct an estimator (learned function) f*(X) which maps the inputs
X 2 M to outputs f*(X) with small predictive error:
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f� Xð Þ � f Xð Þ; ð2Þ

and, thus, can be used to predict output f(X) for new ‘previously unseen’ input X2 M.
There are various approaches and methods for reconstruction of an unknown

function from the training sample, such as least squares techniques (linear and non-
linear), artificial neural networks, kernel nonparametric regression and kriging,
SVM-regression, Gaussian processes, Radial Basic Functions, Deep Learning Net-
works, Gradient Boosting Regression Trees, Random Forests, etc. [4–9].

In many applications, it is necessary to estimate not only function f(X) but also its
Jacobian matrix Jf(X) = ∇Xf(X). For example, many design tasks in Engineering are
formulated as an optimization of given function f1(X) over design variable X 2 M under
constraints defined in terms of other functions f2(X), f3(X), …, fm(X), which together
determine m-dimensional vector-function f(X). Various gradient-based algorithms are
used usually in solving of such optimization tasks. In general, the vector-function f is
unknown and all available information about f is contained only in the sample Zn (1). In
this case, at first, the learned function f*(X), which in engineering applications is referred
to as the surrogate function or meta-model, is constructed from the sample. Then, an
initial optimization task is replaced by ‘surrogate’ optimization task about the constructed
surrogate function f*(X) [10–12]. Therefore, for using gradient-based algorithms in this
surrogate optimization task, we need either to provide proximity Jf*(X) ≈ Jf(X) between
m × p Jacobian matrices Jf(X) and Jf*(X) of unknown and learned functions f(X) and
f*(X), respectively, or to construct sample-based m × p learned matrix J*(X) which
accurately reconstructs the Jacobian Jf(X):

J* Xð Þ � Jf Xð Þ ð3Þ

for all points X 2M; then a pair (f*(X), J*(X)) is used in optimization procedures. Note
that many regression methods don’t include Jacobian estimation.

1.2 Regression on Manifolds Estimation

It is well known that if a dimensionality p of inputs X is large than many regression
methods perform poorly due a statistical and computational ‘curse of dimensionality’: a
collinearity or ‘near-collinearity’ of high-dimensional inputs cause difficulties when
doing regression; reconstruction error in (2) cannot achieve a convergence rate faster
than n−s/(2s+p) when nonparametric learned function estimates at least s times differ-
entiable function f(X) [13, 14].

Fortunately, in many applications, especially in imaging and medical ones, the
high-dimensional inputs X occupy only a very small part M � Rp in the high
dimensional ‘observation space’ Rp whose intrinsic dimension q is small (usually,
q < < p).

Example Wing shape optimization is one of important problem in aircraft designing in
which design variables include a number of p-dimensional detailed descriptions X of
wing airfoils consisting of coordinates of points lying densely on the airfoils’ contours
[15]. In practical applications, the dimension p varies in the range from 50 to 200;
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a specific value of p is selected depending on the required accuracy of airfoil
description. But high-dimensional descriptions of ‘real’ aerodynamic airfoils occupy
only a very small part of the ‘airfoil-description’ space Rp [16, 17] whose intrinsic
dimension q varies in the range from 5 to 10.

The most popular model of high-dimensional data, which occupy a very small part
of observation space Rp, is Manifold model in accordance with which the data lie on or
near an unknown manifold (Data manifold)M of lower dimensionality q < p embedded
in an ambient high-dimensional input space Rp (Manifold assumption [18] about
high-dimensional data); typically, this assumption is satisfied for ‘real-world’
high-dimensional data obtained from ‘natural’ sources. In real examples, a manifold
dimension q is usually unknown and can be estimated on the basis of given dataset
randomly sampled from the Data manifold [19–22].

An estimation of unknown function f from the sample Zn (1), whose domain of
definition M = Supp(f) is unknown low-dimensional manifold (Input manifold, IM)
embedded in high-dimensional input space Rp, is usually referred to as the Regression
on manifolds estimation problem. We consider this problem in Manifold Learning
framework in which various Data Analysis tasks are studied under the Manifold
assumption about the processed data.

Note that term ‘Manifold Learning’ had previously been used usually in the
‘narrow sense’ and concerned only nonlinear Dimensionality Reduction tasks con-
sisting in transforming of the manifold-valued data X into their low-dimensional rep-
resentations (features) y = h(X) preserving certain chosen subject-driven data properties
[23–25]; then the low-dimensional features of the original data can be handled effi-
ciently, avoiding the curse of dimensionality. Thence, Manifold Learning is usually the
first step in various Data Analysis tasks in which q-dimensional features are used in the
reduced learning procedures instead of initial p-dimensional vectors [26].

Various Regression on manifolds methods in an explicit or an implicit form use
Dimensionality reduction technique for discovering low-dimensional structure of the
Input manifold. In [27, 28], kernel regression estimator is constructed directly on the
manifold, using the true geodesic distance in both a determining the nearest neighbors
and a constructing of kernel weights. Another approach [29] is to employ the usual
Local Linear Regression technique in the ambient space Rp with regularization
imposed on the coefficients in the directions perpendicular to the estimated tangent
space to the Input manifold; the derivatives of the unknown function f were estimated
in [30]. Manifold Learning tool called Manifold Adaptive Local Linear Estimator for
the Regression [31] allows estimating the unknown function and its gradient; the tool
explores Riemannian geometric structure of the Input manifold and constructs Local
Linear Regression directly on estimated tangent spaces to the Input manifold, without
knowing the geodesic distance and manifold structure. Bayesian nonparametric
regression method for Regression on manifolds was proposed in [32, 33]; geodesic
regression and polynomial regression on Riemannian manifolds are proposed in [34]
and [35], respectively. A more general case concerning nonparametric regression
between Riemannian manifolds (it means that output space Rm has dimension m > 1) is
studied in [36] where minimization of regularized empirical risk is used for con-
structing of learned function.
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In the paper, we consider Regression on manifold task as an estimating the triple
(f(X), Jf(X), M) with manifold-valued inputs X 2 M that includes an estimation of a
support M of unknown function f(X); covariant differentiation is used in Jf(X).

1.3 Regression on Feature Space Estimation

As was written above, a final goal of Dimensionality reduction is a reducing of initial
Data Analysis task concerning high-dimensional vectors X 2 Rp to similar ‘reduced’
task concerning low-dimensional features y = h(X) 2 Rq under given (or already
estimated) dimension q of the IM M. In the considered Regression on manifold esti-
mation task, after constructing the Feature space (FS) Yh = h(M) � Rq, we consider
‘reduced’ task called Regression on Feature space estimation task about specific
unknown function gf(y), which is defined on the FS Yh and satisfies the proximity

gf h Xð Þð Þ � f Xð Þ ð4Þ

for all X 2 M, that is follows: to estimate the function gf(y) from a Feature sample

Zn;h ¼ fðyi;h ¼ h Xið Þ; gf yi;h
� � ¼ f Xið ÞÞ; i ¼ 1; 2; . . .; ng: ð5Þ

If an estimator g�f yð Þ for gf(y) defined on the FS Yh satisfies proximity

g�f yð Þ � gf yð Þ ð6Þ

for all y 2 Yh then a function

f* Xð Þ ¼ g�f h Xð Þð Þ ð7Þ

satisfies the required proximity (2) and, hence, gives a solution to the initial task.
Therefore, initial Regression on manifold estimation task about unknown function

f(X) with p-dimensional manifold-valued inputs X is replaced by reduced Regression
on Feature space estimation task about unknown function gf(y) with q-dimensional
inputs y = h(X) and, thus, allows avoiding curse of dimensionality.

Because of this, we will consider Extended Regression on manifold task consisting
in estimating of two triples (f(X), Jf(X), M) and (gf(y), Jg,f(y), Yh), in which Jg,f(y) is
m × q Jacobian matrix of the mapping gf(y); this estimation problem includes solving
of Input manifold estimation problem and constructing of Embedding mapping h.

1.4 Input Manifold Estimation Problem

Before strict defining of the Input manifold estimation problem, consider above
described optimization problem for unknown function f(X) over high-dimensional
manifold-valued inputs X 2 M (for example, wing shape optimization task [15]) which
is reduced to surrogate optimization problem for learned function g�f yð Þ over
low-dimensional features y 2 Yh.
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Let y* 2 Yh be a solution of the surrogate optimization problem which does not
belong in general case to the sample set Yn,h = {yi,h = h(Xi), i = 1, 2, …, n}; thus, we
need to recover an ‘optimal’ value X* 2 M from its Out-of-Sample feature y* 62 Yn,h

that satisfies the equation h(X*) = y*. Therefore, for further use of a solution obtained
in Regression on Feature space estimation, we need constructing a Recovering map-
ping g from the FS Yh to the input space Rp which meets the proximity

r Xð Þ � g h Xð Þð Þ � X ð8Þ

between points X 2 M and their recovered values r(X) with small reconstruction error
δ(X) = |r(X) – X| in the proximity (8); the mapping r(X) from the IM M to the Input
space Rp is a results of successively applying the embedding and recovering mappings
to the inputs X 2 M.

The pair (h, g) determines q-dimensional Recovered Input manifold (RIM)

Mh;g ¼ r Mð Þ ¼ fX ¼ g yð Þ 2 Rp : y 2 Yh � Rqg ð9Þ

covered by a single chart g and embedded in an ambient p-dimensional Input space Rp;
the RIM Mh,g can be considered as an estimator of the IM M that meets proximity

Mh;g � M ð10Þ

meaning small Hausdorff distance dH(Mh,g,M) ≤ supX2Mδ(X) between the manifolds.
The considered Input Manifold Estimation problem includes both a constructing the

pair (h, g) satisfying the proximities (8), (10) and an estimating of q × p and p × q
Jacobian matrices Jh(X) and Jg(y) of the mappings h and g, respectively; covariant
differentiation is used in Jh(X) when X 2 M.

1.5 Extended Regression on Manifolds Estimation: An Approach

If a solution (h, g) of the Input Manifold Estimation problem meets an additional
‘functional’ proximity

f r Xð Þð Þ � f Xð Þ; ð11Þ

than we can replace initial Regression on Manifolds estimation problem about
unknown function f(x) by the same problem about an unknown function f(r(X)) defined
on the already estimated RIM Mh,g (9) whose solution can be taken as solution of the
initial Problem. The function f(r(X)) can be written as

f r Xð Þð Þ ¼ gf h Xð Þð Þ ð12Þ

in which

212 A. Kuleshov and A. Bernstein



gf yð Þ ¼ f g yð Þð Þ ð13Þ

is unknown function defined on the FS Yh and, that, because of the relations (11) and
(12), satisfies the proximity (4) and can be estimated from the feature sample Zn,h (5).

There exist independent solutions of each of the above two problems: the Input
Manifold Estimation problem has been solved in [37] (this paper contains references to
other related papers) and the Regression on features space estimation problem can be
solved by various methods, see, for example, [4–9]. Therefore, it seems natural to solve
these tasks consecutively, providing the solution (7) to the Regression on manifolds
estimation problem; just such way was proposed in [38].

The trouble is that it is impossible constructing the consecutive and independent
solutions to these problems: requirement (11) to the solution (h, g) to the Input
Manifold Estimation problem, which is constructed on the first step, is formulated with
use of unknown function f that is estimated only on next, Regression on features space
estimation, step. Therefore, the Extended Regression on manifolds estimation problem
consists in solving of following interrelated estimation tasks:

• Input Manifold Estimation problem, in which both the mapping (h, g) are con-
structed and their Jacobian matrices are estimated from the sample Zn (1). These
mappings determine the Feature space Yh = h(M) and the Recovered Input manifold
Mh,g (9) that satisfy the proximities (8), (10), (11);

• Regression on features space estimation problem, in which the mapping gf(y) (13)
and its Jacobian matrix Jg,f(y) defined on the FS Yh are estimated from the feature
sample Zn,h (5),

which should be solved in conjunction.

1.6 The Proposed Solution

We propose a new geometrically motivated approach to a solving of the Extended
regression on manifolds estimation problem based on reducing this problem to certain
Dimensionality reduction problem (namely, Tangent bundle manifold learning problem
[39, 40]) for q-dimensional ‘Regressionmanifold’M(f) = {(X, f(X))T, X2M} embedded
in input-output space Rp+m; hereinafter, the vectors are written as column-vectors, symbol
T denotes transposition. All available information about unknown Regression manifold is
contained in the dataset Zn (1) sampled from this manifold.

The proposed approach gives also a new solution for common ‘full-dimensional’
Regression estimation problem in which an intrinsic dimension of the IM M is p. The
similar approach has already been used in [41] for solving of common Regression
problem and was results in new regression algorithm called Manifold Learning
Regression; this algorithm allowed avoiding serious drawbacks that are intrinsic to
many regression methods (kernel nonparametric regression, kriging, Gaussian pro-
cesses) when they are applied to functions with strongly varying gradients [2, 8, 9].

This paper is organized as follows. Section 2 contains assumptions about the
estimated objects and describes proposed approach to the Extended regression on
manifolds estimation problem. The proposed solution is described in Sect. 3.
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2 Extended Regression on Manifolds: A Problem Statement

2.1 Regression on Manifolds Estimation Problem: A Common Statement

Consider q-dimensional manifold

M ¼ fX ¼ U vð Þ 2 Rp : v 2 V � Rqg ð14Þ

covered by a single chart U and embedded in an ambient p-dimensional space Rp,
q < p. The chart U is one-to-one mapping from open bounded space V � Rq (called
further Feature space, FS) to the manifold M = U(V) with differentiable inverse map
U−1: M → V. The intrinsic manifold dimension q is assumed to be known.

It is supposed that manifold M has positive condition number c(M) which is the
number such that any point X 2 Rp distant from M by not more than c−1(M) has an
unique projection onto the M [42], thus, no self-intersections, no ‘short-circuit’; this
means also that M has tubular neighborhood (ε-tube Bε(M)) of radius ε < c−1(M).

Inverse function hu(X) = U−1(X), whose values v = hu(X) 2 V can be considered as
low-dimensional coordinates on the manifold M, gives low-dimensional representa-
tions (features) v = hu(X) of high-dimensional manifold-valued data X. Note that pair
(U, V) in the representation M = U(V) (14) of the manifold M is determined up to
arbitrary one-to-one mapping χ from the space Rq into itself: another pair (U*, V*), in
which chart U*(v*) = U(χ−1(v*)) is defined on Feature space V* = χ(V), gives another
representation M = U*(V*) of the manifold M; this representation gives also another
low-dimensional representations v* ¼ h�u Xð Þ ¼ v hu Xð Þð Þ of manifold points X 2 M.

If the mappings hu(X) and U(v) are differentiable and Jh,u(X) and Ju(v) are their
q × p and p × q Jacobianmatrices (covariant differentiation is used in Jh,u(X)whenX2M),
respectively, than q-dimensional linear space

L Xð Þ ¼ Span Ju hu Xð Þð Þð Þ ð15Þ

in Rp is tangent space to the manifold M at the point X 2 M; hereinafter, Span(H) is
linear space spanned by columns of arbitrary matrix H. The tangent spaces can be
considered as elements of the Grassmann manifold Grass(p, q) consisting of all
q-dimensional linear subspaces in Rp. Note that tangent space L(X) (15) defined with
use a concrete representation M = U(V) (14) doesn’t depend on chosen representation.

Let T = f(X) be differentiable mapping from input space Rp to output space Rm

whose support Supp(f) contains ε-tube Bε(M), ε < c−1(M), of the manifoldM called the
Input manifold. Let Jf(X) = ∇Xf(X) be its m × p Jacobian matrix; covariant differen-
tiation is used in Jf(X) when we consider a restriction of the mapping f on the IM
M. Common Regression on manifolds problem consists in estimating of the pair (f(X),
Jf(X)) from given sample Zn to provide proximities (2) and (3) for all points X 2 M.

2.2 Regression on Manifolds Estimation: Related Tasks

Assume that the estimator Mh,g (9) is consistent; it means that dH(Mh,g, M) → 0 with
high probability as sample size n → ∞; the term ‘with high probability’ means that the
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considered event holds with probability at least (1 – Cα /n
α), where α ≥ 1 is an arbitrary

number and Cα depends only on the number α (not on n). Such estimators exist, see, for
example, the papers [37] in which dH(Mh,g, M) = O(n−2/(q+2)) [43]. Assume also that
sample size n is sufficiently large to provide, with high probability, an inclusion
Mh,g � Bε(M). Thus, the function f is defined on the RIM Mh,g.

Consider the function f(r(X)) defined on known (already estimated) manifold Mh,g

that has a representation (12), (13). Under conditions (11) (that implies condition (4)),
this representation allows reducing the initial Regression on Manifolds Problem to the
Regression on features space estimation problems about unknown function gf(y)
defined on the FS Yh. Therefore, the Regression on manifolds estimation problem
requires solving of the following interrelated estimation tasks: given the sample Zn (1),

• to construct a pair (h, g) consisting of Embedding and Recovering mappings, which
determines the FS Yh and the RIM Mh,g, satisfies the proximities (8) and (11), and
provides ‘differential proximity’

rXf r Xð Þð Þ � Jf;g h Xð Þð Þ � Jh Xð Þ � rXf Xð Þ; ð16Þ

where m × q and q × p matrices Jf,g(y) and Jh(X) are Jacobian matrices of the
mappings gf(y) (13) and h(X) defined on the FS Yh and IM M, respectively;

• to construct q × p and p × q matrices Gh(X) and Gg(y) defined on the IM M and
FS Yh, which estimate Jacobian matrix Jh(X) and Jacobian matrix Jg(y) of the
mappings g, respectively, providing the proximities

Gh Xð Þ � Jh Xð Þ; ð17Þ

Gg yð Þ � Jg yð Þ; ð18Þ

• to estimate the mapping gf(y) (13) and its m × q Jacobian matrix Jf,g(y) whose
estimators g�f yð Þ and Gf,g(y) provide the proximities (6) and

Gf;g yð Þ � Jf;g yð Þ: ð19Þ

The solutions to above tasks determine estimator f*(X) (7) of the function f(X) and
estimator

J* Xð Þ ¼ Gf;g h Xð Þð Þ � Gh Xð Þ ð20Þ

of the Gacobian matrix Jf(X) that satisfy the required proximities (2) and (3).
Thus, the triples (f*(X), J*(X), Mh,g) and ðg�f yð Þ; Gf;g yð Þ;YhÞ give solution of the

Regression on manifolds estimation problem.
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2.3 Regression on Manifolds Estimation Problem: A Proposed Approach

We propose following approach to solution to the considered Extended regression on
manifolds estimation problem that allows solving of all above interrelated tasks in
conjunction.

An unknown function f defined on unknown IM M determines a smooth manifold

M fð Þ ¼ fZ ¼ F Xð Þ 2 Rr : X 2 M � Rpg ð21Þ

embedded in an ambient input-output space Rr, r = p + m, in which

F : X ! Z ¼ F Xð Þ ¼ x
fðxÞ

� �
2 Rr ð22Þ

is the mapping defined on the ε-tube Bε(M) of the IM M.
The dataset Zn (1) can be considered as a sample from the unknown manifoldM(f).

To distinguish between the IM M and introduced manifold M(f), the latter will be
referred to as the Regression manifold (RM).

It follows from the representation (14) that the RM M(f) (21) can be written as

M fð Þ ¼ fZ ¼ F U vð Þð Þ 2 Rr : v 2 V � Rqg

and, thus, is q-dimensional manifold embedded in ambient space Rr and covered by a
single chart F(U(v)) defined on the FS V. The mapping F(X) has r × p Jacobian matrix

JFðX) ¼ Iq
JfðX)

� �
� pðX) ð23Þ

in which first multiplier (r × p matrix) is split into p × p unit matrix Ip and m × p
Jacobian matrix Jf(X) (covariant differentiation is used here). Second multiplier π(X) in
(23) is p × p projection matrix onto q-dimensional tangent space L(X) (15) to the IM
M at the point X 2 M. Thus, rank(JF(X)) = q and q-dimensional linear space

Lf Xð Þ ¼ Span JF Xð Þð Þ 2 Grass r; qð Þ ð24Þ

in Rr is tangent space to the RM M(f) at the point F(X) 2 M(f), X 2 M.
First, we consider the Tangent bundle manifold learning (TBML) problem for the

RM M(f) consisting in estimation of both the RM M(f) (21) and its tangent spaces
{Lf(X), X 2 M} (24) to the RM M(f) from the dataset Zn sampled from the RM M(f).

We will use the previously proposed [39, 40] Grassmann&Stiefel Eigenmaps
method (GSE) which gives a solution to this TBML problem and is described shortly in
Sect. 3.1. The GSE-solution results in Embedding mapping hGSE(Z) from the M(f) to
the Regression feature space (RFS) YGSE = hGSE(M(f)) � Rq and recovering mapping
gGSE(y) from the RFS YGSE to the input-output space Rr, in such a way that
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gGSEðhGSE F Xð Þð ÞÞ � F Xð Þ ð25Þ

for all points Z = F(X) 2 M(f), or, the same, for all points X 2 M. In accordance with
splitting of vector Z 2 Rp+m into two vectors Zin 2 Rp and Zout 2 Rm, the mapping
gGSE(y) also can be split into two mappings gGSE,in and gGSE,out:

gGSE yð Þ ¼ gGSE;inðyÞ
gGSE;outðyÞ

� �
ð26Þ

from the RFS YGSE to the input space Rp and output space Rm, respectively. Denote

hGSE;f Xð Þ ¼ hGSE F Xð Þð Þ; ð27Þ

fGSE Xð Þ ¼ gGSE;out hGSE;f Xð Þ� �
; ð28Þ

then the approximate relations (25) can be written as

gGSE;in hGSE;f Xð Þ� � � X; ð29Þ

fGSE Xð Þ � f Xð Þ; ð30Þ

for all X 2 M. Therefore,

• function fGSE(X) (28) accurately reconstructs (30) unknown function f,
• function hGSE,f(X) (27) maps the IM M into the RFS YGSE = hGSE,f(M),
• q-dimensional manifold

MGSE ¼ fgGSE;in yð Þ 2 Rp : y 2 YGSE � Rqg; ð31Þ

which is embedded in input space Rp and covered by a single chart gGSE,in(y)
defined on the RFS YGSE, is GSE-based estimator for the IM M and meets
proximity

MGSE � M ð32Þ

that follows from (29) and inequality dH(MGSE,M) ≤ supX2M|gGSE,in(hGSE,f(X)) –X|.

The GSE allows also constructing certain m × p matrix GGSE,f(X) that accurately
approximates Jacobian Jf(X) for all points X 2 M and, thus, can be taken as estimator
J*(X) that meets proximity (3). The first step is described in details in Sect. 3.2.

The triple (fGSE(X), GGSE,f(X), MGSE) accurately approximates the unknown triple
(f(X), Jf(X), M); the triple (gf(y), Jf,g(y), Yh) is also accurately estimated by certain
GSE-based statistic (gGSE,f(y), GGSE,f,g(y), YGSE). But these GSE-based triples cannot
be considered as solution of the Regression on manifolds estimation problem because
they depend on unknown function f.
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Because of this, we consider these GSE-based triples as preliminary solutions based
on which we construct in the second step the approximations for these triples that
depend on the sample Zn only. Thus, these approximations give final solution to the
Extended regression on manifolds estimation problem.

The details of this second step are described in Sect. 3.3.

3 Extended Regression on Manifolds: A Solution

3.1 GSE-Solution to the Tangent Bundle of Regression Manifold
Estimation

As was shown in [40], a minimization of reconstruction error δ(X) when solving Input
Manifold Estimation problem implies certain additional requirement to the Embedding
and Reconstruction mappings h and g: they should ensure not only Manifold proximity
(8), (10), but also provide another property consisting in proximity between the tangent
spaces to initial and recovered manifolds defined in terms of certain metric on the
Grassmann manifold Grass(p, q).

In topology, a set composed of points of some manifold equipped by tangent spaces
at these points is known as Tangent Bundle of the manifold. An amplification of the
Manifold Estimation problem consisting in accurate reconstruction not only of mani-
fold points but also the tangent spaces at these points can be referred to as the Tangent
bundle manifold learning problem [39, 40].

The paper [40] contains theoretical justification of the need of solving the TBML
for providing good generalization ability properties of solution to the Manifold Esti-
mation problem and describes the GSE method that solves this amplified problem.

The GSE, which is being applied to a solving of the TBML for the RM M(f),
constructs an Embedding mapping hGSE(Z), which maps the RM M(f) to the RFS
YGSE, and a Recovering mapping gGSE(y) (26), which maps the RFS YGSE to the
input-output space Rr, which ensure proximities (25) and

rXgGSEðhGSE F Xð Þð ÞÞ � rXF Xð Þ;

covariant differentiation is used here. This equality can be written as

JGSE;gðhGSE F Xð Þð Þ � JGSE;h;f Xð Þ � JF Xð Þ ð33Þ

in which r × q matrix JGSE,g(y) and q × p matrix JGSE,h,f(X) are Jacobian matrices of the
mappings gGSE(y) and hGSE(F(X)), respectively. Thus, the required proximities (16) are
met. The GSE also constructs r × q matrix GGSE,g(y) that satisfies proximity

GGSE;g yð Þ � JGSE;g yð Þ: ð34Þ

The r × q matrices JGSE,g(y) and GGSE,g(y) can be split into p × q matrices JGSE,g,in(y),
GGSE,in and m × q matrices JGSE,g,out(y), GGSE,out, respectively:
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JGSE;gðyÞ ¼ JGSE;g;inðy)
JGSE;g;outðy)

� �
; GGSE;gðyÞ ¼ GGSE;inðy)

GGSE;outðy)
� �

:

Using these representations and taking into account representation (23) and
equalities (34), approximate equalities (33) can be written as

GGSE;inðhGSE;f Xð ÞÞ � JGSE;h;f Xð Þ � p Xð Þ; ð35Þ

GGSE;outðhGSE;f Xð ÞÞ � JGSE;h;f Xð Þ � Jf Xð Þ; ð36Þ

multiplier π(X) is absent on the right side of Eq. (36) because Jacobian Jf(X) has
already been calculated with use covariant differentiation.

The q-dimensional linear space LGSE(X) = Span(GGSE,in(hGSE,f(X))) is tangent
space to the estimator MGSE (31) of the IM M at the point gGSE,in(hGSE,f(X)) 2 MGSE

that meets ‘tangent’ proximity LGSE(X) ≈ L(X). Let GGSE,in(y) = GGSE,in,ort(y) × R(y)
be QR-decomposition [45] of matrix GGSE,in(y) in which GGSE,in,ort is p × q orthogonal
matrix and R(y) is q × q nonsingular upper triangular matrix. Then p × p projection
matrix

pGSE Xð Þ ¼ GGSE;in;ortðhGSE;f Xð ÞÞ � GT
GSE;in;ort hGSE;f Xð Þ� � ð37Þ

onto the tangent space LGSE(X) accurately approximates the projection matrix π(X).
Considering the relations (35), in which projector π(X) is replaced by the projector

πGSE(X) (37), as regression equations about unknown matrix JGSE,h,f(X), standard
Least-squares technique gives the q × p matrix

GGSE;h;f Xð Þ ¼ G�
GSE;in hGSE;f Xð Þ� �� pGSE Xð Þ; ð38Þ

which estimatess the Jacobian JGSE,h,f(X):

GGSE;h;f Xð Þ � JGSE;h;f Xð Þ ð39Þ

for all points X 2 M, here

G�
GSE;in hGSE;f Xð Þ� � ¼ ðGT

GSE;in hGSE;f Xð Þ� �� GGSE;inðhGSE;f Xð ÞÞÞ�1

� GT
GSE;in hGSE;f Xð Þ� � ð40Þ

is q × p pseudoinverse Moore-Penrose matrix [45].
Finally, consider p × q matrix

GGSE;f Xð Þ ¼ GGSE;outðhGSE;f Xð ÞÞ � GGSE;h;f Xð Þ; ð41Þ

which, due to relations (36) and (39), meets required proximity
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GGSE;f Xð Þ � Jf Xð Þ: ð42Þ

The constructed GSE-based triple (fGSE(X), GGSE,f(X), MGSE) (28), (41), (31)
meets all the required proximities (30), (42), (32). The mapping gGSE,out(y) (26) at the
point y = hGSE,f(X) 2 YGSE estimates the function f(X) (28), (30) and meets relation (4)
with gf(y) = f(gGSE,in(y)) (5). Therefore, the triple (gGSE,out(y), GGSE,out(y), YGSE) can
be considered as solution to the Regression on features space estimation problem. But
these triples cannot be regarded as a solution of the Regression on Manifolds Problem
because depends on unknown function f.

By constructing, the GSE-based dependencies hGSE,f(X) and gGSE(y), as well as the
estimators GGSE,h,f(X) (38) and GGSE,g(y) of their Jacobian matrices, are known at
sample points {(Xi, yih = hGSE(Zi)), i = 1, 2, …, n}. We construct approximations for
these dependencies, which depend on the sample Zn (1) only and meet also all the
required proximities at Out-of-Sample points, with use proposed unified approach to
solving of such regression problems with known Jacobian matrices at sample points
called Known Jacobian Regression problems (KJR).

Next Sect. 3.2 contains some preliminaries (descriptions of used kernels, proposed
solution of the KJR, choice of kernel bandwidths). The approximations of the
GSE-based dependencies, which give final solution to the Regression on Manifolds
estimation Problem, are constructed in Sect. 3.3.

3.2 Extended Regression on Manifolds: Preliminaries

Used Kernels. The GSE-based dependencies, which are defined either on the IM M or
on the FS Y = h(M), are estimated by certain kernel estimators. In this Section, we
describe the kernels used in estimation procedures. Hereinafter, by {εi} we will denote
algorithm parameters which are small positive numbers.

Kernel on Input manifold. Consider usually used kernel KE(X, X′) = I{|X′ – X|
< ε1} called ‘Euclidean’ kernel in which I{·} is indicator function.

Introduce a set Un(X, ε) � Xn consisting of sample points that belong to ε-ball in Rp

centered at X 2 M. An applying of the Principal Component Analysis (PCA) [46] to
the set Un(X, ε1) results in p × q orthogonal matrix QPCA(X) whose columns are the
PCA principal eigenvectors corresponding to the q largest PCA eigenvalues.

Consider q-dimensional linear spaces LPCA(X) = Span(QPCA(X)) in the Rp con-
sidered as elements of the Grassmann manifold Grass(p, q) which, under certain
conditions, satisfy proximities

LPCAðXÞ � LðXÞ for all X 2 M ð43Þ

between the introduced spaces and tangent spaces L(X) (15) to the IM M. Let

dBCðLPCAðXÞ;LPCAðX0ÞÞ ¼ f1� Det2½QT
PCAðX)� QPCAðX0Þ	g1=2;

KBCðLPCAðXÞ;LPCAðX0ÞÞ ¼ Det2½QT
PCAðXÞ � QPCAðX0Þ	;
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be the Binet-Cauchy metric and Binet-Cauchy kernel, respectively, on the Grassmann
manifold [47, 48]. Consider another data-based ‘Grassmann’ kernel

KGðX;X0Þ ¼ IfdBCðLPCAðXÞ;LPCAðX0ÞÞ\e2g � KBCðLPCAðXÞ;LPCAðX0ÞÞ

on the IM M and introduce a new ‘aggregate’ kernel

KðX;X'Þ ¼ KEðX;X0Þ � KGðX;X0Þ ð44Þ

which reflects not only Euclidean nearness between X and X′ but also nearness
between the linear spaces LPCA(X) and LPCA(X′), which, due the relations (43), results
in nearness between the tangent spaces L(X) and L(X′) to the IM M.

Kernel bandwidths. In what follows, we assume that the IM M is ‘well-sampled’ (it
means that sample size n is large enough) to ensure a positive value of the qth

eigenvalue in the PCA and provide proximities (43). To provide a trade-off between
‘statistical error’ in (43) depending on number of sample points in the set Un(X, ε1) and
‘curvature error’ caused by deviation of the manifold-valued sample points from the
‘assumed in the PCA’ linear space, the ball radius ε1 should tend to 0 as n → ∞ with
rate O(n−1/(q+2)); this ensures the same order O(n−1/(q+2)) for the PCA-error (with high
probability) in (43) [49, 50]. A more accurate choice of the parameters ε1 and ε2 can be
based on results of non-asymptotic analysis of the PCA estimators [51].

Kernel on Feature space. The GSE provides feature kernel kGSE(y, y′) defined on
the pairs (y, yi,h), in which y 2 YGSE and

yi;h ¼ hGSE Zið Þ ¼ hGSE;f Xið Þ; i ¼ 1; 2; . . . ; n; ð45Þ

are known sample features, that meets proximity

kGSEðhGSE;f Xð Þ; hGSE;f Xið ÞÞ � K X; Xið Þ

for all X 2 M and i = 1, 2, …, n. Denote kGSE yð Þ ¼ Pn

i¼1
kGSE y; yi;h

� �
.

Estimation of Projectors onto Tangent Spaces. The p × p matrix

pPCA Xð Þ ¼ QPCA Xð Þ � QT
PCAðXÞ ð46Þ

is projection matrix onto the linear space LPCA(X); it follows from (43) that πPCA(X)
accurately approximates the projector π(X) (15) and, thus, the projector πGSE(X) (40).

Regression problems with known Jacobians. Let W = Ф(S) be an unknown smooth
mapping from its domain of definition S � Rs to the Rt. Let

fðWi ¼ U Sið Þ; JU;i ¼ JU Sið ÞÞ; i ¼ 1; 2; . . . ; ng ð47Þ

be given sample consisting of known values of both the unknown function Ф(S) and its
t × s Jacobian matrix JФ(S) at sample points {Si 2 S}. The problem is to estimate Ф(S),
S 2 S, from the sample (47).
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Standard Kernel Nonparametric Regression (KNR) approach [52] to this problem is
as follows. Let K(S, S′) be some chosen kernel on the domain of definition S reflecting
nearness between the points S and S′. Then KNR-based estimator

UKNR Sð Þ ¼ 1
K(S)

Xn

i¼1
K S,Sið Þ �Wi; ð48Þ

where K Sð Þ ¼ Pn
j¼1 K S; Sj

� �
, minimizes the residual

D1ðU; SÞ ¼
Xn

i¼1
K S; Sið Þ � U� UðSiÞj j2:

Write the Taylor series expansion Ф(S) ≈ Ф(S′) + JФ(S′) × (S – S′) for close points
S′, S 2 S and consider the following ‘second-order’ residual function

D2ðU; SÞ ¼
Xn

i¼1
K S,Sið Þ � U�Wi � JU;i � S� Sið Þ�� ��2 ð49Þ

depending on vector Ф 2 Rt. The vector

UKJR Sð Þ ¼ UKNR Sð Þ þ 1
K(S)

Xn

i¼1
K S,Sið Þ � JU;i � S� Sið Þ; ð50Þ

called Known Jacobian Regression (KJR) estimator, minimizes over Ф residual (49).
The residual (49) and estimator (50) can be used only when values JФ,i of Jacobian

matrices JФ(Si) are known (or have been already estimated). Because of this, the
considered problem is referred to as the Known Jacobian Regression problem.

If the kernel K(S, S′) equals 0 when |S – S′| > ε, where ε is small parameter, than the
estimators (48) and (50) have the asymptotic expansions as ε → 0:

UKNR Sð Þ ¼ U Sð Þ þ e� U1 Sð Þþ oðeÞ; ð51Þ

UKJR Sð Þ ¼ U Sð Þ þ e2 � U2 Sð Þþ oðe2Þ;

where U1 Sð Þ ¼ JU Sð Þ � 1
e�KðSÞ

Pn
i¼1 K S; Sið Þ � Si � Sð Þ

h i
and Ф2(S) is

t-dimensional vector whose j-th component Ф2,j(S) equals to

U2;j Sð Þ ¼ 1
2e2 � KðSÞ

Xn

i¼1
K S; Sið Þ � Si � Sð ÞT�HessU;jðSÞ � Si � Sð Þ

h i
;

here HessФ,j(S) is s × s Hessian matrix of j-th component Фj(S) of t-dimensional vector
function Ф(S), j = 1, 2, …, t.

Therefore, relations |ФKNR(S) - Ф(S)| = O(ε) and |ФKJR(S) – Ф(S)| = O(ε2) hold
under small ε. The best accuracy of estimator ФKJR(S) is due to the presence of second
‘correction’ summand in (50) which removes principal error term ε × Ф1(S) in
asymptotic expansion (51) of the estimator ФKNR(S). This effect, in turn, is explained
by used second-order residual (49) available under known Jacobians at sample points.
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The t × s Jacobian matrix JФ(S) can be estimated by KNR-based statistic

JU;KNR Sð Þ ¼ 1
K(S)

Xn

i¼1
K S,Sið Þ � JU;i ð52Þ

that satisfies proximity JФ,KNR(S) ≈ JФ(S).

3.3 Extended Regression on Manifolds Estimation: Final Solution

In this section, we construct the estimators of the GSE-based Embedding mapping
hGSE,f(X) (27) and its Jacobian matrix GGSE,h,f(X) (38) (40), as well as the estimators of
the GSE-based Recovering mapping gGSE(y) (26) and its Jacobian matrix GGSE,g(y).

Estimation of Embedding mapping and its Jacobian. Consider following Embed-
ding regression estimation problem: to construct the Embedding mapping h(X) which
accurately approximates the mapping hGSE,f(X) (27):

h Xð Þ � hGSE;f Xð Þ; X 2 M; ð53Þ

from known values hGSE,f(Xi) = hGSE(Zi) of the mapping hGSE,f(X) and known values
GGSE,h(Xi) of its Jacobian matrix GGSE,h,f(X) (38), (40) at sample point {Xi}.

The proposed KJR- estimator (50) in the considered problem, in which the kernel
(44) is used and projector πPCA(X) (46) replaces the projector πGSE (40) in Jacobian
matrix GGSE,h,f(X) (38), results in the estimator

h Xð Þ ¼ 1
KðXÞ

Xn

i¼1
K X;Xið Þ � hGSE Zið ÞþG�

GSE;in yihð Þ � pPCAðXiÞ � X� Xið Þ
n o

ð54Þ

of the Embedding mapping hGSE,f(X); the known sample features (45) are used. This
estimator provides required proximity (53) and determines Feature space Yh = h(M).

The matrix GGSE,h,f(X) (38) is estimated from its known values {GGSE,h,f(Xi)} at
sample points with use KNR-estimator (48) and results in estimator

GhðXÞ ¼ 1
KðXÞ

Xn

j¼1
K X;Xið Þ � G�

GSE;inðh Xið ÞÞ � pPCAðXiÞ ð55Þ

that meets the required proximity (17).

Estimation of Recovering mapping and its Jacobian. The problem is to construct
the recovering mapping

g yð Þ ¼ ginðyÞ
goutðyÞ

� �
� gGSE yð Þ ð56Þ

defined on the FS Yh on the basis of known values {gGSE(yi,h)} and {GGSE,g(yi,h)} of
the mapping gGSE(y) (26) and its Jacobian GGSE,g(y) at sample features (45).
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The KJR- estimator (50), in which feature kernel is used, results in the estimators

gin yð Þ ¼ 1
kGSEðyÞ

Xn

i¼1
kGSE y; yi;h

� �� Xi þGGSE;in yi;h
� �� y� yi;h

� �	 

; ð57Þ

gout yð Þ ¼ 1
kGSEðyÞ

Xn

i¼1
kGSE y; yi;h

� �� Ti þGGSE;out yi;h
� �� y� yi;h

� �	 

; ð58Þ

that meets proximity (56).
The mappings (57) and (58) determine both the Input manifold estimator

Min ¼ fgin yð Þ 2 Rp : y 2 Yh � Rqg ð59Þ

that, due to proximities (56) and (32), meets Manifold proximities

Min � MGSE � M; ð60Þ

and the estimator

fout Xð Þ ¼ gout h Xð Þð Þ; ð61Þ

that, due to the notations (28) and proximities (56), (53), and (30), meets proximities

fout Xð Þ � fGSE Xð Þ � f Xð Þ: ð62Þ

The Jacobian GGSE,g(y) is estimated from known values {GGSE,g(yi,h)} at feature
sample points (45) with use KNR-estimator (48) that results in estimator

GgðyÞ ¼ 1
kGSEðyÞ

Xn

i¼1
kGSE y; yi;h

� �� GGSE;gðyi;hÞ
� �

ð63Þ

which meets proximity Gg(y) ≈ GGSE,g(y), and, hence, required proximity (18).

Jacobian of Unknown Mapping Estimation. The estimators Gg(y) (63), Gh(X) (55),
and h(X) (54) determine the estimator

Gf Xð Þ ¼ Gg h Xð Þð Þ � Gh Xð Þ ð64Þ

that meets required proximity

GfðXÞ � GGSE;f Xð Þ � Jf Xð Þ: ð65Þ

Thus, the triple (fout(X), Gf(X), Min) defined by formula (61), (64), and (59), meets
the required proximities (62), (65), and (60). The triple (gout(y), Gg(y), Yh = h(M))
defined by formula (58) and (63), gives the solution to the Regression on feature space
estimation problem.
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4 Conclusion

The paper considers Extended Regression on manifold estimation problem in which a
few interrelated problems are solved in conjunction. First of them is common
Regression on manifold problem in which unknown m-dimensional function f(X) of
p-dimensional manifold-valued inputs X, whose values lie on unknown Input manifold
M of lower dimensionality q < p embedded in an ambient high-dimensional space Rp,
and its Jacobian matrix Jf(X), are estimated from given sample Zn consisting of
‘input-output’ pairs. Input manifold estimation problem is to estimate unknown domain
of definition M of function f; this problem includes a constructing of mapping h that
transforms M to q-dimensional Feature space Yh = h(M) and satisfies certain condi-
tions. Regression on feature space estimation problem consists in estimating of both a
specified unknown function gf(y), which depends on low-dimensional features y = h(X)
2 Yh and satisfies the condition gf(h(X)) ≈ f(X), and its Jacobian Jg,f(y).

The proposed construction reduces initial ‘high-dimensional’ estimation problem
about f(X), X 2 M � Rp, to similar ‘low-dimensional’ estimation problem about gf(y),
y 2 Yh � Rq, and allows avoiding curse of dimensionality phenomenon.

We propose a new geometrically motivated method for solving the Extended
regression on manifolds estimation problem which is based on reducing this problem to
certain Dimensionality reduction problem (namely, Tangent bundle manifold learning)
for an unknown q-dimensional Regression manifold M(f) = {(X, f(X))T, X 2 M}
embedded in input-output space Rp+m; all available information about Regression
manifold is contained in the dataset Zn sampled from its manifold.

The previously proposed Grassmann&Stiefel Eigenmaps method, which is used for
solving of this Tangent bundle manifold learning problem, and proposed estimators in
specific regression problem, in which Jacobian matrices of the estimated mapping are
known at the sample points, allowed estimating of unknown triples (f(X), Jf(X),M) and
(gf(y), Jg,f(y), Yh) from the given sample.

The proposed solution gives also a new solution to common ‘full-dimensional’
Regression estimation problem in which an intrinsic dimension of the IM M is p.
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